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REMARKS ON THE GENERALIZED
"~ TUKEY'S LAMBDA FAMILY OF DISTRIBUTIONS

Hing-kam Lam, The Chinese University of Hong Kong
K. 0. Bowman, Union Carbide Corporation
L. R. Shenton, University of Georgia
1. INTRODUCTION

We consider the family of curves generated
by the mapping of a uniform density, namely

Floy =a+ 8 - -0y, 0<a <1,

- these being a reparametrization of the set ittro-

duced by -Ramberg et al (1979), and a generaliza-
tion of a mapping due to Tukey (1960).

Our main concern is the application of (1)
to approximating theoretical distribution functions

‘of test statistics such as S.D,, skewness, and

kurtosis under non-normality.

© It is as well to remark at the outset that

 if ;(1) is fitted by using the first four moments,
there may be more.than one solution. This problem

does not arise if we merely define the values of ..
a, B8, Y, 6 and use the mapping  to generate random
samples, ' ' ‘

Again, moments are straight forward to

evaluate in terms of gamma functions, or polygamma
“functions in special cases, _Thus when Yy =0
the m.g.f. 1is

L TQ#e®)I(l-t) 1.
(O = Teemern) Ty et @

t
and when Yy # 0 , the k‘h non-central moments is

. |
vk vk k-3 T(Syk+1)Tly(k-j)+1]
=y L(OED Ty Sky (k-9) 27

,(3)
J:OA .

S Y8k+1 > 0, y(k-3)+1 > 0

2, SKEWNESS AND KURTOSIS

Let VB = u3/od , and B8, = p,/o*

where yu = E[(x—ui)k] is the kth central
moment and o = vii, . VB; and B, are often
discribed as measuring skewness and kurtosis.
For the family, VB; and B85 can be obtained
from (2) or (3). 1t is clear that {Bl and

By are functions of the shape parameéters vy and
6, i.e.

By = 82(Y,8)

2AUEERIEIT ——




o ~ For given values of Y and 8 , V3, and B, can be A ' _
easily obtained by using digital computer. Fig. 1 i
illustrates the contours of VB, and B, in the (Y,G)

plane.

-In general it is impossible to obtain the

inverse expression of (4) explicitly, i.e.

i

Y8y, B
(81, B2)

Y
6

A satisfactory numerical method is the finite
difference Le venbero—Marquardt algorithm, Suppose
/Bl' and 82 are two specified values of VB, and
R, of the distribution to be fitted. We define .

81y, 5) = /B, (Y,8) - v8,* , . %
g2(Y,8) = Ba(v,8) - B , '

| then the LeVenBerg—Marquardt algorithn can be
applied to obtain the values of Y and § which will
minimize the sum of squares of g; and g, » If
this sum of squares is satisfactory close to. zero,
the’ Y, $ value just obtained can be considered as
the approximate solution Lige most numerlcal B
algorithms, 1nitlal guesses of Y and 6 ‘are .

. required and. important' reasonable initial guesses .. -

- will save considerable computer time Frgure 1 may

serve as ‘a guide in this respect, o A ~'_' 7'1 E - N ‘

3. -APPROXIMATIONS TO DISTRIBUTIONS ~

o ."A.Sténdard technique to fit.a“curve;is”bYZ S 1. A: (
. o - making the first four moments. of the fitted.curve '
B - agree with those of the distribution to be fitted

(see Shenton and-Bowman, (1979)). Pearson, -Johnson-

and Burr (1978) investigated the degree. of - agree— '

- ment of. the percentage points of distributions = .

with‘the same first four moments. Supplementing

the percentage points of the generalized lambda
- ' family to their table I gives the following compar-

ison of standardized 5 and 1 percentage points of

six dlstinct families having VBL and 32 values

ClOse to 0.8 and 4.2 respectively There is satis—

factory agreement between the six approximations.

AL e

In the rest of this section, we will fit
the generalized family to the distribution of test
statistics such as standard deviation, vb, , b, .
Exact distribution, in some cases the exact
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" moment -of ‘m,

expression of the moments also, of these statistics

in most cases are still unknown.‘However, we can
approximate its moments, and thus using four of
these, approximate its perxcentage points. The
method of using moments of statistics which them-'
selves are moment  functions is déscribed'in detail - - - - - -
in Shenton, Bowman and Reinfelds (1967), and.

Shenton, Bowman and Sheehan (1971).

Table 1. Comparlsons of Percentile of Families
having close Values of v8; and 8,.

Family vB, B, 1 5 95 99
L(v,6,a,B) .800 4.200! -1.87 -1.38 1.85 2.95
Pearson Type | .800 4.200| -1.80 -1.40 1.82 2.90

~ Johnson Sy .800 4.200) -1,80°-1.40 1.82 2,91
Non-central t| .780 4.229| -1,83 -1.42 1.81 2.89
Log-normal - | .814 4.200] -1.78'~1.40" 1,83 2.91

Log-x? 780 4.188| -1.83 -1.41 1.81 1.90

Note: For the generallzed lambda dlstrlbutlon,
- Y=.071578, &=,35540, a—— 51833, B=.88360
No log- normal or log-X distributions have
VB1=.8, B,=4.2 exactly and this beta-point
is outside the non-central t area,

Denote the member of the generalized family. .

By L(Y,G,a;B)ﬁ For spécified values of U (mean),

- g? (variance), /Bx and B, , the vélues of Y and § -,

+ say Y, and 6°~are.obtained by employing the finite

different Levenberg-Marquardt.algorithm., Denote’

the méan~andxvariaqce of L(Yo,ﬁo,o,l)-by u-and u, 4

‘then L(Y,,8,,%,,8,), where B; =v(6?/u,) and

a0 = p-uB, , will have the specified moments U ,
/B and B, .

3.1 Sample standard deviation (/hz) in expounential
sampling

Lam(1978) derived the exact distribution of

%ho in exponential sampling for n < 4, The axact
distributions for n > 5 are still unknown. To fit

the dlstrlbutlon we need the first 4 moments of

:the statlsuic. Lan (1978) also gave the . approech'

of obtalnlng the exact expression of“the genexal
, for all samplé size. Herice exact . -
value of the even moments of ﬁnz are known., For

the first two odd moments, we apply the Levin's .

-~
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algorithm to the first 28 and 13 terms of the :u;ln

. ?i .  series expansion in powers of n-.1 of Y and u,

(see

Bowman, Lam and Shenton (1979)). Table 2 shows the

numerical values of the first four moment paraments,

Distribution fitting and comparisons are‘given in
Table 3. .

Table 2., VMoments

of /m, in Exponential Sampling

2

VB

n u g 1 32
5  .77451  ,20013  1,42955 6.27480
6  .80717 .18181 1.33699  5.95404
7 .83120 .16625° 1.26517  5.70555
8  .84969° .15302 1.20691. 5.50615
9 .86440 .14170 1,158I57" 5.34177
10 .87640  .13192 . 1.11641.. 5.20335
15 .91388 .09815 . °.96954 4.73339
20 . .93367. .07826  .87632 - 4.46412 .-
25 .94597  ,06514  .80921 4.27772 !
Table 3. Percentage Point Compariscn
for fitting vm, in Exponential sampling
n 1% 5% 10%Z 90%Z 957 99%
T — - T ¥=.02216
s |L 119 .249 .320 1.364 1.640 2.258|8=.17014|
. | a=.43815
M 138 .235 .305 1.356 1.619 2.250 57 400030
AA — "1 .02393
6 .150 .291 .366 1.369. 1.626 2.200] '.20367
! . » ' ~ .50641
179 .280 .351 1.359 1.608 2.178| 300
1. — “ -02660
.181 ,327..404 1.368 1.610 2.147| .22776
7 ~ o : .55666
208 316 389 1371 1,604 2.124| 32000
) T .02951
.209 .358 ,436 1.365 1.593 2,100| .24634
i ° 237 .352 .423 1.366 1,583 2.086] 20209
. . » . [ ] . '34950
- - ~03242
.236 .386 .463 1,360 1.577 2.057| .26139
’ 268 ,376 .450 1.366 1.582 2.050| 02714
L] 1] » L] . . 3 .33A45
.03523
.260 .410 .486 1.355 1.562 2.018| .27399
w0 294 .402 .471 1.360 1.557 2.006] 53317
-294 402 . ' -337 2. .32138
‘ 04726
.353 .497 .570 1,327 1.499 1.872| .31721
- 379 .490 .558 1.330.1.495 1.864| /37131
AR Do T 27421
. . , ~.05653
s 418 .554 .622 1.303.1.453 1,773|- - 34456
20 o 78537
462 545 611 1,301 1,443 1,750] J92371

L: L(y,$,a,8) _
M: Monte-Carlo Simulation,l100000 cycles for n=15
and n=20; 50000 cycles feor n < 10. '
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3 2 /B in Normal Sampling

. 2 ” . B
b = m3/m2/ . where m_ is the B sample
éentral moment, 1s used in testing for normality.

The only exact distribution for VB in normal -

.'sampling being known is the case n~4 due to Mckay

(1933) Exact values of th° first 3 even moments—-»<

~.

the odd moments are, of course, zero—, of normal

/b have been determined. by R. A, Fisher (1930) ‘

Let n be the sample size, then

L 6(n=2)
Y T @
Mam 108(n-2) (£ +270-70)

(n+1) (n+3) (n+5) (n+7) (n49)

Table 4 and Table 5 give the L(Y,5,0,B) fit to the
distribution of vb ‘along with alternative model

comparlsons (see Shenton, Bowman and Lam (1979))*"'

: ATable_&. Percentage Points of Normal Jb q=4my -

LS

.900  .950  .975 .990  .995 .999 %’

.792  .957 1,073 1,178 1,23% 1.314..

L

M- .831 ,987 -1,070 1.120 1,137 1,151

P - -,793 .,958 1.074 1.178 1,231 1.306-.

P. - .829 - ,985-1,069- 1,124 .1,143 1,160
~Sg 7 .793° 956 '1.072 1.180 1,238 1.328

S

Be  -832  .985 1.066 1.122 1,144 1,168

Note: L‘: L(y=.40738, 5 l o=0, B=.56967)
: ‘M : Mulholland (1977) ' :
P : 4-moment -Pearson
Pe: Conditional 4-moment Pearson
Sg, Spe : Johnson 4-moment & 4-moment
conditional




Table 5. Percentage Points of Normal /bl » 5<n<25

n (/b)) B, (b)) 900 950 .975 .990  .995  .999 Y B

(%4}

L .806 1.010 1.174 1.346 1.451 1.63%
M .821 1.049 1.207 1.337 1.396 1.464

.799 1.019 1.204 1,411 1.544 1,798 .
<795 1.042 - 1.239 1.429 1.531 1.671

-784 1.010 1.205 1.431 1.582 1,880
782 1.018 1.230 1.457 1,589 1.797

.766 .993 1.193 1.429 1.590 1,916
. 765 .998 1.208 1,452 1,605 1.866

748,973 1.175 1,416 1.582 1.926
.746  .977 1.184 1.433 1.598 1,898

.3750 2.5714 .23937 .48400

6 .3810 12,8196 17202  .44488

7 .3750 3.0000 13491 41842
8 .3636 3.1357 11154 .39795

9 - .3500 3.2398 - .09570 .38113

729,952 1.153 1.396 1.565 1.919
10 .3357 3.3204 .728  .954 1.159 1.407 1,578 1.906 -08447 .36683
1 3214 33833 7110 931 1,131 1.373 1,543 1,903

. 2
710 .931 1.134 1,381 1,553 1.gg9 -07628 .35440

694  .910 1.107 1,348 1.518 1,880

12 .3077 A3'“326: .693  .910 1.109 1.353 1.526 1.882 07017 34343
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17 2500 3.5559 .622  .819 1,001 1.226 1,386 1.733 ' | :

622,817  ,997 1.222 1.385 1,744 -0°996 .30262

-610 © .804 ,982 1.203 1.361 1.704
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18 .2406 3.5659

610 .801  .978 1.199 1.359 1.714 03487 .29636 “ g
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Note: L : L(y, 6=1, a=0, B)
M : Mulholland (1977)
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+©3.3 b, and b, from Normal Mixture

Table 6. Percentage Points of vb, from N.M.

I
Population| Moment : .
n moment of b, l .010  .050 .100 .900 .950  .990 |LI¥,$,a,B)
/8 =0.1 u = .1027 |[L--.536 =-.340 -.239  .449 .555 .761 | Y=.10540.
S0 1ot u,= .0739 |{C -.532 -.340 =-.241  .449  .552  .757 | 6=.91729
8 =1.2 /8,= .051 Z -.532 -.340 -,241 .449  .552  .757 | 0=,09013
2 " 8,=3.205 |M -.534 '-.339 -.240 ,449  ,551  .755 | B=.18421
0.1 .0858 -1.109 -.728 -.538 .714 .910 1.304 .07945
10 .2487 -1.132 -.744 -.533  .737 .952 1,299 .95271
2.2 .034 -1.000 -.726 -.540 .714  ,906 1.294 .07277
) 3.374 -1.107 -.728 -,541 ,711  .903 1,307 .31995
0.4 4022 -.363 -.129 -.0I1 .836 .979 1.265 .09185
25 _ C.1139 -.354 -.135 -.,019 .830 .972 1,259 .73205
' 2.0 214 -.355 -,131 -.016  .834 ,973 1,258 | - .34581
o 3.390 -.354 -.134 -.019  .834  ,970 1.255 .24523
0.6 .5576 ~ -.164 .055 .168 .950 1.066 1,289 11714
100 .0943 -.159 ,053 .165 ,948 1,060 1,286 .95425
4.0 .025 -.160 .055 .167 ,949 1.064 1,285 .54993
) 3.118 -.158 .055 .166  .946 1.062 1.280 .20832
1.0 .9979 .518 .658 .729 1.286 1.381 1,565 .12298
75 ’ .0485 .524  .654  ,725 1.283 1.375 1.561 .61403
20 .287 .524  .654 .725 1,284 1,376 1,561 94111
. 3.263 ,525  .653 .723 1,283 1,376 1.559 .17772
1.2 1.1909 ,753  .880 .945 1.455 1,542 1,710 .12473°
100 ' .0406 .758  .876  .941 1.452 1.536 1.707 60743
4.0 .291 759 .877  .941 1.452 1.537 1.707 1,1378
S 3.257 . .758. .876 . .941. 1,451 1,534 -1.697 | - .16357
1.2 T 1.1945 | .83 938 .992 1.410 1.479 1.610 13541
150 .0270 . .838 ..936  .990 1.408 1.475 1.608 | ~ .64047
4.0- 241 .838  .936 .989 1.408 1.475 1.608 | 1.15580
| ’ 3.167 | .837  .934 .988 1,408 1,472 1.606 .13282
Note: L : L(Y,6,a,B) ; P : Pearson 4-moment approximant
C : Cornish-~Fisher expansion with.Su as kernel (Shenton and Bowman (1975))
Z : Zeroth-order S approximant : ) : :
M : Monte-Carlo approximant, 100000 cycles ,
Table 7. Percentage Points of b2 from N.M.
Population| Moment - : : - : 4 =
" { . moment of by, 2010  .050 .100  .900 -.950  .990 |L(Y,$,a,B)
. W =2.6162 |L 1.690 1.928 2.045 3.315 3.641 4.408 |Yy=-.02443
/B,=0.6 w,= 3004 |C 1.737 1.922 2.030 3.315 3.642 4.399 |8= ,30808
50 | VB,=1.341 Zz 1.737 1.922 2.030 3.318 3.635 4.387 |&=2.30819
B,=2.6 B,=6.707 M 1.754 1.916 2,018 3.316 3.636 4.393 |B= .43101"
: P 1.755 1.921 2.026 3.320 3.635 4.379
3.9062 | - 2.070 2.565 2.802 5.248 5.895 7.478 -.05817
0.8 1.1573 . 2.140 2.557. 2.780 5.273 5.889 7.447 .34031
50 - 1.473 2.140 2.557 2.780 5.254 5.889 7.447 | " 3.34681
4,2 7.933 2.276 "2.584 - 2.775 5.274 5,913 7.488. . ,78282
‘ 2,209 . 2.556 2.765 5.264 5,890 7.417
3.9661 | - 2.640° 2.998- 3,174~ 4.907 5.309 6.206-[ - -.01790 - . - -
1.0 ..5255 2.692 2.884 3.156 4.902 5,296  6.184 . 35899
100 1.005 2.692 2.984 3,156 4.906 5.295 6,175 3.59648
Sl 6.0 5,135 2,704 2.977 3.141 4.903 5.287 6,148 |  .59072
2,705 2.982 3.147 4.907 5.292 6.167 ‘
2.6892 1.627 1,906 2.045 3.457 3,778 4,480 , 03813
1.2 ,3428 1,673 1.873 2,032 3,454 3,765 4,459, .33753
) 964 1.673 1.894 2,026 3.455 3,765 4,455 2.37495
150 26 4.818 1.673 1.884 2,013 3.429 3,740 4,439 ( 49878
’ 1.679 1.893 2.024 3,456 3,764 4,452
. 4,0306 2.762 3.107 3,280 4.899 5,236 5.937 07424
1.2 - L4327 2,755 3.074 3.258 4.892 5,217 5,919 .39122
150 ' L724 2.802 3.091 3.259 4.894 5,218 5.913 3.71684
4.0 4,056 2.809 3.084 3.252 4.886..5,209 5,900 .56973
= [ 2.805 3,090 3.257 4.894-5,217:°5.911 ;. .
) 3.5403 2.009 2.414 2.615 4.648 5,128 6,202 | - .01519 -
S S ON 7283 2.075 - 2.340 2,600 4.646 . 5,113 6.168 | ' .34008"
150" o 1.059 | 2.075 2.399 2.583° 4.648 5,112 6.166 | 3.08696
3.4 5,295 2,045 2,400 2.589 4,614 5,133 6,190 , 70099
2,090 2,397 2.584 4.650 5.110 6,157
e ate S e S B S L. o R S G S N e o e R L e TR T S R A AR Ve
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o 9. i
T34 qu from Pearson Type 1 §
' s
Table 8. Percentage Points of /bl in Pearson Type I Sampling i
|
Population {Moments l {
n moment of Vb, * .005 7010 .050 .950 .990 .995. L(Y,G,G,S) 4;
N e e e a b
8 =3.095 |vB1= 1953 : o : : : . a=.80217
2 - B8»=3.124 |C-F .378 419 .536 1.163 1.313 1.371]| B=.15104 é
oo .45581L .017 .060 .176 . 750 .879 .925 .13671. .
467707 0303]..(2) ' 80055 ;
100 ’ M .019 . .059 172 744 .875  .,925 ’ : ;
2.625 .1108 .43524 :

i 3.071 [C-F 022 .063 .175 747 .876 .925 .13002

Note: L : L(Y $,0,8)
- (1)

M : Monte-Carlo approximant mean of 3 rdns,_SOOOO'cybles_each.

M(Z)

: Monte-~Carlo approximant, mean of 3 runs, 30000 cycles each.
CcC-F : Cornish—Fisher approximant (Bowman and Shenton (1973))

* : Moments by Cornish-Fisher approx1mant.
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