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Abstract

Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is com-
plicated by the coupling of the electric quadrupole moment of the nucleus to local
variations in the electric field. The quadrupolar interaction is a useful source of
information about local molecular structure in solids, but it tends to broaden reso-
nance lines causing crowding and overlap in NMR spectra. Magic-angle spinning,
which is routinely used to produce high resolution spectra of spin-3 nuclei like
carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupo-
lar nuclei when anisotropic second-order quadrupolar interactions are present.

Two new sample-spinning techniques are introduced here that completely av-
erage the second-order quadrupolar coupling. Narrow resonance lines are obtained
and individual resonances from distinct nuclear sites are identified. In dynamic-
angle spinning (DAS) a rotor containing a powdered sample is reoriented between
discrete angles with respect to a high magnetic field. Evolution under anisotropic
interactions at the different angles cancels, leaving only the isotropic evolution of
the spin system. In the second technique, double rotation (DOR), a small rotor
spins within a larger rotor so that the sample traces out a complicated trajectory
in space. The relative orientation of the rotors and the orientation of the larger
rotor within the magnetic field are selected to average both first- and second-order
anisotropic broadening.

The theory of quadrupolar interactions, coherent averaging theory, and motional




narrowing by sample reorientation are reviewed with emphasis on the chemical
shift anisotropy and second-order quadrupolar interactions experienced by half-
odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced
and illustrated with application to common quadrupolar systems such as sodium-23
and oxygen-17 nuclei in solids.

A more complete examination of a set of silicate minerals using oxygen-17 DAS
and DOR reveals resolved resonance lines from up to nine crystallographically dis-
tinct oxygen sites in a solid. DAS experiments performed at two magnetic ficld
strengths also exploit the different field dependence of the isotropic chemical and
second-order quadrupolar shifts, and their contributions to the overall positions
of the resonance lines are determined. Detailed analyses of the lineshapes in two-
dimensional DAS experiments and the probehead used in a DAS experiment are

also provided.
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Chapter 1

Spin Interactions in NMR

1.1 Introduction

Quadrupolar nuclei have nuclear spin angular momentum (I) greater than one-
half, and this differentiates them from spin-1 nuclei which can never have a nuclear
charge distribution with an electric quadrupole moment [1, 2]. Another major dif-
ference between spin—% nuclei such as protons or carbcn-13 and quadrupolar nuclei
is that the quadrupolar spins have more magnetic substates associated with the
nuclear spin angular momentum. While for isolated, non-quadrupolar species only
two energy states are present, a quadrupolar nucleus has 2/ + 1 magnetic substates
which separate in energy in a magnetic field. The high-field nuclear magnetic
resonance (NMR) spectra obtained from quadrupolar nuclei probe the transitions
made between the energy levels. Connections between nuclear spin states are rou-
tinely detected by either continuous-wave irradiation (3, 4, 5] or time-domain tech-
niques [6]. While the largest interaction for spins is usually the nuclear Zeeman

interaction, which provides the initial splitting of the magnetic substates, it is often

1




considered the least interesting. Importantly for chemists and chemical physicists,
further variations in the energy levels arise from interactions of a nucleus with the
surrounding microscopic environment. A detailed study of NMR spectra presents
new insight into local bonding and structure in solids. Both spin-% species and
quadrupolar nuclei experience anisotropic maguetic shielding of the nucleus that
provides clues to local magnetic fields. For quadrupolar nuclei alone the additional
couplirig of the electric quadrupole moment of the nucleus to local variations in the
electric field provides another powerful tool for the investigation of local environ-

ments.

The objects studied are the magnetic resonances: transitions between the spin
energy levels constitute the phenomena observed in the earliest continuous-wave
nuclear magnetic resonance experiments. In time-domain NMR, coherences be-
tween energy levels are excited by resonant irradiation or other coherent processes.
The coherences evolve in time, and some of them are detected as oscillations of volt-
age measured across an inductor surrounding the sample. A survey of the NMR of
quadrupolar nuclei includes many experiments also common for spin—1 nuclei such
as standard spectral acquisition by pulsed [7, 8] or continuous-wave [9] techniques,
as well as relaxation studies [10], multiple-quantum spectroscopy [11], and sample

spinning to narrow broad resonances [12, 13).

The experiments described in this thesis point in an exciting new direction for
the NMR of quadrupolar nuclei. Two novel sample reorientation methods are intro-
duced: dynamic-angle spinning (DAS) and double rotation (DOR) NMR. These
techniques are especially applicable to half-odd integer spin quadrupolar nuclei

where the relatively easy to observe central transition is broadened by second—order
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quadrupolar interactions. Preliminary DAS and DOR experiments are presented on
a variety of test compounds and significant resolution enhancemecnt is demonstrated.
Further experimental modifications and a detailed study of oxygen environments in

a set of minerals are also presented.

First, however, the theory of quadrupolar interactions in NMR is discussed,
leading up to the development of the DAS and DOR techniques. After a classical
introduction of the nuclear electric quadrupole interaction, the quantum mechani-
cal quadrupolar Hamiltonian is formulated. Coherent averaging theory is applied
to half-odd integer spin nuclei which experience both chemical shift anisotropy (a
magnetic interaction) and second-order quadrupolar broadening (an electric inter-
action). The truncation of the spin interactions by the large external magnetic
field and the effect of rapid sample rotation are discussed and their impact on the
observable spectra are calculated. The inability of simple sample spinning to suffi-
ciently narrow the resonances leads to the main emphasis of this work. The theory
of the two new techniques is presented, and in the subsequent chapter the first

experimental realizations of these techniques are offered.

The remainder of this work deals with three topics: a detailed analysis of the
proper phasing of lineshapes in two-dimensional dynamic-angle spinning experi-
ments, a study of oxygen nuclei in silicate minerals employing both DAS and DOR,
and finally the presentation of the DAS probehead designed and built for many of
these experiments. The appendices include minor topics such as the actual DAS
probehead mechanical drawings, a mechanical analysis of the effect of a rapid axis
flip on a spinning sample container and its supporting air bearings, and computer

programs used for calculations presented in the main text. The computer programs

3




showcase the Mathematica™ programming environment [14] where the program-
mer has the ability to solve complicated algebraic and trigonometric problems with
symbolic manipulation.

Before any detailed descriptions or assumptions are made regarding the experi-
ments to be carried out, it is instructive to study the spin energy levels of a nucleus
in a magnetic field. Particularly interesting for quadrupolar nuclei is the coupling
of the nuclear charge distribution to local electric fields: this is usually manifest
in the electric quadrupolar interaction. After introducing the classical quadrupolar
coupling, a correspondence may be made with the microscopic nature of the system
and the quantum mechanical quadrupolar Hamiltonian is formulated. The remain-
ing interactions and couplings of the nuclei are included as further contributions
to the total spin Hamiltonian. Rotations of the spin system or the physical lat-
tice containing the nuclei are also important for understanding the high-field NMR
experiments introduced here, and these are dealt with formally at the end of this

chapter.

1.2 The Quadrupolar Hamiltonian

A central point of this exposition of the spin interactions is the intimate connec-
tion between the physical and chemical properties of the system and the observ-
ables of NMR spectroscopy. It is therefore useful to follow the derivation of the
quadrupolar coupling Hamiltonian from the basic physical arguments to its final
representation as a quantum mechanical operator. Many equivalent forms of the
quadrupolar Hamiltonian appear in the literature. Some are suited to specific phe-

nomena such as relaxation [15] or coherent averaging [12, 16], while others are in a

4




more general form [17, 18].

The interaction energy of a charged nucleus with an external electric field is
derived in detail in a large number of texts, especially those dealing with specific
couplings such as the nuclear—electron hyperfine interactions [19]. This classical
interaction energy equation is the starting point, after which the quantum mechan-
ical analog of the nuclear charge density provides the quadrupolar Hamiltonian.
Finally, the Wigner-Eckart theorem is introduced and discussed in order to present

the Hamiltonian in a form which will be useful in NMR.

1.2.1 Classical Interaction

A nucleus, with atomic number Z and total charge Ze interacts with an electric
potential V(r) which is dependent on the spatial coordinates of the electric charges
of the total system: the positions of the nucleus of interest, other nearby nuclei, and
all associated electrons. This is the classical electrostatic interaction of a charged
body with an external charge distribution. Although caused by small quantities
of electric charge such as the electrons in their orbits surrounding a nucleus or the
positive charges of nearby ions, the size of the potential could be considerable due
to the proximity of the charges to the nucleus.

If the total nuclear charge is distributed over the volume of the nucleus (V) with
a charge density p(r), the classical interaction energy is the integral over the nuclear

volume of the product of the charge density and the potential:

E=/vp(r)V(r) d°r. (1.1)

The nucleus is not being viewed simply as a point charge since the potential could

still vary appreciably over the nuclear volume. The potential is expanded as a
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Taylor series about the center of mass of the nucleus (which is also considered as
the center of charge) and then it may be written

V(r) = V(0)+ glza (gg—t/:)mo + —;— i ; ZoTg (—9—2—‘/——) + . (1.2)
where the variables z, and z; are the Cartesian coordinates: T, = Z, T2 = ¥,
and z3 = z. The subscript r = 0 means that the derivatives of the potential are
evaluated at the origin which is defined as the center of mass of the nucleus. Claims
that the center of mass and the center of charge coincide for an atomic nucleus are
based on the assumption that stationary nuclear states are of a definite parity (2, 18],
and there is strong experimental evidence to support this postulate [20].

A direct relation to physical properties of the classical charged body is retained

if the following substitutions are made:

/;p(r) d’r = Ze (1.3)
/v Zap(r) &r = P, (1.4)

and
[, zamop(e) d’r = Qi (1.5)

The first integral is the total charge of the nucleus. The remaining two are higher
moments of the electric charge distribution: the ¢ component of the electric dipole
moment P (a vector) and the a3 component of the electric quadrupole moment
Q' (a second-rank tensor). Keeping terms through those quadratic in the spatial

coordinates in the expansion of the potential in Eq. 1.2, the electrostatic energy is

3 oV 1S 0%V
E = ZeV N pas - A LGN .
Ze (0) + c«z=:1 P (6‘1'“)!':0 + 2 Z Z Qaﬁ (6xaaxﬂ)l‘=0 (1 6)

a=1 =1
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The first term in this equation is the classical interaction of a charged nucleus
with & constant potential at the origin. It determines, for example, the packing of
atoms in a solid and is independent of the nuclear orientation. Therefore, it will not
affect the magnetic resonance spectrum and is dropped from further consideration.
The second term, the classical electric dipole interaction, vanishes since the center of
charge and the center of mass of the nucleus are assumed to coincide. In a classical
picture the charges within the nucleus are in such rapid motion that the time
averaged distribution of the electric charge density is an even function of position
and the integral in Eq. 1.4 is identically zero. The remaining term is the nuclear
electric quadrupole interaction. Higher-order terms are obtained by continuing
the expansion, but the next parity allowed electric multipole is the hexadecapole
and this is usually insignificant in size. See, however, the papers of Wang [21, 22]
discussing the possibility of observing nuclear haxadecapole moments and how they
may become important for the study of lattice deiects, phase changes, and lattice
dynamics in crystals.

Returning to the electric quadrupole interaction, the charge distribution external
to the nucleus enters into the calculation as second derivatives of the potential. The
tensor constructed from these second derivatives is called the electric field gradient

(EFG) tensor to which the symbols

_( oW
o= (20 wr

are assigned. By the equivalence of mixed partial derivatives, V,z is a symmet-

ric second-rank tensor and therefore has six independent components. It is also

traceless, since by Laplace’s equation

ViV =0, (1.8)
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and hence only five components are independent [1]. The appropriate modification
of the theory if a source does exist at the crigin involves replacing Eq. 1.8 with
Poisson’s equation [17].

It is always possible to transform the symmetric EFG tensor to a form in which
it is diagonal by an orthogonal transformation to the principal axis system (PAS)
of the EFG. The coordinate axes in the PAS are labelled with upper case letters
X, Y, and Z and in this frame only the three diagonal components Vy x, Vyy, and

Vzz are different from zero. These are still interrelated, since by Eq. 1.8
Vix + Vyy + Vzz =0, (1.9)

and only two parameters are necessary to completely specify the electric field gradi-
ent. Further angular coordinates may enter the equations with rotation out of the
principal axis system to a coordinate system defined by another frame such as the
molecular axis system, the sample holder axis system, or possibly the laboratory
(or magnet) axis system.

The parameters describing the EFG are usually chosen by first orienting the
principal axis system so that the component of the tensor with the largest magnitude

is along the Z-axis and the smallest along the X-axis, or
|Vzz| 2 |Vyy| 2 [Vxx]|. (1.10)

Then two convenient parameters are the strength of the EFG in units of electric

charge
€q = VZZ (111)
and the asymmetry parameter
Vxx —W
p= Wax —Vev) (1.12)
Vzz

8




The asymmetry parameter is dimensionless and lies between 0 and 1. It essentially
describes the deviation of the field gradient from axial symmetry. If the gradient is
spherically symmetric, or has cubic or higher symmetry, then each component of the
tensor is identically zero and the quadrupolar interaction vanishes completely [1].
As seen from Eq. 1.5 the quadrupole tensor @’ is also symmetric and second-
rank but not traceless. It is more convenient for the calculations involved when a

traceless quadrupolar tensor is introduced with components:

3
Qap = 3Qup—6ap ) @,
¥=1

./v p(r)(3zoTp — 8apr?) d°r. (1.13)

The interaction energy is rewritten for the quadrupolar coupling as

1 3 ‘_-'L 1 3 , 3
E= EE LQOI’V03+EZQ77Z%5' (1.14)
a=1 =1 ~y=1 6=1

The fina! term is identically zero since it contains the trace of the EFG tensor,
which must be independent of orientation even under rotation out of the PAS. The

remaining classical interaction is

FE =

| =

3 3
Y ﬁz QapVap (1.15)
a=10=1

which has the advantage of containing only traceless, second-rank tensors.

1.2.2 Quantum Mechanical Hamiltonian

Nuclear spin is a quantum mechanical property and, although the classical
picture is a useful model providing excellent physical insight, the problem must
be translated to the correct quantum mechanical language. This was first worked

out by Casimir [19] in a prize essay on the nuclear—electric hyperfine interaction
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published in 1936. To begin, the classical nuclear charge density is replaced with an
operator containing products of the charges of the nucleons, g, with delta functions

of their positions r;
PP (r) =3 qb(r — i) (1.16)
k

The neutrons are uncharged and only the protons enter the sum with g = e,
the fundamental unit of electric charge. Substituting into the classical expression
for Q.p derived above, the af—component of the quantum mechanical quadrupole

operator is

QQ‘Z’) = e _(3TarTpr — Bapr})- (1.17)
k

The electric field gradient tensor is also a classical quantity and a corresponding
quantum mechanical electron operator may be defined. Numerical values for the
electric field gradient components are calculated by taking the expectation value
over an appropriate electron wavefunction. In bulk matter it is usually the case
that there is no orbital degeneracy for the electrons and the EFG operators may be
replaced by their expectation values taken over the one predominant nondegenerate
electron state describing the electron orbit [18]. The EFG tensor is then included
in the Hamiltonian with an unknown numerical value and the understanding that
the expectation value has been previously calculated or could be calculated if the
charge distribution external to the nucleus were known. The same symbols as
the classical EFG tensor are therefore used to denote the EFG in the quantum
mechanical expression for the Hamiltonian. The components of the EFG tensor are
ultimately provided by analysis of the NMR spectra of quadrupolar nuclei under

ideal circumstances.

The quadrupolar Hamiltonian is obtained through substitution of the appro-
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priate operators into the classical energy expression in Eq. 1.15, rewritten simply
as
1

HQ = 6 Zﬁang)Vaﬁ (118)

with Vs now the expectation value of an operator as described above.

Alternative Derivations

The preceding section has been only one of several analyses which would provide
a correct quadrupolar Hamiltonian. Many authors [18, 23] begin from a different
energy equation by writing the potential as a function of the positions of the charges
external to the nucleus (r,,) in a volume V,, and the distance from the charges to

the nucleus (|r,, - r|). Then the potential is

V(r) = /vm -—'ﬁ(—fﬂ)—dsrm. (1.19)

| tm —r |
The denominator is expanded in terms of Legendre polynomials and the Hamilton-
jan subsequently written as products of spherical harmonics in the coordinates of
the nuclear and electronic variables by the spherical harmonic addition theorem.
The detailed monograph of Cook and De Lucia 23] provides further details for the
interested reader. One important result which comes out of this analysis is that
the Hamiltonian may be expressed in spherical tensor rather then Cartesian tensor
form. Cook and De Lucia provide the details of the conversion, especially useful
if an interaction cannot be derived in spherical form directly. The quadrupolas
Hamiltonian could have been initially expressed in spherical form, but here a closer
connection with the definition of moments of the nuclear charge is retained using a
Cartesian analysic. The spherical tensors are usually quoted in terms of the Carte-

sian coordinates when a final answer is presented However, spherical tensors do
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possess useful properties under rotations of the system, so the next step is to use the
proper rules to express the spherical tensors in terms of the quantities calculated

above.

Spherical Tensor Components

The spherical quadrupolar tensor components are denoted by the operators T(°”)
with m ranging from -2 to 2. The tensor operator T(°?) is second-rank so it must

have 5 components. In terms of the Cartesian coordinates

TP = }:(34 r2) (1.20)
0 e .
TZ;(;;) = :F-z- Z ze(zr £ iyk) (1.21)
k
and
T == Z(mk + iyx)?. (1.22)

The EFG tensor is also a second-rank tensor. The explicit components of the
spherical EFG tensor (calling it R(?)) in a general coordinate system are related to

the Cartesian components by
3

R, = F(V,. 1iV,.) (1.24)
R, = +(Var = Vi £ 2%V2y). (1.25)

2

In the principal axis system of the EFG the tensor components are referred to in

rig) = \[ Vzz = \/:eq (1.26)

rd =0 (1.27)

the lower case (r(?)) and
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1 1
rids = 5(Vax = Voy) = eqn. (1.28)

The Hamiltonian in terms of the spherical tensors is written {15, 16)
2
Ho= 3 —)"LIRY,. (1.29)
m=-2

It may be proven by direct calculation that Eqs. 1.18 and 1.29 are equivalent. The
Hamiltonian in Eq. 1.29 is defined by the product of the positive m valued Téf,f’ )
and the negative m valued Rg?)m since the scalar product of two tensors of rank k
is

k
TR .R® = S (=1)"Tim Rk (1.30)

m=-k

At this point the Hamiltonian must be a scalar quantity: it is an energy operator
which is independent of direction in space and invariant under rotations. This

isotropy is subsequently broken upon application of large magnetic fields.

Use of the Wigner—Eckart Theorem

The expression for the Hamiltonian as it now stands is very complex, depending
on the positions of all protons within the nucleus. To be useful in high-field NMR,
this Hamiltonian must be transformed further into a spin Hamiltonian. Nuclear
spin Hamiltonians are expressed in terms of spin angular momentum operators of
the nucleus and matrix elements are calculated between eigenstates characterized
by their associated eigenvalue of the I, operator. This is a direct result of the
Zeeman interaction being the dominant coupling for the spin system. The final
transformation of the Hamiltonian comes from an important theorem on tensor

operators, the Wigner-Eckart Theorem. Proofs of the Wigner-Eclart Theorem are

found in texts on both angular momentum and quantum mechanics {24, 25] so will
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not be included here. Sketched below are the essential rules and results of this
important theorem.

An irreducible tensor operator of rank L has 2L + 1 components, Tz, which
satisfy the following commutation relations with the total angular momentum of

the system of interest:

[Je Tem) = RMTipm (1.31)
[J4, Ton] = hy/L(L + 1) = M(M + 1)Tare (1.32)

and
-, Tom] = R/ L(L + 1) —~ M(M — 1) Tppr—r. (1.33)

The J; are the raising and lowering operators (or ladder operators) for the spin

plus spatial angular momentum J and they are defined as
Ji = Jp £ i, (1.34)

A fully equivalent definition of an irreducible tensor of rank L is that it transforms
under rotations in the same way as a spherical harmonic of rank L. Spherical
harmonics (Yza (6, ¢)) will only be transformed into other spherical harmonics of
the same rank upon rotation. By considering the commutation relations of an
operator with the total angular momentum, or its behavior under rotations, its
rank is discerned. A scalar operator is a tensor operator of rank zero, while a
vector operator is of rank one. The electric quadrupole operator is of rank two, and
so has five (2L + 1) independent components as noted above. For a nucleus which
also has spin I, the electric quadrupole operator is an irreducible tensor with rank
two in the tensor product space of the position state space (coordinate space) and

the spin state space of the particle. Therefore, since total angular momentum is a
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conserved quantity, rotations in the total space transform the components of the
quadrupole operator only into linear combinations of themselves.

The Wigner-Eckart Theorem states that the matrix elements within this total
state space of ail irreducible tensor operators of rank L are proportional to one
another. Nuclear states are described by the total spin quantum number (I), the
projection of the total spin upon the z—axis (m), and possibly other quantum num-
bers denoted generically by a. Since the state of the nucleus is well-defined, only
matrix elements diagonal in I and o must be considered. Essentially this is stating
that I and a are good quantum numbers. In general it is necessary to compute

matrix elements of the quadrupole operator in the form
(alm | QP | aIm') = (m | QLY | m'). (1.35)

The Wigner-Eckart Theorem is the essential link between irreducible spin operators
of rank two and the quadrupole operator. When written in terms of spin operators,
the matrix elements of the quadrupolar Hamiltonian are easily computed.
Second-rank irreducible spin operators are constructed in the same way that
irreducible second-rank tensors in three-dimensional space are formed, as the direct
product of two first-rank tensor operators (vectors) using the coupling of angular
momenta and Clebsch-Gordon coefficients [15). In terms of the vector spin operator

components I, and Iy; where

1 .
I:H = :}:—\7—5(1JC + 'LIy) (136)

we obtain for the quadrupolar interaction:

1 2 2
76[3I‘ -3 (1.37)
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1
T9) = ﬁ(uﬂ + I, 1) (1.38)

T = I3 (1.39)

The matrix elements of these operators are proportional to the matrix elements
of the quadrupole operator and we need to compute the proportionality constant
between the quadrupolar operators and the spin operators. First we note that all
five independent components of the tensor operator Q(°?) (or T1°?)) may be related
to a single quantity. Assuming the spin to be quantized along the z or z; axis,
the nuclear charges precess very rapidly about the direction of the nuclear spin and
the external potential interacts with the time average of this charge distribution.
In the Cartesian representation, the components of Q("p) for a # [ are zero by
symmetry. Further, Q! = Q{?") by the cylindrical symmetry of the problem.
Since the tensor is traceless, the sum of the diagonal components is zero and hence
QP = QI = Q("” ). In the spherical representation it becomes clear that only
the difference between the charge distribution parallel and perpendicular to the
z—axis is important.

The m = I matrix element of the quadrupole operator with reference to the

z—axis is traditionally defined to be equal to eQ), the electric quadrupole moment:

Q=@ |I) (1.40)
or
=(I| e; (322 =r2) | I). (1.41)

which by Eq. 1.20 is also the matrix element of 2v/6T.%"). By the conclusions of the

Wigner-Eckart Theorem, this must be proportional to 2\/67‘;(?’ from Eq. 1.37, or
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eQ = C{I|23I%-1%|1I)

2C(31% ~ I(I + 1)) (1.42)

and the constant of proportionality is then

eQ
C = -2—1—(-27:1—) (143)

A popular measure of the strength of the quadrupole coupling is the quadrupolar

coupling constant

2
Co =2 zQ (1.44)

which has the units of frequency. Note that this is a product of the electric quadru-
pole moment and the largest component of the electric field gradient tensor in the
principal axis system.

In summary, we rewrite the derived form of the quadrupolar Hamiltonian as well
as some equivalent forms which are often used in the literature. In the spherical
tensor representation of the Hamiltonian:

2
Ho=C Y (-1)"TP R, (1.45)

m=-2

using Egs. 1.37-1.39 and 1.23-1.25 for the definition of the “spin” and “space” parts
of the Hamiltonian, respectively. Here again, the spatial part of the interaction is
written in a general reference frame where the measurement is convenient, rot
necessarily the PAS of the quadrupolar interaction.

In Cartesian space the Hamiltonian is

1 0
Ho=¢ > QWP Vg (1.46)
a,p
with components
%
Vap = 1.47
7 (azaaxﬂ ) r=0 ( )
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and from Eqs. 1.17 and further use of the Wigner-Eckart Theorem (see for example
Slichter’s text [17]):

Q(OP) — eQ E

= — ol o) — bagl?| . 4
@ = §I@l 1) 5 (als + Isla) = bapl (1.48)

This is often expressed in the more compact form
Hq = IQ1, (1.49)

where I is a vector of spin operators (I,,I,,I;) and Q is a second rank tensor in
Cartesian space [16].

Additional forms of the quadrupolar Hamiltonian appear in the literature for
other physically interesting problems. As an example, Pettitt [26] shows that a
simple quadratic form of the quadrupolar Hamiltonian may be written down in
terms of the first-rank vector spin operators and one rotation from the frame of
reference where the spin operators are defined to the principal axis system of the
electric field gradient tensor. This would be useful in problems where the electric

field gradients are complicated by fluctuations in charge density or orientation.

1.2.3 Matrix Elements of the Quadrupolar Hamiltonian

To complete this section the matrix elements of the quadrupolar Hamiltonian

are calculated. Using the following matrix elements of the spin operators

(m|I,|m)=m (1.50)

(m | Loy | m £ 1) =:F——-1\/—2=\/(I:Fm)(1:tm+1) (1.51)

the matrix elements for H¢ are

—%[w — I(I + 1)]Ryo (1.52)
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(m+1|Hg |m) = :t:—g-(2m £ 1)/ TFmUT £m+ D) Rym (1.53)

(m£2|Ho|m) = —;Z\/(I:Fm)(lierl)x

VU Fm=1)(I £m+2)Raga (1.54)

while
(m' | Hg | m) =0 (1.55)
if |[m'—m[>2.
Explicit solutions for the eigenvalues of the quadrupolar Hamiltonian for a
spin-k nucleus require diagonalizing a (2k + 1) x (2k + 1) matrix. This has been

accomplished analytically only for spins up to I = % [27].

1.3 Other Internal and External Hamiltonians

The NMR spectra of quadrupolar nuclei are determined not only by the quad-
rupolar interaction described above, but also by the other internal and external
interactions of the spins. Among the important interactions for high-resolution
NMR of solids are the Zeeman interaction, the isotropic chemical shift and the
chemical shift anisotropy, the dipole-dipole coupling, and the effect of an external
irradiating field. Radiofrequency pulses are dealt with in the next section (rotations

of the system in spin space), while the other interactions are summarized below.

1.3.1 Zeeman Interaction

The interaction energy of a magnetic dipole with magnetic dipole moment p
within a magnetic ficld (B) is
E=-pu-B. (1.56)

19




The magnetic dipole moment may be rewritten in terms of spin operators again
using the Wigner—Eckart theorem, here for a vector operator. The result provides
the Zeeman Hamiltonian. For a spin in a magnetic field of strength By along a

direction which we define as the laboratory z—axis,

where the constant of proportionality is the magnetogyric ratio of the spin. The ma-
trix elements of I, are diagonal in the Zeeman basis (Eq. 1.50) and the characteristic

frequency between neighboring (Am = 1) levels is called the Larmor frequency:
Wo = ’YB(). (158)

The Zeeman interaction is usually the largest in magnitude in high-field NMR, and
it has the effect of truncating the other spin Hamiltonians [28]. Therefore, to what
will be a zero-order approximation, the states of the spin parallel or antiparallel
to the z—axis (the Zeeman basis) characterize the system. Corrections to this rule
are needed when interactions and couplings are no longer small compared to the

magnitude of the Zeeman terms.

1.3.2 Isotropic and Anisotropic Chemical Shifts

The chemical shielding or chemical shift Hamiltonian in spherical tensor notation
is

¢
Hes=7 9 > (—)" Ty RES,- (1.59)
¢

=0,2 m=—{

Here, the assumption has been made that only the symmetric part of the interac-
tion is observable. The discussions of Haeberlen (28] and Ye [29] investigate this

assumption further.
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This interaction has two origins [30]. One is the coupling of the magnetic dipole
of the spin to the magnetic fields arising from the motion of nearby electron clouds
reacting to the applied magnetic field (a diamagnetic effect). The second is a
paramagnetic effect due to the occupation of excited electron states.

The coupling tensor is called the chemical shift tensor (¢) which has a frame in
which it is diagonal (the PAS for the chemical shift tensor). However, as opposed
to the quadrupolar interaction, the trace of the CSA tensor is different from zero

and is proportional to the isotropic chemical shift

1
Uﬁs) = g(axx + oyy +02z2). (1.60)

The anisotropy and asymmetry of the chemical shift interaction are also important

quantities and are defined by

1
Ao = ozz - E(UXX + UYY)
= g—(dzz b O'LC;S)) (161)

and

_ ?_(Uxx — oyy)

T =5 Ao (1.62)

The useful components of the spherical tensors for the chemical shift interaction

are
TS = I,B, (1.63)
2
TS5 = \/;IzBo (1.64)
1
TS = __I1..B 1.65
241 5 150 (1.65)

with all other T(¢5) zero or not important for our purposes, and

rt()gs) = a'(’c;s) (1.66)
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Ihw

ri€9) = Zpo (1.67)

3
89 =0 (1.68)
Ao
rigs = ——1To (1.69)

3

with these final spatial tensors defined in the PAS of the chemical shift interaction.

1.3.3 Dipole—Dipole Coupling

The dipole—dipole coupling between two spins I; and I; is the final spin inter-
action which is considered here. It has a classical analogy in the interaction of two
magnetic dipoles located a distance d away from each other. The magnetic dipoles
here, however, are the nuclear spins themselves. The dipole-dipole Hamiltonian is
represented in spherical tensor notation as

2
Hp =277 3. ()T RP). (1.70)
m=-2 )
This is a two—spin operator, very similar to the quadrupolar interaction, but now

the spatial tensor refers to a distance dependent interaction. The spin terms take

the form
T = 8l = I - I (1.71)
TiP) = —1\/-5(12,-1*11 + Luyil,;) (1.72)
T8} = Teiilsa; (1.73)

while the PAS spatial components are

3
rid) = 5d,f' (1.74)
r2) =0 (1.75)
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P =0 (1.76)

where d;; is the length of the internuciear vector between the two nuclei.

Even though dipolar interactions are important in NMR, this interaction will
no longer be considered explicitly in any of the calculations that follow. Only
the CSA and quadrupolar interastions in solids are considered in this thesis. The
dipolar coupling between spins in solids is a complex multi-body problem and some
empirical discussion will be in order when the dipolar interactions become important
in the spectra obtained. References to important works will be provided at that

poirt.

1.4 Rotations in NMR

Rotations in NMR take two distinct forms: rotations in spin space which affect the
spin variables of the system only and rotations in coordinate space which transform
{he spatial tensors in the Hamiltonian. The sets of spherical tensors representing
the spin and spatial parts of the Hamiltonian are basis sets for irreducible repre-
sentations of rotations in their respective spaces, but not in the product space [31].
Therefore, rotations of the spatial coordinates does not affect the spin variables,
while rotations in spin space have no affect on the spatial tensors. Tycko, in his
wolk on the untruncation of NMR spectra in high magnetic field [31, 32, 33), treats
these rotations together in a higher-dimensional space where irreducible tensors
are defined by their transformation properties under simultaneous rotations of spin
and spatial coordinates. Under simultaneous rotations, the dipolar Hamiltonian
behaves as a scalar and untruncated spectra similar to isotropic zero—field dipolar

spectra [34] may be recovered.
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1.4.1 Rotations in Spin Space

To discuss rotations in spin space the concept of the density matrix [25, 35] is
introduced. A quantum mechanical system is described by a wavefunction | ) and

in this system the expectation value of an operator A is

(A) = (W | Al ). (1.77)

The wavefunction may be expanded in a complete set of orthonormal basis

functions | @,)

| 9) = cn | n) (1.78)
so that
(A) = chcaldm | Al ¢0). (1.79)

The matrix of values ¢, c, withm and n running over the dimensionality of the vec-
tor space spanning the wavefunctions of the system may be considered to represent

some Hermitian operator P with

(¢ | P | &m) = ctn (1.80)

and then
(A) = ;ﬂ((bn | P | 6m)(ém | Al &n)- (1.81)
Since the set {| ¢.)} forms a 'complete set of basis functions it obeys the closure

theorem
; | $m )P |=1 (1.82)

so that

(A) = DY (dn | PA|¢n) (1.83)
= an[PA]. (1.84)
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In NMR we deal with a large ensemble of spins in a magnetic field, yet we still
need to characterize the system and make meaningful measurements. The matrix
elements c}, c, will vary over the ensemble but the matrix elements of the observable

A in a fixed basis set will not change. An ensemble average is measured

(Aens = D_ Crin(dm | A | 8n) (1.85)

where the overbar in ¢}, ¢, denotes an ensemble average.

The density matrix p of the system is defined as the matrix with elements

(¢n|p|¢m>='CTm-C:=(¢an'¢m>- (1'86)

Then the ensemble average is calculated as

(s = (B0 || Sm)(dm | A b0) (1.87)
Tr[pA]. (1.88)

The states within the full ensemble evolve in time under the action of the Ham-
iltonian for the system. The time evolution of the density operator is governed by

the Liouville-von Neumann equation [36]
ap _ 1 [0, M]. (1.89)
If H is time-independent the formal solution to Eq. 1.89 is
plt) = €75 p(0) B, (1.90)

At thermal equilibrium, the usual state of the spin system before an NMR
experiment begins, the density matrix is

0= 191
p(0) = — (1.91)

N
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and the diagonai elements are

e Em/kT
Z

CrCm = (1.92)

where E,, is the energy associated with the state | ¢,,) and Z is the partition

function

Z =Y e EnliT, (1.93)

n

The diagonal elements correspond to the probability distribution of the eigenstates.
The off-diagonal terms are all considered to be zero at thermal equilibrium since the
phases of the complex coefficients are assumed to be randomized (incoherent) over
the ensemble. This is the hypothesis of random phases explained by Tolman [35].

The off-diagonal elements are referred to as coherences. If an off-diagonal ele-
ment is not zero, then it specifies that there is a connection between the two energy
levels. A coherent phase factor then exists in the density matrix elements. For a
spin system at equilibrium there is no net component of magnetization in the plane
tranverse to the large magnetic field and all coherences are zero.

In time-domain NMR, the measurements made are usually the components of
transverse magnetization after a pulse or set of pulses of radiofrequency electro-

magnetic radiation is applied to the system:

(M) = TrlpL] (1.94)

(My) = Tr[pl,]. (1.95)

The operators I, and I, are the spin operators for the z and y components of the
nuclear spin angular momentum. The initial density matrix of the system in high-

field NMR is obtained by expanding the exponential in Eq. 1.91. If the Zeeman
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Hamiltonian is assumed to be the dominant spin interaction then
pr(0) =1, (1.96)

where the subscript 7 denotes a reduced density matrix [16]. In this form, all
constants (additive and multiplicative) are dropped in order to focus on the dynamic
part of the spin behavior. The initial state of the system is then said to be one of

z-polarization.

RF Pulses on a Spin System

Radiofrequency pulses of a well-defined length (7), amplitude (B,), and phase
(4) are used to “rotate” nuclear spin states by creating and destroying coherences
between nuclear spin energy levels or changing the relative populations of these
levels. The action of a pulse of radiofrequency radiation at a frequency w to a
nucleus with magnetogyric ratio 7 is to add another term to the Hamiltonian of the
systemi:

Het = By [ cos(wr + @) + I, sin(wT + ¢)]. (1.97)

It is easiest to calculate the spin behavior by entering a frame of reference
rotating about the laboratory z-axis at a frequency w [37, 38]. In this frame the
pulse appears as a static field applied in the transverse plane at an angle ¢ with
respect to the z—-axis. The Zeeman interaction still appears as a static field along
the z—-axis with an effective frequency of (w — wp). The effective Hamiltonian in the

rotating frame for the Zeeman interaction and rf irradiation is

Hes = h(w — wo)I, + hw, (I, cos ¢ + I, sin @) (1.98)
where
w; = vB;. (1.99)
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Note that this effective Hamiltonian is now time-independent. The phase of the
pulse, @, determines whether the pulse is given along the z-axis (an z pulse where
¢ = 0°), the y—axis (a y pulse where ¢ = 90°), or any other axis in the xy-plane.
The density matrix must also be transformed into the rotating frame before the
equations of motion may be solved. It may be easily calculated [17] that the density

matrix in the rotating frame, pg, obeys the following equations. If
pr = e~ p et (1.100)

where w is the frequency of the rotating reference frame with respect to the labo-

ratory, then

der

1
dt = -ﬁ [pR,Heﬂ’] . (1.101)

The actions of rf pulses are now readily discerned.
The initial density matrix for the system is described by the value of the reduced
density matrix (the r subscript is now dropped) for the spins in equilibrium with

the lattice

o(0) = I, (1.102)

and a strong (or on-resonance) pulse of length 7 has the affect of rotating the initial

density matrix

p(1) = e7*17ls p(0) e 7o, (1.103)

The spin operator

Iy=1,cos¢+ I,sing (1.104)

defines the rotation axis and the pulse flip angle, 6, is given by

9 =uw T (1105)
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and corresponds to the angle through which the “vector” I, is rotated during a
pulse. Spin space may be visualized (at least for uncoupled spin-1 nuclei) as a
three dimensional space with axes z, y, and 2 corresponding to the spin operators
I, I,, and I,. Rigorously, the 2 x 2 identity matrix is also needed for full definition
of the state of the system, but this additive constant is usually disregarded. The
net magnetization of the system corresponds to the polarization or magnetization
vector whose components are traces of the density matrix with the spin operators.
A 90 degree or m/2 pulse rotates the net magnetization from the z-axis through 90
degrees into the ry plane with the final angle between the r—axis and the magne-
tization vector equal to (¢ — 90) degrees. This will occur irrespective of resonance
offset (the difference between the irradiating frequency w and the resonance fre-
quency of the spins) if the radiofrequency power is sufficiently strong. Otherwise,
the axis about which the magnetization is rotated will not lie in the zy plane and
offset effects will be present. A useful equation for determining the fate of the

density matrix after an on-resonance rf pulse with flip angle 8 and phase ¢ is then

p=1I,sinfsin¢ — I,sinfcos @ + I, cos . (1.106)

Free Evolution of a Spin—} System

Free evolution of the spin system occurs during the periods after or between
strong rf pulses. It is governed by the total Hamiltonian for the system, although
(as will be seen) some parts of the Hamiltonian are more important than others.
Continuing with the example of an isolated spin—% in a large magnetic field, the
first step is to remain in the rotating frame where the pulses were analyzed. In

this frame, the large Zeeman interaction does not exist and only occurs as an
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offset term from the spectrometer irradiation frequency. In a sense, the frame of
reference is spinning around the laboratory z-axis near to the Larmor frequency.
As a technical interest, this is also the frame of reference where the detection takes
place in most NMR spectrometers [39]. In this frame all other Hamiltonians gain
a time dependence and are said to be in an interaction picture. Those parts of the
Hamiltonians which commute with the Zeeman Hamiltonian are fully retained (the
so—called secular parts) and this will be dealt with in the following chapter under
the topic of secular or coherent averaging.

After a pulse, the effective Hamiltonian of the system in the rotating frame is
Heg = et H ™ (1.107)

where this could be a sum of many interactions. The most interesting interac-
tion here is that of an effective shift. In Chapter 2 it will become obvious that
an inhomogeneous anisotropic interaction such as the chemical shift anisotropy or
the second-order quadrupolar interaction will appear as an effective Hamiltonian
proportional to the spin operator I, with a shift frequency €.

The solution to the Liouville-von Neumann equation for a shift Hamiltonian is
p(t) = et p(0) e (1.108)

which is again a rotation in the spin space described above. The component of
the density matrix (or polarization vector) along the z—axis will not evolve under
a shift Hamiltonian: the I, terms in the exponentials commute with the effective
Hamiltonian. Any magnetization in the zy plane, however, will precess under the
Hamiltonian with a frequency € for a time ¢. The phase angle accumulated by

the density matrix or the magnetization vector in the zy-plane will be Qt. After a

30




pulse, a density matrix of I (corresponding to z-magnetization) will evolve into a
linear combination of I, and I, which will be detected as a signal oscillating in the

transverse plane. The density matrix becomes
p(t) = I cos Qt + I, sin (¢ (1.109)

and the measured signal is

(M:) = Tr[p(t)]

= —cos{it (1.110)

and

(M,) = Trlp(t)L,]

= %sinﬂt. (1.111)

Depending on the initial phase of the rf pulse, the magnetization after 90 degree
nutation could lie anywhere in the zy-plane and will always evolve into a linear
combination of z and y polarization under the shift Hamiltonian.

Other Hamiltonians such as the dipolar Hamiltonian have similar effects in larger
spin spaces where the density matrix is not simply a linear combination of the
three spin operators for a single spin. The space is larger because more spins may
be coupled together and the basis set for describing all states of the spin system
expands. Still, the action of the Hamiltonians is described in terms of suitable
rotations in spin space. The concept of coherences and spin operators has been
treated at a very elementary level in this chapter and will be expanded upon in
Chapter 5 where rotations in spin space become important for selection of pure-

absorption-phase lineshapes in two-dimensional NMR.
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1.4.2 Rotations in Coordinate Space

The Hamiltonian of interest in the spin system may not always be aligned so
that the frame which is being used to measure the spectrum (usually the rotating
frame described above) coincides with the frame of reference used to describe the
interactions. Also, when samples such as powders or amorphous solids are under
consideration, there are many crystallites or domains within a sample which have
a random or pseudo-random distribution of the PAS frames with respect to a
defined measurement frame. In the case of the quadrupolar interaction, the strength
and the asymmetry parameter of the EFG tensor are defined in the PAS of the
quadrupolar interaction: that frame where the EFG tensor is diagonal. The same
is true for the chemical shielding parameters, except that the chemical shift has
an isotropic component which is independent of orientation in space. The tensor
nature of the interactions simplifies the transformations to other frames since the
tensor components form an irreducible representation for rotation in space and
must behave like second-rank spherical harmonics under rotations. The second-
rank spherical harmonics will transform only into a linear combination of the five
of themselves upon rotation of the axis system [25].

The spatial tensor components in the rotated frame (R) are related to the com-
ponents in the initial frame () by

2
Ram= S D (a,8,7)r2m (1.112)
m'==2

where the D,(f,)m are the second-order Wigner rotation matrix elements
2 —im/ -
D?) (a,B,7) = e=™d?)_(B)e=™, (1.113)

The second-order reduced matrix elements d(,Z)m (B) are found in Table 1.1. The
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angles a, 3, and « are the Euler angles through which the original system must
be rotated to bring the axes in line with the new axis system. A picture of these
rotations will be presented in the upcoming theoretical discussion of the NMR
spectra of quadrupolar spins.

Multiple rotations are often necessary depending on the complexity of the exper-
iment under consideration. It will be seen that it is often beneficial to mechanically
reorient a sample, with rotations performed in series to determine the components
of the tensor in a frame where the measurement occurs. An important example is
for a time-dependent rotation of the sample spinning at a frequency w, about the
symmetry axis in a cylindrical rotor inclined at an angle 6 with respect to the mag-
net (laboratory) reference frame. The transformation of the spatial tensor r from
its PAS to the rotor frame (through the Euler angles a, 3, and «) and subsequently
to the laboratory frame takes the form

2 2
Rym = Z2D,(,f,)m(w,t,0, HEDY 2D$,?),m,(a,ﬁ, 7)o (1.114)
mi=— mle—
This rotation equation, and variations of it that encompass more rotations, will
be used extensively in subsequent discussions of sample reorientation techniques in
NMR.

The preliminary theory has now been set forward for the NMR of quadrupolar
nuclei and in the following chapters the effect of these spin Hamiltonians on the
spectra is examined. The ability to rotate the density matrix of the system (the
“direction” of the magnetization vector) with rf pulses or the spatial tensors by
spinning a sample provide the NMR spectroscopist with external control of the spin
system. By clever use of these external conditions it may be possible to provide

greater insight into the properties of solids associated with the system-dependent
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spatial tensors. One major goal is the explicit determination of the chemical shift
and quadrupolar parameters leading to correlations of microscopic electromagnetic

surroundings of a nucleus with macroscopic properties of materials.
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Chapter 2

Coherent Averaging and

Motional Narrowing

A formal theoretical analysis and treatment are needed to continue the study
of quadrupolar nuclei in high-field NMR, specifically the case where half-odd in-
teger nuclear spins are present in polycrystalline solids. The theory of an average
Hamiltonian is reviewed and applied to both the chemical shift anisotropy and the
quadrupolar interaction. Narrowing of broadened spectra from nuclei experiencing
first-order chemical shift anisotropy is established for a polycrystalline solid un-
dergoing rapid sample reorientation. It is also showr that spinning about a single
spatial axis partially averages the quadrupolar interaction in the readily observed
central transition resonance, yet this averaging is insufficient for complete narrow-
ing of the broad anisotropies. Therefore a better, more efficient means of averaging
is needed. The foundation is laid for a discussion of the new techniques of dynamic-

angle spinning and double rotation NMR, introduced in the following chapter.
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2.1 Average Hamiltonian Theory

The idea of an “average” Hamiltonian that describes the motion of a spin system
was first introduced by Haeberlen and Waugh to explain the action of multiple-pulse
NMR experiments [28, 40]. If the Hamiltonian is time—dependent and periodic, and
observation of the spin system is performed stroboscopically (synchronized with the
period of the Hamiltonian), the effective evolution of a spin system may be described
by a somewhat simpler uine-independent or average Hamiltonian. Many multiple-
pulse sequences for scaling or suppressing selected interactions have been developed
by these methods [16, 36].

At first it would appear that this theory is neither necessary nor compatible
with the discussion of the time-independent quadrupolar Hamiltonian formulated
in Chapter 1. Further manipulation of the quadrupolar interaction actually falls
into the category of secular averaging, where a large time-independent Hamiltonian
truncates smaller terms [28, 36]. This is an effective averaging in the interaction
representation of the larger and dominant term in the Hamiltonian. The ideas and
expressions from average Hamiltonian theory (AHT) are generally applicable in the
high-field NMR of quadrupolar nuclei with quadrupolar coupling frequencies less
than approximately one-tenth of the strength of the Zeeman interaction, a regime
where a considerable amount of NMR is performed. The chemical shift Hamiltonian
is also affected by the coherent averaging and this is introduced first as a simpler

example of secular averaging.
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2.1.1 General

The general principles of AHT and coherent averaging may be found in the
papers of Haeberlen [40] and Rhim [41] and are also covered in detail in the books
of Mehring [16] and Ernst [36]. The most important results are compiled here
as they will be needed for reference in the calculations which follow. Many subtle
points, such as time-ordering in the interaction transformation, are not needed here
due to the simplicity of the system.

Consider a Hamiltonian which is the sum of two terms: a dominant interaction
such as the Zeeman term in high-field NMR and a weaker interaction such as the
chemical shift anisotropy or the quadrupolar coupling. The dominant term in the
Hamiltonian is designated H, and the weaker coupling H;. In the interaction rep-
resentation of a static Hamiltonian H,, the weaker term becomes time~dependent

and in this interaction frame is written
Ho (t) = er™o! H, g~ #™ot, (2.1)

This is equivalent to entering the rotating reference frame where the large Zeeman
Hamiltonian is absent. In this picture, the average Hamiltonian is a sum of time-

independent, Hermitian Hamiltonians (called the Magnus expansion [42])
H=H +HY +H 4. (2.2)

which approximates the time-dependent Hamiltonian of Eq. 2.1.
The “zero—order” term is especially simple: it is the time average of the inter-

action picture Hamiltonian over one correlation period (¢.) of the large interaction:

1 rte  —
'ﬁ‘l‘”:t—c /o dtHy (b)) (2.3)
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This expression may be shown to be equivalent to first-order perturbation the-
ory [28] and, though it is the zero—order term in AHT, it is commonly referred to
as the first-order correction. If Ho is the Zeeman interaction (referred to as the
zero-order perturbation), then the first—order correction of Eq. 2.3 is equivalent
to keeping only the terms in the Hamiltonian which commute with the Zeeman
interaction. These secular terms are invariant with respect to rotations about the
2—axis defined by the magnetic field. This is analogous to standard perturbation
theory where the first correction is the diagonal component of the Hamiltonian in
the unperturbed basis.

The next term in the average Hamiltonian expansion is

HY = E—t_z /0 “ dt, /0 ® dt, [Ha(t2), ()] (2.4)

referred to as the second—order correction. Here, if the time—dependent interaction
Hamiltonian commutes with itself at all times, the second- and higher—order correc-
tions will all be zero. The second-order correction will become especially important
if the first—order correction vanishes for certain transitions.

Coherent averaging theory may now be applied to two of the interactions present
in our spin system in the solid state: the chemical shift anisotropy and the nuclear
electric quadrupolar interaction. These interactions provide the predominant line-
broadening mechanisms in the spectroscopy of numerous quadrupolar species. One
assumption which is implicit is that the dipolar interaction may be dismissed as
small compared to these interactions. Since it is a multiple-body interaction where
the coupling between all nearby spins must be considered, it is often regarded as a
broadening mechanism which convolutes a Gaussian lineshapc onto the frequency

dimension data obtained in an NMR spectrum [43].
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2.1.2 A Collecticn of Spins in a Large Magnetic Field

The spin system under consideration is a collection of half-odd integer quadru-
polar nuclei in a large magnetic field such that the Zeeman Hamiltonian is much
larger in magnitude than the quadrupolar or chemical shift interactions. The Ham-

iltonian is approximately
H =Hz + Hes + Ho + Hb, (25)

a sum of Zeeman, chemical shift, quadrupolar, and dipolar terms. The complete
forms of these Hamiltonians are presented in Chapter 1.

The starting point for calculation of the energy levels of the magnetic substates
is the largest interaction, the Zeeman Hamiltonian. The Larmor frequencies for
nuclear spin are on the order of tens to hundreds of MHz in conventional high-field
superconducting magnets (5 to 12 Tesla magnetic fields). For example, the Larmor
frequencies range from 29 to 69 MHz for the oxygen-17 nucleus (J = ) and 56 to
135 MHz for sodium-23 (I = 2) at these field strengths. In comparison, proton
resonance frequencies at the same field strengths will vary from 200 to over 500
MHz.

Oxygen-17 is an important nucleus in the solid-state and the focus of a large
part of the experimental work in this thesis, so it will be used as a typical example
of a quadrupolar nucleus. A spin—% nucleus such as oxygen—17 has its magnetic
substates split into six equally spaced levels by the Zeeman interaction (see Fig. 2.1)
with the spacing between the energy levels equal to the Larmor frequency, wo. For
oxygen-17 the gyromagnetic ratio is v = —3.6279 x 107 rad T™' sec™! and the
magnitude of the Larmor frequency is about 14% that of protons. If only the

Zeeman interaction is considered, all five Am = 1 (magnetic dipole) transitions for
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Figure 2.1: The six energy levels for a spin—-g- nucleus under the influence of
the Zeeman Hamiltonian. All Am = ] transitions have the same frequency
difference which is the Larmor frequency wo.

oxygen-17 are degenerate and only one line at frequency wo will appear in the NMR

spectrum.

Chemical Shift Anisotropy in High Field

The chemical shift interaction is the first perturbation on the zero—order Zeeman
Hamiltonian considered. Using the coherent averaging arguments of the previous

section, the first-order perturbation to the Zeeman eigenvalues arise from those
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terms in the Hamiltonian which commute with the Zeeman Hamiltonian. In other
words, the averaging is accomplished over the Larmor period in spin space and only
the m = 0 terms survive. Not surprisingly, these are the components containing
only the spin operator I,.

The first-order or truncated chemical shift Hamiltonian is
Hoy = WISTRED + yhT5 O R
= hwol,0®® + hwo\/glz (©5), (2.6)
This is obtained using Eqgs. 1.63, 1.64, and 1.66 for the spin and spatial tensors and
the fact that the spatial tensor component R((,g %) is the same in all axis systems.
The first term contains the isotropic chemical shift and this is usually included with

the Zeeman interaction, obtaining an effective Larmor frequency

wo' = (1 = o wy. (2.7)

Dispensing with the prime, it may always be assumed that the isotropic chemical
shift is included with the Zeeman interaction. The Zeeman levels will still be
separated by the same energy or frequency (see Fig. 2.2), although the spectrum
will now be shifted compared to the pure Zeeman spectrum.

The second term on the right hand side of Eq. 2.6 contains the anisotropy of
the chemical shift. The spatial tensor, R,(zgs) , depends on the orientation of the
chemical shift PAS relative to the Zeeman interaction reference frame. For a single
crystal, where only one orientation of the PAS is present, the anisotropy will be the
same for all equivalent nuclei and only one line will appear in the spectrum. It is
more usually the case that many crystallites are present within the sample (such
as in a powder or amorphous sample) and each crystallite will contribute to the

observed spectrum. The result is called an anisotropic powder pattern.
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Figure 2.2: The energy levels for a spin~% nucleus under the influence of the

Zeeman Hamiltonian and an isotropic chemical shift.
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To calculate the anisotropic frequency contributions from each possible orienta-~
tion of a crystallite the energy difference between the m and m + 1 Zeeman states

is computed:

cs 1
wc(l'n.is)o = ;—;

Following Eq. 1.112 the tensor component R%S)\in the laboratory frame is ex-

2 2
(m+ 1| §wOI,R§§s) | m+1) = (m | B-onzR,ggS) | m)]

pressed as a sum of rotations of the principal components of the CSA tensor. The
appropriate rotations defined by the Euler angles o, 3, and < are shown in Fig. 2.3.
The tensor component expressed in terms of the Euler angles, the Larmor frequency,
the chemical shift anisotropy (Ac), and the asymmetry parameter (7),) is calculated

using the Wigner rotation matrices of Eq. 1.113 and Table 1.1. The result is

2
S CS
© = 3 Dl By

il
|

Ac [(3 cos’ 3 — 1) + 7, sin’ B cos 2a] (2.9)

so that

W) = w03Aa [(3 cos’ 3 — 1) + 1, sin® B cos 2a] . (2.10)

In a perfect powder the distribution of orientations for the chemical shift PAS
lies isotropically on a sphere. A numerical sum over the orientations is performed
to simulate the NMR spectrum. Equally spaced points in a grid on (af)-space are
selected. The angle o runs from 0 to 27 while [ is restricted to the angles between
0 and 7. The intensity of the signal from each orientation is proportional to sin 3,
and this weighting is included in the numerical sum. An alternative method [44]

for calculating powder patterns is based on using triangles drawn on the faces
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Figure 2.3: The rotations through the Euler angles a, 8, and v transform the
tensor from the PAS of the interaction to the laboratory frame.
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of an octahedron to define direction cosines which are calculated from indices of
points, avoiding the time consuming calculation of sines and cosines by a computer.
An efficient interpolation based on the triangles is also incorporated, leading to
tremendous savings in computational time. Formulae for the CSA lineshapes have
also been calculated analytically (28, 43] and involve the calculation or compilation
of elliptic integrals. Numerical computation is usually preferred to allow a computer
to vary the chemical shift parameters and obtain a best-fit to an experimental
lineshape.

A sample simulation of a resonance broadened by chemical shift anisotropy is
provided in Fig. 2.4. The isotropic chemical shift and the anisotropy (Ac) used for
the simulation are most generally written in units of ppm (parts per million) of the
Larmor frequency, since in these units the spectrum is independent of the strength of
the magnetic field. The simulation presented was calculated using 0_‘(’6;5) = 20 ppm,
Ao = 220.5 ppm, and 7, = 0.51. These are typical values for the chemical shift
parameters found from phosphorus-31 nuclei in distorted tetrahedral sites in inor-
ganic solids [45]. Note that the lineshape is quite broad, with a frequency width of
260 ppm. This frequency spread is much greater than the narrow lines observed in
conventional NMR spectroscopy of, for example, protons in a liquid. Polycrystalline
solid samples usually provide such broad lines due to the chemical shift or other
coupling mechanisms that are anisotropic. After considering another important in-
teraction in solids, the quadrupolar coupling, a method of line-narrowing in solids

will be explored that will be able to average the anisotropy of the chemical shift.
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Figure 2.4: The NMR powder pattern from a nucleus with anisotropic chem-
ical shielding. The chemical shift parameters used in the simulation are
#€9 = 20 ppm, Ac = 220.5 ppm, and 7, = 0.51.
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Quadrupolar Interaction in High Field

For quadrupolar nuclei in solids the quadrupolar coupling is often much larger
then the chemica! shift anisotropy, although this is not a definite rule. The relative
magnitudes of these two interactions must be examined in the analysis of each
spectrum of quadrupolar spins. At this point the chemical shift anisotropy will
be ignored in the computation of the quadrupolar perturbation tc the Zeeman

Hamiltonian, although at a later point we will include it again.

The quadrupolar interaction in spherical tensor form is

2
Ho=C ¥ (-)"TIR R, (211)

m=-2

where Eq. 1.43 contains the spin-dependent constant C. Equations 1.37-1.39 and
1.23-1.25 provide the explicit forms of the quadrupolar spin operators and spa-
tial tensors. In the interaction picture defined by the Zeeman Hamiltonian the

quadrupolar Hamiltonian becomes time dependent,
Ho(t) = e’ Hg e, (2.12)
Using the relation [18]
e{on,t Tlm e—iwol;t — Tlm ei.nwot (213)
with Eq. 2.11, the rotating frame quadrupolar Hamiltonian becomes
—— 2 .
Ha(t) =C 3 (m1)me™ ' TR R2. (2.14)

m==2
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First—Order Calculation

The first—order average Hamiltonian is obtained using Eq. 2.3 and is the average
of the interaction frame Hamiltonian:

Wo

a7(0) _ Yo
HQ 2r

ar 2
“dt,C Y (-1)"em et T R . (2.15)
0

m=-2

where the averaging period in this interaction picture is t, = 27/wy, the Larmor

period. The integral sign may be taken inside the summation and, since

2

Wo wo dtl eimwoh o 5'"0, (216)

21 Jo

the first-order correction is

A - oTRg

1 Q 2 _ g2
- L () (- ) A9, (217)

As with the chemical shift anisotropy, the spatial part of the interaction is explicitly

written out for a nucleus in a PAS oriented by the Euler angles (a, §,7) as

2
R = ¥ Dio(enBm)ram
m=-2

= \/geq [(3 cos’ B — 1) + nsin® Bcos 2a] . (2.18)

2

The complete first—order quadrupolar Hamiltonian in the rotating frame is then
7O - 99 [(3cos? B = 1) + nsin? Beos 2a] (31,7 - I*) (2.19)
@ " 8I(2I-1) : ’ '

and for each m substate the diagonal matrix element of the first-order quadrupolar

interaction is

0

m |7 | m) = 299

=812 - 1) [(30052ﬂ— 1) +nsin2,80052a] (3m2 —I(I + 1))

(2.20)
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The first-order quadrupolar frequency perturbation from the Larmor frequency

between levels m and m + 1 is

9 = Em a1 1R (m 1) = (m | TG ]
= (2m+ ”g% [(3cos? B8~ 1) + nsin® Beos2a]. (2:21)

Several important points are worth mentioning. They are:

1. Each matrix element has an m? dependence. Therefore the energy levels with

the same |m| will be shifted by the same amount as shown in Fig. 2.5.

9. Because the absolute value of m is the same for both levels in the central
(% - —%) transition, the frequency difference for this transition only is un-
changed from the zero-order Zeeman (plus chemical shift) frequency. Equiv-
alently, in Eq. 2.21 m = —3 and the frequency change from the first—order

quadrupolar interaction is zero.

3. For each transition other than the central transition the first—order quadru-
polar frequencies are anisotropic. These are called the satellite transitions.
The spectral frequencies depend on the orientation of the PAS of the elec-
tric field gradient tensor with respect to the laboratory frame. In the case
of polycrystalline or amorphous solids, the contributions from all crystallites
will add and an inhomogeneous powder pattern will be observed. However,
the satellites may be hard to fully irradiate and detect due to their large
spread in frequency as the angles are varied over the surface of a sphere. The
discussion in Section 2.1.3 will address selective and non-selective irradiation

of the quadrupolar transitions.
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Figure 2.5: The energy levels for a spin—2 nucleus under the influence of
the Zeeman Hamiltonian, isotropic chemical shift, and the first two orders of
coherent averaging theory applied to the quadrupolar interaction. The energy
level diagram is shown for the spins in a crystallite oriented in some particular
direction within the magnet.
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The estimated frequency spread of the first—order quadrupolar broadening of
the satellite transitions in a powder is often many MHz which is much too broad

to be seen in conventional solid-state NMR spectra.

Second—-Order Calculation

Most importantly, in the case when only the central transition is detected, the
NMR spectrum is unperturbed hy first—order quadrupolar interactions. Second-
order effects must then be considered to determine whether they are Jarge enough to
cause further observable perturbations to the energy levels. Extending the analysis
to the next order of coherent averaging theory brings us to Eq. 2.4 which coutains
commutators of second-rank tensors in the spin variables and double integrals over

the time variables ¢; and t;. For the quadrupolar interaction

—_ 2n t 2 2 ,
Y = ’w°c2/”°dt2/2dt, T (=)™ 3 (-1 x
4m 0 0 m=—2 mi=—2
(142, T2 R, R, eimt gim'ents (2.22)

The result of this calculation has been published by Samoson, Kundla, and Lipp-
maa [12] in their study of the effects of magic—angle spinning on the NMR spectra
of quadrupolar nuclei.

Results for the values of the quadrupolar spin commutators {15] provide the

next set of substitutions. The useful results are

V3

9,1l = 5~ (412 F 4L +1) Iy (2.23)

7@, 782)] - i%(l,;l)]il (2.24)

P, 18] = -;—(4[2—-8122—1)12 (2.25)

TP\ T = (err-en?-1)1, (2.26)
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where

1.
Ln=F75 (L% il,). (2.27)

The double integrals over the time variables are performed, keeping only the non-

zero results. Expression 2.22 for the second-order quadrupolar Hamiltonian be-

comes

2
7 = (garey) = (AR (-8 = 1) 1
2RPRS), (21 - 21,2 - 1) I, -
VIZR R, (412 — 4L +1) Iy -
VIZRQRY (412 + 4L +1) I, +
SRR, (I - 1) I3, +
aERQ RS (I + 1) I2,}. (2.28)

The perturbation in the central transition eigenfrequencies is obtained from
matrix elements of the second-order Hamiltonian in the Zeeman basis. The matrix
elements are computed for the m = 1 and m = 1 levels and the difference is the

second-order quadrupolar energy (in frequency units):

%oy = -lf;[<-§-l'ﬁ‘$’l—§-> (-3 1751 -3)]
= (41(;? 3 [4I(I+1) 3] {2&0)&0) +R/2Q)ng)2}'(2.29)

The anisotropy of this frequency lies in the products of the spatial spherical tensors
Rg?)R(ﬁ)l and R,(ICQ))RQ)Q There is also a shift of the center of gravity of the resonance
line, which may be calculated by integrating the full equation over the surface of a

sphere. This must wait, however, until the spatial dependence is obtained explicitly.
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The spherical tensors must be expanded once again in terms of the Wigner

rotation matrices :

2
RORRQ = z D2 (a, B,7)r2 Z DE,_ (a, 8,72

mi= m'=~2
2

S5 e (8)d_(B)irS  (230)

m'=-2m''=-2

for m=1and m = 2.

Due to symmetries of the reduced Wigner matrix elements with respect to
switching of indices (see Table 1.1 again), and the form of the exponentia! terms in
the summation, the expression for the second-order frequencies takes a simplified
form as an expansion of cosines of even multiples of the angles o and :

q_;% = Aizz:a,, cos(2icx) cos(270) (2.31)

1=0 ;=0

with

€2qQ )2 I +1)-3] (2.32)

A= (41(21 —1)h 8o
The angle v fails to appear in the equation since the change in the sign of m in the
products Ry R;_; and Ry, R,_, always results in exponential terms containing ~
which multiply to unity in the summation. The anisotropic expansion is calculated
symbolically with a program (static.m) written in the Mathematica™ program-
ming environment. The code for static.m and another program containing the
definition of the Wigner rotations needed (wigner.m) appears in Appendix C. The
values of the coefficients a;; in Eq. 2.31 are compiled in Table 2.1
The second-order quadrupolar frequency of Eq. 2.31 has an isotropic component

which is calculated by integration of this frequency expansion over the surface of a

(2Q tso)

sphere. The isotropic frequency shift, wy , is

54




10 En

11 —3n
1 2 -Zp
2 0 Lyt
2 1 -2
2 2 =n?

Table 2.1: Coefficients in the anisotropic frequency cosine expansion for the
second-order energy difference in the central transition of a quadrupolar nu-
cleus.
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2' 2

' 1 - 2w
w(l_2?.iw) = _/ dﬂsin,@/ da W(Lz?.)l
4 Jo 0 22
2

1 x . 2 2 . .
= /(; dj sm,@/0 daAY " Y aij cos(2ia) cos(25) (2.33)

1=0 y=0

which yields upon integration

: 1 1
(2Q.i30) __ _ 2 _ =
wi_1 = A(Goo 30-01 15%2)
12 1
= —A—{(1+4+= 2)
A3 ( + 37
3 e2qQ  \’[aI(I+1) -3 1,
_2 “n?). 34
10 (41(21 - 1)n) wo (1 X ) (2:34)

This result shows that the second-order quadrupolar interaction has an isotropic
component which is independent of crystallite orientation and therefore the same
for all equivalent spins in the sample. In frequency units it is inversely dependent
on the strength of the magnetic field. It also contains a product of the quadrupolar
parameters, usually separated into e2¢Q/h and n which determine the strength and
the asymmetry of the local electric field gradient.

This analysis shows that the central transition lineshape from a second-order
quadrupolar perturbation will be anisotropic. The PAS is tied to the crystal axis
system or possibly modulated in time for a sample with internal motion present [15].
In any case, an ideal polycrystalline sample will yield a powder lineshape whose

shape may be calculated numerically. One such simulation is presented in Fig. 2.6

o

for a spin—3 nucleus (oxygen-17) in a magnetic field of 9.4 T. The quadrupolar
parameters are moderate values for EFG components (e?qQ/h = 5.0 MHz and
n = 0) which may appear, for example, in bridging oxygens in SiO, polymorphs [46].
Note that the center of gravity of the spectrum is shifted from the Larmor frequency
(the zero of the frequency axis) and this shift is not an isotropic chemical shift but

rather an isotropic second-order quadrupolar shift This isotropic shift may be
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Figure 2.6: Simulation using a powder average over a sphere of the second—
order quadrupolar frequencies in Eq. 2.31. The parameters used are for
oxygen-17 nuclei in a 9.4 T magnetic field with e2qQ/h = 5.0 MHz and = 0.
As described in the text, only the central transition is shown.

calculated using Eq. 2.34 and it is approximately 3 kHz at this field strength.

The spectrum in Fig. 2.6 reveals that the second-order lineshape is wide, with
a spectral spread on the order of 20 kHz or 370 ppm at a Larmor frequency of
54.24 MHz. This is quite large and noticeable in high—field magnetic resonance.
Resolution from a commercial or home-built NMR spectrometer is commonly on
the order of 1 Hz or a fraction thereof, and the usual limitation on linewidth is
the homogeneity of the large magnetic field. So the effects of the second-order
contribution to the central trans:tion lineshapes of quadrupolar nuclei must often

be considered because very broad lines will be observed in the NMR spectra. The

57




lineshape is useful in that it provides a measure of the quadrupolar parameters.
Once again, spectral simulations and computer best-fits may be used to determine
the quadrupolar parameters and possibly the chemical shift parameters. Broad and
overlapping spectral rescnances, however, do not allow full interpretation in terms
of shielding and quadrupolar effects for distinct nuclear sites, and only in the case
of single or well-resolved resonances can a full analysis be undertaken.

Also of interest is the dependence of the isotropic and anisotropic second-order
quadrupolar frequencies on the inverse of the Larmor frequency for the spins. For
the same nucleus, changing magnetic fields will have the effect of changing both the
width of the spectrum (the anisotropic spread is smaller at higher field) and the
position of the center of gravity of the resonance (the isotropic second-order quad-
rupolar shift becomes less negative at higher field strengths). Conventional wisdom
may then suggest that the best resolution may be obtained at higher field strengths
and this is true for a purely quadrupolar resonance. However, the frequency spread
due to the chemical shift anisotropy increases with an increase in Larmor frequency,

and so further broadening of the spectrum may occur if the CSA is large.

2.1.3 The Effect of RF Pulses

The general effect of radiofrequency pulses on a spin-1 system was studied in
Chapter 1. Further care must be taken when describing the excitation and detection
of magnetic resonances in a quadrupolar system. Complete work on this subject
was pursued by Schmidt [47] in the early 1970s, although sel:ctive excitation in

1

fictitious spin—; systems, including quadrupolar resonances, v/as discussed much

earlier by Abragam [18]. A particularly illuminating paper by Man and cowork-
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ers [48] calculates the spectral intensities and rotation angles from radiofrequency
pulses for selective and non-selective excitation of all single-quantum (Am = 1)
transitions from nuclei with spins ranging from I = % tol = %. The results are im-
portant for correctly performing quantitative NMR experiments and for the theory
of nutation NMR experiments [49, 50, 51], where nuclear sites with different values
of the quadrupolar coupling constant may be separated by their behavior during a
series of strong radiofrequency pulses {52, 53, 54, 55). The calculations performed
by Man [48] only take into account the first-order quadrupolar interaction but this

is sufficient for describing the excitation and detection behavior of the spins.

RF Pulses on a Quadrupolar System

Consider a collection of non-interacting quadrupolar spins with the spin angular
momentum I being half odd-integral and greater than one. The central (1 < -3
transition is distinguished from the satellite (m < m — 1) transitions because it is
not affected by first—order quadrupolar interactions. For any particular crystallite
there will be a resonance from the central transition and each of the (21 — 1)
satellite transitions. The frequency differences between the satellite resonances and
the central transition will appear in the Hamiltonian as a fictitious chemical shift

(as in Eq. 2.21)

HA  m = Q(2m + 1), (2.35)

for the m « m + 1 transition. Writing this as an effective chemical shift is possible
because the shifts of the satellite resonances are linear in m. The quantity (g
depends on the quadrupole coupling constant, the asymmetry parameter, and the

orientation of the crystallite within the magnetic field. A further second-order shift
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takes place for both the central transition and the satellites, but this is smaller by
a factor on the order of §1g/we and will not disturb this analysis.

The important quantities to calculate are the initial value of the free induction
decay (which will be maximized after a full 90° pulse) and the intensity of the
spectral line from the m + 1 + m transition. Two distinct regimes are present.
The first is that of non—selective irradiation where the radiofrequency magnetic field
is strong compared to both the quadrupolar interaction and the fictitious offset term
of Eq. 2.35. The details of the calculation of the initial value of the FID and the
spectral intensity are given in Ref. [48] and it is found that both quantities are

proportional to the square of the (m + 1, m) matrix element of the spin operator I,

(€m+1.m)2 = I(m +1 Ux' m)l2

= I(I+1)=m(m+1). (2.36)

Further, as long as the radiofrequency field is strong enough to irradiate and detect
all transitions, the length of a 90° pulse for the different transitions will be inde-
pendent of the value of (n41m)° obtained from Eq. 2.36. This occurs because the
radiofrequency Hamiltonian is considered as the only Hamiltonian operative dur-
ing the pulse and thus the nutation frequencies for all of the transitions are equal.
The integrated intensity will differ for each transition and it is found to follow a
(€m+1.m)° dependence. For example, the satellite transitions for a spin—% nucleus
such as sodium-23 will have 25% less intensity than the central transition. In this
case the 90° nutation time is the same as if no quadrupolar interaction were present.

Nften it is impossible or undesirable to provide full non-selective excitation
to the spin system. If the radiofrequency field strength is much less than the

quadrupolar coupling strength, only selective excitation can be accomplished. The
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effect of the pulse may now be neglected on all the transitions apart from the
resonant transition which, for our purposes, will only be considered to be the central
transition as the satellite transitions are spread over a larger frequency range than
the central transition resonance. Only the two levels closest to the on-resonance
frequency will be strongly perturbed under these conditions. It is calculated that
the initial intensity of the FID and the relative line intensities are scaled down
from the non-selective case by an additional factor of £. Further, the time for 90°
nutation of the magnetization vector in the selective case is also decreased by a
factor of £. Hence, for the central transition, 90° pulse times will be scaled by I + %
for a spin I nucleus. For nuclei such as sodium-23 (I = 2) or oxygen-17 (I = %)
we expect to find pulse widths for selective excitation of the central transition to
be one-half and one-third as long as those found for non-selective irradiation.

A stern warning must be given here: the selectivity of pulses must always be
checked when performing experiments in order to determine whether any assump-
tion made in the theoretical development of the experiments has been violated. This
may include the questions of treatment of other transitions in the time-development
of the system or whether quantitative spectral intensities will be obtained. To check
the selectivity, 90° pulse lengths in the sample under consideration should be com-
pared to 90° pulse lengths in a sample where quadrupolar coupling is known to be
negligible. This occurs, for example, in a cubic solid (such as NaCl) or a liquid

(such as HYO).
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2.2 Motional Narrowing by Sample Reorientation

2.2.1 Introduction

One advantage an experimentalist has when using NMR spectroscopy is the
ability, at least in principle, to distinguish individual resonances from distinct nu-
clear sites in a sample. A well-known example is the fact that the protons from an
aromatic ring will resonate at a slightly different frequency (a few parts per million
of the Larmor frequency) from those in a methyl group. The proton sites are mag-
netically inequivalent due to the difference in the local chemical shifts, which may
then be correlated with local bonding and electronic environments. These differ-
ences are quite well established in the liquid state where resolved resonances with
widths less than one Hz are observed. Other conditions which may cause changes
in resonances are topological and geometrical effects (seen through the scalar cou-
plings in liquids), as well as the dipolar and quadrupolar couplings which become

important in the spectra of the solid state.

In order to better understand local bonding and electronic environments in
solids, the optimal spectra would have full separation of resonances arising from
magnetically inequivalent sites. The rapid, isotropic motions of molecules in a lig-
uid occur on time scales much shorter than the Larmor period of the spins and
therefore during one Larmor period the spins experience an average orientational
environment. Interactions that have a scalar (or isotropic) coraponent, such as the
chemical shift and scalar coupling, are not averaged to zero but rather to their iso-
tropic values. The isotropic chemical shift, as well as the scalar couplings which split

lines into multiplet patterns, are used in high-resolution one- and two-dimensional
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NMR to investigate molecular structure in liquids [56]. The dipolar and quadru-
polar interactions are described by traceless tensors: they have no residual effect in
the spectra usually observed. However, effects such as relaxation [10, 57] and the
nuclear Overhauser effect [58, 59] are important in many cases and are caused by
higher-order effects of these traceless interactions.

Early in the development of NMR, Andrew [60] and Lowe [61] realized that
time-dependent motion could be imposed upon a solid to mimic or approximate
the isotropic motion in liquids. In their experiments, the second-rank tensors de-
scribing the spatial interactions are modulated in time by the rotational motion of
a cylindrical rotor containing the sample. The rotor is set spinning while inclined
at an angle 6 with respect to the direction of the large external magnetic field. It
was found that at a certain angle, the “magic angle”, the spinning averages the
first—order interactions. An added criterion for complete averaging is that the rotor
must spin quickly compared to the frequency spread of the interaction. The theo-
retical aspects of sample spinning are described below, first for the chemical shift
anisotropy in polycrystalline solids and then for the quadrupolar interaction. The
result of ultimate importance will be a calculation of the central transition frequen-
cies from quadrupolar nuclei in solids while spinning the sample at an arbitrary

angle with respect to the field.
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2.2.2 Sample Spinning I: Chemical Shift Anisotropy

The theory developed above for the chemical shift anisotropy led to a truncated

first-order Hamiltonian, after removing the isotropic shift, in the form
HOL = 4TSS RS (2.37)

with the appropriate spherical tensors given by Eqgs. 1.64 and 1.67-1.69, the spatial
tensor components being defined in the principal axis system for the chemical shift
interaction. The expression for R‘,S %) as a sum of rotations of the principal com-
ponents of the CSA tensor revealed why this interaction is anisotropic: it depends
upon the orientation in the laboratory of a crystallite containing the observed nuclei.
The Hamiltonian for the system was a scalar (isotropic) quantity before the large
magnetic field truncated the interaction by imposing a preferred spatial direction
on the sample. The magnetic field also gives rise to the chemical shift interaction.

Now consider placing the entire sample within a cylindrical holder which will
be rotated at a frequency w, about an axis inclined to the magnetic field at an
angle 6. A helpful diagram of this is shown in Fig. 2.7. A time-dependent rotation
is imposed upon the spatial tensor R/(,gs) and the spatial tensor in the laboratory

frame is

2
RS = S DE(wt,6,0) Z DY (aBy)rics

m =-2 m'==2
= 2\/_ (3cos 6 — 1) [(30082ﬁ - 1) + 1, sin? B cos 2oz]
+C; cosw,t
+C, cos 2w, t
+8; sinw,t
+.5; sin 2w, t (2.38)
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Figure 2.7: The rotations through tL.. Euler angles a, 3, and ~ take the tensor
from the PAS of the interaction to the rotor frame. The further rotations are
determined by the product of the rotor frequency and time of rotation as well
as the orientation of the rotor in the laboratory.
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with

Ci = - Eé\% sin 26(3 — 7, cos 2a] sin 23 (2.39)

C, = -Zé;—g sin? [3sin’ B + 71, cos 2a(1 + cos? B)] (2.40)

S5 = Ao sin 267, sin 2a sin 3 (2.41)
1 \/g Mo .

S, = - %/_% sin? én, sin 2a cos . (2.42)

The time-independent and time—dependent parts of this tensor component may be
considered separately.

The time-independent, part of the chemical shift frequency remains anisotropic

wgg” = wO?U (3 cos? @ — 1) [(3 cos’ B — 1) + 7, sin? B cos 2a] , (2.43)

but now there is an additional angular factor when this expression is compared to

the static case. This polynomial is the second Legendre polynomial of cos@,
1 2
Py(cos ) = 5 (3 cos* 0 — 1) . (2.44)

It has the same angular form as the d,2—orbitals encountered in the study of
hydrogen-like atoms [2]. Since this polynomial has zeroes along the real axis, it is

possible to completely average the chemical shift anisotropy by solving
Py(cosf) =0 (2.45)

and setting the rotor axis to this speciai angle.

The second Legendre polynomial is plotted in both linear and polar coordinates
in Fig. 2.8, and in the first quadrant the solution is the magic angle, {3 = 54.74°,
where the superscript is a reminder that this is a magic angle for second-rank tensor

interactions. With the anisotropic term averaged to zero by magic-angle spinning
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Figure 2.8: The second Legendre polynomial, P;(cos #), as a function of angles
in the first quadrant of a circle. The polar form is also shown at the upper
right with shaded areas designating negative excursions of the function.

(MAS) only the isctropic chemical shift will cause inequivalent spins to appear at
different spectral frequencies, thus providing resolution and spectral separation for

solids approaching that available in NMR of the liquid-state {62, 63].

The time-dependent terms contain modulations at frequencies equal to and
twice that of the spinning frequency. This leads to spinning sidebands [64, 65)] at
integer multiples of the spinning frequency for most spinning angles 6. If the ro-

enntar 4bhae ¢ fr
Y] F 9%

tation frequency is very fast so that w, is greater than

67




resonance from the static sample, these time—dependent terms become unimpor-
tant [64]. Discussion of any spinning sidebands present in the spectrum, however,
necessitates retention of these terms. Information about the full anisotropy (av-
eraged by magic-angle spiuning) is retained in the sideband pattern [65] and an
analysis of the sidebands can be useful in complete characterization of the local en-
vironment. If the ultimate goal is better resolution of the resonances from individual
sites, then fast spinning at the magic angle is desired. Methods of suppressing spec-

tral sidebands in MAS at slower spinning speeds have also been introduced [66, 67).

Other interesting angles for sample spinning besides the magic angle are § = 0°
and 6 = 90°. Spectra obtained while spinning parallel to the magnetic field (along
the z-axis where § = 0°) are equivalent to the static spectrum as the full anisotropy
is present: the second Legendre polynomial is unity and all time modulated terms
disappear. A full powder pattern will appear from each inequivalent nuclear site in a
polycrystalline solid. With the spinner axis perpendicular tu the field (§ = 90°) the
value of P;(cos ) is negative one-half and a scaled powder pattern of one-half the
width of the static pattern is obtained, reversed along the frequency axis. Further,
since sinf = 1 and sin 20 = 0 at 8 = 90°, the odd-order time-dependent terms will
vanish and only even—-order sidebands at multiples of twice the rotational frequency
are present in the spectrum. Although the full chemical shift parameters could
be determined from the powder patterns obtained at these angles, the widths of
the patterns could cause overlap and distortion of other powder patterns rendering

analysis difficult, if not impossible.

Many reviews of the NMR of solids include discussions of magic-angle sam-

ple spinning and the use of MAS to remove chemical shift anisotropy and other
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first-order broadening [68, 69, 70]. While the ideas presented above introduce the
methodology and utility of sample reorientation, the primary concern here is the be-
havior of quadrupolar spins under sample rotation. If similar line-narrowing could
be achieved for the anisotropic resonances arising from the second-order quadru-
polar interaction, high-resolution NMR would be applicable to a much wider group

of nuclei in solids.

2.2.3 Quadrupolar vs. Chemical Shift Anisotropies

The second—order quadrupolar interaction is more complex than the chemical
shift anisotropy and examination of the theory developed up to this point helps to
explain both the similarities and the differences. When truncated to first—order,

both interactions have the form
0
H = C*TAR), (2.46)

which is an anisotropic Hamiltonian due to the spatial anisotropy of the R), term.
Expansions of Rj, in terms of the tensor components in the principal axis systems
of both the quadrupolar and chemical shift interactions look similar as the angu-
lar rotations are the same. The only difference between the spatial tensors is the
coupling parameters used in each case and the different constants in the C* terms.
However, one can easily see the connection between the different coupling constants
and asymmetry parameters. A major distinction is that the chemical shift inter-
action also has an isotropic term which shifts the frequency from each crystallite
contributing to the powder pattern by an equal amount. Nonetheless, the first—
order, static spectrum angular anisotropies have the same form in both Egs. 2.10

and 2.21 and the NMR spectra from the quadrupolar satellite transitions will re-

69



semble those from the chemical shift anisotropy. The width of the pattern will be
scaled by the order (m value) of the satellite transition. There will not be a single

powder pattern for the quadrupolar satellites, but a total of 2I — 1 overlapping,

broad patterns.
The most distinct dissimilarity enters in the form of the spin operator T, for

the two interactions. For the CSA, T;fg isa single-spin operator, I,B,. Matrix
elements of Té{,’ %) are linear in m (the magnetic quantum number for the Zeeman
level) and the matrix form of the operator is diagonal in the Zeeman basis. The en-
ergy differences for all Am = 1 “ransitions are therefore the same. The quadrupolar
spin operator T;fg ) is a bilinear spin operator with no magnetic field dependence,
1/+/6[31% — I*]. The I? part of the operator is identical for all magnetic substates
and is proportional to the unit operator: it can not affect spin evolution. As op-
posed to the CSA Hamiltonian, the matrix elements of the first-order quadrupolar
Hamiltonian depend on m?, and the central transition is unaffected by first-order
quadrupolar coupling. The satellite transitions do have anisotropic quadrupolar
shifts, resulting in powder patterns centered at the same frequency as the central
transition (to first-order). The first-order width of tho satellites is usually large
enough to render them unobservable as it would be difficult to fully irridiate them,

while their spectral intensity (reduced from that of the central transiivion according

to Sec. 2.1.3) would be spread out over that entire frequency width.

In the case where the satellites are detected [71], full quadrupolar parameters
and isotropic chemical shifts may be obtained. This is especially useful for nuclei
with moderately large gyromagnetic ratios, high-spin values, and small quadrupolar

coupling constants (such as some aluminum-27 nuclei in solids), as all of these
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factors reduce the spectral width. With MAS, the quadrupolar satellite transitions
should also be narrowed in first-order exactly like the chemical shift anisotropy.
This has been observed in aluminum-27 [72], but the large spectral spread of the
satellites necessitates careful analysis of the multitude of sidebands present in the

spectrum.

2.2.4 Sample Spinning II: Quadrupolar Interactions

After the initial development of the magic-angle spinning technique, it was
realized that if quadrupolar effects could not be accounted for by first—order per-
turbation theory then sample spinning would not be able to completely narrow
these resonances [70]. Later, the subject was studied in more detail and the theory
was developed for both magic-angle spinning of quadrupolar nuclei [12] and spin-
ning at any angle with respect to the field [13). The MAS results will be treated as
a special case of sample spinning of quadrupolar nuclei in a rotor at an arbitrary
angle with respect to the magnetic field.

The calculation for the effect of saraple spinning on a cuadrupolar central tran-
sition experiencing a prominent second-order contribution to the linewidth follows
the same arguments as for the chemical shift anisotropy, but now includes a more
complex spatial dependence because of the appearance of products of the spatial
tensors for the second-order quadrupolar anisotropic frequencies (Eq. 2.29). The
second—order frequency shift for the central transition of a quadrupolar nucleus was

calculated above and is

09) _ eQ *[4I(1 + 1) - 3)
3= \4I(2I - 1)k Wo

2

(RORS + RYRS). @4
Under the conditions of sample spinning, the spatial tensors are expressed as a
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proc=ict of a series of rotations from the quadrupolar PAS to the rotor frame, and
finally to the laboratory (or interaction) frame (Fig. 2.7). Some may consider this
a mathematical exercise which must be carried out by hand in order to fully under-
stand the physics of the problem. The necessary tools are all available: the basic
equation, the Wigner rotation matrices, and the spin and spatial tensors. However,
the algebra becomes complicated due to the large number of terms present due
to the multiple rotations. A Mathematica™ computer program has been written
to accomplish these sums of products of rotations and is included in Appendix C
under the name vass.m. The acronym VASS stands for variable-angle sample
spinning as introduced by Oldfield and coworkers [73]. This code uses the program
wigner.m to define the second-order Wigner rotation matrices, and goes on to
define the principal components of the interaction in spherical tensor form. The
calculation of the tensors in the laboratory frame after the two rotations allows
the products 2R,(2?)R£)1 and R,(Z?)Rg?)g to be calculated and summed. Once again,
only the time-independent parts have been retained. In order to fully calculate the
sidebands from the second-order quadrupolar interaction, all terms must be kept.
See references [74] and [75] for further information on the full expressions including
the time-modulated terms.

In concentrating on the time-independent frequencies, symmetry arguments
point to a most useful and general form for the full expression. Beginning with the
expression for the product of two tensor components under the rotations sketched

in Fig. 2.7
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2
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n'==2

= Z Z Z Z —i(m'+mh)(w,—t+q)e_.,(n +ﬂ")a

m'=-2n'==2m"==2n""=-2

d®_(8)d?,_, (0)d?,.(B)d2,.(B)riIri2), (2.48)

we need to remove the time—dependent terms. All terms which do not satisfy
m' +m" = 0 are dropped and the sum on m” is eliminated by setting m" always
equal to —m'. The symmetries of the remaining terms are also important for the
simplification of the result. First, the only non-zero components of the spherical
tensor in the quadrupolar PAS are ry and T2i2, SO the allowed values of n' and

n" in Eq. 2.48 are 0 and 2. Therefore the sum n' + n”, which is the coefficient
before the angle o, may only range between —4 and 4 in even steps. Further, r(Q)
and r§‘i’2 are equal in magnitude and sign. For the reduced Wigner matrices (see
Table 1.1) many symmetries and antisymmetries are found upon interchanging the
signs of the two indices. It seems prudent to search, then, for solutions similar to
the expansion in terms of cosines of even multiples of the angles a and [ as was
found for the expansion of the second—order quadrupolar frequencies from a static
sample. The computer program does this by making symbolic replacements with

user defined trigonometric identities.

The trigonometric terms involving the angle 6 are converted to powers of cosf
to search for Legendre polynomials, now allowed to go as high as Py(cos @) due to

the products of the rotations containing squares of cos@. The expansion desired is
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in the form

(% ?);_ A E Z a';; cos(2ia) cos(275) (2.49)

1=0 j=0

where the prefactor A is the same as in the earlier static expansion of the anisotropic
frequencies (see Eq. 2.32). Each coefficient a’;; may now contain terms that depend

on Legendre polynomials up to fourth—order:

ai; = af?) +al? )Pz(cos 6) + a 4 Py(cos 6) (2.50)

where a( )

is independent of the -pinning angle (it is actually proportional to
Py(cos @) which is unity for all angles), P,(cos) is the second Legendre polyno-

mial of Eq. 2.44, and P;(cos ) is the fourth Legendre polynomial
Py(cosf) = (35 cos? @ — 30 cos? 6 + 3) (2.51)

The graphs in Fig. 2.9 display the fourth Legendre polynomial in Cartesian and
polar coordinates.

The result of the calculation is a polynomial with 35 distinct terms. The
Mathematica™ programming environment allows interactive examination of the
complete polynomial or factors of particular arguments (say, the coefficient of the
cos 4 cos 43 term) and the results are compiled in Table 2.2.

The only coefficient that has no angular dependence is a ) and this leads to
the correct isotropic second—order quadrupolar frequency shift (see E = 2.34). The
remainder of the expansion depends on both the second and fourth Legendre poly-
nomials.

The plot of the two Legendre polynomials together in Fig 2.10 now reveals the
most striking difference between sample spinning experiments for first— and second-
order interactions: there is no single angle at which all of the anisotropic second-

order terms may be made to vanish as P;(cos ) and P(cosf) have no common
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Figure 2.9: The fourth Legendre polynomial, Py(cos @), as & function of angles
in the first quadrant of a circle. The polar form is also shown at the upper

right.
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N o o)
0 0 Bas+nt) ~H1-P) —FQ+5)
01 F(8+7) -F1-37) 0
0 2 F(18+n%) 0 0
to 1 Ea 0
b ezl —3 0
12 % 0 0
20 &G 0 0
2 1 - 0 0
22 @7 0 0

Table 2.2: Coefficients in the anisotropic frequency cosire expansion (Eqgs. 2.49
and 2.50) for the second-order energy difference in the central transition of a
quadrupolar nucleus.
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Figure 2.10: The second and fourth Legendre polynomial, P;(cosd) and
P;(cos ), drawn together as a funtion of the angles in the first quadrant of a
circle.

zero. The zero of Py(cosf) is at the second-rank magic- angle 63 = 54.74° while
a zero for Py(cos@) occurs at one of two fourth-rank magic angles, 04) = 30.56°
and §% = 70.12°. Fourth-rank refers to the fact that the product of the two

second-rank spatial tensors found in the second-order result contains a fourth-

rank component which may be averaged at these angles.

Spectra obtained from spinning the sample at any one angle with respect to the

magnetic field will be anisotropic no matter what angle is chosen. It is straightfor-

77




ward to calculate computer simulated spectra with the results compiled from this
section. This is done at a variety of angles in Fig. 2.11 for a classic quadrupolar
result: a single sodium-23 nucleus in a 9.4 T magnetic field with quadrupolar pa-
rameters e>q@/h = 2.5 MHz and n = 0.7. Several features of the sample spinning
are presented in this figure.

First, the case of spinning about the 2-axis ( = 0°) does not narrow the line
at all from the static case (Fig. 2.4), but this is expected since the truncating
Hamiltonian has cylindrical symmetry about this axis. When @ is set to 0° in the
anisotropic frequency equation for a spinning sample the equation is identical to the
static frequency expansion. In fact, this is an important check that the equations
are correct. The magic-angle spinning spectruin (8 = 54.74°) reveals that the line
is not completely narrowed by MAS, as it would be if the interaction were first-
order. Here there is a residual Py(cos ) contribution to the lineshape. The spectra
at the other (fourth-order) magic angles of § = 30.56° and 6 = 70.12° also show
incomplete narrowing. At these angles the lineshape is governed purely by the
magnitude of P,(cos8).

In all cases, the anisotropic interaction may never be completely averaged. This
is seldom a problem if the sample of interest contains only one resonance as shown
in Fig. 2.11. It may then be compared to calculated lineshapes at any of a variety
of angles and the quadrupolar parameters and isotropic shifts extracted. The prob-
lem arises in the chemically more interesting case of several inequivalent nuclear
sites in a solid that contribute overlapping resonances. Of course when chemical
shift anisotropy is also present the problem increases in complexity if spinning is

undertaken at any angle other than the second-rank magic angle [74].
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Figure 2.11: Simulations of the NMR spectra obtained as a function of the spin-
ning angle, 8, from a polycrystalline sample with a single type of sodium-23 site
in 2 9.4 T magnetic field. The quadrupolar parameters are e?qQ/h = 2.5 MHz
and n = 0.7.



Chapter 3

Second—Order Averaging: Theory

3.1 Introduction

The analysis in Chapter 2 reveals a major problem to overcome in the NMR
of half-odd irteger spin quadrupolar nuclei. Even the central transition, which is
readily observable and not broadened to first—order by the quadrupolar coupling,
remains broad and anisotropic under sample spinning at any one angle. Possible
causes of the broadening are the spatial anisotropy of the first-order chemical shield-
ing interaction and the second-order quadrupolar coupling. Magic-angle spinning
cancels the CSA component, but it does not completely average the second—order
quadrupolar effects. Sample spinning does, however, narrow the resonances from
those observed in the case of no spinning, which is also equivalent to spinning at an
angle of 2° with respect to the magnetic field. Broad, overlapping central transition
resonances appear throughout the NMR literature in spectra of important quad-
rupolar nuclei such as oxygen-17 [68, 76, 77, 78, 79, 80], sodium-23 [81, 82, 83],
aluminum-27 [84, 85, 86, 87, 88, 89}, and boron-11 [90, 91, 92, 93]. In many cases it
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is the second—order quadrupolar coupling that must be averaged in order to simplify
these spectra.

This chapter introduces the averaging of second-order quadrupolar effects. The
solution lies in spinning about not just one, but two spatial axes during an NMR
experiment. The two new experiments proposed are dynamic-angle spinning (DAS)
and double rotation (DOR) NMR, and they may be viewed as the series and parallel
versions of second—order averaging. The theoretical foundations for both techniques
are a natural extension of those introduced in the previous chapter on coherent

averaging and motional narrowing.

3.2 Dynamic—Angle Spinning

The NMR technique of magic-angle spinning (MAS) spatially averages in-
teractions such as chemical shift anisotropy which have an angular dependence
of Py(cos@) under rapid sample spinning conditions. In dynamic-angle spinning
(DAS) a sample spins around an axis inclined at an angle 6(t) such that the time
averages of a set of P,(cos 8) are zero. The Legendre polynomials are an orthogonal
set of functions which share few common zeroes, so the simplest case of DAS is
when 6(t) assumes two discrete values 6; and 6, such that the time average of two
Legendre polynomials are zero. Choosing angles such that the time averages of both
P3(cos 8) and Py(cos6) are zero will average the second-order quadrupolar broad-
ening to its isotropic value, providing higher resolution in the spectra of half-odd
integer spin quadrupolar nuclei.

DAS entails performing second-order averaging in series: spinning first at one

angle during an experiment and then at another. The idea of changing rotor axis
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orientation during an experiment is not a new one and has been introduced in
NMR for a variety of reasons. These include correlations of narrow MAS line-
shapes for spin-1 nuclei with CSA powder pattern lineshapes [94], retention of
heteronuclear dipolar interactions or chemical shift anisotropy information under
off-magic angle spinning conditions [95, 96], and more efficient cross—polarization
away from the magic-angle for CPMAS experiments [97]. Workers in Professor
Gary Maciel’s lab at Colorado State University have also developed the technique
of magic-angle hopping, correlating narrow isotropic and broad anisotropic spectra
in a two-dimensional NMR experiment applicable to spin—% nuclei [98]. Hopping
a static sample to orientations corresponding to three of the six vertices of an oc-
tahedron allows separation of overlapping CSA powder patterns by their isotropic

shifts in the second spectral dimension.

Using a time—dependent rotor axis orientation to address second—order quad-
rupolar effects was not proposed until 1988 when announcements were made in-
dependently by Llor and Virlet in Saclay [99, 100] and the Pines group in Berke-
ley [101, 102, 103]. The first experimental results came out of Berkeley [104, 105]

and will be highlighted in the next chapter.

3.2.1 The DAS Concept

Conceptually, the general DAS experiment is more complicated than single-axis
sample rotation. In MAS, a single pulse is usually applied to the sample and a free
induction decay of the nuclear magnetization is observed. DAS is not this simple:
a change in the axis orientation must be performed whose net effect during the

experiment is to average the values of the selected P,(cos ) to zero. We concentrate
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here on the explicit calculations necessary to average first—order chemical shift and
second—-order quadrupolar interactions, although the analysis may be generalized
to other couplings.

Calculations are always performed in the rotating frame of reference described
in section 1.4.1 on rf pulses, where the effect of the pulses appear as rotations of
the magnetization vector describing the net spin polarization. Only the central
transition of the quadrupolar spin is considered, so the system is treated as a fic-
titious spin—%. The total Hamiltonian for spin evolution is the sum of isotropic
and anisotropic contributions from each crystallite. A crystallite has a quadrupolar
PAS related to the rotor axis frame by the Euler angles a, £, and «. It also has
a chemical shift anisotropy PAS described by another set of Euler angles o', &,
and v'. The rotor is spinning at an angle 6 with respect to the external magnetic
field. The form of the spin operators for the first—order chemical shift Hamilton-
ian (proportional to I,) and those for the second—order quadrupolar interaction
(proportional to I? and I.) all appear proportional to I, in the fictitious spin-%
representation of the operators, meaning that the frequencies of evolution for spins
appear as an effective total shift with isotropic and anisotropic components. The
phase factor accumulated under the evolution will be the product of the frequency
and the evolution time.

If only the time-independent part of the Hamiltonian is considered for clarity

(to eliminate the discussion of sidebands) the total shift is

Wiot = Wiso + Waniso (31)
where
Wiso = w:(acoS) + wt(son) (32)
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which is independent of all angular arguments. Equation 2.34 contains the form of
the second-order quadrupolar shift in the central transition.
The anisotropic frequency contributions depend on both the crystallite orienta-

tion and the rotor orientation:

Waniso = wiff,?, (o, B, Py(cos9)) +

Wintso (@, B, Py(c0s 6), Py(cos ) (3:3)
which is conveniently written as
Waniso = A2 P2(cos 8) + A4Py(cos8). (3.4)

The coefficients A; and A4 may be determined from the calculations in the previous
chapter, but for this discussion are not important. The sum is a combination
of the CSA term (contributing to the P;(cos8) coefficient) and the second-order
quadrupolar effect (contained in both coefficients). The Euler angles v and v’ do
not appear in Eq. 3.3 since we are disregarding the sideband terms as discussed in
Chapter 2.

The goal in second-order quadrupolar DAS is to find a time—dependent angular

solution 6(t) which will average both Legendre polynomials to zero:

/0 " Py(cos6(t))dt = 0 (3.5)

/0 " Py(cos8(t))dt = 0. (3.6)

A variety of solutions are possible corresponding to monotonically increasing sweeps
of the rotor axis from one angular endpoint to another [102]. A linear sweep between
either 6; = 19.05° and 0; = 99.19° or 6, = 11.96° and 0, = 132.40° will accomplish

this averaging, as will as a cosinusoidal sweep between 6, = 23.27° and 6, = 117.37°
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or 6, = 27.38° and 6; = 90.10°. The experimental difficulties of such a sweep leading
to sufficient averaging are extreme. The reorientation could not easily take place
on a time scale where the spins would still be behaving coherently.

Another solution is to position the rotor axis at discrete orientations within
the magnet. The goal is then to find two angles, 6, and 8;, where spin evolution
may take place retaining the isotropic terms of Eq. 3.2 while cancelling the an-
isotropic shift. Separating the experiment between the two angles allows for two
evolution periods of length 7, and 7, at angles 6, and 6, respectively and two sep-
arate accumulations of a phase angle occur for the magnetization precessing under
the influence of the shift Hamiltonian. To cancel the evolution from the anisotropic

terms (Eq. 3.4) it is necessary that
Pg (COS 01)7'1 = _PQ(COS 02)7’2 (37)

and
;)4 (COS 91)7'1 = '—P4(COS 92)T2 (38)
simultaneously. A constant, k, is defined by

T2

k=2 (3.9)

so that Eqgs. 3.7 and 3.8 now read
Py(cos 6,) = —kPy(cos6,) (3.10)
Py(cos ;) = —kPy(cosb,). (3.11)

This series of equations has an infinite, but bounded, set of solutions called DAS
complementary angles. The solutions are shown graphically in Fig. 3.1 which was

produced in the Mathematica™ programming environment (the code is included
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in Appendix C). Only the first quadrant of angles need be considered due to the
symmetry of the even—order Legendre polynomials.

The following restrictions apply to the solutions:

1. The value of k lies between 0.8 and 5.0.

2. Calling 6, the angle where the rotor axis is closer to the vertical (z-axis), 6
is constrained to lie between 0° and 39.23°. Then 0, must lie between 63.43°

and 90°.

The appearance of these solutions on a graph of the Legendre polynomials is
instructive. When k = 1, equal amounts of time are spent at the angles §, = 37.38°
and 8, = 79.19°. The graph in Fig. 3.2 reveals that for these angles the values of
both Legendre polynomials are equal and opposite, although neither is zero. Other
interesting sets of angles are §; = 0.00° and 6; = 63.43° where k = 5 and 6, = 39.23°
and 6, = 90.00° where k = 0.8. In the first set, the relative amount of time spent
at the first angle is a minimum. This set also maps onto an icosahedron revealing
the power of group theory in the averaging of higher—order interactions [106]. For
the second set of angles, the sensitivity of the rf detection in the experiment is
a maximum for a receiver coil moving with the sample rotor. The two zeroes of
Py(cos 0) are also a set of DAS complementary angles with k equal to approximately
1.87. Note that the second-rank magic angle, 8) = 54.74°, is not a permissible
DAS angle in this simple two-angle experiment.

Pure second-order quadrupolar powder pattern shapes have been calculated for
a variety of n values at sets of DAS angles and are presented in Fig. 3.3. For each
pair of angles and each particular value of 7 the spectra are scaled mirror images

about the isotropic shift. The scaling factor is the value of k for each pair.
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Figure 3.1: The solutions to Eqgs. 3.10 and 3.11 as a function of &, the relative
time spent at each DAS angle.
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Figure 3.2: Contributions from the second and fourth Legendre polynomials
cancel at the kK = 1 set of DAS angles, 6§, = 37.38° and 6, = 79.19°.
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Figure 3.3: Simulated second-order powder patterns with rapid sample spin-
ning for various values of the rotor axis angle and the asymmetry parameter

(n) of the quadrupolar interaction. The spectra are grouped by pairs of DAS
complementary angles.
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3.2.2 The DAS Experiment

The DAS experiment can be accomplished as shown in Fig. 3.4. First, a set of
DAS complementary angles is chosen. We define w; as the evolution frequency at
011

W) = Wiso + wam’so(al)- (312)

The Euler angles have been dropped from these equations since only a single crys-
tallite is considered. A sum over all crystallite orientations will be necessary to
calculate the full signal and this is done after calculation of the angular dependence
of the individual contribution from one crystallite.

The sample is first set spinning in a rotor inclined at an angle 6, with respect to
the magnetic field direction (the laboratory z—axis). The initial 90° pulse along the
z—axis rotates the magnetization down onto the negative y—axis where it evolves

through an evolution angle w;7;. The density matrix becomes
I, — —I, — —I,coswmy + Ipsinwy (3.13)

The rotor is then hopped instantaneously to 6,. The frequency w, governs

evolution at 6,, and it is given by

W2 = Wiy + Waniso (02)
1
Wiso — Ewaniao(el), (314)

since 0, and 6, are chosen as DAS angles where

1
Waniso (92) = —Ewaniao(gl)- (315)

This is verified by direct substitution of the set of equations for the Legendre poly-

nomials (Egs. 3.10 and 3.11) into Eq. 3.4. The evolution occurs for a further time
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Figure 3.4: Radiofrequency pulse sequence and rotor axis orientation relative
to the external magnetic field for a DAS experiment with an instantaneous
hop between the two DAS angles. The rf pulse is a selective 90° pulse on the
central transition.
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T, at 6, accumulating a further phase of w,m;. For the density ma.rix, evolution

continues as

—I,coswyny + Ipsinwyn — =1, cosw Ty coswy Tz + I coswy Ty sinw, 7,
+1, sin w7y COsw, T2 + Iy sinw; 7y sinw, 7. (3.16)

The total evolution time is called ¢;. At time t; =7 + 72 = (1 + k)1, the total

evolution phase is

wWiT1 + WeTy = Wisoti (3.17)

and the density matrix is

p(t1) —1I,(cosw; Ty COS wyTy — Sinwy 7y Sin weTy)
+I(sinw; 71 COS weT2 + COS Wy Ty SiNW,T2)

= —I,cos(w1mi + wam2) + Iy sin(wiT + waT2)

= =1, cos(wist1) + I sin(wisoty). (3.18)

As a function of ¢; the magnetization is only accumulating this isotropic phase:
the net precession is governed by an isotropic frequency. This was calculated for a
single crystallite orientation and, because equivalent magnetic nuclei in all crystal-
lites have spins with the same isotropic frequency, the total signal from the entire
sample is evolving as an isotropic shift. There is no longer a dependence of the
frequency on any of the Euler angles a, 8, o/, or #’. Therefore, the averaging of
the first— and second—order anisotropies is accomplished.

A problem with this scenario arises immediately. It is not mechanically feasible
to hop instantaneously from one orientation to another. In fact, it may take on

the order of tens of milliseconds to accomplish a move between appropriate angles.
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Figure 3.5: Radiofrequency pulse sequence, rotor axis orientation relative to
the external magnetic field, and phase cycling used in a DAS experiment. All
pulses are selective 90° pulses on the central transition.

During the hop, the magnetization must be stored [95, 98] along the z-axis or it
will dephase (undergo irreversible decay) since the hop takes a long time compared
to the spin-spin relaxation time constant, 7. The necessary modification to the

DAS experiment is outlined in Fig. 3.5.

The modified DAS experiment begins once again with a single 90° pulse on
the central transition. This creates a coherence between the two spin energy levels

which appears as an off-diagonal term in the reduced density matrix for the system.
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expt. p(1%) p(71) p(storage)

1 -1, -Icosunmi+ Isinwyn -I.coswin
2 +I, +Icoswini+ Isinwynn  +Isinwn
expt. p(3%) ptr =71+ 1)

1 +1I,coswyTy  +1,cO8wT1COSWeTe- I-COS W Ty sin Wy Ty

2 -Isinuyny -IysinwyTcoswe T+ ISinwy Tisin we Ty

Table 3.1: Time-development of the reduced density matrix during a DAS
experiment in each of the two experiments of Fig. 3.5. The equilibrium state
before each sequence is p(0) = I, and the notation p(n*) signifies the density
matrix immediately following the n** pulse.

As seen in Table 3.1 the original z2-magnetization from the spins in equilibrium with
the lattice, described by the density matrix I, is converted by the pulse to either
z or y magnetization, described by I, or I, depending on the phase of the first
pulse (¢, in Fig. 3.5). The magnetization then evolves in the first time domain of
length 7; into a linear combination of z and y magnetization as above in the naive

instantaneous experiment.

At this point the axis of the rotor must be hopped to angle ;. Before the hop,
the magnetization must be stored along the z—axis where it will not evolve any
further during the hop. This is accomplished with the second 90° pulse with phase
#2. Only one component of the transverse magnetization may be stored at a time,
so at least two experiments are necessary to fully reconstruct the desired signal.

These two experiments are numbered 1 and 2 in Fig. 3.5, Table 3.1, and Table 3.2.

After the hop is completed, the stored component of the magnetization is re-

turned to the transverse plane with the third pulse. The spin magnetization evolu-
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expt. z buffer y buffer

1 +COS W T1COSWeT2 +COSwW) TSN W Ty

2 -sinwyTisinw, T,  +SinwT1COS W T

sum  cos(uwyTy +weTz)  sin(wn T + weTy)

Table 3.2: The magnetization measured in each of the experiments of Fig. 3.5.
The relative phase for addition to the data buffers is chosen by the detector
(receiver) phase in the pulse program. Note that wiTi + waTs = Wisoly (see
Eq. 3.17).

tion now continues at the second angle, 0, for an amount of time 7, = k7. During
this period, all of the anisotropic frequencies have changed sign and the net effect
will be a refocussing of the transverse magnetizaticn into a spin echo [107, 108]
at the time t; = 7, + 7». For a single crystallite the echo would not be encoun-
tered. The decay of the initial magnetization from an anisotropic interaction in
a powder is an interference effect of the signals from all crystallites, governed by
the anisotropic frequency components. When these are reversed and cancelled, the
rephasing appears as a spontaneous burst of magnetization returning along an axis
in the transverse plane. The actual reconstruction of this echo takes place in the
two parts in the DAS experiment due to finite hopping times, with appropriate cy-
cling of the receiver phase to correctly add the signals into computer memory. The
evolution of the magnetization at the echo point will have only evolved under the
isotropic frequencies of the spins in the system. Table 3.2 shows how the refocussing

occurs mathematically with the use of some simple trigonometric identities.

The magnetization is sampled at the point t,. Then ¢, is incremented by At; and

the two steps (both experiments 1 and 2) of the full DAS experiment are repeated.
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Enough t; data points must be collected to obtain useful spectral resolution. The
increment, At,, determines the spectral width in the DAS experiment by the sam-
pling theorem [109, 110]. Fourier transformation of the isotropic (¢,) data obtained

in a DAS experiment yields a high-resolution isotropic DAS spectrum.

A second way to perform DAS is as a two—dimensional NMR experiment. Data
is collected from the point of echo formation (¢;) in a second time domain (¢;)
where the decay is again anisotropic. This anisotropic decay is equivalent to the
decay observed after a single 90° pulse while spinning at the second DAS angle
f;. By successively incrementing the t; time period from zero, a two-dimensional
data set is obtained where evolution in the first time dimension is purely isotropic,
while in the second dimension it is anisotropic as well. A two-dimensional Fourier
transform of the data yields a correlation map of the isotropic DAS frequencies and
their associated anisotropic powder patterns. This provides a method for separating
overlapping powder patterns according to their isotropic resonances in the first fre-
quency dimension. The low-resolution dimension powder pattern will always have
a contribution from both quadrupolar and anisotropic chemical shift interactions,
if present, because the magic angle for P;(cos 6) is not a DAS complementary angle

(see Fig. 3.1).

The usefulness of DAS lies in the fact that the evolution is purely isotropic: each
magnetically inequivalent spin species will have an isotropic resonance at the sum of
the isotropic chemical shift and the isotropic second-order quadrupolar shift for that
site. These parameters correlate well with structural and bonding parameters [68].
The isotropic resonances will not decay as quickly as the anisotropic resonances

since the frequency spread is (ideally) homogeneous and therefore not spread over as
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wide a frequency range. Narrow DAS resonances should result which are distinctly

resolved for different nuclear sites.

3.3 Double Rotation

The second method proposed to average first— and second-order interactions
is a parallel approach: spinning not around only one axis at a time, but around
multiple axes. The conceptually straightforward but mechanically difficult solution
is to place one rotor inside of another. This is the idea of double rotation (DOR),
first described by Samoson, Lippmaa, and Pines [111]. While the inner rotor spins
within the outer rotor, the motiou of the outer rotor causes the inner rotor spinning
axis to sweep out a cone with respect to the external magnetic field as shown in
Fig. 3.6. There are two time-independent angles which may be selected for the
double rotation experiment: the angle which the inner rotor axis makes with resy ect
to the outer rotor axis (6;) and the angle describing the orientation of the outer
rotor with respect to the external magnetic field (6;). It is shown that by a prudent
choice of angles, the second—order quadrupolar interaction (as well as the first-order
chemical shift anisotropy) is averaged.

To describe the behavior of the spatial parts in the spin Hamiltonians (or equiv-
alently the evolution frequencies), a further transformation is needed from the ro-
tations that describes single-axis spinning at any arbitrary angle. The rotations
needed are very similar to those for single-axis rotation shown in Fig. 2.7 with one
further rotation betweer the inner rotor frame and a larger outer rotor contain-
ing the smaller. To summarize, the first transformation is from the PAS of the

interaction (chemical shift or quadrupolar) to the inner rotor and is described by
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Figure 3.6: The double rotation experiment, where an inner rotor spins inside
of an outer rotor which is itself spinning at an angle inclined to the magnetic
field.
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the Euler angles Q = (a, 8, v). The inner rotor is spinning at a frequency w,,
around an axis inclined at 6, to the cylinder axis of the outer rotor. The Euler
angles for the transformation from the inner rotor axis system to the outer rotor
are Q; = (wrat, 02, ¥2). The outer rotor frequency is wy, and it is incli. cd at 6, to
the magnetic field, so the final set of Euler angles are Q; = (w,1t, 61, 71). Although
only time-independent calculations will be considered explicitly, sidebands do be-
come important in DOR experiments more often than in DAS experiments due to
the slow speeds obtained experimentally for the outer rotor.

The Hamiltonians considered are the first-order chemical shift and the second-
order quadrupolar Hamiltonians. The form of the full spatial tensor components

under double rotation are

2 2
R2m = Z D(zm(wrlt ola’Yl) Z Dsrf')’m'(“)TQt’oz”YZ) x

mi=-2 mi=~2

2
2
E Dr(n’)"m" (a, ,8, ')’)Tgmm
m"=—2
2 2 2 . . ' |
= Z Z E e—tm’h e—!m'(ert+‘n)e_,mll(wr2t+1)e_'mnla %

m/==2m'==2m'"=-2

d?®_(6,)dZ). .(82)d2, (B)Tamm. (3.19)

First—Order Interactions under Double Rotation

The high—field NMR frequency for spins in an oriented crystallite with an

anisotropic chemical shift has been stated generally in Eq. 2.8 and is

A5 = [R5 320
Now, under double rotation, the time independent part of R,(ZCO'S) is

2 ke "
05 = 3 e ™ d (01)d) (0:)dCho (B)rion (3.21)

m =2
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since, for the time-independent terms, m’ = 0 and m” = 0. This is the same sum
which appears in the static (non-spinning) calculation of the anisotropic frequen-
cies with the addition of two factors, d$Z(6;) and d?)(8,). These reduced Wigner

matrices are the second Legendre polynomials of the cosine of their arguments, so

w8 = 'EJO—;A—QPQ (cos 6,) Py(cos 62) [(3 cos® 8 — 1) + 7m, sin® B cos 2a] . (3.22)
If either §;, or 6, is chosen to be a zero of the sctond Legendre polynomial (the
second-rank magic—angle of 54.74°) the anisotropic interaction will be averaged for
every crystallite simultaneously.

Nothing is gained in the case of chemical shift anisotropy by using DOR instead
of MAS. In this argument there is just a second angle which may be set arbitrarily.
When w;; is set to zero and 6, is also zero, this is exactly equivalent to the case of

spinning about a single axis.

Second-Order Interactions under Double Rotation

The more interesting interaction is, of course, the second-order quadrupolar
interaction which is not averaged by single-axis reorientation. In this case, products
of second-rank spherical tensors are encountered. Remembering Eq. 2.29 for the

full (isotropic plus anisotropic) second-order quadrupolar frequencies,

(m):( eQ )2[4I(I+1)_

3] f0p(@ p@) | pQ p@
41(21 - D oo (2R RZ) + RP R}, (3.23)

the products Ré?n) Rﬁ_,‘i)m must be calculated under double rotation conditions. Before

restriction to the time-independent terms, the product is
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2 2 2 2 2 2
RIRT, = ¥ ¥ ¥ ¥ ¥ X
m'=—2m''=—2m"=-2n'==2n''==2n""==2

e-—i(m’+n')(wn t+’7’2)e—i(m"+n")(wr2t+‘y)e-i(m"'+n"')a o

d®_(6,)d2,..(62)d2h . (B) X

d? _(6,)d2,(82)d% (B Ehrid). (3.24)

n'-m "t n

Fortunately, restricting the analysis to the time-independent terms allows the
following simplifications to be made: n' = —m’ and n” = —m". Since the £l
components of the spatial tensor for the quadrupolar interaction in the PAS of the
electric field gradient tensor vanish, m"” and n" take on three possible values each.
The values in the sum for m’ and m” take on all five values from —2 to 2. Therefore
the number of terms in one product of spatial tensors is 225, while for the full
expression in Eq. 3.23 there would be 450 terms. Explicit calculation without a
computer, while not impossible, is tedious. However, one possible way to approach
this is to couple the spatial tensors into a larger (fourth-rank) tensor space as done
by Samoson in his analysis of sideband patterns in double rotation [112].

The approach used here is to take advantage of a computer program which
will manipulate the summation symbolically and produce the result in the most
convenient form possible. Since an expansion of the frequency in a sum of cosines of
even multiples of the Euler angles describing the orientation of the crystallite occurs

for both the static and single-axis cases, that is the form sought. In particular,

2 2
w(f?)l =AY af; cos(2ia) cos(255) (3.25)

z i=0 j=0

where A has been defined before as

A=< €%qQ )2[41(1+1)-3]_ (3.26)

a1 = h) _ 8wo
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As before, calculations were performed in the Mathematica™ programming
environment with the code listed in Appendix C. The result calls for an expansion
of the coefficients af; as a sum of terms dependent upon Legendre polynomials, now
with arguments related to the two angles #; and 6;. Then, for the expansion in

Eq. 3.25, the coefficients are

a’; (“)P4 (cos 6,) Py(cos 6;) + a( 2)P2 (cos6,)P;(cosb;) + a(oo) (3.27)

‘J

where a( )i

is an angular independent (isotropic) term.

The coefficients affk) for k = 0,2,4 are compiled in Table 3.3. Comparison
with Table 2.2, which provides the same expansion under single-axis rotation at an
arbitrary angle, reveals that the coefficients match ezactly for all polynomial orders.
In effect, double rotation splits the P;(cosf) and Py(cosf) terms of the single-
axis expansion into the products P,(cos 6,)P,(cos6;) and Py(cos6;)Py(cos ;). The

isotropic component remains the same, arising from only the angular independent

term ag?," ), Explicitly,

180 1 1
w(f?'l ) = 4 (aoo - =ao; — "—aoz)

273 3 15
1
- A2(143)
5 \1t3?
3 e2qQ \*[4I(I +1) -3
- 1 .
10 (41(21 _ 1)n> o ( * 3’7 ) (3.28)
since
1 1 '
ap” = 306" — g’ =0 (3.29)
and
e 1l @) 1 @ _ (3.30)
0 T gt T g ‘

As a further internal check on these equations, when either 8, = 0 or 6; = 0

the solution reduces to the single-axis spinning case. Further, if §; = 0 and 6, = 0,
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i j a,(-;") a'(szz) a‘(?O)

0 0 2L(A8+7?) —2(1-1in) -2(1+ Lp)
0 1 2(18+7%) -¥1-1ind) 0

0 2 H(18+7%) 0 0
PO %7 7 0
P 1 -5 0
12 =% 0 0
a0 Zn 0 0
21 - 0 0

2 2 U 0 0

Table 3.3: Coefficients in the anisotropic frequency cosine expansion (Egs. 3.25
and 3.27) for the second—order energy difference in the central transition of a
quadrupolar nucleus undergoing double rotation.
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the static solution is obtained. Note that in the case of 9, = 0 the axis of the inner
rotor will still be sweeping out a cone in the laboratory frame. Since the magnet
has cylindrical symmetry about this axis, the rotation is irrelevant.

A simplified expression for the first- and second-order anisotropic central tran-

sition frequencies in the system under double rotation is

W + Wi, = 3 APi(cosb;)Pe(cos b;). (3.31)

=24

The coefficients, A,, are functions of the spin quantum number of the nucleus,
the quadrupolar coupling parameters, the chemical shift parameters, the resonance
frequency for the nucleus, and the orientations of both the chemical shift PAS and
the quadrupolar PAS. In order to completely average these anisotropies there are

two choices of sets of angles (0;,6;). The first is
(61,62) = (61, 6%) (3.32)

where 6(2) and ) are second- and fourth-rank magic-angles: the zeroes of the
functions P,(cosf) and Pj(cosf). Numerically these are the usual magic angle,
6(» = 54.74°, and the higher—order magic angles, %) = 30.56° or () = 70.12° (see

Fig. 2.10). An equally useful choice for complete averaging is
(61,62) = (63),6%). (3.33)

Of the four possibilities for the configuration of the double rotor apparatus,
one provides the best sensitivity in an NMR experiment with the receiver coil
coaxial with the outer rotor. The choice (6;,60,) = (54.74°,30.56°) provides the
best combination of filling factor and relative NMR sensitivity {113] and has, so far,

been used exclusively in DOR.
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The theory of second-order averaging is now complete. Experimental proof
that the second-order quadrupolar interactions may be averaged using these new

methods is presented next.
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Chapter 4

Second—Order Averaging:

Experiments

4.1 Introduction

The narrowing of NMR resonances from quadrupolar nuclei occupying low sym-
metry sites in solids has been a dream of NMR spectroscopists for a long time. Two
NMR experiments which will accomplish this goal were described in Chapter 3 and
have now been carried out experimentally. The first results on full averaging of
anisotropic second-order quadrupolar interactions in solids are described in this
chapter. The goals of dynamic-angle spinning (DAS) and double rotation (DOR)
are similar, but approach the narrowing of resonance lines using different philoso-
phies. The experimental difficulties and accomplishments of each are important
t> a researcher who has a particular problem to solve and must weigh the use of
either or both techniques. Therefore, a comparison of the expected benefits and

difficulties of each type of experiment is essential.
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Dynamic-angle spinning NMR is a new sample spinning experiment where a
quick reorientation of the rotor must occur in order to accomplish the complete
averaging of second—order quadrupolar interactions. The evolution is isotropic at
only one time in each experiment, the time of the DAS echo. Therefore, DAS
contains a second time dimension in a very natural way as the anisotropic decay after
the echo also evolves in time. The more complex radiofrequency irradiation and the
detection of the signal as an echo separates DAS from the single-pulse experiments
used to acquire one-dimensional MAS or VASS spectra. The DAS experiment
will first be traced out through its relation to single-axis spinning experiments.
High-resolution spectra were obtained from sodium-23 nuclei in a sodium salt and
these results are presented as the first experimental averaging of the second-order
quadrupolar interaction. The two-dimensional nature of the DAS experiment i

exainined, and then the extension of this technique to oxygen-17 nuclei is presented.

In double rotation NMR, the difficulty in designing and fabricating a probehead
to carry out the complex motion outweighs the actual NMR experimental procedure.
A single rf pulse followed by quadrature acquisition of a signal is all that is necessary
after a means of carrying out the double rotation motion is found. In DOR, the
averaging is often much more efficient than in DAS. Whereas the signal in DAS
may be attenuated due to incomplete refocussing of magnetization evolving under
interactions other than the chemical shift anisotropy or quadrupolar interactions,
the greatest deficiency in DOR spectra is the large number of spinning sidebands
present due to modulation of the signal by the rotational motion of the slow outer
rotor. These issues will be examined in DOR NMR spectra from sodium-23 and

oxygen—17 nuclei in solids.
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4.2 Dynamic—Angle Spinning

4.2.1 Experimental Preliminaries

The DAS experiments performed hazre are constructed from discrete hops of a
spinner axis within & large magnetic field. Although a multiple number of axis hops
may take place in a DAS experiment, the simplest DAS experiment consists of one
hop with evolution time divided between the two DAS complementary angles. One
experimental restriction is that these angles must lie within a disjoint set of angles
which are a solution of Egs. 3.7 and 3.8. If one angle lies between 0° and 39.23°, then
the other is uniquely determined and must lie between 63.43° and 90.00°. Each of
these solutions also has associated with it a single value of k, the parameter which

determines the fraction of time spent at each angle during the experiment.

Both instrumental constraints and theoretical simplicity encourage the use of
k = 1 in the DAS experiment. The evolution times at the two angles are equal
and 6, = 37.38° while §; = 79.19°. The experiment is outlined in Fig. 4.1 and
included in this figure is a more complicated phase cycle than the two experiments
needed to fully reconstruct the second-order echo. The additional four-step phase
cycle is introduced to remove experimental artifacts arising from longitudinal (77)
relaxation during the hop between 8, and 6. It may be verified that in experiments
1 through 4 equivalent signals are obtained. The same is true for the last four
permutations. The extra phase cycling will remove any magnetization which has
relaxed during the hop and would cause additional intensity along the positive 2-
axis at the end of the hop. Extra peaks in the spectrum, called axial peaks, are

shown to arise from such an experimental artifact [36]. To remove this undesirable
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situation, the magnetization retained during the hop is stored for an equal number
of experiments along the +2-axis and along the —z—-axis. The phase cycling of the
third pulse then alternately adds and subtracts any extra magnetization along the

+2z-axis only.

A commercially available or home-built MAS NMR probe is not adequate for
performing a DAS experiment. It is necessary to quickly reorient the direction of the
rotor axis while maintaining stable air flow to support and drive the rotor. Reliable
electronic connections for the rf coil used to irradiate the sample and detect the net
magnetization must also be present. A probehead to accomplish the hop of the rotor
axis, designed by Professor T. Terao from Kyoto University in Japan, is skctched
in Fig. 4.2. Initially, this type of probe was used for small hops away from the
magic angle (a switched-angle sample spinning experiment) to study heteronuclear

dipolar interactions [95] and to separate overlappir 7 CSA patterns in solids [96].

The probehead was fabricated from Vespel, Delrin, and alumina parts. These
materials were chosen based on their light weight, ease of machinability, and dura-
bility. They also have a history of excellent performance in MAS applications [114].
An important feature of this design is that the coil is wrapped around the stator
and is moved along with the spinning axis. This increases the filling factor when
compared to a coil which is static and must surround the complete spinning as-
sembly. Filling factor is defined as the volume of the sample containing the spins
divided by the total volume of the coil and the NMR sensitivity from a sample
is proportional to the filling factor. Therefore, a coil wrapped around the stator
provides a large filling factor which is desirable when working with low-abundance

nuclei or those with small gyromagnetic ratios.
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Figure 4.1: The DAS experiment performed with £ = 1 and therefore equal
evolution times at the two DAS angles. Extra phase cycling is included to
minimize experimental artifacts from relaxation during the storage and hop.
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Figure 4.2: Cross-sectional views of the probehead used for the first DAS
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axis flipping assembly are illustrated.
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The variable-angle capability of this design is limited by the position of the coil
with respect to the z-axis. The coil is used to irradiate the spins in the sample
with short pulses of radiofrequency power and the irradiating field here is in the
direction defined by the symmetry axis of the cylindrical coil. Only the component
along the r-axis in the laboratory frame affects the spin angular momentum of
the nuclei and this component depends on the cosine of the angle which the coil
makes with the r—axis. This angle is the geometric complement of the angle
describing the orientation of the rotor with respect to the z—axis. The irradiation
efficiency obviously suffers as the angle 8 approaches low angles. The length of time
needed to cause 90° nutation of the magnetization, for full creation or mixing of
spin coherences, will change when moving from one angle to the next and so must
be calibrated at each angle used in the experiment. The detection efficiency also
depends upon the direction of the coil, so that higher spinning angles (closer to 90°)
provide the largest signal intensity. Therefore, the larger angle of 79.19° is chosen

as the second angle in the kK = 1 DAS experiment.

The probe is flipped between angles by a pulley/string arrangement coupled
to an equivalent pulley on a high-torque, high-inertia stepper motor at the base
of the magnet. Chapter 7 includes a further description of the laboratory setup
for a DAS experiment and provides a detailed account of the testing procedure for
probehead operation. The probe described here was opfimized to perform a hop

between 6; = 37.38° and 6; = 79.19° in 35 msec.

The air for the bearing and drive jets arrives through two hoses clamped to the
top of the stator housing. This placement adds extra inertia to the probehead which

may be avoided by supplying the air coaxial to the pulley axis. This is not possible
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with the moving coil design since the connections for the rf coil are made along this
axis. A fixed—coil probehead was designed as an improvement to the initial design
and is described in a paper in the Review of Scientific Instruments [115] and in
Chapter 7 of this work. The filling factor of a fixed coil probe will suffer as the coil
volume must be expanded to fit around a larger portion of the hopping mechanism,
but signal intensity is sacrificed in order to increase the electronic efficiency and
reliability. The inertia of the assembly is also decreased in the new design with the

goal of increasing the speed of the hop.

4.2.2 Sodium-23 NMR

The first nucleus considered in a DAS experiment was sodium-23. This choice
was based on the high natural abundance (100%), moderate gyromagnetic ratio
(about one—quarter that of protons), and moderate quadrupole coupling frequencies
(Cq values of approximately 2 to 3 MHz) of this nucleus. A simple sodium salt,
sodium oxalate (Na;C,04) was the primary test compound and its crystal structure
is known from x-ray diffraction studies [116]. It contains only one distinct type of

sodium crystallographic site in its unit cell.

The NMR spectrum of a static sample of polycrystalline sodium oxalate is shown
at the top of Fig. 4.3. This is the central transition powder pattern and it is approx-
imately 15 kHz (140 ppm) wide due to the second-order quadrupolar interaction.
The features are further broadened by chemical shift anisotropy and dipolar cou-
pling of the spins. The field strength of 9.4 T corresponds to a sodium-23 resonance
frequency of 105.84 MHz (and a proton resonance frequency of 400 MHz), so the

field is already high enough to cause a considerable narrowing of the spectrum due
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to the inverse square dependence (in ppm) of the quadrupolar anisotropy orn the

strength of the magnetic field (see Eq. 2.29).

Utilizing magic-angle spinning, the width of the pattern narrows to between
3 and 4 kHz and is almost five times narrower than the static spectrum. Spec-
tral features associated with the second—order quadrupolar interaction are evident,
but none of the singularities or shoulders in the pattern occur at the isotropic fre-
quency (center of gravity) for the resonance. Computer simulations may be used
to determine the isotropic chemical shift and quadrupolar parameters by either a
best fit or visual matching and it is found that a,(,cos) = 1 ppm, Cp = 2.5 MHz
and n = 0.7 yield the closest match. The center of gravity of the resonance oc-
curs at —15 ppm which agrees with the isotropic second-order quadrupolar shift
calculated from these parameters of -16 ppm. Overall, this is a well-characterized

sample and yields an excellent, if somewhat chemically uninteresting, test for the

new techniques.

The DAS probehead may be set to any orientation within the magnetic field, al-
lowing acquisition of single-axis spinning spectra away from the usual magic-angle.
In Fig. 4.4 the spectra at the two £ = 1 DAS angles illustrate the reflection symme-
try expected from Egs. 3.7 and 3.8. Experimental observation of these resonances
permits evaluation of the degree to which this mirroring is actually observed. The
main anomaly is in the size of the first—order sidebands associated with each center-
band resonance: those at the lower angle are larger. Theoretically, mirror symmetry
should be observed only for the centerband. The modulation of the sidebands is
also angle-dependent, but a dependence on the second and fourth Legendre poly-

nomials is not found. The decrease in odd-order sideband intensity as # increases
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Figure 4.3: Static and magic-angle spinning (MAS) NMR spectra of sodium-23
in polycrystalline sodium oxalate (Na;C,0,) at a field strength of 9.4 T. The
zero of the frequency axis is the resonance frequency of sodium-23 in a satu-
rated aqueous solution of sodium chloride.



is described in the equations of Lefebvre et al. in reference [74]. The centerband
intensities do show the expected mirror symmetry about the isotropic frequency
where they would intersect, here at around —15 ppm with respect to the sodium-23

resonance from a saturated aqueous solution of NaCl.

The reason that the DAS experiment works is closely related to the mirror
symmetry. The resonance frequency for the spins in a particular crystallite, while
the whole powder is spinning at 6; = 37.38°, occurs at a definite position in the
spectrum. The spins in this crystallite contribute independently to the spectrum:
the lineshape is inhomogeneous and a hole could be burned into it by saturation
of all spins resonant at one frequency. When the sample spins at 6; = 79.19°, the
same spins have their resonance at the same distance from the isotropic frequency,
but on the other side of the isotropic frequency. This is true for all crystallites in

the sample and so for the entire spectrum.

A standard k£ = 1 DAS experiment proceeds as follows. During the first half
of the t; period, the spins are evolving under the frequencies in the 6, = 37.38°
spectrum. This information is stored in Zeeman order (a component is saved along
the z-axis), and then during the second half of ¢; the spins have an evolution
governed by the frequencies at §; = 79.19°. The mirrored frequencies not only
cancel, but the spectrum effectively collapses to the isotropic frequency and signal
is seen from all spins in the sample, not just those which happen to be at the

isotropic frequency at all times.

A similar description holds for a DAS experiment using any set of complemen-
tary angles. For the angles which are the zeroes of P,(cos 6) (the spectra are shown

Fig. 4.5) the scaling factor is k = 1.87. Therefore, the evolution time at the second
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Figure 4.4: NMR spectra of sodium-23 in polycrystalline sodium oxalate
(Na,C,0,) at a field strength of 9.4 T while spinning the sample at the two
k =1 DAS angles 37.38° and 79.19°.
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angle must be 1.87 times as long as at the first. This is also related to the shape of
the spectra as they are mirror images about the isotropic frequency at —15 ppm and
the width of the spectrum at the first angle is 1.87 times the width of the spectrum
at the second angle. If spins in a particular crystallite resonate at a fixed frequency
interval from the isotropic shift at the first angle, then at the second angle they
will resonate on the other side of the isotropic shift but at a frequency closer to
isotropic frequency. The ratio of the frequency differences from the isotropic shift
is exactly k. For the anisotropic phase factors to cancel from the two evolution pe-
riods the product of the anisotropic frequency and the evolution time at the second
angle must be equal and opposite in sign to that at the first. Since the anisotropic
frequencies differ in sign and the frequency at the first angle is 1.87 times greater,

the evolution time at the second angle must be 1.87 times as long.

4.2.3 Sodium-23 DAS
DAS Echoes

Consider the experiment illustrated in Fig. 4.1 with a sample of polycrystalline
sodium oxalate in the rotor. After the initial pulse, the magnetization decays due
to the interference from all of the frequencies in the spectrum at 6; = 37.38°. The
free induction decay (FID) of this signal is shown in Fig. 4.6(a) and the Fourier
transform of this FID is the spectrum at the top of Fig. 4.4. After waiting a period
of t; /2 = 500 usec the second pulse is applied and the magnetization is stored. The
flip of the axis takes 35 msec from 6, to 8, and then another properly calibrated
pulse returns the magnetization to the transverse plane. Proper phase cycling of

the pulses (found in Fig. 4.1 and described in more detail in the text) produces the
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Figure 4.5: NMR spectra of sodium-23 in polycrystalline sodium oxalate
(Na,C;0,) at a field strength of 9.4 T while spinning the sample at the two
DAS angles 30.56° and 70.12°. Thcse two angles are the zeroes of the fourth
Legendre polynomial and have an approximate scaling factor of k = 1.87
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Figure 4.6: (a) The free induction decay (FID) from sodium oxalate while
spinning at an angle of 37.38°. The Fourier transform of this signal is the
spectrum while spinning at 37.38° shown in Fig. 4.4. (b) The second—order
echo observed after performing the DAS experiment in Fig. 4.1. This echo
corresponds to the refocussing of the anisotropic components of the second-
order quadrupolar and chemical shift interactions.

second-order quadrupolar echo in Fig. 4.6(b). The echo maximum occurs when a
further evolution period of t;/2 = 500 usec has passed after the third pulse. The
magnetization at time ¢, (the echo top) has evolved for a total time of 1 msec under

the isotropic frequency for the sodium-23 nuclei in this sample.

The data in the DAS experiment may be accumulated in a variety of ways. The
usual way has been to begin data digitization at the point of echo formation and
to continue acquisition in a second time domain, t,. A two-dimensional data set
is obtained containing both isotropic and correlated anisotropic frequency informa-
tion for each distinct resonance resolved in the high-resolution (isotropic) domain.

190
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Alternatively, the first data point in each t; domain (corresponding to the echo
top) may be extracted and a one-dimensional isotropic interferogram constructed.
Other data acquisition possibilities include accumulating the full echo after the
third pulse (which may cause problems at short t; values unless another 180° pulse
is used to form a full spin echo) or using a single-point detection method at each

t, point with a pulsed spin-lock to obtain more efficient signal averaging.

One-Dimensional Sodium—23 DAS

The real and imaginary parts of the one-dimensional DAS interferogram from
sodium oxalate are shown in Fig. 4.7. The t; time was varied in each of 128
experiments by At, = 16 usec resulting in a spectral width of 62.5 kHz. Each data
point is an average of four passes through the entire eight—pulse experiment. Pulse
times for 90° nutation were 6.2 usec at 6; and 4.1 usec at 6, and the magnetic
field strength was 9.4 T where the sodium-23 Larmor frequency is 105.84 MHz.
The pulse lengths were calibrated for selective excitation of the central transition
resonance by comparing the pulse lengths for maximization of the FID from the
sodium oxalate sample and a sample of sodium chloride. The cubic symmetry of the
sodium chloride produces a negligible EFG at the sodium lattice sites and therefore
no quadrupolar broadening is observed in the central transition.

The Fourier transform of the decay in Fig. 4.7 is the high-resolution DAS spec-
trum shown in Fig. 4.8. The spectrum reveals only one isotropic line, at a frequency
of -15 ppm. The linewidth is 575 Hz and spectral resolution is limited at this point
by sodium dipole—dipole interactions.

The remaining lines are sidebands occurring at one-half of the rotor frequency

of 3 kHz. The appearance of the sidebands at half of the rotor frequency is expected
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Figure 4.7: DAS free induction decay obtained from collecting the echo heights
as a function of ¢; in a DAS experiment on sodium oxalate in a magnetic field
of 94 T.
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Figure 4.8: The DAS NMR spectrum of sodium-23 in sodium oxalate at 9.4 T
reveals a narrower resonance line than the static and MAS spectra. The exper-
imental conditions leading to this spectrum are described in the text and the
frequency axis is expanded to show only the central 20 kHz of the spectrum.

123



since the evolution period is divided into two equal sections with a storage period
between them. This effect is similar to that seen in two-dimensional spin-echo
experiments [117]. For a physical picture of this phenomenon, the following argu-
ment is useful. The appearance of spinning siaebands in a spectrum corresponds
to a modulation of the time domain signal which refocusses into a rotational echo
once every rotor period [118]. The signal will die away in the FID and reappear
at a time 7, = 1/v, where v, is the rotational frequency. In the first half of the
DAS experiment, the maximum signal available for storage will be present when the
evolution time equals the rotational period 7., and then at integer multiples of this
time. After storage, the refocussed signal will also have a maximum when the sec-
ond evolution time is equal to the same multiple of 7,. The maximum signal (or the
first dimension rotational echoes) in the one-dimensional DAS FID will occur when
t1 = 2n7, with n an integer. The rotational echoes occur only half as frequently
in the first time domain and the Fourier transform of this corresponds to having a
rotor spin at half of the rotation frequency. Therefore, sidebands are present at half
of the rotor frequency in DAS. While the rotor in the probe described here spins
at speeds between 3 and 3.5 kHz, newer versions achieve speeds up to 6 or 7 kHz

and the sideband problem is generally reduced.

Two-Dimensional Sodium—-23 DAS

The DAS data set from sodium oxalate may also be processed with a two-—
dimensional Fourier transform. The form of the signal as a function of t; and ¢,
is

S(t] , t2) — Z eiwiaotl e"(wiao'{'wanuo)tQ (4.1)

all cryst.
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where the sum is over all crystallite orientations in the powder. A resonance at the
isotropic frequency, w;,,, appears in the high-resolution dimension of the spectrum
while a broad powder pattern occurs in the second dimension due to the powder
average of the anisotropic frequency. The powder pattern will be correlated with
the high-resolution resonance at its isotropic frequency. However, since the data is
accumulated to have the form in Eq. 4.1 in order to provide quadrature detection in
both dimensions, a magnitude calculation must be performed on the final complex
spectrum to obtain a two—dimensional map with all of its intensity positive. The
problems associated with phase-twisted lineshapes (obtained from a Fourier trans-
form of a signal such as that in Eq. 4.1) are addressed and resolved in the following

chapter on pure-absorption-phase DAS.

A two-dimensional magnitude spectrum for sodium-23 in polycrystalline sodium
oxalate is presented in Fig. 4.9. Since there is but a single distinct resonance from
sodium in this sample, a single resonance is found in the contour map. The projec-
tions are the high-resolution DAS spectrum in the first frequency dimension and
the low-resolution powder pattern in the second dimension, which is equivalent to
the magnitude spectrum obtained from a sample spinning at 8, = 79.19°. The
resonance in the high-resolution dimension of the two-dimensional DAS spectrum
is broader than that observed in the one-dimensional DAS spectrum since the mag-
nitude calculation tends to broaden lines, especially adding intensity in the wings

of a resonance.

In sodium-23 DAS, the width of the resonance lines are governed by dipole-
dipole interactions such as those introduced in section 1.3.3. The strength of the

dipolar interaction depends on the product of the gyromagnetic ratios for the two
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Figure 4.9: The two-dimensional DAS NMR spectra of sodium oxalate at a
field strength of 9.4 T. The data are presented as a magnitude spectrum to
avoid phase-twisted lineshapes.
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spins involved. Homonuclear dipolar interactions are multi-body interactions which
appear as bilinear spin terms and evolution due to these terms in the Hamiltonian
are not stored efficiently by a DAS experiment. This irreversible loss of magnetiza-
tion when strong dipolar couplings are present may also be related to the phenom-
ena of spin—diffusion in solids [119] and the associated process of cross-relaxation

in dipolar and quadrupolar systems [120, 121, 122].

4.2.4 Oxygen—17 DAS

Oxygen-17 is a quadrupolar nucleus (I = %) with a gyromagnetic ratio of approx-
imately half that of sodium-23 and a much smaller natural abundance. Narrower
DAS lines are expected for oxygen—17 due to overall weaker dipolar interactions.
On the other hand, the quadrupolar couplings found experimentally [77, 78] and
predicted theoretically [46] are often larger than in sodium-23. The first attempt at
narrowing oxygen-17 resonances by DAS was performed on a sample of low cristo-
balite, a polymorph of SiO;, enriched to 37% in oxygen-17. The natural abundance
of oxygen-17 is 0.037% so enrichment is essential for obtaining reasonable signal
intensity.

Experiments were performed in a 9.4 T magnetic field where the oxygen-17
Larmor frequency is 54.24 MHz. The 90° pulse times at 6; and 6, were 10.6 usec and
6.0 usec respectively compared to approximately 17 usec with a sample H,'70. The
spectra from a static sample and two separate DAS experiments are compiled in

Fig. 4.10.

The isotropic frequency at ~16.6 ppm (with respect to H3"O) is distinguished

from the large set of sidebands present in both DAS spectra by comparing the
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Figure 4.10: Static and DAS oxygen-17 NMR spectra of polycrystalline low
cristobalite (a polymorph of SiO,). The field strength is 9.4 T and the DAS
spectra were obtained with spinning speeds of 2.46 and 3.04 kHz. This allows
the isotropic peak () to be distinguished at -16.6 ppm. The contour map at
the bottom is a magnitude spectrum of the full two—dimensional data set at
the higher spinning speed.
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spectra at two different spinning speeds. The isotropic peak does not shift and the
sidebands move to integer multiples of one-half of the rotor frequency. The isotropic
line has a residual linewidth of approximately 200 Hz, two orders of magnitude
narrower than the resonance from a static sample. This is also nearly two and a

half times narrower than the sodium-23 DAS resonance from sodium oxalate.

4.3 Double Rotation

4.3.1 Experimental Preliminaries

Once the double rotation motion is achieved in the laboratory, a DOR exper-
iment is easier to accomplish than the DAS experiment because it is inherently
one-dimensional. A single pulse and acquire NMR experiment is usually sufficient
to obtain a high-resolution spectrum. See, however, the manuscript by Samoson
regarding synchronized DOR for a more complicated DOR experiment aimed at
suppression of odd-order sidebands in the spectrum [112].

The difficult task when performing DOR NMR is the design, building, and
successful operation of a DOR probe. The first probehead was constructed by
Dr. Ago Samoson, working closely with the Department of Chemistry machine
shop at the University of California at Berkeley. It is described in reference [113]
and has been honored by Research & Development Magazine as one of the 100
most significant new technological products of the year in 1989 [123]. Subsequent
improvement of this design has been accomplished by Dr. Yue Wu, a postdoctoral
researcher at Berkeley, and is also described in the literature [124]. This design is

illustrated in Fig. 4.11.
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Figure 4.11: Schematic drawing of the NMR probehead for double rotation

experiments.
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The new double rotor has an inner rotor (1), with flutes at either end, which
contains the sample. Its length is 13.3 mm and its diameter 4.6 mm. The outer
rotor is machined in a variety of separate parts: the axles (7) and the step shoulders
(8) hold the end pieces (2') onto the center piece (2). The center piece contains the
inner stator assembly (9), the inner rotor (1), and the inner stator endcaps (10).
The overall length of the outer rotor assembly is 46 mm with a 13 mm diameter.

Air is brought into the inner rotor through the holes (3) and (4) in the end pieces.
The air passes into drive and bearing mechanisms for the inner rotor from the top
and bottom respectively. The inner rotor typically reaches rotation frequencies of
5 kHz. The outer rotor is placed in a conventional bearing/drive stator assembly
fitted with two caps which direct air for the inner rotor into the holes (6). The outer
rotor may reach speeds up to 2 kHz with no air flow supplied to the inner rotor.
When the inner rotor is spinning, 1 kHz is the upper limit for steady performance.

The inner rotor is inclined at an angle of 30.56° with respect to the cylindrical
axis of the outer rotor: this is a zero of Py(cosf). The outer rotor is spun around
an axis at the normal second-rank magic angle of 54.74° with respect to the large
external magnetic field. As shown in Chapter 3, this will average first— and second-
order anisotropies including those due to the chemical shift and the second—order

quadrupolar interaction in the central transition of quadrupolar nuclei.

4.3.2 Sodium-23 DOR

As with DAS, the capabilities of the DOR experiment were first demonstrated on
a well-characterized test compound. The sodium-23 resonance from polycrystalline

sodium oxalate (Na;C,04) once again provides an excellent example.
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The double rotation motion is begun by first bringing the smaller, inner rotor
up to speed (approximately 5 kHz rotation frequency) and then beginning the
motion of the outer rotor. It is crucial to keep the inner rotor from stopping during
the spinning up to speed of the outer rotor. Crashes of the inner rotor were quite
common in the first experimental tries, but eventually double rotation was achieved.
The spectra of Figs. 4.12 and 4.13 illustrate early results for sodium oxalate.

Isotropic resonances in DOR NMR are distinguished from spinning sidebands
by obtaining spectra at two outer rotor frequencies (Fig. 4.13). The resonance at
-15 ppm is the isotropic shift for sodium-23 in sodium oxalate, as also measured in
the DAS experiment. The sodium-23 resonance from DOR is noticeably narrower
than that in the DAS spectrum: from DOR it is on the order of 150 Hz wide while
it is almost four times as wide in the DAS spectrum. The difference in the two
techniques is that in the serial DAS experiment there is a storage period where
dipolar interactions could cause a decrease in the signal observed. Cross-relaxation
to other energy levels not in the central transition or spectral spin diffusion are
possible mechanisms for the observed broadening. Further investigation of this

broadening is an important extension of this work.

4.3.3 Oxygen-17 DOR

A further example of DOR is its application to oxygen-17 nuclei in solids. A
more complete study of oxygen—17 in minerals forms the basis of Chapter 6. Here,
the first resolution of overlapping resonances from crystallographically inequivalent

nuclei using these new techniques is presented {104].

Diopside is a polycrystalline silicate mineral belongirg to the pyroxene fam-
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Figure 4.12: Top: MAS spectrum for sodium-23 in polycrystaliine sodium
oxalate (Na,;C,0,) at a field strength of 9.4 T. Bottom: Double rotation NMR
spectrum of sodium—23 in sodium oxalate. In the DOR spectrum the sidebands
occur at multiples of the outer rotor frequency (394 Hz). The frequency axis
is given with respect to the sodium-23 resonance from a saturated aqueous
solution of sodium chloride.
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Figure 4.13: DOR spectra for sodium-23 in polycrystalline sodium oxalate
(Na;C20y4) at a field strength of 9.4 T. The rotational frequencies in the two
experiments are 380 Hz (top) and 394 Hz (bottom) and the isotropic peak (*)
occurs at —15 ppm.
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ily {125]. Its molecular formula is CaMgSi;Os and the unit cell contains three in-
equivalent oxygen—17 sites: two are terminal oxygens and one is a bridging species.
These sites occur in a 1:1:1 ratio and we assume a random distribution of the
20% oxygen—17 enrichment in the sample. The oxygen-17 Larmor frequency is
54.24 MHz in a 9.4 T magnetic field. Pulse lengths of 4 usec were used correspond-
ing to tip angles of 30° from the 2-axis for the central transition under selective
irradiation conditions.

The spectra in Fig. 4.14 are MAS and DOR spectra of oxygen—17 in diopside.
The two DOR spectra were obtained with different rotational frequencies of the
outer rotor and the three isotropic resonances are discerned by comparison of the
centerbands and spinning sidebands. These are the first spectra using these tech-
niques in which crystallographically distinct nuclear sites which overlap in MAS

spectra have been so clearly resolved.

4.4 A Comparison of DAS and DOR

The two techniques described and demonstrated above are both useful when
second-order quadrupolar effects dominate the NMR spectra of half-odd integer
quadrupolar nuclei. The differences and similarities of DAS and DOR are summa-
rized in an attempt to distinguish which method may be more useful for a particular
chemical problem.

The experiments themselves are undertaken in strikingly different ways: DAS
is really a two—dimensional NMR technique whereas DOR is fundamentally one-
dimensional. Two-dimensional NMR requires longer experimentc! times as one

time dimension must be acquired pointwise by incrementing the time variable and
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Figure 4.14: NMR spectra of oxygen-17 in the polycrystalline mineral diopside
(CaMgSi,O¢) at a field strength of 9.4 T. The top spectrum is the conventional
MAS spectrum obtained while spinning at 5 kHz. Below are two DOR spectra
obtained at different outer rotor spinning frequencies. The isotropic resonances
are marked with numbers and sidebands occur at multiples of the outer rotor
frequencies (540 and 680 kHz here). The frequency scale is referenced to the
oxygen-17 resonance from H}O.
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running a whole set of one-dimensional experiments. The advantage of the two—
dimensional method lies in the correlation of frequencies in the spectrum from the
two time dimensions. The speed of obtaining a one-dimensional DOR spectra sac-
rifices the correlation of the isotropic and anisotropic resonances. This correlation
is useful in full characterization of the chemical shift and quadrupolar parameters
for the nuclei. Obtaining spectra at two or more field strengths is possible, how-
ever, with both techniques. This will also determine the isotropic chemical shift
and the isotropic second—order quadrupolar shift, which contains a product of the

quadrupolar parameters.

A correlation experiment with a double rotor could be accomplished in a man-
ner similar to the MAS/powder pattern correlation experiments used for studying
carbon-13 nuclei in solids [94]. While the outer rotor is inclined to the magnetic
field at the second-rank magic angle, the second-order quadrupolar coupling is
completely averaged. A hop of this axis to another angle (for example, to 90°)
would provide a second time dimension where the anisotropies are again present.
Once stable double rotation is accomplished, a hybrid DAS/DOR probe is a nat-
ural marriage of these two techniques. By having the inner rotor inclined to the
larger rotor at the second-rank magic angle and beginning with the outer rotor at
a fourth-rank magic angle, the chemical shift anisotropy would always be averaged

at any orientation of the outer rotor.

The spinning speeds obtained in a DAS experiment provide efficient removal of
sidebands compared to the slower outer rotor in the DOR technique. When quad-
rupolar coupling constants are large (greater than 2 MHz) the number of sidebands

in a DOR spectrum can make spectral interpretation difficult, even when spectra
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are obtained at two or more spinning speeds. Acquisition synchronized with the
position of the outer rotor has been introduced to reduce the number of sidebands

by a factor of two in a DOR spectrum [112, 124].

The need for a hop of the spinner axis during a DAS experiment places a restric-
tion on the samples used to those with a sufficiently long relaxation times. During
the experiment, magnetization along the magnetic field direction will decay with
a time constant T}, called the spin-lattice relaxation time. In samples studied by
DAS, T, must be longer than the hopping time of 30 to 35 msec. This is often,
but certainly not always, the case for quadrupolar species. The averaging in DOR
is continuous, so there is no T restriction. The need for a hop in a finite period
of time is also thought to contribute to the widening of the resonance lines in the
DAS spectra compared to the DOR spectra when dipole-dipole interactions become

important.

Experimentally, DAS probes generally have a higher filling factor than DOR
probes because the coil may be wound directly around the stator which is close to
the rotor containing the sample. In DOR the coil is around the outer rotor stator as-
sembly, although the sample fills the volume of only the inner rotor. Fixed—coil DAS
probes also suffer similar degradation of filling factor. When high natural abun-
dance nuclei such as sodium-23 and aluminum-27 are studied, the signal intensity
is sufficiently strong in most experiments. When lower frequency, low abundance
spins are considered the problems of signal-to-noise ratio become more acute and

isotopic enrichment of the samples is often necessary..

In conclusion, both techniques have their own advantages and disadvantages.

Empirically, it has been found that DAS works better for lower frequency, dilute
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nuclei such as oxygen—17 where dipolar interactions are reduced and the large spread
of frequencies produces a number of sidebands. Conversely, DOR has proven more
effective in the study of sodium-23 and aluminum-27 where resonances appear close

together and are too broad in the DAS spectra.
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Chapter 5

Pure—Absorption—Phase DAS

5.1 Introduction

The first experimental realizations of second-order averaging (DAS and DOR)
provide narrow isotropic resonances from quadrupolar nuclei. The overall shift of
a resonance line observed in such a spectrum is the sum of two contributions, the
chemical shift and the isotropic second-order quadrupolar shift, the latter depend-
ing on the strength and asymmetry of the local electric field gradients at the nucleus.
The shielding and quadrupolar parameters correlate well with bond order and other
structural properties, so that the narrowing of broad and often overlapping lines
is useful for assigning resonances and extracting both qualitative and quantitative

structural information.

In a conventional DAS experiment, momentarily dropping the extra phase cy-
cling introduced in Chapter 4, the rf irradiation and rotor axis orientation schemes
of Fig. 5.1 are necessary. For each t; increment, two experiments, labelled a and

b, are summed in order to reconstruct a second-order DAS echo. In a second time
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domain (¢;), a free induction decay containing information about the anisotropic
part of the interaction may also be acquired. Two—dimensional Fourier transfor-
mation provides a correlation of anisotropic lineshapes in the w; frequency domain
with high resolution DAS lineshapes in w;. The early implementations of DAS
employed phase modulation of the t; signal (the contribution to the signal from
evolution during t, is a phase factor €1*) in order to obtain quadrature detection
in the first time domain. This necessitates the display of the two—dimensional map
as a magnitude spectrum [126]. Lineshapes in both dimensions are broadened by
the magnitude calculation, and the inhomogeneous powder pattern lineshapes from
second-order quadrupole interactions change markedly in this mode. A scheme
for obtaining pure-absorption—-phase lineshapes with quadrature detection in both
dimensions of a DAS experiment has been developed [127], and is explained here
in relation to coherence-transfer pathways and the theory of lineshapes in two-
dimensional NMR.. The immediate advantage of this new experimental strategy is

narrower lineshapes in two-dimensional DAS correlation spectra.

5.2 Coherence Transfer

Coherences in magnetic resonance are a generalization of transverse magnetiza-
tion {128, 129]: a state of the system where the net population difference between
two spin eigenstates | m) and | m — 1) may be zero but there is still a “connec-
tion” between the states. The order of a coherence, p, is the difference between the

magnetic quantum numbers, and in the case of transverse magnetization p = +1.
In high-field NMR, a coherent superposition of two eigenstates is a non-equi-
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Figure 5.1: The radiofrequency (rf) pulses, rotor position, and coherence order
for a conventional (phase-modulated) DAS experiment.
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librium state
| ¥mn) = Cm | M) + o | M) (5.1)

which evolves in time under the spin Hamiltonian for the system. A coherence
between the states | m) and | n) corresponds to a non-zero off-diagonal term in
the density matrix describing the system, pm. = Ci.Cn, where the bar denotes an
ensemble average. For each spin transition there are two associated coherences,
Pmn and p.m, with coherence orders of opposite sign. During free precession of the
magnetization, the coherence order is preserved: p = m — n is a good quantum
number. The coherences are manipulated with radiofrequency pulses which may
transfer coherence order depending on the flip angle, pulse power, resonance offset,
and relative phase of the irradiation.

In earlier chapters the spin coherences were described in terms of Cartesian
spin operators: I, I,, and I,. However, in the description of coherence-transfer
pathways it becomes advantageous to use spherical tensor components of the spin
angular momentum since a spherical component is uniquely associated with a par-
ticular coherence level [130]. Cartesian spin operators may be associated with two
or more coherence levels as shown below. The transformation from Cartesian into

normalized spherical components is

L, = ——\j—Q(II il (5.2)
Iy = I, (5.3)
L, = %(1, —il). (5.4)
To return to the Cartesian basis, the non-trivial transformations are
I, = —%(l«n ~-1.,) (5.5)
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I, = :;§(1+,.+ ). (5.6)

The density matrix at time ¢ for a system of N spin-—% nuclei may be expanded
in a set of 4V spherical-basis product operators [131], each denoted by a particular

B, with expansion coefficients b,(t):

4N
p(t) = Zb,(t)B,. (5.7
s=1
The orthogonality relations
Tr[B, B3] = 6,,(2)"? (5.8)

hold for these operators.

Quadrature detection is used almost exclusively in NMR spectroscopy in order
to discriminate the signs of the spectral frequencies while allowing optimal use
of pulse power and data storage capabilities. This corresponds to simultaneously

digitizing the signal along two orthogonal axes in the zy plane. The complex signal

is

S = I+ v )
(t) o [p(t) (allnzuclei el ):l (5 9)
= V2@ N S ba(t) (5.10)
all nuclei

and thus quadrature detection selects only one coherence level during the detection
period (t; in Fig. 5.1). This coherence level is p = —1 since the only coefficient
remaining in the expansion is b_;(t). Changing the phase of the receiver by an
angle ¢ changes the signal acquired to
S(t,¢) = V2(2)N % 3 b.4(t) (5.11)
all nuclei
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and phase cycling is useful for suppressing or retaining certain coherence orders
during complex NMR experiments [129, 130]. Phase cycling is utilized in the DAS
experiment to store separate components of the magnetization during the hop and
then to form the proper DAS echo corresponding to refocussing of the anisotropic
evolution frequencies.

In DAS, the system of quadrupolar spins is viewed as a collection of uncoupled
fictitious spin-3 nuclei which simplifies all considerations of coherence transfer: in
all of the preceeding equations, N = 1. Only four basis operators are needed: the
identity operator, Ip, I, and 1..1.. The identity operator does not contribute to
the NMR signal at any point, nor is it ever converted to observable signal, so may
be disregarded in this analysis.

All of the necessary coherence-transfer pathways [129] needed to study the
phase-modulated DAS experiment of Fig. 5.1 are found in Figs. 5.2 and 5.3. The
simple rules used to construct these diagrams consider the change or evolution of
coherences under (a) shifts whose average Hamiltonians are proportional to I, with
frequency €2 and evolution period t; and (b) radiofrequency pulses with tip angle
B and irradiation phase ¢. For free precession the p = 0 and p = %1 coherences
evolve as

I, 2 [ e (5.12)
while under radiofrequency pulses the coherence levels are changed according to

Ii] —-o¢l, BlI; +¢l, Iil!cosg-f-l!

+Io —isi;éeiw

+ Iy LB %200 (5.13)
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I =8Iy Bl +él, I“-.'.i; e-i®
+1y cos B

+1, =52l et (5.14)

The phase shifts of the radiofrequency irradiation are taken into account in the
above equations by first rotating around the z-axis by —¢ degrees, performing the
pulse along the new z-axis, and then reversing the rotation about the z-axis to

bring the system back to its original reference frame. The rules for 90° z and y
pulses may be found by setting 8 = 90° and ¢ = 0° or 90° respectively.

For a fictitious Spin—% system, such as the central transition of quadrupolar nu-
clei, a selective 90° pulse will transform Zeeman order (p = 0) of the spin system in
equilibrium into a linear combination of p = +1 and p = —1 (single-quantum) co-
herences. In other words, a 90° pulse creates transverse magnetization. Depending
on the phase of the pulse, either +z— or —-y—-magnetization is produced. Evolution
for time ¢, /2 under the chemical shift and second-order quadrupolar Hamiltonians
in the rotating frame allows accumulation of an exponential phase factor in each
coherence. The frequency (called §2;) is the total frequency given in Eq. 3.1: a sum
of isotropic and anisotropic terms depending on the crystallite orientation. The
phase angle will be ;¢,/2. A second 90° pulse on this system will mix the two
coherences (p = +1 - p=—1and p= —1 — p= +1) and also recombine the two
single-quantum coherences into Zeeman order with a coefficient depending on the
phase difference between the two pulses and the time of free precession. In exper-
iment a of Fig. 5.1, where there is no phase change between the first two pulses,
the negative cosine of the evolution phase at 6, is retained. In version b, the sine

component is kept with a 90° phase shift between the two pulses.
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Figure 5.2: Simple coherence transfer mechanisms in the first part of the
DAS experiment. The labels on each diagram correspond to the experiments
labelled a and b in Fig. 5.1. The parentheses denote unobserved coherences
that decay during the hop.
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Figure 5.3: Simple coherence transfer mechanisms after the hop and during de-
tection in the phase-modulated DAS experiment. Only the p = —1 coherence
is detected, as explained in the text.
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Since the remaining coherences in the transverse plane are still single-quantum
coherences, they could also be detected at this time. In a DAS experiment, the
transverse magnetization during the hop decays through irreversible processes and
is dropped from consideration. The storage segment of the experiment selects pop-
ulations (Zeeman order) and suppresses coherences and after the hop, only a com-
ponent along the z-axis remains. The stored magnetization may be restored into
the transverse plane by another pulse, and this collective process of storage and
reinitiation of single-quantum coherences is called a z-filter [132]. The large Zee-
man field along the z—axis is used to filter the transverse magnetization, essentially
keeping a chosen component projected along either the z— or y-axis. Both p = +1
and p = —1 coherences are present after a z—filter and will evolve under another
{or the same) Hamiltonian as during previous free precession.

In DAS, a second free precession must follow the hop to the second DAS angle
(and z-filter) where anisotropic dephasing during the first period is refocussed. The
evolution frequency is now (2, and the evolution occurs for the same time period as

before the hop. At time t; an echo has formed since the total phase is
4
(Ql + 02)—2— = u),',otl. (515)

As described in Chapter 3 and Table 3.1, the state of the system in a DAS exper-
iment at the point of rifocussing (¢;) before detection and addition of the signals

is

t t t t

pa(t1) = +chos§21§1c0592§1—I,cosQl—Ql-sinQ»zEl (5.16)
t t t t

pe(t1) = —-Iysinﬂlécost--21—+I,sianElsinS22—2l (5.17)

for the two experiments a and b respectively. If the sicnal is detected during ¢,
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according to phase ¢, in Fig. 5.1 then (using Eq. 5.11)

1 t1 .t

Sa(t1,t2) = Ecosﬂl—zl—e‘n’(%‘“’) (5.18)
1 ty . t

Syt t2) = %sinﬂl—%e'n’(%“*) (5.19)

Adding together the two signals from experiments a and b produces a signal
S(t] , t2) —_ %eiwuotl e"(wiao+waniao(92))t2 . (5'20)

In this sort of echo experiment, both coherences have evolved up until the detection
period yet only one (p = —1) is detected. Both coherence pathways were retained
during the first evolution ,.eriod since a second pulse mixed them to store a com-
ponent of the evolving magnetization. The failure to again mix the coherences at
the time of detection is the main problem here. As shown below, this complicates
the phasing of two-dimensional spectra when only purely absorptive lineshapes are
desired. A general rule for pure-absorption phase spectroscopy is that both pos-
itive and negative coherence orders (referred to as mirror-image pathways) must
be retained until the time of detection [133]. In DAS, the further evolution in or-
der to obtain the echo, coupled with the fact that only the p = —1 coherence is
detected after time ¢;, makes it impossible to use phase cycling alone to obtain

pure—absorption-phase data.

5.3 Two—Dimensional NMR

A two-dimensional NMR experiment has at least two time periods of evolution
during which the spin system evolves under separate effective Hamiltonians, and the

characteristic frequencies of these Hamiltonians determine the frequencies observed
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in the two—-dimensional map or spectrum. Connections between frequencies in the
two domains tell the experimenter about correlations in the two time domains for
the same spins. Therefore, in DAS the isotropic resonances in the high-resolution
isotropic dimension (w, ) are correlated with their anisotropic resonances in the low-
resolution (w;) dimension. The shape of the lines in the two—dimensional spectrum
is an important consideration: often the lines are a mixture of absorption and dis-
persion lineshapes, a so—called phase-twisted lineshape {134]. The inseparability
of the two components degrade the two—dimensional spectra since the dispersive
contributions have broad tails and regions of negative intensity. Methods which
circumvent this problem have been developed [135, 136], but are generally unsatis-

factory for echo spectroscopy (such as DAS) without further modifications.

5.3.1 Lineshapes in Two—Dimensional NMR

The original two—dimensional NMR experiments such as Jeener’s correlation spec-
troscopy (COSY) experiment [137] did not discriminate the sign of the frequencies
in the first time dimension (¢;) of the experiment. Two-dimensional Fourier trans-
formation of the time-domain matrix then leads to a spectrum folded about the
transmitter frequency in w;. To overcome this, the transmitter frequency may be
placed completely on one side of the spectrum. This has certain disadvantages: the
transmitter power (symmetric about the carrier frequency) is distributed unevenly
and the data storage overhead is severely penalized with empty space or noise.
However, in this manner pure-absorption lineshapes are accessible. A problem
arises when more efficient transmitter power distribution and data accumulation is

desired.
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In a one-dimensional NMR experiment, the signal is obtained in quadrature in
order to discriminate the sign of the resonance frequency with respect to the carrier.
The complex signal is distributed between a real (z) buffer and the orthogonal
imaginary (y) buffer. A resonance with frequency 2 will produce a time-domain
signal

S(t) = ee™ T (5.21)

where T;, is a time constant describing irreversible decay of transverse magnetization
(spin-spin relaxation). The signal is assumed to only be defined for ¢ > 0. The

Fourier transform of this signal is a sum of absorptive and dispersive components

Flw) = / s (t)dt

= A+iD (5.22)
with
T,
A = 5.23
1+ (w— Q)72 (5.23)
_ 2
W= )T (5.24)

1+ (w=- Q)T

In two-dimensional NMR, we need to consider the signal from a spin whose
frequency in the first (¢,) dimension is €, with a corresponding frequency in t;
of €,. Continuing the notation introduced above, A; and D, are the absorptive
and dispersive components of the Lorentzian line at 2, in the second frequency
dimension. However, if the sign of the frequencies in the first dimension are not
determined then lines will appear at +,. The resonances at +£, will have ab-

sorptive Lorentzian signals A and A7 with corresponding dispersive components

Df and Dy.

’u—-\
(S
(3%}



Experiments which correlate evolution frequencies from the same spin in two
dimensions may be classified as either amplitude or phase modulated. The earliest
two—dimensional experiments were amplitude modulated and did not discriminate
in the sign of the frequencies in ¢,. A complex signal is acquired in the second time
domain with an initial amplitude proportional to the sine or cosine of the evolution

angle in the first time period. Then
Sc(ty,t2) = cos Qltle"n"“e—ﬁe_"ﬁ; (5.25)

is the cosine modulated signal. As above, 7, and T3, are time constants for
exponential decay of the signals during ¢; and ¢, respectively. The two-dimensional

Fourier transform of this signal is

oo foo .
Fc (Ld] ; (.UQ) = / / e t e'“? t2 Sc (tl, tg)dtl dtz
—o0J —00

1 . I .
= E(Af +iDf + A7 + 1Dy )(Aq +iDy) (5.26)

which corresponds to a pair of phase-twisted lineshapes at €, in the second fre-
quency dimension and at ££2, in the first. Folding the spectra about the carrier
in w; will provide a pure-absorption phase lineshape at the expense of placing the
carrier totally on one side of the spectrum. Equivalently, the imaginary part of the
t; decay may be zeroed and a real Fourier transform performed on the data. The
preferred method, however, is to approach the problems of sign discrimination and
pure—absorption lineshapes in a more elegant manner.

A correlation experiment may be modified to obtain data in a phase-modulated
manner. To discriminate the sign of the coherences in the first time domain, the
modulation of the signals during ¢, is converted from that of amplitude modulation

to that of a complex phase modulation (a combination of sines and cosines). The
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initial experiment is repeated with a relative phase change of 90° for all pulses
preceeding the t; evolution period. A similar change of the detection (receiver)
phase must also be made and the signals from the two experiments are summed

together. The phase-modulated signal is
Spm (t1,t2) = ¢t giflata g™ Ty ¢~ Tz (5.27)
and the two-dimensional Fourier transform of this signal is

Fpm(wl,wz) = -/_o:o./;ooe‘wltl e‘“”t’Spm(tl, tz)dtldtz (528)
= (A} +1iD{)(A; +1iD,)

This signal has both absorptive and dispersive components in the real part of the
lineshape although it has discriminated the sign of the coherence in ¢;. As discussed
above this is not the most desirable signal. The pure-absorption-phase signal would

have the form

Fpp(u)l,(U2) = ATAz + ZDTDQ (530)

where all of the real components are in absorption mode. The observable differences
between the pure-absorption signal (Eq. 5.30) and the phase-modulated signal
(Eq. 5.29) are shown in Fig. 5.4. The broad dispersive wings in the lineshape
from the phase-modulated signal are obviously undesirable and the pure-absorption

lineshape is preferable if it can be obtained.

5.3.2 Two—-Dimensional Pure-Absorption Experiments

There are two major methods described in the literature to obtain pure-

absorption-phase two-dimensional NMR lineshapes [135, 136]. At first glance the
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Figure 5.4: Mesh plots (top) and contour plots (bottom) of the two-
dimensional NMR lineshapes corresponding to (a) pure-absorption-phase and
(b) phase-modulated NMR experiments.
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methods using TPPI [135] and what is called States method [136] seem to be very
different, but on closer inspection are fully equivalent. The equivalency is not only
in terms of signal-to-noise ratio or data accumulation time and storage necessary,
but mathematically they are equivalent. This relation is studied in detail in the
paper of Keeler and Neuhaus [126].

The discussion here is based on the States method [136] originally introduced
for the accumulation of exchange NMR spectra. In this method, the cosine and
sine modulated signals during t, are accumulated and stored separately. In the
language of coherence-transfer pathways both the sum and the difference of both

possible pathways in t; are retained. The two signals are then

. ot ot

Sc(tl,tg) = COSQ]tIG‘QNzC T#C T'f'; (531)
and

S,(tl, tg) = sin Qltlem"’e_#;e_ﬁ; (532)

The Fourier transforms of each time domain are performed separately, with the ¢,

transform first. After the ¢, transform
Fc(tl ’ UJQ) = COSs Qltl (Ag + 2D2) (533)

and
F,(tl,Q)z) = sin Qltl (A2 + 'LDQ) (534)
The real part of F, is swapped with the imaginary part of F, to produce
Fé(tl,wg) = (COS Qltl + 1sin Q]t])AQ (535)
and
F!(ty,ws) = {cos Qi + isin§t;)Ds. (5.36)
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The t, transform then yields
F"(wy,ws) = (Af +1iD{)A; (5.37)

F)(w,wy) = (A} +1iDY)D,. (5.38)

which provides a pure-absorption lineshape when the real part of F;' is displayed.
This data processing is referred to as a hypercomplex Fourier transform [36] since
there are two data sets in the complex plane (and hence two independent imaginary

units) which may be manipulated separately.

5.4 Pure—Phase DAS: Theory

It should now appear more clear as to why the phase-modulated DAS exper-
iment of Fig. 5.1 provides phase-twisted lineshapes. The coherence-transfer map
for this experiment is also shown in the figure and has been carefully analyzed
above. Evolution at 6, = 79.19° cancels anisotropic evolution at 6, = 37.38°, but
no additional coherence transfer occurs after echo formation at time ¢,. Only one
coherence-transfer pathway is retained at the end of t; in order to maintain fre-
quency discrimination and phase-twisted lineshapes result. In order to obtain pure
two—dimensional absorption lineshapes it is necessary to keep both halves of the
coherence-transfer pathways, i.e. bothp=0— -1 —=-landp=0—+1— -1
must be present, and this does not occur in conventional DAS since there is no
coherence order change p = +1 — —1 immediately before the beginning of the
t, period. A related problem is encountered in liquid-state spin-echo correlated
spectroscopy (SECSY) [138, 139], in which there is also no transfer of coherence

after formation of a spin-ccho. There is no possible way to phase cycle the pulses
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so as to only obtain only sine or cosine modulation in t, as both t,/2 periods are
necessary in each experiment to refocus the anisotropic evolution. Further mixing
of the coherences at the end of the ¢, period is needed. Two methods for doing this

in a DAS experiment have been proposed [127].

5.4.1 Variation I: 90° Pulse

The conceptually simplest way to transfer coherence from p = +1 top = —1 at the
end of the t; evolution is suggested by the earlier discussion of coherence-transfer.
Application of another 90° pulse before beginning ¢, acquisition will again mix the
coherences. Figure 5.5 shows schematically how this can be accomplished in a DAS
experiment with proper phase cycling. Note that the rotor continues to spin at the
second DAS angle of 79.19°. The coherence-transfer pathways are also sketched in
Fig. 5.5 and coherence pathways during the final two pulses of the experiment are
examined in more detail in Fig. 5.6. The beginning of the experiment is identical
to phase-modulated DAS: all pulses and phases are the same up until the end of
the ¢, period. As before, two experiments a' and b’ are necessary to reconstruct a
full echo.

During the detection period only the p = ~1 coherence is retained and the

signals from the two experiments are

1 t ty .
Sar(t1,t2) = 5 cos £ —21- cos (), —21—6'9"2 (5.39)
S. — _l ; E‘_ ; _tl 212
p(ti,t2) = 5 sin 5 Sin Q, 5 e (5.40)

The end result of summing experiments a’ and ¥ is a signal which is amplitude

modulated:

S(t;,tz) = cosw,-,otlem?t’. (541)
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A second experiment must be undertaken to obtain the sine modulated signal.
Experimentally, all pulse phases before the t; period (bere, the first pulse only in
each experiment o’ and ¥') is changed by 90° with a similar change in the detection
phase.

With this simple extension of the first DAS experiment, two—dimensional cor-
relation with pure-absorption lineshapes is now possible with any allowable DAS
angle in the second dimension. These include the angles between 0° and 39.23°
or between 63.43° and 90°. The fraction of time ¢, spent at either angle will be
different from one-half when using any set of angles other than 37.38° and 79.19°,
depending on the relative magnitudes of the relevant Legendre polynomials at the
two angles. The narrowing expected in a DAS experiment using the scheme in
Fig. 5.5 is illustrated in Fig. 5.7 where simulations of phase-modulated, absolute
value, and pure-absorption-phase DAS spectra are compare!. The pure—phase
spectrum contains a resonance which is noticeably narrower than the magnitude

spectrum.

5.4.2 Variation II: Z-Filter

At any spinning angle other than the magic—angle of 54.74°, first—order in-
teractions such as chemical shift anisotropy (CSA) may be large and contribute
significantly to spectral broadening in the second irequency dimension of a DAS
experiment. One goal of two-dimensional DAS is to extract shielding and quadru-
polar parameters associated with distinct nuclear sites by fitting simulated powder
patterns to single-site lineshapes extracted from slices through w;. Second—order

quadrupolar lineshapes may be simulated at any spinning angle 6, neglecting CSA,
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and compared to experimental lineshapes in order to determine the quadrupolar
coupling strength (Co = €?qQ/h) and asymmetry parameter (). However, the
addition of three more parameters associated with the principal values of the CSA
tensor, as well as the angles describing the relative orientations of the principal axis
systems of the quadrupolar and shielding tensors, complicates analysis of the line-
shapes. Hence, for optimal determination of the quadrupolar parameters and the
isotropic chemical shift, especially in the presence of other anisotropic interactions,
detection at the magic-angle (or possibly other non-DAS angles) in t; is desirable.
Because 54.74° is not a DAS angle, an alternative scheme using a z-filter must be

used in order to obtain pure-absorption lineshapes.

A z-filter is equivalent to the storage step of a DAS experiment where the
magnetization is kept along the z—axis while the spinning angle is changed. This
allows a single transverse magnetization component alcug either the z— or y-axis
to be retained, while eliminating the other transverse component. Effectively, it
produces an overall transfer and mixing of coherence from p = +1 — —1, not by
throwing one component away along the z—axis (as with a 9C° pulse), but by storing
and then reinitiating evolution of the chosen component by using two 90° pulses
separated by a time delay. One advantage of a z-filter is that it should not be
as sensitive to pulse imperfections as a single 90° pulse, since any magnetization
remaining in the transverse plane after the first pulse should decay before the second
pulse restores the evolution. In addition, and most importantly, we are able to flip

the rotor axis to another orientation during the delay.

Using the scheme of Fig. 5.8, the axis of the rotor may be reoriented a second

time, allowing detection to occur at any angle 63 with respect to the external field.
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Figure 5.8 also details the necessary phase cycling and rotor positioning. As in
the previous DAS experiments onlv two accumulations, a” and b", are necessary to
reconstruct an echo even though more pulses are required to retain the coherence
orders properly during ¢,. The coherence-transfer pathways during the z—filter are
examined in more detail in Fig. 5.9. Either method (States or TPPI) may then be
used as above to obtain the correctly modulated signal and an appropriate two—
dimensional Fourier transform provides the final result.

One powerful advantage gained by using the z-filter to accomplish pure-phase
lineshapes is that the choice of the final angle 6; is free for the experimenter to
determine. The choice 8; = 54.74° will produce lineshapes in w, that are indepen-
dent of CSA, which has a larger effect at higher magnetic field strengths and so
may be the angle of choice when using DAS at higher fields. Other choices of 63
may include 6; = 0°, thereby correlating the high resolution spectrum in the first
frequency domain with static lineshapes for each distinct site, the static lineshapes
being equivalent to lineshapes obtained while spinning along the 2-axis. A final
angle of 0° may also have been chosen with the 90° pulse version of the pure phase
experiment (Fig. 5.5) because 8, = 0° is complementary to 6, = 63.44° with an evo-
lution period five times longer at 6,. Finally, the choice 63 = 43.5° is also interesting
since at this angle the total second-order quadrupolar linewidth is independent of
the asymmetry parameter of the electric field gradient [74], so that the width is
determined by the quadrupolar coupling strength while only the shape of the line

is determined by the asymmetry (7).
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5.5 Experimental Results

The DAS experiments presented here were performed in a magnetic field of 9.4 T,
corresponding to a resonance frequency of 105.84 MHz for sodium-23 (I = 52‘-)
Phase-modulated experiments were performed as explained in the two previous
chapters. Phase—sensitive experiments can be approached with two different data
accumulation and processing methods: that of States et al. [136] where two sep-
arate data collections for each t; increment are performed followed by hypercom-
plex Fourier transformation [36]; or by time proportional phase incrementation
(TPPI) [135, 140] where only one data set is used but the phases of the first pulses
.0 both experiments a” and b” are incremented by 90° with each ¢,. In either case
at least two t, accumulations for each t; point must always be summed to give the
reconstructed second—order echo. In the former method this number is therefore
doubled as both collections for a distinct ¢; must also be run with a 90° phase shift
of the first pulses to acquire the second of the two hypercomplex data sets. To
achieve the same resolution and signal-to-moisz by TPPI, twice as many ¢, incre-
ments must be used, thereby making equivalent the time and computer memory
required for the two methods. We have tested both methcds and find comparable

results.

The experimental improvements are illustrated with a comparison of phase-
modulated DAS and the z-filtered pure-phase experiment with an additional axis
flip to 6; = 54.74°. The latter experiment corresponds to a second dimension of
magic-angle spinning correlated with high-resolution DAS. The sample is sodium
oxalate (Na;C,0,4) and the nucleus studied is sodium-23. Pulse lengths for 90°

nutation of the magnetization were on the order of 5 usec for all experiments.
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These were verified as selective pulses as explained in Chapter 2.

Figure 5.10 is a plot of the two-dimensional DAS spectrum of sodium oxalate
obtained with conventional phase-modulated detection. The main difference be-
tween this spectrum and that shown in Fig. 4.9 is the spinning speed. This newer
spectrum was obtained with an improved DAS probehead which is capable of ob-
taining rotational frequencies up to 6 kHz. Projections of the phase modulated
spectrum appear in Fig. 5.11, along with the one-dimensional DAS spectrum of
the same sample obtained from Fourier transformation of the echo heights as a
function of the high-resolution time dimension, ¢;. In the pure one-dimensional
analysis, however, there is no immediate correlation of the high resolution line with
the anisotropic lineshape, especially troublesome if two lines are very near to each
other in the high resolution dimension. The projections reveal the extra broaden-
ing which accompanies the magnitude calculation, most notably in the wings of the

narrowed resonance.

The spectrum: in Fig. 5.12 was obtained with the z-filtered pure-absorption
experiment of Fig. 5.8. Projectiors of this spectrum appear in Fig. 5.13. The high
resolution DAS projection has a width of 600 Hz which is the same width as the
one—-dimensional DAS spectrum obtained from digitizing only the echo tops. The
second—dimension is a MAS lineshape: computer simulations with the quadrupolar
parameters e2q@Q/h = 2.5 MHz and 1 = 0.7 closely match both the MAS spectrum
and the equivalent DAS projection as shown in Fig. 5.14. The DAS spectrum shows
one isotropic peak at —15.0 ppm with respect to sodium-23 in aqueous NaCl, and

thus the chemical shift may be calculated as 1.2 ppm or 127 Hz at 9.4 T.

In conclusion, the pure-phase results clearly show a narrower isotropic resonance
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Figure 5.10: Phase-modulated DAS spectrum from sodium-23 in sodium ox-
alate (NayCy04). The spectrum is displayed in magnitude mode as explained
in the text.
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Figure 5.11: Projections along the two axes in the magnitude mode phase-
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spectrum obtained from the echo maxima where no magnitude calculation is
necessary and a narrowed resonance is obtained.
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Figure 5.12: Pure-absorption-phase LAS spectrum from sodium-23 in sodium
oxalate (Na,C;0y4), acquired with a z-filter and a final axis flip to 54.74°.
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in the two-dimensional spectrum as well as the ability to obtain sharper spectral
features in the sccond (anisotropic) dimension. Simple calculation of the isotropic
chemical shift, the quadrupolar coupling constant, and the quadrupolar asymmetry
parameter are also possible from the MAS lineshape obtained in the second DAS
dimension. This will be especially critical when resonances overlap in the MAS
spectra but may be separated in the first frequency dimension by their isotropic

shifts in a DAS experiment.
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Chapter 6

High—Resolution Oxygen—17
NMR of Silicates

Several oxygen—17 enriched silicates were studied using dynamic-angle spinning
(DAS) and double rotation (DOR) nuclear magnetic resonance spectroscopy. In
the spectra of a variety of silicate minerals, a narrow line is observed for each dis-
tinct oxygen site at the sum of the isotropic chemical shift and the field-dependent
isotropic second-order quadrupolar shift. Resolution is increased by up to two
orders of magnitude compared to conventional magic-angle spinning (MAS) spec-
tra so that crystallographically inequivalent oxygens are now observable as distinct
resonances in the spectra. The polycrystalline silicates investigated were diopside
(CaMgSi,Og), wollastonite (CaSiO3), clinoenstatite (MgSiO3), larnite (Ca,SiOx),
and forsterite (Mg,SiOy4). Further, DAS experiments at two magnetic field strengths
were performed to extract quadrupolar and chemical shift information. These pa-
rameters provide insight into the nature of the electronic environment surrounding

the oxygen nuclei including the bond order and the oxygen coordination by neigh-
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boring cations.

6.1 Introduction

Solid silicates display an erray of structures and phases according to their
composition and thermal treatment. As the molar percentage of cations increases,
for example, the infinite three-dimensional framework of crystalline silica (SiO;)
gives way to more compact chains of Si-O atoms (pyroxenes and amphiboles) and
discrete anionic species (orthosilicates and cyclosilicates). Such variations in mi-
crostructure can have significant impact on the macroscopic properties of silicate
species [125]. Adsorption and reaction processes of porous aluminosilicates, such
as zeolites, are tied closely to their local structure, influencing their use as catalysts,
selective adsorbents, and ion—exchange media in a variety of important industrial
processes [141]. Furthermore, the abundance of silicon and oxygen in the Earth’s
crust [142] makes physicochemical studies of solid silicates important for under-
standing many natural geochemical processes.

The microstructure of silicates can be probed by examining the electromagnetic
environment of their nuclei using NMR spectroscopy. Nearby electrons influence the
local magnetic field at the nucleus by both paramagnetic and diamagnetic mech-
anisms, so that measurement of the shielding (chemical shift) tensor at a specific
site is a sensitive probe of the local bonding [68]. A nucleus with a non-spherical
charge distribution couples additionally to local electric field gradients through the
electric quadrupole interaction (1, 9, 143, 144]. Determination of the strength of
the quadrupolar coupling and the deviation of the electric field gradient from ax-

ial symmetry provides additional structural insight, because the interaction is also
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dependent upon bonding and symmetry of the local atomic environment.

High-field NMR has been used to study silicates, focussing primarily on the
silicon-29 nucleus [145, 146, 147) which, like carbon-13, is a low abundance spin-1
isotope. Line broadening in silicon spectra is caused predominantly by anisotropy
of the chemical shift and may be removed using magic-angle spinning (MAS)
NMR [63, 64, 148]. High resolution results can be obtained in this way [149],
often yielding quantitative structural information from experimental spectra. High
resolution oxygen-17 NMR studies of silicates, however, are much morc difficult
as a result of quadrupolar couplings of the oxygen-17 nuclei. In a polycrystalline
or amorphous sample NMR resonances are broadened by the spatial anisotropy
of the second—order interaction, which cannot be fully averaged by MAS meth-
ods [12, 150]. Individual spectral lines from distinct oxygen—17 nuclear sites typi-
cally overlap, and the separation and identification of different oxygens is difficult.

The developments described in this thesis allow an increase in NMR spectral
resolution by up to two orders of magnitude for quadrupolar nuclei and DAS and
DOR have therefore been applied to a number of silicate minerals. The resolution
of oxyge~ sites in these samples bodes well for the study of other oxygen—containing
materials such as biologically important systems (amino acids and proteins), poly-

mers, and ceramic superconductors.

In both DAS and DOR, the isotropic frequency shift measured (62?) is the sum
of an isotropic chemical shift and a field-dependent isotropic second-order shift.
The theoretical analysis of Chapter 2 provides the useful equations, rewritten here
in terms of isotropic shifts rather than frequencies.

5% =6 + 6% (6.1)

180 180 130
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where 5,(5,5) is the isotropic chemical shift and 6,(33 ) is the isotropic second order

quadrupolar shift 10r a nucleus with spin I:

3 (C3\ (I(I+1)-2 1
@__2 (X9 4 2,02 108
8 = - (ug) rRroT (1 31 ) % 10 (6.2)
where
2
Cq = €9 (6.3)
h
and
Vo = 2%% (6.4)

the Larmor frequency in Hz. It is useful to separate these two contributions in
order to determine the values of 6,(25), Cq, and 7. Since the quadrupolar shift is
proportional to the inverse of the square of the magnetic field strength, while the
isotropic chemical shift is frequency independent, performing an experiment at two
or more field strengths determines the isotropic chemical shift and a product of the
quadrupolar parameters (Co and 7) for each site. Alternatively, the quadrupolar
parameters may be determined from the second dimension in a DAS experiment by
simulations of resolved powder patterns at isotropic positions in the first dimension.
The pure-absorption-phase DAS experiment described in Chapter 5 could prove
especially useful for spectral simulation purposes when a final hop to the magic-
angle is used. In such a situation the powder pattern is no longer influenced by the
first—order chemical shift anisotropy and the number of parameters in the simulation

decreases by six.
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6.2 Experimental

6.2.1 Sample Preparation

All silicate compounds were synthesized from oxygen—-17 enriched SiO,, CaOQ,
and MgO precursor compounds prepared from reaction of Hi’O with the proper
inorganic starting materials [151].  Si'’O, was produced by reacting liquid H}”O
with SiCly vapor at ambient temperature and pressure, followed by dehydration of
the product at 1473 K. Ca(*’OH), was synthesized by direct oxidation of calcium
metal with H1’O under ambient conditions in an argon glove box, with Ca!”Q pro-
duced by drying the hydroxide at 853 K. Reacting saturated solutions of K'"OH
and MgCl, at 298 K precipitated Mg(*”OH),, which yielded Mg'’O upon decom-
position at 653 K.

The simple oxide products were mixed together in proper stoichiometric amounts,
heated to elevated temperatures in sealed platinum tubes or in a nitrogen atmo-
sphere, and cooled to ambient conditions to produce homogeneous crystalline phases
of diopside (CaMgSi;!"Qg), forsterite (Mg,Si'’Q,), larnite (Ca,Si'’Q,), clinoen-
statite (MgSi’”0O;), and wollastonite (CaSi’’0;). Enrichments of oxygen-17 were
20% in the diopside, 41% in the wollastonite and clinoenstatite, and 43% in the
larnite and forsterite. Phase identity was checked by powder x-ray diffraction and
silicon-29 NMR. The forsterite sample was slightly off stoichiometry and contained

approximately 25% clinoenstatite.
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6.2.2 NMR Experiments

Experiments were performed in magnetic fields of 9.4 T and 11.8 T, corresponding
to oxygen-17 resonance frequencies of 54.25 MHz and 67.81 MHz respectively. The
probeheads for the sample reorientation were machined from commercially available
Delrin and Vespel polymers. The DOR probehead has been described in detail
elsewhere [124] and was mentioned briefly in Chapter 4. The DAS probehead is
a new version, improved from that used in previous experiments [105], and it is
described in Chapter 7. It is the same probehead used for the pure-absorption-

phase experiments in Chapter 5.

The DAS experiments were performed with axis flips from 6, = 37.38° to
0, = 79.19° and appropriate phase cycling of the radiofrequency pulses. For these
angles, the evolution times at the two angles must be equal (k = 1) in order to
cancel the anisotropic frequency contributions. Eight experiments are necessary to
reconstruct a full second-order quadrupolar echo (with a minimization of exper-
imental artifacts) which is digitized starting from the point of refocussing. The
second time dimension (¢;) contains the digitized data after refocussing of first and
second-order anisotropic interactions, and its Fourier transform provides the spec-
trum of the sample while spinning at ;. The first time dimension (¢,) is the sum of
the two evolution times leading to the anisotropic refocussing. This first dimension
is incremented by a time At; (typically tens of microseconds) and the anisotropic
decay during ¢, is recorded for each t; delay. The spectral width in the second fre-
quency dimension is the inverse of the sampling period between data points in the
second time dimension, while the spectral width in the first frequency dimension is

1/At,.
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One—dimensional DAS spectra are obtained by a Fourier transformation of the
echo heights as a function of the first time dimension. This yields resolved lines
with quantitative peak intensities after assignment and integration of all spinning
sidebands. The two—dimensional DAS spectra are presented in absolute—value mode
to avoid phase-twisted lineshapes [126]. Projections along the first frequency axis
also provide high resolution results, although some additional line broadening occurs
owing to the absolute value calculation. Pure-absorption-mode DAS experiments
are also possible, reducing linewidths in the two—dimensional spectra and allowing
correlation with magic-angle spinning powder patterns in the second dimension.
Preliminary oxygen—17 pure-phase spectra suffered from poor signal-to—noise ratios
and have therefore not been included bere.

A DOR spectrum, while technically more demanding to obtain, is acquired in a
one—pulse NMR experiment, which provides high resolution spectra with fewer total
signal acquisitions than in the DAS experiment. Fourier transformation of a one-
dimensional FID provides the high res-lution spectrum immediately. Comparison
of spectra obtained at a va.i:cy of spinning speeds can help in the assignment of
sidebands arising from the larger (outer) rotor. DAS spectra also contain sidebands
(at integer multiples of one-half of the rotor frequency), but since the spinning
speeds used here are on the order of many kHz this rarely hinders analysis of the
data. Used together, these two techniques provide unambiguous peak assignments

for all of the samples studied here.
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6.3 Results

The MAS spectra of oxygen-17 in the minerals studied are shown in Fig. 6.1:
powder patterns from distinct oxygen sites overlap at this field strength of 9.4 T.
Diopside, forsterite, and clinoenstatite have been investigated previously [77, 78]
with analyses assuming the presence of three inequivalent oxygen sites. Spectra
were simulated in these previous investigations by fitting the experimental NMR
lineshapes to computer generated powder patterns, and the isotropic chemical shifts
and quadrupolar parameters obtained are compiled in Table 6.1. A difference in
the magnitude of the quadrupolar coupling constant, Cg, for bridging versus non-
bridging oxygen sites is observed, and this is attributed to the difference in ionicity
of cation-oxygen bonds in the two arrangements. The more ionic bonds associated
with the terminal oxygens result in less p—orbital contribution to the electric field
gradient [78] and thus a lower quadrupolar coupling frequency. Equations 6.1 and
6.2 allow calculation of the total isotropic shifts expected at both 9.4 T and 11.8 T

and these are included in Table 6.1.

6.3.1 One-Dimensional DAS and DOR Experiments

DAS and DOR spectra of the same silicate minerals are shown in Fig. 6.2. Iso-
tropic shifts are distinguished from spinning sidebands by performing experiments
at two or more spinning speeds, and by comparison of the DAS and DOR spectra.
Due to the presence of many peaks in some of the spectra, labelling of the isotropic
peaks and sidebands would add confusion to the presentation of the results, so the
isotropic values are compiled in Table 6.2.

The DAS and DOR results for diopside (CaMgSi,'’O¢) and forsterite (Mg2Si'”Oy)
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Figure 6.1: Magic-angle spinning spectra of oxygen-17 in a collection of sil-
icates at a magnetic field strength of 9.4 T. The rotor frequency is approxi-
mately 5.4 kHz and the frequency axes are refcrenced to oxygen-17 in H!7O.
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compound ref. site occ. 6C9(ppm) Co (MHz) =7 64T (ppm) 655 (ppm)

380 180 180

—

diopside 78] nb 1 84 2.7 0.0 69 74
CaMgSi; Og nb 1 63 2.7 0.1 48 53
br 1 69 4.4 0.3 28 43
forsterite (771 a 2 61 2.35 0.2 50 54
Mg2SiO4 b 1 62 2.35 1.0 47 52
c 1 47 2.7 0.3 32 37
clinoenstatite (78] nb 1 60 32 0.0 39 47
MgSiO3 nb 1 42 3.2 0.0 21 29
br 1 62 5.1 0.3 7 27

Table 6.1: Previously determined oxygen-17 chemical shift (6,(2,5)) and quad-

rupolar parameters (Co and 7) for three silicates, based on three-site models.
The designations nb and br signify nonbridging and bridging oxygen sites, re-
spectively. For forsterite, all three sites are nonbridging. The total isotropic
shifts one should observe (62%) at 9.4 T and 11.8 T are also calculated (see
Egs. 6.1 and 6.2).
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Figure 6.2: Dynamic-angle spinning and double rotation spectra of oxygen-17
in a variety of silicates at a magnetic field strength of 9.4 T. The rotor frequency
is approximately 5.4 kHz in the DAS experiments, while in the double rotation
experiments the inner rotor spins at approximately 5 kHz and the outer rotates
at about 800 Hz.
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compound 6247 (ppm) | compound  &3;47 (ppm)
diopside €9.2 wollastonite 103.4
CaMgSi; Os 48.5 CaSiO3 100.1
28.6 96.5
forsterite 49.0 89.0
Mg,SiO4 49.0 85.8
30.8 74.3
clinoenstatite 39.3 28.2
MgSiO; 34.5 28.2
32.3 21.6
26.3 larnite 117.3
18.0 Ca,SiOq 113.3
15.0 108.8
106.3

Table 6.2: Experimentally determined oxygen-17 isotropic shifts. All reported
values are ppm from the oxygen-17 resonance in H}’O. Errors in all measure-
ments are approximately £0.5 ppm.
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agree with models having three distinct oxygen sites. This is consistent with their
reported crystal structures [152, 153] shown in Figs. 6.3(a) and 6.3(b). The quad-
rupolar parameters and isotropic chemical shifts, determined from previous MAS
experiments {77, 78], predict isotropic shifts in excellent quantitative agreement
with the new experimental values. The three resonances are fully resolved in the
diopside spectra, with their integrated intensities reflecting a 1:1:1 oxygen site occu-
pancy. Analysis of the forsterite data is less straightforward due to partial overlap
of the narrowed peaks from two oxygen-17 sites. Expansion of the region around
the most intense peak in the DOR spectrum (Fig. 6.4) reveals a shoulder on the
resonance from a thira oxygen site. Comparison with the MAS spectra at 11.8 T
(ref. [77]) strengthens the conclusion that three main sites are present. Moreover,
the enhanced resolution of the new techniques permits impurity phases to be de-
tected, as evidenced by the small peak at 26 ppm in both DAS and DOR spectra.
We attribute this to an impurity in the polycrystalline forsterite, also detected by
x-ray diffraction and silicon-29 NMR [154]. Its identification as clinoenstatite is

also consistent with the position of the peak in the oxygen-17 spectra.

The DAS and DOR spectra of clinoenstatite (MgSi'?O3) are consistent with a
crystal structure having six inequivalent oxygens in the unit cell [155], four which
are terminal sites and two which bridge adjacent silicate tetrahedra (see Fig. 6.3(c)).
The sidebands in the DOR spectrum, arising from the motion of the larger rotor,
make identification of the upfield resonances difficult; the higher spinning speeds
in the DAS experiment permit an unambiguous assignment. Previous interpreta-
tions [78], based solely on static spectra, allowed for only three inequivalent oxygens.

The small spread in the total isotropic shifts, and similar quadrupolar parameters,
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(a) Diopside (b) Forsterite

Figure 6.3: Crystal structures of the silicate minerals studied.
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Figure 6.4: Expansion of the DOR spectrum of forsterite around 50 ppm. The
shoulder on the left hand side of the largest peak indicates the presence of the
third resonance.
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cause similar sites to be indistinguishable in lower resolution techniques, and this
can also cause errors in the assignment of simulations to the spectra used to ex-
tract chemical shift and quadrupolar parameters. We assign the two less intense
resonances at 18 and 15 ppm to bridging oxygen species O3 and O6 in Fig. 6.3(c),
as the spread of the signal into more sidebands and less isotropic peak intensity is

a signature of a larger quadrupolar coupling constant.

For more complicated silicate species, such as the wollastonite (CaSi'”O3), struc-
tural characterization using MAS alc .e is essentially impossible. The polytype para-
wollastonite, shown in Fig. 6.3(e), contains nine distinct oxygen sites [156]. One-
dimensional DAS and DOR results show eight assignable oxygen-17 resonances for
this particular silicate. As explained below, two—dimensional data analysis helps to
locate the ninth spectral line which overlaps with another resonance at 28.2 ppm,
as well as allowing preliminary assignment of the upfield resonances to the three

bridging oxygens (07, O8, and O9 in Fig. 6.3(e)).

Finally, the larnite (5-Ca;Si'"O4) structure in Fig. 6.3(d) contains four distinct
oxygen nuclei surrounding a central silicon atom with slightly different cation co-
ordinations at each site [157]. The MAS spectrum is much narrower for larnite
than for the other minerals, and the isotropic shifts for the distinct oxygens are
much closer together. Four resonances are seen in the high resolution DAS and
DOR spectra of larnite in Fig. 6.2. Additional broadening of the DAS lines com-
pared to the DOR resonances is noticeable in all of the spectra presented, but it is
most evident in the narrow spread of oxygen-17 resonance frequencies from larnite.
Relaxation to other magnetic sublevels (m # :i:%) during the rather long flipping

time between the two DAS angles can lead to additional broadening in the DAS
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spectrum compared to the continuous DOR experiment. It is also possible that
spin evolution under residual dipolar interactions present at angles other than the
magic-angle during both periods in the high-resolution (t;) time domain is not

refocussed and this may contribute to additional broadening.

6.3.2 Two-Dimensional DAS Experiments

The DAS experiments involve two time dimensions in a natural way, and two-
dimensional Fourier transformation of the data can correlate the isotropic peaks
along the high resolution frequency axis with the spectra obtained while spinning
at the second angle (§; = 79.19°). Results for diopside, wollastonite, and cli-
noenstatite are presented in Figs. 6.5-6.7. Patterns which overlap in conventional
one-dimensional spectra are now separated in a two—dimensional display. With
diopside, for example, slices integrated over the lineshape at the isotropic frequen-
cies in the first dimension projected onto the second frequency axis are shown in
Fig. 6.8. Simulations of lineshapes with the quadrupolar parameters and isotropic
shifts from Table 6.1 match these patterns closely. It must be stressed that these
spectra represent absolute value lineshapes obtained while spinning the sample at
an angle of 79.19°. The chemical shift anisotropy and dipolar interactions present
under these conditions lead to additional line broadening which has been taken into
consideration here only through additional exponential broadening of the signals

calculated for each particular site.

Similar examination of the wollastonite two—dimensional DAS spectrum reveals
the power cf using the second dimension to make spectral assignments. The res-

onance at 28.2 ppm in the first frequency dimension appears to arise from two

191



I ' ﬁ
0 d 1
’ o
—4Q
0 -1_
] . E
| Q.
. &
b o 0 o o
4 (&]
c
. (0)]
. 3
O
- (6]
.
| et
) ' 1
D
) o
b '
o J;l . 1 I#J 1 s 141 i |
100 50 0

Figure 6.5: Two-dimensional DAS spectrum of diopside.
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Figure 6.6: Two-dimensional DAS spectrum of wollastonite.
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Figure 6.7: Two—dimensional DAS spectrum of clinoenstatite.
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Figure 6.8: Slices taken parallel to the low resolution (powder pattern) dimen-
sion of the diopside two—dimensional DAS spectrum in Fig. 6.5.
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resonances in the second dimension, which would occur as an overlap of two pow-
der patterns in the 28.2 ppm slice. The number of spectral features present indicate
two resonances with quadrupolar coupling constants in the range of 4 to 5 MHz, in-
dicative of bridging sites. The integrated intensity is also twice that of the isotropic
resonance at 21.6 ppm, which we assign to the third distinct bridging oxygen in the
structure. With these assignments, the resonances from all nine crystallographically

distinct oxygens can be identified.

More complicated structures, such as those found in larnite, clinoenstatite and
wollastonite, require careful analysis of the two-dimensional DAS data to extract
the quadrupolar and chemical shift parameters. Preliminary fits using the second
frequency dimension in the two—dimensional spectra of clinoenstatite and wollas-
tonite provide approximate parameters (see reference [158]), but more precise fits
are still difficult. In particular, the broad lines from the bridging oxygen resonances
in both species suffer from a poor signal-to-noise ratio. DAS at two field strengths
allows separation of the chemical shift and quadrupolar shifts and sheds more light

onto the differences in local structure present in these materials.

6.3.3 DAS at Two Field Strengths

Dynamic-angle spinning spectra obtained at two field strengths will provide
enough information to solve a set of equations (in the form of Egs. 6.1 and 6.2) for
the isotropic chemical shift and the isotropic second-order quadrupolar shift. The
isotropic chemical shift provides information regarding the local electronic structure,
especially bond order and oxygen coordination. The size of the isotropic second-

order quadrupolar shift is weakly dependent on the asymmetry parameter of the

196



electric field gradient at the nucleus and more strongly dependent on the size of the
largest component (Vzz). This correlates stiongly with local bonding parameters
such as p-orbital occupancy and charge transfer from oxygen lone pairs to silicon
in d-p 7-bonding models [46].

According to the analysis above and the development of the theory in Chapters
1 and 2, the isotropic chemical shift is field-independent while the quadrupolar shift
depends on the inverse of the square of the magnetic field. Therefore, at a higher
field strength the second-order shift, and hence the overall shift, will move to a
higher frequency. Care must be taken to minimize the possibility that resonances
will unexpectedly “cross” as the field strength is changed and in this case the second
(anisotropic) dimension of a DAS experiment is especially useful.

As an example of the effect observed, Fig. 6.9 shows the two oxygen-17 DAS
spectra obtained for diopside at magnetic field strengths of 9.4 T and 11.8 T. As
the field strength is increased the resonances shift to higher frequency as expected.

The two equations to be solved are
2
c
84T = 605 — 2.03691C3(1 + %—) (6.5)

2
SILBT = 6C5) — 1.30476C%(1 + 1’3—) (6.6)

and the calculated isotropic chemical shifts are 86, 64, and 69 ppm for the three reso-
nances. The corresponding products of the quadrupolar parameters Co(1 + n?/ 3)%
are 2.9, 2.7 and 4.4 MHz respectively. Once again, these agree very well with the
previously determined values. The full results for the five silicates studied here are
found in Tables 6.3 and 6.4.

1

To summarize, in the past sharp NMR spectra from spin-; nuclei such as

silicon-29 have been useful in studying local bonding parameters in solids. Equally
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Figure 6.9: DAS spectra of diopside (CaMgSi,O¢) at 9.4 T and 11.8 T.
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compound  &%4T (ppm) 83T (ppm) 6% (ppm) Co(1+ 3 (M)
diopside 69.2 75.1 86 2.8
CaMgSiy O 48.5 54.0 64 2.7
28.6 43.3 69 4.5
forsterite 49.0 57.1 72 3.3
Mg2SiO4 49.0 54.8 65 2.7
30.8 37.5 49 3.0
clinoenstatite 39.3 45.5 57 2.9
MgSiO3 4.5 4.1 61 3.6
32.3 42.0 59 3.6
26.3 39.0 62 4.2
18.0 36.8 70 5.1
15.0 u7 70 5.2

Table 6.3: Results from performing DAS experiments at 9.4 T and 11.8 T. The
isotropic chemical shift and product of quadrupolar parameters were calculated
from Egs. 6.5 and 6.6.
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compound  6%4T (ppm) 65T (ppm) 5€5) (ppm) Co(1 + f§)‘} (MHz)
wollastonite 103.4 107.4 115 2.3
CaSiO3 100.1 105.1 114 2.6
96.5 100.2 107 2.2
89.0 91.9 97 2.0
85.8 91.9 103 2.9
74.3 79.3 88 2.6
28.2 44.9 75 4.8
28.2 4.9 75 4.8
21.6 37.8 67 4.7
larnite 117.3 123.3 134 2.9
CaySiOy 113.3 118.5 128 2.7
108.8 1134 122 2.5
106.3 112.0 122 2.8

Table 6.4: Results from performing DAS experiments at 9.4 T and 11.8 T. The
isotropic chemical shift and product of quadrupolar parameters were calculated
from Eqs. 6.5 and 6.6.
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useful resolution is now available from quadrupolar nuclei including oxygen-17 as il-
lustrated here for a class of oxygen—-17 enriched minerals. Resolved resor.znces have
been observed from samgles with up to nine crystallographically distinct oxygen
sites. In DAS, two-dimensional spectral analysis is used for correlating isotropic
chemical shifts with quadrupolar parameters (Co and 7) at each oxygen site. In
DOR, a technically more demanding experiment, one—dimensional spectra can be
accumulated directly. Performing DAS or DOR experiments at two field strengths
allows quantitative determination of the isotropic chemical shift and the quadru-
polar shift. It is anticipated that pure-absorption—phase DAS will ultimately allow
complete determination of the quadrupolar parameters, rather than a product of
the coupling constant and asymmetry parameter, once acceptable signal strengths

are achieved.
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Chapter 7

A Dynamic—Angle Spinning
NMR Probe

A probe for dynamic-angle spinning (DAS) NMR experiments comprises a
spinning cylindrical sample holder whose axis may be reoriented rapidly between
discrete directions within the bore of a superconducting magnet. This allows the
refocussing of nuclear spin magnetization that evolves under anisotropic interactions
such as chemical shift anisotropy and quadrupolar coupling. The probe includes an
axial air delivery system to bearing and drive jets which support and spin a rotor
containing the sample. Axis reorientation is accomplished with a pulley attached
to the probehead and coupled to a stepping motor outside of the magnet. The
choice of motor and gear ratio is based on an analysis of the moments of inertia
of the motor and load, the desired angular resolution, and simplicity of design.
Control of angular accuracy and precision is essential, and the determination of
the performance of this probe is illustrated with testing procedures used routinely

in experimental setup. The need for quick reorientation of the axis is dictated
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by the relaxation of magnetization to thermal equilibrium (spin-lattice relaxation)
and dipolar relaxation of spins in the energy levels of the central transition to other
magnetic energy levels (cross-relaxation and spectral diffusion). Angular accuracy
is also necessary to sufficiently cancel the anisotropic evolution at the two angles,
while reproducibility of the angles is essential due to the use of signal averaging and

the two-dimensional nacure of these experiments.

7.1 Apparatus

The experimental apparatus for dynamic-angle spinning is, to a first approxi-
mation, similar to that used in a conventional MAS experiment. However in DAS
the spinning angle of the rotor with respect to the laboratory reference frame (or
magnet reference frame) is dynamic or time-dependent. For these experiments a
mechanical device is required to rapidly reorient a spinning sample axis between two
or more angles, synchronized with radiofrequency pulses to manipulate the nuclear
spin magnetization. The general goals for probe performance were short reorien-
tation time, accurate and precise angular control, and radiofrequency efliciency, in
that order. The following analysis led to this particular design.

Assume that the motor used to drive the body through a hop has an essentially
constant torque Ny, over the required speed range. Neglecting friction, the power
delivered by the motor during reorientation generates or absorbs rotational kinetic

energy according to

d /1 1
Nywy = zi-z<-2—IMw?{,,+§]Bw%)

= Iywpmapym + Ipwgag , (7.1)
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where wy p and aum,p are the magnitudes of the angular velocities and accelera-
tions of the motor (M) and the body (B) housing the rotor. Also assume that a

transmission links the motor and body angles 8)s p by a ratio

B=-"2="-2 (7.2)

and that the inertia of the linkage is either incorporated or negligible. By eliminat-

ing the motor variables in Eq. 7.1 using Eq. 7.2 the body acceleration is expressed

as:
BNMm
Qg = —————— . 7.3
B (Im + B2Ip) (7.3)
As a function of 3 this expression has a maximum value
Nvoo aofo (7.4)

Omaz = 9 TTmls 2
where ag = N /Ip is the free-motor acceleration and Bo is the optimum transmis-
sion coupling factor, \/Ins/Ig. This demonstrates that a massive motor having a
large free acceleration will provide optimal speed performance although, as shown
next, this optimum is very insensitive to changes in mechanical parameters.

The parameter of direct interest is the reorientation time 7, required to move
the rotor through an angle A@ = 6, — 6,. Assuming ideal control, where the motor
can be operated at any acceleration consistent with its torque, the rotor may be

accelerated during the first half of the motion and decelerated during the second

half, so
A6 1 T\ 2
T=(3) (7:5)
and
A
Tr d '&;. (7.6)
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Combining this with Eqs. 7.3 and 7.4 the reorientation time is

T, = T,,,i,,\l cosh (ln (—5;)) , (7.7)

Tmin = 2/ A0/ Qmaz (7.8)

The appearance of hyperbolic functions is characteristi. of impedance matching

where

problems, of which this is a mechanical example.

The result in Eq. 7.7 shows a weak dependence of the reorientation time on al-
most all mechanical parameters, and the consequent difficulty of making substantial
time reductions by mechanical improvements. The strongest dependences are upon
the hop angle and motor torque/acceleration: these enter under square roots, and
are the first parameters to optimize. Also note that 7,,;, depends upon the fourth
root of the moments of inertia. The square root expression in Eq. 7.7, which we call
the time inflation factor, has a very weak dependence upon the optimal coupling
condition, as the plot in Fig. 7.1 indicates. This is beneficial in the sense that it
leaves the choice of the coupling parameter 3 relatively free.

Current technology offers fast motors have free accelerations in the range of 10°
to 10® rad/sec?. Motor moments of inertia span the range from 10~° to 10~¢ kg m?
and the stator assemblies built to hold the rotor in our experiments have inertias
which fall at the low end of this range. Given these ranges, and that A8 ~ 7 /4,
Tmin Spans the relatively narrow range from 1 to 4 msec, despite a variation of
two orders of magnitude in the independent parameters. As seen below, however,
such short times have not been achieved: the primary limiting factor is obtaining
sufficiently subtle motion control for the motor performance to approach these

theoretical limits.
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Figure 7.1: Time inflation factor as a function of 3/fo.

Motor selection in our laboratory was based largely on intrinsic acceleration.
Because performance is such a weak function of 4, while motor and body inertias
are comparable, direct drive (8 = 1) was chosen for control convenience. Although
a variety of gear and belt options are possible, a simple string/pulley linkage seemed
to be the lightest and simplest alternative. We have used PMI (model USS-52M-
006) and Sigma (model 803-D2220-F04) motors; Portescap P-series motors are
also suitable for this type of design. All motors have comparable free accelerations,

but the Sigma motors are preferable because of their larger torque and inertia.

A Whedco model IMC-1151-1-A controller drives the motors. The IMC ac-
cepts commands and allows preprogramming of movement profiles using a PC as a
dummy terminal. There are also external profile enable and trigger lines available

which allow TTL level signals to trigger execution of profiles and commands within
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individual profiles. Movement commands, acceleration and deceleration rates, max-
imum speed, and start/stop pulse rates are loaded before an experiment is begun,
and final control of the motor is through TTL level pulses sent to the IMC from
the NMR spectrometer pulse programmer. Synchronization of movement with the
radiofrequency pulses in the experiment is then easily accomplished with the spec-
trometer software. The basic laboratory setup for a DAS experiment is sketched in

Fig. 7.2.

A schematic of the DAS probehead is shown in Fig. 7.3. The stator body and
endcaps are shown placed on an aluminum platform, and the radiofrequency coil
and %-inch diameter copper tubes for air delivery to the endcaps are also visible
in this view. The coil is wound from copper magnet wire, but here it is shown as
transparent to enhance the view of otherwise obscured components of the probe-
head. The assembly is built to fit within the 70 mm room temperature shims of
a widebore superconducting magnet. The stator body and its internal parts (the
stator sleeve and the rotor, discussed below) are machined from Vespel, a polyimide
chosen for its high strength and ease of machinability. The endcaps and pulley are
made of Delrin (polyacetal), a commercially available, less costly, high modulus
plastic. A full set of technical drawings for the probehead, used by the machinists
in the Department of Chemistry machine shop to fabricate this probe, are included

in Appendix A.

The cylindrical stator body (diameter 15.9 mm) is located by glass ball bearings
(Microminiature Bearings Co.) in polyacetal races held in place by the endcaps.
The bearings allow smooth, low friction reorientation. High pressure air is delivered

through the endcaps and bearings to channels in the stator body. This axial flow of
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Figure 7.2: Schematic of the laboratory setup for a DAS experiment. The spec-
trometer pulse programmer (PP) controls the radiofrequency (RF) irradiation
and the triggering of the Intelligent Motor Controller (IMC). The personal
computer (PC) allows loading of predefined hop profiles into the IMC. The
motor (a) sits at the base of the magnet in the motor housing (b) and is cou-
pled to the DAS probehead (c) with a string tightened by nylon turnbuckles

().
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Figure 7.3: Schematic of the probehead for a DAS experiment.
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air is undisturbed by the hopping motion, and no external hoses are needed which
would add excess inertia to the assembly. A lightweight polycarbonate sleeve is

positioned around the center of the stator body to keep the rotor in place.

Since a stationary rf coil surrounds the assembly, the stator body must be re-
moved in order to change the sample. Removal of the pulley and unfastening of the
side of one endcap (two screws) allows the stator body to slide out of the assembly,
keeping one bearing set pressed around the end of the stator body while leaving the
second pressed inside the fixed endcap. The former bearing outer race diameter is

of slightly greater diameter than the stator body to allow removal.

The stator sleeve and sample holder are shown in the expanded drawing of
Fig. 7.4. The sleeve is machined separately, press fitted into the stator body, and
the whole assembly is turned on a lathe to preserve the cylindrical symmetry of
the stator body. From one end of the stator body a single air hole feeds the center
drive channel. The two outer bearing channels are also filled with pressurized air
by splitting the axial channel from the other endcap into two channels which meet
the stator cavity near the circumference of the stator body. Air forced through the
12 radial bearing holes (0.3 mm diameter) at each end of the stator supports the
rotor. Each circle of bearing holes are at a 45° angle with respect to the cylindrical
axis of the stator sleeve to keep their exit ports as near the ends of the rotor as
possible. This maximizes support, allowing use of the longest (and therefore most
stable) rotors. The bearing air escapes through the top and bottom of the spinner

chamber.

Approximately 30 psi of bearing pressure is required to prevent rotor touchdown

during hops. The effect of the hop on a rapidly spinning rotor is discussed in Ap-
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Figure 7.4: Expanded view of the stator, stator body, and sample holder.
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pendix B. The conclusion is that crashes associated with hops are due to dynamic
disturbances that disrupt ordinarily stable equilibrium air patterns, and not failure

of the bearings to support the excess load caused by moving the rotor.

The six drive holes (1.0 mm diameter) are in the plane orthogonal to the spinning
axis and are directed tangentially to give the air a rotary flow component when
impinging upon the wide rotor flutes. The air provides torque to the rotor, moving
up and down the flutes to then be released quickly to the laboratory through the
escape holes. The escape holes are also drilled tangentially, but in a direction
opposite to that of the drive holes and offset by one-sixth of the distance around the
circumference of the stator. This presumes an impulse rather than reaction drive,
which is consistent with improved performance obtained by lengthening the rotor
flutes. Decoupling of the two air delivery and escape paths in this way minimizes
the turbulent flow of air within the vicinity of the rotor, with the intent of increasing
spinning stability and reliability. Drive pressures of 60 to 70 psi are necessary to
provide routine rotor spinning frequencies of 5 to 6 kHz using 6.3 mm diameter

rotors.

The rotors themselves are 15.9 mm long with conical screw caps on either end.
Twelve flutes are centered along the body, having a length of 4.0 mm and a depth
of 0.3 mm. The total sample volume is 0.15 cubic centimeters in a standard rotor
with 1.0 mm wall thickness. Flat spacers within the rotors separate the powdered
sample material from an angular standurd (usually potassium bromide, deuterated
1,4-dimethoxybenzene, or deuterated hexamethylbenzene) used to set the magic
angle. The rotor is held in place longitudinally with a thin polycarbonate sleeve

rather than more conventional fixed endcaps to optimize the rotor length while
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minimizing both the coil volume and stator body moment of inertia. Holes are cut
in the ends and the sides of this sleeve to allow free discharge of the bearing and
drive air. The conical ends of the rotors slowly wear away at the bearing points on
the sleeve and this piece typically needs replacement after approximately 500 hours

of operation.

The pulley has a diameter at the bottom of the string guide of 31.8 mm. It slides
onto a square slot on the stator body, and has a notch cut into one side of the string
guide for passage of the string to a fastening screw. The string is a length of Kevlar
(Dupont aramid fiber) with a diameter of approximately 0.8 mm. At the base of
the magnet, the string is also attached to a second pulley mounted on the shaft of
the stepping motor. A similar notch and fastening screw are present on the lower
pulley, providing an efficient coupling of angular position with negligible mechanical
backlash. The string is tightened with turnbuckles located approximately halfway
between the bottom pulley and the point of entry of the string into the magnet

bore (see Fig. 7.2).

An external, fixed-coil arrangement is used for irradiation with the radiofre-
quency (B,) field. This sacrifices electrical efficiency, but surmounts problems ex-
perienced with an earlier moving coil design [105]. The earlier design, sketched
in Fig. 4.2, was used for the first DAS experiments. Specifically, tuning changes
associated with axis motion and difficulty with sliding contacts or moving leads are
avoided with this new design. A major advantage of this arrangement is equiva-
lent performance at all angles: pulse lengths for 90° nutation of the magnetization
are independent of the axis orientation, and it is possible to perform NMR exper-

iments at any axis angle, including 0°. This latter axis orientation results in a
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signal which is equivalent to that obtained from a static sample, and allows two-
dimensional NMR spectroscopy correlating the powder pattern lineshapes observed
from a static sample with the high resolution lines provided by DAS (or MAS)
narrowing.

Another inconvenience with the original probe design was the use of an alumina
stator. The observation of aluminum nuclei i3 compromised due to the background
signal obtained from the stator which is inside of the coil. This new design uses
only aluminum-free parts inside of the coil and therefore observation of aluminum

nuclei is now possible.

7.2 Experimental Results

7.2.1 Hopping Performance

To investigate the performance of the probe, the strong time-domain free induc-
tion decay (FID) signal is observed after a 90° pulse is applied to the deuterium
nuclei in a rotating sample of deuterated 1,4-dimethoxybenzene. The deuterium
nucleus (spin-1) is affected by first-order quadrupolar interactions, which are mo-
tionally averaged while spinning at the magic angle [159, 160]. Since the distri-
bution of resonance frequencies is large (on the order of 75 kHz at 9.4 'I') the
inhomogeneous static lineshape in the frequency domain is broken up into spinning
sidebands, symmetrically displaced about a central (isotropic) peak and occuring
at integer multiples of the rotor frequency. Away from the magic angle, the two
Am = 1 transitions obtain different isotropic frequencies and the resonance splits

into a doublet. When exactly at the magic angle the inverse Fourier transform of

214



the isotropic signal and its envelope of sidebands, a time domain FID composed
of a train of rotational echoes occurring once every rotor cycle, is observed. The
sensitivity of the time and frequency domain signais to the angle of the spinning
axis with respect to the external field is demonstrated in Fig. 7.5. Under typical
experimental conditions, the step size used is obtained from one-sixteenth stepping
of a 200 step per revolution motor, or 0.112%°/step. Moving through the magic
ang}- in one swep increments verifies the suitability of the magic-angle condition as

a mark for determining absolute axis orientation.

The hop in a DA experiment is made between ; = 37.38° and 6, = 79.19°, a
difference of 41.81°. The nearest angles obtainable with the magic angle of 54.74°
as a fixed reference and 0.1125° angular resolution are 6, = 37.41° and 6, = 79.15°,
a difference of 41.74° or 371 steps. When the spinning axis is set 371 steps off of
the magic ~ngle, the timc necessary to complete a hop of 41.74° is determined by
initiating the return hop to the magic angle and waiting for a delay time before
applying a pulse to the system. The FID is then recorded, and the delay varied
until an FID matching that of Fig. 7.5(c} is observed. The decays in Fig. 7.6
show the effect of changing the time allowed for the hop. Undistorted signals are
observed 28 msec after the initiation of an axis hop, corresponding to measured
motor drive current pulses of 25 msec, and an inferred settling time of 3 msec. This
is much less thar the 100 msec or longer longitudinal relaxation times (T;) of many
quadrupolar nuclei in solids, and is therefore sufficiently short to allow storage of

the signal during the reorientation with negligible loss in signal intensity.

Attempts to increase the speed of the hop by increasing the acceleration of the

motor through its triangular speed profile led to decreased performance because of
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Figure 7.5: Time—domain magnetization decays and the resulting NMR spec-
tral lines for deuterium in an angular standard as a function of offset from the
magic angle.
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Figure 7.6: Time-domain magnetization decays from the deuterium nuclei in
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angular overshoot. A smaller start/stop pulse rate was then necessary, leading to
overall slower performance. The use of optical encoder feedback could not compen-
sate completely for the overshoot as a finite time (on the order of a few msec) is
required to search for the desired final angle. Similar hopping performance is now
routinely achieved using a 1024 step optical encoder which provides 0.1756° angular

resolution using a position pulse multiplier of two (set in the IMC).

7.2.2 Aluminum-27 DAS

The ability to observe aluminum-27 with this probehead is important as
aluminum-27 is a major constituent of advanced materials such as zeolites, other
molecular sieves and catalytic supports, clays, and ceramics. The capabilities of
this probe are demonstrated with the DAS spectrum of the single aluminum-27
species present in petalite (LiAlSi;O,q), a polycrystalline lithium ore. The pure-
absorption—phase DAS experiment of Chapter 5 was performed with a second hop to
the magic-angle of 54.74°. The two-dimensional spectrum at 9.4 T (aluminum-27
Larmor frequency of 104.26 MHz) appears in Fig. 7.7.

The single peak in the high-resolution DAS dimension appears at a total iso-
tropic shift of 46 ppm with respect to aluminum-27 in a saturated AlI(NO3); solu-
tion. The second dimension corresponds to the MAS spectrum for this sample and
it may be simulated and the quadrupolar parameters extracted. We find e2qQ/h
= 4.62%0.05 MHz with an asymmetry parameter n of 0.48+0.03 and these results
are in excellent agreement with those calculated from recent dc SQUID measure-
ments on the same sample [161]. The isotropic chemical shift is then calculated

to be 59 ppm with respect to the standard AI(NO3); solution. This result bodes
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Figure 7.7: Two—dimensional pure-phase DAS spectrum of aluminum-27 in
petalite (LiAlSi;O;0).
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well for the separation and complete determination of quadrupolar parameters from
overlapping aluminum resonances like those in more complex aluminosilicate sam-
ples, using the DAS dimension to separate lineshapes in the powder pattern (low
resolution) dimension which may then be simulated individually.

This discussion has provided an analysis of the design and examples of real
laboratory performance of a dynamic-angle spinning probe suitable for narrowiig
resonance lines in spectra of quadrupolar nuclei. The experimental results obtain-
able with this design are illustrated here and in previous chapters. This design offers
several advantages in its present form. Relatively simple mechanical construction
has provided reliable operation and reasonable hopping times using commercially
available mechanical drives. The stationary rf coil eliminates potential difficulties
associated with moving rf circuit components and complications due to changing
the irradiation direction, and permits use of all axis angles with equal efficiency.
The observation frequency is also easy to change, often accomplished with a sim-
ple change of irradiation coil. Overall, this probe is well suited for homonuclear
dynamic-angle correlation studies of nuclei with moderate sensitivity and reason-
able relaxation rates. It is clear that there is room for improvement in several areas:
we expect that attention to controller electronics could reduce hopping times below
10 msec, and that a more compact coil design could improve the filling factor and
overall rf performance, as well as allowing higher frequency operation. It would
likewise be useful to extend probe versatility by incorporating features such as het-

eronuclear decoupling and variable temperature capability.
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Appendix A

Probe Designs

This appendix contains the full set of technical drawings for a DAS probehead
as used by the machine shop in the Department of Chemistry at the University
of California at Berkeley. The original probe was fabricated at the Materials and
Chemicals Sciences Division machine shop at Lawrence Berkeley Laboratory. A full

description of the probe is contained in Chapter 7 and Ref. [115].
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DAS stator body
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Figure A.1: Stator body for DAS probehead.
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DAS stator
ktm la—— 440" ———n]
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Figure A.2: Stator for DAS probehead. The letters to the right in the bottom
sketch refer to the sections in Fig. A.3.
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. Stator sections
ktm I

26 Jan 1990
A i A ﬁ_ e 6 #80 holes

__6 0.040"

‘ diameter holes

| 12 #80 holes

C - —_ g — 8 — distributed
| circumferentially and
QQIDO at a 45 deg angle

Figure A.3: Configuration of holes in stator for DAS probehead (sections
marked in reference to Fig. A.2).
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DAS spinner body
ktm spinner o.d.
2 July 1990 0.247" >

0.170" —j
i.d. and spinner i.

ﬁ

spinner

Ingth 0.580"

thread depth  0.180"

56 t.p.i. l

A

thread o.d.

AU
R R R R I M I i in iy

Figure A.4: Spinner for DAS. The flutes are cut as described in the text of
chapter 7.
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DAS spinner caps

ktm
2 July 1990
2 #60 holes
0.075" deep
top _ — — _  0.84" threadand
l cap o.d.
side 0.110"  total height

of cap

Figure A.5: Caps for DAS spinner.
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Polycarbonate Sleeve
ktm
2 July 1990

0.6228" i.d.
0.660" o.d.

approx.
24 degrees

0.550" length.
Holes centered.

Figure A.6: Polycarbonate sleeve for DAS probehead.
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DAS endcaps and platform

side view
ktm
31 Jan 1990 ]
3607 0 e 610"
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I N I

f— 2720"
125" -l |~

Figure A.7: Side view of endcaps for DAS probehead. The letters A, B, and
C distingish the distinct parts in this drawing and Figs. A.8 and A.9.

DAS endcaps and platform

:)p view 250" { 475"
tm

07 March 1990

tapped for roundhead
4-40 brass screws

f— 1.50"

Figure A.8: Top view of endcaps for DAS probehead.
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DAS endcaps and platform

end view I .500"
ktm : I
31 Jan 1990
. I
A
|
|
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I
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Figure A.9: End view of endcaps for DAS probehead.
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DAS Pulleys | - 125"
ktm

11 Sept 1990 l

>

N
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i

1.250" i

375"

. 375"

Figure A.10: Pulleys for DAS motor (top) and probehead (bottom).
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DAS Pulleyholder
ktm
11 Sept 1990

10-32 threads

I l ”
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- 1.000"

2 set screws on opposite
sides. 640 threads.

Figure A.11: Pulley holder for mounting the pulley on the motor.
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Appendix B

Reorientation of a Spinning Body

We consider the torques arising from the reorientation of a rotor spinning at an
angular velocity w and supported by air bearings a fixed distance B from the rotor
center. The rotor with mass M has height H and radius R. We assume that the
reorientation axis is along the z-axis such that the sample rotation axis is always in
the yz-plane: the angle @ describes the angle which the spinning axis makes with
the z-direction.

If the angular velocity of the spinning axis reorientation is Q = df/dt then the

angular momentum L at any instant is
L = wly(é, cos b + &,sin0) + QI &,, (B.1)

where Iy and I; denote moments of inertia parallel and perpendicular to the cylin-
drical rotor axis respectively. Explicitly

_ MR

= 2
=" (B2)
and

MR? H?
I, = 1 (1 + 5—@) . (B.3)
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To obtain the torque, we differentiate Eq. B.1 with respect to time and obtain two

additive terms:

N, = wQly(—&,siné + &, cos §) (B.4)

and

N,- = aIlé,. (BS)

where a = d§2/dt is the angular acceleration of the reorientation. Note that the
torque N, is identical to that generated by reorienting a non-spinning cylinder. The
gyroscopic torque, N, arises from the fact that a spinning object is being realigned:
it depends on the product of the two angular velocities, w and €. Since N, is at
all times orthogonal to the drive axis it will be borne completely by the bearings
which hold the stator and the motor need only provide a torque equal to N, to
effect the motion. This leads to the first important conclusion: a spinning sample
is no more difficult for the motor to reorient than one which is static. Of course,
the air bearings between the stator sleeve and the rotor must provide sufficient
forces to support both of these torques. Empirically, this bearing load may be
significant, since rotor touchdown associated with reorientation is observed unless
bearing pressures of 30 psi are maintained.

Consider the case where reorientation through an angle A# occurs in a time
7, and consists of a uniform angular acceleration () from rest up to a maximum
angular velocity (Q,..) during the first half of the reorientation. Uniform deceler-
ation back to rest results in an overall triangular velocity profile and Eq. B.4 shows
that the peak gyroscopic torque occurs at the midpoint of the motion where the

angular velocity is

(B.6)



1

Using Eq. 7.5 from the main text we may relate €2,,,- to A8 and 7., finding

Qe = 228 (B.7)

Tr

Equation B.5 indicates that the reorientation torque is constant during the acceler-
ation and simply undergoes a sign change when the motion changes to deceleration.

The ratio of the torques may then be calculated:

No _ o () _(+dF)
IN,(maz)| 2wz 3R2) T wr

(B.8)

For typical cylinder aspect ratios (H/2R) Letwe:;n - and 5, the numerator of Eq. B.8
falls between 1 and 35. The denominator, on the other hand, is the number of
radians the rotor turns while it is undergoing reorientation. For a 5 kHz spinning
rate and reorientation times between 10 and 50 msec, this falls betweep 300 and
1500. The second important conclusion then is that the main air bearing load
associated with reorientation is generated by gyroscopic reaction forces.

To estimate the magnitude of the load associated with hopping in more familiar
terms, we will calculate how large a sample packing imbalance is required to generate
a bearing load comparable to that expected during reoriencation. We characterize
rotor imhalance by the parameter = AR/R, where AR is the distance of the
actnal center of gravity frcm the spinning axis and R is again the rotor radius. For
a symmetric imbalance, the force on each of a pair of bearings holding the rotor is

_ nwlL

Fb Ra

(B.9)

where w and L are the maguitudes of the rotor angular velocity and momenta as
defined above.

On the other hand, if we move the spinner with an angular velocity of reorien-



l ([T

per bearing
QmaxL

F==p

(B.10)

where B is the offset of the each bearing ring from the spinner center.
To obtain the equivalent imbalance 7., required to generate a force equal to the

reorientation load, we equate Egs. B.9 and B.10, obtaining

e (5) ()

To a first approximation, R/B = 1, Qp.: = n/(27.), and w = 27 /7,, where 7,

and 7, are the reorientation time and spinning period respectively. This leads to
Teq = T,/87y. For 7, = 0.2 msec and 7. = 30 msec, we find the equivalent offset
to be one part in 1200. This is a very small value and it is not expected to affect
spinner stability. Therefore we expect stable behavior of the rotor duriug the hop.

This analysis has shown that the magnitudes of the reorientation torques are
smaller or comparable to those occurring in steady state motion. On the other
hand bearing failure is observed during reorientation if bearing pressures are too
low. Such failure may then be due to more complex motions, possibly involving
gyroscopic oscillations and air bearing compression. Whatever the mechanism for
the bearing failure, it is possible to perform the necessary hopping of a spinning
rotor to accomplish the DAS experiments as sufficient bearing pressures are easily

maintained in this design.
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Appendix C

Computer Code

This appendix contains the code for five Mathematica™ programs used for

calculations within the main text.

wigner.m - code included in the following three programs defines the matrix ele-

ments of the reduced and full second—order Wigner rotations.

static.m - calculates the spatial dependence for the second-order quadrupolar

interaction in a static sample.

vass.m - calculates the spatial dependence for the second-order quadrupolar inter-

action in a sample spinning at an arbitrary angle with respect to the magnetic

field.

dor.m - calculates the spatial dependence for the second-order quadrupolar in-
teraction in a sample undergoing double rotation defined by two arbitrary

angles.

dasangles.m - calculates the DAS complementary angles for the range of k values.

This program was used to generate Fig. 3.1.
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wigner.m

(* Construct second-degree reduced Wigner Functions
dr as functions of m1, m2, and theta and then full Wigner
matrices d as functions of i, j, alpha, beta, and gamma *)

Clear(dr]

dr{2,2,theta_] := ((1+Cos[theta])/2)*2
dr{1.2,theta_] := (1+Cos[theta])/2 Sin[theta]
dr{0,2,theta_] := Sqrt[3/8] Sin[theta]*2
dr{-1,2,theta_] := (1-Cos[theta])/2 Sin[theta]
dr(-2,2,theta_] := ((1-Cos[theta])/2)*2
dr(2,1,theta_] := -(1+Cos[theta])/2 Sin[theta]
dr(1,1,theta_] := Cos[theta]*2 - ((1-Cos[theta])/2)
dr [0,1,theta_] := Sqrt[3/8] Sin[2 theta]
dr{-1,1,theta_] := -Cos[theta]*2 + ((1+Cos[theta])/2)
dr(-2,1,theta_] := (1-Cos[theta])/2 Sin[thet 3]
dr[2,0,theta_] := Sqrt[3/8] Sin[theta]*2
dr{1,0,theta_] := -Sqrt[3/8]Sin[2 theta]
dr[0,0,theta_] := (3 Cos[theta]*2 - 1)/2
dr{-1,0,theta_] := Sqrt[3/8]Sin[2 theta]
dr{-2,0,theta_] := Sqrt[3/8] Sin[theta]*2
dr(2,-1,theta_] := -(1-Cos[theta])/2 Sin[theta]
dr{1,-1,theta_] := -Cos[theta]*2 + ((1+Cos{theta])/2)
dr{0,-1,theta ] := -Sqrt[3/8]Sin[2 theta]
dr{-1,-1,theta_] := Cos[theta]*2 - ((1-Cos[theta])/2)
dr{-2,-1,theta_}] := (1+Cos[theta])/2 Sin[theta]
dr{2,-2,theta_] := ((1-Cos[theta])/2)*2
dr{1,-2,theta_] := -(1-Cos[theta])/2 Sin[theta]
dr{0,-2,theta_] := Sqrt(3/8] Sin[theta]*2
dr{-1,-2,theta_] := -(1+Cos[theta])/2 Sin{theta]
dr{-2,-2,theta_] := ((1+Cos|[theta])/2)*2

Clear(d]

dfi_,j_,alpha_,beta_,gamma ]} :=
dr(i,j,beta] (Cos[i alpha] + I Sin[i alpha]) *
(Cos[j gamma] + I Sin[j gamma])
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static.m
(* Read in the definitions of the Wigner matrices *)
<< wigner.m

(* Construct the second-rank tensors in the principal axis
system of the EFG: note that eq is factored out *)

Clear(r]

r[2,2] = 1/2 eta;
r[2,-2] = 1/2 eta;
r(2,0] = Sqrt[3/2];
r(2,11=0;
r(2,-11=0;

(* The rotation is performed through the angles alpha, beta,
and gamma (a,b,c) to the interaction frame tensor R *)

Clear[R]

R[2,m_] := Sum{d[mp,m,a,b,c] r{2,mp], {mp,-2,2}];
R22 = R[2,2};

R2m2 = R[2,-2];

Rprod2 = R22 R2m2;

R21 = R([2,1];

R2ml = R[2,-1];

Rprodl = R21 R2m1;

(* The factors for the equations used are obtained from
8 times the sum of 2 Rprod1 and Rprod2 *)

total = Expand(16 Rprod1 + 8 Rprod2];

(* A set of trigonometric simplifications *)

Expand|total //. Cos[n_?Negativex_.] -> Cos[-n x1]);
Expand[% //. Sin[n_?Negative x_.] -> -Sin[-n x]};
Expand[% //. Cos[b] Sin[b] -> (Sin[2 b])/2];

Expand[% //. Cos[a]*2 -> (1 + Cos[2 a])/2];

Expand[% //. Cos[b]*2 -> (1 + Cos[2 b])/2];

Expand[% //. Cos[c]*2 -> (1 + Cos[2 c])/2];

Expand[% //. Cos[a]*4 -> (1 + Cos[2 a])/2 (1 + Cos[2 a))/2];
Expand[% //. Cos[b]*4 -> (1 + Cos[2 b])/2 (1 + Cos[2 b])/2);
Expand[% //. Cos[c]*4 -> (1 + Cos[2 c])/2 (1 + Cos[2 c))/2);
Expand[% //. Sin[a]*2 -> (1 - Cos[2 a])/2];
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Expand([% //. Sin[2a]*2 -> (1 - Cos[4 a])/2];

Expand[% //. Sin[b]*2 -> (1 - Cos[2 b])/2];

Expand[% //. Sin[2b]*2 -> (1 - Cos[4 b])/2];

Expand[% //. Sin[c]*2 -> (1 - Cos[2 c])/2];

Expand[% //. Sin[2 c]*2 -> (1 - Cos[4 c])/2];

Expand[% //. Sin[a]*4 -> (1 - Cos[2 a])/2 (1 - Cos(2 a])/2];
Expand[% //. Sin[b]*4 -> (1 - Cos[2 b])/2 (1 - Cos[2 b])/2];
Expand[% //. Sin[c]*4 -> (1 - Cos[2 c])/2 (1 - Cos[2 c])/2];

Expand[% //. Cos{2 a]*2 -> (1 + Cos[4 a])/2];

Expand[% //. Cos[2 b]*2 -> (1 + Cos[4 b])/2];

ans = Expand[% //. Cos[2 c]*2 -> (1 + Cos[4 c])/2];

(* Finally, the answer *)

ans
2 2
45 5 eta 39 eta Cos([2 a]) 27 eta Cos[4 al 9 Cos{2 Db]
(=) = ————— 4 e + e - e
16 32 8 32 4

15 eta Cos[2 b] 3 eta Cos{[2 a] Cos[2 b]

9 eta Cos[4 a] Cos([2 b] 81 Cos[4 Db] 9 eta Cos{4 b]

27 eta Cos(2 a] Cos[4 b] 9 eta Cos[4 a) Cos[4 b]
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vass.m
(* Read in the definitions of the Wigner matrices *)
<< wigner.m

(* Construct the second-rank tensors in the principal axis
system of the EFG: note that eq is factored out *)

Clear{r]

r[2,2] = 1/2 eta;
r[2,-2] = /2 eta;
r[2,0] = Sqrt(3/2];
r(2,11=0;

r(2,-11 = 0;

(* The rotations are performed through the angles alpha
and beta (a,b) to the rotor frame and then theta to the
interaction frame tensor R *)

Clear[R]

R[2,m_,mp_] := Sum{dr[mp,m,theta] dr[mpp,mp,b] r[2,mpp] *
(Cos[mpp a] - I Sin[mpp al),{mpp,-2,2}];

(* The time-independent terms in the product of spherical
tensors are calculated *)

Rprod2 = R[2,2,0] R[2,-2,0] +
R[2,2,1] R[2,-2,-1] +
R[2,2,2] R[2,-2,-2] +
R[2.2,-1] R[2,-2,1] +
R[2,2,-2] R[2,-2,2]);

Expand(%];
Rprod2 = %;

Rprod1 = R[2,1,0] R[2,-1,0] +
R(2,1,1] R[2,-1,-1] +
R(2,1,2] R[2,-1,-2] +
R(2,1,-1] R[2,-1,1] +
R(2,1,-2] R[2,-1,2];

Expand[%];
Rprodl = %;

(* The factors for the equations used are obtained from
8 times the sum of 2 Rprod1 and Rprod2 *)

total = Expand{16 Rprod1 + 8 Rprod2];

(* A set of trigonometric simplifications *)
Expand(total //. Cos[n_?Negative x_.] -> Cos[-n x]};
Expand[% //. Sin[n_?Negative x_.] -> -Sin[-n x]};
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Expand[% //. Sin[theta)*4 -> (1 - Cos[theta]*2)(1 - Cos[theta]*2)];
Expand[% //. Cos[b]*2 -> (1 + Cos[2 b})/2];

Expand[% //. Cos[b]*4 -> (1 + Cos[2 b])/2 (1 + Cos[2 b])/2];
Expand[% //. Sin[b]*2 -> (1 - Cos[2 b])/2];

Expand[% //. Cos[b] Sin[b] -> Sin[2 b] / 2];

Expand[% //. Sin[2 b]*2 -> (1 - Cos[4 b])/2];

Expand[% //. Sin[2 a]*2 -> (1 - Cos[4 a])/2];

Expand[% //. Sin[b]*4 -> (1 - Cos[2 b])/2 (1 - Cos[2 b))/2];
Expand(% //. Cos[2 a]*2 -> (1 + Cos[4 a])/2];

Expand[% //. Sin[2 theta]*2 -> 4 (Cos[theta] *2 - Cos[theta]*4)];
Expand[%]; % //. Cos[2 b]*2 -> (1 + Cos[4 b])/2];

ans = Expand(% //. Sin[theta]*2 -> 1 - Cos[theta]*2];

(* The number of terms in the final expression is *)
Length[ans]

36

(* The coefficients for the expansion may be obtained
as below and factored into Legendre Polynomials *)

p2 = LegendreP[2,Cos[theta]];
p4 = LegendreP[4,Cos[theta]];
ans44 = Coefficient[ans, Cos[4 a] Cos[4 b] ]

2 2 2 2 4
27 eta 135 eta Cos{theta] 315 eta Cos[theta]

cop4 = Expand[8 / 35 Coefficient[ans44, Cos[theta]*4 ]];
reml = Expand[ans44 - cop4 * p4];

cop2 = Expand[ 2 / 3 CoefTicient[rem1, Cos[theta]*2]];
rem2 = Expand[reml - cop2 * p2}];

(* The remainder should be zero *)

rem2

0

cop4 (* the p4 coefficient *)
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cop2 (* the p2 coefficient *)
0

(* The other terms are calkculated similarly. Depending
on method of coefficient extraction, special
tricks may be needed wheni=0or j=0in
expansion (some arguments must be set to zero) as below *)

newans = ans//.{Cos[2a]-> 0, Cos[4a}-> 0};
ans02 = CoefTicient[newans, Cos[2 b] ]

5
117 51 eta2 297 Cos[theta]b 63 eta2 Cos[theta]2
2 ed 6 TS T
4 2 4
405 Cos[thetal 45 eta Cos[theta]
T T e

cop4 = Expand(8 / 35 Coefficient[ans02, Cos[theta]*4 ]];
reml = Expand[ans02 - cop4 * p4];

cop2 = Expand( 2 / 3 CoefTicient[rem1, Cos[theta]*2]];
rem2 = Expand(rem! - cop2 * p2];

(* The remainder should be zero *)

rem2

0

copd (* the p4 coefTicient *)
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dor.m

(* Read in the definitions of the Wigner matrices *)
<< wigner.m

Clear(r]

r[2,2] = 172 eta;

r[2,-2] = 1/2 eta;

r[2,0] = Sqrt[3/2];

r(2,11=0;

r[2,-11=0;

(* R is defined as one component of the full rotated quantity, and multiplied in a
reasonable manner to form the products R22R2-2 and R21R2-1 *)

Clear[R]

R[2,m_,mp_,mpp_] := Sum[dr[mp,m,thetal] dr[mpp,mp,theta2] *
dr{mppp,mpp,b] r{2,mppp] *
(Cos[mppp a] - I Sin[mppp a]),{mppp,-2,2}};

Rprod2 = R(2,2,0,0] R[2,-2,0,0] +
R[2,2,0,1] R[2,-2,0,-1] +
R[2,2,0,2] R[2,-2,0,-2] +
R[2,2,0,-1] R[2,-2,0,1] +
R[2,2,0,-2] R[2,-2,0,2] +
R[2,2,1,0] R[2,-2,-1,0] +
R[2,2,1,1] R[2,-2,-1,-1] +
R[2,2,1,2] R[2,-2,-1,-2] +
R[2,2,1,-1] R[2,-2,-1,1] +
R(2,2,1,-2] R(2,-2,-1,2] +
R[2,2,-1,0] R[2,-2,1,0] +
R[2,2,-1,1] R[2,-2,1,-1] +
R[2,2,-1,2] R[2,-2,1,-2] +
R[2.2,-1,-1] R[2,-2,1,1] +
R([22,-1,-2] R[2,-2,1,2] +
R[2’292!0] R[29'2y'2v0] +
R[z,zyzyl] R[29'29'29'1] +
R([2,2,2,2] R[2,-2,-2,-2] +
R[2,2,2,-1] R[2,-2,-2,1] +
R([2,2,2,-2] R[2,-2,-2,2] +
R[2,2,-2,0] R[2,-2,2,0] +
R[2,2,-2,1] R[21'2029'1] +
R(2,2,-2,2] R[2,-2,2,-2] +
R2.2,-2,-1] R[2,-2,2,1] +
R(2.2,-2,-2] R[2,-2,2,2] ;

Expand[%];
Rprod2 = %;
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Rprodl = R[2,1,0,0] R{2,-1,0,0] +
R([2,1,0,1] R[2,-1,0,-1] +
R[2v190)2] R[Z,-l,O.-Z] +
R[2,1,0,-1] R[2,-1,0,1] +
R[2,1,0,-2] R[2,-1,0,2} +
R[2,1,1,0] R[2,-1,-1,0] +
R[2,1,1,1] R[2,-1,-1,-1] +
R[2,1,1,2] R[2,-1,-1,-2] +
R[2,1,1,-1] R[2,-1,-1,1] +
R[2,1,1,-2] R[2,-1,-1,2] +
R[2,1,-1,0] R[2,-1,1,0] +
R[2,1,-1,1] R[2,-1,1,-1] +
R[2,1,-1,2] R[2,-1,1,-2] +
R[2,1,-1,-1] R[2,-1,1,1] +
R(2,1,-1,-2] R[2,-1,1,2] +
R[2,1,2,0] R[2,-1,-2,0] +
R(2,1,2,1] R[2,-1,-2,-1] +
R[2,1,2,2] R[2,-1,-2,-2] +
R(2,1,2,-1] R[2,-1,-2,1] +
R[291’2"2] R[2,-l,-2,2] +
R[2,1,-2,0] R[2,-1,2,0] +
R[2,1,-2,1] R[2,-1,2,-1] +
R[2,1,-2,2] R[2,-1,2,-2] +
R[2,1,-2,-1] R[2,-1,2,1] +
R[2,1,-2,-2] R[Z"l’292];

Expand[%];
Rprodl = %;

(* The total frequency in the proper units is obtained next *)

total = Expand[16 Rprod1 + 8 Rprod2];
Length[total]
2064

(* Trigonemtric identities simplify the long answer *)

Expand[total /. Cos[n_?Negative x_.] -> Cos[-n x]];
Expand[%//. Sin[n_?Negative x_.] -> -Sin[-n x]];
Expand[%//. Sin[thetal]*4 -> (1 - Cos[thetal]*2)(1 - Cos[thetal]*2)];
Expand[%//. Sin[theta2]*4 -> (1 - Cos[theta2]*2)(1 - Cos[theta2]*2)];
Expand[%//. Cos[b]*2 -> (1 + Cos[2 b])/2];
Expand[%//. Cos[b]*4 -> (1 + Cos[2 b])/2 (1 + Cos[2 b})/2];
Expand(%//. Sin[b]*2 -> (1 - Cos[2 b])/2];
Expand(%//. Cos(b] Sin[b] -> Sin[2 b}/ 2];
Expand[%//. Sin[2 b]*2 -> (1 - Cos[4 b])/2];
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Expand[%//. Sin[2 a]*2 -> (1 - Cos[4 a])/2};

Expand[%//. Sin[b]*4 -> (1 - Cos[2 b])/2 (1 - Cos[2 b])/2};
Expand[%//. Cos(2 a]*2 -> (1 + Cos[4 a))/2];

Expand[%//. Sin[2 thetal]*2 -> 4 (Cos[thetal]*2 - Cos[thetal]*4)];
Expand([%//. Sin[2 theta2]*2 -> 4 (Cos[theta2]*2 - Cos[theta2]*4)];
Expand[%//. Cos[2 b]*2 -> (1 + Cos[4 b])/2];

Expand[%//. Sin[thetal]*2 -> 1 - Cos[thetal]*2];

Expand[%//. Sin[theta2]*2 -> 1 - Cos{theta2]*2];

ans = %;

Length[ans]
108

(* The Legendre polynomials are defined here as well as their products *)

p21 = LegendreP(2,Cos{thetal]];
p22 = LegendreP{2,Cos[theta2]];
p41 = LegendreP(4,Cos[thetal]];
p42 = LegendreP[4,Cos[theta2]];
p41p42 = Expand[p41 p42];
p21p22 = Expand(p21 p22];

(* The cofficients in front of the p4p4 and p2p2 terms are calculated *)
cop4p4 = Expand[8 8 /35 /35 CoefYicient[ans, Cos[thetal]*4 Cos[theta2]*4]];
reml = Expand[ans - cop4p4 * p41p42];

r = Coefficient[rem1,Cos[thetal]*4 Cos[theta2]*4];

cop2p2 = Expand[2 2 /3 /3 Coefficient[rem1, Cos[thetal]*2 Cos[theta2]*2]];
rem2 = Expand[reml - cop2p2 * p21p22];

r = Coefficient[rem2,Cos[thetal]*2 Cos{theta2]*2];

Length[rem2}
2
rem2
2
12 4 eta
- (_ -— ) - e . ————
5 S
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copdpd

2 2
729 81 eta 81 eta Cos([2 a) 27 eta Cos[4 a] 81 Cos[2 Db]
——— 4 - 4 e 4 e + mmm————— +
560 1120 56 32 28
2 2
9 eta Cos[2 b) 27 eta Cos[2 a] Cos([2 Db] 9 eta Cos[4 a] Cos[2 b}
——————————————— + ——— —— — - ——— —— — M . . = = WE e e M e G W - — . = - e
56 14 8
2
81 Cos[4 b] 9 eta Cos[4 D] 27 eta Cos[2 a) Cos[4 b]
----------- 4 mmmmm e —ecem - mmm e —— e — = 4
16 32 8

9 eta Cos[4 a) Cos[4 b)

32
cop2p2
2 2
12 4 eta 24 eta Cos([2 a] 36 Cos[2 b) 12 eta Cos[2 bl
- (=-=) + —=———- 4 mmmmmm e ———m e = mm—m— e + e ——————— -
7 7 7 7 7

(* The remainder should be the same as rem2, and this is the isotropic second-order shift *)

f = Expand[ans - cop4p4 p41p42 - cop2p2 p21p22 ]

255



dasangles.m

(* Definition of the Legendre Polynomials *)
p2[thetal_] := LegendreP[2,Cos[thetal]]
pd[theta2_] := LegendreP(4,Cos[theta2]]

(* Do loop will calculate theta 1 and theta 2
for eack value of k from 0.8 to § in steps

of 0.025 *)
Clear[k);kout = {); xout = {}; yout = {};
Dol

rule = FindRoot[{p2[x]}+k p2[y] == 0,

pd[x]+k paly] == 0}, {x, 15 Degree), {y, 65 Degree}];
xrule = rule[{1]]; yrule = rule[[2]];
AppendTo[kout,k];

AppendTo[xout,{k,(x /. xrule) / Degree //N} ];
AppendTo[yout,{k,(y /. yrule) / Degree //N} ],

{k, 0.8, 5, 0.025}]

(* Commands to plot the data used to make Fig 3.1 *)

ListPlot[xout, PlotJoined->True,AxesLabel->{k,thetal},
PlotRange-> {0, 90}]

ListPlot{yout, PlotJoined->True,AxesLabel->{k,theta2},
PlotRange-> {0, 90}]
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