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Abstract

" Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is com-

plicated by the coupling of the electric quadrupole moment of the nucleus to local

variations in the electric field. The quadrupolar interaction is a useful source of

information about local molecular structure in solids, but it tends to broaden reso-

nance lines causing crowding and overlap in NMR spectra. Magic-angle spinning,

1 nuclei likewhich is routinely used to produce high resolution spectra of spin-_

carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupo-

lar nuclei when anisotropic second-order quadrupolar interactions are present.

Two new sample-spinning techniques are introduced here that completely av-

erage the second-order quadrupolar coupling. Narrow resonance lines are obtained

and individual resonances from distinct nuclear sites are identified. In dynamic-

angle spinning (DAS) a rotor containing a powdered sample is reoriented between

discrete angles with respect to a high magnetic field. Evolution under anisotropic

interactions at the different angles cancels, leaving only the isotropic evolution of

the spin system. In the second technique, double rotation (DOR), a small rotor

spins within a larger rotor so that the sample traces out a complicated trajectory

in space. The relative orientation of the rotors and the orientation of the larger

rotor within the magnetic field are selected to average both first- and second-order

anisotropic broadening.

The theory of quadrupolar interactions, coherent averaging theory, and motional



narrowing by sample reorientation are reviewed with emphasis on the chemical

shift anisotropy and second--order quadrupolar interactions experienced by half-

odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced

and illustrated with application to common quadrupolar systems such as sodium-23

and oxygen-17 nuclei in solids.

A more complete examination of a set of silicate minerals using oxygen-17 DAS

and DOR reveals resolved resonance lines from up to nine crystallographically dis-

tinct oxygen sites in a solid. DAS experiments performed at two magnetic field

strengths also exploit the different field dependence of the isotropic chemical and

second-order quadrupolar shifts, and their contributions to the overall positions

of the resonance lines are determined. Detailed analyses of the lineshapes in two-

dimensional DAS experiments and the probehead used in a DAS experiment are

also provided.
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Chapter 1

Spin Interactions in NMR

1.1 Introduction

Quadrupolar nuclei have nuclear spin angular momentum (I) greater than one-

half, and this differentiates them from spin-½ nuclei which can never have a nuclear

charge distribution with an electric quadrupole moment [1, 2]. Another major dif-

ference between spin-½ nuclei such as protons or carbon-13 and quadrupolar nuclei

is that the quadrupolar spins have more magnetic substates associated with the

nuclear spin angular momentum. While for isolated, non-quadrupolar species only

two energy states are present, a quadrupolar nucleus has 2I + 1 magnetic substates

which separate in energy in a magnetic field. The high-field nuclear magnetic

resonance (NMR) spectra obtained from quadrupolar nuclei probe the transitions

made between the energy levels. Connections between nuclear spin states are rou-

tinely detected by either continuous-wave irradiation [3, 4, 5] or time-domain tech-

niques [6]. While the largest interaction for spins is usually the nuclear Zeeman

interaction, which provides the initial splitting of the magnetic substates, it is often

1



considered the least interesting. Importantly for chemists and chemical physicists,

further variations in the energy levels arise from interactions of a nucleus with the

surrounding microscopic environment. A detailed study of NMR spectra presents

new insight into local bonding and structure in solids. Both spin-½ species and

quadrupolar nuclei experience anisotropic magnetic shielding of the nucleus that

provides clues to local magnetic fields. For quadrupolar nuclei alone the additional

coupling of the electric quadrupole moment of the nucleus to local variations in the

electric field provides another powerful tool for the investigation of local environ-

ments.

The objects studied are the magnetic resonances: transitions between the spin

energy levels constitute the phenomena observed in the earliest continuous-wave

nuclear magnetic resonance experiments. In time-domain NMR, coherences be-

tween energy levels are excited by resonant irradiation or other coherent processes.

The coherences evolve in time, and some of them are detected as oscillations of volt-

age measured across an inductor surrounding the sample. A survey of the NMR of

quadrupolar nuclei includes many experiments also common for spin-_ nuclei such

as standard spectral acquisition by pulsed [7, 8] or continuous-wave [9] techniques,

as well as relaxation studies [10], multiple-quantum spectroscopy [11], and sample

spinning to narrow broad resonances [12, 13].

The experiments described in this thesis point in an exciting new direction for

the NMR of quadrupolar nuclei. Two novel sample reorientation methods are intro-

duced: dynamic-angle spinning (DAS) and double rotation (DOl:t) NMR. These

techniques are especially applicable to half-odd integer spin quadrupolar nuclei

where the relatively easy to observe central transition is broadened by second-order

2



quadrupolar interactions. Preliminary DAS and DOR experiments are presented on

a variety of test compounds and significant resolution enhancemcnt is demonstrated.

Further experimental modifications and a detailed study of oxygen environments in

" a set of minerals are also presented.

" First, however, the theory of quadrupolar interactions in NMR is discussed,

leading up to the development of the DAS and DOR techniques. After a classical

introduction of the nuclear electric quadrupole interaction, the quantum mechani-

cal quadrupolar Hamiltonian is formulated. Coherent averaging theory is applied

to half-odd integer spin nuclei which experience both chemical shift anisotropy (a

magnetic interaction) and second--order quadrupolar broadening (an electric inter-

action). The truncation of the spin interactions by the large external magnetic

field and the effect of rapid sample rotation are discussed and their impact on the

observable spectra are calculated. The inability of simple sample spinning to suffi-

ciently narrow the resonances leads to the main emphasis of this work. The theory

of the two new techniques is presented, and in the subsequent chapter the first

experimental realizations of these techniques are offered.

The remainder of this work deals with three topics: a detailed analysis of the

proper phasing of lineshapes in two-dimensional dynamic-angle spinning experi-

ments, a study of oxygen nuclei in silicate minerals employing both DAS and DOR,

. and finally the presentation of the DAS probehead designed and built for many of

these experiments. The appendices include minor topics such as the actual DAS

probehead mechanical drawing,_,, a mechanical analysis of the effect of a rapid axis

flip on a spinning sample container and its supporting air bearings, and computer

programs used for calculations presented in the main text. The computer programs

3



showcase the Mathematica TM programming environment [14] where the program-

mer has the ability to solve complicated algebraic and trigonometric problems with

symbolic manipulation.

Before any detailed descriptions or assumptions axe made regaxding the experi-

ments to be caxried out, it is instructive to study the spin energy levels of a nucleus

in a magnetic field. Particularly interesting for quadrupolar nuclei is the coupling

of the nuclear charge distribution to local electric fields: this is usually manifest

in the electric quadrupolar interaction. After introducing the classical quadrupolar

coupling, a correspondence may be made with the microscopic nature of the system

and the quantum mechanical quadrupolar Hamiltonian is formulated. The remain-

ing interactions and couplings of the nuclei are included as further contributions

to the total spin Hamiltonian. Rotations of the spin system or the physical lat-

tice containing the nuclei axe also important for understanding the high-field NMR

experiments introduced here, and these are dealt with formally at the end of this

chapter.

1.2 The Quadrupolar Hamiltonian

A central point of this exposition of the spin interactions is the intimate connec-

tion between the physical and chemical properties of the system and the observ-

ables of NMR spectroscopy. It is therefore useful to follow the derivation of the

quadrupolar coupling Hamiltonian from the basic physical arguments to its final

representation as a quantum mechanical operator. Many equivalent forms of the

quadrupolar Hamiltonian appear in the literature. Some are suited to specific phe-

nomena such as relaxation [15] or coherent averaging [12, 16], while others are in a

4
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more general form [17, 18].

The interaction energy of a charged nucleus with an external electric field is

derived in detail in a large number of texts, especially those dealing with specific

couplings such as the nuclear-electron hyperfine interactions [19]. This classical

interaction energy equation is the starting point, after which the quantum mechan-

ical analog of the nuclear charge density provides the quadrupolar Hamiltonian.

Finally, the Wigner-Eckart theorem is introduced and discussed in order to present

the Hamiltonian in a form which will be useful in NMR.

1.2.1 Classical Interaction

A nucleus, with atomic number Z and total charge Ze interacts with an electric

potential V (r) which is dependent on the spatial coordinates of the electric charges

of the total system: the positions of the nucleus of interest, other nem'by nuclei, and

ali associated electrons. This is the classical electrostatic interaction of a charged

body with an external charge distribution. Although caused by small quantities

of electric charge such as the electrons in their orbits surrounding a nucleus or the

positive charges of nearby ions, the size of the potential could be considerable due

to the proximity of the charges to the nucleus.

If the total nuclear charge is distributed over the volume of the nucleus (V) with

a charge density p(r), the classical interaction energy is the integral over the nuclear

volume of the product of the charge density and the potential:

- E = fv p(r)Y(r) d3r. (1.1)

The nucleus is not being viewed simply as a point charge since the potential could

still vary appreciably over the nuclear volume. The potential is expanded as a

5



Taylor series about the center of mass of the nucleus (which is also considered as

the center of charge) and then it may be written

v(_)=v(o)+_ _. _ +_Z _ _-_\o_-:y_ +"" (1.2)a--I r-O a--1j9--1 r-O

where the variables mo and x_ are the Cartesian coordinates: xi = x, x2 - y,

and x3 = z. The subscript r = 0 means that the derivatives of the potential are

evaluated at the origin which is defined as the center of mass of the nucleus. Claims

that the center of mass and the center of charge coincide for an atomic nucleus are

based on the assumption th_,t stationary nuclear states are of a definite parity [2, 18],

and there is strong experimental evidence to support this postulate [20].

A direct relation to physical properties of the classical charged body is retained

if the following substitutions are made:

fvp(r)dar= Ze (1.3)

fvxop(r)d3r-- Po (1.4)

and

fv_°_P(_)d_=Q'_ (1.5)

The first integral is the total charge of the nucleus. The remaining two are higher

moments of the electric charge distribution: the a component of the electric dipole

moment P (a vector) and the af_ component of the electric quadrupole moment

Q' (a second-rank tensor). Keeping terms through those quadratic in the spatial

coordinates in the expansion of the potential in Eq. 1.2, the electrostatic energy is

3 ,33E = ZeV(O) + __, Po + 2 _ _-" Q_z Ox_,Ox_ (1.6)
a--1 r--O o--1 /3--1 r--O



The first term in this equation is the classical interaction of a charged nucleus

with a constant potential at the origin. It determines, for example, the packing of

atoms in a solid and is independent of the nuclear orientation. Therefore, it will not

" affect the magnetic resonance spectrum and is dropped from further consideration.

The second term, the classical electric dipole interaction, vanishes since the center of

charge and the center of mass of the nucleus are assumed to coincide. In a classical

picture the charges within the t_ucleus are in such rapid motion that the time

averaged distribution of the electric charge density is an even function of position

and the integral in Eq. 1.4 is identically zero. The remaining term is the nuclear

electric quadrupole interaction. Higher-order terms are obtained by continuing

the expansion, but the next parity allowed electric multipole is the hexadecapole

and this is usually insignificant in size. See, however, the papers of Wang [21, 22]

discussing the possibility of observing nuclear haxadecapole moments and how they

may become important for the study of lattice defects, phase changes, and lattice

dynamics in crystals.

Returning to the electric quadrupole interaction, the charge distribution external

to the nucleus enters into the calculation as second derivatives of the potential. The

tensor constructed from these second derivatives is called the electric field gradient

(EFG) tensor to which the symbols

V_,_ _ Ox,_Ox_ r=o

are assigned. By the equivalence of mixed partial derivatives, V, a is a symmet-

" ric second-rank tensor and therefore has six independent components. It is also

traceless, since by Laplace's equation

=o, (1.8)

7



and hence only five components are independent [1]. The appropriate modification

of the theory if a source does exist at the origin involves replacing Eq. 1.8 with

Poisson's equation [17].

It is always possible to transform the symmetric EFG tensor to a form in which

it is diagonal by an orthogonal transformation to the principal axis system (PAS)
a

of the EFG. The coordinate axes in the PAS are labelled with upper case letters

X, Y, and Z and in this frame only the three diagonal components Vxx, Vyy, and

Vzz are different from zero. These are still interrelated, since by Eq. 1.8

vxx + vyy + vzz = 0, (1.9)

and only two parameters are necessary to completely specify the electric field gradi-

ent. Further angular coordinates may enter the equations with rotation out of the

principal axis system to a coordinate system defined by another frame such as the

molecular axis system, the sample holder axis system, or possibly the laboratory

(or magnet) axis system.

The parameters describing the EFG are usually chosen by first orienting the

principal axis system so that the component of the tensor with the largest magnitude

is along the Z-axis and the smallest along the X-axis, or

Ivzzl _>IVvvl>_IVxxl. (1.10)

Then two convenient parameters are the strength of the EFG in units of electric

charge

_q- vzz (1.11)

and the asymmetry parameter

(Vxx -.vrr )
= vzz " (1.12)

8
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The asymmetry parameter is dimensionless and lies between 0 and 1. It essentially

describes the deviation of the field gradient from axial syIranetry. If the gradient is

spherically symmetric, or has cubic or higher symmetry, then each component of the

• tensor is identically zero and the quadrupolar interaction vanishes completely [1].

As seen from Eq. 1.5 _he quadrupole tensor Q' is also symmetric and second-

rank but not traceless. It is more convenient for the calculations involved when a

• traceless quadrupolar tensor is introduced with components:

3
!

"y=l

= [ p(_)(3_ - _) d_. (1.13)
JV

The interaction energy is rewritten for the quadrupolar coupling as

3 3 1 3 3

E =-6,.,1V"_ Qo,vo_+ -__ Q'__, y_. (1.14)
a--1 /3--1 _/=1 6-'1

The fina! terrT_is identically zero since it contains the trace of the EFG tensor,

which must be independent of orientation even under rotation out of the PAS. The

remaining classical interaction is

1 3 3

E =_ _ _ Q_Vo_ (1.15)
a----1 _--1

which has the advantage of containing only traceless, second-rank tensors.

1.2.2 Quantum Mechanical Hamiltonian

Nuclear spin is a quantum mechanical property and, although the classical
ml

picture is a useful model providing excellent physical insight, the problem must

be translat__d to the correct quantum mechanical language. This was first worked

out by Casimir [19] in a prize essay on the nuclear-electric hyperfine interaction



published in 1936. To begin, the classical nuclear charge density is replaced with an

operator containing products of the charges of the nucleons, qk, with delta functions

of their positions rk

p(°P)(r)= _ qk6(r- rk). (1.16) "
k

The neutrons are uncharged and only the protons enter the sum with qk = e,

the fundamental unit of electric charge. Substituting into the classical expression

for Q_z derived above, the a/_-component of the quantum mechanical quadrupole

operator is

(1.17)a_ --e -- .
k

The electric field gradient tensor is also a classical quantity and a corresponding

quantum mechanical electron operator may be defined. Numerical values for the

electric field gradient components are calculated by taking the expectation value

over an appropriate electron wavefunction. In bulk matter it is usually the case

that there is no orbital degeneracy for the electrons and the EFG operators mw be

replaced by their expectation values taken over the one predominant nondegenerate

electron state describing the electron orbit [18]. The EFO tensor is then included

in the Hamiltonian with an unknown numerical value and the understanding that

the expectation value has been previously calculated or could be calculated if the

charge distribution external to the nucleus were known. The same symbols as

the classical EFG tensor are therefore used to denote the EFG in the quantum

mechanical expression for the Hamiltonian. The components of the EFG tensor are

ultimately provided by analysis of the NMR spectra of quadrupolar nuclei under

ideal circumstances.

The quadrupolar Hamiltonian is obtained through substitution of the appro-

10



priate operators into the classical energy expression in Eq. 1.15, rewritten simply

as

1 ,,_(op)V, (1.18)
a,#3

with V,_ now the expectation value of an operator as described above.

m

Alternative Derivations

The preceding section has been only one of several analyses which would provide

a correct quadrupolar Hamiltonian. Many authors [18, 23] begin from a different

energy equation by writing the potential as a function of the positions of the charges

external to the nucleus (rra) in a volume Vm and the distance from the charges to

the nucleus (Irm - rl). Then the potential is

fv p_(r,0 d3rm. (1.19)= - r I

The denominator is expanded in terms of Legendre polynomials and the Hamilton-

ian subsequently written as products of spherical harmonics in the coordinates of

the nuclear and electronic variables by the spherical harmonic addition theorem.

The detailed monograph of Cook and De Lucia [23] provides further details for the

interested reader. One important result which comes out of this analysis is that

the Hamiltonian may be expressed in spherical tensor rather then Cartesian tensor

form. Cook and De Lucia provide the details of the conversion, especially useful

. if an interaction cannot be derived in spherical form directly. The quadrupolar

Hamiltonian could have been initially expressed in spherical form, but here a closer

connection with the definition of moments of the nuclear charge is retained using a

Cartesian analysis. The spherical tensors are usually quoted in terms of the Carte-

sian coordinates when a final answer is presented However, spherical tensors do

11



possess useful properties under rotations of the system, so the next step is to use the

proper rules to express the spherical tensors in terms of the quantities calculated

above.

Q

Spherical Tensor Components
M

The spherical quadrupolar tensor components are denoted by the operators T2(_)

with m ranging from -2 to 2. The tensor operator T (°p) is second-rank so it must

have 5 components. In terms of the Cartesian coordinates

e

, T_(op}= _ _(3z_ - r_) (1.20)k

T2(Op) e
_1-- :v_r_,_(_ ± iy_) (1.21)k

and

T2(Op) e
._ = -__(_ + iy_)_. (1.22)k

The EFG tensor is also a second-rank tensor. The explicit components of the

spherical EFG tensor (calling it R (q)) in a general coordinate system are related to

the Cartesian components by

Q)= V_ (1.23)

P4q)= 7:(v_,+ iv_,) (1.24)±1

R(Q) 1
_._= -_(v=- v_ + 2iVan). (1.25)

In the principal axis system of the EFG the tensor components are referred to in

the lower case (r(Q)) and

2o = Vzz = eq (1.26)

r(O)= 0 (1.27)2:t:1

12



1

= (Vxx-YYY)= 5eq,7. (1.2s)

The Hamiltonian in terms of the spherical tensors is written [15, 16]

2

" = 1_,_,r(opl_!Qi (1.29)"?_Q _ _,---_) -'2m ""z-ro"
m---2

It may be proven by direct calculation that Eqs. 1.18 and 1.29 are equivalent. The

Hamiltonian in F-xt. 1.29 is defined by the product of the positive m valued 'r(°Pl._zm

and the negative m valued o(Q) since the scalar product of two tensors of rank kA,,2_ m

is
k

T (k)- lt (k) = _ (--1)mTk_Rk_m. (1.30)
rn-- -k

At this point the Hamiltonian must be a scalar quantity: it is an energy operator

which is independent of direction in space and invariant under rotations. This

isotropy is subsequently broken upon application of large magnetic fields.

Use of the Wigner-Eckart Theorem

The expression for the Hamiltonian as it now stands is very complex, depending

on the positions of ali protons within the nucleus. To be useful in high-field NMR,

this Hamiltonian must be transformed further into a spin Hamiltonian. Nuclear

spin Hamiltonians are expressed in terms of spin angular momentum operators of

the nucleus and matrix elements are calculated between eigenstates characterized

. by their associated eigenvalue of the Iz operator. This is a direct result of the

Zeeman interaction being the dominant coupling for the spin system. The final

transformation of the Hamiltonian comes from an important theorem on tensor

operators, the Wigner-Eckart Theorem. Proofs of the Wigner-Ed_rt Theorem are

found in texts on both angular momentum and quantum mechanics [24, 25] so will

13
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not be included here. Sketched below are the essential rules and results of this

i_mportant theorem.

An irreducible tensor operator of rank L has 2L + 1 components, TLM, which

satisfy the following commutation relations with the total angular momentum of

the system of interest:

[Jz, TLM] -_ hMTLM (1.31)

[J+,TLM] "-hCL(L + 1)- M(M . 1)TLM+I (1.32)

and

[J-,TLM] -- li_L(L . 1)- M(M- 1)TLM-1. (1.33)

The J+ are the raising and lowering operators (or ladder operators) for the spin

plus spatial angular momentum J and they are defined as

J+ - J_ =t=iJ_. (1.34)

A fully equivalent definition of an irreducible tensor of rank L is that it transforms

under rotations in the same way as a spherical harmonic of rank L. Spherical

harmonics (YLM(O, ¢)) will only be transformed into other spherical harmonics of

the same rank upon rotation. By considering the commutation relations of an

operator with the total angular momentum, or its behavior under rotations, its

rank is discerned. A scalar operator is a tensor operator of rank zero, while a

vector operator is of rank one. The electric quadrupole operator is of rank two, and

so has five (2L + 1) independent components as noted above. For a nucleus which
w

also has spin I, the electric quaclrupole operator is an irreducible tensor with rank

two in the tensor product space of the position state space (coordinate space) and

the spin state space of the particle. Therefore, since total angular momentum is a

14
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conserved quantity, rotations in the total space transform the components of the

quadrupole operator only into linear combinations of themselves.

The Wigner-_ Theorem states that the matrix elements within this total

• state space of all irreducible tensor operators of rank L are proportional to one

another. Nuclear states are described by the total spin quantum number (I), the

projection of the total spin upon the z-axis (m), and possibly other quantum num-

bers denoted generically by a. Since the state of the nucleus is well-defined, only

matrix elements diagonal in I and a must be considered. Essentially this is stating

that I and a are good quantum numbers. In general it is necessary to compute

matrix elements of the quadrupole operator in the form

(slm I Q(° )lIm ') = (raIQ(°P)Im'). (1.35)

The Wigner-Eckart Theorem is the essential link between irreducible spin operators

of rank two and tile quadrupole operator. When written in terms of spin operators,

the matrix elements of the quadrupolar Hamiltonian are easily computed.

Second-rank irreducible spin operators are constructed in the same way that

irreducible second-rank tensors in three-dimensional space are formed, as the direct

product of two first-rank tensor operators (vectors) using the coupling of angular

momenta and Clebsch-Gordon coefficients [15]. In terms of the vector spin operator

components I_ and I±1 where

" 1

I+1 : _=-_(Ix ± ily) (1.36)
.t

we obtain for the quadrupolar interaction:

o

15



T2Q) --_
= + (1.38)

T:(Q) - I_, (1.39)4-2

The matrix elements of these operators axe proportional to the matrix elements

of the quadrupole operator and we need to compute the proportionality constant

between the quadrupolar operators and the spin operators. First we note that ali

five independent components of the tensor operator Q(°p) (or T (°p)) may be related

to a single quantity. Assuming the spin to be quantized along the z or x3 axis,

the nuclear charges precess very rapidly about the direction of the nuclear spin and

the external potential interacts with the time average of this charge distribution.

In the Cartesian representation, the components of f)(ov) for a # f_ axe zero by

symmetry. Further, Q_P) = Q_P) by the cylindrical symmetry of the problem.

Since the tensor is traceless, the sum of the diagonal components is zero and hence

= -_-_aa • In the spherical representation it becomes clear that only

the difference between the charge distribution parallel and perpendicular to the

z-axis is important.

The rn - I matrix element of the quadrupole operator with reference to the

z-axis is traditionally defined to be equal to eQ, the electric quadrupole moment:

eQ = (I [ Q_P) I I) (1.40)

or

eQ = <I [ e_ (3z_ - r_) [ I>. (1.41) .
k

which by Eq. 1.20 is also the matrix element of 2v/6T(oP). By the conclusions of the

Wigner-Eckaxt Theorem, this must be proportional to 2v/6T_ Q) from Eq. 1.37, or

16



eQ = C{I12(3I_-12) II>

= 2C(3P- I(I+ I)) (1.42)

and theconstantofproportionalityisthen

C - eQ (1.43)
21(21- 1)"

A popular measure of the strength of the quadrupole coupling is the quadrupolar

coupling constant

(1.44)CQ= h

which has the units of frequency. Note that this is a product of the electric quadru-

pole moment and the largest component of the electric field gradient tensor in the

principal axis system.

In summary, we rewrite the derived form of the quadrupolar Hamiltonian as well

as some equivalent forms which are often used in the literature. In the spherical

tensor representation of the Hamiltonian:

2

?/Q C _ _ _(Q)_(Q) (1.45)-- K-_] _2m "t2-m
m----2

using Eqs. 1.37-1.39 and 1.23-1.25 for the definition of the "spin" and "space" parts

of the Hamiltonian, respectively. Here again, the spatial part of the interaction is

written in a general reference frame where the measurement is convenient, not

necessarily the PAS of the quadrupolar interaction.

. In Cartesian space the Hamiltonian is

1

gE (1.46/

with components

V_= (i)2V) (1.47)Ox,_Ox_ r=0

17



and from Eqs. 1.17 and further use of the Wigner-Eckart Theorem (see for example

Slichter's text [17]):

_'_ 6I(2I- 1) (I_I_ + I_I_) -_5_12 . (1.48) R

This is often expressed in the more compact form

_Q= IQI, (1.49)

where I is a vector of spin operators (I_,I_,Iz) and _ is a second rank tensor in

Cartesian space [16].

Additional forms of the quadrupolar Hamiltonian appear in the literature for

other physically interesting problems. As an example, Pettitt [26] shows that a

simple quadratic form of the quadrupolar Hamiltonian may be written down in

terms of the first-rank vector spin operators and one rotation from the frame of

reference where the spin operators are defined to the principal axis system of the

electric field gradient tensor. This would be useful in problems where the electric

field gradients are complicated by fluctuations in charge density or orientation.

1.2.3 Matrix Elements of the Quadrupolar Hamiltonian

To complete this section the matrix elements of the quadrupolar Hamiltonian

are calculated. Using the following matrix elements of the spin operators

(m [Iz lm) -- m (1.50) i

(m [ 1±1 [ m Jr- 1} = _ (I _ m)(l :k m + 1) (1.51)
Q

the matrix elements for 7-/Q are

(mI_,; lm) - -6_613m_- I(I + 1)]R_0 (1.52)

18



C (2m 4- 1)V/(I :F m)(I 4- m 4- 1)R2_:, (1.53)

<m+21_Qlm>= _/(I Tm)(¢_:m+1)×
• _/(__ m- 1)(I+ m +2)a_ (1.s4)

while

(m'I_q I_> =o (1._5)

if [m'-m I> 2.

Explicit solutions for the eigenvalues of the quadrupolar Hamiltonian for a

spin-k nucleus require diagonalizing a (2k + 1) x (2k + I) matrix. This has been

_ [27].accomplished analytically only for spins up to I -

1.3 Other Internal and External Hamiltonians

The NMR spectra of quadrupolar nuclei are determined not only by the quad-

rupolar interaction described above, but also by the other internal and external

interactions of the spins. Among the important interactions for high-resolution

NMR of solids are the Zeeman interaction, the isotropic chemical shift and the

chemical shift anisotropy, the dipole-dipole coupling, and the effect of an external

irradiating field. Radiofrequency pulses are dealt with in the next section (rotations

of the system in spin space), while the other interactions are summarized below.

1.3.1 Zeeman Interaction

The interaction energy of a magnetic dipole with magnetic dipole moment /_

within a magnetic field (B) is

E = -/_. B. (1.56)

19



The magnetic dipole moment may be rewritten in terms of spin operators again

using the Wigner-F_m.kaxt theorem, here for a vector operator. The result provides

the Zeeman Hamiltonian. For a spin in a magnetic field of strength Bo along a

direction which we define as the laboratory z-axis,

7-lz = -'Tltlz Bo (1.57)

where the constant of proportionality is the magnetogyric ratio of the spin. The ma-

trix elements of Iz are diagonal in the Zeeman basis (Eq. 1.50) and the characteristic

frequency between neighboring (Am = 1) levels is called the Larmor frequency:

_o = _Bo. (1.58)

The Zeeman interaction is usually the largest in magnitude in high-field NMR, and

it has the effect of truncating the other spin Hamiltonians [28]. Therefore, to what

will be a zero-order approximation, the states of the spin parallel or antiparalleI

to the z-axis (the Zeeman basis) characterize the system. Corrections to this rule

are needed when interactions and couplings are no longer small compared to the

magnitude of the Zeeman terms.

1.3.2 Isotropic and Anisotropic Chemical Shifts

The chemical shielding or chemical shift Hamiltonian in spherical tensor notation

is
l

,rcs _cs (1.59)= Z: Z:
!=0,2 m:-t

Here, the assumption has been made that only the symmetric part of the interac-

tion is observable. The discussions of Haeberlen [28] and Ye [29] investigate this

assumption further.
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This interaction has two origins [30]. One is the coupling of the magnetic dipole

of the spin to the magnetic fields arising from the motion of nearby electron clouds

reacting to the applied magnetic field (a diamagnetic effect). The second is a

• paramagnetic effect due to the occupation of excited electron states.

The coupling tensor is called the chemical shift tensor (a) which has a frame in

which it is diagonal (the PAS for the chemical shift tensor). However, as opposed

to the quadrupolar interaction, the trace of the CSA tensor is different from zero

and is proportional to the isotropic chemical shift

a(cs)_ 1
_,o -- "_(axx + avv + azz). (1.60)

The anisotropy and asymmetry of the chemical shift interaction are also important

quantities and are defined by

1

= -  (axx+ ayr)

(azz _(cs)_ (1.61)-- __ uiso )

and

3 (axx - ayy) (1.62)= Ao "

The useful components of the spherical tensors for the chemical shift interaction

are

T(oocs)= IzBo (1.63)

. ro(cs)
2o = IzBo (1.64)

m(cs) =
- "2±1 I:_lBo (1.65)

with ali other T(cs) zero or not important for our purposes, and

r(oocs) = o_,o-(cs) (1.66)
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r(CS)
20 = Ag (1.67)

r(CS)2±, = 0 (1.68)

r(CS) Ag (1.69)2_ = -_-_,

with these final spatial tensors defined in the PAS of the chemical shift interaction.

1.3.3 Dipole-Dipole Coupling

The dipole-dipole coupling between two spins li and Ij is the final spin inter-

action which is considered here. It has a classical analogy in the interaction of two

magnetic dipoles located a distance d away from each other. The magnetic dipoles

here, however, axe the nuclear spins themselves. The dipole-dipole Hamiltonian is

represented in spherical tensor notation as

2

_ = -2_,_ E (-_(_)P4_-)_-,._ . (1.70)
m=--2

This is a two-spin operator, very similar to the quadrupolar interaction, but now

the spatial tensor refers to a distance dependent interaction. The spin terms take

the form

- T(oD)= -_1 [3Izilzi- Ii. Ij] (1.71)

T2(D)_ 1
+1 -- -_(IziI±,j + I+,{I_j) (1.72)

T2D) l+,_l+,j (1.73)-I-2--

while thePAS spatialcomponentsare
o,

-_o_(_)= e;. (1.74)

r(D)2±1 = 0 (1.75)
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= 0 (1.76)2:1:2

where dij is the length of the internuciear vector between the two nuclei.

Even though dipolar interactions are important in NMR, this interaction will
Q

no longer be considered explicitly in any of the calculations that follow. Only

. the CSA and quadrupolar interar, tions in solids au'e considered in this thesis. The

dipolar coupling between spins in solids is a complex multi-body problem and some

empirical discussion will be in order when the dipolar interactions become important

in the spectra obtained. References to important works will be provided at that

poiI:t.

1.4 Rotations in NMR

Rotations in NMR take two distinct forms: rotations in spin space which affect the

spin variables of the system only and rotations in coordinate space which transform

_he spatial tensors in the Hamiltonian. The sets of spherical tensors representing

the spin and spatial parts of the Hamiltonian are basis sets for irreducible repre-

sentations of rotations in their respective spaces, but not in the product space [31].

Therefore, rotations of the spatial coordinates does not affect the spin variables,

while rotations in spin space have no affect on the spatial tensors. Tycko, in his

work on the untruncation of NMR spectra in high magnetic field [31, 32, 33], treats

. these rotations together in a higher-dimensional space where irreducible tensors

are defined by their transformation properties under simultaneous rotations of spin

" " and spatial coordinates. Under simultaneous rotations, the dipolar Hamiltonian

behaves as a scalar and untruncated spectra similar to isotlopic zero-field dipolar

spectra [34] may be recovered.
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1.4.1 Rotations in Spin Space

To discuss rotations in spin space the concept of the density matrix [25, 35] is

introduced. A quantum mechanical system is described by a wavefunction I ¢) and
I

in this system the expectation value of an operator At is

<_4>= (¢ I_4I¢>. (1.77)

The wavefunctionmay be expanded in a completesetof orthonormalbasis

functionsI¢.)

I¢>= _ I¢.) (1.78)
n

so that

<A> = _ c: c_ <CreI .4 I¢->. (1.79)
r_, EtL

The matrix of values c_,c_ with m and n running over the dimensionality of the vec-

tor space spanning the wavefunctions of the system may be considered to represent

some Hermitian operator P with

(¢. I Piero> -- c_c_ (1.80)

aud then

<A)- Z<¢- IP ICm)<¢mIA I¢_>. (1.81)
n ,]rIl

Since the set {[ eta)} forms a complete set of basis functions it obeys the closure

theorem

_ [Cm><¢m 1= 1 (1.82) "

so that

(A) = _(¢.IPAI¢.> (1.83)
n

= Tr[PJ4]. (1.84)
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In NMR we deal with a large ensemble of spins in a magnetic field, yet we still

need to characterize the system and make meaningful measurements. The matrix

elements c_an will vary over the ensemble but the matrix elements of the observable

• .4 in a fixed basis set will not change. An ensemble average is measured

- <A>o.+= _2¢_<¢_ IA I¢.) (_.85)
n_rD,

where the overbar in c*mc_ denotes an ensemble average.

The density matrix p of the system is defined as the matrix with elements

(¢. I p I eta>-_c_ = (CnI P I eta). (1.86)

Then the ensemble average is calculated as

= _[p_]. (_.88)

The states within the full ensemble evolve in time under the action of the Ham-

iltonian for the system. The time evolution of the density operator is governed by

the Liouville-von Neumann equation [36]

d_._p_p= i lp, _] (1.89)dt h "

If 7_ is time-independent the formal solution to Eq. 1.89 is

. p(t) -- e -_nt p(O) e -_nt. (1.90)

. At thermal equilibrium, the usual state of the spin system before an NMR

experiment begins, the density matrix is

e-7-l/kT

p(O) - Z (1.91)



and the diagonal elements axe

e-ErekT

_c_ - Z (1.92)

where Em is the energy associated with the state [ ¢,,) and Z is the partition

function

Z ---" _ e -En/kT. (1.93)
n

The diagonal elements correspond to the probability distribution of the eigenstates.

The off-diagonal terms are all considered to be zero at thermal equilibrium since the

phases of the complex coefficients are assumed to be randomized (incoherent) over

the ensemble. This is the hypothesis of random phases explained by Tolman [35].

The off--diagonal elements axe referred to as coherences. If an off-diagonal ele-

ment is not zero, then it specifies that there is a connection between the two energy

levels. A coherent phase factor then exists in the density matrix elements. For a

spin system at equilibrium there is no net component of magnetization in the plane

tranverse to the large magnetic field and all coherences are zero.

In time-domain NMR, the measurements made are usually the components of

transverse magnetization after a pulse or set of pulses of radiofrequency electro-

magnetic radiation is applied to the system:

(M=) = Tr[pi=] (1.94)

and
a

(Mu) = Tr[p/y]. (1.95)

n,

The operators I_ and Iu axe the spin operators for the x and y components of the

nuclear spin angular momentum. The initial density matrix of the system in high-

field NMR is obtained by expanding the exponential in Eq. 1.91. If the Zeeman
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Hamiltonian is assumed to be the dominant spin interaction then

pr(0) = lz (1.96)

where the subscript r denotes a reduced density matrix [16]. In this form, ali

constants (additive and multiplicative) are dropped in order to focus on the dynamic

" part of the spin behavior. The initial state of the system is then said to be one of

z-polarization.

RF Pulses on a Spin System

Radiofrequency pulses of a well-defined length (_-), amplitude (Bl), and phase

(¢) are used to "rotate" nuclear spin states by creating and destroying coherences

between nuclear spin energy levels or changing the relative populations of these

levels. The action of a pulse of radiofrequency radiation at a frequency w to a

nucleus with magnetogyric ratio _/is to add another term to the Hamiltonian of the

system:

_g = 7B1 [Ix cos(wz + ¢) + Iy sin(wz + ¢)]. (1.97)

It is easiest to calculate the spin behavior by entering a frame oc reference

rotating about the laboratory z-axis at a frequency w [37, 38]. In this frame the

pulse appears as a static field applied in the transverse plane at an angle ¢ with

respect to the x-axis. The Zeeman interaction still appears as a static field along

the z-axis with an effective frequency of (w- w0). The effective Hamiltonian in the

rotating frame for the Zeeman interaction and rf irradiation is

" _e_ = h(w - Wo)Iz + hw_(I_ cos¢ + Iy sine) (1.98)

where

wl = 7BI. (1.99)
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Note that this effective Hamiltonian is now time-independent. The phase of the

pulse, ¢, determines whether the pulse is given along the x-axis (an x pulse where

¢ = 0°), the y-axis (a y pulse where ¢ = 90°), or any other axis in the xy-plane.

The density matrix must also be transformed into the rotating frame before the

equations of motion may be solved. It may be easily calculated [17] that the density

matrix in the rotating frame, Ph, obeys the following equations. If

PR = e -iwt P e iwt (1.100)

where w is the frequency of the rotating reference frame with respect to the labo-

ratory, then

dpa i
d----t"= -h [pa, n_,]. (1.101)

The actions of rf pulses are now readily discerned.

The initial density matrix for the system is described by the value of the reduced

density matrix (the r subscript is now dropped) for the spins in equilibrium with

the lattice

p(0)= (1.102)

and a strong (or on-resonance) pulse of length _-has the affect of rotating the initial

density matrix

= p(0) (1.103)

The spin operator

I¢ = Ix cos ¢ + Iy sin ¢ (1.104)

defines the rotation axis and the pulse flip angle, 0, is given by

0 =wl_ (1.105)
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and corresponds to the angle through which the "vector" Iz is rotated during a

pulse. Spin space may be visualized (at least for uncoupled spin-_ nuclei) as a

three dimensional space with axes x, y, and z corresponding to the spin operators

" I_, Iy, and I_. Rigorously, the 2 x 2 identity matrix is also needed for full definition

of the state of the system, but this additive constant is usually disregarded. The

net magnetization of the system corresponds to the polarization or magnetization

vector whose components are traces of the density matrix with the spin operators.

A 90 degree or lr/2 pulse rotates the net magnetization from the z-axis through 90

degrees into the xy plane with the final angle between the x-axis and the magne-

tization vector equal to (¢- 90) degrees. This will occur irrespective of resonance

offset (the difference between the irradiating frequency w and the resonance fre-

quency of the spins) if the radiofrequency power is sufficiently strong. Otherwise,

the axis about which the magnetization is rotated will not lie in the xy plane and

offset effects will be present. A useful equation for determining the fate of the

density matrix after an on-resonance rf pulse with flip angle 0 and phase ¢ is then

p = I_ sinOsin¢-Iy sinOcos¢ + Iz cos_. (1.106)

Free Evolution of a Spin-½ System

Free evolution of the spin system occurs during the periods after or between

• strong rf pulses. It is governed by the total Hamiltonian for the system, although

(as will be seen) some parts of the Hamiltonian are more important than others.

Continuing with the example of an isolated spin-½ in a large magnetic field, the

first step is to remain in the rotating frame where the pulses were analyzed. In

this frame, the large Zeeman interaction does not exist and only occurs as an
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offset term from the spectrometer irradiation frequency. In a sense, the frame of

reference is spinning around the laboratory z-axis near to the Larmor frequency.

As a technical interest, this is also the frame of reference where the detection takes

place in most NMR spectrometers [39]. In this frame ali other Hamiltonians gain "

a time dependence and are said to be in an interaction picture. Those parts of the

Hamiltonians which commute with the Zeeman Hamiltonian are fully retained (the

so-called secular parts) and this will be dealt with in the following chapter under

the topic of secular or coherent averaging.

After a pulse, the effective Hamiltonian of the system in the rotating frame is

"H_ -- e-i_tI" TIe i''tI" (1.107)

where this could be a sum of many interactions. The most interesting interac-

tion here is that of an effective shift. In Chapter 2 it will become obvious that

an inhomogeneous anisotropic interaction such as the chemical shift anisotropy or

the second-order quadrupolar interaction will appear as an effective Hamiltonian

proportional to the spin operator/_ with a shift frequency _/.

The solution to the Liouville-von Neumann equation for a shift Hamiltonian is

p(t) = e-inz'' p(O) einz'' (1.108)

which is again a rotation in the spin space described above. The component of

the density matrix (or polarization vector) along the z-axis will not evolve under

a shift Hamiltonian: the Iz terms in the exponentials commute with the effective

Hamiltonian. Any magnetization in the xy plane, however, will precess under the

Hamiltonian with a frequency f_ for a time t. The phase angle accumulated by

the density matrix or the magnetization vector in the xy-plane will be f_t. After a
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pulse, a density matrix of Ix (corresponding to x-magnetization) will evolve into a

linear combination of Ix and IUwhich will be detected as a signal oscillating in the

transverse plane. The density matrix becomes

p(t) = I_ cos fit + I_ sin f_t (1.109)

and the measured signal is

(Mx} = Tr[p(t)Ix]

1 (1.110)-- - cos C/t
2

and

(My) = Tr[p(t)Iy]

__ Isinnt. (1.111)
2

Depending on the initial phase of the rf pulse, the magnetization after 90 degree

nutation could lie anywhere in the xy-plane and will always evolve into a linear

combination of x and y polarization under the shift Hamiltonian.

Other Hamiltonians such as the dipolar Hamiltonian have similar effects in larger

spin spaces where the density matrix is not simply a linear combination of the

three spin operators for a single spin. The space is larger because more spins may

be coupled together and the basis set for describing all states of the spin system

expands. Still, the action of the Hamiltonians is described in terms of suitable

rotations in spin space. The concept of coherences and spin operators has been

treated at a very elementary level in this chapter and will be expanded upon in

Chapter 5 where rotations in spin space become important for selection of pure-

absorption-phase lineshapes in two-dimensional NMR.
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1.4.2 Rotations in Coordinate Space

The Hamiltonian of interest in the spin system may not always be aligned so

that the frame which is being used to measure the spectrum (usually the rotating

frame described above) coincides with the frame of reference used to describe the

interactions. Also, when samples such as powders or amorphous solids are under

consideration, there are many crystallites or domains within a sample which have

a random or pseudo--random distribution of the PAS frames with respect to a

defined measurement frame. In the case of the quadrupolar interaction, the strength

and the asymmetry parameter of the EFG tensor are defined in the PAS of the

quadrupolar interaction: that frame where the EFG tensor is diagonal. The same

is true for the chemical shielding parameters, except that the chemical shift has

an isotropic component which is independent of orientation in space. The tensor

nature of the interactions simplifies the transformations to other frames since the

tensor components form an irreducible representation for rotation in space and

must behave like second-rank spherical harmonics under rotations. The second-

rank spherical harmonics will transform only into a linear combination of the five

of themselves upon rotation of the axis system [25].

The spatial tensor components in the rotated frame (R) are related to the com-

ponents in the initial frame (r) by

2

n2m "- _ Vm, mq'3(2)(Ot, t_,_)T2m, (1.112)
mt-.._2

where the _(_) are the second-order Wigner rotation matrix elements_'m t m

D(2) / e-ire'o,,4(2) [_q'_,,-im'r (1.113)m,m_a._, _/)= _.m,__.j_ .

The second-order reduced matrix elements d(_!m(ft) are found in Table 1.1. The
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angles a, f_, and "y are the Euler angles through which the original system must

be rotated to bring the axes in line with the new axis system. A picture of these

rotations will be presented in the upcoming theoretical discussion of the NMR

spectra of quadrupolar spins.

Multiple rotations are often necessary depending on the complexity of the exper-
b

iment under consideration. It will be seen that it is often beneficial to mechanically

reorient a sample, with rotations performed in series to determine the components

of the tensor in a frame where the measurement occurs. An important example is

for a time-dependent rotation of the sample spinning at a frequency w, about the

symmetry axis in a cylindrical rotor inclined at an angle 0 with respect to the mag-

net (laboratory) reference frame. The transformation of the spatial tensor r from

its PAS to the rotor frame (through the Euler angles a, f_, and 7) and subsequently

to the laboratory frame takes the form

2 2

R2m _ (2) _(2)-- (i.ii4)
m'-'-2 m"-'-2

This rotation equation, and variations of it that encompass more rotations, will

be used extensively in subsequent discussions of sample reorientation techniques in

NMR.

The preliminary theory has now been set forward for the NMR of quadrupolar

nuclei and in the following chapters the effect of these spin Hamiltonians on the

- spectra is examined. The ability to rotate the density matrix of the system (the

"direction" of the magnetization vector) with rf pulses or the spatial tensors by

spinning a sample provide the NMR spectroscopist with external control of the spin

system. By clever use of these external conditions it may be possible to provide

greater insight into the properties of solids associated with the system-dependent
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spatial tensors. One major goal is the explicit determination of the chemical shift

and quadrupolar parameters leading to correlations of microscopic electromagnetic

surroundings of a nucleus with macroscopic properties of materials.

d
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Chapter 2

Coherent Averaging and

Motional Narrowing

A formal theoretical analysis and treatment are needed to continue the study

of quadrupolar nuclei in high-field NMR, specifically the case where half-odd in-

teger nuclear spins are present in polycrystalline solids. The theory of an average

Hamiltonian is reviewed and applied to both the chemical shift anisotropy and the

quadrupolar interaction. Narrowing of broadened spectra from nuclei experiencing

first-order chemical shift anisotropy is established for a polycrystalline solid un-

dergoing rapid sample reorientation. It is also showp that spinning about a single

spatial axis partially averages the quadrupolar interaction in the readily observed

central transition resonance, yet this averaging is insufficient for complete narrow-
q

ing of the broad anisotropies. Therefore a better, more efficient means of averaging

is needed. The foundation is laid for a discussion of the new techniques of dynamic-

angle spinning and double rotation NMR, introduced in the following chapter.
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2.1 Average Hamiltonian Theory

The idea of an "average" Hamiltonian that describes the motion of a spin system

was first introduced by Haeberlen and Waugh to explain the action of multiple--pulse
d

NMR experiments [28, 40]. If the Hamiltonian is time-dependent and periodic, and

" observation of the spin system is performed stroboscopically (synchronized with the

period of the Hamiltonian), the effective evolution of a spin system may be described

by a somewhat simpler _l_,e-independent or average Hamiltonian. Many multiple-

pulse sequences for scaling or suppressing selected interactions have been developed

by these methods [16, 36].

At ft, st it would appear that this theory is neither necessary nor compatible

with the discussion of the time-independent quadrupolar Hamiltonian formulated

in Chapter 1. Further manipulation of the quadrupolar interaction a_:tually falls

into the category of secular averaging, where a large time-independent Hamiltonian

truncates smaller terms [28, 36]. This is an effective averaging in the interaction

representation of the larger and dominant term in the Hamiltonian. The ideas and

expressions from average Hamiltonian theory (AHT) are generally applicable in the

high-field NMR of quadrupolar nuclei with quadrupolar coupling frequencies less

than approximately one-tenth of the strength of the Zeeman interaction, a regime

where a considerable amount of NMR is performed. The chemical shift Hamiltonian

is also affected by the coherent averaging and this is introduced first as a simpler

example of secular averaging.
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2.1.1 General

The general principles of AI-IT and coherent averaging may be found in the

papers of Haeberlen [40] and Rhim [41] and are also covered in detail in the books

of Mehring [16] and Ernst [36]. The most important results are compiled here

as they will be needed for reference in the calculations which follow. Many subtlc

points, such as time-ordering in the interaction transformation, are not needed here

due to the simplicity of the system.

Consider a Hamiltonian which is the sum of two terms: a dominant interaction

such as the Zeeman term in high-field NMR and a weaker interaction such as the

chemical shift anisotropy or the quadrupolar coupling. The dominant term in the

_ • ..amlltoman is designated 7-/0 and the weaker coupling 7"/1. In the interaction rep-

resentation of a static Hamiltonian "/'to, the weaker term becomes time--dependent

and in this interaction frame is written

_'-_.(t)- e_n°t 7_1 e -_n°t. (2.1)

This is equivalent to entering the rotating reference frame where the large Zeeman

Hamiltonian is absent. In this picture, the average Hamiltonian is a sum of time-

independent, Hermitian Hamiltonians (called the Magnus expansion [42])

= + + +-.. (2.2)

which approximates the time-dependent Hamiltonian of Eq. 2.1.

The "zero--order" term is especially simple: it is the time average of the inter-

action picture Hamiltonian over one correlation period (tc) of the large interaction:

_-(10) 1 tc Nfo dr, (t,) (2.3)
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This expression may be shown to be equivalent to first-order perturbation the-

ory [28] and, though it is the zero-order term in AHT, it is commonly referred to

as the first-order correction. If 7_o is the Zeeman interaction (referred to as the

• zero-order perturbation), then the first-order correction of Eq. 2.3 is equivalent

to keeping only the terms in the Hamiltonian which commute with the Zeeman
e,

interaction. These secular terms are invariant with respect to rotations about the

z-axis defined by the magnetic field. This is analogous to standard perturbation

theory where the first correction is the diagonal component of the Hamiltonian in

the unperturbed basis.

The next term in the average Hamiltonian expansion is

/o= at,

referred to as the second-order correction. Here, if the time-dependent interaction

Hamiltonian commutes with itself at ali times, the second- and higher-order correc-

tions will all be zero. The second-order correction will become especially important

if the first-order correction vanishes for certain transitions.

Coherent averaging theory may now be applied to two of the interactions present

in our spin system in the solid state: the chemical shift anisotropy and the nuclear

electric quadrupolar interaction. These interactions provide the predominant line-

broadening mechanisms in the spectroscopy of numerous quadrupolar species. One

. assumption which is implicit is that the dipolar interaction may be dismissed as

small compared to these interactions. Since it is a multiple-body interaction where

" the coupling between ali nearby spins must be considered, it is often regarded as a

broadening mechanism which convolutes a Gaussian lineshap_ onto the frequency

dimension data obtained in an NMR spectrum [43].
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2.1.2 A Collection of Spins in a Large Magnetic Field

The spin system under consideration is a collection of half-odd integer quadru-

polar nuclei in a large magnetic field such that the Zeeman Hamiltonian is much b

larger in magnitude than the quadrupolar or chemical shift interactions. The Ham-

iltonian is approximately

7-/= T/z + T/cs + 7_Q + 7/D, (2.5)

a sum of Zeeman, chemical shift, quadrupolar, and dipolar terms. The complete

forms of these Hamiltonians are presented in Chapter 1.

The starting point for calculation of the energy levels of the magnetic substates

is the largest interaction, the Zeeman Hamiltonian. The Larmor frequencies for

nuclear spin are on the order of tens to hundreds of MHz in conventional high-field

superconducting magnets (5 to 12 Tesla magnetic fields). For example, the Larmor

frequencies range from 29 to 69 MHz for the oxygen-17 nucleus (I = _) and 56 to

135 MHz for sodium-23 (I = _) at these field strengths. In comparison, proton

resonance frequencies at the same field strengths will vary from 200 to over 500

MHz.

Oxygen-17 is an important nucleus in the solid-state and the focus of a large

part of the experimental work in this thesis, so it will be used as a typical example

of a quadrupolar nucleus. A spin--_ nucleus such as oxygen-17 has its magnetic

substates split into six equally spaced levels by the Zeeman interaction (see Fig. 2.1)

with the spacing between the energy levels equal to the Larmor frequency, Wo. For
w

oxygen-17 the gyromagnetic ratio is "/ = -3.6279 x 10r rad T -1 sec -1 and the

magnitude of the Larmor frequency is about 14% that of protons. If only the

Zeeman interaction is considered, ali five Am = 1 (magnetic dipole) transitions for

4O
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Figure 2.1" The six energy levels for a spin-_ nucleus under the influence of
the Zeeman Hamiltonian. Ali Am = ] transitions have the same frequency
difference which is the Larmor frequency Wo.

oxygen-17 are degenerate and only one line at frequency w0 will appear in the NMR

spectrum.

Chemical Shift Anisotropy in High Field

" The chemical shift interaction is the first perturbation on the zero-order Zeeman

Hamiltonian considered. Using the coherent averaging arguments of the previous

section, the first-order perturbation to the Zeeman eigenvalues arise from those
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terms in the Hamiltonian which commute with the Zeeman Hamiltonian. In other

words, the averaging is accomplished over the Larmor period in spin space and only

the m - 0 terms survive. Not surprisingly, these are the components containing

only the spin operator Iz.

The first-order or truncated chemical shift Hamiltonian is

~_,r,(cs)o(cs)_ °CS --

= hwolz --(cs)
+h o I,P4o

This is obtained using Eqs. 1.63, 1.64, and 1.66 for the spin and spatial tensors and

the fact that the spatial tensor component /_s) is the same in all axis systems.

The first term contains the isotropic chemical shift and this is usually included with

the Zeeman interaction, obtaining an effective Larmor frequency

Wo' (1 (cs), (2.7)--" -- Giso )_0"

Dispensing with the prime, it may always be assumed that the isotropic chemical

shift is included with the Zeeman interaction. The Zeeman levels will still be

separated by the same energy or frequency (see Fig. 2.2), although the spectrum

will now be shifted compared to the pure Zeeman spectrum.

The second term on the right hand side of Eq. 2.6 contains the anisotropy of

n(cs)the chemical shift. The spatial tensor, .n0 , depends on the orientation of the

chemical shift PAS relative to the Zeeman interaction reference frame. For a single

crystal, where only one orientation of the PAS is present, the anisotropy will be the

same for all equivalent nuclei and only one line will appear in the spectrum. It is
w

more usually the case that many crystallites are present within the sample (such

as in a powder or amorphous sample) and each crystallite will contribute to the

observed spectrum. The result is called an anisotropic powder pattern.

42



Bo>O Bo>O
_(cs) = 0 G (cs) < 0m criso iso

,,5. ""
2

2

---Icoo O9o(1- cri_o)
__ _ _ _ _

-.,,2

_3 --- ....

_5 ._
_ _

Figure 2.2" The energy levels for a spin-_ nucleus under the influence of the
Zeeman Hamiltonian and an isotropic chemical shift.
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To calculate the anisotropic frequency contributions from each possible orienta-

tion of a crystallite the energy difference between the m and m + 1 Zeeman states

is computed:

.cos) 1 <m+ 1 I V_o,,,_o lm + 1>- <mI It_aniso "-- -_

.2 R_s) (2.8)"-- 0 •

Following Eq. 1.112 the tensor component R(ffoS).jn the laboratory frame is ex-

pressed as a sum of rotations of the principal components of the CSA tensor. The

appropriate rotations defined by the Euler angles a,/3, and -y are shown in Fig. 2.3.

The tensor component expressed in terms of the Euler angles, the Larmor frequency,

the chemical shift anisotropy (An), and the asymmetry parameter (7]°) is calculated

using the Wigner rotation matrices of Eq. 1.113 and Table 1.1. The result is

2

-- ,,,_ (CS)Z
m=-2

so that

_(cs) WoAa
""'°= 3 [(3cos'ft-1)+ r/osin2/3cos2a] . (2.10)

In a perfect powder the distribution of orientations for the chemical shift PAS

lies isotropically on a sphere. A numerical sum over the orientations is performed

to simulate the NMR spectrum. Equally spaced points in a grid on (al3)-space are

selected. The angle a runs from 0 to 27r while fl is restricted to the angles between
.#

0 and _T.The intensity of the signal from each orientation is proportional to sin/3,

and this weighting is included in the numerical sum. An alternative method [44]

for calculating powder patterns is based on using triangles drawn on the faces
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Figure 2.3: The rotations through the Euler angles c_, _, and V transform the
tensor from the PAS of the interaction to the laboratory frame.
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l

of an octahedron to define direction cosines which are calculated from indices of

points, avoiding the time consuming calculation of sines and cosines by a computer.

An efficient interpolation based on the triangles is also incorporated, leading to

tremendous savings in computational time. Formulae for the CSA lineshapes have

also been calculated analytically [28, 43] and involve the calculation or compilation

of elliptic integrals. Numerical computation is usually preferred to allow a computer

to vary the chemical shift parameters and obtain a best-fit to an experimental

lineshape.

A sample simulation of a resonance broadened by chemical shift anisotropy is

provided in Fig. 2.4. The isotropic chemical shift and the anisotropy (Aa) used for

the simulation are most generally written in units of ppm (parts per million) of the

Larmor frequency, since in these units the spectrum is independent of the strength of

_(cs)
the magnetic field. The simulation presented was calculated using Oi,o = 20 ppm,

Aa = 220.5 ppm, and r/a = 0.51. These are typical values for the chemical shift

parameters found from phosphorus-31 nuclei in distorted tetrahedral sites in inor-

ganic solids [45]. Note that the lineshape is quite broad, with a frequency width of

260 ppm. This frequency spread is much greater than the narrow lines observed in

conventional NMR spectroscopy of, for example, protons in a liquid. Polycrystalline

solid samples usually provide such broad lines due to the chemical shift or other

coupling mechanisms that are anisotropic. After considering another important in-

teraction in solids, the quadrupolar coupling, a method of line-narrowing in solids

will be explored that will be able to average the anisotropy of the chemical shift.
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Figure 2.4: The NMR powder pattern from a nucleus with anisotropic chem-
ical shielding. The chemical shift parameters used in the simulation are

" (cs)
ai,o = 20 ppm, Aa = 220.5 ppm, and r/_ = 0.51.
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Quadrupolar Interaction in High Field

For quadrupolar nuclei in solids the quadrupolar coupling is often much larger

then the chemical shift anisotropy, although this is not a definite rule. The relative

magnitudes of these two interactions must be examined in the analysis of each

spectrum of quadrupolar spins. At this point the chemical shift anisotropy will

be ignored in the computation of the quadrupolar pertl_rbation to the Zeeman

Hamiltonian, although at a later point we will include it again.

The quadrupolar interaction in spherical tensor form is

2

(:.ii)_=C _ (-_, ._ -
m=-2

where Eq. 1.43 contains the spin-dependent constant C. Equations 1.37-1.39 and

1.23-1.25 provide the explicit forms of the quadrupolar spin operators and spa-

tial tensors. In the interaction picture defined by the Zeeman Hamiltonian the

quadrupolar Hamiltonian becomes time dependent,

7"l'---Q(t)= e'_t't 7"tQe -i_°:'t. (2.12)

Using the relation [18]

ei_I't Ttme -i_°I't =Ttm ei''_°t (2.13) .

with Eq. 2.11, the rotating frame quadrupolar Hamiltonian becomes

2

nq(t)=c F_, o " -
m=-2
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First-Order Calculation

The first-order average Hamiltonian is obtained using Eq. 2.3 and is the average

of the interaction frame Hamiltonian:

Lc 2

-_2)_.,,,o2___o'_°dt_CE (-1)_'_"_(_)ai_)_-__ . (2.1_)wt------2

where the averaging period in this interaction picture is tc - 2lr/tOo, the Larmor

period. The integral sign may be taken inside the summation and, since

27r_o dt,eiwt_ot,---_6wto, (2.16)

thefirst-ordercorrectionis

_(Q) -- _(Q) _(Q)-- _-_20 •_20

-- ( :-f_ •
As with the chemical shift anisotropy, the spatial part of the interaction is explicitly

written out for a nucleus in a PAS oriented by the Euler angles (a, _, _) as

2

P4o_) = Z V_!o(",_,_)_(q)-_
m---2

The completefirst-orderquadrupolarHamiltonianintherotatingframe isthen

_(2 ) e2qQ 1) _Tsin2 I2), 19)
.P

and for each m substate the diagonal matrix element of the first-order quadrupolar

- interaction is

e2qQ

(vn I _(2' I vn) - 8I(2I - 1)[(3c°s2 f_ - 1) + 77sin_ f_cos2c_] (3vn 2- I(I + 1)).

(2.20)
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The first-order quadrupolar frequency perturbation from the Larmor frequency

between levels m and m + 1 is

_+,,_ = _ (m+ iI lm+ - lm)

= (2m+i) 3_qQ _) sin_zco_2_](2.2i)8_(2/-_)h[(3c°_- +_ " .

Several important points are worth mentioning. They are:

1. Each matrix element has an m 2 dependence. Therefore the energy levels with

the same Iml will be shifted by the same amount as shown in Fig. 2.5.

2. Because the absolute value of m is the same for both levels in the central

(! ,.-, _!) transition, the frequency difference for this transition only is un-2 2

changed from the zero-order Zeeman (plus chemical shift) frequency. Equiv-

a and the frequency change from the first-orderalently, in Eq. 2.21 m =-7

quadrupolar interaction is zero.

3. For each transition other than the central transition the first--order quadru-

polar frequencies are anisotropic. These are called the satellite transitions.

The spectral frequencies depend on the orientation of the PAS of the elec-

tric field gradient tensor with respect to the laboratory frame. In the case

of polycrystalline or amorphous solids, the contributions from ali crystallites

will add and an inhomogeneous powder pattern will be observed. However,

the satellites may be hard to fully irradiate and detect due to their large

spread in frequency as the angles are varied over the surface of a sphere. The

discussion in Section 2.1.3 will address selective and non-selective irradiation

of the quadrupolar transitions.
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Figure 2.5: The energy levels for a spin-_ nucleus under the influence of
the Zeeman Hamiltonian, isotropic chemical shift, and the first two orders of

coherent averaging theory applied to the quadrupolar interaction. The energy

- level diagram is shown for the spins in a crystallite oriented in some particular
direction within the magnet.
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The estimated frequency spread of the first-order quadrupolar broadening of

the satellite transitions in a powder is often many MHz which is much too broad

to be seen in conventional solid-state NMR spectra.

Second-Order Calculation

Most importantly, in the case when only the central transition is detected, the

NMR spectrum is unpert_bed by first-order quadrupolar interactions. Second-

order effects must then be considered to determine whether they are large enough to

cause further observable perturbations to the energy levels. Extending the analysis

to the next order of coherent averaging theory brings us to Eq. 2.4 which coutains

commutators of second-rank tensors in the spin variables and double integrals over

the time variables tl and t2. For the quadrupolar inter._ction

_ ) = -iWo c2 _ dt2 dh _] (-1 _] (-1) m'x47r
rn----2 ml----2

[T2(_) q'(Q)] R_Q)_ "(Q) _"_°t'e"_'_°_2 (2 22), _'2m'] - Jt2-ml'_ " "

The resultofthiscalculationhasbeen publishedby Samoson, Kundla,and Lipp-

maa [12]intheirstudyoftheeffectsofmagic-anglespinningon theNMR spectra

ofquadrupolarnuclei.

Resultsforthe valuesof the quadrupolarspincommutators [15]providethe

nextsetofsubstitutions.The usefulresultsare

_o ,'2_:Ij = +2---:--

q'(Q) q'(q)] = =k12

[.12_", .___2] - 2L _ !_,
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where

1

I_, = _-_ (Ix 4- iIv) . (2.27)

. The double integrals over the time variables are performed, keeping only the non-

zero results. Expression 2.22 for the second-order quadrupolar Hamiltonian be-

comes

( _iQ-_ )21{2I_Q)I_Q__(412--81,2 1) Iz+
--0) _ _
7"/Q = 4I( 1) Wo

V/_/_oQ)/_Q__ (41, 2- 41, + 1)I+,-

v/_R_Q)P_ Q) (4I, 2 + 4ez + 1)I_, +

4vRioq)P4?) + }. (2.28)

The perturbation in the central transition eigenfrequencies is obtained from

matrix elements of the second-order Hamiltonian in the Zeeman basis. The matrix

1 and m = _ levels and the difference is theelements are computed for the m = 7 -_

second-order quadrupolar energy (in frequency units)"

= (41(2/Q-- 1)h) 2 [4I(I +_ol)- 3] {2P_IQ,/_Q_+_/_2Q)P, J2Q_)2} . (2.29)

The anisotropy of this frequency lies in the products of the spatial spherical tensors

P_Q)/_Q{ and/_Q) P_Q-)2.There is also a shift of the center of gravity of the resonance

line, which may be calculated by integrating the full equation over the surface of a

sphere. This must wait, however, until the spatial dependence is obtained explicitly.
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The spherical tensors must be expanded once again in terms of the Wigner

rotation matrices •

2 2

~_r(Q}R4_)P4%_= E v_!_(_,B,_,"(_) 5: v(_!_,-_(_,_,-, _,,
vn*----2 rn.n---- 2

2 2

= _E Z_ _°'(_'+_")°_)_'_(Z)d_!'-_"_'_,_,(Q)_(Q)_,,(2.30)
mt=--2 _lt=-- 2

for m = 1 and m = 2.

Due to symmetries of the reduced Wigner matrix elements with respect to

switching of indices (see Table 1.1 again), and the form of the exponential terms in

the summation, the expression for the second-order frequencies takes a simplified

form as an expansion of cosines of even multiples of the angles c_ and ft:

2 2

w_Q_ = A _ _ aij cos(2ia) cos(2j/3) (2.31)
2' 2 i=O j--O

with

( e2qQ ) 2141(I + 1) - 3] (2.32)A - 4I(2I- 1)h 8w0

The angle _, fails to appear in the equation since the change in the sign of m in the

products R:lR2-1 and R22R_-2 always results in exponential terms containing 7

which multiply to unity in the summation. The anisotropic expansion is calculated

symbolically with a program (static.m) written in the Mathematic.a TM program-

ming environment. The code for static.m and another program containing the

definition of the Wigner rotations needed (wigner.m) appears in Appendix C. The a

values of the coefficients aij in EQ. 2.31 are compiled in Table 2.1

The second-order quadrupolar frequency of Eq. 2.31 has an isotropic component

which is calculated by integration of this frequency expansion over the surface of a

.(2Q,iso)
sphere. The isotropic frequency shift, _, , , is

2' 2
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i j a+j

o o -_(18+,7_)
_v)o I -_(I-_

0 2 9(18+_/2)

1 0 -_/

I I _3772

1 2 -_

2 0

9 2
2 1 -_7/

9 2
2 2 _7/

Table 2.1: Coe_cients in the anisotropic frequency cosine expansion for the

second-order energy difference in the central transition of a quadrupolar nu-
cleus.
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, , _ di3sin fl da w_2Q)
"-- 1

2 2

-- -_/o_s_OZ/o__z_o,_cos¢_o_co _ /_._/47r i=oj=o

which yields upon integration "

(w_2Q'_'°)__x-- A aoo- 5O, Ol - O,o22' 2

10
This result shows that the second-order quadrupolar interaction has an isotropic

component which is independent of crystallite orientation and therefore the same

for all equivalent spins in the sample. In frequency units it is inversely dependent

on the strength of the magnetic field, lt also contains a product of the quadrupolar

parameters, usually separated into e2qQ/h and r/which determine the strength and

the asymmetry of the local electric field gradient.

This analysis shows that the central transition lineshape from a second-order

quadrupolar perturbation will be anisotropic. The PAS is tied to the crystal axis

system or possibly modulated in time for a sample with internal motion present [15].

In any case, an ideal polycrystalline sample will yield a powder lineshape whose

shape may be calculated numerically. One such simulation is presented in Fig. 2.6

for a spin-_ nucleus (oxygen-17) in a magnetic field of 9.4 T. The quadrupolar

parameters are moderate values for EFG components (e2qQ/h = 5.0 MHz and

77= 0) which may appear, for example, in bridging oxygens in SiO2 polymorphs [46].

Note that the center of gravity of the spectrum is shifted from the Larmor frequency

(the zero of the frequency axis) and this shift is not an isotropic chemical shift but

rather an isotropic second-order quadrupolar shift This isotropic shift may be
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Figure 2.6: Simulation using a powder average over a sphere of the second-
order quadrupolar frequencies in Eq. 2.31. The parameters used are for

oxygen-17 nuclei in a 9.4 T magnetic field with e2qQ/h = 5.0 MHz and 77= 0.
As described in the text, only the central transition is shown.

calculated using Eq. 2.34 and it is approximately 3 kHz at this field strength.

The spectrum in Fig. 2.6 reveals that the second--order lineshape is wide, with

a spectral spread on the order of 20 kHz or 370 ppm at a Larmor frequency of

54.24 MHz. This is quite large and noticeable in high-field magnetic resonance.

• Resolution from a commercial or home-built NMR spectrometer is commonly on

the order of 1 Hz or a fraction thereof, and the usual limitation on linewidth is

the homogeneity of the large magnetic field. So the effects of the second-order

contribution to the central trans:tion lineshapes of quadrupolar nuclei must often

be considered because very broad lines will be observed in the NMR spectra. The
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lineshape is useful in that it provides a measure of the quadrupolar parameters.

Once again, spectral simulations and computer best-fits may be used to determine

the quadrupolar parameters and possibly the chemical shift parameters. Broad and

overlapping spectral resonances, however, do not allow full interpretation in terms

of shielding and quadrupolar effects for distinct nuclear sites, and only in the case

of single or well--resolved resonances can a full analysis be undertaken.

Also of interest is the dependence of the isotropic and anisotropic second-order

quadrupolar frequencies on the inverse of the Larmor frequency for the spins. For

the same nucleus, changing magnetic fields will have the effect of changing both the

width of the spectrum (the anisotropic spread is smaller at higher field) and the

position of the center of gravity of the resonance (the isotropic second-order quad-

rupolar shift becomes less negative at higher field strengths). Conventional wisdom

may then suggest that the best resolution may be obtained at higher field strengths

and this is true for a purely quadrupolar resonance. However, the frequency spread

due to the chemical shift anisotropy increases with an increase in Larmor frequency,

and so further broadening of the spectrum may occur if the CSA is large.

2.1.3 The Effect of RF Pulses

The general effect of radiofrequency pulses on a spin-½ system was studied in

Chapter 1. Further care must be taken when describing the excitation and detection

of magnetic resonances in a quadrupolar system. Complete work on this subject

was pursued by Schmidt [47] in the early 1970s, although sel,_ctive excitation in

fictitious spin-½ systems, including quadrupolar resonances, _as discussed much

earlier by Abragam [18]. A particularly illuminating paper by Man and cowork-

58

' _ _ II I III I II III



ers [48] calculates the spectral intensities and rotation angles from radiofrequency

pulses for selective and non-selective excitation of ali single-quantum (Am = 1)

to I = 9 The results are im-transitions from nuclei with spins ranging from I = 7 _"

" portant for correctly performing quantitative NMR experiments and for the theory

of nutation NMR experiments [49, 50, 51], where nuclear sites with different values

of the quadrupolar coupling constant may be separated by their behavior during a

series of strong radiofrequency pulses [52, 53, 54, 55]. The calculations performed

by Man [48] only take into account the first-order quadrupolar interaction but this

is sufficient for describing the excitation and detection behavior of the spins.

RF Pulses on a Quadrupolar System

Consider a collection of non-interacting quadrupolar spins with the spin angular

momentum I being half odd-integral and greater than one. The central (½ _-*_!)2

transition is distinguished from the satellite (m _ m- 1) transitions because it is

not affected by first-order quadrupolar interactions. For any particular crystallite

there will be a resonance from the central transition and each of the (2I- 1)

satellite transitions. The frequency differences between the satellite resonances and

the central transition will appear in the Hamiltonian as a fictitious chemical shift

(as in Eq. 2.21)

a - g/Q(2m + 1)I_ (2.35)"]"[m + l ,rn

for the rn _-_m + 1 transition. Writing this as an effective chemical shift is possible

" because the shifts of the satellite resonances are linear in m. The quantity f_Q

depends on the quadrupole coupling constant, the asymmetry parameter, and the

orientation of the crystallite within the magnetic field. A further second-order shift
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takes place for both the central transition and the satellites, but this is smaller by

a factor on the order of flQ/Wo and will not disturb this analysis.

The important quantities to calculate are the initial value of the free induction

decay (which will be maximized after a full 90° pulse) and the intensity of the

spectral line from the m + 1 _ m transition. Two distinct regimes are present.

The first is that of non-selective irradiation where the radiofrequency magnetic field

is strong compared to both the quadrupolar interaction and the fictitious offset term

of Eq. 2.35. The details of the calculation of the initial value of the FID and the

spectral intensity are given in Ref. [48] and it is found that both quantities are

proportional to the square of the (m + 1, m) matrix element of the spin operator I=

(_m+l,m) 2 -- I/_'_' -9V l lI=l m)l_

= I(I + 1) - m(m + 1). (2.36)

Further, as long as the radiofrequency field is strong enough to irradiate and detect

ali transitions, the length of a 90° pulse for the different transitions will be inde-

pendent of the value of (_m+l,,_) 2 obtained from Eq. 2.36. This occurs because the

radiofrequency Hamiltonian is considered as the only Hamiltonian operative dur-

ing the pulse and thus the nutation frequencies for ali of the transitions are equal.

The integrated intensity will differ for each transition and it is found to follow a

(_m+l,m) 2 dependence. For example, the satellite transitions for a spin-_ nucleus

such as sodium-23 will have 25% less intensity than the central transition. In this o

case the 90° nutation time is the same as if no quadrupolar interaction were present.

Often it is impossible or undesirable to provide full non-selective excitation

to the spin system. If the radiofrequency field strength is much less than the

quadrupolar coupling strength, only selective excitation can be accomplished. The
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effect of the pulse may now be neglected on ali the transitions apart from the

resonant transition which, for our purposes, will only be considered to be the central

transition as the satellite transitions are spread over a larger frequency range than

the central transition resonance. Only the two levels closest to the on-resonance

frequency will be strongly perturbed under these conditions. It is calculated that

the initial intensity of the FID and the relative line intensities are scaled down

from the non-selective case by an additional factor of _. Further, the time for 90°

nutation of the magnetization vector in the selective case is also decreased by a

factor of _. Hence, for the central transition, 90° pulse times will be scaled by I +

for a spin I nucleus. For nuclei such as sodium-23 (I = a) or oxygen-17 (I = _)

we expect to find pulse widths for selective excitation of the central transition to

be one-half and one-third as long as those found for non-selective irradiation.

A stern warning must be given here: the selectivity of pulses must always be

checked when performing experiments in order to determine whether any assump-

tion made in the theoretical development of the experiments has been violated. This

may include the questions of treatment of other transitions in the time-development

of the system or whether quantitative spectral intensities will be obtained. To check

the selectivity, 90° pulse lengths in the sample under consideration should be com-

pared to 90 ° pulse lengths in a sample where quadrupolar coupling is known to be

negligible. This occurs, for example, in a cubic solid (such as NaCl) or a liquid

• (such as H_70).
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2.2 Motional Narrowing by Sample Reorientation

2.2.1 Introduction
i,

One advantage an experimentalist has when using NMR spectroscopy is the

ability, at least in principle, to distinguish individual resonances from distinct nu-

clear sites in a sample. A well-known example is the fact that the protons from an

aromatic ring will resonate at a slightly different frequency (a few parts per million

of the Larmor frequency) from those in a methyl group. The proton sites are mag-

netically inequivalent due to the difference in the local chemical shifts, which may

then be correlated with local bonding and electronic environments. These differ-

ences are quite well established in the liquid state where resolved resonances with

widths less than one Hz are observed. Other conditions which may cause changes

in resonances are topological and geometrical effects (seen through the scalar cou-

pling_ in liquids), as well as the dipolar and quadrupolar couplings which become

important in the spectra of the solid state.

In order to better understand local bonding and electronic environments in

solids, the optimal spectra would have full separation of resonances arising from

magnetically inequivalent sites. The rapid, isotropic motions of molecules in a liq-

uid occur on time scales much shorter than the Larmor period of the spins and

therefore during one Larmor period the spins experience an average orientational

environment. Interactions that have a scalar (or isotropic) coraponent, such as the
u

chemical shift and scalar coupling, are not averaged to zero but rather to their iso-

tropic values. The isotropic chemical shift, as well as the scalar couplings which split

lines into multiplet patterns, are used in high-resolution one- and two-dimensional
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NMR to investigate molecular structure in liquids [56]. The dipolar and quadru-

polar interactions are described by traceless tensors: they have no residual effect in

the spectra usually observed. However, effects such as relaxation [10, 57] and the

" nuclear Overhauser effect [58, 59] are important in many cases and are caused by

higher-order effects of these traceless interactions.

Early in the development of NMR, Andrew [60] and Lowe [61] realized that

time-dependent motion could be imposed upon a solid to mimic or approximate

the isotropic motion in liquids. In their experiments, the second-rank tensors de-

scribing the spatial interactions are modulated in time by the rotational motion of

a cylindrical rotor containing the sample. The rotor is set spinning while inclined

at an angle 0 with respect to the direction of the large external magnetic field. It

was found that at a certain angle, the "magic angle", the spinning averages the

first-order interactions. An added criterion for complete averaging is that the rotor

must spin quickly compared to the frequency spread of the interaction. The theo-

retical aspects of sample spinning are described below, first for the chemical shift

anisotropy in polycrystalline solids and then for the quadrupolar interaction. The

result of ultimate importance will be a calculation of the central transition frequen-

cies from quadrupolar nuclei in solids while spinning the sample at an arbitrary

angle with respect to the field.
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2.2.2 Sample Spinning I: Chemical Shift Anisotropy

The theory developed above for the chemical shift anisotropy led to a truncated

first-order Hamiltonian, after removing the isotropic shift, in the form

_,O)cs= "YT(2CoS)R_ s) (2.37)

with the appropriate spherical tensors given by Eqs. 1.64 and 1.67-1.69, the spatial

tensor components being defined in the principal axis system for the chemical shift

_(cs)interaction. The expression for, _2o a_ a sum of rotations of the principal com-

ponents of the CSA tensor revealed why this interaction is anisotropic: it depends

upon the orientation in the laboratory of a crystallite containing the observed nuclei.

The Hamiltonian for the system was a scalar (isotropic) quantity before the large

magnetic field truncated the interaction by imposing a preferred spatial direction

on the sample. The magnetic field also gives rise to the chemical shift interaction.

Now consider placing the entire samplc within a cylindrical holder which will

be rotated at a frequency w_ about an axis inclined to the magnetic field at an

angle 0. A helpful diagram of this is shown in Fig. 2.7. A time-dependent rotation

is imposed upon the spatial tensor P_0cs) and the spatial tensor in the laboratory

frame is

2 2

R(CS) (cs)= .-_,,_,(_'r)_,,
_J=--2 m"=--2

- 1)+- 2v_
+C_ cos w, t

+C2 cos 2w, t

+ Sa sin w_t

+$2 sin 2w_t (2.38)
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Figure 2.7: The rotations through tL." Euler angles a, 13,and "ytake the tensor
from the PAS of the interaction to the rotor frame. The further rotations are

determined by the product of the rotor frequency and time of rotation as well
- as the orientation of the rotor in the laboratory.
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with

A_

C1 - 2,/_sin2813- vi_cos 2a] sin 2f_ (2.39)
Aa

C2 - 2---_sin2 8[3sin 2 Z + vi, cos2c_(1 + coss/3)] (2.40) Q

Aa

SI = -_ sin 28r/, sin 2a sin f_ (2.41)
Aa

5'2 -- V_ sins 8_, sin 2a cos f_. (2.42)

The time-independent and time-dependent parts of this tensor component may be

considered separately.

The time-independent part of the chemical shift frequency remains anisotropic

 oo.o ( cos0- +"CS -- 6

but now there is an additional angular factor when this expression is compared to

the static case. This polynomial is the second Legendre polynomial of cos 8,

1 (3cos28_ 1) (2.44)P (cos0)=

It has the same angular form as the d_2-orbitals encountered in the study of

hydrogen-like atoms [2]. Since this polynomial has zeroes along the real axis, it is

possible to completely average the chemical shift anisotropy by solving

Ps(cosS) = 0 (2.45)

and setting the rotor axis to this special angle.

The second Legendre polynomial is plotted in both linear and polar coordinates

in Fig. 2.8, and in the first quadrant the solution is the magic angle, 8_ ) - 54.74 °,

where the superscript is a reminder that this is a magic angle for second-rank tensor

interactions. With the anisotropic term averaged to zero by magic-angle spinning
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Figure 2.8: The second Legendre polynomial, P2(cos 0), as a function of angles

in the first quadrant of a circle. The polar form is also shown at the upper
right with shaded areas designating negative excursions of the function.

(MAS) only the isetropic chemical shift will cause inequivalent spins to appear at

different spectral frequencies, thus providing resolution and spectral separation for

solids approaching that available in NMR of the liquid-state [62, 63].

The time-dependent terms contain modulations at frequencies equal to and

twice that of the spinning frequency. This leads to spi'ming sidebands [64, 65] at

integer multiples of the spinning frequency for most spinning angles 0. If the ro-

tation frequency is very fast so that wT is .... "-- *_" *_'_ _ ...... _,, _p_a in _he
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resonance from the static sample, these time-dependent terms become unimpor-

tant [64]. Discussion of may spinning sidebands present in the spectrum, however,

necessitates retention of these terms. Information about the full anisotropy (av-

eraged by magic-angle spiIming) is retained in the sideband pattern [65] and an

analysis of the sidebands can be useful in complete characterization of the local en-

vironment. If the ultimate goeJ is better resolution of the resonances from individual

sites, then fast spinning at the magic angle is desired. Methods of suppressing spec-

tral sidebands in MAS at slower spinning speeds have also been introduced [66, 67].

Other interesting anglez for sample spinning besides the magic angle are 0 = 0°

and 0 = 90°. Spectra obtained while spinning parallel to the magnetic field (along

the z-axis where 0 = 0°) are equivalent to the static spectrum as the full anisotropy

is present: the second Legendre polynomial is unity and ali time modulated terms

disappear. A full powder pattern will appear from each inequivalent nuclear site in a

polycrystalline solid. With the spinner axis perpendicular tu the field (0 = 90°) the

value of P2(cos 0) is negative one-half and a scaled powder pattern of one-half the

width of the static pattern is obtained, reversed along the frequency axis. Further,

since sin 0 = 1 and sin 20 = 0 at 0 = 90°, the odd-order time-dependent terms will

vanish and only even-order sidebands at multiples of twice the rotational frequency

are present in the spectrum. Although the full chemical shift parameters could

he determined from the powder patterns obtained at these angles, the widths of

the patterns could cause overlap and distortion of other powder patterns rendering

analysis difficult, if not impossible.

Many reviews of the NMR of solids include discussions of magic-angle sam-

ple spinning and the use cf MAS to remove chemical shift anisotropy and other
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first-order broadening [68, 69, 70]. While the ideas presented above introduce the

methodology and utility of sample reorientation, the primary concern here is the be-

havior of quadrupolar spins under sample rotation. If similar line-narrowing could
c

be achieved for the anisotropic resonances arising from the second-order quadru-

polar interaction, high-resolution NMR would be applicable to a much wider group

of nuclei in solids.

2.2.3 Quadrupolar vs. Chemical Shift Anisotropies

The second-order quadrupolar interaction is more complex than the chemical

shift anisotropy and examination of the theory developed up to this point helps to

explain both the similarities and tke differences. When truncated to first-order,

both interactions have the form

_(2 ) = CAT{oP_o (2.46)

which is an anisotropic Hamiltonian due to the spatial anisotropy of the P_o term.

Expansions of P_0 in terms of the tensor components in the principal axis systems

of both the quadrupolar and chemical shift interactions look similar as the angu-

lax rotations are the same. The only difference between the spatial tensors is the

coupling parameters used in each case and the different constants in the C Aterms.

However, one can easily see the connection between the different coupling constants

and asymmetry parameters. A major distinction is that the chemical shift inter-

action also has an isotropic term which shifts the frequency from each crystallite

contributing to the powder pattern by an equal amount. Nonetheless, the first-

order, static spectrum angular anisotropies have the same form in both Eqs. 2.10

and 2.21 and the NMR spectra from the quadrupolar satellite transitions will re-
.qm
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semble those from the chemical shift anisotropy. The width of the pattern will be

scaled by the order (m value) of the satellite transition. There will not be a single

powder pattern for the quadrupolar satellites, but a total of 2I- 1 overlapping,

broad patterns.

The most distinct dissimilarity enters in the form of the spin operator T_0 for

ro(cs)the two interactions. For the CSA, , 2o is a single-spin operator, I, Bo. Matrix

ro(cs)elements of, 20 are linear in m (the magnetic quantum number for the Zeeman

level) and the matrix form of the operator is diagonal in the Zeeman basis. The en-

ergy differences for ali Am = 1 transitions are therefore the same. The quadrupolar

spin operator _r(Q) is a bilinear spin operator with no magnetic field dependence,20

1/V_[3I_ - P]. The 12 part of the operator is identical for ali magnetic substates

and is proportional to the unit operator: it can not affect spin evolution. As op-

posed to the CSA Hamiltonian, the matrix elements of the first--order quadrupolar

Hamiltonian depend on m 2, and the central transition is unaffected by first-order

quadrupolar coupling. The satellite transitions do have anisotropic quadrupolar

shifts, resulting in powder patterns centered at the same frequency as the central

transition (to first-order). The first-order width of the satellites is usually large

enough to render them unobservable as it would be difficult to fully irr_diate them,

while their spectral intensity (reduced from that of the central transkion according

to Sec. 2.1.3) would be spread out over that entire frequency width.

In the case where the satellites are detected [71], full quadrupolar parameters

and isotropic chemical shifts may be obtained. This is especially useful for nuclei

with moderately large gyromagnetic ratios, high-spin values, and small quadrupolar

coupling constants (such as some aluminum-27 nuclei in solids), as ali of these

- It/
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factors reduce the spectral width. With MAS, the quadrupolar satellite transitions

should also be narrowed in first--order exactly like the chemical shift anisotropy.

This has been observed in aluminum-27 [72], but the large spectral spread of the

• satellites necessitates careful analysis of the multitude of sidebands present in the

spectrum.

2.2.4 Sample Spinning II: Quadrupolar Interactions

After the initial development of the magic-angle spinning technique, it was

realized that if quadrupolar effects could not be accounted for by first-order per-

turbation theory then sample spinning would not be able to completely narrow

these resonances [70]. Later, the subject was studied in more detail and the theory

was developed for both magic-angle spinning of quadrupolar nuclei [12] and spin-

ning at any angle with respect to the field [13]. The MAS results will be treated as

a special case of sample spinning of quadrupolar nuclei in a rotor at an arbitrary

angle with respect to the magnetic field.

The calculation for the effect of sample spinning on a quadrupolar central tran-

sition experiencing a prominent second-order contribution to the linewidth follows

the same arguments as for the chemical shift anisotropy, but now includes a more

complex spatial dependence because of the appearance of products of the spatial

tensors for the second-order quadrupolar anisotropic frequencies (Eq. 2.29). The

second-order frequency shift for the central transition of a quadrupolar nucleus was

calculated above and is

_ _ _ _jt,21 a,,2_ 1 - •

Under the conditions of sample spinning, the spatial tensors are expressed as a
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proc_uct of a series of rotations from the quadrupolar PAS to the rotor frame, and

finally to the laboratory (or interaction) frame (Fig. 2.7). Some may consider this

a mathematical exercise which must be carried out by hand in order to fully under-

stand the physics of the problem. The necessary tools are ali available: the basic

equation, the Wigner rotation matrices, and the spin and spatial tensors. However,

the algebra becomes complicated due to the large number of terms present due

to the multiple rotations. A Mathematic.a TM computer program has been written

to accomplish these sums of products of rotations and is included in Appendix C

under the name vass.rn. The acronym VASS stands for variable-angle sample

spinning as introduced by Oldfield and coworkers [73]. This code uses the program

wigner.m to define the second-order Wigner rotation matrices, and goes on to

define the principal components of the interaction in spherical tensor form. The

calculation of the tensors in the laboratory frame after the two rotations allows

the products 2/_ )P_Q__and/_Q)R_Q_ ) to be calculated and summed. Once again,

only the time-independent parts have been retained. In order to fully calculate the

sideba_ds from the second-order quadrupolar interaction, ali terms must be kept.

See references [74] and [75] for further information on the full expressions including

the time-modulated terms.

In concentrating on the time-independen_ frequencies, symmetry arguments

point to a most useful and general form for the full expression. Beginning with the

expression for the product of two tensor components under the rotations sketched

in Fig. 2.7
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we need to remove the time-dependent terms. Ali terms which do not satisfy

m' + m" = 0 are dropped and the sum on m" is eliminated by setting m" always

equal to -m'. The symmetries of the remaining terms axe also important for the

simplification of the result. First, the only non-zero components of the spherical

tensor in the quadrupolar PAS are r20 and r2+2, so the allowed values of n' and

n" in Eq. 2.48 are 0 and =t=2. Therefore the sum n' + n", which is the coefficient
,,(Q)

before the angle a, may only range between -4 and 4 in even steps. Further, -22

and r (q)2-2 are equal in magnitude and sign. For the reduced Wigner matrices (.see

Table 1.1) many symmetries and antisymmetries are found upon interchanging the

signs of the two indices. It seems prudent to search, then, for solutions similar to

the expansion in terms of cosines of even multiples of the angles a and f_ as was

found for the expansion of the second-order quadrupolar frequencies from a static

sample. The computer program does this by making symbolic replacements with

user defined trigonometric identities.

" The trigonometric terms involving the angle 0 are converted to powers of cos 0

to seaxch for Legendre polynomials, now allowed to go as high as P4(cos 0) due to

the products of the rotations containing squares of cos 0. The expansion desired is
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in the form
2 2

=A Z cos(a )cos(2j ) (2.49)
_ ' 2 i=O j=0

where the prefactor A is the same as in the earlier static expansion of the anisotropic
D

frequencies (see Eq. 2.32). Each coefficient a'ii may now contain terms that depend

on Legendre polynomials up to fourth-order:

a'ij = al°) + a{2.)p=(cosg),,+ al_)P4(cosg) (2.50)

where a!°) is independent of the :,pinning angle (it is actually proportional to

Po(cosg) which is unity for a/l angles), P2(cosg) is the second Legendre polyno-

mial of Eq. 2.44, _nd P4(cos 9) is the fourth Legendre polynomial

1
(35 cos" e - 30 cos= e + 3) (2.51)Pa(cos0) = _

The graphs in Fig. 2.9 display the fourth Legendre polynomial in Cartesian and

polar coordinates.

The result of the calculation is a polynomial with 35 distinct terms. The

Mathematic.a TM programming environment allows interactive examination of the

complete polynomial or factors of particular arguments (say, the coefficient of the

cos 4a cos4j3 term) and the results are compiled in Table 2.2.

The only coefficient that has no angular dependence is a_ ) and this leads to

the correct isotropic second-order quadrupolar frequency shift (see E, 2.34). The

remainder of the expansion depends on both the second and fourth Legendre poly-

nomials.

The plot of the two Legendre polynomials together in Fig 2.10 now reveals the

most striking difference between sample spinning experiments for first- and second-

order interactions: there is no single angle at which ali of the anisotropic second-

order terms may be made to vanish as P2(cos0) and P4(cos0) have no common
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Figure 2.9: The fourth Legendre polynomial, P4(cos0), as a f',mction of angles
in the first quadrant of a circle The polar form is also shown at the upper

" right.
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- _,7) -9(z + _,7)0 0 81 (18 -_- ?.]2) --_(1 1 2 1 21-i56

_,7) o_T(I _, 2o z -_(zs+,7_) _

9 (18 + _/2) 0 09 2

81 24 0
1 0 T_/ T_/

27 24 0
I I i_/ -Tr/

1 2 -_r] 0 0

2 0 _r} 2 0 032

9 2 0 02 1 -_

9 v/2 0 02 2

Table 2.2: Coefficients in the anisotropic frequency cosir _ expansion (Eqs. 2.49

and 2.50) for the second-order energy difference in the central transition of a

quadrupolar nucleus.
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Figure 2.10: The second and fourth Legendre polynomial, P2(cos0) and

P4(cos0), drawn together as a funtion of the angles in the first quadrant of a
circle.

zero. The zero of P2(cos0) is at the second-rank magic-angle 0_ ) = 54.74 ° while

a zero for P4(cos0) occurs at one of two fourth-rankmagic angles, 0_) = 30.56 °

and 0_) = 70.12 °. Fourth-rank refers to the fact that the product of the two
4

second-rank spatial tensoz's found in the second-order result contains a fourth-

" rank component which may be averaged at these angles.

Spectra obtained from spinning the sample at any one angle with respect to the

magnetic field will be anisotropic no matter what angle is chosen. It is straightfor-
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ward to calculate computer simulated spectra with the results compiled from this

section. This is done at a variety of angles in Fig. 2.11 for a classic quadrupolar

result: a single sodium-23 nucleus in a 9.4 T magnetic field with quadrupolar pa-

rameters e2qQ/h = 2.5 MHz and 77= 0.7. Several features of the sample spinning

are presented in this figure.

First, the case of spinning about the z-axis (0 = 0°) does not narrow the line

at ali from the static case (Fig. 2.4), but this is expected since the truncating

Hamiltonian has cylindric_d symmetry about this axis. When 0 is set to 0° in the

anisotropic frequency equation for a spinning sample the equation is identical to the

static frequency expansion. In fact, this is an important check that the equations

are corrcct. The magic-angle spinning spectrum (0 = 54.74 °) reveals that the line

is not completely naarowed by MAS, as it would be if the interaction were first-

order. Here there is a residual P4(cos 0) contribution to the lineshape. The spectra

at the other (fourth-order) magic angles of 0 = 30.56 ° and 0 = 70.12 ° also show

incomplete narrowing. At these angles the lineshape is governed purely by the

magnitude of Ps(cos0).

In all cases, the anisotropic interaction may never be completely averaged. This

is seldom a problem if the sample of interest contains only one resonance as shown

in Fig. 2.11. It may then be compared to calculated lineshapes at any of a variety

of angles and the quadrupolar parameters and isotropic shifts extracted. The prob-

lem arises in the chemically more interesting case of several i_equivalent nuclear

sites ill a solid that contribute overlapping resonances. Of course when chemical

shift anisotropy is also present the problem increases in complexity if spinning is

undertaken at any angle other than the second-rank magic angle [74].
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. Figure 2.11: Simulations of the NMR spectra obtained as a function of the spin-

ning angle, 8, from a polycrystalline sample with a single type of sodium-23 site
in a 9.4 T magnetic field. The quadrupolar parameters are e2qQ/h = 2.5 MHz
and 77=0.7.
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Chapter 3

Second-Order Averaging: Theory

3.1 Introduction

The analysis in Chapter 2 reveals a major problem to overcome in the NMR

of half-odd integer spin quadrupolar nuclei. Even the central transition, which is

readily observable and not broadened to first-order by the quadrupolar coupling,

remains broad and anisotropic under sample spinning at any one angle. Possible

causes of the broadening are the spatial anisotropy of the first-order chemical shield-

ing interaction and the second-order quadrupolar coupling. Magic-angle spinning

cancels the CSA component, but it does not completely average the second--order

quadrupolar effects. Sample spinning does, however, narrow the resonances from

those observed in the case of no spinning, which is also equivalent to spinning at an

angle of _)owith respect to the magnetic field. Broad, overlapping central transition

resonances appear throughout the NMR literature in spectra of important quad-

rupolar nuclei such as oxygen-17 [68, 76, 77, 78, 79, 80], sodium-23 [81, 82, 83],

aluminum-27 [84, 85, 86, 87, 88, 89], and boron-ll [90, 91, 92, 93]. In many cases it
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is the second-order quadrupolar coupling that must be averaged in order to simplify

these spectra.

This chapter introduces the averaging of second-order quadrupolar effects. The

• solution lies in spinning about not just one, but two spatial axes during an NMR

experiment. The two new experiments proposed are dynamic-angle spinning (DAS)

and double rotation (DOR) NMR, and they may be viewed as the series and parallel

versions of second-order averaging. The theoretical foundations for both techniques

are a natural extension of those introduced in the previous chupter on coherent

averaging and motional narrowing.

3.2 Dynamic-Angle Spinning

The NMR technique of magic-angle spinning (MAS) spatially averages in-

teractions such as chemical shift anisotropy which have an angular dependence

of P2(cos0) under rapid sample spinning conditions. In dynamic-angle spinning

(DAS) a sample spins around an axis inclined at an angle 0(t) such that the time

averages of a set of Pm(cos 0) are zero. The Legendre polynomials are an orthogonal

set of functions which share few common zeroes, so the simplest case of DAS is

when 0(t) assumes two discrete values 01 and 02 such that the time average of two

Legendre polynomials are zero. Choosing angles such that the time averages of both

. P2(cos0) and P4(cos0) are zero will average the second-order quadrupolar broad-

ening to its isotropic value, providing higher resolution in the spectra of half-odd

integer spin quadrupolar nuclei.

DAS entails performing second-order averaging in series: spinning first at one

angle during an experiment and then at another. The idea of changing rotor axis
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orientation during an experiment is not a new one and has been introduced in

NMR fox a variety of reasons. These include correlations of narrow MAS line-

shapes for spin-½ nuclei with CSA powder pattern lineshapes [94], retention of

heteronuclear dipolar interactions or chemical shift anisotropy information under

off-magic angle spinning conditions [95, 96], and more efficient cross-polarization
4

away from the magic-angle for CPMAS experiments [97]. Workers in Professor

Gary Maciel's lab at Colorado State University have also developed the technique

of magic-angle hopping, correlating narrow isotropic and broad anisotropic spectra

in a two-dimensional NMR experiment applicable to spin-½ nuclei [98]. Hopping

a static sample to orientations corresponding to three of the six vertices of an oc-

tahedron allows separation of overlapping CSA powder patterns by their isotropic

shifts in the second spectral dimension.

Using a time-dependent rotor axis orientation to address second-order quad-

rupolar effects was not proposed until 1988 when announcements were made in-

dependently by Llor and Virlet in Saclay [99, 100] and the Pines group in Berke-

ley [101, 102, 103]. The first experimental results came out of Berkeley [104, 105]

and will be highlighted in the next chapter.

3.2.1 The DAS Concept

Conceptually, the general DAS experiment is more complicated than single-axis

sample rotation. In MAS, a single pulse is usually applied to the sample and a free

induction decay of the nuclear magnetization is observed. DAS is not this simple:

a change in the axis orientation must be performed whose net effect during the

experiment is to average the values of the selected Pn (cos 0) to zero. We concentrate
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here on the explicit calculations necessary to average first-order chemical shift and

second-order quadrupolar interactions, although the analysis may be generalized

to other couplings.

" Calculations are always performed in the rotating frame of reference described

in section 1.4.1 on rf pulses, where the effect of the pulses appear as rotations of
P

the magnetization vector describing the net spin polarization. Only the central

transition of the quadrupolar spin is considered, so the system is treated as a fic-

titious spin-½. The total Hamiltonian for spin evolution is the sum of isotropic

and anisotropic contributions from each crystallite. A crystallite has a quadrupolar

PAS related to the rotor axis frame by the Euler angles a, /3, and % It also has

a chemical shift anisotropy PAS described by another set of Euler angles a', _',

and 7'. The rotor is spinning at an angle 0 with respect to the external magnetic

field. The form of the spin operators for the first--order chemical shift Hamilton-

ian (proportional to Iz) and those for the second--order quadrupolar interaction

(proportional to I_ and Iz) all appear proportional to /_ in the fictitious spin-½

representation of the operators, meaning that the frequencies of evolution for spins

appear as an effective total shift with isotropic and anisotropic components. The

phase factor accumulated under the evolution will be the product of the frequency

and the evolution time.

If only the time-independent part of the Hamiltonian is considered for clarity

. (to eliminate the discussion of sidebands) the total shift is

. wtot = W_o + _,,_o (3.1)

where

.(cs) .(2q) (3.2)_i3o -- _iao + _i3o
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which is independent of ali angular arguments. Fxtuation 2.34 contains the form of

the second-order quadrupolar shift in the central transition.

The anisotropic frequency contributions depend on both the crystallite orienta-

tion and the rotor orientation:

• (cs),,.,,,,..o= ,..,,,..o P (cosO))+
._(2Q),,i,o (a,/_, Ps (cos 0), P4(cos 8)) (3.3)

which is conveniently written as

w_,i,o = A2P2(cosO) + A4P4(cosO). (3.4)

The coefficients A2 and A4 may be determined from the calculations in the previous

chapter, but for this discussion are not important. The sum is a combination

of the CSA term (contributing to the P2(cos0) coefficient) and the second-order

quadrupolar effect (contained in both coefficients). The Euler angles 3' and 3/do

not appear in Eq. 3.3 since we are disregarding the sideband terms as discussed in

Chapter 2.

The goal in second-order quadrupolar DAS is to find a time--dependent angular

solution O(t) which will average both Legendre polynomials to zero:

fo _ P2(cosO(t))dt = 0 (3.5)

lo" P,(cosO(t))dt = O. (3.6)

A variety of solutions axe possible corresponding to monotonically increasing sweeps

of the rotor axis from one angular endpoint to another [102]. A linear sweep between

either 01 = 19.05 ° and 02 = 99.19 ° or 01 = 11.96 ° and 02 = 132.40 ° will accomplish

this averaging, as will as a cosinusoidal sweep between 01 = 23.27 ° and 02 = 117.37 °
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or 01 = 27.38 ° and 02 = 90.10 °. The experimental difficulties of such a sweep leading

to sufficient averaging are extreme. The reorientation could not easily take place

on a time scale where the spins would still be behaving coherently.

" Another solution is to position the rotor axis at discrete orientations within

the magnet. The goal is then to find two angles, 01 and 82, where spin evolution

may take place retaining the isotropic terms of Eq. 3.2 while cancelling the an-

isotropic shift. Separating the experiment between the two angles allows for two

evolution periods of length rl and T2 at angles 81 and. 82 respectively and two sep-

arate accumulations of a phase angle occur for the magnetization precessing under

the influence of the shift Hamiltonian. To cancel the evolution from the anisotropic

terms (Eq. 3.4) it is necessary that

P2(cos 81)n = -P2 (cos 82)r2 (3.7)

and

",:)4(COS 81 )7"1 ---- -- P4 (COS 82)T 2 (3.8)

simultaneously. A constant, k, is defined by

k- _ (3.9)

so that Eqs. 3.7 and 3.8 now read

P2(cos 01) = - kP2 (cos 82) (3.10)

P4 (cos 81) = -kP4 (cos 82). (3.11)

d

This series of equations has an infinite, but bounded, set of solutions called DAS

complementary angles. The solutions are shown graphically in Fig. 3.1 which was

produced in the Mathematica TM programming environment (the code is included
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in Appendix C). Only the first quadrant of angles need be considered due to the

symmetry of the even-order Legendre polynomials.

The following restrictions apply to the solutions:

1. The value of k lies between 0.8 and 5.0.

2. Calling 01 the angle where the rotor axis is closer to the vertical (z-axis), 01

is constrained to lie between 0° and 39.23 °. Then 02 must lie between 63.43 °

and 90° .

The appearance of these solutions on a graph of the Legendre polynomials is

instructive. When k - 1, equal amounts of time are spent at the angles 01 = 37.38 °

and 02 = 79.19 °. The graph in Fig. 3.2 reveals that for these angles the values of

both Legendre polynomials are equal and opposite, although neither is zero. Other

interesting sets of angles are 01 = 0.00 ° and 02 = 63.43 ° where k - 5 and 01 = 39.23 °

and 02 - 90.00 ° where k - 0.8. In the first set, the relative amount of time spent

at the first angle is a minimum. This set also maps onto an icosahedron revealing

the power of group theory in the averaging of higher-order interactions [106]. For

the second set of angles, the sensitivity of the rf detection in the experiment is

a maximum for a receiver coil moving with the sample rotor. The two zeroes of

P4(cos 0) are also a set of DAS complementary angles with k equal to approximately

1.87. Note that the second-rank magic angle, 0_) = 54.74 °, is not a permissible

DAS angle in this simple two-angle experiment.

Pure second-order quadrupolar powder pattern shapes have been calculated for

a variety of r] values at sets of DAS angles and are presented in Fig. 3.3. For each

pair of angles and each particular value of r] the spectra are scaled mirror images

about the isotropic shift. The scaling factor is the value of k for each pair.
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Figure 3.1" The solutions to Eqs. 3.10 and 3.11 as a function of k, the relative
time spent at each DAS angle.
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Figure 3.2" Contributions from the second and fourth Legendre polynomials

cancel at the k = 1 set of DAS angles, 01 = 37.38 ° and 02 = 79.19 °.
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Figure 3.3: Simulated second-order powder patterns with rapid sample spin-
ning for various values of the rotor axis angle and the asymmetry parameter

(71)of the quadrupolar interaction. The spectra are grouped by pairs of DAS
complementary angles.
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3.2.2 The DAS Experiment

The DAS experiment can be accomplished as shown in Fig. 3.4. First, a set of

DAS complementary angles is chosen. We define wl as the evolution frequency at
m

01:

wt = w,,o + w.n,,o(O,). (3.12) .

The Euler angles have been dropped from these equations since only a single crys-

tallite is considered. A sum over all crystallite orientations will be necessary to

calculate the full signal and this is done after calculation of the angular dependence

of the individual contribution from one crystallite.

The sample is first set spinning in a rotor inclined at an angle 01 with respect to

the magnetic field direction (the laboratory z-axis). The initial 90° pulse along the

x-axis rotates the magnetization down onto the negative y-axis where it evolves

through an evolution angle wi_'i. The density matrix becomes

Iz ----*-Iy ----,-ly cosw1_-1 + I_ sinw1_'1 (3.13)

The rotor is then hopped instantaneously to 02. The frequency w2 governs

evolution at 02, and it is given by

032 --- _iso q- _ganiso(02)

1

= wi.o- -_w,,,i.o(01), (3.14)

since 01 and 02 are chosen as DAS angles where

1

w,,_,,o(O=) = --]_w,_,i,o(OX). (3.15) .

This is verified by direct substitution of the set of equations for the Legendre poly-

nomials (Eqs. 3.10 and 3.11) into Eq. 3.4. The evolution occurs for a further time
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Figure 3.4: Radiofrequency pulse sequence and rotor axis orientation relative
to the external magnetic field for a DAS experiment with an instantaneous

hop between the two DAS angles. The rf pulse is a selective 90° pulse on the
central transition.
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_'2 at 02 accumulating a further phase of w2_'2. For the density ma.rix, evolution

continues as

- Iv cos c01_-1+ I= sin w1_'1 --* - Iv cos wl rl cos w2_'2+ I= cos colrl sin w2_'2

q-I= sin w11"1cosw2_'2 + Iv sinwlT1 sinw_'2. (3.16)
i

The total evolution time is called tl. At time tl - _'1+ r2 = (1 + k)_'l the total

evolution phase is

0-}17"1 Jt- 0)2"/'2 "- Cdisotl (3.17)

and the density matrix is

p(t,) = -Iu(cOsw, r, cosw2_'=- sinwlrl sinw2_-_)

+I=(sinwl"rl cos w2r= + cos w_l sin w2_-=)

= -Iu cos(wl_'l + w2_'_) + I=sin(wl_'l +w2_'2)

= -I u cos(w,8otl) + I= sin(wi,ot,). (3.18)

As a function of t_ the magnetization is only accumulating this isotropic phase:

the net precession is governed by an isotropic frequency. This was calculated for a

single crystallite orientation and, because equivalent magnetic nuclei in all crystal-

lites have spins with the same isotropic frequency, the total signal from the entire

sample is evolving as an isotropic shift. There is no longer a dependence of the

frequency on any of the Euler angles a, ft, a _, or ft'. Therefore, the averaging of

the first- and second-order anisotropies is accomplished.

A problem with this scenario arises immediately. It is not mechanically feasible

to hop instantaneously from one orientation to another. In fact, it may take on

the order of tens of milliseconds to accomplish a move between appropriate angles.
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Figure 3.5: Radiofrequency pulse sequence, rotor axis orientation relative to

the external magnetic field, and phase cycling used in a DAS experiment. Ali
pulses are selective 90° pulses on the central transition.

During the hop, the magnetization must be stored [95, 98] along the z-axis or it

will dephase (undergo irreversible decay) since the hop takes a long time compared

. to the spin-spin relaxation time constant, 7"2. The necessary modification to the

DAS experiment is outlined in Fig. 3.5.

The modified DAS experiment begins once again with a single 90° pulse on

the central transition. This creates a coherence between the two spin energy levels

which appears as an off-diagonal term in the reduced density matrix for the system.
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expt. p(1 +) P(_'I) p(storage)

1 -I U -I_cos wl _1+/=sin wl _1 -/,cos wl _'1

2 + I= +I=cos wxrl + I_sin wl _1 +/*sin wl _'1

expt. p(3+) p(t, = _'1+ _'2)
m

1 +I_coswlrl +I_coswl_lcosw2r2- I=coswx_sinw2r2

2 -I_sin w1_1 -I_sinwl_lcosw2T2+ I=sinwl_lsinw2_2

Table 3.1: Time-development of the reduced density matrix during a DAS

experiment in each of the two experiments of Fig. 3.5. The equilibrium state
before each sequence is p(0) =/*, and the notation p(n +) signifies the density
matrix immediately following the n tA pulse.

As seen in Table 3.1 the original z-magnetization from the spins in equilibrium with

the lattice, described by the density matrix I:, is converted by the pulse to either

x or y magnetization, described by I= or IU depending on the phase of the first

pulse (¢1 in Fig. 3.5). The magnetization then evolves in the first time domain of

length _-_into a linear combination of x and y magnetization as above in the naive

instantaneous experiment.

At this point the axis of the rotor must be hopped to angle 82. Before the hop,

the magnetization must be stored along the z-axis where it will not evolve any

further during the hop. This is accomplished with the second 90° pulse with phase

¢2. Only one component of the transverse magnetization may be stored at a time,

so at least two experiments are necessary to fully reconstruct the desired signal.

These two experiments are numbered 1 and 2 in Fig. 3.5, Table 3.1, and Table 3.2.

After the hop is completed, the stored component of the magnetization is re-

turned to the transverse plane with the third pulse. The spin magnetization evolu-
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expt. x buffer Y buffer

1 +COS COITlCOS _t]2T2 -[-COS co_-r_sin _t)2T2

" 2 -sin w_'r_sin w2 T2 -_-sin Lt]17"1 cos h) 27"2

+ +
Q.

Table 3.2: The magnetization measured in each of the experiments of Fig. 3.5.
The relative phase for addition to the data buffers is chosen by the detector

(receiver) phase in the pulse program. Note that w1_1 + w2_2 = wi,otl (see
Eq. 3.17).

tion now continues at the second angle, 02, for an amount of time _'2= k_'l. During

this period, all of the anisotropic frequencies have changed sign and the net effect

will be a refocussing of the transverse magnetizaticn into a spin echo [107, 108]

at the time tl = r_ + _'2. For a single crystallite the echo would not be encoun-

tered. The decay of the initial magnetization from an anisotropic interaction in

a powder is an interference effect of the signals from all crystallites, governed by

the anisotropic frequency components. When these are reversed and cancelled, the

rephasing appears as a spontaneous burst of magnetization returning along an axis

in the transverse plane. The actual reconstruction of this echo takes place in the

two parts in the DAS experiment due to finite hopping times, with appropriate cy-

cling of the receiver phase to correctly add the signals into computer memory. The

evolution of the magnetization at the echo point will have only evolved under the

isotropic frequencies of the spins in the system. Table 3.2 shows how the refocussing

" occurs mathematically with the use of some s,imple trigonometric identities.

The magnetization is sampled at the point tj. Then t_ is incremented by At_ and

the two steps (both experiments 1 and 2) of the full DAS experiment are repeated.
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Enough tl data points must be collected to obtain useful spectral resolution. The

increment, At1, determin_ the spectral width in the DAS experiment by the sam-

pling theorem [109, 110]. Fourier transformation of the isotropic (tl) data obtained

in a DAS experiment yields a high-resolution isotropic DAS spectrum.

A second way to perform DAS is as a two-dimensional NMR experiment. Data

is collected from the point of echo formation (tl) in a second time domain (t2)

where the decay is again anisotropic. This anisotropic decay is equivalent to the

decay observed after a single 90 ° pulse while spinning at the second DAS angle

82. By successively incrementing the tl time period from zero, a two--dimensional

data set is obtained where evolution in the first time dimension is purely isotropic,

while in the second dimension it is anisotropic as weil. A two-dimensional Fourier

transform of the data yields a correlation map of the isotropic DAS frequencies and

their associated anisotropic powder patterns. This provides a method for separating

overlapping powder patterns according to their isotropic resonances in the first fre-

quency dimension. The low-resolution dimension powder pattern will always have

a contribution from both quadrupolar and anisotropic chemical shift interactions,

if present, because the magic angle for P2(cos O) is not a DAS complementary angle

(see Fig. 3.1).

The usefulness of DAS lies in the fact that the evolution is purely isotropic: each

magnetically inequivalent spin species will have an isotropic resonance at the sum of

the isotropic chemical shift and the isotropic second-order quadrupolar shift for that

site. These parameters correlate well with structural and bonding parameters [68].

The isotropic resonances will not decay as quickly as the anisotropic resonances

since the frequency spread is (ideally) homogeneous and therefore not spread over as
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wide a frequency range. Narrow DAS resonances should result which are distinctly

resolved for different nuclear sites.

d

3.3 Double Rotation

The second method proposed to average first- and second-order interactions

is a parallel approach: spinning not around only one axis at a time, but around

multiple axes. The conceptually straightforward but mechanically difficult solution

is to place one rotor inside of another. This is the idea of double rotation (DOR),

first described by Samoson, Lippmaa, and Pines [111]. While the inner rotor spins

within the outer rotor, the motion of the outer rotor causes the inner rotor spinning

axis to sweep out a cone with respect to the external magnetic field as shown in

Fig. 3.6. There are two time-independent angles which may be selected for the

double rotation experiment" the angle which the inner rotor axis makes with rest ect

to the outer rotor axis (02) and the angle describing the orientation of the outer

rotor with respect to the external magnetic field (01). It is shown that by a prudent

choice of angles, the second-order auadrupolar interaction (as well as the first--order

chemical shift anisotropy) is averaged.

To describe the behavior of the spatial parts in the spin Hamiltonians (or equiv-

alently the evolution frequencies)_ a further transformation is needed from the ro-

tations that describes single-axis spinning at any arbitrary angle. The rotations

needed are very similar to those for single-axis rotation shown in Fig. 2.7 with one
m

further rotation betweer_ the inner rotor frame and a larger outer rotor contain-

ing the smaller. To summarize, the first transformation is from the PAS of the

interaction (chemical shift or quadrupolar) to the inner rotor and is described by
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Figure 3.6" The double rotation experiment, where an inner rotor spins inside
of an outer rotor which is itself spinning at an angle inclined to the magnetic
field.
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the Euler angles _2 = (a, /3, 7). The inner rotor is spinning at a frequency w_2

around an axis inclined at 02 to the cylinder axis of the outer rotor. The Euler

angles for the transformation from the inner rotor axis system to the outer rotor

" are [22 = (w,2t, 02, "/2). The outer rotor frequency is w,a and it is incli, cd at 01 to

the magnetic field, so the final set of Euler angles are til = (w_lt, Oa, 71). Although

only time--independent calculations will be considered explicitly, sidebands do be-

come important in DOR experiments more often than in DAS experiments due to

the slow speeds obtained experimentally for the outer rotor.

The Hamiltonians considered axe the first-order chemical shift and the second-

order quadrupolar Hamiltonians. The form of the full spatial tensor components

under double rotation are

2 2

n_ -- E v_L(_,,t,O,,_,)_2 .._,,_,-(_)(_,_t,o2,_2)×
mo=-2 m"=--2

2

•_(_),,,_,,(_,Z,_)_,,,
rn"l=--2

2 2 2

17_t--_2 mtr---- 2 rnttt=-- 2

2) 2)
d_!rn (01 )d(rn,rn e (0 2)d(me.rn . (/_)r2rn,,,. (3.19)

First-Order Interactions under Double Rotation

The high-field NMR frequency for spins in an oriented crystallite with an

anisotropic chemical shift has been stated generally in Eq. 2.8 and is

_(cs) [2 ,:,(cs)
o.,,o= V-_o,,_o• (3.2o)

D

Now, under double rotation, the time independent part of P_ocs) is

2

_o_ _2 _-'_"'°._,o_.(_,o_.(_ "_"(os_ (321)= k 11 00 kv2) m'"O[[9)r2m '''
rn °I----- 2

99



since, for the time-independent terms, m' - 0 and m" - O. This is the same sum

which appears in the static (non-spinning) calculation of the anisotropic frequen-

cies with the addition of two factors, d_)(81) and d_)(/_2). These reduced Wigner

matrices are the second Legendre polynomials of the cosine of their arguments, so

w(cs) cooAa

If either 81 or 02 is chosen to be a zero of the sccond Legendre polynomial (the

second-rank magic-angle of 54.74 °) the anisotropic interaction will be averaged for

every crystallite simultaneously.

Nothing is gained in the case of chemical shift anisotropy by using DOR instead

of MAS. In this argument there is just a second angle which may be set arbitrarily.

When w,2 is set to zero and 82 is also zero, this is exactly equivalent to the case of

spinning about a single axis.

Second-Order Interactions under Double Rotation

The more interesting interaction is, of course, the second-order quadrupolar

interaction which is not averaged by single-axis reorientation. In this case, products

of second-rank spherical tensors are encountered. Remembering Eq. 2.29 for the

full (isotropic plus anisotropic) second-order quadrupolar frequencies,

= "-'_I,_-I+ } (3.23)_.-_ 4I(2 1)h COo

the products R_ )P_Q_)_must be calculated under double rotation conditions. Before ,.

restriction to the time-independent terms, the product is
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2 2 2 2 2 2

me=-2 m'=-2 mm=-2 ni=-2 n'=--2 nra=-2

e-_("'+'_')(_rlt+'_)e -i('_e'+"'')(_'2t+_)e -_(''''+"''e)_ x

_!.,(Ol)_,.,,m,(o_),_,.,,,,.,,(_)_)_) ×
2),_)..(o_)_2.,(o_)_o,,,.,,"°"_ t._.'_m,,,,'_.,,,,.(Q)(Q) (3.24)

Fortunately, restricting the analysis to the time-independent terms allows the

following simplifications to be made: n' = -m' and n" = -ra". Since the :kl

components of the spatial tensor for the quadrupolar interaction in the PAS of the

electric field gradient tensor vanish, ra"' and n"' take on three possible values each.

The values in the sum for ra' and ra" take on all five values from -2 to 2. Therefore

the number of terms in one product of spatial tensors is 225, while for the full

expression in Eq. 3.23 there would be 450 terms. Explicit calculation without a

computer, while not impossible, is tedious. However, one possible way to approach

this is to couple the spatial tensors into a larger (fourth-rank) tensor space as done

by Samoson in his analysis of sideband patterns in double rotation [112].

The approach used here is to take advantage of a computer program which

will manipulate the summation symbolically and produce the result in the most

convenient form possible. Since an expansion of the frequency in a sum of cosines of

even multiples of the Euler angles describing the orientation of the crystallite occurs

for both the static and single-axis cases, that is the form sought. In particular,

2 2

_'-2 i=0 j--0

where A has been defined before as

e2qQ '_2 [4I(I + 1) - 3] (3.26)A= 4I(2I-1)h] ; , 8_o "
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As before, calculations were performed in the Mathematica TM programming

environment with the code listed in Appendix C. The result calls for an expansion

of the coefficients a_ as a sum of terms dependent upon Legendre polynomials, now

with arguments related to the two angles 01 and 02. Then, for the expansion in

Eq. 3.25, the coefficients are

a',_ = a!_)Pa(cosO,)P4(cosO_) + a_2)P2(cosO,)P2(cos02) + a!_°) (3.27)

where a!_°) is an angular independent (isotropic) term.

_(kk)
The coefficients uij for k = 0, 2, 4 are compiled in Table 3.3. Comparison

with Table 2.2, which provides the same expansion under single--axis rotation at an

arbitrary angle, reveals that the coefficients match exactly for ali polynomial orders.

In effect, double rotation splits the Ps(cos0) and P4(cos0) terms of the single--

axis expansion into the products P2(cosO_)P2(cos02) and P4(cosO_)P4(cosO_). The

isotropic component remains the same, arising from only the angular independcnt

term a_o(_). Explicitly,

(2Q,,,o) ( 1 1)w_,__, = A aoo- _ao, - _ao2

4 (2I- 1)h o (3.28)

since

0 (3.29)a(44)
o0 -- v -- 15 _'02 -"

and

a_2) 1(22) 1 a_2) = O. (3.30) "

As a further internal check on these equations, when either 01 - 0 or 02 = 0

the solution reduces to the single-axis spinning case. Further, if 01 -- 0 and 02 = 0,
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i j al? ) a!_2) ali°°)

o o s+,7_) -_(z-_ ) +118_0 (1 lV2 12 _ )--_-(1 , 2

o z -_(zs+,7_) _(z-'--., _) o

0 2 _(18+,7_) 0 0

81 _7_1 0 _rl 0

27 _1 1 Gr] --- 0

1 2 -_z,7 0 0

2 0 _2 0 032

9 2 0 02 1 -_r]

2 2 9r/2 0 032

Table3.3:Coei_cientsintheanisotropicfrequencycosineexpansion(Eqs.3.25

and 3.27)forthesecond-orderenergydifferenceinthecentraltransitionofa

quadrupolarnucleusundergoingdoublerotation.
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the static solution is obtained. Note that in the case of 91 = 0 the axis of the inner

rotor will still be sweeping out a cone in the laboratory frame. Since the magnet

has cylindrical symmetry about this axis, the rotation is irrelevant.

A simplified expression for the first- and second-order anisotropic central tran-

sition frequencies in the system under double rotation is

w(cs) .(2Q)
a,_ioo+ _,..oo = __, AtPt(cosO,)Pt(cosO_). (3.31)

t=2,4

The coefficients, At, are functions of the spin quantum number of the nuclet:s,

the quadrupolar coupling parameters, the chemical shift parameters, the resonance

frequency for the nucleus, and the orientations of both the chemical shift PAS and

the quadrupolar PAS. In order to completely average these anisotropies there are

two choices of sets of angles (01,02). The first is

(01, ez) = (O_), 0_ )) (3.32)

where 0_ ) and 0_) are second- and fourth-rank magic-angles: the zeroes of the

functions Pa(cos0) and P4(cos0). Numerically these axe the usual magic angle,

0_) = 54.74 °, and the higher-order magic angles, 0_) = 30.56 ° or 0_) = 70.12 ° (see

Fig. 2.10). An equally useful choice for complete averaging is

(e,,o=)= eg)). (3.33)

Of the four possibilities for the configuration of the double rotor apparatus,

one provides the best sensitivity in an NMR experiment with the receiver coil

coaxial with the outer rotor. The choice (01,02) = (54.74 °, 30.56 °) provides the

best combination of filling factor and relative NMR sensitivity [113] and has, so far,

been used exclusively in DOR.
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The theory of second-order averaging is now complete. Experimental proof

that _he second-order quadrupolar interactions may be averaged using these new

methods is presented next.

i

m
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Chapter 4 v

Second-Order Averaging:

Experiments

4.1 Introduction

The narrowing of NMR resonances from quadrupolar nuclei occupying low sym-

metry sites in solids has been a dream of NMR spectroscopists for a long time. Two

NMR experiments which will accomplish this goal were described in Chapter 3 and

have now been carried out experimentally. The first results on full averaging of

anisotropic second-order quadrupolar interactions in solids are described in this

chapter. The goals of dynamic-angle spinning (DAS) and double rotation (DOR)

are similar, but approach the narrowing of resonance lines using different philoso-

phies. The experimental difficulties and accomplishments of each are important

t ) a researcher who has a particular problem to solve and must weigh the use of

either or both techniques. Therefore, a comparison of the expected benefits and

difficulties of each type of experiment is essential.
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Dynamic-angle spinning NMR is a new sample spinning experiment where a

quick reorientation of the rotor must occur in order to accomplish the complete

averaging of second-order quadrupolar interactions. The evolution is isotropic at

" only one time in each experiment, the time of the DAS echo. Therefore, DAS

contains a second time dimension in a very natural way as the anisotropic decay after
d

the echo also evolves in time. The more complex radiofrequency irradiation and the

detection of the signal as an echo separates DAS from the single-pulse experiments

used to acquire one-dimensional MAS or VASS spectra. The DAS experiment

will first be traced out through its relation to single-axis spinning experiments.

High-resolution spectra were obtained from sodium-23 nuclei in a sodium salt and

these results are presented as the first experimental averaging of the second-order

quadrupolar interaction. The two-dimensional nature of the DAS experiment is

examined, and then the extension of this technique to oxygen-17 nuclei is presen'_ed.

In double rotation NMR, the difficulty in designing and fabricating a probehead

to carry out the complex motion outweighs the actual NMR experimental procedure.

A single rf pulse followed by quadrature acquisition of a signa! is all that is necessary

after a means of carrying out the double rotation motion is found. In DOR, the

averaging is often much more efficient than in DAS. Whereas the signal in DAS

may be attenuated due to incomplete refocussing of magnetization evolving under

interactions other than the chemical shift anisotropy or quadrupolar interactions,

the greatest deficiency in DOR spectra is the large number of spinning sidebands
,i

present due to modulation of the signal by the rotational motion of the slow outer

rotor. These issues will be examined in DOR NMR spectra from sodium-23 and

oxygen-17 nuclei in solids.

107



4.2 Dynamic-Angle Spinning

4.2.1 Experimental Preliminaries

b

The DAS experiments performed h_.re are constructed from discrete hops of a

spinner axis within a large magnetic field. Although a multiple number of axis hops

may take place in a DAS experiment, the simplest DAS experiment consists of one

hop with evolution time divided between the two DAS complementary angles. One

experimental restriction is that these angles must lie within a disjoint set of angles

which are a solution of Eqs. 3.7 and 3.8. If one angle lies between 0° and 39.23 °, then

the other is uniquely determined and must lie between 63.43 ° and 90.00 °. Each of

these solutions also has associated with it a single value of k, the parameter which

determines the fraction of time spent at each angle during the experiment.

Both instrumental constraints and theoretical simplicity encourage the use of

k = 1 in the DAS experiment. The evolution times at the two angles axe equal

and 01 = 37.38 ° while 02 = 79.19 °. The experiment is outlined in Fig. 4.1 and

included in this figure is a more complicated phase cycle than the two experiments

needed to fully reconstruct the second-order echo. The additional four-step phase

cycle is introduced to remove experimental artifacts arising from longitudinal (T1)

relaxation during the hop between 01 and 02. It may be verified that in experiments

1 through 4 equivalent signals are obtained. The same is true for the last four

permutations. The extra phase cycling will remove any magnetization which has

relaxed during the hop and would cause additional intensity along the positive z-

axis at the end of the hop. Extra peaks in the spectrum, called axial peaks, are

shown to arise from such an experimental artifact [36]. To remove this undesirable
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situation, the magnetization retained during the hop is stored for an equal number

of experiments along the +z-axis and along the-z-axis. The phase cycling of the

third pulse then alternately adds and subtracts any extra magnetization along the

- +z-axis only.

- A commercially available or home-built MAS NMR probe is not adequate for

performing a DAS experiment. It is necessary to quickly reorient the direction of the

rotor axis while maintaining stable air flow to support and drive the rotor. Reliable

electronic connections for the rf coil used to irradiate the sample and detect the net

magnetization must also be present. A probehead to accomplish the hop of the rotor

axis, designed by Professor T. Terao from Kyoto University in Japan, is skctched

in Fig. 4.2. Initially, this type of probe was used for small hops away from the

magic angle (a switched-angle sample spinning experiment) to study heteronuclear

dipolar interactions [95] and to separate overlappir _ CSA patterns in solids [96].

The probehead was fabricated from Vespel, Delrin, and alumina parts. These

materials were chosen based on their light weight, ease of machinability, and dura-

bility. They also have a history of excellent performance in MAS applications [114].

An important feature of this design is that the coil is wrapped around the stator

and is moved along with the spinning axis. This increases the filling factor when

compared to a coil which is static and must surround the complete spinning as-

. sembly. Filling factor is defined as the volume of the sample containing the spins

divided by the total volume of the coil and the NMR sensitivity from a sample

is proportional to the filling factor. Therefore, a coil wrapped acqund the stator

provides a large filling factor which is desirable when working with low-abundance

nuclei or those with small gyromagnetic ratios.
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Figure 4.1" The DAS experiment performed with k = 1 and therefore equal
evolution times at the two DAS angles. Extra phase cycling is included to

minimize experimental artifacts from relaxation during the storage and hop.
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Figure 4.2" Cross-sectional views of the probehead used for the first DAS
o experiments. The rotor mechanism, dual air-delivery system, and mechanical

axis flipping assembly are illustrated.
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The variable--angle capability of this design is limited by the position of the coil

with respect to the z-axis. The coil is used to irradiate the spins in the sample

with short pulses of radiofrequency power and the irradiating field here is in the

airection defined by the symmetry axis of the cylindrical coil. Only the component •

along the x-axis in the laboratory frame affects the spin angular momentum of

the nuclei and this component depends on the cosine of the angle which the coil

makes with the x-axis. This angle is the geometric complement of the angle 0

describing the orientation of the rotor with respect to the z-axis. The irradiation

efficiency obviously suffers as the angle 0 approaches low angles. The length of time

needed to cause 90° nutation of the magnetization, for full creation or mixing of

spin coherences, will change when moving from one angle to the next and so must

be calibrated at each angle used in the experiment. The detection efficiency also

depends upon the direction of the coil, so that higher spinning angles (closer to 90 °)

provide the largest signal intensity. Therefore, the larger angle of 79.19 ° is chosen

as the second angle in the k = 1 DAS experiment.

The probe is flipped between angles by a pulley/string arrangement coupled

to an equivalent pulley on a high-torque, high-inertia stepper motor at the base

of the magnet. Chapter 7 includes a further description of the laboratory setup

for a DAS experiment and provides a detailed account of the testing procedure for

probehead operation. The probe described here was optimized to perform a hop

between 01 = 37.38 ° and 02 = 79.19 ° in 35 msec.

The air for the bearing and drive jets arrives through two hoses clamped to the

top of the stator housing. This placement adds extra inertia to the probehead which

may be avoided by supplying the air coaxial to the pulley axis. This is not possible
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with the moving coil design since the connections for the rf coil are made along this

axis. A fixed--coil probehead was designed as an improvement to the initial design

and is described in a paper in the Review of Scientific Instruments [115] and in

° Chapter 7 of this work. The filling factor of a fixed coil probe will suffer as the coil

volume must be expanded to fit around a larger portion of the hopping mechanism,
t

but signal intensity is sacrificed in order to increase the electronic efficiency and

reliability. The inertia of the assembly is also decreased in the new design with the

goal of increasing the speed of the hop.

4.2.2 Sodium-23 NMR

The first nucleus considered in a DAS experiment was sodium-23. This choice

was based on the high natural abundance (100%), moderate gyromagnetic ratio

(about one-quarter that of protons), and moderate quadrupole coupling frequencies

(CQ values of approximately 2 to 3 MHz) of this nucleus. A simple sodium salt,

sodium oxalate (Na2C204) was the primary test compound and its crystal structure

is known from x-ray diffraction studies [116]. It contains only one distinct type of

sodium crystallographic site in its unit cell.

The NMR spectrum of a static sample of polycrystalline sodium oxalate is shown

at the top of Fig. 4.3. This is the central transition powder pattern and it is approx-

. imately 15 kHz (140 ppm) wide due to the second-order quadrupolar interaction.

The features are further broadened by chemical shift anisotropy and dipolar cou-

pling of the spins. The field strength of 9.4 T corresponds to a sodium-23 resonance

frequency of 105.84 MHz (and a proton resonance frequency of 400 MHz), so the

field is already high enough to cause a considerable narrowing of the spectrum due
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to the inverse square dependence (in ppm) of the quadrupolar anisotropy otL the

strength of the magnetic field (see Eq. 2.29).

Utilizing magic-angle spinning, the width of the pattern narrows to between
6

3 and 4 kHz and is almost five times narrower than the static spectrum. Spec-

tral features associated with the second-order quadrupolar interaction are evident,

but none of the singularities or shoulders in the pattern occur at the isotropic fre-

quency (center of gravity) for the resonance. Computer simulations may be used

to determine the isotropic chemical shift and quadrupolar parameters by either a

_(cs)
best fit or visual matching and it is found that Oi,o = 1 ppm, CQ = 2.5 MHz

and 7? - 0.7 yield the closest match. The center of gravity of the resonance oc-

curs at -15 ppm which agrees with the isotropic second-order quadrupolar shift

calculated from these parameters of-16 ppm. Overall, this is a well-characterized

sample and yields an excellent, if somewhat chemically uninteresting, test for the

new techniques.

The DAS probehead may be set to any orientation within the magnetic field, al-

lowing acquisition of single-axis spinning spectra away from the usual magic-angle.

In Fig. 4.4 the spectra at the two k = 1 DAS angles illustrate the reflection symme-

try expected from Eqs. 3.7 and 3.8. Experimental observation of these resonances

permits evaluation of the degree to which this mirroring is actually observed. The

main anomaly is in the size of the first-order sidebands associated with each center-

band resonance: those at the lower angle are larger. Theoretically, mirror symmetry

should be observed only for the centerband. The modulation of the sidebands is

also angle-dependent, but a dependence on the second and fourth Legendre poly-

nomials is not found. The decrease in odd-order sideband intensity as 0 increases
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Figure 4.3: Static and magic-angle spinning (MAS) NMR spectra of sodium-23
in polycrystalline sodium oxalate (Na2C204) at a field strength of 9.4 T. The

A

zero of the frequency axis is the resonance frequency of sodium-23 in a satu-
rated aqueous solution of sodium chloride.
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is described in the equations of Lefebvre et al. in reference [74]. The centerband

intensities do show the expected mirror symmetry about the isotropic frequency

where they would intersect, here at around -15 ppm with respect to the sodium-23

resonance from a saturated aqueous solution of NaCI. "

The reason that the DAS experiment works is closely related to the mirror

symmetry. The resonance frequency for the spins in a particular crystallite, while

the whole powder is spinning at 0_ --- 37.38 °, occurs at a definite position in the

spectrum. The spins in this crystallite contribute independently to the spectrum:

the lineshape is inhomogeneous and a hole could be burned into it by saturation

of ali spins resonant at one frequency. When the sample spins at 02 = 79.19 °, the

same spins have their resonance at the same distance from the isotropic frequency,

but on the other side of the isotropic frequency. This is true for ali crystallites in

the sample and so for the entire spectrum.

A standard k = 1 DAS experiment proceeds as follows. During the first half

of the tl period, the spins are evolving under the frequencies in the 01 = 37.38 °

spectrum. This information is stored in Zeeman order (a component is saved along

the z-axis), and then during the second half of tl the spins have an evolution

governed by the frequencies at 02 = 79.19 °. The mirrored frequencies not only

cancel, but the spectrum effectively collapses to the isotropic frequency and signal

is seen from ali spins in the sample, not just those which happen to be at the

isotropic frequency at all times.

la

A similar description holds for a DAS experiment using any set of complemen-

tary angles. For the angles which are the zeroes of P4(cos0) (the spectra are shown

Fig. 4.5) the scaling factor ;.s k = 1.87. Therefore, the evolution time at the second
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Figure 4.4: NMR spectra of sodium-23 in polycrystalline sodium oxaiate

- (Na2C_O4) at a field strength of 9.4 T while spinning the sample at the two
k = 1 DAS angles 37.38° and 79.19°.
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angle must be 1.87 times as long as at the first. This is also related to the shape of

the spectra as they are mirror images about the isotropic frequency at -15 ppm and

the width of the spectrum at the first angle is 1.87 times the width of the spectrum

at the second angle. If spins in a particular crystallite resonate at a fixed frequency °

interval from the isotropic shift at the first angle, then at the second angle they
Q

will resonate on the other side of tbe isotropic shift but at a frequency closer to

isotropic frequency. The ratio of the frequency differences from the isotropic shift

is exactly k. For the anisotropic phase factors to cancel from the two evolution pe-

riods the product of the anisotropic frequency and the evolution time at the second

angle must be equal and opposite in sign to that at the first. Since the anisotropic

frequencies differ in sign and the frequency at the first angle is 1.87 times greater,

the evolution time at the second angle must be 1.87 times as long.

4.2.3 Sodium-23 DAS

DAS Echoes

Consider the experiment illustrated in Fig. 4.1 with a sample of polycrystalline

sodium oxalate in the rotor. After the initial pulse, the magnetization decays due

to the interference from ali of the frequencies in the spectrum at 81 -- 37.38 °. The

free induction decay (FID) of this signal is shown in Fig. 4.6(a) and the Fourier

transform of this FID is the spectrum at the top of Fig. 4.4. After waiting a period .

of tl/2 = 500 #sec the second pulse is applied and the magnetization is stored. The

flip of the axis takes 35 msec from 81 to _ and then another properly calibrated

pulse returns the magnetization to the transverse plane. Proper phase cycling of

the pulses (found in Fig. 4.1 and described in more detail in the text) produces the
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Figure 4.5: NMR spectra of sodium-23 in polycrystalline sodium oxalate

. (Na2C204) at a field strength of 9.4 T while spinning the sample at the two
DAS angles 30.56° and 70.12°. These two angles are the zeroes of the fourth
Legendre polynomial and have an approximate scaling factor of k = 1.87
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Figure 4.6: (a) The free induction decay (FID) from sodium oxalate while
spinning at an angle of 37.38 °. The Fourier transform of this signal is the

spectrum while spinning at 37.38 ° shown in Fig. 4.4. (b) The second-order
echo observed after performing the DAS experiment in Fig. 4.1. This echo
corresponds to the refocussing of the anisotropic components of the second-
order quadrupolar and chemical shift interactions.

second-order quadrupolar echo in Fig. 4.6(b). The echo maximum occurs when a

further evolution period of tl/2 = 500 #sec has passed after the third pulse. The

magnetization at time tl (the echo top) has evolved for a total time of 1 msec under

the isotropic frequency for the sodium-23 nuclei in this sample.

The data in the DAS experiment may be accumulated in a variety of ways. The

usual way has been to begin data digitization at the point of echo formation and

to continue acquisition in a second time domain, t2. A two-dimensional data set

is obtained containing both isotropic and correlated anisotropic frequency informa-

tion for each distinct resonance resolved in the high-resolution (isotropic) domain.

1 oN
.t g,¢_



Alternatively, the first data point in each t2 domain (corresponding to the echo

top) may be extracted and a one-dimensional isotropic interferogram constructed.

Other data acquisition possibilities include accumulating the full echo after the

" third pulse (which may cause problems at short tl values unless another 180 ° pulse

is used to form a full spin echo) or using a single-point detection method at each

tl point with a pulsed spin-lock to obtain more efficient signal averaging.

One-Dimensional Sodium-23 DAS

The real and imaginary parts of the one-dimensional DAS interferogram fl'om

sodium oxalate are shown in Fig. 4.7. The tl time was varied in each of 128

experiments by At_ = 16 #sec resulting in a spectral width of 62.5 kHz. Each data

point is an average of four passes through the entire eight-pulse experiment. Pulse

times for 90° nutation were 6.2 #sec at 01 and 4.1 gsec at 02 and the magnetic

field strength was 9.4 T where the sodium-23 Larmor frequency is 105.84 MHz.

The pulse lengths were calibrated for selective excitation of the central transition

resonance by comparing the pulse lengths for maximization of the FID from the

sodium oxalate sample and a sample of sodium chloride. The cubic symmetry of the

sodium chloride produces a negligible EFG at the sodium lattice sites and therefore

no quadrupolar broadening is observed in the central transition.

The Fourier transform of the decay in Fig. 4.7 is the high-resolution DAS spec-

. trum shown in Fig. 4.8. The spectrum reveals only one isotropic line, at a frequency

of-15 ppm. The linewidth is 575 Hz and spectral resolution is limited at this point

by sodium dipole-dipole interactions.

The remaining lines are sidebands occurring at one-half of the rotor frequency

of 3 kHz. The appearance of the sidebands at half of the rotor frequency is expected
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Figure 4.7: DAS free induction decay obtained from collecting the echo heights
as a function of tl in a DAS experiment on sodium oxalate in a magnetic field
of 9.4 T.
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Figure 4.8: The DAS NMR spectrum of sodium-23 in sodium oxalate at 9.4 T
reveals a narrower resonance line than the static and MAS spectra. The exper-

• imental conditions leading to this spectrum are described in the text and the
frequency axis is expanded to show only the central 20 kHz of the spectrum.
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since the evolution period is divided into two equal sections with a storage period

between them. This effect is similar to that seen in two-dimensional spin-echo

experiments [117]. For a physical picture of this phenomenon, the following argu-

ment is useful. The appearance of spinning si_ebands in a spectrum corresponds

to a modulation of the time domain signal which refocusses into a rotational echo

once every rotor period [118]. The signal will die away in the FID and reappear

at a time _',. - 1vr where v_ is the rotational frequency. In the first half of the

DAS experiment, the maximum signal available for storage will be present when the

evolution time equals the rotational period _-,, and then at integer multiples of this

time. After storage, the refocussed signal will also have a maximum when the sec-

ond evolution time is equal to the same multiple of _-_. The maximum signal (or the

first dimension rotational echoes) in the one--dimensional DAS FID will occtu- when

tl - 2n_-_ with n an integer. The rotational echoes occur only half as frequently

in the first time domain and the Fourier transform of this corresponds to having a

rotor spin at half of the rotation frequency. Therefore, sidebands are present at half

of the rotor frequency in DAS. While the rotor in the probe described here spins

at speeds between 3 and 3.5 kHz, newer versions achieve speeds up to 6 or 7 kHz

and the sideband problem is generally reduced.

Two-Dimensional Sodium-23 DAS

The DAS data set from sodium oxalate may also be processed with a two-

dimensional Fourier transform. The form of the signal as a function of tl and t2

is

S(tl,t2)- _ e'_"°t_e'(_'°°+_°"'°°)'2 (4.1)
allcryst.
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where the sum is over ali crystallite orientations in the powder. A resonance at the

isotropic frequency, W_so,appears in the high-resolution dimension of the spectrum

while a broad powder pattern occurs in the second dimension due to the powder

" average of the anisotropic frequency. The powder pattern will be correlated with

the high-resolution resonance at its isotropic frequency. However, since the data is

accumulated to have the form in Eq. 4.1 in order to provide quadrature detection in

both dimensions, a magnitude calculation must be performed on the final complex

spectrum to obtain a two-dimensional map with ali of its intensity positive. The

problems associated with phase-twisted lineshapes (obtained from a Fourier trans-

form of a signal such as that in Eq. 4.1) are addressed and resolved in the following

chapter on pure-absorption-phase DAS.

A two-dimensional magnitude spectrum for sodium-23 in polycrystalline sodium

oxalate is presented in Fig. 4.9. Since there is but a single distinct resonance from

sodium in this sample, a single resonance is found in the contour map. The projec-

tions are the high-resolution DAS spectrum in the first frequency dimension and

the low-resolution powder pattern in the second dimension, which is equivalent to

the magnitude spectrum obtained from a sample spinning at 02 -- 79.19 °. The

resonance in the high-resolution dimension of the two--dimensional DAS spectrum

is broader than that observed in the one-dimensional DAS spectrum since the mag-

nitude calculation tends to broaden lines, especially adding intensity in the wings

of a resonance.

In sodium-23 DAS, the width of the resonance lines are governed by dipole-

dipole interactions such as those introduced in section 1.3.3. The strength of the

dipolar interaction depends on the product of the gyromagnetic ratios for the two
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Figure 4.9: The two-dimensional DAS NMR spectra of sodium oxalate at a

field strength of 9.4 T. The data are presented as a magnitude spectrum to

avoid phase-twisted lineshapes.
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spins involved. Homonuclear dipolar interactions are multi-body interactions which

appear as bilinear spin terms and evolution due to these terms in the Hamiltonian

are not stored efficiently by a DAS experiment. This irreversible loss of magnetiza-

" tion when strong dipolar couplings are present may also be related to the phenom-

ena of spin--diffusion in solids [119] and the associated process of cross-relaxation

in dipolar and quadrupolar systems [120, 121, 122].

4.2.4 Oxygen-17 DAS

Oxygen-17 is a quadrupolar nucleus (I = _) with a gyromagnetic ratio of approx-

imately half that of sodium-23 and a much smaller natural abundance. Narrower

DAS lines are expected for oxygen-17 due to overall weaker dipolar interactions.

On the other hand, the quadrupolar couplings found experimentally [77, 78] and

predicted theoretically [46] are often larger than in sodium-23. The first attempt at

narrowing oxygen-17 resonances by DAS was performed on a sample of low cristo-

balite, a polymorph of SiO2, enriched to 37% in oxygen-17. The natural abundance

of oxygen-17 is 0.037% so enrichment is essential for obtaining reasonable signal

intensity.

Experiments were performed in a 9.4 T magnetic field where the oxygen-17

Larmor frequency is 54.24 MHz. The 90° pulse times at 01 and 02 were 10.6 ;usec and

. 6.0 #sec respectively compared to approximately 17 #sec with a sample H2170. The

spectra from a static sample and two separate DAS experiments are compiled in

Fig. 4.10.

The isotropic frequency at -16.6 ppm (with respect to H_rO) is distinguished

from the large set of sidebands present in both DAS spectra by comparing the
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Figure 4.10: Static and DAS oxygen-17 NMR spectra of polycrystalline low

cristobalite (a polymorph of SIO2). The field strength is 9.4 T and the DAS

spectra were obtained with spinning speeds of 2.46 and 3.04 kHz. This allows
the isotropic peak (,) to be distinguished at-16.6 ppm. The contour map at
the bottom is a magnitude spectrum of the full two-dimensional data set at

the higher spinning speed.
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spectra at two different spinning speeds. The isotropic peak does not shift and the

sidebands move to integer multiples of one-half of the rotor frequency. The isotropic

line has a residual linewidth of approximately 200 Hz, two orders of magnitude

" narrower than the resonance from a static sample. This is also nearly two and a

half times narrower than the sodium-23 DAS resonance from sodium oxalate.

4.3 Double Rotation
,_ _'_

4.3.1 Experimental Preliminaries

Once the double rotation motion is achieved in the laboratory, a DOR exper-

i iment is easier to accomplish than the DAS experiment because it is inherently

one-dimensional. A single pulse and acquire NMR experiment is usually sufficient

to obtain a high-resolution spectrum. See, however, the manuscript by Samoson

regarding synchronized DO R for a more complicated DOR experiment aimed at

suppression of odd-order sidebands in the spectrum [112].

The difficult task when performing DOR NMR is the design, building, and

successful operation of a DOR probe. The first probehead was constructed by

Dr. Ago Samoson, working closely with the Department of Chemistry machine

shop at the University of California at Berkeley. It is described in reference [113]

. and has been honored by Research & Development Magazine as one of the 100

most significant new technological products of the year in 1989 [123]. Subsequent

improvement of this design has been accomplished by Dr. Yue Wu, a postdoctoral

researcher at Berkeley, and is also described in the literature [124]. This design is

illustrated in Fig. 4.11.
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Figure 4.11: Schematic drawing of the NMR probehead for double rotation

experiments.
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The new double rotor has an inner rotor (1), with flutes at either end, which

contains the sample. Its length is 13.3 mm and its diameter 4.6 mm. The outer

rotor is machined in a variety of separate parts: the axles (7) and the step shoulders

• (8) hold the end pieces (2') onto the center piece (2). The center piece contains the

inner stator assembly (9), the inner rotor (1), and the inner stator endcaps (10).

The overall length of the outer rotor assembly is 46 mm with a 13 mm diameter.

Air is brought into the inner rotor through the holes (3) and (4) in the end pieces.

The air passes into drive and bearing mechanisms for the inner rotor from the top

and bottom respectively. The inner rotor typically reaches rotation frequencies of

5 kHz. The outer rotor is placed in a conventional bearing/drive stator assembly

fitted with two caps which direct air for the inner rotor into the holes (6). The outer

rotor may reach speeds up to 2 kHz with no air flow supplied to the inner rotor.

When the inner rotor is spinning, 1 kHz is the upper limit for steady performance.

The inner rotor is inclined at an angle of 30.56 ° with respect to the cylindrical

axis of the outer rotor: this is a zero of P4(cos0). The outer rotor is spun around

an axis at the normal second-rank magic angle of 54.74 ° with respect to the large

external magnetic field. As shown in Chapter 3, this will average first- and second-

order anisotropies including those due to the chemical shift and the second-order

quadrupolar interaction in the central transition of quadrupolar nuclei.

4.3.2 Sodium-23 DOR

w

As with DAS, the capabilities of the DOR experiment were first demonstrated on

a well-characterized test compound. The sodium-23 resonance from polycrystalline

sodium oxalate (Na2C204) once again provides an excellent example.
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The double rotation motion is begun by first bringing the smaller, inner rotor

up to speed (approximately 5 khz rotation frequency) and then beginning the

motion of the outer rotor. It is crucial to keep the inner rotor from stopping during

the spinning up to speed of the outer rotor. Crashes of the inner rotor were quite

common in the first experimental tries, but eventually double rotation was achieved.

The spectra of Figs. 4.12 and 4.13 illustrate early results for sodium oxalate.

Isotropic resonances in DOR NMR are distinguished from spinning sidebands

by obtaining spectra at two outer rotor frequencies (Fig. 4.13). The resonance at

-15 ppm is the isotropic shift for sodium-23 in sodium oxalate, as also measured in

the DAS experiment. The sodium-23 resonance from DOR is noticeably narrower

than that in the DAS spectrum: from DOR it is on the order of 150 Hz wide while

it is almost four times as wide in the DAS spectrum. The difference in the two

techniques is that in the serial DAS experiment there is a storage period where

dipolar interactions could cause a decrease in the signal observed. Cross-relaxation

to other energy levels not in the central transition or spectral spin diffusion are

possible mechanisms for the observed broadening. Further investigation of this

broadening is an important extension of this work.

4.3.3 Oxygen-17 DOR

A further example of DOR is its application to o:_ygen-17 nuclei in solids. A i.

more complete study of oxygen-17 in minerals forms the basis of Chapter 6. Here,

the first resolution of overlapping resonances from crystallographically inequivalent

nuclei using these new techniques is presented [104].

Diopside is a polycrystalline silicate mineral belongir6 to the pyroxene fam-
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. Figure 4.12: Top: MAS spectrum for sodium-23 in polycrystalline sodium

oxalate (Na2C204) at a field strength of 9.4 T. Bottom: Double rotation NMR
spectrum of sodium-23 in sodium oxalate. In the DOR spectrum the sidebands

" occur at multiples of the outer rotor frequency (394 Hz). The frequency axis

is given with respect to the sodium-23 resonance from a saturated aqueous
solution of sodium chloride.
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Figure 4.13: DOR spectra for sodium-23 in polycrystalline sodium oxalate

(Na2C204) at a field strength of 9.4 T. The rotational frequencies in the two
experiments are 380 Hz (top) and 394 Hz (bottom) and the isotropic peak (*)
occurs at -15 ppm.
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ily [125]. Its molecular formula is CaMgSi206 and the unit cell contains three in-

equivalent oxygen-17 sites: two are terminal oxygens and one is a bridging species.

These sites occur in a 1:1:1 ratio and we assume a random distribution of the

" 20% oxygen-17 enrichment in the sample. The oxygen-17 Larmor frequency is

54.24 MHz in a 9.4 T magnetic field. Pulse lengths of 4/_sec were used correspond-

ing to tip angles of 30° from the z-axis for the central transition under selective

irradiation conditions.

The spectra in Fig. 4.14 are MAS and DOR spectra of oxygen-17 in diopside.

The two DOR spectra were obtained with different rotational frequencies of the

outer rotor and the three isotropic resonances are discerned by comparison of the

centerbands and spinning sidebands. These are the first spectra using these tech-

niques in which crystallographically distinct nuclear sites which overlap in MAS

spectra have been so clearly resolved.

4.4 A Comparison of DAS and DOR

The two techniques described and demonstrated above are both useful when

second-order quadrupolar effects dominate the NMR spectra of half-odd integer

quadrupolar nuclei. The differences and similarities of DAS and DOR are summa-

rized in an attempt to distinguish which method may be more useful for a particular

. chemical problem.

The experiments themselves are undertaken in strikingly different ways: DAS

is really a two-dimensional NMR technique whereas DOR is fundamentally one-

dimensional. Two-dimensional NMR requires longer experimentcl times as one

time dimension must be acquired pointwise by incrementing the time variable and
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Figure 4.14: NMR spectra of oxygen-17 in the polycrystalline mineral diopside
(CaMgSi206) at a field strength of 9.4 T. The top spectrum is the conventional

MAS spectrum obtained while spinning at 5 kHz. Below are two DOR spectra
obtained at different outer rotor spinning frequencies. The isotropic resonances
are marked with numbers and sidebands occur at multiples of the outer rotor

frequencies (540 and 680 kHz here). The frequency scale is referenced to the

oxygen-17 resonance from H_O.
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running a whole set of one--dimensional experiments. The advantage of the two-

dimensional method lies in the correlation of frequenci_ in the spectrum from the

two time dimensions. The speed of obtaining a one-dimensional DO R spectra sac-

" rifices the correlation of the isotropic and anisotropic resonances. This correlation

is useful in full characterization of the chemical shift and quadrupolar parameters

for the nuclei. Obtaining spectra at two or more field strengths is possible, how-

ever, with both techniques. This will also determine the isotropic chemical shift

and the isotropic second-order quadrupolar shift, which contains a product of the

quadrupolar parameters.

A correlation experiment with a double rotor could be accomplished in a man-

ner similar to the MAS/powder pattern correlation experiments used for studying

carbon-13 nuclei in solids [94]. While the outer rotor is inclined to the magnetic

field at the second-rank magic angle, the second-order quadrupolar coupling is

completely averaged. A hop of this axis to another angle (for example, to 90°)

would provide a second time dimension where the anisotropies are again present.

Once stable double rotation is accomplished, a hybrid DAS/DOR probe is a nat-

ural marriage of these two techniques. By having the inner rotor inclined to the

larger rotor at the second-rank magic angle and beginning with the outer rotor at

a fourth-rank magic angle, the chemical shift anisotropy would always be averaged

at any orientation of the outer rotor.

The spinnipg speeds obtained in a DAS experiment provide efficient removal of

sidebands compared to the slower outer rotor in the DOR technique. When quad-

rupolar coupling constants axe large (greater than 2 MHz) the number of sidebands

in a DOR spectrum can make spectral interpretation difficult, even when spectra
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are obtained at two or more spinning speeds. Acquisition synchronized with the

position of the outer rotor has been introduced to reduce the number of sidebands

by a factor of two in a DOR spectrum [112, 124].

The need for a hop of the spinner axis during a DAS experiment places a restric-

tion on the samples used to those with a sufficiently long relaxation times. During

the experiment, magnetization along the magnetic field direction will decay with

a time constant T1, called the spin-lattice relaxation time. In samples studied by

DAS, T1 must be longer than the hopping time of 30 to 35 msec. This is often,

but certainly not always, the case for quadrupolar species. The averaging in DO R

is continuous, so there is no T1 restriction. The need for a hop in a finite period

of time is also thought to contribute to the widening of the resonance lines in the

DAS spectra compared to the DOR spectra when dipole-dipole interactions become

important.

Experimentally, DAS probes generally have a higher filling factor than DOR

probes because the coil may be wound directly around the stator whi_ch is close to

the rotor containing the sample. In DOR the coil is around the outer rotor stator as-

sembly, although the sample fills the volume of only the inner rotor. Fixed-coil DAS

probes also suffer similar degradation of filling factor. When high natural abun-

dance nuclei such as sodium-23 and aluminum-27 are studied, the signal intensity

is sufficiently strong in most experiments. When lower frequency, low abundance

spins are considered the problems of signal-to-noise ratio become more acute and

isotopic enrichment of the samples is often necessary..

In conclusion, both techniques have their own advantages and disadvantages.

Empirically, it has been found that DAS works better for lower frequency, dilute
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nuclei such as oxygen-17 where dipolar interactions are reduced and the large spread

of frequencies produces a number of sidebands. Conversely, DOR has proven more

effective in the study of sodium-23 and aluminum-27 where resonances appear close

° together and are too broad in the DAS spectra.
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Chapter 5

Pure-Absorption-Phase DAS

5.1 Introduction

The first experimental realizations of second-order averaging (DAS and DOR)

provide narrow isotropic resonances from quadrupolar nuclei. The overall shift of

a resonance line observed in such a spectrum is the sum of two contributions, the

chemical shift and the isotropic second-order quadrupolar shift, the latter depend-

ing on the strength and asymmetry of the local electric field gradients at the nucleus.

The shielding and quadrupolar parameters correlate well with bond order and other

structural properties, so that the narrowing of broad and often overlapping lines

is useful for assigning resonances and extracting both qualitative and quantitative

structural information.

In a conventional DAS experiment, momentarily dropping the extra phase cy-

cling introduced in Chapter 4, the rf irradiation and rotor axis orientation schemes

of Fig. 5.1 are necessary. For each tl increment, two experiments, labelled a and

b, are summed in order to reconstruct a second-order DAS echo. In a second time
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domain (t2), a free induction decay containing information about the anisotropic

part of the interaction may also be acquired. Two-dimensional Fourier transfor-

mation provides a correlation of anisotropic lineshapes in the w2 frequency domain

" with high resolution DAS lineshapes in wl. The early implementations of DAS

employed phase modulation of the tl signal (the contribution to the signal from

evolution during tl is a phase factor e_ult_) in order to obtain quadrature detection

in the first time domain. This necessitates the display of the two-dimensional map

as a magnitude spectrum [126]. Lineshapes in both dimensions are broadened by

the magnitude calculation, and the inhomogeneous powder pattern lineshapes from

second-order quadrupole interactions change markedly in this mode. A scheme

for obtaining pure-absorption-phase lineshapes with quadrature detection in both

dimensions of a DAS experiment has been developed [127], and is explained here

in relation to coherence-transfer pathways and the theory of lineshapes in two-

dimensional NMR. The immediate advantage of this new experimental strategy is

narrower lineshapes in two-dimensional DAS correlation spectra.

5.2 Coherence Transfer

Coherences in magnetic resonance are a generalization of transverse magnetiza-

tion [128, 129]: a state of the system where the net population difference between

two spin eigenstates I m) and [ m- 1) may be zero but there is still a "connec-

tion" between the states. The order of a coherence, p, is the difference between the

magnetic quantum numbers, and in the case of transverse magnetization p = -t-1.

In high-field NMR, a coherent superposition of two eigenstates is a non-equi-
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Figure 5.1: The radiofrequency (rf) pulses, rotor position, and coherence order .

for a conventional (phase-modulated) DAS experiment.
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librium state

{ = lm>+ (5.1)

which evolvesin time under the spinHamiltonianforthe system. A coherence
r

betweenthe states{m> and {n> correspondstoa non-zerooff-diagonalterm in

. thedensitymatrixdescribingthe system,Pmn = _C_, where the bar denotesan

ensemble average. For each spin transition there are two associated coherences,

pm,, and p,m, with coherence orders of opposite sign. During free precession of the

magnetization, the coherence order is preserved: p - m - n is a good quantum

number. The coherences are manipulated with radiofrequency pulses which may

transfer coherence order depending on the flip angle, pulse power, resonance offset,

and relative phase of the irradiation.

In earlier chapters the spin coherences were described in terms of Cartesian

spin operators: I_, Iy, and Ix. However, in the description of coherence-transfer

pathways it becomes advantageous to use spherical tensor components of the spin

angular momentum since a spherical component is uniquely associated with a par-

ticular coherence level [130]. Cartesian spin operators may be associated with two

or more coherence levels as shown below. The transformation from Cartesian into

normalized spherical components is

1

I+, = vf_(I_ + iIy) (5.2)

I0 = Ix (5.3)

1

I_, = --_(I_ - iIy). (5.4)

To return to the Cartesian basis, the non-trivial transformations are

1

= (5.5)

143



i

I, = _(I+, + I_,). (_.6)

The density matrix at time t for a system of N spin-_ nuclei may be expanded

in a set of 4N spherical-basis product operators [131], each denoted by a particular

Bo with expansion coefficients bo(t):

4N

pcr)=Z: b,Ct)B.. (_._)
$--1

The orthogonality relations

Tr[B,B;] = &°(2) N-2 (5.8)

hold for these operators.

Quadrature detection is used almost exclusively in NMR spectroscopy in order

to discriminate the signs of the spectral frequencies while allowing optimal use

of pulse power and data storage capabilities. This corresponds to simultaneously

digitizing the signal along two orthogonal axes in the xy plane. The complex signal

is

ali nuclei

= v_(2)_-_ Z: b._l(t) (5.10)
ali nuclei

and thus quadrature detection selects only one coherence level during the detection

period (t2 in Fig. 5.1). This coherence level is p = -1 since the only coefficient

remaining in the expansion is b_, (t). Changing the phase of the receiver by an

angle ¢ changes the signal acquired to

S(t,¢) = V"2(2)N-2e -'¢ __, b_,(t) (5.11)
ali nuclei
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and phase cycling is useful for suppressing or retaining certain coherence orders

during complex NMR experiments [129, 130]. Phase cycling is utilized in the DAS

experiment to store separate components of the magnetization during the hop and

° then to form the proper DAS echo corresponding to refocussing of the anisotropic

evolution frequencies.
a

In DAS, the system of quadrupolar spins is viewed as a collection of uncoupled

fictitious spin-½ nuclei which simplifies ali considerations of coherence transfer: in

ali of tLe preceeding equations, N = 1. Only four basis operators are nceded: the

identity operator, Io, I+_, and I__. The identity operator does not contribute to

the NMR signal at any point, nor is it ever converted to observable signal, so may

be disregarded in this analysis.

Ali of the necessary coherence--transfer pathways [129] needed to study the

phase-modulated DAS experiment of Fig. 5.1 are found in Figs. 5.2 and 5.3. The

simple rules used to construct these diagrams consider the change or evolution of

coherences under (a) shifts whose average Hamiltonians are proportional to I_ with

frequency f2 and evolution period t; and (b) radiofrequency pulses with tip angle

/_ and irradiation phase ¢. For free precession the p = 0 and p = +1 coherences

evolve as

Ip n__ ipe_ipt_t (5.12)

while under radiofrequency pulses the coherence levels are changed according to

-¢I, 13I_ +¢I, (cos/_+l)
1±1 ----* ----* ----* I_1

- _r -isinBe+i¢
--l-.to _

+1:t:1 {c°s3-1)e+2i¢ (5.13)2

145



-¢I, _lz +_Ij -isinp
I0 ----* ----* ---* 1+1 v_ e-i_

+Io cos

+I-1 -/sinp e+i¢ (5.14)

The phase shifts of the radiofrequency irradiation are taken into account in the

above equations by first rotating around the z-axis by-¢ degrees, performing the

pulse along the new x-axis, and then reversing the rotation about the z-axis to

bring the system back to its original reference frame. The rules for 90° x and y

pulses may be found by setting _ = 90° and ¢ = 0° or 90° respectively.

For a fictitious spin-½ system, such as the central transition of quadrupolar nu-

clei, a selective 90° pulse will transform Zeeman order (p = 0) of the spin system in

equilibrium into a linear combination of p = + 1 and p = -1 (single-quantum) co-

herences. In other words, a 90° pulse creates transverse magnetization. Depending

on the phase of the pulse, either +x- or -y-magnetization is produced. Evolution
b

for time t_/2 under the chemical shift and second-order quadrupolar Hamiltonians

in the rotating frame allows accumulation of an exponential phase factor in each

coherence. The frequency (called f_l) is the total frequency given in Eq. 3.1: a sum

of isotropic and anisotropic terms depending on the crystallite orientation. The

phase angle will be _1t_/2. A second 90 ° pulse on this system will mix the two

coherences (p = + 1 --, p = -1 and p = -1 --, p = + 1) and also recombine the two

single--quantum coherences into Zeeman order with a coefficient depending on the

phase difference between the two pulses and the time of free precession. In exper-

iment a of Fig. 5.1, where there is no phase change between the first two pulses,

the negative cosine of the evolution phase at 0_ is retained. In version b, the sine

component is kept with a 90° phase shift between the two pulses.
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Figure 5.2: Simple coherence transfer mechanisms in the first part of the
DAS experiment. The labels on each diagram correspond to the experiments
labelled a and b in Fig. 5.1. The parentheses denote unobserved coherences

that decay during the hop.
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Figure 5.3: Simple coherence transfer mechanisms after the hop and during de-
tection in the phase-modulated DAS experiment. Only the p = -1 coherence
is detected, as explained in the text.
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Since the remaining coherences in the transverse plane are still single-quantum

coherences, they could also be detected at this time. In a DAS experiment, the

transverse magnetization during the hop decays through irreversible processes and

• is dropped from consideration. The storage segment of the experiment selects pop-

ulations (Zeeman order) and suppresses coherences and after the hop, only a com-

ponent along the z-axis remains. The stored magnetization may be restored into

the transverse plane by another pulse, and this collective process of storage and

reinitiation of single-quantum coherences is called a z-filter [132]. The large Zee-

man field along the z-axis is used to filter the transverse magnetization, essentially

keeping a chosen component projected along either the x- or y-axis. Both p - + 1

and p = -1 coherences are present after a z-filter and will evolve under anot,her

(or the same) Hamiltonian as during previous free precession.

h: DAS, a second free precession must follow the hop to the second DAS angle

(and z-filter) where anisotropic dephasing during the first period is refocussed. The

evolution frequency is now f22 and the evolution occurs for the same time period as

before the hop. At time tl an echo has formed since the total phase is

(a I .qt_ _'_2)_ "-- O.)isotl. (5.15)

As described in Chapter 3 and Table 3.1, the state of the system in a DAS exper-

iment at the point of r::focussing (tl) before detection and addition of the signals

. is

tl tl tl tl (5 16)p_(t :) = + Iu cos f21_- cos f_2_- - I_ cos f2__ sin f_2-_

t: t: tl (5 17)ph(t1) = --Iusinfll cosfl_-_ + I, sinfll_sinfl2-_

for the two experiments a and b respectively. If the signal is detected during ts
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according to phase ¢4 in Fig. 5.1 then (using Eq. 5.11)

1 costa _e in2(_+t2) (5.18)S,(tl,t2) =
i

sin 9/12 ein2(_+t2)

/

Sb(tl,t2) = _ (5.19)

Adding together the two signals from experiments a and b produces a signal

S(tl t2) --- lei_"°°'_ei('°"°+'°"""°(°2))'2 (5.20)
2

In this sort of echo experiment, both eoherences have evolved up until the detection

period yet only one (p = -1) is detected. Both coherence pathways were retained

during the first evolution _eriod since a second pulse mixed them to store a com-

ponent of the evolving magnetization. The failure to again mix the coherences at

the time of detection is the main problem here. As shown below, this complicates

the phasing of two-dimensional spectra when only purely absorptive lineshapes are

desired. A general rule for pure-absorption phase spectroscopy is that both pos-

itive and negative coherence orders (referred to as mirror-image pathways) must

be retained until the time of detection [133]. In DAS, the further evolution in or-

der to obtain the echo, coupled with the fact that only the p = -1 coherence is

detected after time tl, makes it impossible to use phase cycling alone to obtain

pure-absorption-phase data.

5.3 Two-Dimensional NMR

A two-dimensional NMR experiment has at least two time periods of evolution

during which the spin system evolves under separate effective Hamiltonians, and the

characteristic frequencies of these Hamiltonians determine the frequencies observed
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in the two-dimensional map or spectrum. Connections between frequencies in the

two domains tell the experimenter about correlations in the two time domains for

the same spins. Therefore, in DAS the isotropic resonances in the high-resolution

" isotropic dimension (wl) are correlated with their anisotropic resonances in the low-

resolution (w_) dimension. The shape of the lines in the two-dimensional spectrum

is an important consideration: often the lines are a mixture of absorption and dis-

persion lineshapes, a so-called phase-twisted lineshape [134]. The inseparability

of the two components degrade the two--dimensional spectra since the dispersive

contributions have broad tails and regions of negative intensity. Methods which

circumvent this problem have been developed [135, 136], but are generally unsatis-

factory for echo spectroscopy (such as DAS) without further modifications.

5.3.1 Lineshapes in Two-Dimensional NMR

The original two-dimensional NMR experiments such as Jeener's correlation spec-

troscopy (COSY) experiment [137] did not discriminate the sign of the frequencies

in the first time dimension (tl) of the experiment. Two-dimensional Fourier trans-

formation of the time-domain matrix then leads to a spectrum folded about the

transmitter freq_lency in wl. To overcome this, the transmitter frequency may be

placed completely on one side of the spectrum. This has certain disadvantages: the

transmitter power (symmetric about the carrier frequency) is distributed unevenly

and the data storage overhead is severely penalized with empty space or noise.

However, in this manner pure-absorption lineshapes are accessible. A problem

arises when more efficient transmitter power distribution and data accumulation is

desired.
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In a one-dimensional NMR experiment, the signal is obtained in quadrature in

order to discriminate the sign of the resonance frequency with respect to the carrier.

The complex signal is distributed between a real (x) buffer and the orthogonal

imaginary (y) buffer. A resonance with frequency f_ will produce a time-domain

signal

s(t) =_'_'_-_ (5.21)

where T2 is a time constant describing irreversible decay of transverse magnetization

(spin-spin relaxation). The signal is assumed to only be defined for t >_ 0. The

Fourier transform of this signal is a sum of absorptive and dispersive components

FF(w) = ei_ts(t)dt
O0

= m+iD (5.22)

with

A = 7'2 (5.23)
1+ (_- f_)_T__

D = (w -- _)T2 2 (5.24)
1+ (_- f_)_T__"

In two-dimensional NMR, we need to consider the signal from a spin whose

frequency in the first (tl) dimension is f_l, with a corresponding frequency in t2

of f_2. Continuing the notation introduced above, A2 and D2 are the absorptive

and dispersive components of the Lorentzian line at g/2 in the second frequency

dimension. However, if the sign of the frequencies in the first dimension are not

determined then lines will appear at :kfki. The resonances at +f_l will have ab-

sorptive Lorentzian signals A+ and A_- with corresponding dispersive components

D + and D_-.
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Experiments which correlate evolution frequencies from the same spin in two

dimensions may be classified as either amplitude or phase modulated. The earliest

two-dimensional experiments were amplitude modulated and did not discriminate
e

in the sign of the frequencies in tl. A complex signal is acquired in the second time

domain with an initial amplitude proportional to the sine or cosine of the evolution
w

angle in the first time period. Then

t t

so(t_,t_)=cos_,t_'_'_-_ _-_ (5.25)

is the cosine modulated signal. As above, T2,a and T_,2 are time constants for

exponential decay of the signals during t_ and t2 respectively. The two-dimensional

Fourier transform of this signal is

Fc(_ol,w_) = e_'1tl eI_'2t2Sc(tl , t_ )dt_ dt2

= ½(A_+ iDt +A; + iDr)(A_+ iD_) (5.26)

which corresponds to a pair of phase-twisted lineshapes at f_2 in the second fre-

quency dimension and at -t-_ in the first. Folding the spectra about the carrier

in wl will provide a pure-absorption phase lineshape at the expense of placing the

carrier totally on one side of the spectrum. Equivalently, the imaginary part of the

ts decay may be zeroed and a real Fourier transform performed on the data. The

preferred method, however, is to approach the problems of sign discrimination and

. pure-absorption lineshapes in a more elegant manner.

A correlation experiment may be modified to obtain data in a phase-modulated

manner. To discriminate the sign of the coherences in the first time domain, the

modulation of the signals during tl is converted from that of amplitude modulation

to that of a complex phase modulation (a combination of sines and cosines). The
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initial experiment is repeated with a relative phase change of 90° for ali pulses

preceeding the tl evolution period. A similar change of the detection (receiver)

phase must also be made and the signals from the two experiments are summed

together. The phase-modulated signal is

s_ (t_,t_)=_'_'__'_'__-_ _-_ (5.2_) .

and the two-dimensional _burier transform of this signal is

Fpm(w,, w2) = e '_1tle '_2t2Sp,_(t, , t2)dt, dt2 (5.28)
oO Oo

= (At +i9+_)(m_+ iD_)

= (A+IA_- DtD_)+ i(m+D2+ A20+). (5.29)

This signal has both absorptive and dispersive components in the real part of the

lineshape although it has discriminated the sign of the coherence in tl. As discussed

above this is not the most desirable signal. The pure-absorption-phase signal would

have the form

F,p(wl, w_) = A +As + iD + 92 (5.30)

where ali of the real components are in absorption mode. The observable differences

between the pure-absorption signal (Eq. 5.30) and the phase-modulated signal

(Eq. 5.29) are shown in Fig. 5.4. The broad dispersive wings in the lineshape

from the phase-modulated signal are obviously undesirable and the pure-absorption

lineshape is preferable if it can be obtained.
h

5.3.2 Two-Dimensional Pure-Absorption Experiments

There are two major methods described in the literature to obtain pure-

absorption-phase two-dimensional NMR lineshapes [135, 136]. At first glance the
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(a) (b)

d

Figure 5.4: Mesh plots (top) and contour plots (bottom) of the two-
dimensional NMR lineshapes corresponding to (a) pure-absorption-phase and

(b) phase-modulated NMR experiments.
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methods using TPPI [135] and what is called States method [136] seem to be very

different, but on closer inspection are fully equivalent. The equivalency is not only

in terms of signal-to-noise ratio or data accumulation time and storage necessary,

but mathematically they are equivalent. This relation is studied in detail in the

paper of Keeler and Neuhaus [126].

The discussion here is based on the States method [136] originally introduced

for the accumulation of exchange NMR spectra. In this method, the cosine and

sine modulated signals during tl are accumulated and stored separately. In the

language of coherence-transfer pathways both the sum and the difference of both

possible pathways in tl are retained. The two signals are then

Sc(t,, t2) "- cos __1tlei122t2e-_'1 e-_'2 (5.31)

and
_Lt_ __2z..

So(tl, t2) = sin f]ltlei"_t_e - r_,_e r_.2 (5.32)

The Fourier transforms of each time domain are performed separately, with the t2

transform first. After the t2 transform

Fc(t_,w2) = cos f_ltl(m2 + lD2) (5.33)

and

Fs(t_,w2) = sinf/_tl(A2 + iD2). (5.34)

The real part of Fs is swapped with the imaginary part of Fc to produce

F'(tl,_o2) = (cosf_lt, + isinfl, t,)d2 (5.35)

and

F:(t_,'o2) = (cosf_ltl + isinf_t_)D2. (5.36)
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The tl transform then yields

F"(wl,w2) = (A + + iD+)A2 (5.37)

II

• F_ (wl, w2) = (A + + iD +)02. (5.38)

. which provides a pure-absorption lineshape when the rem part of F_" is displayed.

This data processing is referred to as a hypercomplex Fourier transform [36] since

there are two data sets in the complex plane (and hence two independent imaginary

units) which may be manipulated separately.

5.4 Pure-Phase DAS: Theory

It should now appear more clear as to why the phase--modulated DAS exper-

iment of Fig. 5.1 provides phase-twisted lineshapes. The coherence-transfer map

for this experiment is also shown in the figure and has been carefully analyzed

above. Evolution at 0_ = 79.19 ° cancels anisotropic evolution at _1 -- 37.38 °, but

no additional coherence transfer occurs after echo formation at time tl. Only one

coherence-transfer pathway is retained at the end of tl in order to maintain fre-

quency discrimination and phase-twisted lineshapes result. In order to obtain pure

two-dimensional absorption lineshapes it is necessary to keep both halves of the

coherence--transfer pathways, i.e. both p = 0 _ -1 _ -1 and p = 0 --_ + 1 _ -1

, must be present, and this does not occur in conventional DAS since there is no

coherence order change p = +1 _ -1 immediately before the beginning of the

ts period. A related problem is encountered in liquid-state spin-echo correlated

spectroscopy (SECSY) [138, 139], in which there is also no transfer of coherence

after formation of a spin-echo. There is no possible way to phase cycle the pulses
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so as to only obtain only sine or cosine modulation in tl as both tl/2 periods are

necessary in each experiment to refocus the anisotropic evolution. Further mixing

of the coherences at the end of the tl period is needed. Two methods for doing this

in a DAS experiment have been proposed [127].

,p

5.4.1 Variation I: 90 ° Pulse

The conceptually simplest way to transfer coherence from p = +1 to p = - 1 at the

end of the tl evolution is suggested by the earlier discussion of coherence-transfer.

Application of another 90° pulse before beginning t2 acquisition will again mix the

coherences. Figure 5.5 shows schematically how this can be accomplished in a DAS

experiment with proper phase cycling. Note that the rotor continues to spin at the

second DAS angle of 79.19 °. The coherence-transfer pathways are also sketched in

Fig. 5.5 and coherence pathways during the final two pulses of the experiment are

examined in more detail in Fig. 5.6. The begiraning of the experiment is identical

to phase-modulated DAS: all pulses and phases are the same up until the end of

the t l period. As before, two experiments a' and b' are necessary to reconstruct a

full echo.

During the detection period only the p = -1 coherence is retained and the

signals from the two experiments are

1 t, ,., tl ins (5.39)Sa,(t,,t2) = _COS_l-_-COSXt2-_-e ts

1 tlSb,(tl,t2) =-_sinf21_sinf22 e '_2'2 (5.40)

The end result of summing experiments a' and b' is a signal which is amplitude

modulated:

s(tx, = (5.41)
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Figure 5.5: One possible set of radiofrequency (rf) pulses, rotor positioning,
and the related coherence orders for a pure-absorption-phase DAS experiment.
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Figure 5.6: Detailed coherence-transfer pathways after the full tl evolution in

the pure-absorption-phase DAS experiment of Fig. 5.5. .,
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A second experiment must be undertaken to obtain the sine modulated signal.

Experimentally, all pulse phases before the tl period (here, the first pulse only in

each experiment a' and b') is changed by 90° with a similar change in the detection

phase.

. With this simple extension of the first DAS experiment, two-dimensional cor-

relation with pure-absorption lineshapes is now possible with any allowable DAS

angle in the second dimension. These include the angles between 0° and 39.23 °

or between 63.43 ° and 90°. The fraction of time tl spent at either angle will be

different from one-half when using any set of angles other than 37.38 ° and 79.19 °,

depending on the relative magnitudes of the relevant Legendre polynomials at the

two angles. The narrowing expected in a DAS experiment using the scheme in

Fig. 5.5 is illustrated in Fig. 5.7 where simulations of phase-modulated, absolute

value, and pure-absorption-phase DAS spectra are compared. The pure-phase

spectrum contains a resonance which is noticeably narrower than the magnitude

spectrum.

5,4.2 Variation II: Z-Filter

At any spinning angle other than the magic-angle of 54.74 °, first-order in-

teractions such as chemical shift anisotropy (CSA) may be large and contribute

. significantly to spectral broadening in the second irequency dimension of a DAS

experiment. One goal of two-dimensional DAS is to extract shielding and quadru-

polar parameters associated with distinct nuclear sites by fitting simulated powder

patterns to single-site lineshapes extracted from slices _hr_ugh wl. Second-order

quadrupolar lineshapes may be simulated at any spinning angle 8, neglect_.ng CSA,
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Figure 5.7: Computer simulations of two-dimensional DAS experiments. The

system simulated contains isolated spin -3 nuclei with CQ - 2.5 MHz and

77 = 0.7. (a) Phase-modulated detection following the scheme in Fig. 5.1.
The dashed lines correspond to negative intensity contours. (b) Magnitude

spectrum obtained from the phase-modulated data. (c) Pure-absorption-

phase spectrum obtained using the scheme in Fig. 5.5 where the rotor continues
to spin at 02 = 79.19 °.
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and compared to experimental lineshapes in order to determine the quadrupolar

coupling strength (CQ = e2qQ/h) and asymmetry parameter (77). However, the

addition of three more parameters associated with the principal values of the CSA

• tensor, as well msthe angles describing the relative orientations of the principal axis

systems of the quadrupolar and shielding tensors, complicates analysis of the line-

shapes. Hence, for optimal determination of the quadrupolar parameters and the

isotropic chemical shift, especially in the presence of other anisotropic interactions,

detection at the magic-angle (or possibly other non-DAS angles) in ts is desirable.

Because 54.74 ° is not a DAS angle, an alternative scheme using a z-filter must be

used in order to obtain pure-absorption lineshapes.

A z-filter is equivalent to the storage step of a DAS experiment where the

magnetization is kept along the z-axis while the spinning angle is changed. This

allows a single transverse magnetization component alcug either the x- or y-axis

to be retained, while eliminating the other transverse component. Effectively, it

produces an overall transfer and mixing of coherence from p-- +1 --, -1, not by

throwing one component away along the z-axis (as with a 90° pulse), but by storing

and then reinitiating evolution of the chosen component by using two 90° pulses

separated by a time delay. One advantage of a z-filter is that it should not be

as sensitive to pulse imperfections as a single 90° pulse, since any magnetization

remaining in the transverse plane after the first pulse should decay before the second

pulse restores the evolution. In addition, and most importantly, we are able to flip

.. the rotor axis to another orientation during the delay.

Using the scheme of Fig. 5.8, the axis of the rotor may be reoriented a second

time: allowing detection to occ'_r at any angle 0._ with respect to the external field.
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Figure 5.8 also details the necessary phase cycling and rotor positioning. As in

the previous DAS experiments only two accumulations, a" and b", are necessary to

reconstruct an echo even though more pulses are required to retain the coherence

orders properly during tl. The coherence--transfer pathways during the z-filter are "

examined in more detail in Fig. 5.9. EJ,ther method (States or TPPI) may then be

used as above to obtain the correctly modulated signal and an appropriate two-

dimensional Fourier transform provides the final result.

One powerful advantage gaine,_l by using the z-filter to accomplish pure--phase

lineshapes is that the choice of the final ,angle 03 is free for the experimenter to

determine. The choice 03 = 54.74 ° will produce lineshapes in w2 that are indepen-

dent of CSA, which has a larger effect at higher magnetic field strengths and so

may be the angle of choice whcn using DAS at higher fields. Other choices of 03

may include 03 = 0°, thereby correlating the high resolution spectrum in the first

frequency domain with static lineshapes for each distinct site, the static lineshapes

being equivalent to lineshapes obtained while spinning along the z-axis. A final

angle of 0° may also have been chosen with the 90° pulse version of the pure phase

experiment (Fig. 5.5) because 02 = 0° is complementary to 01 = 63.44 ° with an evo-

lution period five times longer at 02. Finally, the choice 03 = 43.5 ° is also interesting

since at this angle the total second-order quadrupolar linewidth is independent of

the asymmetry parameter of the electric field gradient [74], so that the width is

determined by the quadrupolar coupling strength while only the shape of the line

is determined by the asymmetry (7?).
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5.5 Experimental Results

The DAS experiments presented here were performed in a magnetic field of 9.4 T,

- corresponding to a resonance frequency of 105.84 MHz for sodium-23 (I = _).

Phase-modulated experiments were performed as explained in the two previous

chapters. Phase-sensitive experiments can be approached with two different data

accumulation and processing methods: that of States et al. [136] where two sep-

arate data collections for each tl increment are performed followed by hypercom-

plex Fourier transformation [36]; or by time proportional phase incrementation

/TPPI) [135, 140] where only one data set is used but the phases of the first pulses

,n both experiments a" and b" are incremented by 90° with each tl. In either case

at least two t2 accumulations for each tl point must always be summed to give the

reconstructed second-order echo. In the former method this number is therefore

doubled as both collections for a distinct t_ must also be run with a 90° phuse shift

of the first pulses to acquire the second of the two hypercomplex data sets. To

achieve the same resolution and signal-to-noi._ by TPPI, twice as many t_ incre-

ments must be used, thereby making equivalent the time and computer memory

required for the two methods. We have tested both methods and find comparable

results.

The experimental improvements are illustrated with a comparison of phase-

modulated DAS and the z-filtered pure-phase experiment with an additional axis

flip to 03 = 54.74 °. The latter experiment corresponds to a second dimension of

magic-angle spinning correlated with high-resolution DAS. The sample is sodium

oxalate (Na2C204) and the nucleus studied is sodium-23. Pulse lengths for 90°

nutation of the magnetization were on the order of 5 /zsec for ali experiments.
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These were verified as selective pulses as explained in Chapter 2.

Figure 5.10 is a plot of the two-dimensional DAS spectrum of sodium oxalate

obtained with conventional phase-modulated detection. The main difference be-

tween this spectrum and that shown in Fig. 4.9 is the spinning speed. This newer

spectrum was obtained with an improved DAS probeheaxi which is capable of ob-

taining rotational frequencies up to 6 kHz. Projections of the phase modulated

spectrum appear in Fig. 5.11, along with the one-dimensional DAS spectrum of

the same sample obtained from Fourier transformation of the echo heights as a

function of the high-resolution time dimension, tl. In the pure one-dimensional

analysis, however, there is no immediate correlation of the high resolution line with

the anisotropic lineshape, especially troublesome if two lines are very near to each

other in the high resolution dimension. The projections reveal the extra broaden-

ing which accompanies the magnitude calculation, most notably in the wings of the

narrowed resonance.

The spectrutt: in Fig. 5.12 was obtained with the z-filtered pure-absorption

experiment of Fig. 5.8. Projectior.s of this spectrum appear in Fig. 5.13. The high

resolution DAS projection has a width of 600 Hz which is the same width as the

one-dimensional DAS spectrum obtained from digitizing only the echo tops. The

second-dimension is a MAS lineshape: computer simulations with the quadrupolar

parameters e2qQ/h = 2.5 MHz and 77= 0.7 closely match both the MAS spectrum

and the equivalent DAS projection as shown in Fig. 5.14. The DAS spectrum shows

one isotropic peak at -15.0 ppm with respect to sodium-23 in aqueous NaCI, and

thus the chemical shift may be calculated as 1.2 ppm or 127 Hz at 9.4 T.

In conclusion, the pure-phase results clearly show a narrower isotropic resonance
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Figure 5.10: Phase-modulated DAS spectrum from sodium-23 in sodium ox-

" alate (Na2C204). The spectrum is displayed in magnitude mode as explained
in the text.
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Figure 5.11: Projections along the two axes in the magnitude mode phase-

modulated spectrum of Fig. 5.10. At the bottom is the one-dimensional DAS

spectrum obtained from the echo maxima where no magnitude calculation is
necessary and a narrowed resonance is obtained.
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oxalate (Na2C204), acquired with a z-filter and a final axis flip to 54.74 °.
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Figure 5.13: Projections along the two axes in the pure-absorption-phase DAS

spectrum of Fig. 5.12. The top spectrum is equivalent to the one-dimensional
MAS spectrum.
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in the two-dimensional spectrum as well as the ability to obtain sharper spectral

features in the second (anisotropic) dimension. Simple calculation of the isotropic

chemical shift, the quadrupolar coupling constant, and the c_uadrupolar asymmetry

parameter are also possible from the MAS lineshape obtained in the second DAS

dimension. This will be especially critical when resonances overlap in the MAS

spectra but may be separated in the first frequency dimension by their isotropic

shifts in a DAS experiment.

174



m

. Chapter 6

High-Resolution Oxygen-17

NMR of Silicates

Several oxygen-17 enriched silicates were studied using dynamic-angle spinning

(DAS) and double rotation (DOR) nuclear magnetic resonance spectroscopy. In

the spectra of a variety of silicate minerals, a narrow line is observed for each dis-

tinct oxygen site at the sum of the isotropic chemical shift and the field-dependent

isotropic second-order quadrupolar shift. Resolution is increased by up to two

orders of magnitude compared to conventional magic-angle spinning (MAS) spec-

tra so that crystallographically inequivalent oxygens are now observable as distinct

resonances in the spectra. The polycrystalline silicates investigated were diopside

, (CaMgSi_O6), wollastonite (CaSiO3), clinoenstatite (MgSiO3), larnite (Ca2SiO4),

and forsterite (Mg2SiO4). Further, DAS experiments at two magnetic field strengths

were performed to extract quadrupolar and chemical shift information. These pa-

rameters provide insight into the nature of the electronic environment surrounding

the oxygen nuclei including the bond order and the oxygen coordination by neigh-

175



boring cations.

6.1 Introduction

Solid silicates display an exray of structures and phases according to their
,d

composition and thermal treatment. As the molar percentage of cations increases,

for example, the infinite three-dimensional framework of crystalline silica (SiO2)

gives way to more compact chains of Si-O atoms (pyroxenes and amphiboles) and

discrete anionic species (orthosilicates and cyclosilicates). Such variations in mi-

crostructure can have significant impact on the macroscopic properties of silicate

species [125]. Adsorption and reaction processes of porous aluminosilicates, such

as zeolites, are tied closely to their local structure, influencing their use as catalysts,

selective adsorbents, and ion-exchange media in a variety of important industrial

processes [141]. l_urthermore, the abuvdance of silicon and oxygen in the Earth's

crust [142] makes physicochemical studies of solid silicates important for under-

standing many natural geochemical processes.

The microstructure _f silicatcs can be probed by examining the electromagnetic

environment of their nuclei using NMR spectroscopy. Nearby electrons influence the

local magnetic field at the nucleus by both paramagnetic and diamagnetic mech-

anisms, so that measurement of the shielding (chemical shift) tensor at a specific

site is a sensitive probe of the local bonding [68]. A nucleus with a non-spherical

charge distribution couples additionally to local electric field gradients through the

electric quadrupole interaction [1, 9, 143, 144]. Determination of the strength of

the quadrupolar coupling and the deviation of the electric field gradient from ax-

ial symmetry provides additional structural insight, because the interaction is also
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dependent upon bonding and symmetry of the local atomic environment.

High-field NMR has been used to study silicates, focussing primarily on the

silicon-29 nucleus [145, 146, 147] which, like carbon-13, is a low abundance spin-½

isotope. Line broadening in silicon spectra is caused predominantly by anisotropy

of the chemical shift and may be removed using magic-angle spinning (MAS)

NMR. [63, 64, 148]. High resolution results can be obtained in this way [149],

often yielding quantitative structural information from experimental spectra. High

resolution oxygen-17 NMR studies of silicates, however, are much more difficult

as a result of quadrupolar couplings of the oxygen-17 nuclei. In a polycrystalline

or amorphous sample NMR resonances are broadened by the spatial anisotropy

of the second-order interaction, which cannot be fully averaged by MAS meth-

ods [12, 150]. Individual spectral lines from distinct oxygen-17 nuclear sites typi-

cally overlap, and the separation and identification of different oxygens is difficult.

The developments described in this thesis allow an increase in NMR spectral

resolution by up to two orders of magnitude for quadrupolar nuclei and DAS and

DOR. have therefore been applied to a number of silicate minerals. The resolution

of oxyge:" sites in these samples bodes well for the study of other oxygen-containing

materials such as biologically important systems (amino acids and proteins), poly-

mers, and ceramic superconductors.

In both DAS and DOR, the isotropic frequency shift measured (6_bo_)is the sum

" of an isotropic chemical shift and a field-dependent isotropic second-order shift.

The theoretical analysis of Chapter 2 provides the useful equations, rewritten here

in terms of isotropic shifts rather than frequencies.

$ob, l_(cs) ,_(2Q) (6.1),so --_iso + _iso
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ii(cs )where _i,o is the isotropic chemical shift and 6}_Q) is the isotropic second order

quadrupolar shift iota nucleus with spin I"

401_vg] 12(21-1) 2 1+ r/= O'
(6.2)

where
a

e2qQ (6.3)Co- h

and

Wo (6.4)ro= 21r'

the Larmor frequency in Hz. It is useful to separate these two contributions in

li(cs) CQ, and Since the quadrupolar shift isorder to determine the values of _i.o , r/.

proportional to the inverse of the square of the magnetic field strength, while the

isotropic chemical shift is frequency independent, performing an experiment at two

or more field strengths determines the isotropic chemical shift and a product of the

quadrupolar parameters (CQ and 77)for each site. Alternatively, the quadrupolar

parameters may be determined from the second dimension in a DAS experiment by

simulations of resolved powder patterns at isotropic positions in the first dimension.

The ptLre-absorption-phase DAS experiment described in Chapter 5 could prove

especially useful for spectral simulation purposes when a final hop to the magic-

angle is used. In such a situation the powder pattern is no longer influenced by the

first-order chemical shift anisotropy and the number of parameters in the simulation

decreases by six.
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6.2 Experimental

6.2.1 Sample Preparation

Ali silicate compounds were synthesized from oxygen-17 enriched SiO2, CaO,

and MgO precursor compounds prepared from reaction of H_70 with the proper

inorganic starting materials [151]. Si_702 was produced by reacting liquid H_TO

with SiCh vapor at ambient temperature and pressure, followed by dehydration of

the product at 1473 K. Ca(lrOH)2 was synthesized by direct oxidation of calcium

metal with H170 under ambient conditions in an argon glove box, with CairO pro-

duced by drying the hydroxide at 853 K. Reacting saturated solutions of KI_OH

and MgCl: at 298 K precipitated Mg(_7OH)2, which yielded Mg_70 upon decom-

position at 653 K.

The simple oxide products were mixed together in proper stoichiometric amounts,

heated to elevated temperatures in sealed platinum tubes or in a nitrogen atmo-

sphere, and cooled to ambient conditions to produce homogeneous crystalline phases

of diopside (CaMgSi21rO6), forsterite (Mg2Si_rO4), larnite (Ca_Si_704), clinoen-

statite (MgSi_rO3), and wollastonite (CaSi_rO3). Enrichments of oxygen-17 were

20% in the diopside, 41% in the wollastonite and clinoenstatite, and 43% in the

larnite and forsterite. Phase identity was checked by powder x-ray diffraction and

silicon-29 NMR. The forsterite sample was slightly off stoichiometry and contained

• approximately 25% clinoenstatite.
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6.2.2 NMR Experiments

Experiments were performed in magnetic fields of 9.4 T and 11.8 T, corresponding

to oxygen-17 resonance frequencies of 54.25 MHz and 67.81 MHz respectively. The

probeheads for the sample reorientation were machined from commercially available

Delrin and Vespel polymers. The DOR probehead has been described in detail

elsewhere [124] and was mentioned briefly in Chapter 4. The DAS probehead is

a new version, improved from that used in previous experiments [105], and it is

described in Chapter 7. It is the same probehead used for the pure-absorption-

phase experiments in Chapter 5.

The DAS experiments were performed with axis flips from _91 - 37.38 ° to

02 = 79.19 ° and appropriate phase cycling of the radiofrequency pulses. For these

angles, the evolution times at the two angles must be equal (k = 1) in order to

cancel the anisotropic frequency contributions. Eight experiments are necessary to

reconstruct a full second-order quadrupolar echo (with a minimization of exper-

imental artifacts) which is digitized starting from the point of refocussing. The

second time dimension (ts) contains the digitized ,.',ata after refocussing of first and

second-order anisotropic interactions, and its Fourier transform provides the spec-

trum of the sample while spinning at 02. The first time dimension (tl) is the sum of

the two evolution time_ leading to the anisotropic refocussing. This first dimension

is incremented by a time At1 (typically tens of microseconds) and the anisotropic .

decay during t2 is recorded for each t_ delay. The spectral width in the second fre-

quency dimension is the inverse of the sampling period between data points in the

second time dimension, while the spectral width in the first frequency dimension is

1At1.
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One-dimensional DAS spectra are obtained by a Fourier transformation of the

echo heights as a function of the first time dimension. This yields resolved lines

with quantitative peak intensities after assignment and integration of ali spinning

sidebands. The two-dimensional DAS spectra are presented in absolute-value mode

to avoid phase-twisted lineshapes [126]. Projections along the first frequency axis

also provide high resolution results, although some additional line broadening occurs

owing to the absolute value calculation. Pure-absorption-mode DAS experiments

are also possible, reducing linewidths in the two-dimensional spectra and allowing

correlation with magic-angle spinning powder patterns in the second dimension.

Preliminary oxygen-17 pure-phase spectra suffered from poor signal-to-noise ratios

and have therefore not been included here.

A DOR spectrum, while technically more demanding to obtain, is acquired in a

one-pulse NMR experiment, which provides high resolution spectra with fewer total

signal acquisitions than in the DAS experiment. Fourier transformation of a one-

dimensional FID provides the high rev:,lution spectrum immediately. Comparison

of spectra obtained at a va,'_y of spinning speeds can help in the assignment of

sidebands arising from the larger (outer) rotor. DAS spectra also contain sidebands

(at integer multiples of one-half of the rotor frequency), but since the spinning

speeds used here are on the order of many kHz this rarely hinders analysis of the

data. Used together, these two techniques provide unambiguous peak assignments

for all of the samples studied here.
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6.3 Results

The MAS spectra of oxygen-17 in the minerals studied are shown in Fig. 6.1:

powder patterns from distinct oxygen sites overlap at this field strength of 9.4 T.

Diopside, forsterite, and clinoenstatite have been investigated previously [77, 78]

with analyses assuming the presence of three inequivalent oxygen sites. Spectra "

were simulated in these previous investigations by fitting the experimental NMR

lineshapes to computer generated powder patterns, and the isotropic chemical shifts

and quadrupolar parameters obtained are compiled in Table 6.1. A difference in

the magnitude of the quadrupolar coupling constant, CQ, for bridging versus non-

bridging oxygen sites is observed, and this is attributed to the difference in ionicity

of cation-oxygen bonds in the two arrangements. The more ionic bonds associated

with the terminal oxygens result in less p-orbital contribution to the electric field

gradient [78] and thus a lower quadrupolar coupling frequency. Equations 6.1 and

6.2 allow calculation of the total isotropic shifts expected at both 9.4 T and 11.8 T

and these are included in Table 6.1.

6.3.1 One-Dimensional DAS and DOR Experiments

DAS and DOR spectra of the same silicate minerals are shown in Fig. 6.2. Iso-

tropic shifts are distinguished from spinning sidebands by performing experiments

at two or more spinning speeds, and by comparison of the DAS and DOR spectra.

Due to the presence of many peaks in some of the spectra, labelling of the isotropic

peaks and sidebands would add confusion to the presentation of the results, so the

isotropic values are compiled in Table 6.2.

The DAS and DOR results for diopside (CaMgSi21rO_) and forsterite (Mg2SilrO4)
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Figure 6.1" Magic-angle spinning spectra of oxygen-17 in a collection of sil-
icates at a magnetic field _trength of 9.4 T. The rotor frequency is approxi-

mately 5.4 kHz and the frequency axes are referenced to oxygen-17 in H_rO.
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(CS) 11.8T '
compound ref. site occ. _,o (ppm) CQ(MHz) T/ _;4T(ppm) 6_,o (ppm)

diopside [78] nb 1 84 2.7 0.0 69 74

CaMgSi206 nb 1 63 2.7 0.1 48 53

br 1 69 4.4 0.3 28 43

forsterite [77] a 2 61 2.35 0.2 50 54

Mg2SiO4 b 1 62 2.35 1.0 47 52

c 1 47 2.7 0.3 32 37

clinoenstatite [78] nb 1 60 3.2 0.0 39 47

MgSiO3 nb 1 42 3.2 0.0 21 29

br 1 62 5.1 0.3 7 27

(,_(c s)Table 6.1" Previously determined oxygen-17 chemical shift ,-iso ) and quad-

rupolar parameters (CQ and r]) for three silicates, based on three-site models.

The designations nb and br signify nonbridging and bridging oxygen sites, re-

spectively. For forsterite, all three sites are nonbridging. The total isotropic

shifts one should observe (_bo') at 9.4 T and 11.8 T are also calculated (see

Eqs. 6.1 and 6.2).
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Dynamic-Angle Spinning Double Rotation
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" Figure 6.2: Dynamic-angle spinning and double rotation spectra of oxygen-17
in a variety of silicates at a magnetic field strength of 9.4 T. The rotor frequency

- is approximately 5.4 kHz in the DAS experiments, while in the double rotation
experiments the inner rotor spins at approximately 5 kHz and the outer rotates
at about 800 Hz.
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_o' (ppm)compound 6_;o4T(ppm) compound 4T

diopside 69.2 wollastonite 103.4

CaMgSi2Os 48.5 CaSiO3 100.1

28.6 96.5

forsterite 49.0 89.0

Mg2SiO4 49.0 85.8

30.8 74.3

clinoenstatite 39.3 28.2

MgSiOa 34.5 28.2

32.3 21.6

26.3 lar nite 117.3

18.0 Ca2SiO4 113.3

15.0 108.8

106.3
i

Table 6.2: Experimentally determined oxygen-17 isotropic shifts. All reported
values are ppm from the oxygen-17 resonance in H_70. Errors in ali measure-

ments are approximately =k0.5 ppm.
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agree with models having thr,_ distinct oxygen sites. This is consistent with their

reported crystal structures [152, 153] shown in Figs. 6.3(a) and 6.3(b). The quad-

rupolar parameters and isotropic chemical shifts, determined from previous MAS

experiments [77, 78], predict isotropic shifts in excellent quantitative agreement

with the new experimental values. The three resonances are fully resolved in the

diopside spectra, with their integrated intensities reflecting a 1:1:1 oxygen site occu-

pancy. P.nalysis of the forsterite data is less straightforward due to partial overlap

of the narrowed peaks from two oxygen-17 sites. Expansion of the region around

the most intense peak in the DOR spectrum (Fig. 6.4) reveals a shoulder on the

resonance from a third oxygen siie. Comparison with the MAS spectra at 11.8 T

(ref. [77]) strengthens the conclusion that three main sites are present. Moreover,

the enhanced resolution of the new techniques permits impurity phases to be de-

tected, as evidenced by the small peak at 26 ppm in both DAS and DOR spectra.

We attribute this to an impurity in the polycrystalline forste_.ite, also detected by

x-ray diffraction and silicon-29 NMR [154]. Its identification as clinoenstatite is

also consistent with the position of the peak in the oxygen-17 spectra.

The DAS and DOR spectra of clinoenstatite (MgSilrO3) are consistent with a

crystal structure having six inequivalent oxygens in the unit cell [155], four which

are terminal sites and two which bridge adjacent silicate tetrahedra (see Fig. 6.3(c)).

. The sidebands in the DOR spectrum, arising from the motion of the larger rotor,

make identification of the upfield resonances difficult; the higher spinning speeds

in the DAS experiment permit an unambiguous assignment. Previous interpreta-

tions [78], based solely on static spectra, allowed for only three inequivalent oxygens.

The small spread in the total isotropic shifts, and similar quadrupolar parameters,
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Figure 6.3: Crystal structures of the silicate minerals studied.
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Figure 6.4: Expansion of the DOR spectrum of forsterite around 50 ppm. The
shoulder on the left hand side of the largest peak indicates the presence of the
third resonance.
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cause similar sites to be indistinguishable in lower resolution techniques, and this

can also cause errors in the assignment of simulations to the spectra used to ex-

tract chemical shift and quadrupolar parameters. We assign the two less intense

resonances at 18 and 15 ppm to bridging oxygen species 03 and 06 in Fig. 6.3(c),

as the spread of the signal into more sidebands and less isotropic peak intensity is
,i

a signature of a larger quadrupolar coupling constant.

For more complicated silicate species, such as the wollastonite (CaSilrO3), struc-

tural characterization using MAS alc _eis essentially impossible. The polytype para-

wollastonite, shown in Fig. 6.3(e), contains nine distinct oxygen sites [156]. One-

dimensional DAS and DOR results show eight assignable oxygen-17 resonances for

this particular silicate. As explained below, two-dimensional data analysis helps to

locate the ninth spectral line which overlaps with another resonance at 28.2 ppm,

as well as allowing preliminary assignment of the upfield resonances to the three

bridging oxygens (07, 08, and O9 in Fig. 6.3(e)).

Finally, the larnite (f_-Ca2Sil_O4) structure in Fig. 6.3(d) contains four distinct

oxygen nuclei surrounding a central silicon atom with slightly different cation co-

ordinations at each site [157]. The MAS spectrum is much narrower for larnite

than for the other minerals, and the isotropic shifts for the distinct oxygens are

much closer together. Four resonances are seen in the high resolution DAS and

DOR spectra of larnite in Fig. 6.2. Additional broadening of the DAS lines com- w

pared to the DOR resonances is noticeable in ali of the spectra presented, but it is

most evident in the narrow spread of oxygen-17 resonance frequencies from larnite.

Relaxation to other magnetic sublevels (m _ =k½) during the rather long flipping

time between the two DAS angles can lead to additional broadening in the DAS
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spectrum compared to the continuous DOR experiment. It is also possible that

spin evolution under residual dipolar interactions present at angles other than the

magic-angle during both periods in the high-resolution (tl) time domain is not

" refocussed and this may contribute to additional broadening.

6.3.2 Two--Dimensional DAS Experiments

The DAS experiments involve two time dimensions in a natural way, and two-

dimensional Fourier transformation of the data can correlate the isotropic peaks

along the high resolution frequency axis with the spectra obtained while spinning

at the second angle (02 = 79.19°). Results for diopside, wollastonite, and cli-

noenstatite are presented in Figs. 6.5-6.7. Patterns which overlap in conventional

one-dimensional spectra are now separated in a two-dimensional display. With

diopside, for example, slices integrated over the lineshape at the isotropic frequen-

cies in the first dimension projected onto the second frequency axis are shown in

Fig. 6.8. Simulations of lineshapes with the quadrupolar parameters and isotropic

shifts from Table 6.1 match these patterns closely. It must be stressed that these

spectra represent absolute value lineshapes obtained while spinning the sample at

an angle of 79.19 °. The chemical shift anisotropy and dipolar interactions present

under these conditions lead to additional line broadening which has been taken into

consideration here only ,_hrough additional exponential broadening of the signals

calculated for each particular site.

Similar examination of the wollastonite two-dimensional DAS spectrum reveals

the power cf using the second dimension to make spectral assignments. The res-

onance at 28.2 ppm in the first frequency dimension appears to arise from two
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Figure 6.5: Two-dimensional DAS spectrum of diopside.
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Figure 6.6: Two-dimensional DAS spectrum of wollastonite.
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Figure 6.7: Two-dimensional DAS spectrum of clinoenstatite.
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Figure 6.8: Slices taken parallel to the low resolution (powder pattern) dimen-
sion of the diopside two--dimensional DAS spectrum in Fig. 6.5.
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resonances in the second dimension, which would occur as an overlap of two pow-

der patterns in the 28.2 ppm slice. The number of spectral features present indicate

two resonances with quadrupolar coupling constants in the range of 4 to 5 MHz, in-

dicative of bridging sites. The integrated intensity is also twice that of the isotropic

resonance at 21.6 ppm, which we assign to the third distinct bridging oxygen in the

structure. With these assignments, the resonances from ali nine crystallographically

distinct oxygens can be identified.

More complicated structures, such as those found in larnite, clinoenstatite and

wollastonite, require careful analysis of the two-dimensional DAS data to extract

the quadrupolar and chemical shift parameters. Preliminary fits using the second

frequency dimension in the two-dimensional spectra of clinoenstatite and wollas-

tonite provide approximate parameters (see reference [158]), but more precise fits

are still difficult. In particular, the broad lines from the bridging oxygen resonances

in both species suffer from a poor signal-to-noise ratio. DAS at two field strengths

allows separation of the chemical shift and quadrupolar shifts and sheds more light

onto the differences in local structure present in these materials.

6.3.3 DAS at Two Field Strengths

Dynamic-angle spinning spectra obtained at two field strengths will provide

enough information to solve a set of equations (in the form of Eqs. 6.1 and 6.2) for

the isotropic chemical shift and the isotropic second-order quadrupolar shift. The

isotropic chemical shift provides information regarding the local electronic structure,

especially bond order and oxygen coordination. The size of the isotropic second-

order quadrupolar shift is weakly dependent on the asymmetry parameter of the
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electric field gradient at the nucleus and more strongly dependent on the size of the

largest component (Vzz). This correlates stIongly with local bonding parameters

such as p-orbital occupancy and charge transfer from oxygen lone pairs to silicon

" in d-p Tr-bonding models [46].

According to the analysis above and the development of the theory in Chapters
q

1 and 2, the isotropic chemical shift is field-independent while the quadrupolar shift

depends on the inverse of the square of the magnetic field. Therefore, at a higher

field strength the second-order shift, and hence the overall shift, will move tc, a

higher frequency. Care must be taken to minimize the possibility that resonances

will unexpectedly "cross" as the field strength is changed and in this case the second

(anisotropic) dimension of a DAS experiment is especially useful.

As an example of the effect observed, Fig. 6.9 shows the two oxygen-17 DAS

spectra obtained for diopside at magnetic field strengths of 9.4 T and 11.8 T. As

the field strength is increased the resonances shift to higher frequency as expected.

The two equations to be solved are

r/2
= - 2.o3691c (1+_,,o (6.5)

r/2
oob,x'"sT----di_cs) -- 1.30476C_(1 + -_-) (6.6)

and the calculated isotropic chemical shifts axe 86, 64, and 69 ppm for the three reso-

nances. The corresponding products of the quadrupolar parameters CQ(1 + r/:/3) ½

. are 2.9, 2.7 and 4.4 MHz respectively. Once again, these agree very well with the

previously determined values. The full results for the five silicates studied here are

found in Tables 6.3 and 6.4.

To summarize, in the past sharp NMR spectra from spin -1 nuclei such as

silicon-29 have been useful in studying local bonding parameters in solids. Equally
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Figure 6.9: DAS spectra of diopside (CaMgSi206) at 9.4 T and 11.8 T.

198



_(cs)compound 1_9.4T(ppm) ,.,obs*_ll'ST(ppm) -iao (ppm) CQ(1 + _a)½(MHz)Voba

diopside 69.2 75.1 86 2.8

CaMgSi208 48.5 54.0 64 2.7

28.6 43.3 69 4.5

forsterite 49.0 57.1 72 3.3

Mg_Si04 49.0 54.8 65 2.7

30.8 37.5 49 3.0

clinoenstatite 39.3 45.5 57 2.9

MgSi03 34.5 44.1 61 3.6

32.3 42.0 59 3.6

26.3 39.0 62 4.2

18.0 36.8 70 5.1

15.0 34.7 70 5.2

Table 6.3: Results from performing DAS experiments at 9.4 T and 11.8 T. The

isotropic chemical shift and product of quadrupolar parameters were calculated

from Eqs. 6.5 and 6.6.
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compound ,_9.4T X**.ST(ppm) _(cs),.,,_,, __,o (ppn) CQ(I+_3_)](MHz)(ppm)robs

wollastonite 103.4 107.4 115 2.3

CaSiO3 100.1 105.1 114 2.6

96.5 100.2 107 2.2

89.0 91.9 97 2.0

85.8 91.9 103 2.9

74.3 79.3 88 2.6

28.2 44.9 75 4.8

28.2 44.9 75 4.8

21.6 37.8 67 4.7

larnite 117.3 123.3 134 2.9

CasSiO4 113.3 118.5 128 2.7

108.8 113.4 122 2.5

106.3 112.0 122 2.8

Table 6.4: Results from performing DAS experiments at 9.4 T and 11.8 T. The

isotropic chemical shift and product of quadrupolar parameters were calculated

from Eqs. 6.5 _md 6.6.
i.
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useful resolution is now available from quadrupolar nuclei including oxygen-17 as il-

lustrated here for a class of oxygen-17 enriched minerals. Resolved resonezmes have

been observed from saml=les with up to nine crystallographically distinct oxygen

• sites. In DAS, two-dimensional spectral analysis is used for correlating isotropic

chemical shifts with quadrupolar parameters (C o and 7?)at each oxygen site. In
ii

DOR, a technically more demanding experiment, one-dimensional spectra can be

accumulated directly. Performing DAS or DOR experiments at two field strengths

allows quantitative determination of the isotropic chemical shift and the quadru-

polar shift. It is anticipated that pure-absorption-phase DAS will ultimately allow

complete determination of the quadrupolar parameters, rather than a product of

the coupling constant and asymmetry parameter, once acceptable signal strengths

are achieved.
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Chapter 7

A Dynamic-Angle Spinning

NMR Probe

A probe for dynamic-angle spinning (DAS) NMR experiments comprises a

spinning cylindrical sample holder whose axis may be reoriented rapidly between

discrete directions within the bore of a superconducting magnet. This allows the

refocussing of nuclear spin magnetization that evolves under anisotropic interactions

such as chemical shift anisotropy and quadrupolar coupling. The probe includes an

axial air delivery system to bearing and drive jets which support and spin a rotor

containing the sample. Axis reorientation is accomplished with a pulley attached

to the probehead and coupled to a stepping motor outside of the magnet. The

choice of motor and gear ratio is based on an analysis of the moments of inertia

of the motor and load, the desired angular resolution, and simplicity of design.

Control or angular accuracy and precision is essential, and the determination of

the performance of this probe is illustrated with testing procedures used routinely

in experimental setup. The need for quick reorientation of the axis is dictated
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by the relaxation of magnetization to thermal equilibrium (spin-lattice relaxation)

and dipolar relaxation of spins in the energy levels of the central transition to other

magnetic energy levels (cross-relaxation and spectral diffusion). Angular accuracy

" is also necessary to sufficiently cancel the anisotropic evolution at the two angles,

while reproducibility of the angles is essential due to the use of signal averaging and
t

the twc-dimensional na_are of these experiments.

7.1 Apparatus

The experimental apparatus for dynamic-angle spinning is, to a first approxi-

mation, similar to that used in a conventional MAS experiment. However in DAS

the spinning angle of the rotor with respect to the laboratory reference frame (or

magnet reference frame) is dynamic or time-dependent. For these experiments a

mechanical device is required to rapidly reorient a spinning sample axis between two

or more angles, synchronized with radiofrequency pulses to manipulate the nuclear

spin magnetization. The general goals for probe performance were short reorien-

tation time, accurate and precise angular control, and radiofrequency efficiency, in

that order. The following analysis led to this particular design.

Assume that the motor used to drive the body through a hop has an essentially

constant torque N M over the required speed range. Neglecting friction, the power

" delivered by the motor during reorientation generates or absorbs rotational kinetic

energy according to

d 1 2 1 2
NM_M -- d--t('2 IMO')M+- -_IBwB)

= IMWMaM + IB_OBaB , (7.1)
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where _,dM,Band OtM,B are the magnitudes of the angular velocities and accelera-

tions of the motor (M) and the body (B) housing the rotor. Also assume that a

transmission links the motor and body angles OM,B by a ratio

3 = OB _ wB _ a_._ff_B, (7.2)
OM f.dM aM

"L

and that the inertia of the linkage is either incorporated or negligible. By eliminat-

ing the motor variables in Eq. 7.1 using Eq. 7.2 the body acceleration is expressed

a,s:

/3NM (7.3)
as = (IM + 32IB) "

As a function of/3 this expression has a maximum value

NM _ o_0/3o (7.4)
a,_ = 2x/7-_ -- 2

where a0 = NM lM is the free-motor acceleration and 30 is the optimum transmis-

sion coupling factor, _IM/IB. This demonstrates that a massive motor having a

large free acceleration will provide optimal speed performance although, as shown

next, this optimum is very insensitive to changes in mechanical purameters.

The parameter of direct interest is the reorientation time _-r required to move

the rotor through an angle AO = e2 - 01. Assuming ideal control, where the motor

can be operated at any acceleration consistent with its torque, the rotor may be

accelerated during the first half of the motion and decelerated during the second
u

half, so

A0 1 (2)2-7- = , (7.5) .

and

_-_= 2 . (7.6)
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Combining this with Eqs. 7.3 and 7.4 the reorientation time is

- where

= (7.8)

The appearance of hyperbolic functions is characteristi,_ of impedance matching

problems, of which this is a mechanical example.

The result in Eq. 7.7 shows a weak dependence of the reorientation time on al-

most ali mechanical parameters, and the consequent difficulty of making substantial

time reductions by mechanical improvements. The strongest dependences are upon

the hop angle and motor torque/acceleration: these enter under square roots, and

are the first parameters to optimize. Also note that _',,in depends upon the fourth

root of the moments of inertia. The square root expression in Eq. 7.7, which we call

the time inflation factor, has a very weak dependence upon the optimal coupling

condition, as the plot in Fig. 7.1 indicates. This is beneficial in the sense that it

leaves the choice of the coupling parameter/3 relatively free.

Current technology offers fast motors have free accelerations in the range of 105

to l0 s rad/sec _. Motor moments of inertia span the range from 10-5 to 10-6 kg m s

and the stator assemblies built to hold the rotor in our experiments have inertias

which fall at the low end of this range. Given these ranges, and that AO _ zr4,

. _,,_n spans the relatively narrow range from 1 to 4 msec, despite a variation of

two orders of mugnitude in the independent parameters. As seen below, however,

such short times have not been achieved: the primary limiting factor is obtaining

sufficiently subtle motion control for the motor performance to approach these

theoretical limits.
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Figure 7.1" Time inflation factor as a function of D//_o.

Motor selection in our laboratory was based largely on intrinsic acceleration.

Because performance is such a weak function of _, while motor and body inertias

are comparable, direct drive (_ = 1) was chosen for control convenience. Although

a variety of gear and belt options are possible, a simple string/pulley linkage seemed

to be the lightest and simplest alternative. We have used PMI (model USS-52M-

006) and Sigma (model 803-D2220-F04) motors; Portescap P-series motors are

also suitable for this type of design. Ali motors have comparable free accelerations,

but the Sigma motors are preferable because of their larger torque and inertia.
6

A Whedco model IMC-1151-1-A controller drives the motors. The IMC ac-

cepts commands and allows preprogramming of movement profiles using a PC as a

dummy terminal. There are also external profile enable and trigger lines available

which allow TTL level signals to trigger execution of profiles and commands within
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individual profiles. Movement commands, acceleration and deceleration rates, max-

imum speed, and start/stop pulse rates are loaded before an experiment is begun,

and final control of the motor is through TTL level pulses sent to the IMC from

" the NMR spectrometer pulse programmer. Synchronization of movement with the

radiofrequency pulses in the experiment is then easily accomplished with the spec-

trometer software. The basic laboratory setup for a DAS experiment is sketched in

Fig. 7.2.

A schematic of the DAS probehead is shown in Fig. 7.3. The stator body and

endcaps are shown placed on an aluminum platform, and the radiofrequency coil

and _-inch diameter copper tubes for air delivery to the endcaps are also visible

in this view. The coil is wound from copper magnet wire, but here it is shown as

transparent to enhance the view of otherwise obscured components of the probe-

head. The assembly is built to fit within the 70 mm room temperature shims of

a widebore superconducting magnet. The stator body and its internal parts (the

stator sleeve and the rotor, discussed below) are machined from Vespel, a polyimide

chosen for its high strength and ease of machinability. The endcaps and pulley are

made of Delrin (polyacetal), a commercially available, less costly, high modulus

plastic. A full set of technical drawings for the probehead, used by the machinists

in the Department of Chemistry machine shop to fabricate this probe, are included

in Appendix A.

The cylindrical stator body (diameter 15.9 mm) is located by glass ball bearings
a

(Microminiature Bearings Co.) in polyacetal races held in place by the endcaps.

The bearings allow smooth, low friction reorientation. High pressure air is delivered

through the endcaps and bearings to channels in the stator body. This axial flow of
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MAGNET SPECTROMETER

/

Figure 7.2: Schematic of the laboratory setup for a DAS experiment. The spec-
trometer pulse programmer (PP) controls the radiofrequency (RF) irradiation
and the triggering of the Intelligent Motor Controller (IMC). The personal

computer (PC) allows loading of predefined hop profiles into the IMC. The

motor (a) sits at the base of the magnet in the motor housing (b) and is cou-
pled to the DAS probehead (c) with a string tightened by nylon turnbuckles

(d).
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Figure 7.3: Schematic of the probehead for a DAS experiment.
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air is undisturbed by the hopping motion, and no external hoses are needed which

would add excess inertia to the assembly. A lightweight polycarbonate sleeve is

positioned around the center of the stator body to keep the rotor in place.
!*

Since a stationary rf coil surrounds the assembly, the stator body must be re-

moved in order to change the sample. Removal of the pulley and unfastening of the

side of one endcap (two screws) allows the stator body to slide out of the assembly,

keeping one bearing set pressed around the end of the stator body while leaving the

second pressed inside the fixed endcap. The former bearing outer race diameter is

of slightly greater diameter than the stator body to allow removal.

The stator sleeve and sample holder are shown in the expanded drawing of

Fig. 7.4. The sleeve is machined separately, press fitted into the stator body, and

the whole assembly is turned on a lathe to preserve the cylindrical symmetry of

the stator body. From one end of the stator body a single air hole feeds the center

drive channel. The two outer bearing channels are also filled with pressurized air

by splitting the axial channel from the other endcap into two channels which meet

the stator cavity near the circumference of the stator body. Air forced through the

12 radial bearing holes (0.3 mm diameter) at each end of the stator supports the

rotor. Each circle of bearing holes are at a 45 ° angle with respect to the cylindrical

axis of the stator sleeve to keep their exit ports as near the ends of the rotor as

possible. This maximizes support, allowing use of the longest (and therefore most
t

stable) rotors. The bearing air escapes through the top and bottom of the spinner

chamber.

Approximately 30 psi of bearing pressure is required to prevent rotor touchdown

during hops. The effect of the hop on a rapidly spinning rotor is discussed in Ap-
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Figure 7.4: Expanded view of the stator, stator body, and sample holder.
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pendix B. The conclusion is that crashes associated with hops are due to dynamic

disturbances that disrupt ordinarily stable equilibrium air patterns, and not failure

of the bearings to support the excess load caused by moving the rotor.

ii.

The six drive holes (1.0 mm diameter) are in the plane orthogonal to the spinning

axis and are directed tangentially to give the air a rotary flow component when

impinging upon the wide rotor flutes. The air provides torque to the rotor, moving

up and down the flutes to then be released quickly to the laboratory through the

escape holes. The escape holes are also drilled tangentially, but in a direction

opposite to that of the drive holes and offset by one-sixth of the distance around the

circumference of the stator. This presumes an impulse rather than reaction drive,

which is consistent with improved performance obtained by lengthening the rotor

flutes. Decoupling of the two air delivery and escape paths in this way minimizes

the turbulent flow of air within the vicinity of the rotor, with the intent of increasing

spinning stability and reliability. Drive pressures of 60 to 70 psi are necessary to

provide routine rotor spinning frequencies of 5 to 6 kHz using 6.3 mm diameter

rotors.

The rotors themselves are 15.9 mm long with conical screw caps on either end.

Twelve flutes are centered along the body, having a length of 4.0 mm and a depth

of 0.3 mm. The total sample volume is 0.15 cubic centimeters in a standard rotor

with 1.0 mm wall thickness. Flat spacers within the rotors separate the powdered

sample material from an angular standard (usually potassium bromide, deuterated

1,4-dimethoxybenzene, or deuterated hexamethylbenzene) used to set the magic

angle. The rotor is held in place longitudinally with a thin polycarbonate sleeve

rather than more conventional fixed endcaps to optimize the rotor length while
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minimizing both the coil volume and stator body moment of inertia. Holes are cut

in the ends and the sides of this sleeve to allow free discharge of the bearing and

drive air. The conical ends of the rotors slowly wear away at the bearing points on

• the sleeve and this piece typically needs replacement after approximately 500 hours

of operation.

The pulley has a diameter at the bottom of the string guide of 31.8 mm. It slides

onto a square slot on the stator body, and has a notch cut into one side of the string

guide for passage of the string to a fastening screw. The string is a length of Kevlar

(Dupont aramid fiber) with a diameter of approximately 0.8 mm. At the base of

the magnet, the string is also attached to a second pulley mounted on the shaft of

the stepping motor. A similar notch and fastening screw are present on the lower

pulley, providing an efficient coupling of angular position with negligible mechanical

backlash. The string is tightened with turnbuckles located approximately halfway

between the bottom pulley and the point of entry of the string into the magnet

bore (see Fig. 7.2).

An external, fixed-coil arrangement is used for irradiation with the radiofre-

quency (Bl) field. This sacrifices electrical efficiency, but surmounts problems ex-

perienced with an earlier moving coil design [105]. The earlier design, sketched

in Fig. 4.2, was used for the first DAS experiments. Specifically, tuning changes

• associated with axis motion and difficulty with sliding contacts or moving leads are

avoided with this new design. A major advantage of this arrangement is equiva-

lent performance at ali angles: pulse lengths for 90° nutation of the magnetization

are independent of the axis orientation, and it is possible to perform NMR exper-

iments at any axis angle, including 0°. This latter axis orientation results in a
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signal which is equivalent to that obtained from a static sample, and allows two-

dimensional NMR spectroscopy correlating the powder pattern lineshapes observed

from a static sample with the high resolution lines provided by DAS (or MAS)

narrowing.

Another inconvenience with the original probe design was the use of an alumina

stator. The observation of aluminum nuclei is compromised due to the background

signal obtained from the stator which is inside of the coil. This new design uses

only aluminum-free parts inside of the coil and therefore observation of aluminum

nuclei is now possible.

7.2 Experimental Results

7.2.1 Hopping Performance

To investigate the performance of the probe, the strong time-domain free induc-

tion decay (FID) signal is observed after a 90° pulse is applied to the deuterium

nuclei in a rotating sample of deuterated 1,4-dimethoxybenzene. The deuterium

nucleus (spin-l) is affected by first-order quadrupolar interactions, which are mo-

tionally averaged while spinning at the magic angle [159, 160]. Since the distri-

bution of resonance frequencies is large (on the order of 75 kHz at 9.4 T) the

inhomogeneous static lineshape in the frequency domain is broken up into spinning

sidebands, symmetricMly displaced about a central (isotropic) peak and occuring

at integer multiples of the rotor frequency. Away from the magic angle, the two

Am = 1 transitions obtain different isotropic frequencies and the resonance splits

into a doublet. When exactly at the magic angle the inverse Fourier transform of
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the isotropic signal and its envelope of sidebands, a time domain FID composed

of a train of rotational echoes occurring once every rotor cycle, is observed. The

sensitivity of the time and frequency domain sign_,s to the angle of the spinning

" axis with respect to the external field is demonstrated in Fig. 7.5. Under typical

experimental conditions, the step size used is obtained from one-sixteenth stepping

of a 200 step per revolution motor, or 0.1125°/step. Moving through the magic

ang_:_in one s_ep increments verifies the suitability of the magic-angle condition as

a mark for determining absolute axis orientation.

The hop in a DAS experiment is made between 91 - 37.38 ° and 9_ - 79.19 °, a

difference of 41.81 °. The nearest angles obtainable with the magic angle of 54.74 °

as a fixed reference and 0.1125 ° angular resolution are 91 = 37.41 ° and 92 = 79.15 °,

a difference of 41.74 ° or 371 steps. When the spinning axis is set 371 steps off of

the magic _.ngle, the time nec_sary to complete a hop of 41.74 ° is determined by

. initiating the return hop to the magic angle and waiting for a delay time before

applying a pulse to the system. The FID is then recorded, and the delay varied

until an FID matching that of Fig. 7.5(c) is observed. The decays in Fig. 7.6

show the effect of changing the time allowed for the hop. Undistorted signals are

observed 28 msec after the initiation of an axis hop, corresponding to measured

motor drive current pulses of 25 msec, and an inferred settling time of 3 msec. This

is much less that _he 100 msec or longer longitudinal relaxation times (T1) of many

quadrupolar nuclei in solids, and is therefore sufficiently short to allow storage of

- the signal during the reorientation with negligible loss in signal intensity.

Attempts to increase the speed of the hop by increasing the acceleration of the

motor through its triangular speed profile led to decreased performance because of
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Figure 7.5: Time-domain magnetization decays and the resulting NMR spec-
tral lines for deuterium in an angular standard as a function of offset from the

magic angle.
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an angular standard as a function of the time allowed in a test hop through
41.74 ° to the magic angle.

01'7



angular overshoot. A smaller start/stop pulse rate was then necessary, leading to

overall slower performance. The use of optical encoder feedback could not compen-

sate completely for the overshoot as a finite time (on the order of a few msec) is

required to search for the desired final angle. Similar hopping performance is now

routinely achieved using a 1024 step optical encoder which provides 0.1756 ° angular

resolution using a position pulse multiplier of two (set in the IMC).

7.2.2 Aluminum-27 DAS

The ability to observe aJuminum-27 with this probehead is important as

aluminum-27 is a major constituent of advanced materials such as zeolites, other

molecular sieves and catalytic supports, clays, and ceramics. The capabilities of

this probe are demonstrated with the DAS spectrum of the single aluminum-27

species present in petalite (LiAlSi4010), a polycrystalline lithium ore. The pure-

absorption-phase DAS experiment of Chapter 5 was performed with a second hop to

the magic-angle of 54.74 °. The two-dimensional spectrum at 9.4 T (aluminum-27

Larmor frequency of 104.26 MHz) appears in Fig. 7.7.

The single peak in the high-resolution DAS dimension appears at a total iso-

tropic shift of 46 ppm with respect to aluminum-27 in a saturated Al(N03)3 solu-

tion. The second dimension corresponds to the MAS spectrum for this sample and

it may be simulated and the quadrupolar parameters extracted. We find e2qQ/h

= 4.62:i:0.05 MHz with an asymmetry parameter 77of 0.48=t=0.03 and these results
4

are in excellent agreement with those calculated from recent dc SQUID measure-

ments on the same sample [161]. The isotropic chemical shift is then calculated

to be 59 ppm with respect to the standard Al(NO3)3 solution. This result bodes
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well for the separation and complete determination of quadrupolar parameters from

overlapping aluminum resonances like those in more complex aluminosilicate sam-

ples, using the DAS dimension to separate lineshapes in the powder pattern (low

resolution) dimension which may then be simulated individually.

This discussion has provided an analysis of the design and examples of real

laboratory performance of a dynamic-angle spinning probe suitable for narro;vhig

resonance lines in spectra of quadrupolar nuclei. The experimental results obtain-

able with this design are illustrated here and in previous chapters. This design offers

several advantages in its present form. Relatively simple mechanical construction

has provided reliable operation and reasonable hopping times using commercially

available mechanical drives. The stationary rf coil eliminates potential difficulties

associated with moving rf circuit components and complications due to changing

the irradiation direction, and permits use of all axis angles with equal efficiency.

The observation frequency is also easy to change, often accomplished with a sim-

ple change of irradiation coil. Overall, this probe is well suited for homonuclear

dynamic-angle correlation studies of nuclei with moderate sensitivity and reason-

able relaxation rates. It is clear that there is room for improvement in several areas:

we expect that attention to controller electronics could reduce hopping times below

10 msec, and that a more compact coil design could improve the filling factor and

overall rf performance, as well as allowing higher frequency operation. It would

likewise be useful to extend probe versatility by incorporating features such as het-

eronuclear decoupling and variable temperature capability.
4

220



Bibliography

[1] M. H. Cohen and F. Reif, Sol. State Phys. 5, 321 (1957).

[2] C. Cohen-Tannoudji, B. Diu, and F. Lal_, Quantum Mechanics (J. Wiley,
New York, 1977).

[3] E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Pev. 69, 37 (1946).

[4] F. Bloch, W. W. Hansen, and M. Packard, Phys. Pev. 69, 127 (1946).

[5] F. Bloch, W. W. Hansen, and M. Packard, Phys. Pev. 70, 474 (1946).

[6] R. R. Ernst, Adv. iag. Reson. 2, 1 (1966).

[7] I. Solomon, Phys. Pev. 110, 61 (1958).

[8] P. Mansfield, Phys. Pev. 137, A961 (1965).

[9] R. V. Pound, Phys. Pev. 79, 685 (1950).

[10] P. S. Hubbard, J. Chem. Phys. 53, 985 (1970).

[11] S. Vega, Phys. Pev. A 23, 3152 (1981).

[12] A. Samoson, E. Kundla, and E. Lippmaa, J. Magn. Reson. 49, 350 (1982).

[13] H.-J. Behrens and B. Schnabel, Physica lldB, 185 (1982).

[14] S. Wolfram, MathematicaTM : A System for Doing Mathematics by Computer
(Addison-Wesley, Redwood City, CA, 1988).

[15] H. W. Spiess, in NMR: Basic Principles and Progress, vol. 15, P. Diehl, E.
Pluck, and R. Kosfeld, Eds. (Springer-Verlag, Berlin, 1978).

[16] M. Mehring, Principles of High Resolution NMR in Solids, 2hd edition

(Springer-Verlag, Berlin, 1983).

221



q

[17] C. P. Slichter, Principles of Magnetic Resonance, 3rd edition (Springer-
Verlag, Berlin, 1990).

[18] A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford,
1961).

[19] H. B. G. Casimir, On the Interaction Between Atomic Nuclei and Electrons
(Teyler's Tweede Genootschap, Haarlem, 1936).

[20] J. H. Smith, E. M. Purcell, and N. F. Ramsey, Phys. Pev. 108, 120 (1957).

[21] T.-C. Wang, Phys. Pev. 99, 566 (1955).

[22] T.-J. Wang, J. Magn. Resort. 64, 194 (1985).

[23] R. L. Cook and F. C. De Lucia, Am. J. Phys. 39, 1433 (1971).

[24] A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton Uni-
versity Press, Princeton, NJ, 1960).

[25] J. J. Sakurai, Modern Quantum Mechanics (Benjamin/Cummings, Menlo
Park, CA, 1985).

[26] B. A. Pettitt, J. Magn. Reson. 48, 309 (1982).

[27] G. M. Muha, J. Magn. Reson. 53, 85 (1983).

[28] U. Haeberlen, High Resolution NMR in Solids." Selective Averaging in Ad-
vances in Magnetic Resonance, Suppl. I, J. S. Waugh, Ed. (Academic Press,

New York, 1976).

[29] S. Ding and C. Ye, Chem. Phys. Lett. 170, 277 (1990).

[30] J. A. Tossell, Phys. Chem. Mineral. 10, 137 (1984).

[31] R. Tycko, J. Chem. Phys. 92, 5776 (1990).

[32] R. Tycko, J. Magn. Reson. 75, 193 (1987).

[33] R. Tycko, Phys. Pev. Lett. 60, 2734 (1988).

[34] D. P. Weitekamp, A. Bielecki, D. B. Zax, K. W. Zilm, and A. Pines, Phys.
Pev. Lett. 50, 1807 (1983).

[35] R. C. Tolman, The Principles of Statistical Mechanics (Oxford University
Press, New York, 1946).

222



[36] R.R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic
Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987).

[37] I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys. 26, 167 (1954).

• [38] T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR: Introduc-
tion to Theory and Methods (Academic Press, New York, 1971).

• [39] E. Fukushima and S. B. W. Roeder, Experimental Pulse NMR: A Nuts and
Bolts Approach (Addison-Wesley, Reading, MA, 1981).

[40] U. Haeberlen and J. S. Waugh, Phys. Rev. 175, 453 (1968).

[41] W.-K. Rhim, D. D. Elleman, and R. W. Vaughan, J. Chem. Phys. 59, 3740
(1973).

[42] W. Magnus, Com. Pure Appl. Math. 7, 649 (1954).

[43] P. C. Taylor, J. F. Baugher, and H. M. Kriz, Chem. Rev. 75, 203 (1975).

[44] D. W. Alderman, M. S. Solum, and D. M. Grant, J. Chem. Phys. 84, 3717
(1986).

[45] T. M. Duncan and D. C. Douglass, Chem. Phys. 87, 339 (1984).

[46] N. Janes and E. Oldfield, J. Am. Chem. Soc. 108, 5743 (1986).

[47] V. H. Schmidt, Proc. Ampere Intl. Summer School II, Basko Polje, Yugoslavia
(1971).

[48] P. P. Man, J. Klinowski, A. Trokiner, H. Zanni, and P. Papon, Chem. Phys.
Lett. 151, 143 (1988).

[49] A. Samoson and E. Lippmaa, Phys. Rev. B 28, 6567 (1983).

[50] A. Samoson and E. Lippmaa, Chem. Phys. Lett. 100, 205 (1983).

[51] D. Fenzke, D. Freude, T. FrShlich, and J. Haase, Chem. Phys. Lett. 111,171
(1984).

. [52] P. P. Man, J. Magn. Reson. 67, 78 (1986).

[53] A. P. M. Kentgens, J. J. M. Lemmens, F. M. M. Geurts, and W. S. Veeman,
J. Magn. Reson. 71, 62 (1987).

[54] P. P. Man, J. Magn. Reson. 77, 148 (1988).

223



[55] A. Samoson and E. Lippmmu, J. Magn. Reson. 79, 255 (1988).

[56] N. Chandrakumar and S. Subramanian, Modern Techniques in High-
Resolution FT-NMR (Springer-Verlag, New York, 1987).

[57] T. E. Bull, S. Fors_n, and D. L. Turner, J. Chem. Phys. 70, 31{)6 (1979).

[58] A. W. Overhauser, Phys. Pev. 91,476 (1953).

[59] A. W. Overhauser, Phys. Pev. 92, 411 (1953).

[60] E. R. Andrew, A. Bradbury, and R. G. Eades, Nature (London) 182, 1659
(1958).

[61] I. J. Lowe, Phys. Pev. Lett. 2, 285 (1959).

[62] J. Schaefer, E. O. Stejskal, and R. Buchdahl, Macromolecules 8, 291 (1975).

[63] J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc. 98, 1031 (1976).

[64] M. M. Maricq and J. S. Waugh, J. Chem. Phys. 70, 3300 (1979).

[65] J. Herzfeld and A. E. Berger, J. Chem. Phys. 73, 6021 (1980).

[66] W. T. Dixon, J. Magn. Reson. 44, 220 (1981).

[67] W. T. Dixon, J. Chem. Phys. 77, 1800 (1982).

[68] R. J. Kirkpatrick, in Spectroscopic Methods in Mineralogy and Geology, Re-
views in Minerology, vol. 18, F. C. Hawthorne, Ed. (Mineralogical Society of

America) 341 (1988).

[69] G. E. Maciel, Science 226, 282 (1984).

[70] E. R. Andrew, Phil. Trans. Roy. Soc. Lond. A 299, 505 (1981).

[71] A. Samoson, Chem. Phys. Lett. 119, 29 (1985).

[72] H. J. Jakobsen, J. Skibsted, H. Bilds0e, and N. C. Nielsen, J. Magn. Reson.
85, 173 (1989).

[73] S. Ganapathy, S. Schramm, and E. Oldfield, J. Chem. Phys. 77, 4360 (1982).

[74] F. Lefebvre, J.-P. Amoureux, C. Fernandez, and E. G. Derouane, J. Chem.
Phys. 86, 6070 (1987).

[75] J. P. Amoureux, C. Fernandez, and F. Lefebvre, Mag. Reson. Chem. 28, 5
(1990).

224



[76] S. Schramm, R. J. Kirkpatrick, and E. Oldfield, J. Am. Chem. Soc. 105, 2483
(1983).

[77] S. Schramm and E. Oldfield, J. Am. Chem. Soc. 106, 2502 (1984).

[78] H. K. C. Timken, S. E. Schramm, R. J. Kirkpatrick, and E. Oldfield, J. Phys.
Chem. 91, 1054 (1987).

• [79] H. K. C. Timken, G. L. Turner, J.-P. Gilson, L. B. Welsh, and E. Oldfield, J.
Am. Chem. Soc. 108, 7231 (1986).

[80] H. K. C. Timken, N. Janes, G. L. Turner, S. L. Lambert, L. B. Welsh, and
E. Oldfield, J. Am. Chem. Soc. 108, 7236 (1986).

[81] E. Oldfield, S. Schramm, M. D. Meadows, K. A. Smith, R. A. Kinsey, and
J. Ackerman, J. Am. Chem. Soc. 104, 919 (1982).

[82] R. K. Harris and G. J. Nesbitt, J. Magn. Reson. 78, 245 (1988).

[83] C. Jiiger, S. Barth, and A. Feltz, Chem. Phys. Lett. 154, 45 (1989).

[84] L. B. Alemany, H. K. C. Timken, and I. D. Johnson, J. Magn. Reson. 80,
427 (1988).

[85] R. J. Kirkpatrick, K. A. Smith, S. Schramm, G. Turner, and W.-H. Yang,
Ann. Rev. Earth Planet. Sci. 13, 29 (1985).

[86] L. B. Alemany and G. W. Kirker, J. Am. Chem. Soc. 108, 6158 (1986).

[87] E. Lippmaa, A. Samoson, and M. M/igi, J. Am. Chem. Soc. 108, 1730 (1986).

[88] C. S. Blackwell and R. L. Patton, J. Phys. Chem. 92, 3965 (1988).

[89] P. J. Grobet, J. A. Martens, I. Balakrishnan, M. Mertens, and P. A. Jacobs,
Appl. Catal. 56, L21 (1989).

[90] G. L. Turner, K. A. Smith, R. J. Kirkpatrick, and E. Oldfield, J. Magn.
Reson. 67, 544 (1986).

" [91] J. F. Baugher, H. M. Kriz, P. C. Taylor, and P. J. Bray, J. Magn. Reson. 3,
( 9v0).

[92] S. E. Svanson and B. Johansson, Acta Chem. Scand. 23, 628 (1969).

[93] D. E. Woessner, Zeit. Phys. Chem. Neue Folge 152, 309 (1987).

[94] A. Pax, N. M. Szeverenyi, and G. E. Maciel, J. Magn. Reson. 55,494 (1983).

225



[95] T. Terao, H. Miura, and A. Saika, J. Chem. Phys. 85, 3816 (1986).

[96] T. Terao, T. Fujii, T. Onodera, and A. Saika, Chem. Phys. Lett. 107, 145
( 984).

[97] M. Sardashti and G. E. Maciel, J. Magn. Reson. 72, 467 (1987).

[98] A. Pax, N. M. Szeverenyi, and G. E. Maciel, J. Magn. Reson. 52, 147 (1983).

[99] A. Llor and J. Virlet, at Ninth Experimental NMR Conference Bad Aussee,

Austria (May 1988).

[100] A. Llor and J. Virlet, Chem. Phys. Lett. 152, 248 (1988).

[101] A. Pines, at Ninth Experimental NMR Conference Bad Aussee, Austria (May
1988).

[102] G. C. Chingas, C. J. Lee, E. Lippmaa, K. T. Mueller, A. Pines, A. Samoson,
B. Q. Sun, D. Suter, and 'l'. Terao, in Proc. XXIV Congress Ampere, Poznafl,
Poland 1988 J. Stankowski, N. Pi_lewski, and S. Idziak, Eds., D62.

[103] C. J. Lee, NMR with Generalized Dynamics of Spin and Spatial Coordinates,
PhD. Thesis (University of California, Berkeley, CA, 1988).

[104] B. F. Chmelka, K. T. Mueller, A. Pines, J. Stebbins, Y. Wu, and J. W.
Zwanziger, Nature (London) 339, 42 (1989).

[105] K. T. Mueller, B. Q. Sun, G. C. Chingas, J. W. Zwanziger, T. Terao, and

A. Pines, J. Magn. Reson. 8(i, 470 (1990).

[106] A. Samoson, B. Q. Sun, and A. Pines, to be published in Pulsed Magnetic

Resonance: NMR, ESR, and Optics (a recognition of E. L. Hahn), D. M. S.
Bagguley, Ed. (Clarendon, Oxford, 1992).

[107] n. L. Hahn, Phys. Pev. 80, 580 (1950).

[108] H. Y. Caxr and E. M. Purcell, Phys. Pev. 94, 630 (1954).

[109] S. Goldman, Information Theory (Prentice Hall, Englewood Cliffs, New Jer-
sey, 1953).

[110] R. M. Bracewell, The Fourier Transform and its Applications (McGraw-Hill,
New York, 1965).

[111] A. Samoson, E. Lippmaa, and A. Pines, Mol. Phys. 65, 1013 (1988).

[112] A. Samoson and E. Lippmaa, J. Magn. Reson. 84, 410 (1989).

226



[113] A. Samoson and A. Pines, Pev. Sci. Instrum. 60, 3239 (1989).

[114] F. D. Doty and P. D. Ellis, Pev. Sci. Instrum. 52, 1868 (1981).

[115] K. T. Mueller, G. C. Chingas, and A. Pines, Pev. Sci. Instrum. 62, 1445
. (1991).

[116] G. A. Jeffrey and G. S. Parry, J. Am. Chem. Soc. 76, 5283 (1954).

[117] G. Bodenhausen, S. P. Kempsell, R. Freeman, and H. D. W. Hill, J. Mega.
Reson. 35, 337 (1979).

[118] J. S. Waugh, M. M. Maricq, and R. Cantor, J. Mega. Reson. 29, 183 (1978).

[119] D. Suter and R. Ft. Ernst, Phys. Pev. B 25, 6038 (1982).

[120] I. Solomon, Phys. Pev. 99, 559 (1955).

[121] N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, Phys. Pev.
114, 445 (1959).

[122] P. S. Pershan, Phys. /tev. 117, 109 (1960).

[123] Research 8_ Development, October 1989, 58 (1989).

[124] Y. Wu, B. Q. Sun, A. Pines, A. Samoson, and E. Lippmaa, J. Mega. Reson.
89, 297 (1990).

[125] W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals (Heisted
Press, New York, 1978).

[126] J. Keeler and D. Neuhaus, J. Mega. Reson. 63, 454 (1985).

[127] K. T. Mueller, E. W. Wooten, and A. Pines, J. Mega. Reson. 92,620 (1991).

[128] A. D. Pain, J. Mega. Reson. 56, 418 (1984).

[129] G. Bodenhausen, H. Kogler, and R. R. Ernst, J. Mega. Reson. 58, 370 (1984).

" [130] T. T. Nakashima and R. E. D. McClung, g. Mega. Reson. 70, 187 (1986).

. [131] A. D. Pain and S. Brownstein, J. Mega. Resort. 47, 409 (1982).

[132] O. W. S_rensen, M. Rance, and R. R. Ernst, J. Mega. Reson. 56, 527 (1984).

[133] H. Kessler, M. Gehrke, and C. Griesinger, Angew. Chem. Int. Ed. Engl. 27,
490 9s8).

227



[134] G. Bodenhausen, R. Freeman, R. Niedermeyer, and D. L. Turner, J. MaNn.
Reson. 26, 133 (1977).

[135] D. Marion and K. Wiithrich, Biochem. Biophys. Res. Commun. 113, 967
(1983).

[136] D. J. States, R. A. Haberkorn, and D. J. Ruben, J. MaNn. Reson. 48, 286
( 982).

[137] J. Jeener, Proc. AmI_re Intl. Summer School II, Basko Polje, Yugoslavia
(1971).

[138] K. Nagayama, K. Wiithrich, and R. R. Ernst, Biochem. Biophys. Res. Com-
mun. 90, 305 (1979).

[139] K. Nagayama, A. Kumar, X. Wiithrich, and R. R. Ernst, J. MaNn. Reson.
40, 321 (1980).

[140] G. Drobny, A. Pines, S. Sinton, D. Weitekamp, and D. Wemmer, Syrup. Farad.

Soc. 13, 49 (1979).

[141] D. W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use tj.

Wiley, New York, 1974).

[142] B. Douglas, D. H. McDaniel, and J. J. Alexander, Concepts and Models of
Inorganic Chemistry, 2nd edition tj. Wiley, New York, 1983).

[143] K. Narita, J.-I. Umeda, and H. Kusumoto, J. Chem. Phys. 44, 2719 (1966).

[144] G. M. Volkoff, Can. g. Phys. 31,820 (1953).

[145] A.-R. Grimmer, F. von Lampe, and M. Miigi, Chem. Phz,s. Lett. 132, 549
( 986).

[146] E. Lippmaa, M. M_igi, A. Samoson, (3. J. Engelhardt, and A.-R. Grimmer, J.
Am. Chem. Soc. 102, 4889 (1980).

[147] M. M_£gi, E. Lippmaa, A. Samoson, G. Engelhardt, and A.-R. Grimmer, J.
Phys. Chem. 88, 1518 (1984).

q

[148] C. A. Fyfe, Solid State NMR for Chemists (CFC Press, Guelph, 1983).

[149] C. A. Pyre, J. H. O'nrien, and H. Strobl, Nature (London) 326, 281 (1987).

[150] E. Kundla, A. Samoson, and E. Lippmaa, Chem. Phys. L_tt. 83, 229 (1981).

228



[151] B. F. Chmelka, Distril,ution of Metal and Adsorbed Guest Species in Zeolites,
PhD. Thesis (Univer._lty of California, Berkeley, CA, 1989).

[i52] B. Warren and W. L. Bragg, Z. Kristallogr. 69, 168 (1928).

. [153] R. W. G. Wyckoff, Crystal Structures, volume 3 (Interscience, New York,
1948).

. [154] J. Stebbins, unpublished results.

[155] N. Morimoto, D. E. Appleman, and H. T. Evans Jr., Z. K'cistaUogr. 114, 120
(1960).

[156] F. J. Troger, Z. KristaUogr. 12_, 291 (1968).

[157] C. M. Midgely, Acta Crystallogr. 5, 307 (1952).

[158] K. T. Mueller, Y. Wu, B. F. Chmelka, J. Stebbins, and A. Pines, J. Am.
Chem. Soc. 113, 32 (1991).

[159] E. R. Andrews and R. G. Eades, Disc. Far. Soc. 34, 38 (1963).

[160] C. Ye, B. Sun, and G. E. Maciel, J. Magn. Reson. 70, 241 (1986).

[161] C. Connor, J. Chang, and A. Pines, J. Chem. Phys. 93, 7639 (1990).

229



Appendix A

Probe Designs

This appendix contains the full set of technical drawings for a DAS probehead

as used by the machine shop in the Department of Chemistry at the University

of California at Berkeley. The original probe was fabricated at the Materials and

Chemicals Sciences Division machine shop at Lawrence Berkeley Laboratory. A full

description of the probe is contained in Chapter 7 and Ref. [115].
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DAS suitor body
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Figure A.I: Stator body for DAS probehead.
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Figure A.2" Stator for DAS probeheacl. The letters to the right in the bottom

sketch refer to the sections in Fig. A.3.
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Statorsections
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. Figure A.3: Configuration of holes in stator for DAS probehead (sections
marked in reference to Fig. A.2).
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DAS spinner body
ktm spinnero.d.

_ i.d. and_pin_r i.dl

spinner
length 0.580"

" J7thread o.d.

Figure A.4: Spinner for DAS. The flutes are cut as described in the text of

chapter 7.
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DAS spinner caps
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• Figure A.5: Caps for DAS spinner.

235



Polycarbonate Sleeve b
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24 degrees

0.6228" i.d.

0.660" o.d.

a_ ( b 1 ( 0.550"length.Holes centered.

Figure A.6" Polycarbonate sleeve for DAS probehead.
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DAS endc,aps and platform
side view
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Figure A.7: Side view of endcaps for DAS probehead. The letters A, B, and

C distingish the distinct parts in this drawing and Figs. A.8 and A.9.
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Figure A.8: Top view of endcaps for DAS probehead.
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DAS endcaps and platform
end view I .500"

31 Jan 1990

A

4-40 through

% /

I

Figure A.9: End view of endcaps for DAS probehead.
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Figure A.IO: Pulleys for DAS motor (top) and probehead (bottom).
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DAS Ptflleyholder
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Figure A.11" Pulley holder for mounting the pulley on the motor.
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. Appendix B

Reorientation of a Spinning Body

We consider the torques arising from the reorientation of a rotor spinning at an

angular velocity w and supported by air bearings a fixed distance B from the rotor

center. The rotor with mass M has height H and radius R. We assume that the

reorientation axis is along the x-axis such that the sample rotation axis is always in

the yz-plane: the angle 0 describes the angle which the spinning axis makes with

the z-direction.

If the angular velocity of the spinning axis reorientation is fl = d0/dt then the

angular momentum L at any instant is

L = wlo(_z cos 0 + _v sin 0) + 9/I1_, (B.1)

where Io and I1 denote moments of inertia parallel and perpendicular to the cylin-

- drical rotor axis respectively. Explicitly

MR 2

. Io= 2 (B.2)

and

I_ = MR2 1 + (B.3)4 _ "
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To obtain the torque, we differentiate Eq. B.1 with respect to time and obtain two

additive terms:

Ng = wl2Io(-_z sin 0 + _ cos 0) (B.4)

and

N, =ailed. (B.5) ,

where a = df_/dt is the angular acceleration of the reorientation. Note that the

torque N, is identical to that generated by reorienting a non-spinning cylinder. The

gyroscopic torque, Ng, arises from the fact that a spinning object is being realigned:

it depends on the product of the two angular velocities, w and _. Since Ng is at

ali times orthogonal to the drive axis it will be borne completely by the bearings

which hold the stator and the motor need only provide a torque equal to N_ to

effect the motion. This leads to the first important conclusion: a spinning sample

is no more difficult for the motor to reorient than one which is static. Of course,

the air bearings between the stator sleeve and the rotor must provide sufficient

forces to support both of these torques. Empirically, this bearing load may be

significant, since rotor touchdown associated with reorientation is observed unless

bearing pressures of 30 psi are maintained.

Consider the case where reorientation through an angle AO occurs in a time

_-_and consists of a uniform angular acceleration (a) from rest up to a maximum

angular velocity (f_m_) during the first half of the reorientation. Uniform deceler-

ation back to rest results in an overall triangular velocity profile and Eq. B.4 shows

that the peak gyroscopic torque occurs at the midpoint of the motion where the

angular velocity is

_rnax -- O_Tr2 (8.6)
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Using Eq. 7.5 from the main text we may relate _,_ to A_ and Tr, finding

2AO
_2,_ = (B.7)Tr

. Equation B.5 indicates that the reorientation torque is constant during the acceler-

ation and simply undergoes a sign change when the motion changes to deceleration.
d

The ratio of the torques may then be calculated:

INg(max)l 2w_2,_ wtr

For typical cylinder aspect ratios (H/2R) betwe,:,, ' aJid 5, the numerator of Eq. B.8

falls between 1 and 35. The denominator, on the other hand, is the numbey of

radians the rotor turns while it is undergoing reorientation. For a 5 kHz spinning

rate and reorientation times between 10 and 50 msec, this falls betwee_ 300 and

1500. The second important conclusion then is that the main air bearing load

associated with reorientation is generated by gyroscopic reaction forces.

To estimate the magnitude of the load associated with hopping in more familiar

terms, we will calculate how large a sample packing imbalance is required to generate

a bearing load comparable to that expected during reorieacation. We characterize

rotor imbalance by the parameter 77 = AR/R, where AR is the distance of the

act,_al center of gravity frcm the spinning axis and R is again the rotor radius. For

a symmetric imbalance, the force on each of a pair of bearings holding the rotor is

7?wn (B.9)Fb= R'

where w and L are the magnitudes of the rotor angular velocity and momenta as

defined above.

On the other hand, if we move the spinn,_r with an angular velocity of reorien-
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per bearing

_,_a_L (B.10)
F_- 2B '

where B is the offset of the each bearing ring from the spinner center.

To obtain the equivalent imbalance 77_qrequired to generate a force equal to the

reorientation load, we equate Eqs. B.9 and B.10, obtaining

To a first approximation, R/B = 1, _,_a_ = _r/(2n), and w - 2_r/T_,where _-_

and _-, are the reorientation time and spinning period respectively. This leads to

vi_q--- _-,/8_'_. For _-, -- 0.2 msec and _-_= 30 msec, we find the equivalent offset

to be one part in 1200. This is a very small value and it is not expected to affect

spinner stability. Therefore we expect stable behavior of the rotor during the hop.

This analysis has shown that the magnitudes of the reorientation torques are

smaller or comparable to those occurring in steady state motion. On the other

hand bearing failure is observed during reorientation if bearing pressures are too

low. Such failure may then be due to more complex motions, possibly involving

gyroscopic oscillations and air bearing compression. Whatever the mechanism for

the bearing failure, it is possible to perform the necessary hopping of a spinning

rotor to accomplish the DAS experiments as sufficient bearing pressures axe easily

maintained in this design.
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Appendix C

Computer Code

This appendix contains the code for five Mathematica TM programs used for

calculations within the main text.

wigner.m - code included in the following three programs defines the matrix ele-

ments of the reduced and full second-order Wigner rotations.

static.m - calculates the spatial dependence for the second-order quadrupolar

interaction in a static sample.

vass.m - calculates the spatial dependence for the second-order quadrupolar inter-

action in a sample spinning at an arbitrary angle with respect to the magnetic

field.

dor.m - calculates the spatial dependence for the second-order quadrupolar in-
s

teraction in a sample undergoing double rotation defined by two arbitrary

" angles.

dasangles.m - calculates the DAS complementary angles for the range of k values.

This program was used to generate Fig. 3.1.
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wigner.m
(* Comtruct second-degree reduced Wigner Functions

dr as functions of ml, m2, and theta and then run Wigner
matrices d as functions of i,j, alpha, beta, and gamma *)

Clear[dr]

dr[2_2,theta_] := ((1+Cos[theta])/2)^2
.

dr[ 1,2,theta_] := (I +Cos[theta])/2 Sin[theta]

dr[0,2,theta ] := Sqrt[3/8] Sin[theta]A2

dr[.l,2,theta_] := (l-Cos[theta])/2 Sin[theta]

dr[.2,2,theta ] := ((l-Cos[theta])/2)^2

dr[2,l,theta_] := -(l+Cos[theta])/2 Sin[theta]

dr[1,l,theta_] := Cos[theta]A2 - ((l.Cos[theta])/2)

dr [0,l,theta_] := Sqrt[3/8] Sin[2 theta]

dr[.l,l,theta_] := -Cos[theta] ^2 + ((l+Cos[theta])/2)

dr[-2,l,theta_] := (l-Cos[theta])/2 Sin[the_._]

dr[2,0,theta_] := Sqrt[3/8] Sin[theta]^2

dr[ 1,0,theta_] := -Sqrt[3/8]Sin[2 theta]

dr[0,0,theta_] := (3 Cos[theta] A2 - I)/2

dr[- 1,0,theta_] := Sqrt[3/8]Sin[ 2 theta ]

dr[.2,0,theta_] := Sqrt[3/8] Sin[theta]A2

dr[2,- l,theta_] := -(l.Cos[theta])/2 Sin[theta]

dr[l,.l,theta_] := -Cos[theta]^2 + ((l+Cos[theta])/2)

dr[0,- l,theta_] := .Sqrt[3/8]Sin[2 theta]

dr[.l,-l,theta_] := Cos[theta]^2 - ((l-Cos[theta])/2)

dr[.2,-l,theta_] := (l_Cos[theta])/2 Sin[theta]

dr[2,- 2,theta_] := ((1-Cos[theta])/2) ^2

dr[l,-2,theta_] := -(l-Cos[theta])/2 Sin[theta]

dr[0,-2,theta_] := Sqrt[3/8] Sin[theta]^2

dr[. l,.2,theta_] := -(I +Co^[theta])/2 Sin[theta ]

dr[-2,.2,theta_] :- ((1+Cos[theta])/2) ^2 "

Clear[d]
l-

d [i_j_,alpha_,heta_,gamma_] :=
dr[ij,beta] (Cos[i alpha] + I Sin[i alpha]) *
(Cos[j gamma] + I Sin[j gamma])
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static.na

(* Read hl the dermitions of the Wigner matrices *)

<< wi_q_r.m

(* Construct the second-rank tensors in the principal axis
system of the EFG: note that eq is factored out *)

• Clear[r]

r[2,2] = 1/2 eta;

o r[2,-2] = 1/2 eta;

r[2,0] = Sqrt[3/2];

r[2,1] = 0;

r[2,.1] = 0;

(* The rotation is performed through the angles alpha, beta,
and gamma (a,b,c) to the interaction frame tensor R *)

Clear[R]

R[2,m_] := Sum[d[mp,m,a,b,c] r[2,mp], {mp,-2,2}];

R22 = R[2,2];

R2m2 = R[2,-2];

Rprod2 = R22 R2m2;

R21 = R[2,1];

R2ml = R[2,-1];

Rprodl = R21 R2ml;

(* The factors for the equations used are obtained from
8 times the sum of 2 Rprodl and Rprod2 *)

total = Expand[16 Rprodl + 8 Rprod2];

(* A set of trigonometric simplifications *)

Expand[total//. Cos[n_?Negative x_.] -> Cos[-n x]];

Expand[%//. Sin[n_?Negative x_.] .> .Sin[-n x]];

Expand[ %//. Cos[bi Sin[bl -> (Sin[2 b])/2];

Expand[%//. Cos[ai^2 -> (1 + Cos[2 a])/2];

, Expand[%//. Cos[b]^2 -> (1 + Cos[2 bi)/2];

Expand[%//. Cos[c]^2 -> (1 + Cos[2 c])/2];

. Expand[%//. Cos[a]^4 -> (1 + Cos[2 a])/2 (1 + Cos[2 a])/2];

Expand[%//. Cos[b]^4 -> (1 + Cos[2 b])/2 (1 + Cos[2 bl)/2];

Expand[%//. Cos[cl^4 -> (1 + Cos[2 c])/2 (1 + Cos[2 c])/2];

Expand[%//. Sin[ai^2 -> (1 - Cos[2 ai)/21;
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Expand[%//. Sin[2a] ^2 -, (1 - Cos[4 ai)/2];

Expand[ %//. Sin[bi^2 -> (1 - Cos[2 bi)/2];

Expand[%//. Sin[2b]^2 -> (1. Cos[4 bi)/2];

Expand[%//. Sin[ciA2 -> (1 - Cos[2 c])/2];

Expand[%//. Sin[2 c]^2 -> (1 - Cos[4 c])/2];

Expand[%//. Sin[a]^4 -> (1 - Cos[2 a])/2 (1. Cos[2 a])/2];

Expand[ %//. Sin[bi^4 -> (1 - Cos[2 bi)/2 (1 - Cos[2 bi)/2];

Expand[%//. Sin[c]^4 -> (1 - Cos[2 c])/2 (1. Cos[2 c])/2];

Expand[ %//. Cos[2 ai^2 -_. (1 + Cos[4 ai)/2];

Expand[%//. Cos[2 bi^2 -> (1 + Cos[4 bi)/2];

ans= Expand[%//. Cos[2 c]^2 -> (1 + Cos[4 c])/2];

(* Finally, the answer *)

ans

2 2

45 5 eta 39 eta Cos[2 a] 27 eta Cos[4 ai 9 Cos[2 b]

-(--) + ......... + +
16 32 8 32 4

2

15 eta Cos[2 bi 3 eta Cos[2 ai Cos[2 b]

8 2

2 2

9 eta Cos[4 a] Cos[2 bi 81 Cos[4 b] 9 eta Cos[4 b]
-- + +

8 16 32

2

27 eta Cos[2 a] Cos[4 b] 9 eta Cos[4 a] Cos[4 bi
+

8 32
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vass.m

(* Read in the dermitions of the Wigner matrices *)

<< w_ner.m

(* Construct the second-rank tensors in the principal axis
system of the EFG: note that eq is factored out *)

. Clear[r]

r[2,2] = I/2 eta;

r[2,-2] = 1/2 eta;

r[2,0] = Sqrt[3/2];

r[2,1] = 0;

r[2,-1] = 0;

(* The rotations are performed through the angles alpha
and beta (a,b) to the rotor frame and then theta to the
interaction frame tensor R *)

Clear[R]

R[2,m ,mp_] := Sum[dr[mp,m, theta] dr[mpp,mp,b] r[2,mpp] *
(Cos[rnpp ai - I Sin[mpp a]),{mpp,-2,2}];

(* The time-independent terms in the product of spherical
tensors are calculated *)

Rprod2 = R[2,2,0] R[2,.2,0] +
R[2,2,1] R[2,.2,.1] +
R[2,2,2] R[2,-2,-2] +
R[2,2,-1] R[2,.2,1] +
R[2,2,.2] R[2,-2,2];

Expand[%];

Rprod2 = %;

Rprodl = R[2,1,0] R[2,-I,0] +
R[2,1,1] R[2,.I,-I] +
R[2,1,2] R[2,.1,-2] +
R[2,1,-I] R[2,-I,1] +
R[2,1,.2] R[2,-1,2];

Expand[%];

Rprodl = %;

(* The factors for the equations used are obtained from
8 times the sum of 2 Rprodl and Rprod2 *)

. total = Expand[16 Rprodl + 8 Rprod2];

(* A set of trigonometric simplifications *)

Expand[total//. Cos[n_?Negative x_.] -> Cos[-n x]];

Expand[%//°Sin[n_?Negative x_.] .> -Sin[-n x]];
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Expand [%//. Sin[theta] ^4 -> (1 - Cos[theta] s 2)(1 - Cos[theta] ^2)];

Expand[%//. Cos[bis2 -> (1 + Cos[2 b])/2];

Expand[%//. Cos[bi^4 -> (1 + Cos[2 bi)/2 (1 + Cos[2 b])/2];

Expand[%//. Sin[b]^2 -> (1. Cos[2 bi)/2];

Expand[%//. Cos[b] Sin[bi -> Sin[2 bi / 2];

Expand[%//. Sin[2 b]^2 .> (1 - Cos[4 b])/2];

Expand[%//. Sin[2 a]^2 -> (1 - Cos[4 a])/2];

Expand[%//. Sin[b]^4 -> (1 - Cos[2 b])/2 (1. Cos[2 b])/2];

Expand[ %//. Cos[2 a]^2 -> (1 + Cos[4 ai)/2];

Expand[%//. Sin[2 theta]A2 -> 4 (Cos[theta] ^2 - Cos[theta]^4)];

Expand[%];%//. Cos[2 bi^2 -> (1 + Cos[4 b])/2];

arts = Expand[ %//. Sin[theta] ^ 2 .> 1. Cos[theta] ^2];

(* The number of terms in the f'mai expression is *)

Length[am]

36

(* The coefficients for the expansion may be obtained
as below and factored into Legendre Polynomials *)

p2 =LegendreP[2,Cos[theta]];

p4 = LegendreP[4,Cos[theta]];

ans44 = Coefficient[ans, Cos[4 a] Cos[4 b] ]

2 2 2 2 4

27 eta 135 eta Cos[theta] 315 eta Cos[theta]
+

256 128 256

cop4 =Expand[8 / 35 Coeffident[ans44, Cos[theta]^4 ]];

reml = Expand[ans44 - cop4 * p4];

cop2 = Expand[ 2/3 Coefficient[reml, Cos[theta]^2]];

rem2 = Expand[reml - cop2 * p2];

(* The remainder should be zero *)

rem2

0

cop4 (* the p4 coefficient *)

2
9 eta

32
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cop2 (* the p2 coefficient *)

0

(* The other terms are calculated similarly. Depending
on method of ¢odficient extraction, special
tricks may be needed when i = 0 or j = 0 in
expansion (some arguments must be set to zero) as below *)

newans = ans//.{Cos[2a]-> 0, Cos[4a]-> 0};

ans02 = Coefficient[newans, Cos[2 bi ]

.. 2 2 2 2
117 51 eta 297 Cos [theta] 63 eta Cos [theta]

+ ............. +

32 64 16 32

4 2 4

405 Cos [theta] 45 eta Cos [theta]
+

32 64 •

cop4 = Expand[8/35 Coefficient[ans02, Cos[theta]^4 ]];

reml = Expand[ans02 - cop4 * p4];

cop2 = Expand[ 2 / 3 Coefficient[reml, Cos[theta] ^2]];

rem2 = Expand[fetal - cop2 * p2];

(* The remainder should be zero *)

rem2

0

cop4 (* the !)4 coefficient *)

2
81 9 eta

28 56

cop2 (* the p2 coefficient *)

2
36 12 eta

-(--) +
7 7
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dor.m

(* Read in the del'tuitions of the Wigner matrices *)

<< wigner.m

Clear[r]

r[2,2] = 1/2 eta;

r[2,-2] = 1/2 eta;

r[2,0] =Sqrt[3/2];

r[2,1] = 0; '_

r[2,.1] = 0;

(* R is defined as one component of the full rotated quantity, and multiplied in a
reasonable manner to form the products R22R2.2 and R21R2-1 *)

Clear[R]

R[2,m_,mp_,mpp_] :--Sum[dr[mp,m, thetal] dr[rnpp,mp,theta2] *
dr[mppp,mpp,b] r[2,mppp] *
(Cos[mppp a] - I Sin[mppp a]),{mppp,-2,2}];

Rprod2 = R[2,2,0,0] R[2,-2,0,0] +
R[2,2,0,1] R[2,.2,0,-1] +
R[2,2,0,2] R[2,-2,0,.2] +
R[2,2,0,-1] R[2,-2,0,1] +
R[2,2,0,-2] R[2,-2,0,2] +
R[2,2,1,0] R[2,.2,.1,0] +
R[2,2,1,1] R[2,-2,-1,-1] +
R[2,2,1,2] R[2,-2,.1,.2] +
R[2,2,1,-1] R[2,-2,.1,1] +
R[2,2,1,-2] R[2,-2,.1,2] +
R[2,2,-1,0] R[2,.2,1,0] +
R[2,2,-1,1] R[2,.2,1,-1] +
R[2,2,-1,2] R[2,-2,1,-2] +
R[2,2,-1,-1] R[2,.2,1,1] +
R[2,2,.1,.2] R[2,.2,1,2] +
R[2,2,2,0] R[2,.2,.2,0] +
R[2,2,2,1] R[2,-2,.2,-1] +
R[2,2,2,2] R[2,-2,-2,-2] +
R[2,2,2,-1] R[2,-2,-2,1] +
R[2,2,2,-2] R[2,-2,.2,2] +
R[2,2,-2,0] R[2,-2,2,0] +
R[2,2,.2,1] R[2,.2,2,.1] +

CD

R[2,2,.2,2] R[2,.2,2,.2] +
R[2,2,.2,.1] R[2,-2,2,1] +
R[2,2,-2,-2] R[2,-2,2,2] ;

Expand[%];

Rprod2 = %;
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Rprodl = R[2,1,0,0] R[2,-1,0,0] +
R[2,1,0,1] R[2,-I,0,-1] +
R[2,1,0_2] R[2,.1,0,-2] +
R[2,1,0,-1] R[2,-I,0,1] +
R[2,1,0,-2] R[2,-1,0.2] +
R[2,1,1,0] R[2,-1,-1,0] +
R[2,1,1,1] R[2,-I,-1,-I] +
R[2,1,1_.] R[2,-1,-1,-2] +
R[2,1,1,-I] R[2,-1,-I,I] +
R[2,1,1,-2] R[2,-1,-1,2] +
R[2,1,-I,0] R[2,-I,1,0] +
R[2,1,.I,1] R[2,.I,l,-I] +
R[2,1,.1,2] R[2,.1,1,-2] +
R[2,1,.1,-1] R[2,-I,l,1] +
R[2,1,.1,-2] R[2,-1,1,2] +
R[2,1,2,0] R[2,-1,-2,0] +
R[2,1,2,1] R[2,-1,-2,-1] +
R[2,1,2,2] R[2,-1,-2,-2] +
R[2,1,2,-I] R[2,-1,-2,1] +
R[2,1,2,-2] R[2,-1,-2,2] +
R[2,1,.2,0] R[2,-1,2,0] +
R[2,1,-2,1] R[2,.1,2,-1] +
R[2,1,.2,2] R[2,.1,2,-2] +
R[2,1,.2,-1] R[2,-1,2,1] +
R[2,1,.2,.2] R[2,.1,2,2];

Expand[%];

Rprodl = %;

(* The total frequency in the proper units is obtained next *)

total = Expand[16 Rprodl + 8 Rprod2];

Length[total]

2064

(* Trigonemtric identifies simplify the long answer *)

Expand[total//. Cos[n_?Negative x_.] -> Cos[-n x]];

Expand[ %//. Sin[n_?Negative x_.] -> .Sin[-n x]];

Expand[%//. Sin[thetal]^4 -> (1. Cos[thetal]^2)(l - Cos[thetal]S2)];

Expand[%//. Sin[theta2]^4-> (1. Cos[theta2]s2)(1 - Cos[theta2]^2)];

Expand[%//. Cos[b]S2 -> (1 + Cos[2 b])/2];

Expand[%//. Cos[b]S4-> (1 + Cos[2 b])/2 (1 + Cos[2 b])/2];

Expand[%//. Sin[b]^2 -> (I. Cos[2 b])/2];

Expand[%//. Cos[b] Sin[b] -> Sin[2 b] / 2];

Expand[%//. Sin[2 b]^2 -> (1 - Cos[4 bl)/21;
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Expand[%//. Sin[2 a]A2 -> (1 - COS[4a])/2];

Expand[%//. Sin[b]^4 -> (1 - Cos[2 b])/2 (1- Cos[2 b])/2];

Expand[%//. Cos[2 a]^2 -> (1 + Cos[4 a])/2];

Expand[ %//. Sin[2 thetal]^2 -> 4 (Cos[thetal]A2. Cos[thetal ]^4)];

Expand[%//. Sin[2 theta2]A2 -> 4 (Cos[theta2]A2. Cos[theta2]^4)];

Expand[%//. Cos[2 b]A2 -> (1 + Cos[4 b])/2];

Expand[%//. Sin[thetal]A2 -> 1 - Cos[thetal]A2];

Expand[%//. Sin[theta2] A2 -> 1 - Cos[theta2] A2];

ans= %;

Length[ansi

108

(* The Legendre polynomials are defined here as well as their products *)

p21 = LegendreP[2,Cos[thetal]];

p22 = LegendreP[2,Cos[theta2]];

p41 =LegendreP[4,Cos[thetal ]];

p42 = LegendreP[4,Cos[theta2]];

p41p42 = Expand[p41 p42];

p21p22 - Expand[p21 p22];

(* The coffidents in front of the p4p4 and p2p2 terms are calculated *)

cop4p4 = Expand[8 8/35/35 Coefficient[ans, Cos[theta l] ^4 Cos[theta2] ^4]];

reml = Expand[ans- cop4p4 * p41p42];

r = Coefficient[rem 1,Cos[theta 1]^4 Cos[theta2] ^4];

cop2p2 = Expand[2 2/3/3 Coefficient[feral, Cos[thetal]^2 Cos[theta2]^2]];

rem2 = Expand[fetal - cop2p2 * p21p22];

r = Coefficient[rem2,Cos[thetal ]^2 Cos[theta2] ^2];

Length[rem2]

2

rem2 °

2
12 4 eta

-(--)
5 5
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cop4p4

2 2

729 81 eta 81 eta Cos[2 a] 27 eta Cos[4 a] 81 Cos[2 b]

--- + ........ + + + +

560 1120 56 32 28

2 2

. 9 eta Cos[2 b] 27 eta Cos[2 a] Cos[2 b] 9 eta Cos[4 a] Cos[2 b]
+

56 14 8

2

81 Cos [4 bi 9 eta Cos [4 b] 27 eta Cos[2 a] Cos [4 b]
+ +

16 32 8

2

9 eta Cos [4 ai Cos [4 b]

32

cop2p2

2 2

12 4 eta 24 eta Cos[2 a] 36 Cos[2 b] 12 eta Cos[2 b]

-(--) + + +

7 7 7 7 7

24 eta Cos[2 a] Cos[2 b]

7

(* The remainder should be the same as rem2, and this is the isotropic second-order shift *)

f = Expand[am- cop4p4 p41p42 - cop2p2 p21p22 ]

2

12 4 eta

-(--)

5 5
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dasangles.m
(* Definition of the Legendre Polynomials *)

p2[theta1_] := LegendreP[2,Cos[thetal]]

p4[theta2_] := LegendreP[4,Cos[theta2]]

(* Do loop will calculate theta I and theta 2
for eack value of k from 0.8 to 5 in steps
of 0.025 *)

Ciear[k];kout = {}; xout = {}; yout = {};
DO[
rule = FindRoot[{p2[x]+k p2[y] == O,
p4[x]+k p4Lv]== 0}, {x, 15 Degree}, {y, 65 Degree}];
xrule =rule[III]; yrule = rule[J2]];
AppendTo[kout, k];
AppendTo[xout,{k,(x/. xrule) / Degree l/N} ];
AppendTo[yout,{k,(y/. yrule) / Degree l/N} 1,
{k, 0.8, 5, 0.025}]

(* Commands to plot the data used to make Fig 3.1 *)

ListPiot[xout, PlotJoined.>True,AxesLabei->{k,theta 1},
PIotRange-> {0, 90}]

ListPlot[yout, PlotJoined->True,AxesLabei->{k,theta2},
PlotRange-> {0, 90}]
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