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ABSTRACT

This report presents the achievements of a
three-year research effort in adaptive control design
for power plant application. The scope of this
effort includes the theoretical development of a
multi-input, multi-output (MIMO) Model Reference Con-
trol (MRC) algorithm, (i.e., model following control
law), Model Reference Adaptive Control (MRAC)
algorithm and the formulation of a nonlinear model of
a typical electric power plant.

Previous single-input, single-output MRAC algo-
rithm designs have been generalized to MIMO MRAC de-
signs using the MIMO MRC algorithm. This MRC algo-
rithm, which has been developed using Command Gener-
ator Tracker methodologies, represents the steady
state behavior (in the adaptive sense) of the MRAC
algorithm. The MRC algorithm is a fundamental com-
ponent in the MRAC design and stability analysis. An
enhanced MRC algorithm, which has been developed for
systems with more controls than regulated outputs,
alleviates the MRC stability constraint of stable
plant transmission zeroes.

The nonlinear power plant model is based on the
Cromby model with the addition of a governor valve
management algorithm, turbine dynamics and turbine
interactions with extraction flows. An application
ul Lhe MRC algorithm to 2 Vinearization of this model
demonstrates its applicability to power plant sys-
tems. In particular, the generated power changes at
7% per minute while throttle pressure and tempera-
ture, reheat temperature and drum level are held
constant with a reasonable level of control. The
enhanced algorithm reduces significantly coatrol
fluctuations without modifying the output response.
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1.0 INTRODUCTION

The objective of this project has been to extend
the technology of Model Reference Adaptive Control
(MRAC) for multi-input, multi-output (MIMO) systems
in such a way as to make the technology applicable to
the control of electric generating plants. In work-
ing toward these objectives this project has been
divided into two phases. The first phase has been to
develop an MRAC algorithm for MIMO systems. An impor-
tant component in this phase has been the development
of the MIMO Model Reference Control (MRC) algorithm.
The MRC algorithm is the nonadaptive counterpart of
the MRAC algorithm and represents the steady state
(in the adaptive sense) behavior of the MRAC algo-
rithm. The second phase has been the validation and
understanding of the algorithms using a power plant
model. An important development in this phase is the
nonlinear model of Philadelphia Electric's Cromby
No. 2 Unit. A linearization of this model has been
used to test and evaluate the MRC algorithm.

2.0 BACKGROUND

The electric power plant control problem is
characterized by multiple plant inputs and outputs.
That is, a set of controls (e.g., coal mill feeder
stroke, feed water and governor valve positions,
spray flows and burner positions) must be manipulated
such that the power generated will track load demand
while other plant variables (e.g., drum level, steam
temperatures and pressures) remain within specified
constraints. The relationships between the outputs
(power generated and regulated plant variables) and
the controls are highly nonlinear with each output
possibly influenced by a number of controls. Modern
multivariable control design techniques are well
suited for this type of problem.

Current industry-wide control designs are based
on single-loop principles relating each output to a
single control. These designs include feedforward
commands which may attempt to coordinate some of the
single-loop structures (see Fig. 1-1 where U, u, cen

are the controls and Yy» ¥p,... are the outputs);

performance is limited by the lack of
coordination or "direct communication' between feed-
back controllers. This lack of feedback coordination
leads to hunting as each controller responds to proc-
ess changes on an individual basis. Modern control
approaches, which intrinsically account for loop
interactions (see Fig. 1-2 where Command Generator
Tracker is a feedforward/feedback multiloop coordi-
nator), promise improved performance capabilities, as
demonstrated by contrci-related performance improve-

however,

ments 1in many aerospace designs and at least one
utility simulation -- the Cromby study.
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Figure 1-2 Modern Multivariable Control Design
- . for Power Plant
Electric generating plant performance and re-
sponse have been improved in the past primarily
through advancements in plant and controller hard-
ware. Controller hardware evolution is exemplified

by the change in turbine governors from mechanical to
analog-electro-hydraulic and to. digital-electro-
hydraulic designs (Ref. 1). However, the enhancement
in hardware has not been accompanied by corresponding
advances in control strategies. Single-loop control
strategies continue to be used, despite the signifi-
cant advantages associated with modern multi-
variable control.

The very fact that coordination of controls is
inherent to the success of modern control algorithms
is, ironically, the reason for doubting the practical
value of such algorithms in utility applications.
These control algorithms are dependent on models of
the systems to be controlled and the performance of
the coordinated controls depends on the accuracy with
which the models predict the behavior of the system.
Due to the complex and diverse nature of utility-type
systems, their models have limited accuracy. As a
result, the improved performance generated by modern
control algorithms is diminished.

The overall objective of this project has been to
develop a multi-input, multi-output (MIMO) Model Ref-
erence Adaptive Control (MRAC) algorithm which ex-
hibits reduced sensitivity to modeling errors and
measurement noise. MRAC algorithms intrinsically
adapt to changes in plant parameters and hence offer
enhanced robustness of the control system which im-
proves performance under less~than-ideal conditionms.
The robustness of the MRAC algorithm with uncertain
system parameters is assumed through a Lyapunov sta-
bility analysis.

3.0 ACCOMPLISHMENTS
An extensive review of the literature has shown
existing adaptive control schemes are of two
general types: either the self-tuning regulator (STR)
or the model reference adaptive controller.
Although STRs have fewer restrictions and thus wider
applicability, unlike MRACs they cannot guarantee
closed loop stability. Previous MRAC algorithms
which have been desighed for single-input, single-
output (SISO) systems have global stability proper-
ties that cause output errors to asymptotically
approach zero. MRAC algorithms which have previously
been designed for MIMO systems are globally stable
but only result in state errors being bounded. The
goal of this effort has been to develop MIMO MRAC
algorithms with characteristics similar to the SISO
MRAC algorithms.

that

The fundamental achievement in this project has
been the development of the MIMO Model Reference Con-
trol (MRC) algorithm (or model following control



algorithm) using the Command Generator Tracker method-
ology. The MRC algorithm has been developed for lin-
ear multi-input, multi-output (MIMO) time-invariant
continuous- and discrete-time systems with known
parameters. The MRC algorithm is the nonadaptive
(requiring knowledge of the plant parameters) coun-
terpart to the MRAC algorithm. The MRC algorithm
development is a significant achievement in this
research because: (1) it is a unique model follow-
ing control algorithm and (2) represents the steady
state behavior (or ideal goal) of the MRAC. That is,
the MRAC algorithm adjusts the control gains toward
the MRC algorithm gains. Once the gains reach their
MRC values, no more adaptation will occur. Thus, the
MRC algorithm is an important component in the MRAC
algorithm analysis.

Model Reference Control (MRC) is based upon
matching the response of a system having known param-
eters to that of a reference model which has desirable
design specifications incorporated within it. For
example, the outputs to a step input might be charac-
terized by specified rise times, overshoots, and/or
damping ratios. The controller and reference model
work together to incorporate these characteristics
into the plant outputs. The reference inputs are fed
1ATO0 the teterénce model, the outputs ot which re-
spond in accordance with the design specifications
that have been built into it. The control system is
designed such that the inputs to the plant drive the
outputs of the plant to equal the outputs of the
reference model.

The second major accomplishment has been the
development of the MRAC algorithm tor linear MIMO
time-invariant and continuous-time systems with un-
known parameters. The adaptive algorithm is an ex-
tension of the MRAC algorithm, previously developed
by Mabius and Kaufman (Ref. 2), using the MRC algo-
rithm described above. The algorithm is also an
extension to MIMO systems of previously developed
single~input, single-output (SISO) MRAC algorithms
(Ref. 3). In fact, the MRAC algorithm presented here
degenerates into the SISO algorithm if the number of
inputs and outputs is onme. The fundamental differ-
ence in the approach taken here is that the MRC algo-
rithm and most of the MRAC algorithm are formulated
in state-space and matrix format -(as opposed to
input/output differential equation format). The MRC
algorithm is implementable if the plant parameters
are unknown, whereas the MRAC algorithm is applicable
when the plant parameters are unknown.

Since the MRAC algorithm is derived from a
Lyapunov function, the resulting system is globally
stable. The application of this algorithm is re-
stricted by one aspect of the design which is
required to complete the stability analysis. The
author feels this restriction on the design can be
overcome with continued research on the algorithm.
Other MRAC algorithms have been developed earlier in
this contract. These algorithms are similar in na-
ture to the previously developed MIMO MRAC algorithms
resulting in bounded error stability and requiring a
more stringent constraint for stability.

The third major accomplishment is development of
a boiler-turbine-generator power plant model of Phil-
adelphia Electric Company's Cromby No. 2 Unit used to
study and validate the control algorithms. This model
is a nonlinear, state-space representation of the
Cromby plant and has been developed from first-
principle considerations (Refs. &4 and 5). Since test
data are available for validation, this model is con-
sidered to be highly realistic with regard to pre-
dicting plant behavior.

The fourth major accomplishment of this project
has been validating the continuous-time MRC algorithm
with a linearization of the power plant model behavior
near 190 MW. In this application, five controls have
been designed to maintain throttle pressure and tem-
perature, reheater output temperature and drum level
at a fixed level. At the same time, generated power
response to load demand rate has been included in the
reference model as a first order lag and integator.
The regulating controls are mill feeder stroke, super-
heater burner tilt, reheater burner tilt, feedwater
valve area and throttle valve area. With the MRC
algorithm, the output of the linear model responds
exactly as designed (no output variations except gen-
erated power which has very smooth 7% of load demand
per minute response)} and the controls remain within
their designed bounds. This result is important since
the MRC algorithm represents the behavior of the MRAC
once adaptation is complete. In effect, the applica-
bility of the MRAC algorithm in the (adaptive)
steady~-state has been verified.

The final major achievement of this project has
been the enhancement of the MRC algorithm. The appli-
cation previously described is characterized by rapid
and large variations in the controls. This result has
been dramatically improved by introducing the remain-
ing power plant controls, air flow, feedwater valve
area, and governor valve lift. In the enhanced MRC
algorithm these controls are optimally chosen to
balance the efforts of all the controls in an outer
loop control system around the inner loop MRC algo-
rithm. If the MRAC algorithm were similarly enhanced,
these outer loop controls would not be adaptive.

4.0 RECOMMENDATIONS

Future efforts in this area of research should
deal with the MRC algorithm high feedback gain charac-
teristics. In spite of the excellent performance
reported in Section 3.0 above, the feedback gains are
relatively high. This causes large fluctuations in
the controls when unmodeled disturbances enter the
system or initial condition érrors are significant.
This problem may not have occurred if the control
system could be applied to a lower order model of the
power plant. However, the MRC and MRAC stability
theory do not deal with unmodeled dymamics. Hence,
the stability problem with unmodeled dynamics is an
important topic for future research with respect to
the MRAC algorithm.

Future efforts on the MRAC algorithm should also
deal with the structural constraints necessary to
establish stability. As noted above, the algorithm is
limited to plants satisfying limiting structural com-
straints, necessary to complete the stability analy-
sis. The author feels that, without much difficulty,
future efforts should be able to modify the algorithm

or the stability analysis to eliminate this

restriction.
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1.0 INTRODUCTION

1.1 BACKGROUND

The electric power plant control problem is
characterized by multiple plant inputs and outputs.
That is, a set of controls (e.g., coal mill feeder
stroke, feed water and governor valve positions,
spray flows and burner positions) must be manipulated
such that the power generated will track load demand
while other plant variables (e.g., drum level, steam
temperatures and pressures) remain within specified
constraints. The relationships between the outputs
(power generated and regulated plant variables) and
the controls are highly nonlinear with each output
possibly influenced by a number of controls. Modern
multivariable control design techniques are well
suited for this type of problem.

Current industry-wide control designs are based
on single-loop principles relating each output to a
single control. These designs include feedforward
commands which may attempt to coordinate some of the

single-loop structures (see Fig. 1.1-1 where U

Uy, ... are the controls and Yir Yoo . are the out-

puts); however, performance is limited by the lack of
coordination or '"direct communication" between feed-
back controllers. This lack of feedback coordination
leads to hunting as each controller responds to proc-
ess changes on an individual basis. Modern control
approaches, which intrinsically account for loop
interactions (see Fig. 1.1-2 where Command Generator
Tracker is a feedforward/feedback multiloop coordi-
nator), ‘promise improved performance capabilities, as
demonstrated by control-related performance improve-

ments in many aerospace designs and at least one
utility simulation ~- the Cromby study (see
Chapter 5) . DISTURBANCES ame
CONTROWLER, hil hdl
B :
POWEA .
. o GENERATED
"r
LOAD .—l FEEDFOAWARD I . . .
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Figure 1.1-1 Current Control Design for
Power Plants
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Figure 1.1-2 Modern Multivariable Control Design

for Power Plants

Electric generating plant performance and re-
sponse have been improved in the past primarily
through advancements in plant and controller hard-

ware. Controller hardware evolution is exemplified
by the change in turbine governors from mechanical
to analog-electro-hydraulic and to digital-electro-
hydraulic designs (Ref. 1). However, the enhancement

in hardware has not been accompanied by corresponding
advances in control strategies. Single-loop control
strategies continue to be used, despite the signifi-
cant advantages associated with modern multivariable

control.

The very fact that coordination of controls is
inherent to the success of modern control algorithms
is, iromically, the reason for doubting the practical
value of such algorithms in wutility applications.
These control algorithms are dependent on models of
the systems to be controlled and the performance of
the coordinated controls depends on the accuracy with
which the models predict the behavior of the system.
Due to the complex and diverse nature of utility-type
systems, .their models have limited accuracy. As a
result, the improved performance generated by modern
control algorithms is diminished.

1.2 OBJECTIVES

The overall objective of this project has been to
develop a multi-input, multi-output (MIMO) Model Ref-
erence Adaptive Control (MRAC) algorithm which ex-
hibits reduced sensitivity to modeling errors and
measurement noise. MRAC algorithms intrinsically
adapt to changes in plant parameters and hence offer
enhanced robustness of the control system which im-

roves performance under less-than-ideal conditions
The robustness of the MRAC algorithm with uncertain
system parameters is assumed through a Lyapunov sta-
bility analysis.

Research by Monopoli (Ref. 2) and others (Ref.3)
on single-input, single-output (SISO) MRAC design
procedures has led to adaptive algorithms which cause
the plant and model outputs to converge asymptotic-
ally. These algorithms do not require any positive
real constraints on the plant and only output (not
full state) feedback. However, due to their formu-
lation, it is cumbersome to extend the algorithms to
multivariable systems.

An approach for designing model reference adap-
tive controllers for multivariable linear systems was
originally proposed by Mabius and Kaufman (Refs. 4, 5,
6). The applicability of this adaptive controller has
been demonstrated using the linearized equations of
motion for a typical fighter aircraft (Ref. 5).
Results showed the algorithm to be capable of suffi-
ciently rapid adjustment of control gains to compen-
sate for instantaneous altitude and velocity changes.
However, the algorithm was limited by:

e The guarantee of only a bounded error
between the plant and model state vector

o The need for the order of the model to
be the same as the order of the plant

e The requirement that the plant satisfy a
positive real constraint to achieve
stability

¢ The requirements of full state feedback.

The specific objective of this effort has been
to generalize the SISO MRAC algorithms to MIMO sys-
tems. First, previous work at TASC on Command Genera-
tor Tracker (CGT) algorithms (Refs. 7, 8) has led to
the development of the MIMO Model Reference Control
(MRC) algorithm. This algorithm then provides the
basis for the MIMO MRAC design. The evolution of the
latter is analogous to the development of Monopoli's



SISO MARC design from early SISO model-following con-
trol ideas.

1.3 ACCOMPLISHMENTS

The - fundamental achievement in this project has
been the development of the MIMO Model Reference Con-
trol (MRC) algorithm (or model following control al-
gorithm) using the Command Generator Tracker method-
ology. This algorithm represents the steady state (in
terms of adaptation) behavior of the Model Reference
Adaptive Control (MRAC) algorithm and hence is a
fundamental component in its design and analysis. The
MRC algorithm has been developed for linear multi-
input, multi-output (MIMO) time-invariant continuous-
and discrete-time systems with known parameters.

The second major accomplishment has been the
development of the MRAC algorithm for linear MIMO
continuous-time systems with wunknown parameters.
Since the algorithm is derived from a Lyapunov func-
tion the resulting system is globally stable. The
algorithm is formulated around the comtinuous-time MRC
algorithm, and in some aspects is a generalization of
Monopoli's algorithm. The fundamental difference in
the generalized approach is that the MRC algorithm and
most. of the MRAC algorithm are formulated in state-
space and matrix format (as .opposed to input/output
différential equation format). The application. of
this algorithm is restricted by one aspect of the
design which is required to complete the stability
analysis. The author feels this restriction on the
design can be overcome with contipued research on the
algorithm. Other MRAC algorithms have been developed
earlier in this contract.  These algorithms are simi-
lar in nature to the previously developed MIMO MRAC
algorithms resulting in bounded error stability and
requiring a more stringent constraint for stability.

. The"’ third major accomplishment is development of
a boiler-turbine- -generator power plant model of Phil-
adelphia Electric Company' Cromby No. 2 Unit used to
study and validate the control algorithms. This model
is.. a nonlinear, state-space representation of the
Cromby. plant and has been developed from first-
principle cons1derations (Refs. 9 and 10) Since test
data are available for valldatlon, this model is con-
sidered to be highly realistic ‘with regard to pre-
dlctxng plant behavior.

.The fourth major accomplishment of this project
has been validating the continuous-time MRC algorithm
with a linearization of the- power plant model behavior
near 190 MW. In this application, five controls have
been designed to maintain throttle pressure and tem-
perature, reheater output temperature and drum level
at a fixed level. At the same time, generated power
response to load demand rate has been included in the
reference model as a first order lag and integrator.
The regulating controls are mill feeder stroke, super-
heater burner tilt, reheater burner tilt, feedwater
valve area and throttle valve area. With the MRC
algorithm, the output of the linear model responds
exactly as designed (no output variations except gen-
erated power which has very smooth 7% of load demand
per minute response) and the controls remain within
their designed bounds. This result is important since
the MRC algorithm represents the behavior of the MRAC
once adaptation is complete. In effect, the applica-
bility of the MRAC algorithm in the (adaptlve) steady-
state has been verified.

The final major achievement of this project has
been the enhancement of the MRC algorithm. The
application previously described is characterized by
rapid and large variations in the controls. This re-
sult has Qeen dramatically improved by introducing the
remaining power plant controls, air flow, feedwater
valve area, and governor valve lift. In the enhanced
MRC algorithm these controls are optimally chosen to
balance the efforts of all the controls in an outer
loop control system around the inner loop MRC algo-
rithm. If the MRAC algorithm were similarly enhanced,
these outer loop controls would not be adaptive.

This report presents a detailed description of
the achievements summarized above. A literature re-
view of adaptive control and a formulation of model
reference adaptive control appears in Chapter 2. The
basic MRC algorithm and its enhancement are detailed
in Chapter 3 along with analysis of the plant/model
error with the MRC algorithm. Chapter 4 presents the
MRAC algorithm and a stability analysis using the
Lyapunov approach. Other MRAC algorithms developed
during this contract and reported in previous Topical
Reports are included in Appendix E. Chapter 5 presents
a summary of the Cromby model; a detailed development
is given in Appendix A. The application of the MRC
algorithm to a linearization of the power plant
appears in Chapter 6.



2.0 ADAPTIVE CONTROL PROBLEM FORMULATION

2.1 BACKGROUND

As discussed in Chapter 5 and detailed (using a
representative example) in Appendix A, the power plant
is a system which, when modeled in state variable for-
mat, has nonlinear dynamics and measured outputs which
are nonlinear combinations of states. As a result, it
is not easy to apply modern control theory {(largely a
linear system technology) directly to power plant con-
trol design. Usually, however, each control can be
computed as the sum of an open loop.control and an
incremental control. The open loop control, which can
be computed a priori, drives the plant to a given (us-
ually constant) state referred to as the operating
point. The incremental control responds to deviations
of the system about the operating point. Since the
system behavior near the operating point can be de-
scribed approximately by a linear model, the incre-
mental control design can be formulated using linear
modern control theory.

Due to their nature, the incremental controls are
feedback-type controls. They serve to stabilize the
system about the operating point and regulate transi-
ent performance when small changes in the operating
point are required. In nonlinear systems such as the
power plant, the following problems can arise.

e The parameters of the linear incremental
model may change as the operating point

changes

e The nonlinear dynamics of the power
plant may change with time (e.g., due
to aging)

e The linear incremental model only

approximates the nonlinear behavior of
the plant near the operating point.

In many cases these problems can be overcome by the
incremental control design technique because

e The robust property of the incremental
control design causes the system stabil-
ity to be insensitive in a local sense
to small parameter changes and disturb-
ances

o The control design gains are scheduled
as functions of the operating point.

However, large uncertainty of the parameters (often
the case in power plants) can result in undesirable
transient performance and even global instability.

The problem of performance regulation in the face
of unknown system parameters has been heavily ad-
dressed by adaptive control for single-input, single-
output systems; however, the corresponding problem for
the more general multi-input, multi-output (MIMO) non-
linear system surh as the powe:r plant has not yet re-
ceived much emphasis. Since theoretical advances in
adaptive control may lead to its application in power
plant control design, TASC's goal is to extend adap-
tive control theory in such a way as to make it
applicable to the particular problems of the power
plant control discussed above. This chapter and
Chapters 3 and 4 address the progress we have made
toward these goals. Section 2.2 prcoents a review of
previous results that are relevant to our study. In
Section 2.3, a formulation of the linear MIMO model
reference adaptive control problem is presented.

2.2 REVIEW OF PREVIOUS WORK

Although the ultimate goal of our work is apply-
ing adaptive control to the power plant system, the
intent of this report is a theoretical development.
Hence, this review of the theoretical work includes a
brief description of the literature on. application- of
the technology.

Most of the research in adaptive control has been
devoted to linear systems with either continuous- or
discrete~time representations. A significant part of
this research has concentrated on single-input,
single-output (SISO) systems. Within the - class of
linear SISO systems two promising "approaches have
emerged: the self-tuning regulator (STR) (Ref. 11)
and the Model Reference Adaptive Controller (MRAC)
(Ref. 3). The STR approach adjusts the -control
parameters based on explicit estimates of the system
parameters which are obtained through a parameter
identification scheme. MRAC directly adjusts the con-
trol law parameters using a Lyapunov-based scheme
which ensures that the resulting closed loop system is
stable. In the current literature STR's are more
easily designed and less restricted but generally do
not guarantee stability, whereas, MRAC's are complex
structures and have restricted applications, but
guarantee a stable closed loop system.

The first step in designing adaptive control
schemes is the development of a parameterized control
law such that, given complete knowledge of the system
to be controlled, the control law parameters can read-
ily be chosen. The model reference controller (MRC),
which serves this purpose adequately, is an intrinsic
part of MRAC designs (Ref. 11 and 12) and is commonly
used in STR designs. It is, however, restricted to
minimum phase systems. Astrom has proposed an alter-
native controller (similar to MRC) which the more
flexible STR can use, and which is not restricted to
minimum phase systems.

The development of adaptive controllers for mul-
ti-input, multi-output (MIMO) systems has been very
minimal. For the MRAC approach, the results to date
are extremely restrictive in their application.
Landau (Ref. 12) has proposed a’continuous time solu-
tion that requires 'perfect model following" condi-
tions for stability. (He has also proposed a dis-
crete-time solution of the MIMO problem in Ref. 13).
Mabius and Kaufman (Refs. 4, 5 and 6) have relaxed
these conditions and achieved stability with a
bounded-state-erreor tracking , result. | However, the
application is restricted to positive real systems,
which is more limiting than the minimum.phase condi-
tion. Monopoli attempted to extend his SISO approach
(Ref. 14) to MIMO systems (Ref. 15); however, the for--
mulation is rather cumbersome and is not sufficiently
general for the power plant application. The results
to be discussed in this report are a contlnuat1on of
the Mabius-Kaufman and Monopoli work.

Applications of STR and MRAC that appear in the
literature are generally based on Astrom's STR of
Landau's discrete time MRAC. A humber of applications
of STR's and MRAC's to power systems, aircraft systems
and process control appear in Ref. 16. Reference 17
presents an STR application to chemical process con-
trol, and Ref. 18 a MRAC application to a pointing
system control. Reference 19 discusses the use of
minicomputers in a STR application. Reference 20 dis-
cusses a MRAC algorithm with output errors that can be
made arbitrarily small during transient periods of
adaptatinn., TASC has previvusly applied adaptive con-
trol to the missile guidance problem (Ref. 21).



2.3  PROBLEM FORMULATION

As discussed in Section 2.1, this report presents
theoretical developments in Model Reference Control
(MRC) and Model Reference Adaptive Control (MRAC) as
applied to multi-input, multi-output (MIMO) systems.
MRAC is an adaptive version of MRC that is implemented
when the system parameters are unknown. This section

presents a formulation of the MRC/MRAC problem for
continuous and discrete time-domain representations
of linear systems, beginning by formulating the MRC
problem.

Model Reference Comntrol (MRC) is based upon
matching the response of a system having known param-
eters to that of a reference model which has desirable
design specifications incorporated within it. For
example, the outputs to a step input might be charac-
terized by specified rise times, overshoots, and/or
damping ratios. The controller and reference model
work together to incorporate these characteristics
into the plant outputs. The reference inputs are fed
into the reference model, the outputs of which respond
in arrordance with the design specifications thal have
been huilt inte it. If the control system is dJesigned
properly; the inputs to the plant drive the vuiputs of
the plant to equal the outputs of the reference model.

The continuous-time plant (system) is describea
by a set of linear differential equations with m in-
puts gp(t),

5p(t) = Ap Ep(t) + Bp gp(t) (2.3-1a)
zp(t) = Cp gp(t) (2.3-1b)
!s(t) = Hp §p(t) (2.3~1¢)

where
Ep(t) is a n X 1 state vector
Ep(‘) is a m X 1 input vector
xp(t) is a £ X 1 output vector

xs(t)‘is a £s X 1 measurement vector

The outputs zp(t) are those quantities (linear combin-

ations of the states) that are manipulated by the con-
trols to be equal to the reference model outputs. The
variable xs(t) represents those linear combinations of

states that are measurvd. The matrices Ap' Bp, CP and

Hp are constant, of appropriate dimensions, and cun-

tain the plant parameters. These parameters are
assumed te¢ be kwown in the MRC problem and uaknown,
but bounded, in the MRAC problem.

It is assumed that the number of outputs, £, is
less than or equal to the number of imputs, m. Gen-
erally, only £ inputs are required to regulate £
nutputs. If m>£, Eq. 2.3-1a is expanded to

x,(t) = A gp(t) *B gpl(t)

+ B (2.3-2)

02 gpz(t)

whiere
gpl(t) is a £x1 input vector
gpz(t) is a (m-2)X1 input vector

and the matrices B and B are subsets of B .
pl p2 p

The first set of controls Epl(t) is used in the MRC

and MRAC algorithms and compensates for plant/model
errors generated by Epz(t)' The second set of con-

trols Epz(t) can be arbitrary but they are used in the

enhanced MRC algorithm to balaoce the
gpl(t).

cfforts of

The discrete-time plant is described by a set of
linear difference equations representing the inputs,
outputs, measurements and states at discrete (equally
spaced) points in time. The numbers of inputs, out-
puts, measurements and States are the same as in the

continuous-time formulation (Eq. 3.3-1) and k is a
time-iader  Thus,
x,(k41) = Fx (6) + 6w (k) (2.3-34)
zp(k) = Cp ip(k) (2.3-3b)
7 (k) = Hy x (k) (2.3-3¢)

h th trices F d G like A nd B con-
where e matrice b an o (like o a p) are

stant matrices of appropriate dimensions containing
the plant parameters. As in the continuous time case
if m>£ then Eq. 2.3-3a is expanded to

(k)

* Gpa pp ()

+1} = F k) + G
2pUkH) = Fo X, () + Gy upy

(2.3-4)

where G and G are subsets of G_.
pl P

p2

If the plant is described in continuous-time for-
mat (Eq. 3.3-1), the reference model is described by a
gset of % linear differential equations with mm inputs

and £ outputs (i.e. the plant and reference model have
the same number of outputs),

gm(c) = A x (t) + B u (t) (2.3-53)

zm(t) (2.3-5b)

Ca x ()
where
5m(t) is a n X 1 state yvector
xm(t) is a £ X 1 output vector

. « .
gm(t) is a m 1 input vector

The constant matrices Am, Bm and Cm are of apprupriate

dimensions. Note that gm(t) is the reference model

command and zm(t) is the desired plant response

(achieved by appropriately picking the reference model
parameters). Since the reference model is synthesized
by the controller all its states and inputs are known

quantities,




If the plant is described in discrete-time format
(Eqs. 2.3-2), the reference model is also. The number
of inputs, outputs and states is the same as in the
continuous formulation. Thus,

Em(k+1) Fm §m(k) + Gm gm(k) (2.3-6a)

Yo (k) =€ x (k) (2.3-6b)
where Fm, Gm and Cm are matrices of appropriate di-
mensions containing constant parameters.

In terms of the plant and model, the solution to
the MRC or MRAC problem is a plant control, u (t) or
gp(k), that causes the plant output, zp(t) or zp(k),
to approach the reference model output, zm(t) or
zm(k), asymptotically. The difference between the MRC
and MRAC problem is that in the former the plant
parameters (A, B, C, F , G, H ) are known while

P P P P P P
in the latter they are unknown.



3.0 MODEL REFERENCE CONTROL

This chapter presents the Model Reference Control
(MRC) algorithm solutions to the control problem posed
in Chapter 2. The MRC algorithm is the nonadaptive
(requiring knowledge of the plant parameters) counter-
part to the MRAC algorithm. The MRC algorithm devel-
opment is a significant achievement in this research
because: (1) it is a unique model following control
algorithm and (2) represents the steady state behavior
(or ideal goal) of the MRAC. That is, the MRAC algo-
rithm adjusts the control gains toward the MRC algo-
rithm gains. Once the gains reach their MRC values,
no more adaptation will occur. Thus, the MRC algo-
rithm is an important component in the MRAC algorithm
analysis.

Model Reference Control (MRC) is based upon
matching the response of a system having known param-
eters to that of a reference model which has desirable
design specifications incorporaled within it. For
example, thé outputs tov a slep Loput might be charac-
terized by specified rise times, overshoots, and/or
damping ratios. The controller and reference model
work together to incorporate these characteristics
into the plant outputs. The reference inputs are fed
into the reference model, the outputs of which respond
in accordance with the design specifications that have
been built into it. The control system is designed
such that the inputs to the plant drive the outputs of
the plant to equal the outputs of the reference model.

3.1 CONTINUOUS-TIME ALGORITHM

The continuous-time MRC algorithm is based on
continuous-time Command Generator Tracker (CGT)
methodology and a continuous-time observer. Before
presenting the algorithms in section 3.1.3, these two
technologies are reviewed.

3.1.1

Command Generator Tracker Methodology
The controls developed from CGT technoiogy (Ref.
7) are based on the so-called idealized or "-traJec-

x (t),

represents that trajectory which the plant state
follows when the plant output, zp(t), equals the ref-

The ideal-
(t), represents the

tories. The ideal plant state trajectory,

erence model output, Xm(t)’ for all time.
ized plant control trajectory, g"

control that will cause. the plant state to follow the

ideal plant state trajectory for any arbitrary,
gpz(t). That is, for all time
® .
Cp Ep(t) = zm(t) (3.1-1a)
and
x (t) A L (t) p1 gpl(t) + sz Epz(t) (3.1-1b)

In Appendix C, expressions for the *-trajectories
as linear functions of X (v, u (t), u, (t) and B(t)

(a filtered vers1on of u (t)) are derlved The ex-

pressions for xp(t), u (t) and 6(t) are given by
w -
gp(t) =8, %,(t) + s12 u(t) + 8,4 gpz(t)
), 8(t) (3.1-2a)

x(0) = 5;) %,(0) + 8(0) (3.1-2b)
gzl(t) = 851 Kg(£) + S5 w (8] + S5 u(0)
Q,, 8(¢) (3.1-2¢)

B(t) - 0y 8(t) =5, u (8) + 85 u,(t)

(3.1-24)

The filter initial condition, 8(0), is arbitrary as
long as there exists a 6(0) which satisfies Eq. 3.1-2d
for t=0. Realizatiovn of Eq. 3.1-2d involves a complex
reformulation, but subsequent developments eliminate
this filter from the MRC algorithm.

The coefficients in Eq. 3.1-2 are partitions of
the S and Q matrices, which satisfy

A Bpr| S Sz Si3| U [Sufe SuBa B
G o IS % %] |G 0 0
(3.1-3a)
A B Q a. ]l [ o
Poplf 1l 1zl e (3.1-3b)
¢ o] [ %) [0 1

Equation 3.1-3a has a solution if none of the plant
transmission zeros are equal either to zero or to any
of the reference model poles (Ref. 22). Equation
3.1-3b has a solution if none of the plant transmis-
sion zeros are equal to zero (Ref. 23).

The MRC algorithm is defined in terms of these
#-trajectories and an estimate of the plant state,
x (t). 1If Hp is of full rank (with 25=n) then the

estlmate b (t) is given by

% () = Hp E (%) (3.1-4)

P

If HP is less than full rank (let the rank be p=n-25)

then the estimale is Lhe ovutput of a minimal oxder oh-
server given by*

(3.1-5)
(3.1-6)

z2(t) = A, 2(t) + By (6) + C u (¢)
gp(t) =W oz(t) + W, g (t)
where

A is a pXp matrix with left half plane
eigenvalues

B is a pxﬂs matrix
C_ is a pXm matrix
is a nXp matrix

. N .
W2 is an 25 matrix

*Subsequent discussion of the observer will refer .to

Eqs. 3.1-5 and 3.1-6 rather than Eq. 3.1-4. If Hp
is nonsingular, the results are equally relevant
with W2 = H;l and all terms associated with z(t)

being eliminated.
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These matrices satisfy the following equalities

(A, Byl = [ POIS] wl AW (3.1-7)
¢, = 11, Pozs] Wl B, (3.1-8)

[po, 1) =H v (3.1-9) -
W (W W (3.1-10)

A few notes on observers.

] It can be shown there exists a matrix E

such that
-1 E
W' o= (3.1-11)
H
)
° If
e, (t) = z(t) - Egp(t) (3.1-12)
then
e, (t) = Ae (t) (3.1-13a)
and
& (6) - x,(8) = Wpe,(t) (3.1-13b)

3.1.2 MRC Algorithm f;rmulation

The MRC algorithm, ipl(t), is defined in terms of

the CGT gains and the observer output. Thus,
gpl(t) = -sz(t) +Kx (t) +Ku (t) + Ky28p, (1)
(3.1-14)
z(t) = Az(t) + By (t) + Cuy (8 (3.1-15a)
gp(t) = les(t) + sz(t) (3.1-15b)
vhere
gx = S21 +K S, (3.1-16a)
K, = 522 +KS,, (3.1-16b)
K,= 823 + K 813 (3.1-16¢)
and K satisfies
(KQ11 + 921) 6(t) =0 (3.1-17a)
and
A - Bplk has stable eigenvalues. (3.1-17b)

P

This algorithm is shown graphically in Fig. 3.1-1.
L

*Ip is a pXp identity matrix

poﬁs is a pXf null matrix.
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Figure 3.1-1 Model Reference Control Algorithm
Appendix D presents a methodology for construct-
ing a matrix K satisfying Eqs. 3.1-17. This method
depends on: ) ’

. Structural constraints on the.feference
model (analogous to the relative order
constraints in Refs. 3 and 14)

e Structural constraints on gpz(t) which

limit its relative order to be greater
than gpl(t). This can be satisfied by

the appropriate partitioning of con-
trols into (t) and u_,(t) :
upl -p2

o Frequency domain constraints on the
transmission zeroes between gpl(t) and

Ep2(t) in that they must lie in the
left half plane. This can be a sig-
nificant restriction on the use of the
algorithm but can be corrected by the
appropriate choice of u Z(t)* (see
Section 3.3). P

Also presented in Appendix D is a mechanism for con-
structing Kx’ K , K , without using the Sij‘matices as

u’ u2
in Eq. 3.1-16.

3.1.3 Stability Analysis

In this section, the stability and asymptotic
performance of the MRC algorithm are demonstrated. In
particular, if the control, gpl(t), is set equal to

the MRC algorithm, Qpl(t) (Eq. 3.1-14), then the plant
output, zp(t), will asymptotically approach the refer-

ence model output, zé(t). The error dynamics derived
in this analysis are an important component in the
subsequent MRAC stability analysis (Section 4.3).

The first step in analyzing the MRC algorithm
performance is to note from Egs. 3.1-2, 3.1-14, 3.1-16
and 3.1-17 that

*If the number of controls m equals the number of out-
puts £ then !pz(t) docs not exist and 1t the trans-

mission zeroes are
applied.

unstable the algorithm cannot be



8,,(0) = up,(6) + Rlx (0) - £,(1)]  (3.1-18)

Now, the errors, e(t) and gz(t) (Eq. 3.1-12), are
defined

e(t) = 5:(t) - (%) (3.1-19)

gz(t) = 2(t) - E 5p(t) (3.1-20)

Replacing the x_terms in Eq. 3.1-18 with the errors

in Eqs. 3.1-19 and 3.1-20 (using Eq. 3.1-13b) yields

(t) = E:l(t) + Kle(t) - Wye, (0] (3.1-21)

Y1

Differentiating Egqs. 3.1-19 and
2.3-2 and 3.1-1b results in

substituting Egs.

e(e) = ae(t) + B [ (t) - u ()] (3.1-22)

Finally, solving Eq. 3.1-=21 for E" {t)

afid subsci=
tuclong into Eqa. 3.1-22 yields Pl

() = (A, - BLR) e(t) ¢ B (3, (8) - u,(0)]
+ Ble ngz(t) (3.1-23a)
Reiterating Eq. 3.1-13a for completeness
e, (t) = Ae (t) (3.1-23b)
and stating initial conditions
e(0) = 5;(0) - x,(0) (3.1-24a)
e,(0) = £(0) - E & (0) (3.1-24b)

Equations 3.1-23 and 3.1-24 define the dynamics
for the error vectors, e(t) and gz(t). 0f particular

importance to the stability analysis is the behavior
of the error when gpl(t) = gpl(t) (i.e., LLe IMRC

algorithm). Given that both Ap - Bplk and Ao have

Multi-
and substituting Eqs. 3.1-1a

stable eigenvalues, then, as t + o, e(t) » 0.
plying Eq. 3.1-19 by Cp

and 2.3-1b yields the output error, gy(t).

Cpelt) = g (1) - y (1) = e (8) (3.1-25)

Hence as t » o, zp(t) 2 xm(t) which 1s the desired

result. In summary, if the transfer function from
Ef(t) to zp(t) has no right half plane finite trans-

miscion zerces, X is chosen as described in Appendix D
and the observer is designed to be stable, then the
continuous-time algorithm causes the plant output to
asymptotically track the reference model output.

3.2 DISCRETE-TIME ALGORITHM

The discrete-time MRC algorithm for the system
described in Eqs. 2.3-3, is based on the discrete-time
Command Generator Tracker (CGT) methodology (Ref. 8)
and discrete-time observer. Before presenting the
algorithm in section 3.2.3, these two technologies are
reviewed.

3.2.1 Command Generator Tracker Methodology

As with the continuous-time formulation, the con-
trols developed from discrete-time CGT technology are
based on the idealized or *-trajectories. The ideal

plant state trajectory, is(k), represents that trajec-

tory which the plant state follows when the plant out-
put, zp(k), equals the reference model output, zm(k),

for all time. The idealized plant control trajectory,
ggl(k), represents the control that will cause the

plant state to fullow the ideal plant state trajectory
for arbitrary Epz(k)' That is, for all time

c 5:(k) =y (k) (3.2-1a)

P
and

* = * k) + G k
x,(k+1) = F gp( ) (k)

pl Epl

* Gyp Uyp(K) (3.2-1b)

In Appendix C, expressions for the *-trajectories
as linear functions of Em(k), gm(k) and 8(k) (a fil-

tered version of Em(k)) are derived.

* ¥ .
for ip(k), Epl(k) and §(k) are given by

The expressions

x,(k) = Ry x (k) *+ Ry np (k)
* Ry up, (0 + AL [8G1) - (K]
(3.2-2a)
*
§p(0) = Ry, x (0) + 8(0) (3.2-2b)
2;1(k> = Ryy %p(K) * Ryy up (k)
#Ryy u, (0 T Ay [0(kID) B(I)]
(3.2-2c)
8(k) - Ay, [8(k+1) - B(K)]
(3.2-2d)

= Ry up(k) + Rygu,(k)

As with continuous time formulation, the filter ini-
tial condition, 8(0), is arbitrary as long as there

exists a 6(1) which satisfies Eq. 3.2-2¢ for k=0.
Realization of Eq. 3.2-2d involves a complex formu-
lation, but subsequent developments eliminate this

filter from the MRC algorithm.

The coefficients in Eq. 3.2-2 are partitions of
the R and A matrices, which satisfy

Forln Sl [*11 Riz Rogf _ R11(Fm'1nm) R11% Cp2
<, 0 [[Ryy Ry Ry c, 0 0
(3.2-3a)
F -1 6| [a. & 1o
P n p 11 12 - n (3.2-3b)
<, o | [P 7 o 1,




Equation 3.2-3a has a solution if none of the plant
transmission zeros are equal either to unity or to any
of the reference model poles. Equation 3.2-3b has a
solution if none of the plant transmission zeros are
equal to unity (Ref. 23).

3.2.2 Observer Formulation

As in the continuous-time case, the MRC algorithm
is defined in terms of these *-trajectories and an
estimate of the plant state, gp(k). If Hp is of full

rank (with 25=n) then the estimate is given by

(k) = B 'y (k) (3.2-4)

P P

If Hp is less than full rank (let p=n-£ be the rank

deficiency) then the state estimate is the output of
a minimal order observer given by*

z(k+1) = Fo z(k) + G° zs(k) + Ho gp(k) (3.2-5)
gp(k) = wl z(k) + wz zs(k) (3.2-6)
where
FO is a pXp matrix with left half plane
eigenvalues
G° is a pX£ matrix
H° is a pXm matrix
Wl is a nXp matrix
Wz is a nxX{ matrix
These matrices satisfy the following equalities*
- ; -1 -
[Fo GOJ = [Ip pogsl W Fp W (3.2-7)
-1 .
H =[I 0 W B 3.2-8
o= [T 0] o (3.2-8)
n T. = H W 3.2 9
W= [wl wz] (3.2-10)
A few notes on observers
. There exists a matrix E such that
-l F'
W= (3.2-11)
H
P
° If
gz(k) = 2(k) - E gp(k) (3.2-12)
then
e, (k+1) = F gz(k) (3.2-13a)
and
Ep(k) - gp(k) = Wl gz(k) (3.2-13b)

*See footnote on page 7.

3.2.3 MRC Algorithm Formulation

The MRC algotithm,.épl(k), is defined in terms

of CGT gains and observer outputs. That is

gpl(k) =K gp(k) * Ky (k)

+ Kx x (k) + Ku2 gpz(k) (3.2-14)
z(k+1) = Fo2(k) + G y (k) +H gp(k) (3.2-15a)
gp(k) = les(k) + Wzg(k) (3.2-15b)

where
Kx = R21 + K R11 (3.2-16a)
I(u = R22 + K R12 (3.2-16b)
Ku2 = R23 + K R13 (3.2-16c¢)
and K satisfies
(KA11 + AZI) [6(k+1) - B8(k)] = 0 (3.2-17a)
and
Fp - Gpl K has stable eigenvalues (3.2-17b)
A matrix K satisfying Eqs. 3.1-17 can be con-
structed in a method similar to that described in
Appendix D. This method would depend on:

° Structural constraints on the reference
model (analogous to the relative order
constraints in Refs. 3 and 14)

e Structural constraints on gpz(k) which

limit its relative order to be greater

than Epl(k)' This can be satisfied by

the appropriate
gpl(k) and LAY

choice of controls 1in

e Frequency domain constraints on the
transmission zeroes between gpl(k) and
gpz(k) in that they must lie in the unit

circle. This can be a significant re-
striction on the use of the algorithm
but can be corrected by the appropriate
choice of gpz(k)*.

3.2.4 Stability Analysis

In this section, the stability and asymptotic
performance of the MRC algorithms are demonstrated.
As with the continuous-time algorithm, if the control,
gpl(k), is set equal to the MRC algorithm, gpl(k) (Eq.

3.2-14), then the plant output, zp(k) will asymp-
totically approach the reference model output, zm(k).

*If the number of controls m equals the number of out™
puts £ then Epz(k) does not exist and if the trans-

mission 2eroes are unstable the algorithm cannot be

applied.



in analyzing the MRC algorithm
3.2-2, 3.2-14, 3.2-16

The first step
performance is to note from Egs.
and 3.2-17 that

gpl(k) = gél(k) + ngg(k) - &, (0] (3.2-18)
Define e(k) and e (k) (see Eq. 3.2-12)
e(k) = 5p( Y- x oK) (3.2-19)
e, (k) = z(k ) - E 5p(k) (3.2-20)

Replacing the Ep terms in Eq. 3.2-18 with the error in
3.2-19 and 3.2-20 (using Eq. 3.2-13b) yields

(k)

Egs.

= Egl(k) + Rle() - W) e ()] (3.2-21)

“p1
2.3-4 and 3.2-1b with Eq. 3.2-19 results in
[y () = wpy ()]

(3.2=22)

Using Egs.

. g(k+l) = Fp e(k).+ Gpl

*
Finally, solving Eq. 3.2-21 for gpl(k) and substitut-

ing into Eq. 3.1-22 yields

e(k+l) = (Fp-GPIK) e(k) + Gpllgpl(k) - upl(k)]
+ Gpl Wl gz(k) (3.2-23a)
Reiterating Eq. 3.2-13a for completeness
gz(k+l) =F, gz(k) (3.2-23b)
and stating initial conditions
() = 1;(03 - x,(0) (3.2-242)
gz(o) =2z2(0) - E EP(O) (3.2-24b)

Equations 3.2-23 and 3.2-24 define the dynamics
for the error vectors, e(k) and gz(k). Of particular

importance is the behavior of the error when gpl(k) =
u, (k) (i.e., the MRC algorithm). Given that Fé-Gpli
and F0 have stable eigenvalues then as t > =,
e(k) » 0. "Multiplying Eq. 3.2-19 by Cp and substi-
tuting Eqs. 3.2-1a and 2.3-3b yields the output
error, ¢ (k).
=y

C k) = k) - k) = k 3.2-25

P e(k) =y (k) zp( ) gy( ) ( )
Hence as t + o, z (k) » zm(k) which is the desired

result. ;
if all finite transmission zeroes of
(k) to x (k) are inoside

the unit circle, K is chosen in a ptocedure analogous
to that described in Appendix D and the observer is
designed to be stable, then the discrete-time MRC
algorithm causes the plant output to asymptotically
track the reference model output.

In summary,
the transfer function from u
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3.3 ENHANCED MRC ALGORITHM

The previous two sections presented continuous-
and discrete-time MRC algorithms that cause the plant
outputs to track ehe reference model outputs provided
that

e the reference model and EpZ satisfy

(mild) structural constraints analogous
to relative order constraints

. the transmission zeroes of the transfer
function from i to ¥, are stable.

This section presents the continuous-time enhanced MRC
algorithm which deals the latter of these constraints.

The reason the plant transmission zeroes must be
stable is because for each_transmission zero, one
eigenvalue of Ap Bp K (F G K) equals that transmis-

sion zero. Hence, _if one transm1551on zero 1is un-
stahle so is Ap-Ble awl the criteria for MRC stabil-
ity is not satisfied. A less serious prublem occurs
if the transmission zero 1is marginally stable. In
this case, the MRC algorithm causes the system to be
marginally stable which leads asymptotically to ¥p

perfectly tracking the Yo after initial oscillations.

However, the controls, u exhibit large oscillations

-pl’
at the transmission zcro frequencies.
dcmonstrated in Chapter 6.

This problem is

The enhancement of the MRC algorithm presented in
this section alleviates this problem for systems with
more inputs than outputs (m>£ see Eq. 2.3-1). Only
the continuous-time enhancement is presented, however,
the discrete-time equivalent can be developed in an
aunalugous fashioa.

The derivation of this enhanced algorithm is
based on the closed loop plant dynamics with the MRC

algorithm. In particular assume u 1(t) = g 1(t).
From Eq. 3.1-14 F T
(t) = -k % (t) + K X (t) + K (t)
Substituting Fq. 3.3-1 into the plant dynamics,
Fq. 2.3-2
x (t) A X (t) + Bpl[-K §p(t) + l(K gm(t)
K K + t
+ K oup(t) K, gpz(t)] sz p2( )
(3.3-2)

If the observer is assumed to be in steady state

(i.e., e (t)=0) then Egs. 3.3-1 and 3.3-2 become
upl(t) = -k §p(t) + Rx x (1) + Ru u, ()
u2 _pz(t) (3.3-3)
x,(t) = (A,-B_ K) x (£) + (B, K, + B o) u,(t)
By (K, 2 (0 +# K up ()] (3.3-4)



Consider these two equations as representing a
dynamic system with gpz(t) as an 1input, gm(t) and

Em(t) as disturbances, and gpz(t) as an output. If

the transmission zeroes of the plant are unstable or
marginally stable this system (open-loop) is unstable
or marginally stable, respectively. Heace, the ob-
jective in designing the enhanced algorithm is to
clivuse EPZ(L) to stabilize the above system and mini-
mize the excursions .of gpl(t). (Recall that any
choice of gpz(t) preserves the MRC algorithm). Taking

the standard optimal control approach, the following
cost function is used.

(Tt T
J. = fo [upy (€ Ry wp(6) + u,(8) Ry up,(t)]de

(3.3-5)

The resulting choice of Epz(t) is of the form (note

gp(t) is replaced by its estimate)
gpz(t) =6 §p(t) + 6, x () + G u(e)

(3.3-6)

The MRC algorithm acts as inner loop and the en-
hancement acts as outer loop (see Fig. 3.3-1). The
cost function (Eq. 3.3-5) causes the action of the
controls, gpl(t) and Epz(t)' to balance each other

(with appropriate weighting factors) without dis-
turbing the action of the MRC algorithm in driving
Zp(t) toward xm(t). At the same time the closed loop

system is stabilized. This enhanced algorithm is
demonstrated in Chapter 6.

Figure 3.3-1 Enhanced Model Reference Control
Algorithm

i




4.0 MODEL REFERENCE ADAPTIVE CONTROL

This chapter presents the multi-input multi-out-
put (MIMO) Model Reference Adaptive Control (MRAC)
algorithm and a stability analysis of the resulting
closed loop system. The adaptive algorithm is an ex-
tension of the MRAC algorithm previously developed by
Mabius and Kaufman (Ref. 3) using the MRC algorithm
described in Chapter 3. The algorithm is also an
extension to MIMO systems of previously developed
single-input, single-output (SISO) MRAC algorithms
(Ref. 15). In fact, the MRAC algorithm presented
here degenerates into the SISO algorithm if the num-
ber of inputs and outputs is one. One limitation to
the stability proof (described in Section 4.3) limits
the use of this algorithm. However, future efforts
should readily eliminate this restriction and make
the algorithm generally applicable.

The MRC algorithm presented in Chapter 3 is
implementable if the plant parameters are unknown,
the MRAC algorithm described here is applicable be-
cause it adjusts the galus tu account for unknown
plant parameters. The gains adapt to the MRC gains
described in Chapter 3 at which point the plant/model
is driven to zero. Since the adaptation is driven by
this error, the gains remain tixed and a8 with Lhe
MRC algorithm the plant output tracks the reference
model output.

Section 4.1 preseats a reformulation of the ob-
server necessary to put the MRC algorithm into a con-
text amenable to adaptation. The MRAC algorithm
appears in Section 4.2 and stability analysis appears
in Section 4.3.

4.1 OBSERVER MODIFICATION

Tho key to the adaptive algorithm discussed in
the next section is that the control must be a linear
combination of known quantities. Note that the ob-

server term in the MRC algorithm (Eq. 3.1-14) is
dependent cn z(t), that is
K& () =K Woz(t) + KW, y (v) (4.1-1)

But z(t) is computed using B, and C (Eq. 3.1-5) both

of which are dependent on unknown plant parameters;
hence, z(t) is '"unknown". In this section the ob-
server state z(t) is redesigned to be a linear com-
bination of known quantities.

Recall that z(t) is a pX1 vector (p=n-25) and is
governed by (Eq. 3.1-5)

z(t) = A° z(t) + B° Xc(t) + CO Ep(t) (4.1-2)
Let the elements of xs(t) and Ep(t) be ysi(t)
(i=1...£s) and upi (i=l...m), respectively, and let
the columns of B and C be b . (i=1...2£ ) and ¢

0 —oi s -oi
(i=1...m), respectively. Then, Eq. 4.1-2 becomes
2
. s m
z(t) = A° 2z + iil Eoi ysi(t) + izl Soi upi(t)

Define ii(t) as a pXl vector governed by
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gi(t) = Ao gi(L) + Eoi ysi(t) i:\...zs
- (4.1-3)
= A w (t)+ Soj upj(t) i=2 +1...2 +m
J=1-ls
That is, there are Qs+m pX1 vectors ii(t).
If ii(O) is chosen to satisfy
2 +m
s -
2 w. (0) = 2(0) (4.1-4)
i=1 ™t
then for all t
2 +m
s -
z(t) = 2 gi(t) (4.1-5)
i=1

Each set of dynamics in Ey. 4.1-) can be tranoformed

into (Ref. 24)
Ej(t) = A wi(t) +b yci(t) 1=1...2s
(4.1-6)
= A gi(t) +b upj(t) 1=2s+1...£ +m
j=i-2_
where
gi(t) = Ti gi(t) i=1.x.£S+m (4.1-7)

The matrix A has the same eigenvalues as Ao and the

vector b is independent of index i. Thus
2 +m
s
z(Lt) - I T, w.(v) (4.1-8)
- =} 7Y

and gi(t) is a "known" quantity independent of the
plant parameters.

Equations 4.1-6 and 4.1-8 can be consolidated
into two vector equations given by
(4.1-9a)

w(t) = A, wlt) + By (£) + €, u (v)

z(t) = T w(t) (4.1-9b)

where w(t) is gx1 [q = (2u+m)p] vector given by
o

—

W, (t)
w,(t)

w(t) = . (4.1-10)
!Bs+m(t{_

and the matrices are defined as follows



— —
-A 0. .0
0 A . 0
Aw = a gXq matrix
(4.1-11)
0o o0. . A
s —
r-g 0. . 0
0O b . 0
0o 0. . b
Bw = a qxls matrix
0 0. . 0
(4.1-12)
[0 o o_j
o 0. . 0
o o0. . 0
b 0. . 0
Cw = a gXm matrix
0O b . 0
(4.1-13)
o 0. b
L. g
Tw = ['I‘1 T2 . T2 T£ 41 . T2 +m]
s s s

a pXq matrix
(4.1-14)

In summary, the pth order dynamics of z(t) (Eq.
4.1-2) have been transformed into the system defined

by Eq. 4.1-9 with qth order dynamics (Eq. &4.1-9h).
The 512¢ of q can be reduced if the observed struc-
ture is somewhat decoupled. In particular, the in-
dividual systems described in Eq. 4.1-3 may be of
order less than p, say pi. In this case

£ *m
s

2 B <piem)
i=1

q = (4.1-15)

But the basic result is that observer term in the MRC
algorithms (Eq. 3.1-14) is given by

=

x_(t)

X =K LA Tw w(t) + K wz xs(n)

(4.1-16)

where both w(t) and zs(t) are "knowu" quantities (in-

dependent of the plant parameters).

4.2 MRAC ALGORITHM FORMULATION

The Model Reference Adaptive Control (MRAC) al-
gorithm presented here has the same structure as the
MRC glgorithm described in Chapter 3. Only the con-
tinuous-time algorithm is presented while the dis-
crete-time counterpart is very similar in structure.
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The enhanced algorithm (feedback to gpz(t)) is not

adaptive and thus is not included in the equations.
The stability of the MRAC (see Section 4.3) depends
on the MRC being stable.

As mentioned in Section 4.1, the MRAC algorithm
is different than the MRC algorithm in that the ob-
server described in Eq. 4.1-9 replaces the MRC ob-

server. Substituting Eq. 4.1-15 into Eq. 3.1-14
yields the following
B0 = R ow(e) + Ry (0) + R x (1)
+ Ku gm(t) + Ku2 gpz(t) (4.2-})
where w(t) is defined by Eq. 4.1-9a and
K, = leTw (4.2-2a)
Ky = KW2 (4,2-2b)

The MRAC algorithm has the same structure as Eq.
4.2-1 and is given by

wy(6) = K (8) w(t) + K(6) g (6) + K (8) % (t)

+ Ku(t) gm(t) + Kuz(t) u (t) (4.2-3)

_p2

As in Mabius-Kaufman algorithm in Ref. 4, the quanti-
ties r(t) and gr(t) are now defined to provide more

compact notation for the adaptive controller, viz,
-
w(t)
¥ (t)
r(t) = fx (t) (4.2-4)
u (v)
gpz(t)
K (e) = [K,(t), Ko(t), K (t), K (), K ,(t)]
(4.2-5)
Kr(t) represents a concatepation of the adaptive
gains. With these definitions
(4.2-6)

w () = K () £(1)

The mechanism by which Kt(t) is adapted is defined by

Kr(t) = KP(t) + KI(t) (4.2-7a)
- T .

KP(t) = QL e(t) ££(t) TKP (4.2-7b)

K (8) = Q £(t) £p(t) Tpp (4.2-7¢)

KI(O) ='KI° ‘ (4.2-7d)
where the augmented error is given by

e(t) = e (v) - g (t) (4.2-8)
the output error is given by

gy(t) =y, () - zp(t) (4.2-9)




the output error estimate is given by

aia
[ad
L®>

y(t) = A, éy(t) + LA(t) a(t) (4.2-10)

and finally

La(t) = Lp(t) + Ly(t) (4.2-11a)
Lp(t) = g(t) QT(t) Tip (4.2-11b)
Lp(t) = e(t) AT(e) T, (4.2-11¢)
L;(0) = Lio (4.2-11d)

a(t) = K (t) re(t) - gpf(t) (4.2-12)

The matrices TKP’ TKI’ TLP and TLI are positive
definite, QL is any nonsingular £ X £ matrix that

satisfies a constraint described in Section 4.3

and K and L are initial guesses at K_ and L.
10 10 r

Note that KP(t) is a proportional gain and KI(t) is

an integral gain, and the choice of TKP and TKI

affects the transient behavior of Lhe adaptive algo-

rithm. The matrix Ae is a stable system matrix which

satisfies constraints specified in Section 4.3.

The quantities Ef(t) and Epf(t)' which are de-

fined in Section 4.3, are filtered versioans of E(t)
and gpl(t) respectively. This algorithm is sum-

marized in Figs. 4.2-1 and 4.2-2.
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Figure 4.2-1 Hodel Reference Adaptive Coutrol
Algorithm

The algorithm is greatly simplified if the fil-
ter f(s) is unity (see Section 4.3). In this case
gpf(t) = gp(t) and Ef(t) = r(t) and thus A(t) = 0 and

éy(t) = 0. The governing equations are then
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Figure 4.2-2 _ Model Reference Adaptive Comtrol
Adaptive Mechanism

Kr(t) = KP(t) + KI(t) (4.2-13a)
Kp(t) = Qp e (t) RO (4.2-13b)
K (t) = Q e, (0 £(t) Top (4.2-13¢)
K (0) = Kpg (4.2-13d)

which is the previous result appearing in Appendix E.
The stability analysis in the next section shows
that ¢g{t), éy(t), A(t) and thus, gy(t), approach

zero, asymptotically. Given sufficient excitation of
the system, the gains KI(t) and LI(t) approach Kr and

L (defined in Appendix D) respectively. Once these
gains are reached further excvitation does net cauce
gy(t) to deviate from zero. Similarly, éy(t) remains

at zero aud thus, £(t) is zcro and no further adapta-

tion takes place.

4.3  STABILITY ANALYSIS

This section presents a stability analysis of
the system described in Chapter 2 (Eqs. 2.3-1 and
2.3-2) with the input gpl(t) defined by Eq. 4.2-6 and

gain adaptation defined by Eqs. 4.2=7 ko 4.2-12.
First, the filters used to compute Ef(t)v gpf(t) and

éy(t) (i.e., (sl-Ae)-l) are defined. Then, the aug-
mented error, £(t), dynamics are derived, a Lyapunov
function 1is defined and finally, the stability ig
verified.

In Eq. 4.2-9, the output error, gy(t), is de-
fined. In Section 3.1, the dynamics governing these
errors are shown to be

> (t) = C~
gy.t) Cp e(t)

e(t) = (A,-BK) e(t)

+ B ) - Epl(t)] + Ble Wl gz(t)

(4.3-1)

p1l¥p1 (¢



In Appendix D, these equations are shown to be equiva-
lent to

e, (t) = Cy gy(t)

en(t) = (Ay-ByQ) ey(t) + By L{L ) (t) - u , (0)]

+ BN L K Wl gz(t) (4.3-2)

where

en(t) =N e(t) (4.3-3)
and the matrices AN’ BN’ CN’ L, N and Q are de-
fined in Appendix D. The matrices AN’ BN’ CN and Q
are known (independent of the plant parameters)
and in particular, the choice of Q is arbitrary.

From the definitions of AN, BN and CN, Q can be
chose such that the £xX£ transfer function matrix

H(s), given by

- - -1 -
H(s) = CN(sI AN+BN Q) BN (4.3-4)
is diagonal, given by
H(s) = diag[hl(s), h2(s)...h2(s)] (4.3-5)
with each element of the diagonal of the form
h;(s) =p;(s) - £.(s) (4.3-6)
where
p.(s) = - — i=1...2
i (s+uio) :
(6.3-7)
1 .
f (s) = i=1...42
i (s+ail)(s+ui2)...(s+aidi)
(4.3-8)
The relative order index di is
0 s di L f (64.3-9)
and if 4. =0
i
fi(s) =1 (4.3-10)

In order to prove that the algorithm defined in
Section 4.2 is stable, Q must be selected such that
the filters fi(s) satisfy

fl(s) = fz(s) = ... = fl(s) = f(s) (4.3-11)
This can be true only if the plant is structured so
that

(4.3-12)

This is a serious restriction on the use of the algo-
rithm, however, the author feels this restriction can
be eliminated by an alternate stability proof or by
prefiltering the inputs. In the subsequent analysis,
it is assumed Eq. 4.3~11 is true.

The filter f(s) is a stable filter of order
di(=d1=d1, etc.) and the filters pi(s) are stahle

first ordér low pass filters. These filters define

H(s)
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H(s) = (sT-A )" £(s) (4.3-13)

and as described above define Q. Furthermore, these
filters define the matrix Ae (Eq. 4.2-10) to be a
diagonal £X{ matrix

-a

Ae = diag[-dlo, LITIEE 20]

Also the elements of Ef(t) are defined as the output

of a filter with the respective elements of r(t) as
the input. In particular

rfi(t) = f(s) - ri(t) (4.3-14)

. .th
where rfi(t) is the i
th

the i~ element of r(t).
defined as

element of Ef(t) and ri(t) is

The elements of gpf(t) are

ufi(t) = f(s) - ui(t) (4.3-15)

.th
i \
where ufi(t) is the i element of Epf(t' and ui(t)

is the ith element of gpl(t).

With these definitions we can derive the dy-
namics of the augmented error, £(t) (defined in Eq.
4.2-8), upon which the stability proof is based.
From Eq. 4.3-13 the output error dymamics Eq. 4.3-2
can be rewritten as

gy(t) = A, gy(t) + £(s) L[gpl(t) - gpl(t)]
+ £(s) LKW, e (t) (4.3-16)

Defining ir analogous to Kr(t)

kK, = IK,, K, Ko Ky, K] (4.3-17)
§p1(t) can be written as

U,y (T = K, rit) (4.3-18)
Defining ng(t) as

- 4.3
e, (t) = £(s) g, (t] (4.3-19)

and using Eqs. 4.3-14, 4.3-15, 4.3-18 and 4.3-19, the
ouptut error dynamics, Eq. 4.3-16, become

éy(:) = A, e () + LK re(t) - upg(t)]

+ LKW e (4.3-20)

1 —zf(t)

From the definition of A(t), Eq. 4.2-12, note that
the bracketed quantity in Eq. 4.3-20 satisfies the
identity
K ozg(t) - u (t) = a(e) + [K - K ()] £e(¢)
(4.3-21)
Hence, Eq: 4.3-20 becomes

éy(t) = A e () + L A(E) + LIK, = K (6)] re(o)

+LRW e (t) (4.3-22)



Recall that the augmented error, &(t), is the
difference between the output errors, gy(t) and the

output error estimate, §y(t), as defined in
Eq. 4.2-10. Hence, using Eq. 4.2-10, and 4.3-20
§(t) = A £(t) + LR - K ()] r,(¢)
+[L - Ly(e)] a() + LKW, e ()
(4.3-23)

The cornerstone of all MRAC algoritbms is the
Lyapunov function from which the algorithms are de-
rived. Deriving the algorithms with the Lyapunov
function assures their global stability. Although
‘this MRAC algorithm has been presented first, it has
been derived from the augmented error dynamics,
Eq. 4.3-23, and the Lyapunov function V(t).

V(t) = £T(0)P £(t) + Tr{S R K (TR K K (£)17s})

. 1 T
+ Tr{S IL - Lp(t)]T (L L (v)]s} (4.3-24)
where SK and SL are nonsingular matrices and P is a
positive definite symmetric matrix. The matrices
must. satisfy the comstraints discussed below.

It van be shown that if

Ts (4.3-25)

P=5 5

and
(4.3-26)
then

U(t) = el (t) [PA_ + AL P] £(1)
- 267 (0) o S 8 @ £(8) x(e) Ty £o(t)

- 2670y 8] s e(r) AT(E) Ty, AC)

T -
26 () PLKW, e (v)
1=k (4.3-27)

An analysis analogous to that in Ref. & shows
that if V(t) is positive definite in £(t) and V(t) is
negative definite* in g(t}, then g(t) will approach
zero asymptotically. By its definition, Eg. 4.3-24,
V is positive definite in g(t). If Qe’ defined as

T

PA, + A, P = =Q (4.3-28)

[

is positive definite then V(t) is negative definite
in £(t) and the augmented error £(t) 1s asymptotic
ally stable to zero; hence, §y(t) + e (t). This re-

sult along with the structure of V(t) implies that
gy(t) + 0 (i.e., zp(t) - gm(t)) as discussed in Ref.

2. In this reference, the stability discussion re-
fers to single-input, single-output systems. However,
for the algorithm discussed here the reasoning is the

*The term ng(t) asymptotically

hence, after some time, the
£(t) dominate these linear terms.

approaches zero;

quadratic terms in
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same. In particular, £(t) is bounded and. from the
structure of V(t), Ef(t) can be shown to be bounded.

To summarize, the MRAC algorithm presented in
Egs. 4.2-5, 7, 8, 9, 10 and 11 is stable provided that
the constraints presented in Eqs. 4.3-25, 26 and 28
are satisfied. Unlike constraints on previous
algorithms generated in this effort (Appendix E) these

constraints are much easier to satisty. Let L0 be a
. _ -1 _
nominal value of L, then choose QL = LO and SK = LO
and the constraints become
- ol -
P = SL SL (4.3-29)
PL = Lo (4.3-30)
T-— -
PAe + AeP = Qe (4.3-31)
where P and Q are positive definite. If L = Lo,
P=1,, Q = -A -A’r is an obvious solution. Thus, a
L Ve e e A
solution cniotc everywhere in the neighharhaad of
L=1L..
0



5.0 POWER PLANT MODEL

5.1 BACKGROUND

Modern control system design procedures are pre-
dicated on models of the system being controlled. The
model reference adaptive control theory being devel-
oped in this project will likewise lead to a model-
dependent design methodology. To enhance the under-
standing of the theory and implications of various
design options that may arise, TASC has developed a
realistic power plant model.

The model chosen to aid in studying the theory is

that of Philadelphia Electric Company's Cromby No. 2
Unit. A nonlinear, state-space model of this plant
has been developed from first-principle comnsiderations
(Refs. 9 and 10). Moreover, test data are available
for validation and, therefore, this model is consid-
ered to be highly realistic with regards to predicting
_(restricted) operating conditions. A linearization of
this nonlinear model has been used to validate the
applicability of MRC algorithms (and thereby MRAC
algorithms) as described in Chapter 6. For various
reasons discussed below, TASC has extended the capa-
bilities of this model as part of the research effort.

5.2 MODEL DEVELOPMENT
The major objective of the model development task
has been to extend the capabilities of the mathe-

matical model for the Cromby No. 2 Unit which consists
of a fossil-fired reheat boiler-turbine-generator.
These extensions include:

e Restructuring the turbine model to improve
extraction flow modeling

e Providing representation of govermor-valve
overlap
of

s Increasing the thermodynamic

state relations.

range

5.2.1 The Cromby Model

TASC has been engaged in building a simulation
from portions of the Cromby model as documented in
Ref. 10. In particular, a model of the boiler has
been established. This includes (according to nomen-
clature of Ref..10)

e Feedwater valve/boiler feed pumps

e Downcomers

e Waterwalls

e Drum

e Primary superheater (steam side)

& Superheat spray

® Secondary superheater (steam side)

e Reheat spray
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° Reheater section (steam side)
] Mills

. Combustion

. Superheat furnace

. Reheat furnace.

Two major assumptions about the plant cycle were
made in the original work, and all are adopted herein,
they significantly impact the final model formulation.
The first is that dynamic phenomena related to air and
hot gases are much faster than those that occur in the
steam cycle. Consequently, these dynamics are ig-
nored; their inclusion would lead only to computa-
tional difficulties during simulation without con-
tributing to overall coatrol analysis capability. For
similar reasons, the second assumption made was that
feedwater train and economizer dynamics could also be
omitted. Building a model based on Ref. 10 entails
resolving simultaneous nonlinear algebraic equations,
and establishing the order for implementing the re-
solved equations. The resolved equatiorns are pre-
sented in Appendix A. The 14 state variables used to
model the boiler are tabulated inm Table 5.2-1. Addi-
tional state variables will be defined for the turbine
model; control and output variables are discussed in
Section 5.3.

TABLE 5.2-1
CROMBY MODEL BOILER STATE-VARIABLES

Drum steam density

Drum water volume

Fractional mill volume occupied by coal
Crusher-zone coal mass

Superheat-furnace waterwall tube temperature
Reheat-furnace waterwall tube temperature
Primary-superheater steam density
Primary-superheater steam enthalpy
Secondary-superheater average steam density
Secondary-superheater average steam enthalpy
Secondary-superheater outlet steam enthalpy
Reheater average steam density

Reheater average steam enthalpy

Reheater outlet steam enthalpy

5.2.2 Model Extensions

Modifications of the Cromby model have been in-
cluded as part of this TASC effort inm order to develop
a more generic power plant model. These modifications
are centered around substitution of the dynamic tur-
bine model developed in Ref. 25 for that originally
used in the Cromby model. Incorporation of the dy-
namic turbine affords more realistic representation of
the following:

. turbine steam dynamics

e governor valve operation

e effects of turbine back-pressure.
These items are important from the viewpoint of tur-
bine control in the presence of balance-of-plant in-
teractions.

Turbine steam dynamics - The original Cromby tur-

bine model was developed under the assumption of reac-
tion-turbine flow being proportional to inlet pres-




sure; that.is, sonic flow prevails throughout the tur-
bine over the entire load range. This model rep-
resents the reaction-turbine flow as being algebra-
ically related to superheater outlet flow. The
dynamic model of Ref. 25, daowever, allows for steam
mass and energy storage in the high-pressure turbine
which in turn facilitates the use of Stodola's flow
equation. Since this flow equation is equally wvaligd
for sonic and subsonic turbine flow, the dynamic model
is less restrictive than the algebraic one.

Governor valve operation ~ The model of Ref. 25
also incorporates an algorithm to represent governor
valve overlap. Governor valve overlap is an operating
practice which is used to reduce the impulse-like flow
disturbances introduced upon opening of a governing
valve. The practice is carried out by opening succes-
sive valves before previously opened valves are fully
opened. The procedure is reversed upon closure.

The implications of overlap are that some valves
may be passing sonic flow while others operate sub-
sonically. These mixed conditions and model capabil-
ities are alluded to in the original Cromby work and
extended in Ref. 25.

Effects of turbine back-pressure - The original
assumption of algehraic reaction-turbine flow limits
the capability to model effects of turbine back-pres-
sure. This can be ameliorated by use of the Stodola
equation which explicitly relates turbine flow and
turbine exit pressure. Therefore, representations of
turbine extraction flows can be modeled and interac-
tions with feedwater-train heaters can be
approximated. ’

In addition to the model structure modifications
discussed above, extensions to the modeled thermody-
namic steam relations have been developed. This
modification has extended the power-plant model capa-
bilities to represent an operating regime of about 25%
to 110% of turbine rating. This allows control
studies over extended load ranges, as well as with
alternative operating modes such as variable pressure
opcration.

5.3 IMPLICATIONS OF ADVANCED CONTROL DESIGNS
The power plant is characterized as a multi-input

multi-output system as depicted iA Fig. 5.3=1. The
inputs or control variables are:

[ Mill feeder struke
e Throttle valve position
e Feedwater valve position

® Air flow (inlet louver drive)

e Superheater and reheater attemperator
spray flows

® Superheater and reheater burner tilts.

The (conventionally) controlled output variables are:
® Power output
e Throttle pressure and temperature

e Combustion (air-fuel ratio)

asrn,

DRUM LEVEL

TEMPERATURE
SPRAY
ERAY ] FRESSURE
RUM SUPER-
FEEOWATER | i - HEATER
WATER.WALL
POWER
GENERATED
GOVERNOR
T VALVE TURBINE et
FRAT L] ReMeaTER
TEMPERATURE
e ——————————
BURNER TILTS,
FEEDER STROKE FURNACE
————t———

AIR FLOW

Figure 5.3-1 Power Plant Model

o Reheater outlet temperature
e Steam flow

° Drum water level.

The control of power output is directly related to
steam flow control. The attemperator sprays and
burner tilts are both used to control superheater and
reheater outlet temperatures and therefore are some-
what redundant. Thus, there are essentially six prin-
cipal contrnl devices and six major controlled vari-

ables. These are conventionally paired as shown 1in
Table 5.3-1, which 1is typical of boiler-follow
operation.
TABLE 5.3-1
CONTROL INPUT-OUTPUT RELATIONS
. CONTROL CONTROL
INPUT QUTPUT COMMENTS

e e ~

Mill feeder stroke | Throttle pressure | Alternatively
steam flow

Throttle valve Steam flow (power) | Alternatively
position throvele
pressure
Feedwater valve Drum level Three~element
position controller
Air (low Furnace conditions
Attemperator sprays| Superheat and Sprays used
and burner tills Reheat tempersture | when tilts

reach limits

Pairing of input-output variables as in Table
5.3-1 is based upon predominant cause-and-effect rela-
tions. In fact, there are many interactions exhibited

~

*Boiler-follow operation refers to the fact that
boiler controls respond to load-demand changes di-
rectly, and the throttle valves respond to pressure
fluctuations.
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among the variables of Table 5.3-1 and conventional
control systems are designed in ad hoc fashion to ac-
count for them. The advantage of modern multivariable
control system designs is that these interactions can
be accounted for in a harmonious manner which is com-
pletely complementary to control of the dominant plant
interactions. In addition, the Model Reference Adap-
tive Controller provides the capability of varying
pre-selected control gains which may be dependent upon
time-varying and/or uncertain plant parameters, e.g.,
fuel heat-content or changing heat coefficients due to
slag buildup.
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6.0  CONTROL APPLICATION

The final objective of this project has been to
apply the control theory discussed in the first four
chapters of this report to the power plant model de-
scribed in Chapter 5. The first step in this effort
has been the application of the MRC algorithm (with
and without the enhancement) to a linearization of

the power plant model near 190 MW generation. This
application demonstrates that the MRC algorithm
achieves its objectives, i.e., the MRC algorithm

causes the plant outputs to perfectly track the ref-
erence model outputs. The enhanced MRC algorithm
demonstrates this goal can be achieved (by both the
MRC and MRAC algorithms) with moderate levels of con-
trol. The limitations of the MRAC theory (see dis-
cussion of f(s) filters in section 4.3) as well as
the sensitivity of the MRC algorithm to parameter
changes forces this effort to be limited to the above
results. The remainder of this chapter discusses in
more detail these results.

The first step in this process is to identity
the 190 MW operating point. The operating point is
defined as the steady state conditions necessary for
all outputs to achieve desiréd constant values. The
constant controls required to achieve this operating
point are the open lonop controls. Each control is
computed as the sum of an open loop control and an
incremental control (computed from the MRC algo-
rithm). The incremental control causes the system to
respond to deviations about the operating point. The
steady state operating point outputs are defined in
Table 6-1.

TABLE 6-1
OUTPUTS FOR 190 MW OPERATING POINT

OUTPUT NO. DESCRIPTION
Throttle Pressure 1830 psia
2 Throttle Temperature 1460°
3 Reheater Outlet Temperature | 14b0°
4 Generated Power 190 Mw
5 Drum Water Level Deviation 0 in.

Values for all the system states, the two burner
tilts, the feeder stroke, teedwater valve aud gov-
ernor value are found such that these outputs are
achieved as well as al) the system state derivatives
are zero. Table 6-2 lists all these values. Note
that there are five outputs (£=5) and eight controls
(m=8), hence, the controls must be divided into u

pl
(5 elements) and 5p2 (3 elements). This selection is

designated by the prefix of the control number, Pl
designates element of Epl and P2 designates elements

of 5p2' The linear system describing the power plant

behavior near the operating point described in Tables
6-1 and 6-2 has been obtained by empirically ditfer-
entiating the dynamic equations described in Appen-
dix A about this operating point.

The relative order indices (see Appendix D) for
this linear system are given in Table 6-3.
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TABLE 6-2
OPEN LOOP CONTROLS FOR 190 MW OPERATING POINT

CONTROL NO. DESCRIPTION VALUE
P1-1 Mill Feeder Stroke 0.6362
P1-2 Superheater Spray 0.003 klb/sec
P1-3 Reheater Burmer Tilt 6.336°
P1-4 Feedwater Valve Area 0.7072
P1-5 Throttle Valve Area 5.527
pP2-1 Superhcater Burner Tilt | 20.13°
P2-2 Furnace Airflow 454.0 lb/sec
P2-3 Reheater Spray 0.003 klb/sec
TABLE 6-3
RELATIVE ORDER INDICES
i di
1 1
2 1
3 1
4 0
) 1

The matrix Q is chosen to keep the output error dy-
namics diagnonal. In particular

0.01 0.2 © 0 0 0 0 0 0

0 0 0.01 0.2 O 0 0 0 0
Q=] 0 0 0 0 0.01 0.2 O 0 0

0 0 0 0 0 0 0.1 0 0

0 0 0 0 0 0 voonor 0.2
Thus. all the eigenvalues for the closed loop dynam-

ics are at -0.1. All but the fourth output have sec=
ond order error dynamics and the fourth output {power
generated) has first order error dynamics. The error
dynami¢$ refer to che vulput behavier with the MRC
algorithm.

The reference model parameters are defined as
follows.
0.0 1.0 0.0
Am = Bm =
0.0 -0.1 0.1
(6-1)
0 0
0 0
Cm =J0 O
1 0
{0 o
where the reference model outputs are the desired
trajectory of the derivations from nominal of
throttle pressure, temperature, reheat outlet temper-
ature, power generated and drum level. The command
inputs are the desired rate of change of power




generated. Note that all the desired trajectories
are constants except power generated. The latter is
the integral of a low pass filter with time constant
of 10 sec. This output is a second order lag from
the reference model input and hence has relative
order index of one, which is greater than the rela-
tive order index of power enerated (dA = 0).

The observer in the MRC algorithm has a signifi-
cant inpact on performance of the nonlinear system.
In the linear system analysis in which the design and
analysis models are the same, the observer has no ef-
fect except in its initial transient response. Thus,
it has been assumed in this study that
x (t) =x (t 6-2
£,(6) = x (0) (6-2)
The initial simulation results are generated with
Epz(t) = 0 and the continuous MRC algorithm described

in section 3.1 is used.

The power generated response to a reference com=~
mand given by

0.0° t < 1 sec
gm(t) = ¢0.26 1 sec <t < 4l sec (6-3)
0.0 41 sec <t

is shown in Fig. 6-1. This trajectory is identical
to the fourth output of the reference model. Note
that the power changes at 15 mW/min or approximately
7% total capacity per minute. At the same time all
the other outputs remained constant (within numerical
accuracy). More significant are the control trajec-
tories, two of which are depicted in Figs. 6-2, 6-3,
6-4, 6-5 and 6-6.
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Figure 6-1 Generated Power vs. Time with
the MRC Algorithm
Note that Lhese controls have rather large
oscillations. The introduction of the enhanced MRC

algorithm (section 3.3) allows the use of these con-
trols to be balanced off against the gpz(t) controls

(see Table 6-2). Recall that the cost function used
to compute gpz(t) is given by

]
- T T
Je = J; {gpl(t) R1 gpl(t) + Epz(t) R2 gpz(t)}dt
(6-4)
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The diagonal elements of the R matrices are inversely
proportional to the square of the magnitudes of the
maximum deviations of the controls. Minimizing the
cost functions Eq. 6-2 subject to Eqs. 3.3-3 and
3.3-4 yield an optimal feedback and feedforward con-
trol algorithm for 2p2(t)' Since gpl(t) compensates
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for any gpz(t), in tcrms of output following, the

output response is the same. However, the control
response 1is dramatically improved as shown in Figs.
6-7 through 6-10 (the governor valve response is not
significantly modified). At the same time the con-
trols gpz(t) are not exhibiting significant changes

themselves. That is, actions of Epl(t) and u_,(t)

p2
have been optimally balanced.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

This report presents the achievements of a
three-year research effort in Model Reference Control
(MRC) and Model Reference Adaptive Control (MRAC)
theory for multi-input, multi-output (MIMO) electric
power plant control applications. Current industry-
wide power plant control designs relate each plant
output to a single control (i.e., wmultiple single-
input, single-output algorithms). This approach is
sometimes enhanced with feedforward commands which
coordinate some of the single-loop structures, but
does not coordinate feedback networks which ultimately
limits system performance. Since MRC and MRAC
approaches intrinsically account for 1loop inter-
actions, they promise improved performance
capabilities.

An extensive review of the literature has shown
that existing adaptive control schemes are of two
general types: either the selfstuning regulatur (GTR)
or the model reference adaptive controller. Al-
though STRs have fewer restrictions and thus wider
applicability, unlike MRACs they cannot guarantee
closed loop stability. Previous MRAU algerithms which
have been designed for single-input, single-output
(SIS0) systems have global stability properties that
cause output errors to asymptotically approach zero.
MRAC algorithms which have previously been designed
for MIMO systems are globally stable but only result
in state errors being bounded. The goal of this
effort has been to develop MIMO MRAC algorithms with
characteristics similar to the SISO MRAC algorithms.

The first step towards the goal has been to find
a control algorithm which is the steady state (in the
adaptive sense) of the MIMO MRAC algorithm. This non-
adaptive MRC algorithm has been developed for MIMO
linear continuous- and discrete-tiwe systems using
Command Generator Tracker methodology (Sections 3.1
and 3.2). The existence and stability of the MRC
algorithm depends on structural conditions in the ref-
erence model and depends on stable transmission zeros
in the plant. This latter comstraint is alleviated
for systems with moré inputs chan oulputs with the
enhanced MRC algorithm (Section 3.3). These algo-
rithms require knowledge of the plant parameters and
serve as a foundation for the MRAC algorithm develop-
ment and stability analysis. ’

The MRAC algorithm differs from the MRC algorithm
in that it is applicable to systems with unknown
parameters. The initial MIMO MRAC algorithms devel-
oped in this effort are improvements to the previous
MIMO algorithms which yielded bounded state error per-
formance and required various positive real con-
straints (see Appendix E). The final MIMO MRAC algo-
rithm, presented i1t Chaprer 4, is a geueraliration of
SISO algorithms described in Ref. 2. The performance
of this algorithm is such that the plant output
asymptotically approaches the reference model output.
The algorithm requires no positive real constraints
but only that a stable MRC algorithm exist, (i.e.,
that. the plant transmission zeroes be stable) and
structural constraint on the plant (all the relative
order indices must be the same). Although the latter
constraint limits the MRAC applications continuing
research should readily alleviate this restriction.

In arder to enhance the understanding of the MRC
and MRAC algorithms, a realistic power plant model
has been developed. A nonlinear, state-space model of
Philadelphia Electric Company's Cromby No. 2 Unit has
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been developed from first-principle considerations
(Refs. 9 and 10). Since test data are available for
validation, this model 1is considered to be highly
realistic with regard to predicting plant dynamics at
different operating conditions. This model is de-
tailed in Chapter 5 and Appendices A and B. The
Cromby model is a multi-ioput, multi-output nonlinear
system, with measurements which are nonlinear func-
tions of the states.-

The final phase of this project has been the
implementation of the MRC algorithm in a linearizatioa
of the Cromby model representing the plant behavior

near 190 MW. The inputs and outputs of this system
are listed in Table 7-1.
TABLE 7-1
POWER PLANT CONTROLS AND OUTPUTS
REGULATED
L= CONTROLS OUTPUTS
1) Coal Feeder Stroke 1) Throttle Pressure
2) Superheat Spray 2) Throttle
Temperature
3) Reheat Burmer Tilt 3) Reheat Output
Steam Temperature
4) Feedware Valve Area 4) Power Generated
5) Governor Valve Lift S} Drum Level
6) Air Flow
7) Superheater Burner
Tilt
*8) Reheat Spray

For this ~ffart all the states are assumed to be meas-
ured. The reference model input is load demand rate
and its outputs which are the desired response of the
outputs (Table 7-1) are all held fixed, except for
generated power. The latter is a first order lag and
integral o6f load demand rate.

Initial results using the basic MRC algorithm
(with the first five controls in Table 7-1) are very
good with respect to system outputs; i.e., they per-
fectly matched reference model outputs. In particular
the generated power changes at a rate of 7% (of full
load) per minute while all oiber uvatputs are held
fiaed. However, the feedback gains are very large and
the controls are very noisy with large amplitudes.
The control behavior is dramatically improved by in-
troducing the enhanced MRC algorithm which introduces
the remaining three controls and uses optimal control
technology to woptimally balance all the «contral
trajectories,

Thus the project accomplishment are

e Development of a MIMO MRC algorithm for
linear continuous- and discrcte-iime
systems with known parameters

e Development of a MIMO MRAC algorithm for
linear continuous-time systems with
unknown parameters which drives output
errors asymptotically to zero

uonlinear model of the
Cromby  power

e Development of a
boiler-turbine-generator
plant unit



e Validation of the MRC algorithm with a
linearization of the Cromby model

o Development of an enhanced MRC algorithm
which dramatically improves the control
response characteristics of the plant.

7.2 RECOMMENDATIONS

Future efforts in this area of research should
deal with the MRC algorithm high feedback gain charac-
teristics. In spite of the excellent performance
reported 1in the application section, the feedback
gains are relatively high. This causes large fluc-
tuations in the controls when unmodeled disturbances
enter the system or initial condition errors are
significant. This problem may not have occurred if
the control system could be applied to a lower order
model of the power plant. However, the MRC and MRAC
stability theory do not deal with unmodeled dynamics.
Hence, the stability problem with uomodeled dynamics
is an important topic for future research with respect
to the MRAC algorithm.

Future efforts on the MRAC algorithm should also
deal with the structural constraints pecessary to
establish stability. As noted above, the algorithm is
limited to plants satisfying limiting structural con-
straints, necessary to complete the stability analy-
sis. The author feels that, without much difficulty,
future efforts should be able to modify the algorithm
or the stability analysis to eliminate this
restriction.
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APPENDIX A
RESOLUTION OF POWER PLANT MODEL EQUATIONS

A.l CROMBY MODEL EQUATIONS

References 9 and 10 describe the modeling process
and results obtained regarding the development of the
Cromby No. 2 Unit mathematical model. These refer-
ences give some explanation of the underlying princi-
ples and assumptions governing the model formulation.
However, the form of the model presented is not read-
ily usable because of the existence of several unre-
solved nonlinear simultaneous equationms. This ap-
pendix presents the results of resolving these equa-
tions into a form suitable for simulation.

The equations are grouped and ordered into self-
consistent (program) modules. Each module essentially
contains all the equations needed to define a partic-
ular portion of the plant (superheater, turbine,
etc.). ‘The development of any module is based uvu the
assumption that initial conditions of state-variables
and contrel variahies are known. 1815 assumptiou
permits breaking of implicit loops. That is, the
equations can be ordered by defining a 'starting
place" for the ordering process. Figure A.1-1 is a
solution diagram that illustrates the interfacing
between modules and thus defines the order of solu-
tion. State variables are shown as outputs of the
defining modules and are indicated by double-headed
arrows.
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Figure A.1-1 Power-pPlant Model Svlutivm Diagram

The modules are presented in Tables A.1-1 through
A.1-5. Titles given to the tables roughly describe
the major power plant components that are modeled by
the set of equations in the table. Each table con-
toins the resolved equations used to define a given
module, corresponding equation numbers (Ref. 10) of
the defining equations, and comments pertaining to
assumptions. The nomenclature used is that of Ref. 9
and is explained in Appendix B.

TASC has implemented a quartic solution for flow
resolution which is not presented in Ref. 10. This
algorithm is discussed in Section A.2.
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TABLE A.1-1
COAL MILLS

RESOLVED EQUATIONS

REFERENCE 10
DEFINING EQUATIONS

cf er f)

dt Mcr = xfsgfs'- chMcr

—

13-3

13-3
(Assumes all mills
are operational)

13-2

13-1

TABLE A.1 2

WATER-SIDE FEEDWATER-DRUM CIRCUIT SOLUTION

RESOLVED EQUATIONS

REFERENCE 10
DEFINING EQUATIONS
= |

Y e’
hd apd

SAT

.. <3hdw>
hdWw apdw

SAT

Paw = 4 1(Pg)
Tg = £, ,(Pg)
By = £, 5(pg)
Baw = f4 4(Pg)

by = %4 5(Pg)

CaPa Ve Vaw) & YpawPawYaw

517 TV - (e g VT (B Byy)

o %awlaw
8 T V(- 0

pdW’ " aw

8=gl'82

44
(Assumed
Constant)

4<4
(Assumed
Constant)

.Ig-/.|
(Assumed
Constant)

4-3

4-3

4-3

4-3

4-4




TABLE A.1-2

WATER-SIDE FEEDWATER-DRUM CIRCUIT SOLUTION (Continued)

TABLE A.1-2

WATER-SIDE FEEDWATER-D?UH CIRCUIT SOLUTION (Continued)

RESOLVED EQUATIONS

« REFERENCE 10
DEFINING EQUATIONS

2
- 1
wep - ’{AKfAf
2,2 2,0 ooyik
+[(M(fAf) + 4KfAf(Pho Pd)] }
W =W - W - W
e ep spa rs
Pho = fl,l(wep)
Py = By * M
by = £, (W)
=L (G -Wn, + W)
hD WD D "e’"dw ee
Q_ =K (T -T)3
wS w mws d
_ _ 3
Qwr ~ “wr owr Td)
Q, = Qu * Qr
Q
= ¥
hw - WD * hD
X = w-bdw
hd hdw
_ 4
0=3Wg+ azwg M a3W§
- pd(Pd-Ppso)
P
33_l+8(1-_—d)
daw
d -
at Pa
p P
d d 3
— W - W, + XW (1-—)| x 10
["dwe d D pdw]

83[Vd - (l-updw)de]

1-1, 1-3
1-2

1-4
(Depends on Feed-
water Pump Opera-
tions)

1-3

2-1

2-2

15-2
3-2, 15-2, 16-1

3-2

3-1

5-1, 5-7
(Solve Quartic for
Wd (a],az,a3, are

constants))

3 4-5
(10° is conversion
factor KLBM>LBM)

REFERENCE 10
RESOLVED EQUATIONS DEFINING EQUATIONS
d
=V, = 4-6
dt “dw (103 is conversion
1+g - X 3 | factor KLBM-LBM)
[pdw Ye Paw K Paw )
p
1+ g(1 - 3
Paw
TABLE A.1-3
STEAM-SIDE SUPERHEATERS
_ REFERENCE 10
RESOLVED EQUATIONS DEFINING EQUATIONS
Tpso = f5,1 (hpso’ ppso’ Ppso) 3-3
Ppso = f5,2 (hpso' ppso' Ppso) >-6
Psso = f7,3 (hsso’ psso) 7-13
= aaw“s + asw3so +agws 7-1, 7-14
pso p P (Solve quartic for
- ppso(Ppso- sso) wpso (34‘35’36 are
. constants))
sso f7 4 ( sso’ pss' Psso) 7-13
Tss = f7,6 (hss' pss' (Pps +Psso)/2) 7-13
ro fll,l (hro' pr’ Pro)
ro - f11,2 (hro’ pr’ Pro)
Tr = f11,3 (Pro' Pcr’ hr) 11-7
Tps = (Td * Tpso)/2
A +K _(T._-T )
Q = ——. ke 88 5-10, 7-15, 7-16
’1 + 10 Kss (103 is conversion
( cC W factor KBTU-BTU)
gs 8
cgs f7’5(wf) 7-17
2 ss 3
T = - = (107) 5-10
gso gs Cgswg (103 is conversion
tactor KBTU~DTU)
Cor = f11,4(Mg)
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TABLE A.1-

3

STEAM-SIDE SUPERHEATERS (Continued)

TABLE A.1-3

STEAM-SIDE SUPERHEATERS (Continued)

RESOVED EQUATIONS

REFERENCE 10
DEFINING EQUATIONS

T
gro

C
gps

i (W
i .

2Q
= Tgr °T ; (103)
8r g

= f5 5(Wg)
V) =

0.6, 10.8
KepsKys () (H))

K

0.6 0.8
rps ()0 ¥ Ko (W)

= (W __h +W_h

)W
pPso pso spa e’’ "ss

"
~
=

M
Ss
2 * (hsse-hss)wssi] / 7

i

11-5, 11-6

5-8; 5-9

5-3

7-4

7-9
(Assumes small
density varia-
tions along
superheater)

7-11
(Assumes M

constant)Ss

REFERENCE 10
RESOLVED EQUATIONS DEFINING EQUATIONS
d
— h = 7-12
de “sso (Assumes M
constant)
M
gii + (@ -h ) ) =&
2 S8 550’ §& 2
W =W .+ W 10-1
rse rsi rs
rse (wrsihhpe * wrshec)/wrse 10-2
o =W -w v 11-2
dt "r rse ro’’'r
d -
— (h) = 11-3
dt “r . (Assumes M_
= constant
[Qr - 2(hr - hrse)wrse]/n1
d
— (h_) = 11-4
ar “re (Assumes M
_ constant
[Qr - (hro - hr)(wrse * wro)]mr
Lo )= 103w w v 5-2
dt “"pso d "pso’’ "ps
TABLE A.1~4
SUPERHEAT FURNACE
REFERENCE 10
RESOLVED EQUATIONS DEFINING EQUATIONS
=
Klw = 15-5
8 8
Klw {a+( = Mi(B—i)é)/ 2 Mi}/
i=5 i=5
36
(4 + 7
Kiw = Klw (1 - sz tan es) 15-4
Cg = 15,1 (Wg)
Cor = f14,1 (Vg)
Wan
- [} -
Tf =t Tf 14-1
gf'g




TABLE A.1-4

SUPERHEAT FURNACE (Continued)

TABLE A.1-5
REHEAT FURNACE (Continued)

REFERENCE 10 REFERENCE 10
RESOLVED EQUATIONS DEFINING EQUATIONS RESOLVED EQUATIONS DEFINING EQUATIONS
[T C W U= (v v /2
% s = g —EEE—QL-+ Tgw (103 is conversion rl gr rr
& 10 Klw s factor from 1/3 1/3
KBTU - BTU) U_ = [v__+U_ .} -[u_.-v_]
r rr rl rl ‘rr
[ c v 2 1 .1/2
_1 g 8 T =-3z1U + 15-3, 15-6
vV =3 T gar 2 r
rs 2 3
107 K
1w
- U
) S 1/2 ,,1,1/2
v, = (V3 + V2 12 2 [Upm8(7 -3V )7/ 2]
sl gs rs
- 1/3 1/3
U = [V_+U_.] -[u..-v_] _ - \ 3 _
s rs sl sl 'rs Qrwr = CgWg (Tf Tgar)/lo 15-6
__1.1/2 i - - - -
Tgas -3 Us + 15-3, 15-6 Tgr =2 Tgar Tf 15-7
ST =20 -Q )/MC ) 15-1
U dt “mwr Iwr “wr W pm
1 (5 _ 1/2 1/2
3 (U-6G2 -leav )1/%/2))
A.2 QUARTIC SOLUTION
- - 3 -
Qrws - ngg (Tf Tgas)/lo 15-6 Modeling of the pressure drop-steam flow equation
is generally quite straightforward:
Tes =2 Toas = T 15-7 W= o2, - P2/t (A.2-1)
d _ _ . where
at Tmws = 2y Qws)/(MWCPm) (Assi;e; M
constaat) p = steam density
TABLE A.1-5 PI’PZ = conduit‘inlet and outlet pressures,
REHEAT FURNACE respectively
REFERENCE 10 t = conduit steam-flow friction coefficient
RESOLVED EQUATIONS DEFINING EQUATIONS
However, in the Cromby model, two instances occur in
K" - 15-5 which f varies nonlipearly with flow accerding to
lwr
4 4 f= alwz + azw +ay (A.2-2)
Klwr {A+('£1 Mi(lo-i)é)/E1 Mi}/
b 1= The two flows in question are defined by Eqs. 5-1,
(@ + 36 S5-7, and Eqs. 7-1, 7-14 in Ref. 10 and represent steam
2 flow out of the drum and steam flow out of the primary
superheater, respectively. This appendix describes
the solution algorithm used to solve Eqs., A.2-1 and
. _ " - - A.2-2 for W analytically.
Klwr = K]w (1 KZwr tan Gr) 15-4 !
Manipulation of Egs. A.2-1 and A.2-2 yields
o [T 4
vgr -3 ' * mes a W“ + a W3 + a W2 - p(P,P )2 =0 (A.2-3)
107 K 1 2 3 2°1
L lwr
FC W 2 The variable p is a state variable and is assumed
Vrr - % g g' known at any given time. The pressure variables Pl’
10 K1wr P2 are functions of state variablee and ave algo known
L
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at any given time. Therefore, at any time t, let




p(B,p ) = a, (A.2-4)

where a, is known at time t.

Thus, Eq. A.2-3 becomes

4 3 - .
Weaaw e bW e =0 (A.2-5)
upon defining a_ = azlal, bs = a3/al, ¢ = aA/al.
Using Eq. A.2-5, W is found according to
2 2,3 4 2
ol = - 4 25Cs b 1 asbscs + 1 25%s
-3 a s 27 a A Z
1 1 a
1
b e\ b 3
£ 32 [sSs) o+ 4 ) res [Ss
27 a 37 2, 27 a
(A.2-6)
2 3
B ¢ a‘e h_\-
=-4 1 1 [ss). [ £ .
B=-3 \= Y2\ 3 (A.2-7)
1 1
y = (u-ﬁ)l/a + (—a-B)”J (A.2-8)
a 2
2.1} - 2 -
b} -(2) 3 bs+y (A.2-9)
2
b a
2 _ _ &4 %% , 1 {3 12 )
g8 =3 bt 54 4(5‘) * 3 ey -y (A2-10)
a
=5 e-§ -
¢ = A + P (A.2-11)
W= ¢ sgn (P2-P1) (A.2-12)
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APPENDIX B
MODEL SYMBOL DEFINITIONS

This appendix defines the nomenclature and sym-
bols used in developing the power plant model. The
table is adapted from Ref. 26.

TABLE B-1
MODEL NOMENCLATURE
SYMBOL DESCRIPTION
A Governing valve area
Af Normalized feedwater valve flow area
A Intercept of defining equation for re-
r .
heater section heat transfer
ASS Intercept of defining equation for sec-
ondary superheater section heat transfer
AT Regulating valve area
C Flow coefficient for sonic flow through
valve-nozzle combination
c Flow coefficient for parallel combination
1 -
of K fully open governing valves and
nozzles
C2 Flow coefficient for series combination
of regulating valve and nozzle
C Specific heat of combustion products at
8 average flame furnace temperature
(Btu/1b°R)
C £ Specific heat of combustion products at
g average flame temperature (Btu/1b°R)
C s Specific heat of combustion products at
gp average primary superheater section
temperature (Btu/1b°R)
C s,C r Specific heat of combustion products at
g5 8 average secondary superheat and reheat
section temperature respectively
(Btu/1b°R)
C o Specific heat of metal in waterwalls
P (Btu/1b°R)
CT Flow coefficient for a regulating valve
f s Friction coefficient for steam flow in
P primary superheater
fr Friction coefficient for steam flow in
reheater
fss Friction coefficient for steam flow in
secondary superheater
F Heating value of coal (Btu/lb)
Hcr Steam enthalpy at discharge of high
pressure turbine (Btu/lb)
h?r Ideal steam enthalpy at discharge of high

pressure turbine (Btu/lb)

TABLE B-1
MODEL NOMENCLATURE (Continued)

SYMBOL

DESCRIPTION

hEpl

hﬁpZ

pso

|

ro

rse

SSs

sSse

580

th

Enthalpy of feedwater in downcomer
(Btu/1b)

Enthalpy of saturated steam leaving
drum (Btu/1b) .

Enthalpy of drum water (Btu/1b)

Enthalpy of feedwater leaving economizer
(Btu/1b)

Steam enthalpy in the impulse chamber
(Btu/1b)

Ideal steam enthalpy in the impulse
chamber (Btu/lb)

Ideal steam enthalpy entering impulse
blading after a regulating valve (Btu/lb)

Ideal steam enthalpy entering impulse
blading (Btu/1b)

Enthalp§ of steam leaving primary super-
heater (Btu/lb)

Average (mid-section) steam enthalpy in
reheater (Btu/lb)

Enthalpy of steam leaving reheater
(Btu/1b)

Enthalpy of steam at outlet from reheat
spray (Btu/1b)

Average (mid-section) steam enthalpy in
secondary superheater (Btu/1lb)

Steam enthalpy at outlet of superheater
spray section (Btu/1b)

Steam enthalpy at outlet of secondary
superheater (Btu/1lb)

Steam enthalpy after goveruing valves
(equal to hsso)(Btu/lb)

Enthalpy of water-steam mixture leaving
waterwalls (Btu/1b)

Ratio of specific heats (at comstant
pressure/at constant volume)

Number of fully open governing valves
Proportionality constant between coal
flow rate out of crusher and mass of
crushed coal stored

Flow coefficient for feedwater valve

Proportionality constant between coal
flow into mill and feeder stroke

Flow coefficiept for reaction stages of
high prescurc turbine
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TABLE B-1
MODEL NOMENCLATURE (Continued)

TABLE B-1
MODEL NOMENCLATURE (Continued)

SYMBOL DESCRIPTION SYMBOL DESCRIPTION

K Flow cocfficient for low pressure turbine Pcr Steam pressure at discharge of high pres-

sure turbine (psia)

K Primary superheater heat transfer coeffi-

ps . X .
cient on steam side Pd Drum pressure (psia)

Kr Slope of defining equation for reheater P Nozzle exit pressure (psia)
section heat transfer €

Ph Boiler feed pump discharge pressure (psia)
DS Primary superheater heat transfer coeffi-
P cient on gas side Pho Intercept of defining equation for boiler
feed pump discharge pressure (psia)

K s Slope of defining equation for secondary

s superheater section heat transfer Ph Steam pressure at exit of throttle valve
P (1st stage pressure) (psia)

was Proportionality constant between primary

air flow and feeder stroke P so Steam pressure at outlet of primary super-
P heater (psia)

K, K, Heat transfer coetticiéAt beiweeu tube
metal and steam in superheat and reheat P Steam pressure at reheater outlet (psia)
furnace waterwalls respectively ro

P Steam pressnre at outlet of secondary

Klw’Klwr Basic heat transfer coefficient between sso superheater (psia)
gas and tube metal in superheat and reheat
furnace waterwalls respectively Pth Governing valve exit pressure (psia)

Kiw'Kiwr Overall heat transfer coefficient between Q Heat transfer rateé from gas Lu 3tcam in
gas and tube metal in superheat and reheat ps primary superheater (KBtu/sec)
furnace waterwalls respectively

Qr Heat transfer rate from gas to steam in
" " . .
Klw’Klwr Same as Klw’Klwr except including effect reheater (KBtu/sec)
of burner geometry Q ,Q Rate of heat transfer from gas to metal
Twe' Twr in superheat and rcheat waterwalls
sz,szr (oefficient relating a change in superheat fes ectTQel (KBtu/sec)
or reheat burner tilts respectively uu pectively
waterwall heat transfer Q Heat transfer rate from gas to steam in
ss secondary superheater (KBtu/sec)
gfs Normalized teéder siruke
. . Total rate of heat transfer from tubes to

Mcr Mass of coal in crusher zone of mill (1b) Qw fluid in waterwall section (KBtu/sec)

Mps Effective steam mass (re}ated to acLual( Q‘ ,Q Rate of heat transfcr from metal to steam
steam and metal masses) iR primary supei e’ wr . . t 1 -
heater (KIb) in supeiheat and rechoat waterwalls respec

tively (KBtu/sec)

" Eifective sioam mas (relmied totetialy | [Tee | Stesm semperntue of stean st atschacye

of high pressure turbine (cold reheat)(°R)

Hss Effective steam mass (re}ated to ?F‘“al T* Ideal steam temperature at discharge of
steam and metal masses) 1n secondary Uy high pressure turbine (YR)
superheater (K1b) g1 p

(-]

Mw Total effective metal mass of waterwall Td Drun sream temperature (°R)
tubes (Kib) T, Nozzle exit temperature (°R)

Mwh’Mwl’th Equ1valen§ megawatt output of h}gh pres- T Adiabatic flow temperature (°R)
sure turbine, low pressure turbine, and f
the total respectively (MW) T; Air heatér outlet temperature (°R)

2 .

M1 Squaiet9f thelnozzle exit Mach number for T oa Mid-section gas temperature of the water-

regulating valve gas’ gar wall section of the superheat and reheat
4 o

M% Square of the nozzle exit Mach number for furnace respectively (°R)
fully open governing valve T Average gas temperature in primary super-

gps heater (°R)

n Number of partially opened valves (regu-
lating valves) gs’ gr Superheat and reheat furnace exit gas

temperature respectively (°R)

32




TABLE B-1
MODEL NOMENCLATURE (Continued)

TABLE B-1
MODEL NOMENCLATURE (Continued)

SYMBOL DESCRIPTION SYMBOL DESCRIPTION
Thp Impulse chamber (1lst stage) temperature wro Reheater outlet steam flow rate (Klb/sec)
(°R)
wrs Reheater spray water flow (Klb/sec)
mes’mer Metal temperature of superheat and reheat
furnace waterwall tubes respectively (°R) wrse Steam flow rate at outlet from reheat
spray section (Klb/sec)
T s Average steam temperature in primary
P superheater (°R) wrsi Steam flow from high pressure turbine
(K1b/sec)
T Steam temperature at primary superheater
pso outlet (°R) Superheater spray water flow rate
spa (K1b/sec)
Tro Steam temperature at reheater outlet (°R)
W . Steam flow rate at inlet to secondary
Tsso Steam temperature at outlet of secondary ssi superheater (Klb/sec)
superheater (discharge of throttle
valve)(°R) wsso Steam flow rate at outlet of secondary
superheater (Klb/sec)
Tth Governing valve exit temperature (°R)
3 X Steam quality at outlet of waterwalls
v Mill volume (ft~)
3 oy Partial derivative of drum steam enthalpy
Vd Total drum volume (ft~) d with respect to drum steam density defined
3 at saturation conditions
de Drum water volume (ft~)
ay Partial derivative of drum water enthalpy
\% Steam storage volume of primary super- dw with respect to drum steam density de-
ps h 3 fined at saturation conditions
eater (Kft~)
3 o Partial derivative of drum water density
Vr Steam storage volume of reheater (Kft”) Pdw with respect to drum steam density at
VSs Steam storage volume of secondary super- saturation conditions
heater (Kft3) A Flow coefficient for a single fully open
governing valve and nozzle
Vls’VZS Ideal nozzle discharge velocity for the
regulating valves and fully opened valves 4' Flow coefficient for a nozzle for sub-
respectively (ft/sec) sonic velocities
W Steam flow through K fully open governing n Combustion efficiency
valves (Klb/sec)
n Low pressure turbine isentropic efficiency
W' Steam flow through n regulating valves
(Klb/sec) Ny High pressure turbine isentropic efficiency
(reaction blading)
wa Mass rate of air flow through honiler :
(1b/sec) nIMPl’nIMPZ Impulse turbine efficiency for the regu-
lating valves and for the fully opened
W Primary air flow with zero coal flow valves respectively
ao
(1b/sec)
6_,0 Angle with respect to horizontal of super-
We Water flow through feedwater valve s r heat and reheat burner tilts respectively
P (Klb/sec) (degrees)
WD Constant boiler circulating flow (Klb/ser)| [A Slupe of defining equation for boiler
’ feed pump discharge pressure
Wd Steam flow rate leaving drum (Klb/sec)
Ves Fraction of total mill volume occupied
We Feedwater flow rate to boiler (Klb/sec) ¢ by coal
Wf Mass rate of coal flow to boiler (1lb/sec) P, Density of primary air (lb/ft3)
W Mass rate of gas flow through boiler Pes Density of coal (1b/ft3)
& (1b/sec) ¢ 3
Py Drum steam density (lb/ft~)
wpao Primary air flow through mills (1b/sec) 3
Paw Drum water density (1b/ft”)
wpso Primary superheater outlet steam flow

rate (Klb/sec)




TABLE B-1
MODEL NOMENCLATURE (Continued)

SYMBOL NESCRIPTION

ppso Steam density at primary superheater out-
let (1b/£t3)

pr Average steam density in reheater (lb/ft3)

Pes Average steam density in secondary super-
heater (1b/ft3)

Peh Steam density at valve exit (lb/ft3)
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APPENDIX C

COMMAND GENERATOR TRACKER SOLUTIONS TO INPUT AND
STATE IDEAL TRAJECTORIES

c.1 CONTINUOUS-TIME *-TRAJECTORIES

This appendix presents derivations of the time-
domain expressions of the *-trajectories associated
with the command generator tracker (CGT). The

*-trajectories §;(t) and E;I(t) must satisfy Egs.

3.1-1a and 3.1-1b which are repeated here.

Cp §p(t) = zm(t) (C.1-1a)

and

Ep(t) = Ap ip(t) + Bplgpl(t) + szgpz(t) (C.1-1b)

A frequency- or s-domain representation of 5' and

u* is defined in Ref. 22 as P
_pl " -1
Xy = Sy By (I - 0] 7 (S v ¥ Sy5 u))
(C.1-2a)
Y17 Sop Ep * Sy Uy * Sy3 U
-1
+ SQZI(I - SQII) (512 u t S13 EpZ)
(C.1-2b)
where the S matrices satisfy
Ay Bor St 512 Si3 - Sifa S1fa Bp2
Cp 0 S21 522 523 Cm 0 0
(C.1-3a)
and the ) matrices satisfy
A B Q Q 1 0
P pl 11 12} _ n (C.1-3b)
Cp 0 021 922 0 I2

Equation C.1-3a has a solution if none of the plant
transmission zeros are equal either to zero, or to any
of the reference model poles (Ref. 22). Equation
C.1-3b has a solution it none of the plant transmis-
sion zeros are equal to zero (Ref. 23).

to
it is

achieve the results described in
necessary to obtain time-domain

* *
solutions fu. ip(t) and gpl(t).

Eqs. C.1-2a and C.1-2b into the time-domain, a simpli-
fying substitution will be made. Note the following

In order
Section 3.1,

Before transforming

equality

(In - soll).1 = [(In B 5011)-1 - In] * 1n
= - - s a, - 5011)-l * L
=50, (I - sou)‘1 + 1 (€.1-4)
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Introducing Eq. C.1-4 into Eq. C.1-2a yields

* -1

X5 = Syy X+ [s@y (I =7sQ)) 7+ 1]

[S;, u +8S..u ]
12 —m 13 -p2 (C.1-5)

Thus, Egs. C.1-2a and C.1-2b become

X T 51 % T S12 8 i3 U2
-1
*syy (I - sQ)) 7 (S up + S5 u,,)
(C.1-6a)
Uy TSy Xp * Sy Ut Sy3 8y
-1
*sQyy (I = s0y)) 7 (g ug + 5,5 u55)
(C.1-6b)
The *-trajectories are transformed into the
time-domain by introducing the filter state 8(t),
8(e) - 0, 8(e) = S) u (6) + S5 u (D)
(C.1-7)

The initial condition of the filter state, 8(0), is

arbitrary as long as there exists a quantity, é(O),
satisfying Eq. C.1-7 for t=0. Since Qll is a singular

matrix (for the plant described in Eq. 2.3-2), the
implementation of this filter is a nontrivial problem
(see Ref. 4). Since this analysis leads to a MRC
solution that does not require this filter (see Sec-
tion 3:1), the issue of implementation is not dis-
cussed here; however, an implementation does exist.

Transfofming Eqs. C.1-6 into the time-domain and
substituting Eq. C.1-7, we obtain

2,(8) = 81 % (£) + S5 up() + Syq w00
+ 0 8(1) (C.1-8a)
x(0) = 5, %, (0) + 8(0)
Uy (8 = Spp 2y (1) # Spp up(8) + Sy5 upp(e)
+ 0, 6(t) (C.1-8b)
8(t) - )y 8(t) =5, uy(€) + S5 u,,(8)
(C.1-8¢)

This is the result used in Section 4.1.

c.2 DISCRETE-TIME *-TRAJECTORIES

This section of Appendix C presents a verifica-
tion that the discrete-time-domain expressions of the
*-trajectories satisfy the necessary equations. These
equatians are repcated here



CP §p(k) = ¥, (k)

“(k+1) = F_ x (k) + G
§p( ) P gp( )

(C.2-1a)

1 gpl(k) + sz Epz(k)

p
(C.2-1b)
Note the model dynamics are given by Eq. 3.3-4, that
is
Zm(k+1) = Fm gm(k) + Gm gm(k) (C.2-2a)
zm(k) = Cm gm(k) (C.2-2b)

* *
The hypothesized formulation of §p(k) and gp(k) is

Ep(k) = Rll Em(k) + R12 Em(k) + R13 gpz(k)
+ Ay, [8(k¥1) - 8(K)) (C.2-38)
851 (K) = Ryy 2, (k) + Ryp up (k) + Ryy w5 ()
Ay [8(k+1) - ACi)] (C.2-3b)
where the R-matrices satisfy
Fp' o Sp1f |R11 Rz Ris Ry (F ‘Inm) R115m 'sz
Cp 0 R21 R22 R23 Cm 0 0
(C.2-4)
the A-matrices satisfy
Pl 6] [An A i I 0 .25)
Cp 0 A21 A22 0 12
and 8(k) satisfies
6(k) - Alllg(k+1) - 8(k)] = Rip gm(k)
+ Ryg u (k) (C.2-6)

with arbitrary initial condition 8(0). Note Q(l) must
exist such that Eq. C.2-6 is satisfied for k=0.

Ta verify that Eq. C.2-3 satisfies Eq. C.2-1 the
former is substituted into the right hand sidée of Egq.
C.2-1b

A

RES 2 F x°(k) + 6. u (k) + G
= Fp 2, (k) + Gy, ()

p2 Yp2 (¥
(k) + Ry upUk) + kg 0, (1)
21 %K)

+ Ryy u (k) + Ryy u (k) + Ay [8(41) - B(K)])

= Fp(Rll

+ Ayy [80cr) - 8(K)D) + 6 (R

(c.2-7)
Grouping like terms
RHS = (Fp R, ¢ Gpl Ry ) x (k)
+ (Fp Rl2 + Gpl Rzz)'gm(k)
*FpRyg * G pRyg ¥ Gpp) up, (k)
+ (Fp /\11 + Gpl A21) [8(k+1) - 6(k)] (C.2-8)
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Using Eq. C.2-4 and Eq. C.2-5

RHS = Ryy Fpox (k) + Ryy G ou (k) + Rpyou (k)

*Rygu, () + (T + A)) [8(k+1) - B(K))

(c.2-9)

Substituting for R12 gm(k) + R1

Epz(k) from Eq. C.2-6
yields

3

RHS = R11 5m(k+1) + 8(k+1) (C.2-10)

Note that substituting Eq. C.2-6 into C.2-3a yields

gz(k) = Ry, x (k) + 8(K) (C.2-11)
Hence, combining Eqs. C.2-10 and C.2-11 yields
RHS = i:(krl) (c.2-12)
which verifies Eq. €.2-1b.
To verify Eq. C.2-1la, note that
¢, 5:(k) = ¢, Ryy () % C Ry u (k)
+ CPR13 gpz(k)
*C A [8(k+1) - 8(k)]
From Bq: C.2-4
C R11 = Cm (C.2-14a)
C R12 =0 (C.2-14h)
Cp Rl3 =0 (L.2-14e)
and from Eq. C.2-5
Cp /\11 =0 (C.2-144)
Thus, substituting Egqs. C€.2-14 into GC.2-13 vyielde
Cx (k) =C x (K (C.2-15)
PP o o
or using Eq. C.2-2b
c, ii(k) =y (1) (C.2-16)

and Eq. C.2-1a is verified.



APPENDIX D
DERIVATION OF FEEDBACK GAIN AND REFORMULATION OF
FEEDFORWARD GAIN AND ERROR DYNAMICS

D.1 FUNDAMENTAL RELATIONSHIPS
In this appendix, it is shown that under mild
sufficient conditions there exists a set of gains

satisfying Eq. 3.1-17a (Eq. D.1-1),

(K Q) +9,) 8(t)=0 (D.1-1)

This result is proved by constructing a set of such
gains. In Section D.2 a specific solution is con-
structed provided chpl is nomsingular, and in Section
D.3 the same task is carried out if Cpo1 is singular.
Section D.4 provides a set of solutions for K satisfy-
ing Eq. D-1. In Section D.5, the feedforward gains Kx’

Ku and Kuz

error dynamics are reformulated.

are reformulated and in Section D.6é the

The following identities required in this appen-
dix are derived from Egqs. 3.1-2d

8(t) =0, 8(¢) + 5, u (t) + 8, gpz(t:) (D.1-2)

from Eq. 3.1-3b

Ap Qll + Bp1 021 = In (D.1-3)
CP Q]l =0 (D.1~4)
A le + Bpl 022 =0 (D.1-5)
Cp QIZ = I2 (D.1-6)
and from Eq. 3.1-3a
Apsll + Bp1521 = SllAm (D.1-7)
CpS11 = Cm (D.1-8)
ApS12 + Bp1522 = Slle (D.1-9)
CpS12 =0 (D.1-10)
Apsl3 + Bp1523 = -Bp2 (D.1-11)
CpS13 =0 (D.1-12)
D.2 C_ B . IS NONSINGULAR
p pl
If chpl is a nonsingular (2x2) matrix then one
choice for K is
= S -1
K= (CB A D.2-1
(€8, Gy (0.2-1)

To verify that Eq. D.1-1 is satisfied use Eq. D.1-7 to

note that
- _ . ..1
KQll + 912 = (CPBPI) CpAle1 + QZI
- -1 -
= (chpl) CP( BplQ21 + 1) + 921
= (B )¢ (D.2-2)
p pl P

Multiplying on both sides of Eq. D.2-2 by 6(t) yields

-1

(K, +9Q,) 8(v) = (CB,) " €, 8(1)

and using Eqs. D.1-2, D.1-4, D.1-10, and D.1-12,

- -1 -
(KQ,, + Q) 8(t) (Cpol) cpI(QIl 6(t)

+ S12 gm(t) + 513 gpz(t)]

-1
= (C_B 0
( P pl) 0
=0 (D.2-3)
Differentiating Eq. D.2-3,
(KQ11 + 021) 6(t) =0 (D.2-4)

which verifies Eq. D.1-1.

D.3 CB

2Pp1 IS SINGULAR

If Cpol is a singular, a2 methodology presented
in Ref. 27 for output decoupling can be used to con-
struct K. First define the rows of Cp as follows

M 1]
L]
T

<

(D.3-1)

T
c

l_ma

Now the indices d d2 dm .are defined to be the

1)
smallest integers for which
T ,d. T
[ Apl Bpl £0 (D.3-2a)
that is,
Talp_ =0l  j<a, (D.3-2b)
=i p pl = i

The partition of the controls imto u l(t) and u_,(t)
must be made such that P Pe

(D.3-3)

The reference the model must be designed to satisfy
T adp =0T
“mi o -

< d.

i (D.3-4)

m
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where

T

c . is the ith row of C , i.e.,
-mi m

o h

(D.3-5)

L

Next, the matrix J is defined using the indices
di defined in Eq. D.3-2 and D.3-3;

[ 1,4, ]
) Apl
- T ,d, .
J = <, ApL (D.3-6)
L cT Adm
o p
Using J, two other matrices are now defined;
L = JBP1 (0.3-7)
M= JA D.3-8
P ( )
If L is nonsingular, K is selected as
g=11u (D.3-9)

To verify that this choice of K satisfies Eq.

D.1-1 note that

ko) 0y = Loy 2,
=1l A+ 0y (D.3-10)
But from Eq. D.1-3
Ray, o0, = Ll - By * 0y
=174 - L‘IJBP 0y + 0y,
=17 - QZ; + 0,
=171 (D.3-11)
Next, it will be verified that
Jé(r)=0 (D.3-12)
which implies
rlié=o0 (D.3-13)

Substitution of Eq. D.
Eq. D.1-1.

3-13 into Eq. D.3-11 verifies
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In order to verify Eq. D.3-13, it is first shown
that

T2 . i
[ Ap 8(t) = Si P B(t) if 2 < di (D.3-14)

This result requires the following identity obtained
from Eq. D.1-8, D.3-1 and D.3-5:
T T

c.S = c

%i%11 T tmi (D.3-15)

Starting with the left side of Eq. D.3-14 and substi-
tuting Eq. D.1-2

T2

ngﬁ 8(t) = ciAr [(@; 6(e) + 5, u (8)
* 5)3 4 (0]
2 A ; ‘[(A 0, 8(6) + A8, u (6)
+ A8y u,(0)] (b.3-16)

Subatituting Eqs. D.1-3 and D.1=9 and D.1-11

cTA 2 la-s_0,.) 6(t)

T8
gi8p 8V p1¥21

+ (s 18, -B 1522)u (t)

- (B, + B iSyy) 4 (W]
= EzAﬁ-l 8(t)
szﬁ 'B [Q 6() + S,y g ()
Sy3 Upa (V)] (D.3-17)

Since £ < di, Eqs. D.3-2 and D.3-3

g Ai'l B,y = o (D.3-18a)

o Aﬁ'l B = o (D.3-18b)
Hence

At e = _fAﬁ'l (t) + S§A§’1 S, B, u (0

(D.3-19)

In order to show that the second term on the
right hand side of Eq. D.3-19 is zero, the following
equality is established:

cTak S, Aj = Tak-l

jtl ; -
ST a = S Siifn if k < d, (D.3-20)

Starting with the left hand side of Eq. D.3-20,



T,k T k 1

J < J -
clApS“Am (Apsll) Am (D.3-21)
From Eq. D.1-7
T .k Jo_ T k-1 AJ
ElAp 5 18 p (sllAm -B 1521) m
_ T,k-1 j*l _ T,k-1 i
- C1Ap S11% SiAp BplSZIAm
(D.3-22)
Since k < d., cT Ak_1 B .= 0T and
- i’ =1 'p pl =
ciaf s Al = Takls W% (D.3-23)
~ip m -=ip 11'm

which proves the identity of Eq. D.3-20.

Repeated application of this identity yields
T 2-1 _ T £2-2
= p sll =5 p SllAm
_ T,2-3 2
= SiAp SllAm _
_ T ,2-1 -
= SisllAm (D.3-24)
Substituting Eq. D.3-24 into Eq. D.3-19 produces
T _ T,2-1 4 T 2-1
Sifp 8(8) = A 7 8(6) + o8 A7 "Bou (t)
(D.3-25)

and combining this result with Eq. D.3-15 vyields

C?Aﬂ a(t) = CTAE-I é(t) + T.A’{"-1
=i’p — =i"p = m

Smi BmEm(t) (D.3-26)

Using Eq. D.3-4 eliminates the second term on the
right hand side of Eq. D.3-26, reducing it to

T 2 T 2-1 2
1Ap 8(t) = 1Ap 8(t) (D.3-27)
and the identity of Eq. D.3-14 is verified.
From Eq. D.1-2 it is also true that
T _ T 3 T
g5 808 = ¢; 9y 8(8) + ¢y ), (V)
+ cF (D.3-28a)

$13 4p2(®)

which using Egqs. D.1-4, D.1-10 and D.1-12 reduces to

e =0 (D.3-28b)
Differentiating Eq. D.3-28b implies that
8ty =0 (D.3+29)
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Substituting these results into the right hand side of
Eq. D.3-27 with £=1 yields

T

g 4 e(t) = (D.3-30)

and again differentiating,

T

&4 6(t) = (D.3-31)

Through of Eq. D.3-29 to

D.3-31,

repetitive application

T . .j g
Si AP g(t) =

(]
o

j<d, (D.3-32)

Hence with J being defined by Eq. D.3-6, Eq. D.3-32

implies each row of J times é(t) equals zero. Hence

J8(r) = (D.3-33)

Multiplying both sides of D.3-11 by é(t) and using Eq.
D.3-33 verifies Eq. D.1-1, that is
(ka, | J8(t) =

: _ -1
+Q,) 8(t) =L (D.3-34)

The three restrictions on the above theory are:
the reference model must satisfy the structural con-

straint specification, Eq. D.3-4; the plant controls
must be partitioned to satisfy Eq. D.3-3; and L
defined in Eq. D.3-6 must be nonsingular. The first

two restriction are similar to the relative order
restriction in the single-input, single-output MRAC
algorithms of Refs. 3 and 14. The first constraint is
much weaker than the perfect model following con-
straint discussed in Ref. 12, and cam be satisfied by
a judicious choice of the reference model. The second
restriction limits the use of this approach for MIMO
systems. (Note that for single-input, single=output
systemo, i.e. £=1, L is a scalar and is always non-
singular.)

D.4 GENERAL SOLUTION

The selection of K as in Eq. D.3-9 satisfies the
requirement in Eq. D.1-1. However, this value is not
unique; in particular, there are a whole class of

gains K defined by

F=0"le Qo (D.4-1)

where N is the n, X n matrix

d



(D.4-2)

and Q is any m X ny matrix.

Note that

(D.4-3)

The number of degrees of freedom in the choice of K is
equal to the number of linearly independent rows of N.

From Eqs. D.3-9 and D.3-27 it is known that

WMo, +

11 g=0

021) (D.4-4)

Thus to prove that K as defined in Eq. D.4-1 satisfies
Eq. D.1-1, it need only be shown that

QNQ,, 8(t) = 0 (U.4-5)
The itb row of NQ, . is c? Aj Q.. where
11 % & % *1nn
1¢1.m
(D.4-6)
0<3¢ di
If j=0 then using Eq. D.1-4
T ,j A _ T 2
€5 Ap 18(8) = ¢ 9y, 8(0)
=0 (D.4-7)
If j#0, using Eq. D.1-3
T .3 _ T ,5-1 _ T,i-1 _
[ Ap Qll =< Ap EiAp Bpl 921 (D.4-8)
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Substituting Eq. D.3-3 (note Eq. D.4-6)

T .,ji _ T ,3-1 _
9 Ap Qll =g A (D.4-9)
Using this result and Eq. D.3-32 yields
T ,j : _ T ,j-1 ;
[ Ap Qll a(t) = [ Ap e(t)
=0 (D.4~-10)

Hence each element of NQllé(t) is identically zero and

Eq. D.4-5 is satisfied.

D.5 FEEDFORWARD GAIN REFORMULATION

In Section 3.1, the MRC algorithm gains are de-
tined o be (Cg. 3.1=16)

1(x = 521 + KS11 (D.5-1)
K, =5,, +Ks, (D.5-2)
w2 = Sp3t kS, (D.5-3)

In this section, these gains are reformulated such

that they can be computed without first computing the

S.. matrices. In particular K, K and K , are func-
i X u u2

tions of L, Q, Lm’ Mm, Nm and MZ

defined in Section U.3 aud D.& and lm, M

where L and Q are
m' Nm
are defined in an analogous fashion to L, M, and N as
follows

aud MZ

Lm = JmBm (D.5-4)
Mm = Jmam (D.5-5)
M, & Jsz (D.5-6)
with
- -
T 1
tlnl Am
d
T 2
Sm2 Am
(D.5-7)
J =
m
T %
ne “m
L .
and



(D.5-8)

d

Sy Am

e -

2

Equations D.5~1, D.5-2 and D.5-3 are now shown to be
equivalent to

S .

R o=17' o+ oN) (D.5-9)

g =111 (D.5-10)
u m :

R . =-L"!M (D.5-11)
u2 2 :

The first step necessary to verify Egqs. D.5-9, 10
and 11 is to show

s, = I (D.5-12)
NS, = N_ (D.5-13)
NS, = 0 (D.5-14)
NS, =0 (D.5-15)

The rows of N and J

are given by g? A3 where j<d..
Hence 1P 1

T Aj S CT
-1

< D (D.5-16)

j-1
11 Ap (Apslr)

using Eq. D.1-7
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T
C.
=1

Aj S = c?
-1

3 sy, A;-I(S A -B_.S..)

1% 851521 (D.5-17)

Using Eqs. D.3-2 and D.3-24, Eq. D.5-17 becomes

T,3 = T J -
EiApsll = ¢:511% (D.5-18)
and finally using Eq. D.3-15
Tyds =T Al ®.5-
£i%511 = Sni An (D-5-19)

Equation D.5-19 verifies that the rows of JSll are

equal to the corresponding rows of Jm and the rows of
NS

11
Egs.

are equal to the corresponding rows of Nm. Hence

D.5-12 and D.5-13 are verified.

Applying the same operations on the rows of
NS12 (use Eq. D.1-9 instead of D.1-7)

T
C.
=1

CT
12 =1

j o T,i-1, .
Ay s ATAS) G

T

j-1 -
A (518,78 ;S5))

11°m “p1°22

T j-1
SisllAm Bm

(D.5-20)

The reference model structure constraint Eq. D.3-4
states the right hand side of Eq. D.5-20 is zero; thus

Tads . =0
-1

> S12 (D.5-21)

which verifies Eq. D.5-14.

Applying the same sequence of equations on the

rows of NS13 (usec Eq. D.1-11)

T,j _ T ,j-1
£i8p513 = &5 Ay T(A;513)
_TJ"l- - 5.22
s e Ap ( sz Bp1523) (D.5-22)
Next Eqs. D.3-2 and D.3-3 are used to show
Tals. =0 (D.5-23)
=i p 13

which verifies Eq, D.5-15.

Using the definition of K (Eq. D.4-1), Rx
(Eq. D.5-1) beccmec
= _ -1
k =5, + L 0raN)S,,
=s.. + L us,. + L lons (D.5-24)
21 11 11
Substituting Eqs. D.3-8 and D.5-13
kK =s, +Llas, +L N (D.5-25)
X 21 p. 11 m



Furthermore substituting Eq. D.1-7

-1

+1715(s, A -B 5. ) +1L N

Ke =S 1180781521

x 21 (D.5-26)

Next substitute Eqs. D.3-7 and D.5-12

K. =S58

-1 -1
X 21 +L (JmAm-LSZI) +L QNm

Finally substituting the definition of M (Eq. D.5-5)
and regrouping terms

PR |
K, =17 (1 +N ) (D.5-27)

verifying Eq. D.5-9
A similar sequeﬁce of _substitutions can be
applied to K (Eq. D.5-2) and Ku2 (Eq. D.5-3). Using

Eqs. D.4-1, D.3-8, D.5-14, D.1-9, D.5-12, D.3-7 and
D.5-4

=
it
N
s

L'l(momalz

[}
[%]
+

-1
L (M512+QN512)

_ -1
= 822 + L JAPS12

v s

1]
w
+

11807 Bp1522)

-1
L (JmBm-LSZZ)

i
=
[}

"
=

verifies Eq. D.5-10

Using Egqs. D.4-1, D.3-8, D.5-15, D.1-11, D.5-6
and D.3-7

=

-1 :
Kuz = + L (M+QN)S13

-1 R .
L7 UHS, o +UNs, o)

-1
+L JAPS13

=1
+ L J(-sz-Bp1523)

-1 s

-1
LM 23

23 2

verifies Eq. D.5-11. A result similar to this has
recently been reported by Kawahta (Ref. 28)

D.6 TRANSFORMATION OF OUTPUT ERROR DYNAMICS

In Section 3.1, the error dynamics are shown to
be governed by Eq. 4.3-1
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gy(t) = cpg_(t) (D.6-1a)
é(t) = (AP-BPIR)g(‘t) + Bpllf_xpl(t)-gpl(t)]
+ Bpliwlgz(t) (D.6-1b)
The selection of K as (Eq. D.4-1)
k=1 lomn) (D.6-2)

where L, M, N and Q are defined in Sections D.3 and
D.4, causes Eqs. D.6-1 to be a nonminimal system. In
particular, for each transmission zero there exists a
eigenvalue equal to it and hence a corresponding mode
which is unobservable in Sy' In this section these

dynamics are reformulated into a minimal and simpli-
fied format.

Before reformulating the
matrices AN’ BN and CN are
using these watrives are established:

error dyn;mics the
defined and 1identifies

Fi-ot AN ic 3

ng*ny matrix given by

fANl o ... o]
0 .. 0
Ay = 2 (D.6-3)
[0 0 Ay

wvhere ANi is a dlxdi matrix with ones on thé super-

diagnnal and zeroes elsewhere

[0 1 0 ... 0]
601 ... U
Ay = (D.6-4)
o 0 0 1
u o o 0
hy -
Next BN is a ndxﬂ matrix defined by
by O ... 0
0 b ... 0
- -N2 -
BN = (D.6-5)
o 0 byg
b L

where ENi is a dixl vector of all zeroes except in the

last efement



0
0
ENi = (D.6-6)
1
Finally CN is a ﬂxnd matrix defined by
K '
[ 0 R 0
T
0 [ 0
CN = (D.6-7)
T
0 0 c
| “NL
Where Ezi is a lei row vector of all zeroes except
the first element
T = -
oNi T [1 0 0] (D.6-8)
Using these definitions and the definitions of N,
J, L and M (Eqs. D.4-2, D.3-6, D.3-7 and D.3-8) along
- with the condition in Eq. D.3-2a the following iden-
tities are established
NAp = ANN + BNM (D.6-9)
NBPl = BNL (D.6-10)
Cp = CNN (D.6-11)
Using the definition of K in Eq. D.4-1 and these iden-
tities, the following equality is derived
= -1
N(A -B__K) = NA_ - NB_.L “(M+QN
‘ p pl ) P pl (1+QN)
=+ Bt - BN
= (AN - BNQ)N (D.6-12)

Next the transformed error gN(t) is defined as

SN(t) = Ne(t) (D.6-13)

If Eq. D.6-1b is multiplied by N the result is
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‘Eq. D.3-7) is nonmsingular.

Ne(t) = N(A -B, K)e(t)
+NB (L (8) - u, (0]

+ NBp legz(t) (D.6-~14)

1

Using Egs. D.6-10,
transformed into

D.6-12 and D.6-13, Eq. D.6-14 -is
en(t) = (Ay-BiQ)ey(t)

+ BNngpl(t) - 9,y (8]

+ BNLlegz(t) (D:6-15)

Using Eqs. D.6-11 and D.6-13 transforms Eq. D.6-1la
into

gy(t) = CNgN(t) (D.6-16)

Hence the output error dynamics described in

Eqs. D.6-1 have been transformed into Eqs. D.6-15 and

. T .
D.6-16. Each set of matrices ANi' ENi’ ENi represent
a canonical system for the ith output error. An

appropriate choice for Q keeps these error dynamics
decoupled.

D.7 SUMMARY
This appendix demonstrates that any K given by
Eq. D.4-1 satisfies Eq. D.1-1 provided L (defined in

The degrees of freedom in
the choice of K is a function of the linearly indepen-

dent rows of N, Eq. D.4-2. The stability of AP-BPR is

dependent on the stability of the transmission zeroes
between u_, and zp,and the choice of Q. The reformu-

pl .

lation in Section D.6 eliminates the unobservable
modes related to the transmission zeroes and provides
a formulation from which a stable Q can be chosen,

i.e., Q must stabilize AN - BNQ'



APPENDIX E

OTHER MRAC ALGORITHMS

In order that this report include all the efforts
in this research project, Appendix E presents the MRAC
algorithms developed earlier in this study and pre-
sented in an earlier report. The stability of these
algorithms required complex constraints and are re-
stricted to bounded error type stability. The algo-
rithm presented in Chapter 4 has a more complex
structure than these algorithms but the stability
constraints are much easier to satisfy. However, the
three algorithms presented before are repeated here
for completeness.

The algorithms are based on a slightly different

MRC solution. In particular no observer is used,
hence, the 2z(t) terms in k§. 3.1%6 aie oot uoed,
Tnstead the matrix Ky is assumed to exist such that
K=KH E-1
vy (E-1)
Furthérmore, K is assumed to satistfy Eq. E-1 and

Eq. 3.1-17a. This condition may require the reference
model control being fixed (which makes 6(t) = 0).
Also, the number of inputs and outputs are assumed to
be the same (m=2),

E.1 CONTINUOUS ALGORITHM I

This section presents an adaptive algorithm for
the continuous time control previously defined in Eq.
2.3-1 and a Lyapunov stability analysis of the closed
loop system. The algorithm and the analysis are based
on the work by Mabius in Ref. 6. However, introducing
the MRC -solution presented in Section 3.1 iato the
stability analysis demonstrates asymptotic stability
of the output error to zero.

The control algorithm is
2 (6) = K ()Y (6) + K (0% (1) + K (O (0)

(E.1-1)

As in Ref. 6, r(t), Kr(t) and Rr are now defined to

provide more compact notation for thé adaptive con-
troller, viz,

¥ (0]
r(t) = x (0) (E.1-2a)

gm(t)
K (8) = K (0), K (), K (U] (E.1-2b)
K, = [xy, ix, kuj (E.1-2¢)

Kr(t) represents a concatenation of the adaptive gains
with these definitions
gp(t) =K z(t) (E.1-3a)
gp(t) =K _(¢) r(t) (E.1-3b)
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The mechanism by which Kr(t) is adapted is defined by

Kr(t) = KP(t) + KI(t) (E.1-4a)
Kp(t) = v(Or (T, (E.1-4b)
K (8) = v(O)r (1, (E.1-4c)
K (0) = K[, (E.1-4d)
v(e) = Qulyy(e) - 7 (6))  (E.1-be)

where TP is positive semidefinite, TI is positive def-
inite, QC is any nonsingular m X m matrix that satis-
fiec 2 rconstraint described below and KTn is any ini-

tial guess at Kr(t). Note that KP(t) is a propor-

tacnal gain aud KI(t) ic an iategral gain, and the

choice of TP and T, affects the transient behaviur of

I
the adaptive algerithm  The adaptive algorithm is
depicted in Fig. E.1-1. It is now shown that the this
adaptive control system is asymptotically stable to

zero using the Lyapunov approach of Ref. 6.

REFERENCE
MODEL

Ky —
ADAPTIVE
MECHANISM

tl

Ky ]
Ko et

Figure E.1-1 Bluck Diagram of Continnous Algorithm I

The stability proof is based upon the dynamics of

the error as it is defined in Eq. 3.1-23a, that is
(t) = *(t) (t) (£.1-5)
e = ip §p :
e(t) = (A - BK +B_[u (t) - u(t
e(t) = ( b BpK)g(t) p[p_p( ) gp( )1
(E.1-6)

Into this error equation, we substitute the CGT con-
troller, Eq. E.1-3a and the time-varying control law,
Eq. E.1-3b resulting in

e(t) = (A_ - B.K) e(t) + B {K_ - K _(t))r(t

&) = (o) - BR) e(t) + B[R, - K (D)]£(0)

(E.1-7a)
Note that Eq. 4.1-13c is still invoked

Cpg(t) = zm(t) - zp(t) (E.1-7b)



The Lyapunov function V, which is quadratic in
the state variables of the adaptive controller, is

defined byT

_ T _ % oyl _m 3 IT
V =e (t)Pe(t) + Tr[Sv(KI(t) Kr)TI (KI(t) Kr) Sv]
(E.1-8)

where S is any nonsipgular m X m matrix and P is a

positive definite symmetric matrix. The selection of
these two matrices is related to the stability con-
straints to be discussed below.

It can be shown that if

T T _
5,5,9cC, = B P (E.1-9)

then

o T, e e T
V=g (t) IP(A - BK) + (A - BR)P] et)

T.T.T

- &) C3QS,5,QcC e (t) ey Tpr(e)

(E.1-10)

Analysis in Ref. 6 shows that if V is
definite in e(t) and V is negative definite
then e(t) will approach zero asymptotically.
definition, Eq. E.1-8, V is positive definite
If Q, defined as

positive
in e(t),

By its
in e(t).

-BR -s®)p = - -
P(a, - BK) + (A, - BR)'P = -Q (E.1-11)

is positive definite then v is negative definite in
e(t) and thus, the adaptive controller is stable.
This constraint is the positive real constraint and is
discussed in detail in Section E.4. Summarizing this
stability analysis: if Egqs. E.1-9 and E.1-11 are
satisfied and Q in Eq. E.1-11 is positive definite,

the adaptive control law formulated in Eqs. E.1-1,
E.1-2, E.1-3 and E.Jl-4 1s asymptotically stable.
E.2 CONTINUOUS ALGORITHM II

This cectien preseuls a modified version of Con-
tinuous Algorithm I with a less restrictive stability
constraint than Eqs. E.1-9 and E.1-11. The algorithm
requires a nominal value of gp(t) and yields only a

bounded output error. The the
accuracy of the nominal value.

bound depends on

Section E.2.1 presents the algorithm structure
and the constraint for stability. The_proof of sta-
bility appears in Section E.2.2 when gp(t) is known

exactly, and an algorithmic anomaly in computing gp(t)

is resolved in Section E.2.3. Stability of the algo-
rithm with only a nominal value of u (t) is presented
in Section E.2.4. P

1tTr(A) refers to the trace of the matrix A which is
the sum of the diagonal elements.
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E.2.1 Algorithm Structure

Again the form .of the adaptive rules for
adjusting KP(t) and KI(t) is the same as given by Eq.

E.1-4, except for the following modifications:

1) It is now assumed that Xp(t) =y (v)
i.e., that the measurement and con-
trolled vector are the same (then
Cp=Hp). ’

2) w(t) = Quly (t) - zp(t)) + Glip(t) - gp(t)]
’ (E.2-1)

where G is any m X m matrix satisfying the constraint
developed below and QH is a m X m positive definite

matrix.

Note that the above adjustment algorithm directly
implements the quantity gp(t), the computation of

which is dependent upon some apriori knowledge of the
process matrices Ap and Bp' Since in reality gp(t)

would be unknown, a subsequent analysis shows that if
gp(t) is replaced in Eq. E.2-1 by an approximation,

the resulting errors can still be guaranteed to be

within bounds.

As in the previous section, stability is estab-
lished using the error dynamics in conjunction with a
Lyapunov function. Recall the error dynamics defined
by Eq. 3.1-23a,

e(t) = (A, - BK) e(t) + B INOREWOPN
= Xp e(t) + B z(v) where Xp = A, - Bpi
(E.2-2a)
and
2(e) = up(e) - u (t) (E.2-2b)

Introducing the control algorithm into the_ error
equation and recalling from Eq. E.1-3a that u (t) =
Kr r(t) P

S(1) = Ay e(6) - BIR, £(E) - K (8) £(8)

P

- v(t) gT(t) Tp r(t)] (E.2-3)

Asymptotic stability is proven in Section E.2.2,
subject to the conditionms:
J4c (sT- A Bpf()'1 B, (E.2-4)
is strictly positive real and
Q;il(; > 7
This 'constraint is not as severe as that in Eq.

E.1-11, as will be discussed in Section E.S.

4.3.2 Stability Proof

The tirst step in the analysis is, as before, to
form a quadratic function which is positive definite
in the state variables of the adaptive system,



e(t) and KI(t). Assuming that Ti

nite matrix, a valid Lyapunov candidate is:

is a positive defi-

CV(e, Kp) = gl (t) Pe(t) + Te[s, (K (t)
= - T T
Kr)TI (Kp(t) - K" Syl
(E.2-5)
where
P is an n X n positive definite symmetric
matrix
K_is an m X n_ matrix
r r .
SH is an m X m nonsingular matrix
. . To _ A-1
satisfying SMSM = QM
The matrix Rr has the same dimensions, as Kr(t)
and can therefore be partitioned as K_= {Ry, Rx’ Ru]
so that ’
up(t) = Kr(t) =K/ ¥ (t) + K u () + K x (t)
(E.2-6)

The algorithm to be established is repeated here for

convenience:
= T -

KP = v(t) r (V) TP (E.2 73)
R (6) = v(t) £H(0) Ty (E.2-7b)

v(t) = UCp e(t) + G(gp(t) - gp(t))
(E.2-7¢)
As an aid to establishing conditions under
which the. derivative V is negative definite, the

positive real lemma is introduced (Ref. 29):

Lemma: The transfer matrix 2(s) = J + C(sI-A)-lB
having no poles with positive real parts, and only
simple poles on the imaginary axis, 1is pousilive real
if, and onlv if, there exists a real symmetric posi-
tive definite matrix P and real matrices L and W such
that

T T

PA + ATp = -IL (E.2-8a)
PB = C' - LW (E.2-8b)
ww=3+J7 (E.2-8¢)

If in addition to Z(s) being positive real, it is also
true that Z(s) has no poles on the imaginary axis,
then Z(s) is strictly positive real and

pa + ATP = 11T (E.2-9)
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Z(s) =

is strictly positive real for

Assuming that the transfer matrix

J + C_ (sI-A_+B R) !B
P P P

some matrices K and J, it can be

shownt that V becomes:

and using E.2-8,

¥z -(LTe(e) + vz (1Te(e) + wz(0))

- 2 y7(e) s, v(e) (o) Tpr(e)

-2 N0 (spsy, 6 - Dz (E.2-10)

Since L is nonsingular, V\is negative definite in e(t)
and z(t) provided that

T T

G SMSH J (E.2-11a)
and

TP 20 (E.2-11b)
From Eq. E.2-10 and Eq. E.2-11 we ubsecve that
V(g, KI) cannot increase beyond  its iiitial value
V(g(to), KI(to)). Thus it follows that the adaptive

gain matrix KI(t) is also bounded.

interesting to note that

It is if the sta-
bilized plant transfer matrix 2Z(s) = Cp(sl - Ap +
Bpk)-lB is strictly positive real for some matrix i,

then from Eq. E.2-8 we may choose G=J=W=0. With this

choice of matrices Eq. E.2-10 reduces to

V= ET(c)[P(AP - B0+ (4, - B )T ple(r)

T T. -1
- 2 €7(6) P B (S5,)

T T, )
B, P sﬁt) r(v) Tpor(t)
(E.2-12)
which basically is the derivative of the Lyapunov

function obtained for Continuous Algorithm I.

To summarize, the <closed 1loop system which
results from Algorithm II gives rise to an asym-
ptotically stable error provided the followlng suf-
ficient conditions are satisfied:

_ rele 34 -
g(t) = (5Sy) ¢ e(t) + G[gp(t) - gp(t)l
(E.2-13a)
Z(s) = J +‘Cp(sI - Ap + BPK) BP (E.2-13b)

is strictly positive real for some matrices J and K
with
T T

G SMSM >J (E.2-13c)

Furthermore, K must satisfy Eq. 3.1-17a or gm(t) is

restricted to a constant and K must be such that Eqgs.

-E-1 and 3.1-17b can be satisfied.

E.2.3 Computation of the Plant Control Law

In this section the problem involved in the
implementation of the signal v(t) from Eq. E.2-13a



will be considered. Recall from Eqs. E.1-3b and E.1-4

that
u(6) = (v(e) £7() Ty + Ky(0)] £(8)  ° (E.2-14)
~and from Eq. E.2-1
v(t) = v, (t) = G u (t) (E.2-15)
where
v,(t) = (s SM) g(t) + G[gp(t) - gp(t)]
(E.2-16)
We see from Eq. E.2-14 that Eé(t) is a function of
v(t), while from Eq. E.2-15 we note that v(t) is a
function of u (t). From Eqs. E.2-14 and E.2-15 we
obtain P
N o= _ : T
uy(t) = [v,(e) - G gp(t)] £ (t) Tp r(t)
+ K (8) £()
(E.2-17)

or solving for gp(t)

gp(t) = [I+ ET(t) Tp r(t) 67!
(Kp(e) £(t) + v, (1) £1(0) T, £(V)]
(E.2-18)
It should be noted that a unique solution of Egq.
E.2-18 requires the nonsingularity of the matrix

(1 + £7(t) Tpr(t) 6] for all t:

E.2.4 Effects of Approxxmatlng Ideal Plant
Control

Computation of the coantrol law using Eq. E.1-18

requires implementation of gp(t) as can be seen
from Eq. E.2-16. This is not feasible because the
gains used in the computation ép(t) are functions of

the plant parameters Eq. 3.1-14. However, given a
nominal set of plant parameters, it may he possible to

find values of iy’ Rx and Ru such that. the nominal
G (t) is not too far from the true value. Thus, the
control would be ‘modified as follows
z(t) = (S M) »>g(t) +-G[g (t) - u (v)]
= (shs,) 7T € () +6lE (6) - i (1))
MM Tp = ~=pnom -p
o+ Gla(e) - u (L E.2-19
[gp( ) _p( )] (' )
If we use the definition from Eq. E.2-2b that
t) = u (t) - u (¢t
z(t) gp( ) _p( )
and define Au(t) = Epnom(t) - gp(t), then Eg. E.2-19

reduces to
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v(t) = (s55,) " C, e(t) + Glau(t) + z(e)]

(E.2-20)
Using the modified control law with the original
Lyapunov function (E.2-5) results in

V= -Lle(e) + w2017 (LTe(e) + wz(o))

T T T
-2v(t) SMSM v(t) £ (t) TP r(t)
- 2270) (67 s, - Dz(v)
- 2 au’(0) ¢F ss, z(0)
(E.2-21)
Observe that V is the same as that given by
Eq. E.2-10 except for one additional term which is
linear in 2z(t). From a result due to LaSalle
(Ref. 30), we can state that e(t) and z(t) are
ultimately bounded. That is, there exists a tl >0

with the property that [[e(t)|| < b

for all t > tl

and (1z(t)1] < b,

The errors resulting from approximating the
ideal control have been reduced in simulation examples
by redefining the plamt output to be a linear com-
bination of the original output and its integral.
That is,

t .
zp(t) = o FP ;p(t? + 02.1; .Cp lp(t) dt
(E.2-22)

and o Similarly,

1 2
the reference model output is defined as

where o are a constant scalars.

-t
z‘m(t) = aICm Xt az’[o [(Cln )_cm(t)] dt (E.2-23)
A theuretical investigation of this compensation
technique is ‘continuing.
E.3 DIGITAL ALGORITHM I
This section presents an adaptive algorithm

for the discrete-time control defined in Eq. 3.2-14.°
The algorithm and its stability proof are similar to
Continuous Algorithm II and its stability proof. As
in Section E.2 asymptotic stability is proven,_subject
to the condition that the ideal plant ¢ontrol Ep(k) is

known. Next, stability with respect to a bounded
error is guaranteed when ~only a nominal value for
gy (k) is known.

E.3.1 Algorithm Structure

The control algorithm is
w (k) = K (k) X () + K () () + K (k) y ()

(E.3-1)




with the gains Kx(k), Ku(k), and Ky(k) being adaptive.

To simplify later computations, the adaptive gains are
concatenated into the (m x nr) matrix Kr(k) which is
defined as:

K () = [K (), K, (), K, () (E.3-2a)

Similarly Rr is defined as a concatenation of the MRC

solution gains

l(r = [Ky’ Kx' Ku] (E.3-2b)
Correspondingly, the states are put into respective
locations in the n_ X 1 vector r(k), defined as:
¥, (K)
r(k) = gm(k) (E.3-3)
n_ (k)
Then Eq. E.3=1 hernmes
Ep(k) = Kt(k) r(k) (E.3-4a)
and the MRC solution Eq. 4.1-20 becomes
gp(k) = Kr r(k) (E.3-4b)

The adaptive gain is again defined as the sum of
a proportional gain, KP(k)’ and an integral type gain,

KI(k). each of which will be adapted as follows:
Kr(k) = KP(k) + KI(k) (E.3=5)
Kp(k) = v(k) £ (K) Tp (E.3-6)
K (er1) = Ky (k) + v(K) £ (k) Ty (E.3-7)
KI(O) = Ko (E.3-8)
v(k) - Fe(k) ' Gz(k) (E.3-9)
=g (k) - .3-
2(k) gp( ) yp(k) (E.3=10)
where
T,, T, are n_ X n_ time invariant
P I r r

weighting matrices

KIo is the ipnitial integral gain

F and G are matrices ot appropriate diweinsions.

P and

TI’ will, as before, be limited by the sufficient con-

Selection of F, G, and the weighting matrices T

ditions for stability.
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Unlike the continuous time case, stability cannot
be ensured if Eq. E.3-9 is replaced by v(k) = Cp e(k).

This result is a direct consequence of the important
role played by the continuous and discrete positive
real lemmas in the stability proofs.

The error dynamics in the discrete-time formu-
lation are given by Eq. 3.2-23a:

+1) = -6 K)e(k) +6G_Ju (k) - u (k
e(k+1) (Fp P ) e(k) p lgp( ) gp( )]
= ip e(k) + 6, z(k) (E.3-11a)

where

F =F -6 K (E.3-11b)

p p p

and

z(k) = gp(k) - u (k) (E.3-11c)
Introduc¢ing the control algorithm into the error

equatioi and substituting for u (k) from Fn. 4.4-4b
yields P

e(kr1) = Felk) + G (R, 2(k) = Kp(h) 1K)

- vlk) £ () Ty (k)] (E.3-12)

The error dynamics defined in Eq. E.3-12 are used in
the subsequent stability proof.

E.3.2 Stability Proof
The first step in the analysis is to form a

quadratic function which is positive definite in the
state variables, e(k) aud KI(k); Acsuming that TI is
detinite, a candidate s

positive valid Lyapunov

Vie®®), K (0] = ' (k) Pe(k)
+ Tr [Sp(K (k) = K) T;l K (k) - K) ng]

(E.3-13)
where

P is an n X n positive definite
symmetric matrix

SD is an m X m nonsingular matrix

Stability ot the algorithm van be proved by ettablish-
ing conditions under which the fuanction is deccreasing.
To aid in this goal., the discrete positive real lemma
is stated as follows (Ref. 31): ‘

Lemma: The transfer matrix S(z) = J + C(2I - A)-1 B,
with no poles for |z| > 1, and only simple poles on
Izl = 1, is discrete positive real if and only if
there exists a real symmetric positive definite
matrix P and real matrices L and W such that
aT pa - p = -11T (E.3-14a)
AT pB =cT - 1w (E.3-14b)
wiw = 7+ 37 - BT pB (E.3-14¢)



If in addition to S(z) being discrete positive real,.

it is also true that S(z) has no poles for z =1,
then S(z) is strictly positive real and
aAlpa-p=-11T<o (E.3-15)

Using Egs. E.3-14 and E.3-15 along with the as-
sumption that the transfer matrix S(z) = J + Cp (z1 -

FP + GP R)-l Bp is discrete strictly positive real for

some matrix J and that

v(k) = Fe(k) + Gz(k) (E.3-16)

where

_ reTa -1 _
F = (stD) cP (E.3-17)

it can be shown that

av = v(k+1) - V(K) = -[LTet) + wz())T (LTer)

+uz(0)] - v (0 sTsp i £Tao)

(2Tp - TPz(k)
T T
- 2z (K)(SpSp G - Dz (k) (E.3-18)

For V(k) to be decreasing, AV must be negative defi-

nite in e(k) and z(k), which will be true provided
that
sls 6> 3 (E.3-19)
DD :
and
21, - T, 20 (E.3-20)
P 17 )

Hence e(k) » 0 and z(k) » 0 as k + ©. Ip addition,
Eq. E.3-19 and Eq. E.3-20 imply that V{e(k), KI(k)]

cannot increase beyond its 1initial value V[g(ko),
KI(ku)]‘ Thus, E.3-13 i+ [fulluws
adaptive gain matrix KI(k) will be bounded.

from Eq. that the

It is interesting to note that if J=0, then Eq.
E.3-14 cannot be satisfied and S(z) cannot be discrete
positive real. Hence, thére does not exist a discrete
counterpart to Continuous Algorithm I.

To summarize, the ~losed loop system which re-
sults from the algoritnm gives rise to an asymptotic-
ally stable error provided that the following suf-
ficient conditions are satisfied:

- reTa -1 - _
v(k) = (8p5.) Cp elk) + G[gp(k) gp(k)]
(E.3-21)
=y=-1
S =J+C(z2I ~-F_ +G_K G E.3-22
(2) P(z > b ) o (E.3-22)
is strictly positive real for some gain K
T
SDSD G>J (E.3-23)
T 2
2 P TI =0 (E.3-24)
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Furthermore, K must satisfy Eqs. 3.2-17a and 3.2-17b
or Em(k) must be restricted to a constant and H

must be such that Eqs. E-1 and 3.2-17b can be

satisfied.

E.3.3 Computation of the Plant Control Law

In this section we address the problem in-
volved in the implementation of the signal v(k) from

Eq. E.3-21. From the previous subsections we observe
that (

u (k) = v(k) £ Ty r(k) + K (k) r(k)  (E.3-25)
and

v(k) = !l(k) -G gp(k) (E.3-26)
where

= (g¥¢ y-1 3 -
gl(k) = (SDSD) Cp e(k) + Ggp(k) (E.3-27)

We see from

v(k), while
function of
obtain

Eq. E.3-25 that gp(k) is a function of

from Eq. E.3-26 we note that v(k) is a
Ep(k)' From Eq. E.3-25, and E.3-26 we

w00 = [y () - € u () £1() Tp £(k)

+ K (k) £(k)
(E.3-28)

or, solving for gp(k),
u (0 = [T+ 700 Ty 200 6171 Ky () £(0)
(E.3-29)

+ v, (k) gT(k) Tp (k)] .

it
E.3-29 requires that the matrix {I + g(k)TTP (k) G]

should be noted that a unique solution of Eq.

be nonsingular.

E.3.4 Kttects of Approximating Ideal
Plant Control

Computation of the
E.3-29 requires implementation of up(k),

seen from Eq. E.3-27. This is not feasible because
the gains used in the computation of gp(k) are func-

control law using Eq.
as can be

tions of the plant parameters. However, given a nomi-
nal set of plant parameters, it may be possible to
find values of Ky’ Kx and Ku such that the nominal

o (k) is not too far from the true value. Thus, the
control would be modified as follows:
= (sl 31 . -
v(k) = (SpSp) ~ € elk) + Gluy o (k) gp(k)]
(E.3-30)
e(k) - (555 )7V c e(k) + Glu (k) - b (k)]
- D”D p - =pnom - -p-
(E.3-31)

+ clgp(k> - u ()]



If we use the definition from Eq. E.3-11c that:

z(k) = gp(k) - gp(k) (E.3-32)

and define Au(k) = u
reduces to poom

(k) - Ep(k), then Eq. E.3-31

v(k) = (s]s)”! ¢, eCl) + Glaa(k) + 2(i)]

(E.3-33)
Using the modified control law with the original
Lyapunov candidate results in

v = -(LT e + w2001 T (LT e) + wz(i)

- vl sTs v raoTar, - 1 £
- hz(k) (-3 + 6¢'s 9)7(k) - 2Au(k) 6'sTs z(k)
(E.3-34)
Observe that AV is the same as given by Eq.

E.3-18 except for one additivnal term which is linear
in z(k). As an extension to a result for continuous
systems due to LaSalle (Ref. 30), we can state that
e(k) and z(k) will be ultimately bounded. That is,
there exists a kI > 0 with the property that

He(k) I} < bl and ||z(K)|I < b, for all k > k.

Again, as with the continuous time case, these ulti-
mate bounds might be reduced through the redefinition

of a new output equal to a linear sum of all past
outputs. .
E.4 CONSTRAINTS FOR STABILITY OF

CONTINUOUS ALGORITHM 1

Two types of constraints must be met for
asymptotic stability of Continuous Algorithm I, pre-
sented in Section E.1. The first type iuvoulves struc-
tural relationships, given by Eq. Z-1 and 3.1-17, be-
tween the plant and reference model dynamics. Satis-
fying these constraints ensures the existence of a
control gp(t), defined in Eq. 3.1-14, which solves the

model reference control problem. In application,
these constraints impact the design of the reference
model either in terms of the parameters selected or by
restricting the command to be a comstant. In either
case the constraints do not limit the application of
the adaptive algorithm if Eq. 3.1-17b can be satisfied
(i.e., the system is stabilizable with the measured
outputs). The second, more restricting set of con-
straints in Eqs, E.1-9 and E.1-11 are functions of the
plant parameters and are restated here.

A matrix Oc must be selectedq such that for

every set of plapt parameters AP, Bé ‘and Cp,

exist positive definite matrices P, Q and SESv
E-1 and 3.1-17)

there

and a

feedback matrix RH (satisfying Eq.

such that
- Ty .
QCSVSVCP = BpP (E.4-1a)
and
= T
P(A -B K H A -BKH)P=- E.4-1b
(A, ~BRyHY + (A -B RyH ) Q ( )
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where

sls ismxm
v Vv

PisnXn

Ki ismx £
QisnXn

Qc is m X m

This section presents techniques which determine
whether this constraint can be, or is, satisfied.
Section E.4.1 shows that this condition is equivalent
to a positive real constraint. Section E.4.2 presents
possible alternate design procedures to follow if this
constraint cannot be satisfied.

E.4.1 Positive Real Approach

Frequency- and time-domain approaches for satis-
fying the comstraint are discussed below. Boch
approaches are based an the positive real lemma Lheory
(Ref. 29). Mabius has used this theory (Ref. 6) to
prove the following lemma:
Lemma: Define

2,(s) = E(s1 - BB

Let A, B and C be a minimal realization of Zl(s).

Then Zl(s) is strictly positive real if and only if

there exists_a positive definite P and a positive
semidefinite Q such that

(E.4-2a)
and

(E.4-2b)

This Lemma can be used in conjunction with the con<
straint of Eq. E.4-1 by choosing

A=A -BKH E.4~3
p - Bpfullp ( 4)
B=28 E.4-3b
o ( )
= T
C=ssq¢C (E.4-3¢)

Note that (A B) is controllable because (A s B ) is
controllable and since Qc S S is nonsingular dud (Cp,
A ) (¢,A)

constralnt E.4-1 is equivalent to Z (s) beipg strictly
positive real where

1s oObservable, is observable. Hence, the

Zl(s) = Sv QC Cp‘(sI -

= -1
A +BKH) B
p * Bpfufp) B

(E.4-4)

Thus Eq. E.4-1 is
real) constraint.

referred to as the PR (positive



} Constraint Satisfaction Using Frequency-Domain

Considerations - Similar to the method proposed by

Mabius (Ref. 6), the following procedure is sufficient

to verify that given choices of Q. and K, satisfy the
. c H

PR constraint:

Step 1. Verify that the eigenvalues of
A - B K, H have negative real
p p H'p
parts for all A , B and H_.
P TP
Step 2. Define F(w) = Zl(jw) + Zl(—jw)
Step 3. Validate that

5 T

a A -B K,H), 8'S c
(a) [(a, - B, Ky H) Q ¢,
is observable for all possible
A, B, C and H_.

PP P

(b) F(w) is positive definite for
all w.

Step 3(b) is perhaps best carried out by check-
ing that all m principal minors of F(w) are posi-
tive. Each such minor can be expanded as a ratio

of two polynomials in w2, _each coefficient being a
function of Cp, Ap’ BP and KH' In such an expansion,
the denominator can always be made positive and the
numerator can then be written as

Nm .
S f.(H,A, B C)wl (E.4-5)
& "ivp Cpt Tp p

where Nm depends on the number of states and the order

of the minor. In order to guarantee that F(w) is
positive for all w, it is sufficient that each co-
efficient, fi’ in each minor be positive for all AP,
B C and H_.
PP P
may be desirable to test for positive realness using
the Routh algorithms suggested by Siljak (Ref. 32).

If each coefficient is not positive, it

Constraint Satisfaction Based Upon Time-Domain
Considerations - This section presents a time-domain
approach for determining whether the PR constraint is
satisfied for a specific choice of Ap’ Bp’ Cp

S and K,. It is hoped that further study will allow

H
this procedure apply of

parameters.

) Hp! Qc'

to to a range these

The time-dumain approach fot showing positive
realness of the transfer function

1

Z(s) = J + H(sI - F}" 6 (E.4-6)

is based upon the following result. Assume Z(®) < ®
and that (F, G, H, J) is a minimal realization of
Z(s). Then Z(s) is a positive real matrix of rational
functions of s if, and only if, there exists a nega-

tive definite matrix n satisfying the equation
(Ref. 29):
n(F - GR™IH) + (FF - 1T R™Y D)
-neR YT -wR TH=0 (E.4-7)

and R is nonsingular where R = J + JT. However, since
J = 0 in the problem of interest, R is singular. Thus
an alternate approach is suggested based upon a test
for Lhe discrete positive realness of a transformed
system (Ref. 29).
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Define the following quantities:

A= (I+F) (I-F)! (E.4-8a)
B=L1 (a+ )6 (E.4-8b)
Z .
c=L T+ put (E.4-8c)

2
U=rR+cl a+ D B+8TAT+ D¢ (E.4-8d)

Then Z(s) as defined in Eq. E.4-6 will be positive
real (for any J including J = 0) if, and only if, the
following recursive difference equation has a negative
definite steady state solution (Ref. 29):

n(n + 1) = AT n(n)A

- (AT n(n) B + CI{U + BT n(n) B) '(BTn(n) & + CT]

(E.4-9)
n(0) = 0

To apply this test to the model reference adaptive
control problem, A, B, C and are be computed using the
following definitions of F, G, H and J:

F=A -BK E.4-10
p ~ Bpfup ( é)
G=B E.4-10b
o ( )
H=¢ E.4-10c
o ( )
J=0 (E.4-104)

If the n-sequence generated by Eq. E.4-9 converges
with these choices, the PR constraint is satisfied for

the given A , B, C , H and K.
PP PP H

E.4.2 Design of Suitable Output Configurations

In the event that the original system description
does not yield a strictly positive real transfer
matrix, then it becomes necessary to redesign the
output configuration in order to utilize Continuous
Algorithm I. This possibility is discussed for the
case when measurements are available for all states.
At this point we introduce the constraint gm(t) = 0.

This removes the _structural
3.1-17a, so that K must only satisfy Egs.
3.1-17b.

constraint on R, Eg.
E-1 and

If measurements for all states are available
(assume Hp = 1), then it may be possible to define a

‘new output matrix that will satisfy the PR constraint.

That is, it may be possible to reformulate the model
reference control problem with Cp selected as a dif-

ferent linear combination of the measured states;

(E.4-11)



The intended result is that the constraint in Eq.
4.5-1 be satisfied. In this section a promising
procedure for obtaining Kc is presented.
First, we choose
Qc =1 (E.4-12)
With Eqs. E.4-11 and E.4-12, the constraint (Eq.
E.4-1) becomes
T _ ol
SVSv KC = BPP (E.4-13a)
and
= = T
P(A_ - B + (A - B P=- E.4-13b
(a, - BR) + (o) - B Ry Q (E.4-13b)

The selection of KC uses the theory of the following

Cousider the
to minimize the intlegral

linear quadratic regulator problem.
problem of choosing u(t)

oo
f (KTQR X+ ,;_x,TR,n_l,)dt (E.4-14a)
0

where QR is positive semidefinite and R is positive

definite, subject to:

(E.4-14b)

The well known solution (when it exists) to this prob-
lem is

u=-Kx (E.4-15¢)
where
K=kr'8 p (E.4-16)
Furthermore,
A - B K is stable (E.4-17)
P P
and
T -1 .T
A P+PA -PBR B P+ =0 E.4-18
P P P P % ¢ )

If both Kc and RH are chosen to be equal to K
(Eq. E.4-16),

. T
Sv is selected such that Svsv =R, and Q = QR +

PB R™!B'P, then
P p

sTs k. = R(R"1BTP) = BIP
viv ' C P P

and
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-1.T -1.T,.T
P(A_ - BR!BP) + (A - BR !B
( P b o )+ ( o o pP) P
= alp + PA_ - 2pB R 1BTP
P P P p .
-1.T
= -pB R !Blp -
p P %
= -q

Hence Eqs. E.4-132 and E.4-13b are satisfied.

Since the above choice of C_ (as defined in Eq.

E.4-11) requires a priori knowledge ofAAp and B_, its

use
values of A

is contingent upon the availability of nominal
and Bp' The robustness of this output

matrix for deviations and Bp

As an illustration of how this robustness
assume that FEq. E.4-18 has been

in A must then be

examined.
can be determined,

solved for nominal values Ap and Bp’ i.e.,
=T - = =1 =T
A P+PA -PB_ R "B P+ =0 E.4-19
P Pop p Pk ( 2)
and
_ -1 =T
KC = KH =R Bp P (E.4-19b)
Assume further that for all parameters Ap and Bp
A=A +AA (E.4-20a)
P P P
B -B B (F 4-20h)
P P

(The
ic motivated hy the suhsequent solution),

where B is a positive definite symmetric matrix.
form of B

Then constraint E.&4-13b becomes:

. - .= =T
- + + - -
P(Ap + AAp Ep B KHJ (Ap uAp * up B RH) ) 4 Q

(E.4-21)

Using Eq. E.4-19b, thc above may be rewritten as:

PA +AP-PB BR!B P-PB R!BEL
P °p P P P )

+P A+ ML P=-Q
P p

Adding and subtracting P ﬁp R-1 §§ P to this equation
and using Eq. E.4-19a gives:

=T 1 =T

Q. +PB R!B.P-PB BRI!B. P
R p p P P
PB RIBBI P+PoAA + AL P=-Q (E.4-23)
P P P P



Thus constraint Eq. E.4-13b will be satisfied if Ap
and Bp (defined by Eq. E.4-20) are such that:
-Q, +POAA + AP
R P
+PB R!B p-PB (BR!+R!BB P=-Q
P P P

With regard to the constraint of Eq. E.4-13a, it
should be noted that from Eq. E.4-19b

- -1 2T

KH = KC =R Bp P (E.4-24)
or
= _ _p-1 -1\T , _ 5-1 -1 T -
KH = KC =R (Bp B°)>P=R "B Bp P (E.4-25)
Consequently, if the variation in B is such that the

matrix RB is .symmetric and positive definite, then STS
can be defined

sTs = rB (E.4-26)
v Vv
This yields
T T i
s’s, k. =Bl P (E.4-27)

which satisfies the constraint, Eq. E.4-13a.

Under the conditions, Eqs. E.4-26 and E.4-27,

Eq. E.4-24 may be simplified to:

T = -1 2T
-Q, + PA +0A P+PB R "B P
Qg p P P p

= -1,zT
-2P8 [BR)B P=-
p[ ]P Q

(E.4-28)

Thus, the matrices RH and KC (recall they are equal to

each other) can be determined by solving the LQR
problem:
Y
minJ=f (ETQR5+ETRg)dr.
0

subject to

i = K X + E u

X p ¥ p 2

will result in the satsifaction of the constraint Eq.

E.4-1 for all AP and BP given by Egq. E.4-20 provided

that there exists a positive definite P and positive
definite symmetric BR such that

= -1 =T
-Q, +PAA +AA P+PB R B P
% p P P
- -1, =T
-2pPB_[BR B P=-
p[ lp Q

(F.4-28)
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E.5 CONSTRAINTS FOR STABILITY OF CONTINUOUS
ALGORITHM II
In order to satisfy the strictly positive real
constraint, Eq. E.2-4, for Continuous Algorithm II,

with a time-invariant Ap and Bp, it is sufficient that

this constraint .be satisfied for all possible values
of Ap and Bp' Thus, an implementable procedure is

needed in order to determine that

~ ' - -1
2(s) =J+C(sI -A +B K) B E.5-1
(s) p(s o p) P ( )

is strictly positive real. To this effect we shall

discuss two procedures.

Recall from Section 3.1 that K is chosen to
satisfy Eq. E-1 and 3.1-17, or is chosen to satisfy
Eqs. E-1 and 3.1-17b with gm(t) restricted to a con-

K is selected to

stant. In the following analysis,
satisfy Eqs. E-1 and 3.1-17b and the PR constraint
(Eq. E.5-1).

E.5.1 Frequency-Domain Approach

As an extension to the frequency-domain
approach for satisfying the strictly positive real
property for Continuous Algorithm I, the following
procedure is proposed for validating that the strictly
positive real property is satisfied for some matrices

J and KH (K = KH Hp)’

Step 1. Choose the matrix product RHHP such
that the ei lues of A_ - B K
a e eigenvalue o p HHp
have negative real parts.
. =y =1
Step 2. Define 2(s) = J + C_ (sI-A +B K) " B
P ine Z(s) p (S174,*B, P
and define F(w) = Z(jw) + Z!(-jw)
Step 3 Validate that Cp and J are such that

F(w) is positive definite for all w.

E.5.2 Time-Domain Approach

A time-domain approach for determining a matrix J
which results in the strict positive realness of the
traosfer matrix

= -1
Z =J+C I ~-A +B K B
(s) lJ(s o a ) b

is based upon existence of P, L, W such that

= o T T
P(A_ -B K)+ (A -B K)P=-LL" <0 (E.5-2
(A, - B, K) + (a) - B K) ( a)

PB =C_ - LW (E.5-2b)
P P
ww=3+ 37 (E.5-2¢)
The procedure for choosing the matrix J is given
below.
Step 1 If Ap is a stable matrix, choose K=0.

If A_ is not stable thei chouse K to

output-stabilize the plant.



Choose L such that L-l

Step 2 exists. Solve
the ' Lyapunov equation, Eq. E.5-2a,
for the positive definite symmetric
matrix P )

Step '3 Solve Eq. E.5-2b for W, yielding
w=11¢T - pB)

‘Step 4 Find . any matrix J which solves
Eq. E.5-2c. Choosing J to be a
symmetric matrix yields J = % WTW.

Since the above choice of J requires a priori
knowledge of Ap and Bp’ its use is-contingent upon the

of and B The
p

robustness of this matrix J, in the sense of retaining
the strict positive realness of Z(s) for deviations in

Ap and Bp, must then be examined.

availability nominal Ap matrices.

As ain illustration of how a matrix J (which
results in Z(s) being strictly positive real for all
Ap and B_) can be determined, assume that there exist

nominal values A and B for A_ and B, and that all
p 1% P P

possible variations of these parameters are defined by

A
P

= A + 0A (E.5-3a)
P P

(E.5-3b)

where B is a positive definite symmetric _matrix.
Assume further that there is a _known matrix KH which
Bp KH HP) for all
parameter variations defined in Eq. E.5-3. The three
steps described below define J as a function of a
variation in the plant parameters, J(AAP, B):

output-stabilizes the plant (AP

Step 1 Chouse a nonsingular matrix L.
Solve Eq. E.5-2a with Ap and Bp
defined by Eq. E.5-3.
Step 2 Set W(aa ,B) = L™} (cT-paa_,8)B 1)
P P P P
Step 3 Set J = % whw

Using these three steps to define J, find the maximum
value of J (according to some norm) over the possible
parameter variations, AAP and B. That is,

Max
Jmax " O0A LB J
P
Finally choose G such that
T
5 T
SMSM 6 Jmax

It may also be possible to obtain a different matrix
SgsMG which will result in improved performance by
choosing L in Step 1 to minimize Jmax' Define this J

to be 3; that is,
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< _ min
I Imax
Now choose G such that
T -
>
SMSM G>J

CONSTRAINT SATISFACTION FOR DIGITAL
ALGORITHM I

E.6

In order to satisfy the strictly positive real
property with a time-invariant Fp and G_, it 1is

sufficient that this property be satisfied for all Fp
and G_. and G
P P

implementable procedure is needed in order to deter-
mine that

Thus given all possible values FP , an

= -1

S =J+C (2 ~-F_+G_K G

(2) n( p* % ) P

be strictly positive real. Since such procedures are

parallel to those discussed in Section E.5.2, they are
not detailed in this report.
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