

Evaluation of Coal Devolatilization Concept

EPRI

Keywords:

Coal Gasification
Two-Stage Entrained Gasification
Coal Devolatilization
Pilot Plant Data

EPRI AF-608
Project RP523-1
Final Report
December 1977

Prepared by
Babcock & Wilcox Company
Barberton, Ohio

MASTER

LECTRIC POWER RESEARCH INSTITUTE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Evaluation of Coal Devolatilization Concept

AF-608
Research Project 523-1

Final Report, December 1977

Prepared by

ALLIANCE RESEARCH CENTER
Research & Development Division
The Babcock & Wilson Company
Alliance Ohio 44601

9506194

and

Fossil Power Generation Division
The Babcock & Wilcox Company
Barberton, Ohio 44203

9506195

Principal Investigators

R. K. Bhada
R. H. Boll
A. J. Kubasco
W. L. Sage

Prepared for

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

EPRI Project Manager
Dr. Mike Gluckman

EBP
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

LEGAL NOTICE

This report was prepared by Babcock & Wilcox as an account of work sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI, members of EPRI, Babcock & Wilcox, nor any person acting on behalf of either: (a) makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or (b) assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

ABSTRACT

The objective of this test program was to evaluate the concept of increasing make gas heating value from an air-blown entrained gasifier by feeding some or all of the coal to a devolatilizer vessel downstream of the gasifier. It was further required that the increase in heating value should be accomplished without the production of tar or soot.

A pilot plant was constructed consisting of a one foot diameter gasifier and an eighteen inch I.D. by eight feet high devolatilizer. A total of 43 test runs were conducted using an Eastern bituminous coal as well as a Western sub-bituminous coal. Three modes of operation were employed; all coal fed to the gasifier, all coal fed to the devolatilizer, and a 50-50 split between the two.

Analysis of the pilot plant data yielded the following general results:

- The highest heating value gases were generated when all of the coal was fed to the gasifier.
- Unacceptably large tar quantities were generated when half or all of the coal was fed to the devolatilizer.
- Tar content of the make gas was negligibly small when all of the coal was fed to the gasifier.

Data analysis also showed that heat losses were considerably higher than those anticipated at the inception of this program. A detailed analysis of the pilot apparatus has shown that without modification there appears to be no way to operate so as to significantly lower heat losses.

It is recommended that the pilot gasifier be redesigned with the aid of the thermal model. This step, together with the addition of an externally fired air heater to the facility will reduce heat losses to those representative of a commercial installation.

Blank Page

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.	INTRODUCTION -----	1-1
2.	PILOT PLANT -----	2-1
2.1	Coal Preparation Facilities -----	2-2
2.2	Coal Feed System -----	2-2
2.2.1	Coal Screening Tank -----	2-2
2.2.2	Coal Feed Tank and Lines -----	2-3
2.2.3	Measurement and Control of Coal Flow -----	2-5
2.3	Gasifier -----	2-6
2.3.1	Initial Design and Modifications -----	2-6
2.3.2	Present Design -----	2-7
2.4	Crossover Duct -----	2-12
2.5	Devolatilizer -----	2-12
2.6	Char Collection and Recycle System -----	2-15
2.7	Secondary Combustion Furnace -----	2-18
2.8	Control Panel -----	2-19
2.9	Coal -----	2-20
3.	TEST APPARATUS AND PROCEDURES -----	3-1
3.1	Test Procedure -----	3-1
3.1.1	Method of Start-up -----	3-1
3.1.2	Gasification Testing -----	3-1
3.2	Gas Analysis - Apparatus and Procedure -----	3-2
3.2.1	Cyclone Outlet Gas Sampling Apparatus -----	3-2
3.2.2	Gasifier Outlet Gas Sampling Apparatus -----	3-2
3.2.3	Oxygen Analysis at Secondary Combustion Furnace -----	3-3
3.3	Gas Sampling Procedure -----	3-3
3.4	Solids Loading Apparatus and Procedure -----	3-4
3.4.1	Gasifier Outlet Solids Loading -----	3-4
3.4.2	Solids Loading at Exit of Cyclones -----	3-5
3.5	Solids Loading Procedure -----	3-5
3.6	Solids Sample at East Cyclone -----	3-6
3.7	Solids Analysis -----	3-6
3.8	Tar Formation Determination -----	3-6
3.9	Process Measurements and Locations -----	3-8
3.10	Gas Analyzer - Gas Chromatograph -----	3-10
4.	RESULTS AND DISCUSSION -----	4-1

CONTENTS (Continued)

<u>Section</u>	<u>Page</u>
4.1 Precision of Measurements -----	4-1
4.1.1 Make-Gas Heating Value -----	4-1
4.1.2 Air-Fuel Ratio -----	4-1
4.2 Effect of Natural Gas Firing Prior to Testing -----	4-4
4.2.1 Test Procedure -----	4-4
4.2.2 Hypothetical Temperature Distribution in Gasifier Wall -----	4-5
4.2.3 Statistical Correlation Including "Time of Day" -----	4-6
4.3 Effect of Natural Gas Firing During Testing -----	4-8
4.4 Material Balance -----	4-9
4.4.1 Basis for Material Balance -----	4-9
4.4.2 Effect of Amount of Hydrocarbons on Heating Value -----	4-12
4.4.3 Check of Heating Value and Particulate Loading -----	4-13
4.4.4 Comparison of Data with Theory -----	4-17
4.4.5 Carbon Balance at Cyclone Exit -----	4-17
4.4.6 Carbon Balance at Secondary Combustion Furnace -----	4-21
4.4.7 Carbon Balance as a Function of Air-Fuel Ratio -----	4-21
4.5 Energy Balance -----	4-24
4.5.1 Devolatilizer Outlet Temperature Versus Air-Fuel Ratio -----	4-24
4.5.2 Energy Balance Boundaries -----	4-24
4.5.3 Energy-Balance Assumptions -----	4-26
4.5.4 Summary of Steady-State Heat Loss Calculations -----	4-27
4.5.5 Effects of Assumptions -----	4-29
4.5.6 Overall Heat Balance -----	4-31
4.5.7 T ₃ and T ₂ Study -----	4-34
4.5.8 Summary of Effects of Steady-State and Transient Heat Losses -----	4-36
4.6 Tar Formation -----	4-37
4.6.1 TGA Analysis of Captured Particulate -----	4-37
4.6.2 Air-Fuel Ratio and Temperature Effect -----	4-38
4.6.3 Residence Time -----	4-39
4.7 Statistical Analysis -----	4-41
4.7.1 Heating Value as a Function of Heat Loss and Air-Fuel Ratio -----	4-41
4.7.2 Discussion of Various Statistical Analysis -----	4-43
4.7.3 Projections for Reduced Heat Loss -----	4-46

CONTENTS (Continued)

<u>Section</u>		<u>Page</u>
5.	THERMAL ANALYSIS OF PILOT APPARATUS -----	5-1
5.1	Description of Thermal Analysis Models -----	5-1
5.1.1	Equipment Components for Thermal Analysis -	5-1
5.1.2	Model Assumptions -----	5-10
5.1.3	Determination of Internal Axial Temperature Profile -----	5-12
5.1.4	Determination of Refractory Temperatures --	5-13
5.2	Verification of Computer Program -----	5-14
5.2.1	Preliminary Checks -----	5-14
5.2.2	Verification Against Pilot Plant Data -----	5-14
5.3	Predictions of Thermal Analysis Model -----	5-17
5.3.1	Achieving Steady-State -----	5-17
5.3.2	Deliberate Unsteady-State Operations to Minimize Heat Losses -----	5-19
5.3.3	Design Change -----	5-22
5.4	Summary of Conclusions from Thermal Analysis of Pilot Apparatus -----	5-24
6.	CONCLUSIONS -----	6-1
7.	RECOMMENDATIONS -----	7-1

<u>Appendices</u>		<u>Page</u>
A.	Test Data -----	A-1
B.	Energy Balance Data -----	B-1
C.	Material Balance Data -----	C-1
D.	Diffusion Based Model -----	D-1
E.	Summary of Material and Energy Balances for Determining the Temperature and Composition of the Internal Fluid in the Thermal Model -----	E-1
F.	Material and Chemical Species Properties and Heat Transfer Coefficients -----	F-1

ILLUSTRATIONS

<u>Figure</u>		<u>Page</u>
2.1	Pilot Plant -----	2-1
2.2	Lower Portion of Coal Screening Tank -----	2-2
2.3	Coal Feed Tank -----	2-3

CONTENTS (Continued)

<u>Figure</u>		<u>Page</u>
2.4	Lower Portion of Coal Feed Tank -----	2-4
2.5	Fluidizing Section and Coal Lines -----	2-4
2.6	Coal Feed Tank Load Cell Readout and Recorder -----	2-5
2.7	Gasifier - Initial Design -----	2-6
2.8	Gasifier - Final Configuration -----	2-7
2.9	Gasifier -----	2-8
2.10	Gasifier Burners and Combustion Zone -----	2-9
2.11	North Burner Piping -----	2-10
2.12	Burner Injection Lines -----	2-10
2.13	Slag Quench Tank -----	2-11
2.14	Vertical Coal Nozzle Arrangement at Bottom of Gasifier -----	2-11
2.15	Crossover Duct -----	2-12
2.16	Devolatilizer Sectional View -----	2-13
2.17	Devolatilizer -----	2-13
2.18	Top of Devolatilizer -----	2-14
2.19	Char Collection and Recycle -----	2-15
2.20	Cyclone Separators -----	2-16
2.21	Cyclone Design -----	2-17
2.22	Char Recycle Apparatus on Bottom of East Cyclone -----	2-18
2.23	Main Control Panel -----	2-19
3.1	Cyclone Outlet Gas Sampling System -----	3-2
3.2	Gasifier Outlet Gas Sampling System -----	3-3
3.3	Gasifier Outlet Solids Sampling System -----	3-4
3.4	Cyclone Outlet Solids Sampling System -----	3-5
3.5	Soxlet Extraction Column for Tar Extraction -----	3-7
3.6	Location of Process Measurements -----	3-8
4.1	Make-Gas Heating Value Versus Percent Theoretical Air -----	4-2
4.2	Gas Temperature Data for Firing Natural Gas Only -----	4-4
4.3	Possible Temperature Profiles in Gasifier Wall -----	4-5
4.4	Effect of "Time of Day" -----	4-7
4.5	Effect of Natural Gas Fired in Gasifier -----	4-8
4.6	Effect of Natural Gas Fired in Gasifier -----	4-9
4.7	Gasification Stoichiometry -----	4-10

CONTENTS (Continued)

<u>Figure</u>		<u>Page</u>
4.8	Effect of Amount of Hydrocarbons on Stoichiometric Heating Value -----	4-12
4.9	Computation of Gas Heating Value -----	4-13
4.10	Comparison of Code 7 Data with Theory -----	4-14
4.11	Dry Ice Condensation Tests -----	4-15
4.12	Ice Bath Collection Test -----	4-15
4.13	Back-Up Filter Tests -----	4-17
4.14	Comparison of Code 1 and 2 Data with Theory -----	4-18
4.15	Comparison of Code 3 data with Theory -----	4-18
4.16	Comparison of Code 4, 5, 6 Data with Theory -----	4-19
4.17	Comparison of Code 7 Data with Theory -----	4-19
4.18	Carbon Balance at Point B, Eastern Coal -----	4-20
4.19	Carbon Balance at Point B, Western Coal -----	4-20
4.20	Carbon Balance at Point C, Eastern Coal -----	4-22
4.21	Carbon Balance at Point C, Western Coal -----	4-22
4.22	Effect of Theoretical Air on Carbon Balance, Eastern Coal -----	4-23
4.23	Effect of Theoretical Air on Carbon Balance, Western Coal -----	4-23
4.24	Effect of Air-Fuel Ratio on Measured Devolatilizer Outlet Temperature -----	4-25
4.25	Energy Balance Boundaries -----	4-25
4.26	Summary of Steady-State Heat Loss Calculations -----	4-27
4.27	Separator Outlet Temperature as a Function of "Time of Day" -----	4-34
4.28	Thermogravimetric Analysis (TGA) of Particulate from Cyclone Outlet -----	4-38
4.29	Effect of Air-Fuel Ratio on Tar Formation -----	4-39
4.30	Tar Formation as a Function of Measured Devolatilizer Inlet Temperature -----	4-40
4.31	Tar Formation as a Function of Measured Devolatilizer Outlet Temperature -----	4-40
4.32	Test Data Plotted as a Function of Heat Loss, Air-Fuel Ratio, and Heating Value -----	4-42
4.33	Statistical Analysis "E", Heat Loss Effect -----	4-47
4.34	Statistical Analysis "E", Air-Fuel Ratio Effect -----	4-47

CONTENTS (Continued)

<u>Figure</u>		<u>Page</u>
4.35	Statistical Analysis "B", Heat Loss Effect -----	4-48
4.36	Statistical Analysis "B", Air-Fuel Ratio Effect -----	4-48
4.37	Projections for Reduced Heat Loss -----	4-49
5.1	Equipment Components for Thermal Analysis -----	5-3
5.2	Combustor -----	5-3
5.3	Radial and Axial Thermal Elements in Gasifier Bottom Wall -----	5-4
5.4	Radial and Axial Thermal Elements in Top of Gasifier --	5-5
5.5	Axial Elements in Top and Bottom of Crossover Duct -----	5-6
5.6	Illustrating "Squaring" of Crossover Duct -----	5-6
5.7	Radial and Axial Thermal Elements in Top of Devolatilizer -----	5-7
5.8	Radial and Thermal Elements in Bottom of Devolatilizer -----	5-8
5.9	Comparison of Observed Temperatures versus Predicted Temperatures -----	5-16
5.10	Effect of Low Cyclone Efficiency on Predicted Temperatures -----	5-16
5.11	Heat Losses During Coal Firing at Test 33 Conditions --	5-17
5.12	Heat Losses During Coal Firing at Test 38 Conditions --	5-17
5.13	Refractory and Gas Temperatures after 24 Hours on Natural Gas Firing -----	5-21
5.14	Gas Temperatures for Coal Firing at Test 38 Conditions -----	5-21
5.15	Heat Losses During Coal Firing at Test 38 Conditions -----	5-21
5.16	Heat Losses During Coal Firing at Test 38 Conditions -----	5-21
5.17	Design Change -----	5-22
5.18	Gas and Refractory Temperatures for "Redesigned" Gasifier -----	5-23
5.19	Gas Temperatures for "Redesigned" Gasifier for Coal Firing -----	5-23
5.20	Heat Losses During Coal Firing for "Redesigned" Gasifier at Test 38 Conditions -----	5-23

CONTENTS (Continued)

TABLES

<u>Table</u>		<u>Page</u>
2.1	Coal Analysis -----	2-20
3.1	Gas Analysis by Chromatograph -----	3-9
4.1	Estimated Precision of Measurement of Make-Gas Composition -----	4-3
4.2	Precision of Measurements -----	4-3
4.3	Statistical Correlation of Data: Air-Fuel Ratio, Group, and "Time of Day" -----	4-7
4.4	Material Balance Parameters -----	4-11
4.5	Gas Analyses - Comparison of ARC and Gollob Analytical Service -----	4-16
4.6	Carbon Balance Study -----	4-30
4.7	N_C Study -----	4-30
4.8	Heat Loss Study -----	4-32
4.9	Overall Heat Balance (IV) -----	4-33
4.10	T_3 and T_2 Study $N_C = 0.90$ and 0.95 (Average Difference Between Calculated and Measured Temperatures	4-35
4.11	Summary of Effects of Steady-State and Transient Heat Losses -----	4-36
4.12	Summary of Statistical Analysis Including Heat Losses -----	4-44
5.1	Heat Losses Calculated by Material and Energy Balance Versus Heat Losses Predicted by Computer Program -----	5-15

Blank Page

EXECUTIVE SUMMARY

TEST OBJECTIVE

The objective of this test program was to evaluate a concept for increasing the make-gas heating value leaving an air blown gasifier. Briefly, this concept involves feeding the coal to a devolatilizer vessel downstream of the gasifier rather than to the gasifier itself; the volatile matter in the coal will be driven off by the hot make gas coming from the gasifier leaving behind char which will be recycled to the gasifier. This could permit the gasifier to operate at a high local air-fuel ratio whereas the overall value is much lower. Thus, higher make-gas heating values might be achievable provided that the gasifier will operate on char. This increase in heating value must, however, be accomplished without the production of tars or soot.

SUMMARY OF WORK

A pilot plant was constructed consisting of a one-foot diameter gasifier followed by a devolatilizer (8 foot long by 1-1/2 foot inside diameter) and cyclone separator; a secondary combustion furnace was used to burn the make gas and also to supply preheated air to the pilot plant. The cost of the construction phase of this test program was assumed by The Babcock & Wilcox Company.

Initially the gasifier was designed for minimizing heat losses by surrounding the gasification zone by a natural gas fired furnace. However, after a short period of testing the refractory supporting the silicon carbide liner, which separates the gasification zone from the gas fired furnace, washed out allowing the liners to slip down, breaking the seals between the two areas. In addition the silicon carbide liners had cracked from either thermal or mechanical shock. This necessitated surrounding the gasifier with castable refractory and this resulted in excessive heat losses. A total of 43 tests were run. Of these 32 were selected for analysis since some of the others employed steam addition, or oxygen enrichment, or were obviously erroneous. The tests were carried out using two kinds of coal: an Eastern high volatile bituminous coal which was a caking coal and a Western sub-bituminous non-caking coal.

Three modes of operation were employed: all coal to the gasifier, all coal to the devolatilizer, and a 50-50 split between the two. Overall air-fuel ratios ranged from 30% to 60% of stoichiometric air.

Because high heat losses were incurred during this test program, a thermal analysis of the pilot apparatus was undertaken to determine:

- What heat losses might be achieved at steady-state, and how long might it take to achieve steady state?
- What changes to the apparatus might be necessary to shorten thermal equilibrating times or reduce heat losses?

In order to answer these questions a detailed thermal model of the pilot apparatus was developed and programmed for a high-speed computer.

RESULTS AND CONCLUSIONS

Analysis of the data yielded the following results for comparison of operation with all coal fed to the gasifier to all or some coal fed to the devolatilizer, under conditions of the same air-to-fuel ratio:

- The highest heating values were observed when all of the coal was fed to the gasifier.
- Unacceptably large tar quantities were generated when half or all of the coal was fed to the devolatilizer.
- Tar content of the make-gas tended to be negligible or low when all the coal was fed to the gasifier.

However, the data analyses also showed that heat losses were generally high--much higher than had been anticipated at the inception of this program. This was due to a combination of transient heating of the mass of refractory that had been substituted for the unsuccessful annular-fired design of the gasifier, too much heat loss due to recycling cold char, and excessive uncompensated combustor heat loss.

Within the range of substoichiometric air-to-fuel ratios studied utilizing this particular test apparatus, heat losses were related to the air-to-fuel ratio; the higher air-to-fuel ratios tended to produce higher internal temperatures which resulted in higher heat losses. This made it difficult to separate the independent effects of air-to-fuel ratio and heat loss. Consequently, statistical projections to reasonable levels of heat loss assuming virtually 100% carbon utilization could give only a broad range, 100-150 Btu/dscf (dry standard

cubic feet) for Western coal, all fed to the gasifier. However, the upper end of that range, if it would turn out to be actually attainable, would be quite encouraging.

A detailed thermal analysis of the pilot apparatus has shown that with the present design there appears to be no way to operate so as to significantly lower heat losses. However, by certain modifications and a change in operating procedure, a pilot apparatus of this scale can be made to produce heat losses fully comparable to the low losses expected in large commercial installations.

RECOMMENDATIONS

The next step should be a redesign, aided by the thermal model, of the pilot gasifier and the adding of an externally fired air heater to the facility in order to reduce heat losses to those representative of a commercial installation.

Upon completion of the necessary modifications, additional tests, using the gasification scheme only, should be conducted to achieve a definite answer to the question, "Can heat content be increased simply by reducing heat losses?"

The development of a mathematical model of suspension gasification based upon rate control by other than gas-phase diffusion (e.g., chemical kinetics) would make a significant contribution to continued development of this type gasification.

Section 1

INTRODUCTION

In an effort to achieve national energy independence and to find suitable substitutes for those fuels, notably natural gas and oil, whose supplies are rapidly diminishing, government, private institutions, and industry have been sponsoring research programs directed toward this goal. Fortunately the United States is blessed with abundant reserves of coal which, if properly processed, can provide the bulk of the nation's energy requirements for many years to come.

A number of approaches have been proposed and are currently being studied for the conversion of coal into a fuel which could be directly substituted for natural gas or oil without major equipment modifications. The approach that we will focus on in this report is coal gasification, in particular air blown suspension gasification. Briefly, the concept involves the combustion of coal with a deficiency of air to produce a make gas containing large amounts of carbon monoxide and hydrogen along with some hydrocarbon gases. The probable application of this type of gasifier would be in conjunction with a combined cycle.

One of the potential drawbacks to air blown suspension gasification is the relatively low heating value of the make gas, typically 80-100 Btu/dscf. Any proposed use for this type of gasification would benefit from an increase in make-gas heating value above and beyond that normally produced. Thus, the Electric Power Research Institute has sponsored this work to investigate a concept whereby the make-gas heating value produced by an air blown gasifier is increased through the use of a devolatilizer.

In the devolatilizer concept, some or all of the coal is injected into a vessel, the devolatilizer, following the gasifier. Here the coal is contacted with the hot make gases coming from the gasifier, releasing the

volatile matter and leaving behind a solid residue, high in carbon content, called char. The char is separated from the gas by cyclone separators following the devolatilizer and recycled back to the gasifier. Thus, the gasifier is fired on recycled char instead of coal. By injecting the coal into a devolatilizer downstream of the gasifier, one can utilize "low level" heat in the make gas (which is, by then, too cold to accomplish gasification of char) to devolatilize the coal and preheat the char. This relieves part of the heat load on the gasifier and, at the same time, permits the gasifier to operate at a higher local air-to-fuel ratio — say, 50% — whereas the overall value is 42%. Thus, desirably high make-gas heating value may be achieved provided that the gasifier will operate on char and that the coal volatiles can still be reformed at the lower temperatures characteristic of the devolatilizer without leaving undesirable tars and soot in the make gas.

The object of this contract was to evaluate experimentally the devolatilizer concept on a small-scale pilot plant. This report documents all of the results obtained during the test program. A transient thermal analysis of the gasifier-devolatilizer was also done, and its results are also discussed.

Section 2

PILOT PLANT

The major components of the test facility are shown schematically in Figure 2.1. They consist of the following:

1. Pulverized coal storage tank
2. Coal feed tank
3. Coal screening tank
4. Gasifier
5. Devolatilizer
6. Char collection and recycle system
7. Secondary combustion furnace.

A detailed description of the above components and ancillary facilities will be covered in this section.

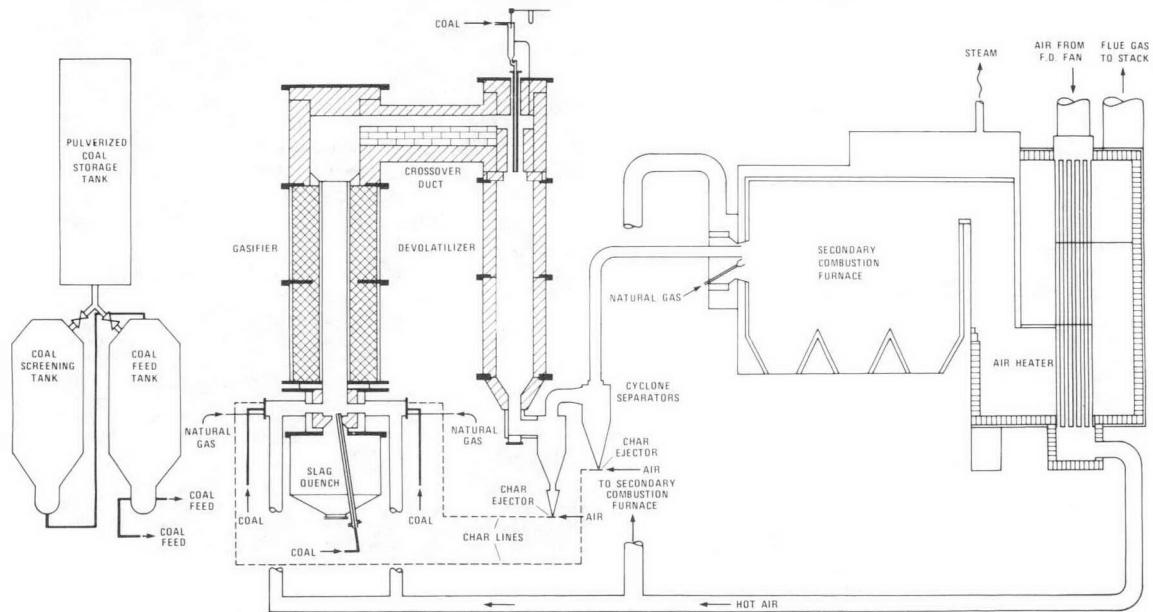


FIGURE 2.1 PILOT PLANT

2.1 COAL PREPARATION FACILITIES

The raw coal purchased for these tests arrived by truck and was stored in our coal storage yard under cover. Size of the raw coal was approximately 1" x 0" and was pulverized to the required fineness by a small (one ton/hour) hammer mill pulverizer located in the boiler room. It was then pneumatically transported about 300 feet to the coal storage tank at the gasifier-devolatilizer test facility. This tank had a capacity of about 3,000 pounds. From here it was fed to the coal screening tank below by gravity.

2.2 COAL FEED SYSTEM

2.2.1 Coal Screening Tank

Early in the test program our intention was to utilize two coal feed tanks which would permit continuous feeding of coal to the system. However, during the initial shakedown phase maintaining a steady coal feed was a major problem. The problem was caused by small pieces of coal which were getting through the pulverizer and classifier causing pluggage of the small coal feed lines and valves. This was solved by installing a 1/8-inch mesh screen in the bottom of the south coal feed tank and using this tank as a final screen for the pulverized coal. In actual operation the coal screening tank would be filled with pulverized coal from the storage tank above. The coal screening tank would then be pressurized, causing the coal to be forced through the screen and into the coal feed tank. Figure 2.2 shows a photograph of the lower portion of the coal screening tank.

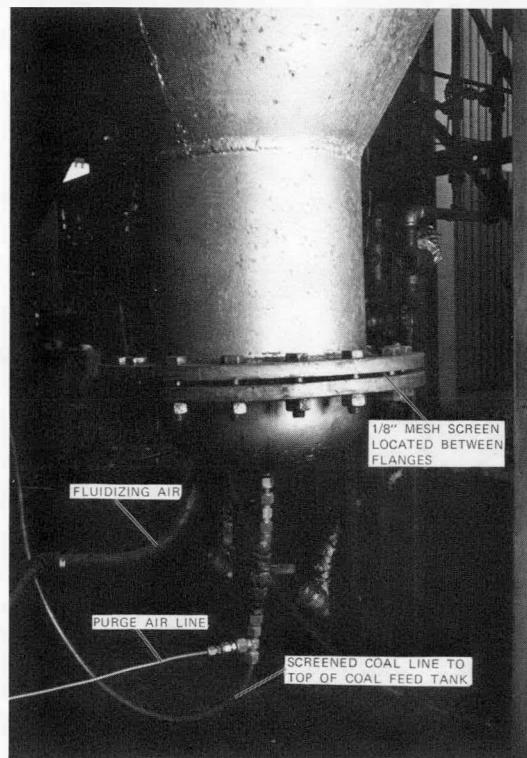


FIGURE 2.2 LOWER PORTION OF COAL SCREENING TANK

2.2.2 Coal Feed Tank and Lines

The coal feed tank was used to feed the pulverized coal to various points in the system, see Figures 2.3, 2.4, and 2.5. The two coal feed lines emanated from the fluidized section at the very bottom of the tank. This fluidized section consisted of a 12-inch long piece of 5-inch pipe which was fitted with a perforated fluidizing plate through which fluidizing air was admitted at a rate sufficient to cause fluidization of the coal.

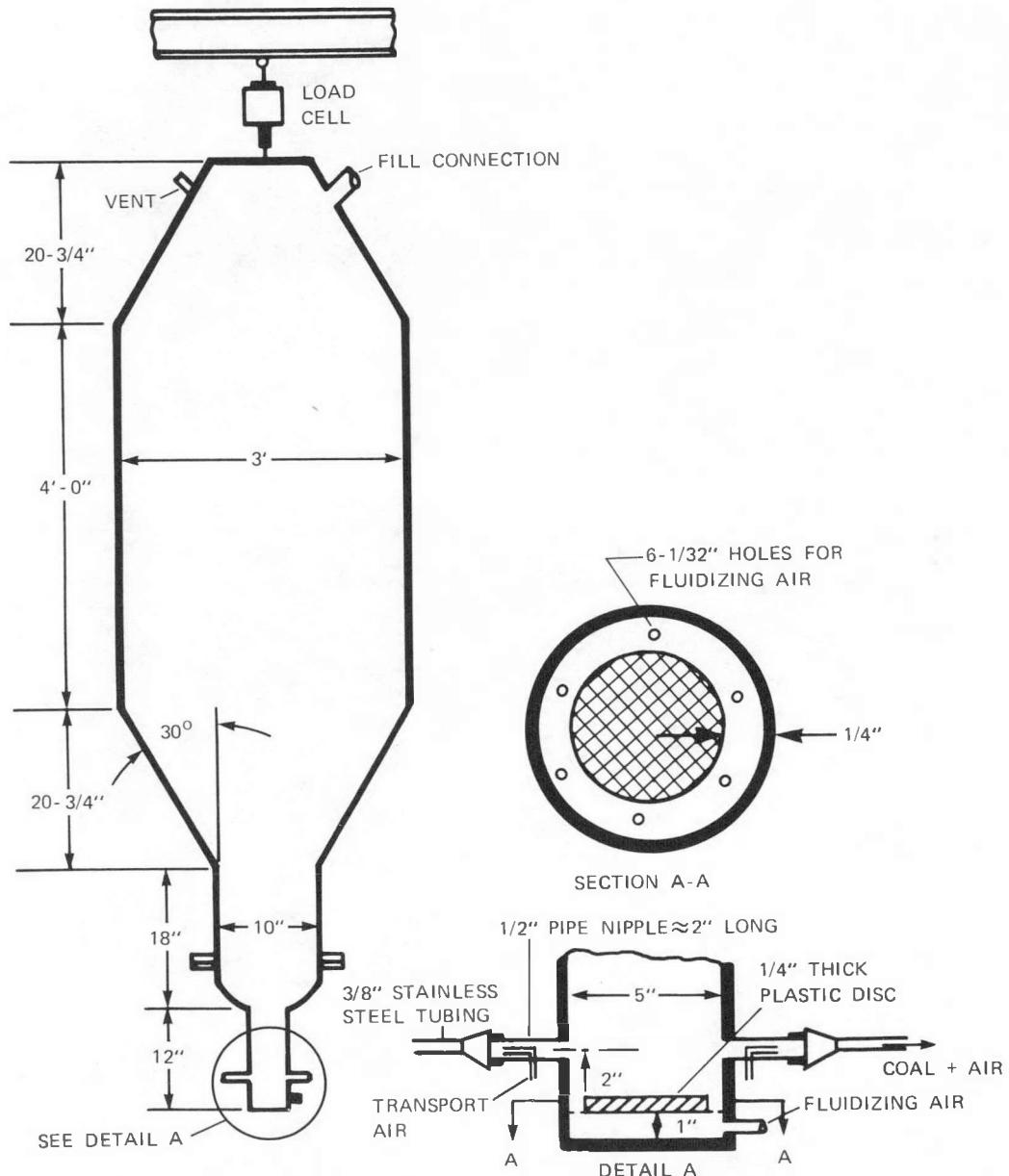


FIGURE 2.3 COAL FEED TANK

2-4

FIGURE 2.4 LOWER PORTION OF COAL FEED TANK

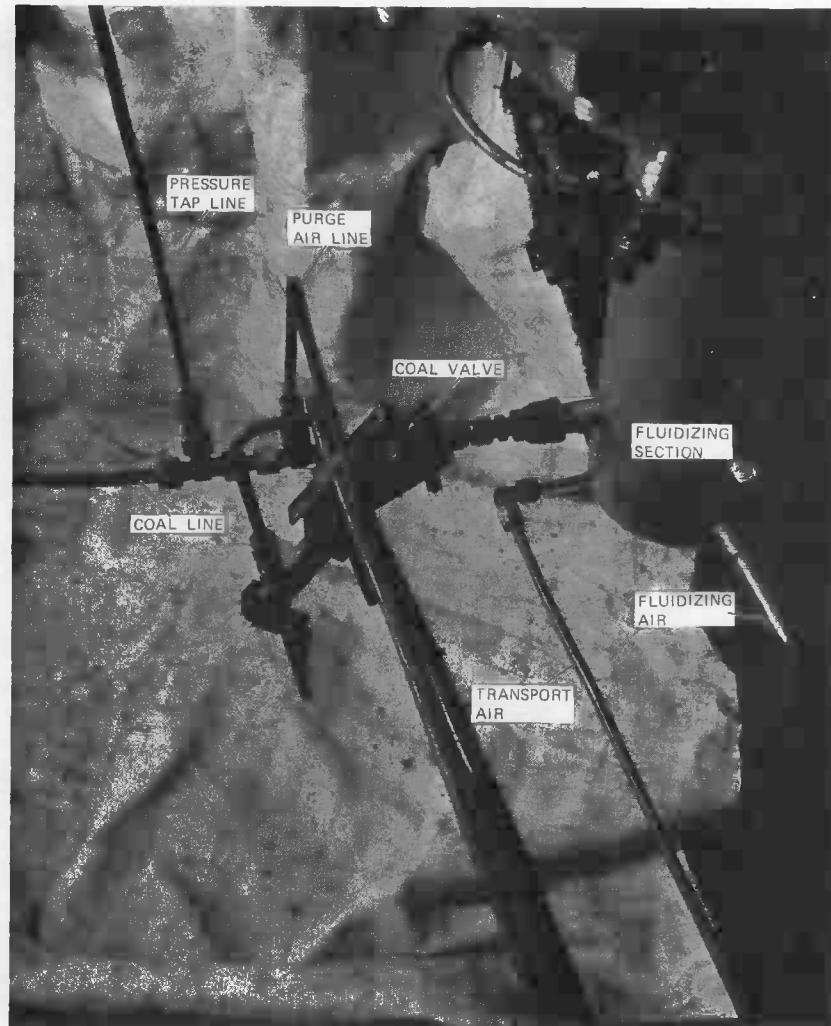


FIGURE 2.5 FLUIDIZING SECTION AND COAL LINE

The coal was fed in dense phase for a short distance at which point air was added for dilute phase transport. The feed rate and the coal flow split between each line was controlled by a combination of feed tank pressure and quantity of transport air.

2.2.3 Measurement and Control of Coal Flow

The north coal feed tank was supported from a load cell which allowed the total weight of the tank to be continuously recorded on a chart recorder, Figure 2.6. This was used as the primary determination of coal feed rate. In order to obtain an instantaneous qualitative indication of coal feed a pressure differential was measured across the length of each coal feed line.

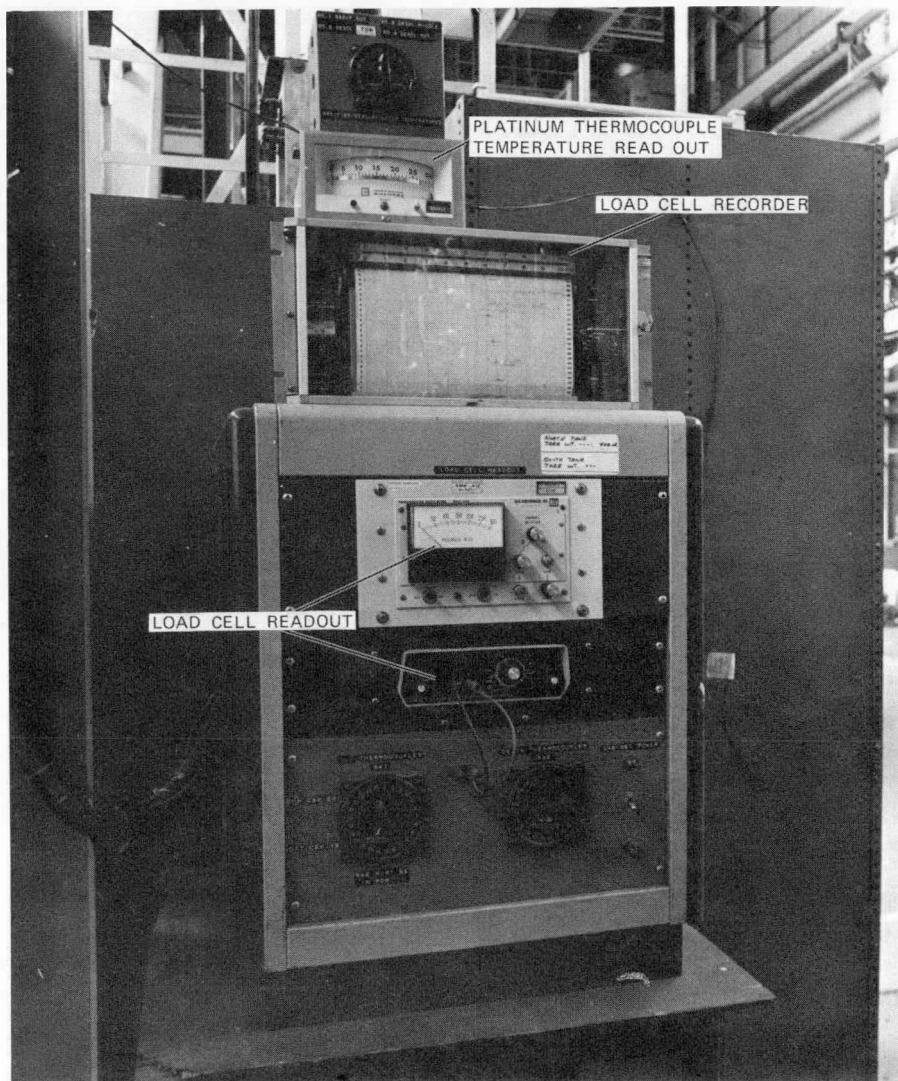


FIGURE 2.6 COAL FEED TANK LOAD CELL READOUT AND RECORDER

2.3 GASIFIER

2.3.1 Initial Design and Modifications

In the initial design of the gasifier (Figure 2.7), the gasification chamber was enclosed by a silicon carbide tube the outside of which was heated by a natural gas fired annular furnace. The purpose of this design was to control the heat losses from the gasifier. After about six hours of operation, during the initial shakedown period, the refractory in the gasifier combustion zone, which supported the silicon carbide liner, had washed out allowing the liner to slip down about 4 inches. This broke the gas seals around the ends of the liner which separated the annular fired furnace from the gasifier. In addition, the two silicon carbide liners had cracked, due either to thermal or mechanical shock.

To provide a quick fix and continue the test program, the following modifications were made:

1. The volume occupied by the annular furnace was filled with refractory.
2. A water-cooled support ring was installed for the purpose of supporting the silicon carbide liner.
3. The castable refractory in the gasifier combustion zone was replaced by a high-alumina firebrick backed up by a water jacket.

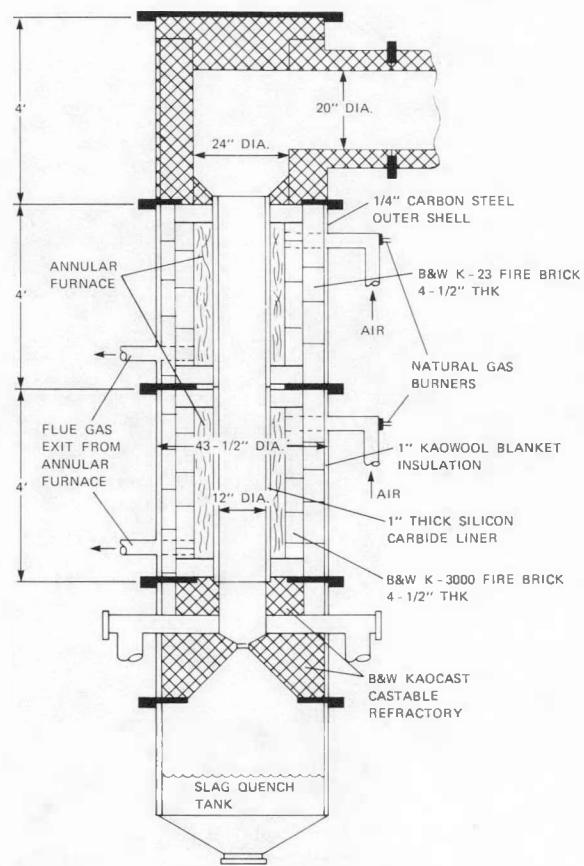


FIGURE 2.7 GASIFIER-INITIAL DESIGN

2.3.2 Present Design

The present design of the gasifier incorporating the above modifications (shown in Figures 2.8 and 2.9) was used to obtain all the data. The gasifier can be considered to consist of three sections: (1) an upper section which provides the volume necessary for the reactions to take place, (2) the central section or combustion zone where the coal, char, and air are introduced through two burners, and (3) the lower portion which consists of a slag quench tank.

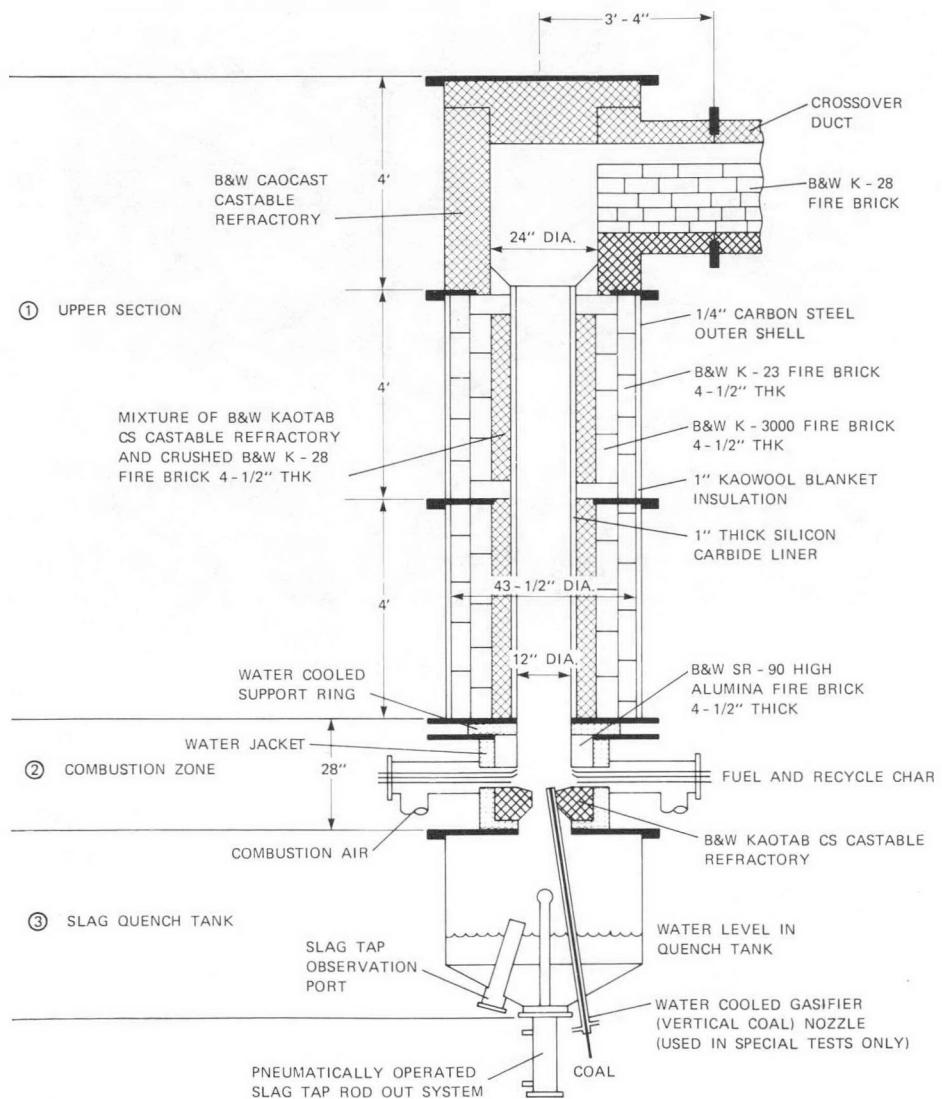


FIGURE 2.8 GASIFIER - FINAL CONFIGURATION



FIGURE 2.9 GASIFIER

The combustion zone is where the coal, air and recycled char are initially reacted to begin the gasification reactions. Two burners were used and were directed to fire tangentially to a 6-inch diameter circle in the combustion zone. The combustion zone was formed by high-alumina firebrick backed up by a water jacket. Figure 2.10 gives construction details of the burners and combustion zone. A photograph, Figure 2.11, of the outside of the north burner shows the location of the coal, air, and recycle char lines. Figure 2.12 shows a disassembled burner and the relative positions of the various injection nozzles. The natural gas supply line was used for two purposes: (1) to supply initial preheat to get the gasifier up to temperature quickly, and (2) during the majority of the gasification tests some amount of natural gas was fired to maintain reducing conditions in the event of char recycle interruptions.

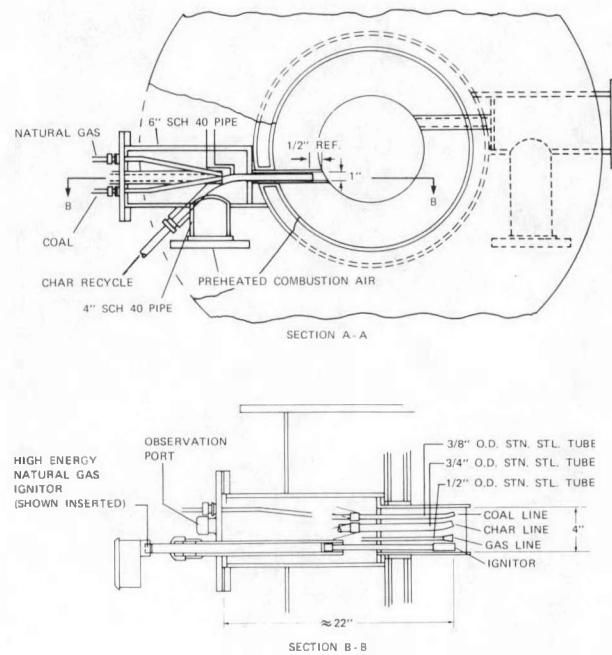
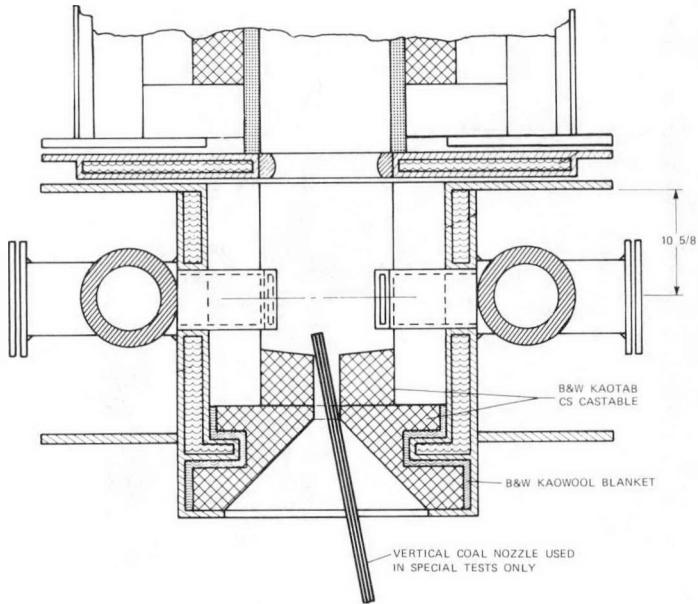



FIGURE 2.10 GASIFIER BURNERS AND COMBUSTION ZONE

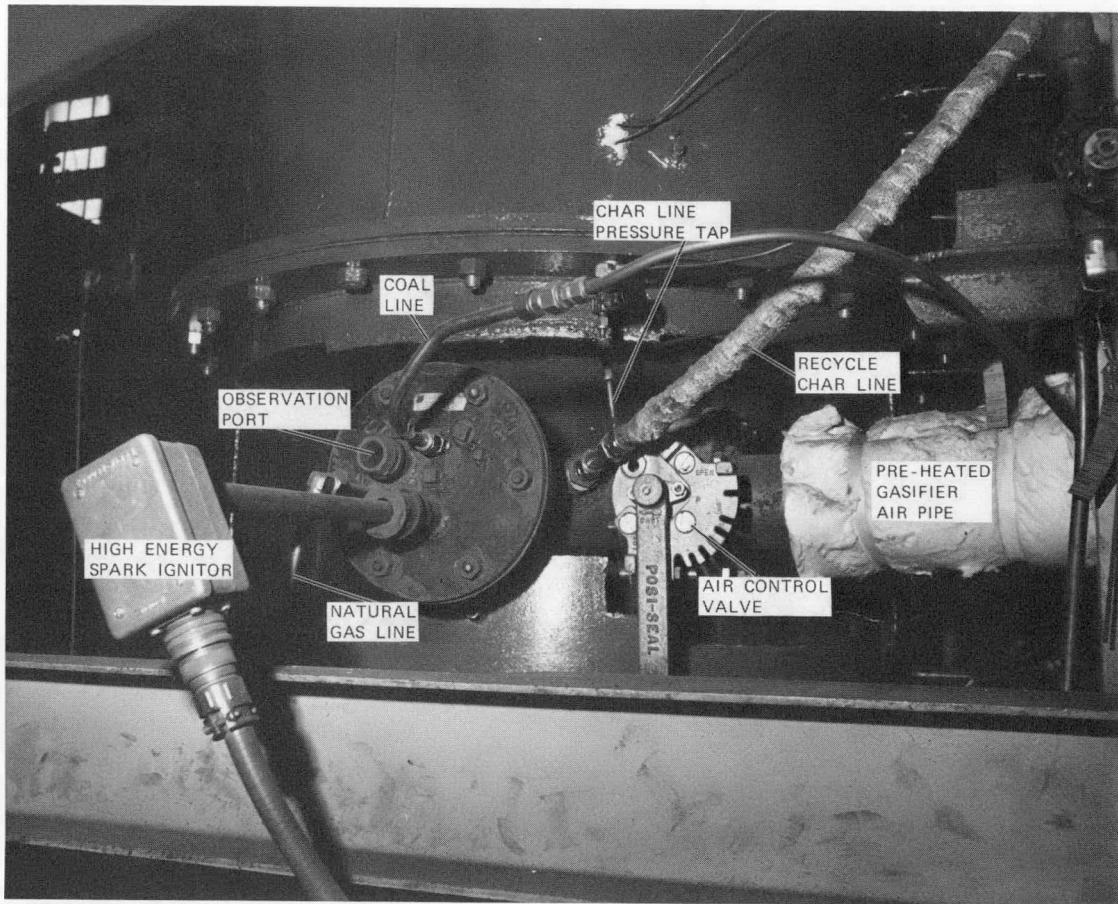


FIGURE 2.11 NORTH BURNER PIPING

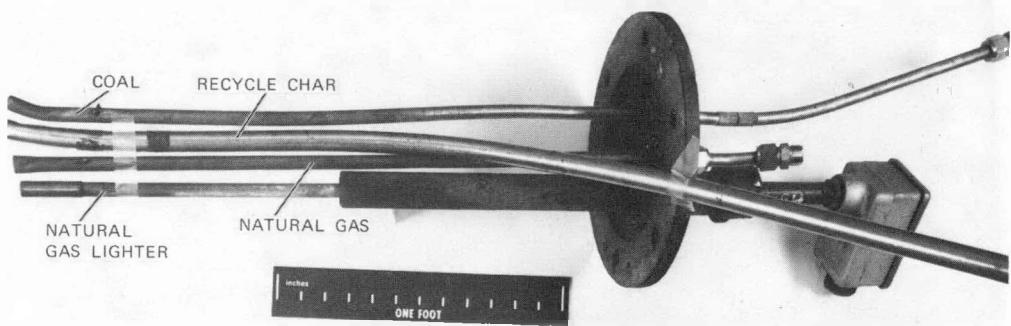


FIGURE 2.12 BURNER INJECTION LINES

The lower portion of the gasifier consisted of a water-filled slag quench tank. Its purpose was to rapidly cool the molten slag such that it shattered into small pieces making it easier to handle. Three other pieces of apparatus were affixed to and passed up through the slag tank: (1) slag tap observation port, (2) slag tap rod-out mechanism, and (3) water-cooled vertical coal injection nozzle. These can be seen in Figure 2.13. The vertical coal nozzle was used on selected tests to inject coal up into and through the hot combustion gases formed by the combustion of the air and recycled char. Figure 2.14 shows the relative location of this nozzle.

The upper part of the gasifier consisted of two silicon carbide tubes, each 12 inches in diameter by 4 feet long. These tubes were supported by a water-cooled support ring rather than supporting them from the combustion zone refractory as was done in the initial design. The silicon carbide tubes were surrounded by three layers of solid refractory and one layer of a light Kaowool blanket insulation.

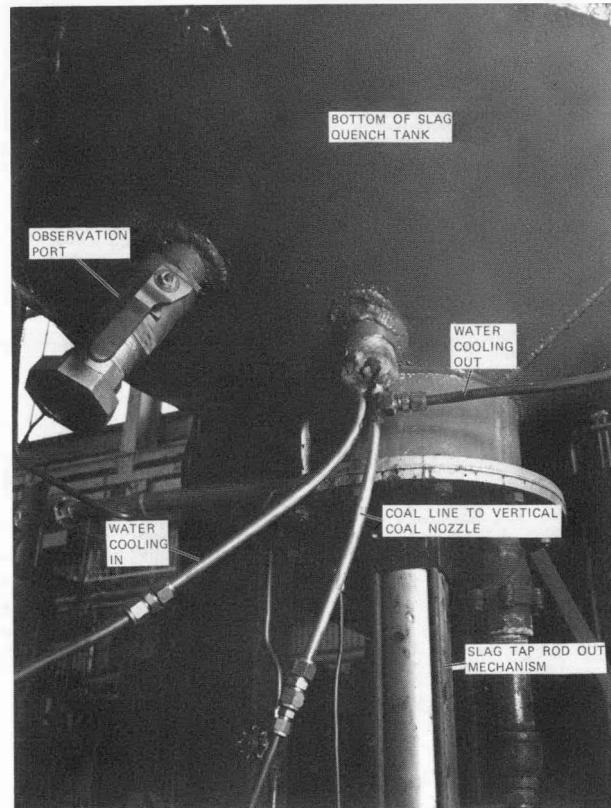


FIGURE 2.13 SLAG QUENCH TANK

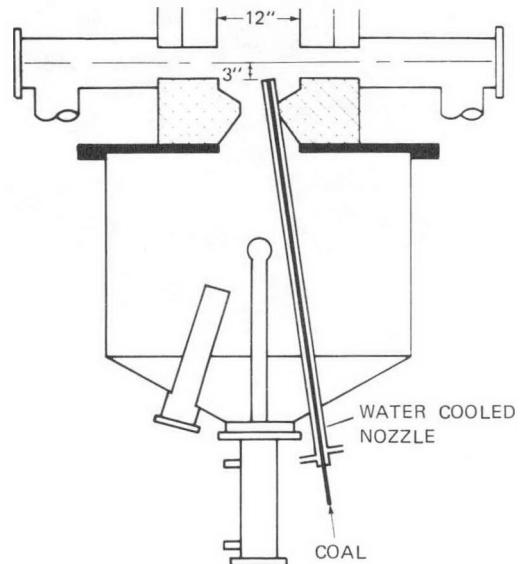


FIGURE 2.14 VERTICAL COAL NOZZLE ARRANGEMENT AT BOTTOM OF GASIFIER

2.4 CROSSOVER DUCT

The crossover duct, Figure 2.15, served only to convey the hot make gas from the gasifier over to the devolatilizer. This duct initially had an internal diameter of 21 inches but was bricked up with insulating firebrick to within 5 inches of the top. This was done to increase the velocity in this duct and thus minimize the char hide-out.

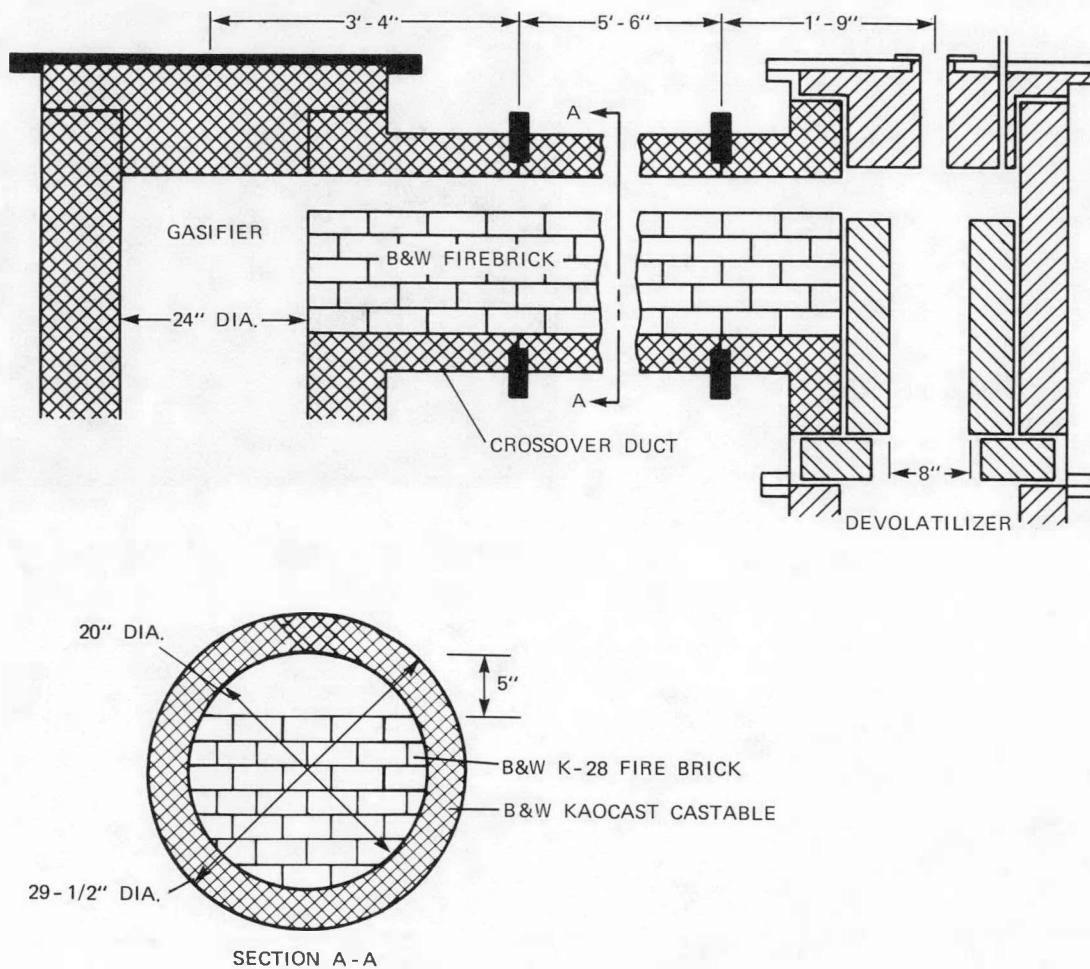


FIGURE 2.15 CROSSOVER DUCT

2.5 DEVOLATILIZER

The hot make gas from the gasifier was conveyed via the crossover duct into the top of the devolatilizer, design details of which are shown in Figures 2.16 and 2.17. The devolatilization chamber is 18 inches in diameter by about 8 feet long with approximately 5-1/2 inches of refractory on the walls.

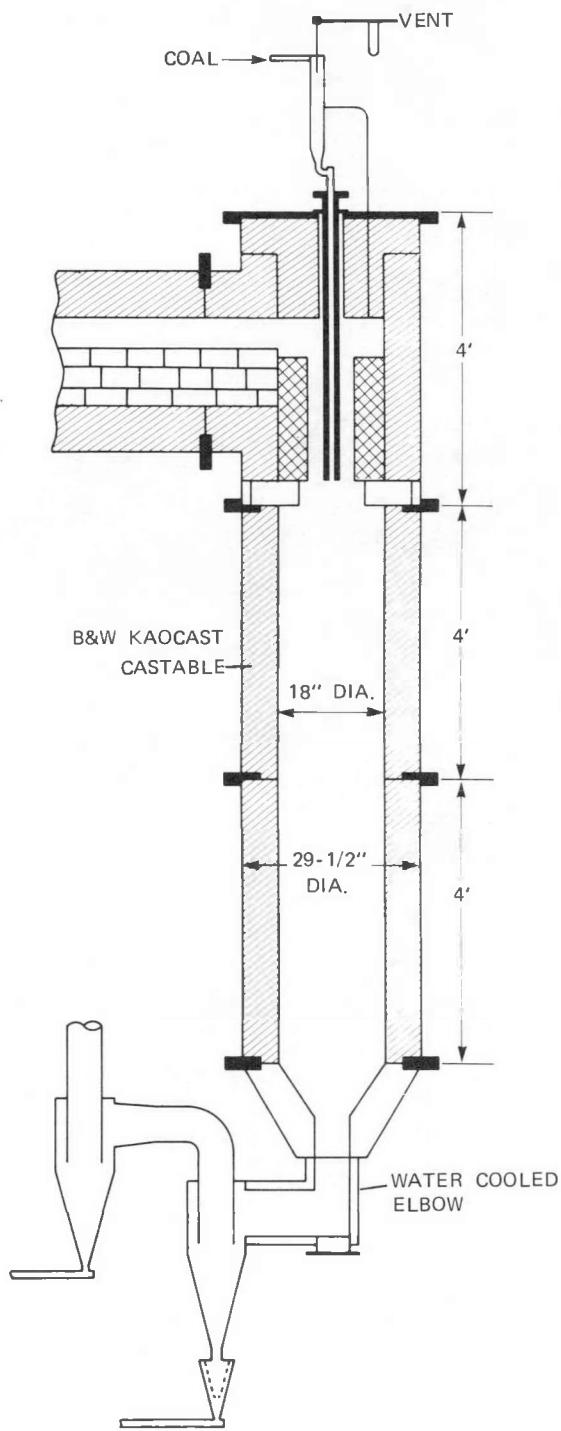


FIGURE 2.16 DEVOLATILIZER SECTIONAL VIEW

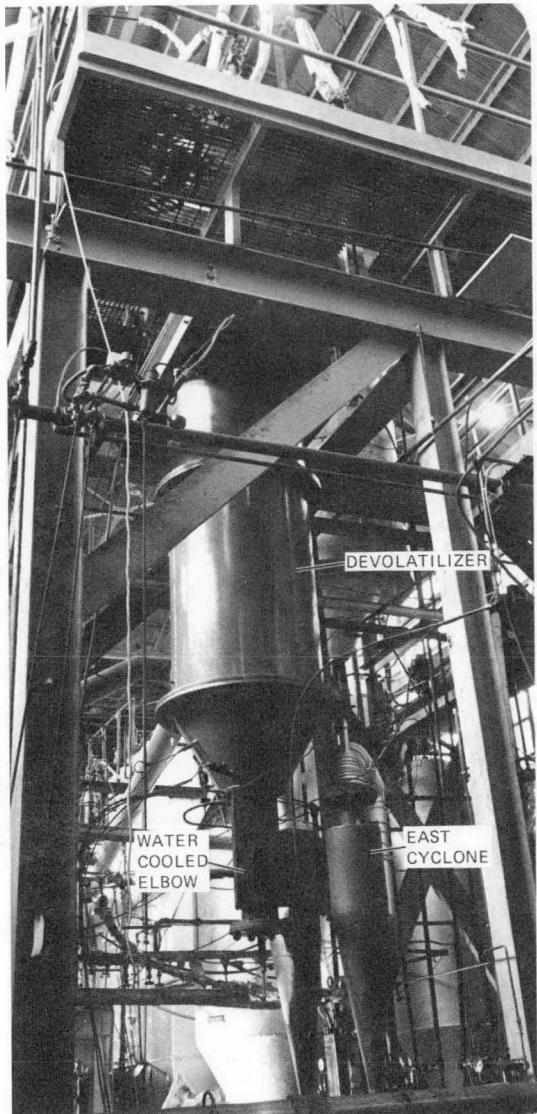


FIGURE 2.17 DEVOLATILIZER

At the very bottom of the devolatilizer was located a water jacketed elbow which directed the gases from the devolatilizer into the cyclones. The water jacketing was used to reduce the temperature of the carbon steel elbow thereby preventing its deterioration.

Figure 2.18 shows a detail of the top portion of the devolatilizer and its coal feed system. The gas flow area at the top was reduced down to an 8-inch diameter to increase the velocity in the area where the coal was injected. This was done to minimize drifting of the coal toward the walls and subsequent char buildup.

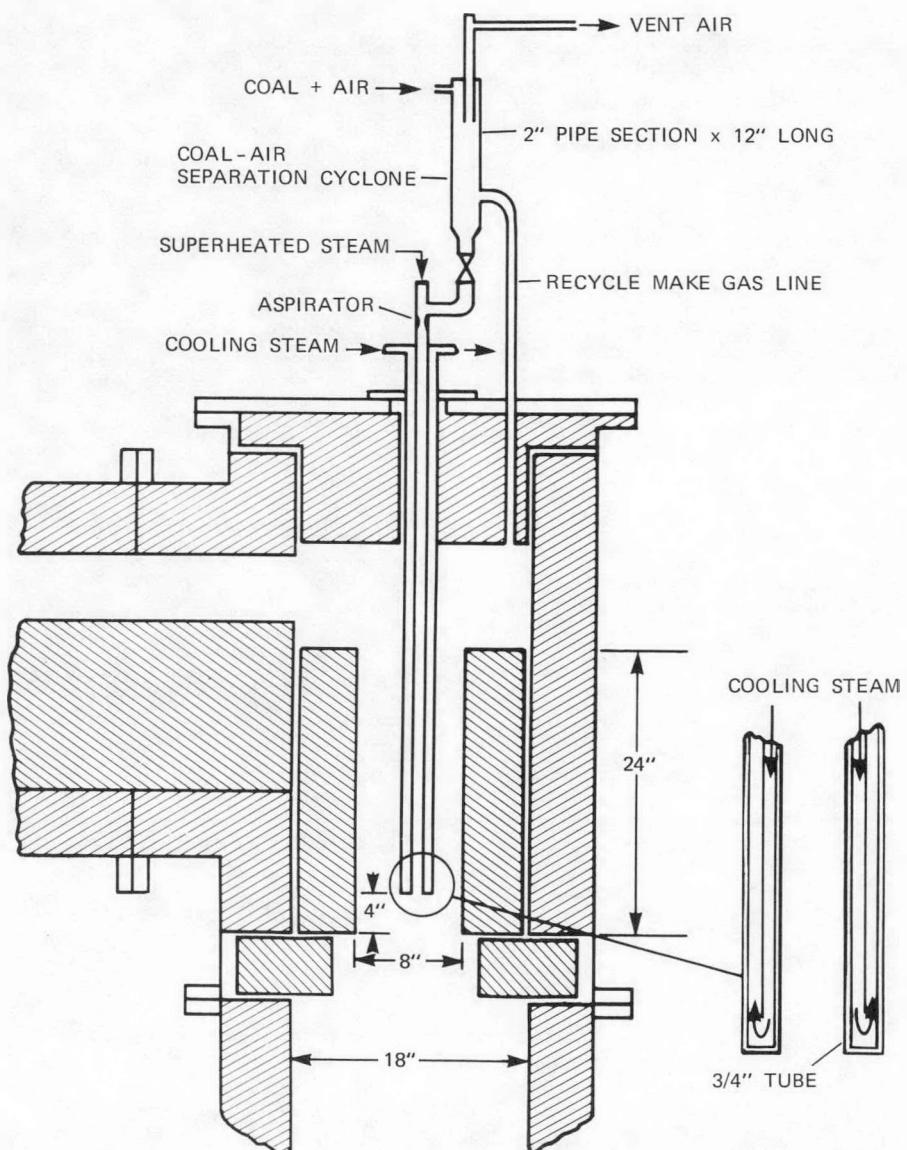


FIGURE 2.18 TOP OF DEVOLATILIZER

The coal injection system was designed to minimize the amount of transport air injected with the coal. This was achieved by bringing the coal-air mixture into a small cyclone which separated the two: the transport air was vented through a pressure relief-check valve to the atmosphere while the coal settled to the bottom. The coal was aspirated from the bottom of the cyclone by a superheated steam-operated aspirator and injected through a water-cooled nozzle into the devolatilizer. A make-gas line taken from the top of the devolatilizer enters near the bottom of the cyclone such that make gas, rather than transport air, will be preferentially aspirated.

2.6 CHAR COLLECTION AND RECYCLE SYSTEM

Char collection and recycle were effected by using two 10-inch diameter high-efficiency cyclones in conjunction with high-pressure air aspirators as shown in Figures 2.19 and 2.20. A detailed drawing of one of the cyclones is shown in Figure 2.21.

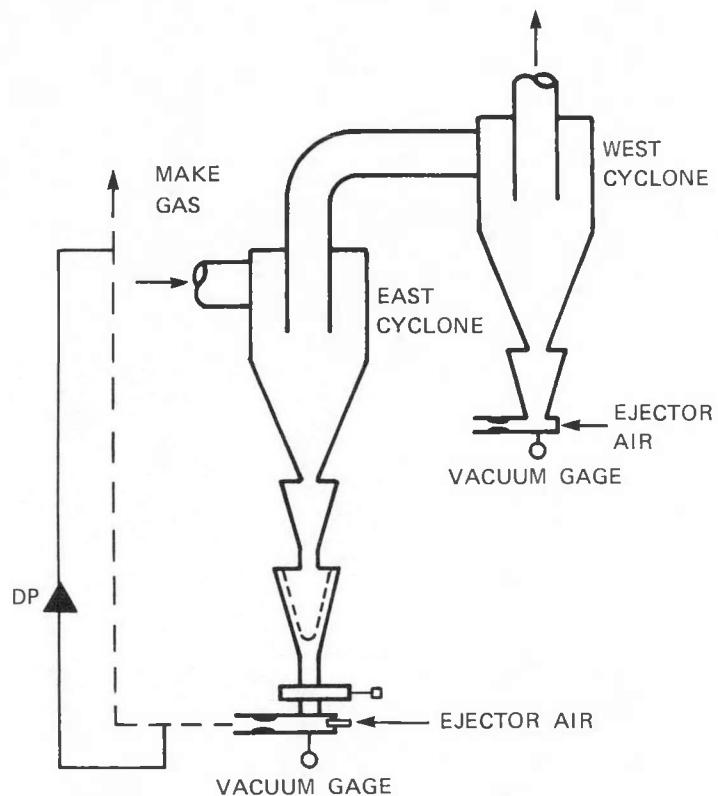


FIGURE 2.19 CHAR COLLECTION AND RECYCLE

The solid material collected by each cyclone settled to the bottom where it was reinjected back into the gasifier by an air aspirator, see Figure 2.22. It was necessary to install a 1/4-inch mesh screen at the bottom of the east cyclone to prevent the aspirator from being plugged by large pieces of slag and char. A ball valve was installed just above the screen so that a solids sample could be taken.

As an aid to indicating the relative condition of steadiness of flow or pluggage in the char recycle lines, a pressure differential was measured across the length of the char return line. A vacuum gauge was installed on the upstream side of the air aspirator to indicate pluggage in the bottom of the cyclone.

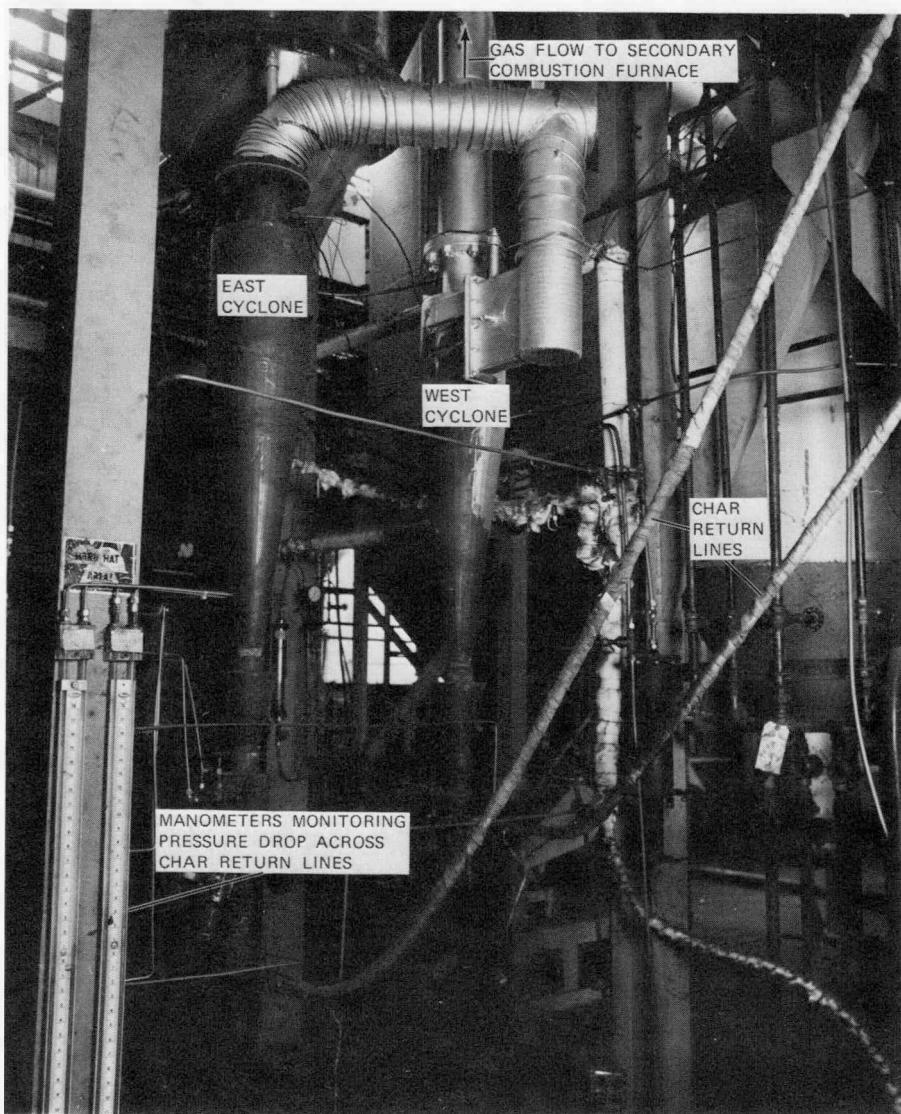


FIGURE 2.20 CYCLONE SEPARATORS

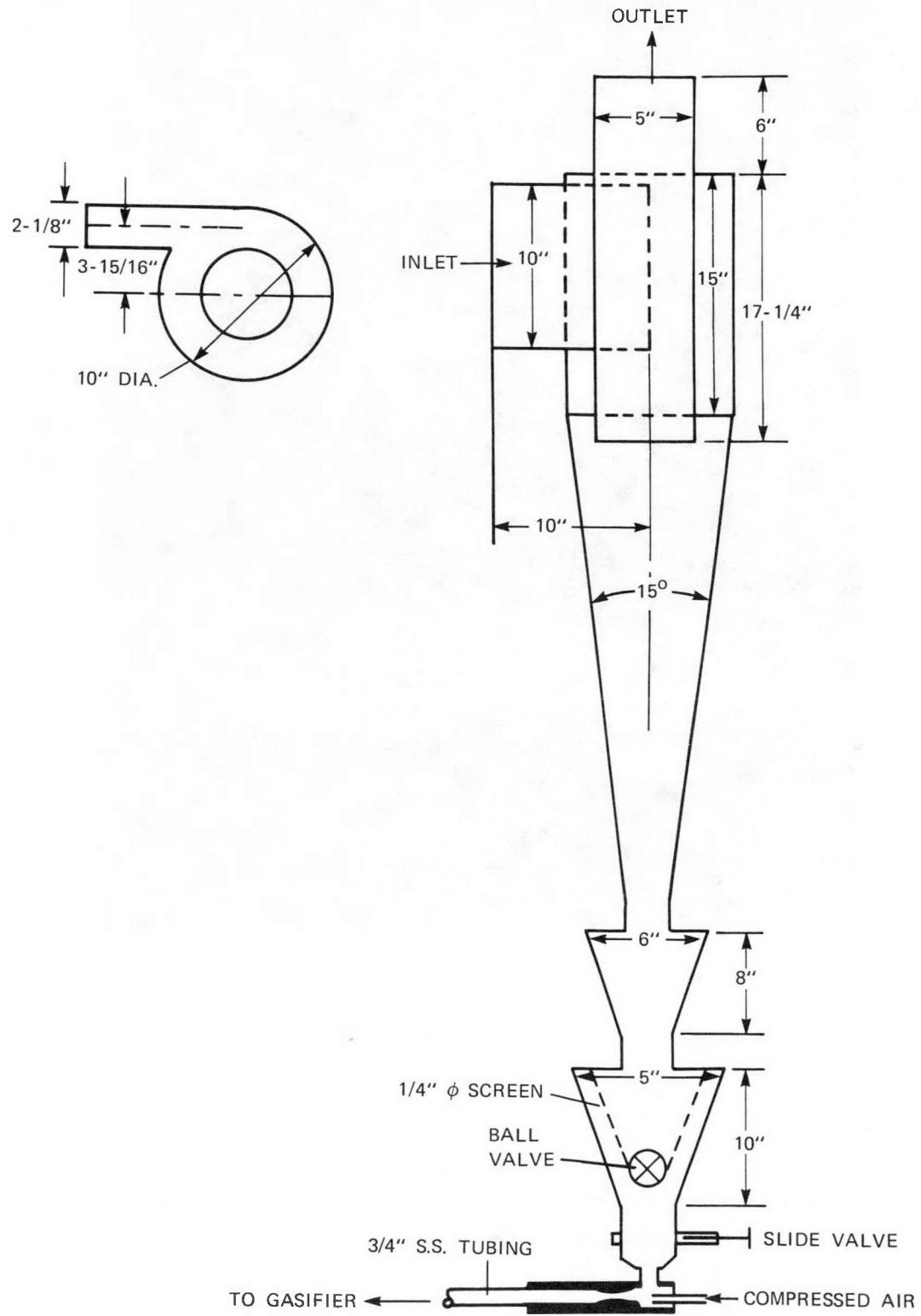


FIGURE 2.21 CYCLONE DESIGN

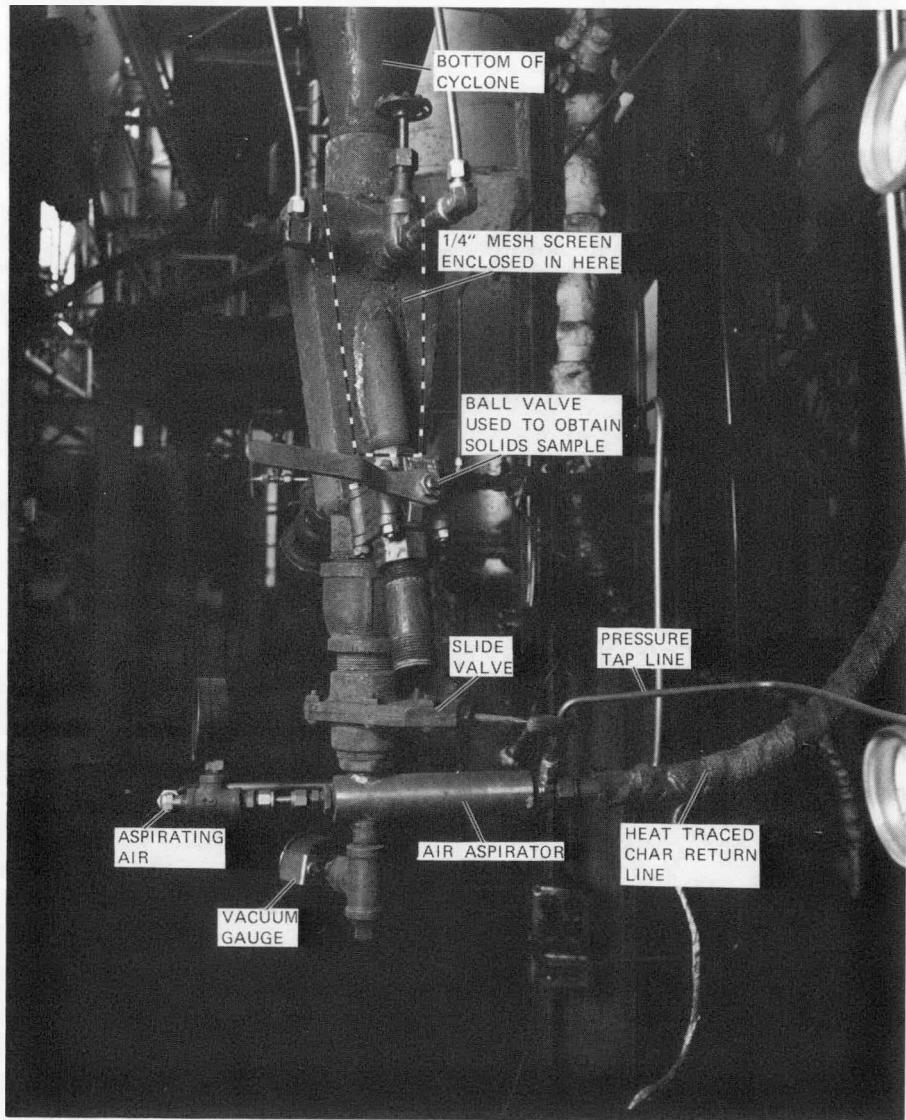


FIGURE 2.22 CHAR RECYCLE APPARATUS ON BOTTOM OF EAST CYCLONE

2.7 SECONDARY COMBUSTION FURNACE

The make gas from the gasifier-devolatilizer system was directed into an existing secondary combustion furnace; this furnace was used for combustion of the make gas and any entrained carbon particles coming from the gasifier. The forced draft fan and air heater on the secondary combustion furnace served as a source of preheated air for the gasifier. Provision was also made to burn supplemental natural gas to help control air preheat temperature.

2.8 CONTROL PANEL

The main control panel for the pilot plant is shown in Figure 2.23. Most of the operations of the pilot plant were controlled and monitored from this panel. All pressure and pressure differential measurements in the system were made using manometers. The majority of the temperatures were measured with chromel-alumel thermocouples and recorded on a Speedomax recorder. Temperature measurements at the gasifier outlet, the devolatilizer inlet, the middle of devolatilizer, and the devolatilizer outlet were measured using platinum thermocouples because of the high temperature involved. These four temperatures were read out on a Leeds & Northrup Millitemp meter as shown in Figure 2.6.

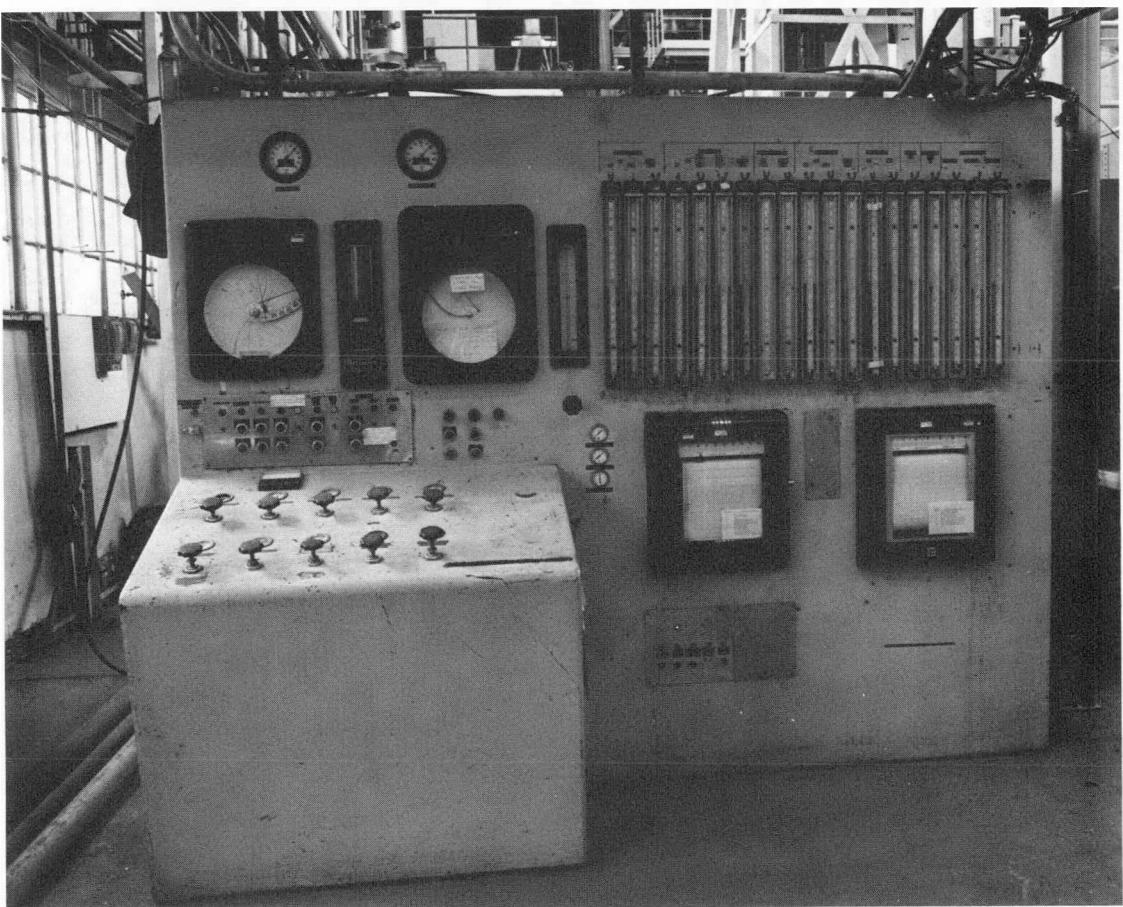


FIGURE 2.23 MAIN CONTROL PANEL

2.9 COAL

Two coals were used during the test period:

1. Pittsburgh No. 8 coal, classed as a high volatile bituminous B coal. This was a caking coal.
2. Western Coal from Belle Ayr mine, Campbell County, Wyoming, classed as a sub-bituminous B coal. This was a non-caking coal.

The analysis of these coals is shown in Table 2.1.

TABLE 2.1 COAL ANALYSIS

	PITTSBURGH NO. 8 COAL ANALYSIS	WESTERN COAL ANALYSIS
MOISTURE, %	1.5	15
PROXIMATE ANALYSIS (DRY), %		
VOLATILE MATTER	40.6	41.1
FIXED CARBON	48.9	51.1
ASH	10.5	7.8
BTU PER LB. (DRY)	13,100	11830
ULTIMATE ANALYSIS (DRY), %		
CARBON	72.7	69.4
HYDROGEN	5.1	4.7
NITROGEN	1.0	0.9
ASH	10.5	7.8
SULFUR	3.2	0.4
OXYGEN (BY DIFF.)	7.5	16.8
SIZING		
% THROUGH	#50 MESH	99.6
	#100 MESH	96.7
	#140 MESH	91.8
	#200 MESH	84.9
	#270 MESH	72.5
	#325 MESH	67.9

Section 3

TEST APPARATUS AND PROCEDURES

3.1 TEST PROCEDURE

3.1.1 Method of Start-Up

At the start of each testing period the gasifier was fired on natural gas at about 115% theoretical air for about two hours to bring the gasifier up to gasification temperature quickly. Gasification tests were started at the end of this time; i.e., when the gasifier outlet temperature reached about 2000-2200°F.

3.1.2 Gasification Testing

After start-up with coal, operating parameters were changed to those required for the first test. Steady state was assumed when the following measurements remained relatively constant over a period of about one-half hour:

1. Gas temperatures in the gasifier and devolatilizer.
2. Oxygen analysis of the flue gas leaving the secondary combustion furnace.

At this point the taking of data was initiated which included the following:

1. Panel board data
2. Gas samples and gas analysis
3. Solids loadings
4. Sample of material collected by east cyclone.

The collection of the above data required about one-half hour to one hour, after which time operating conditions were changed in preparation for the next test.

3.2 GAS SAMPLING APPARATUS

3.2.1 Cyclone Outlet Gas Sampling Apparatus

A schematic diagram of the cyclone outlet gas sampling apparatus is shown in Figure 3.1. The make gas was tapped off the top of the 6-inch makegas line, and particulate material was filtered out with a glass wool filter. A condensate trap served to remove water from the gas sample at this point. This was followed by a tubing pump which pumped the gas sample into and through the gas sampling bottle. The gas sampling bottle consisted of a 300 cc glass bottle with stopcocks at each end.

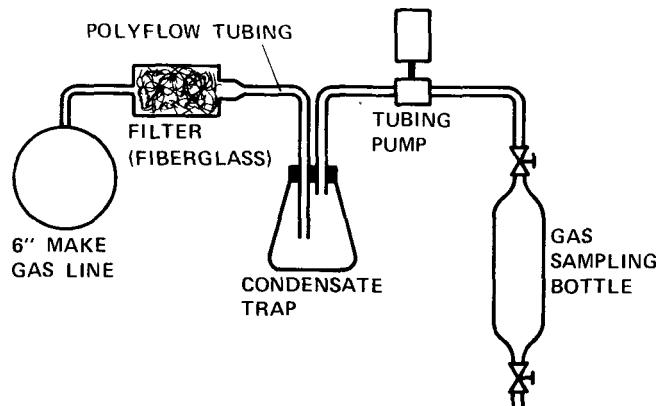


FIGURE 3.1 CYCLONE OUTLET GAS SAMPLING SYSTEM

3.2.2 Gasifier Outlet Gas Sampling Apparatus

Figure 3.2 shows a schematic diagram of the gasifier outlet gas sampling apparatus. A water-cooled stainless steel probe was required at this location because of the high temperature involved. After leaving the probe the make-gas sample was directed to a combination condensate-particulate trap to remove water vapor and particulate material. From here the gas went to the sampling bottle. A gas pump was not required at this location since the system pressure was sufficient to force the gas sample through the apparatus.

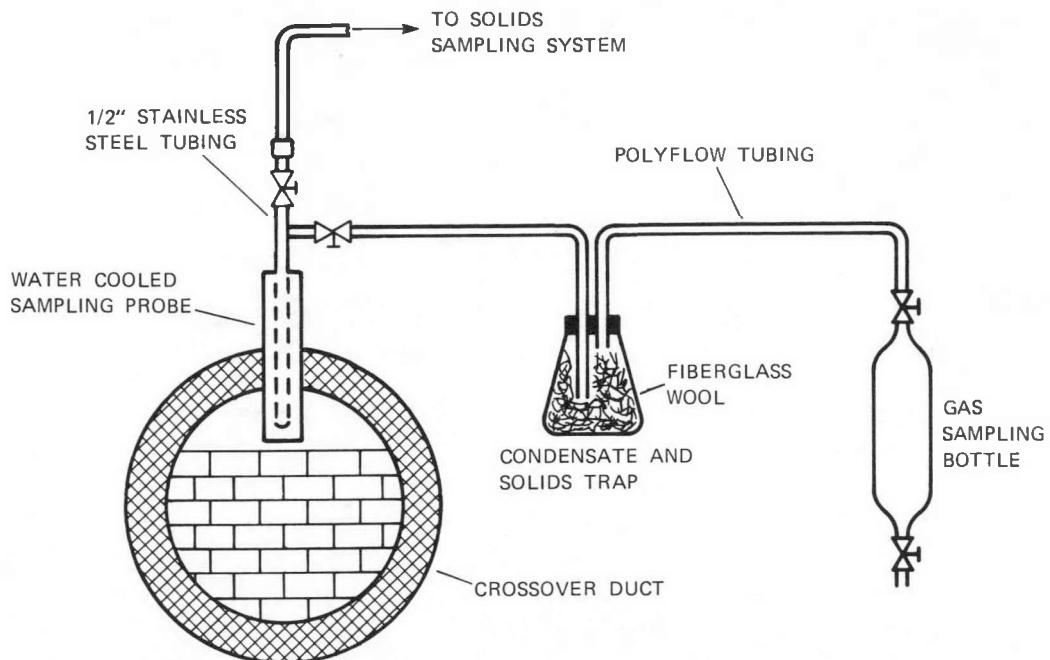


FIGURE 3.2 GASIFIER OUTLET GAS SAMPLING SYSTEM

3.2.3 Oxygen Analysis at Secondary Combustion Furnace

An oxygen analysis of the flue gas leaving the secondary combustion furnace was obtained using a Bailey Meter Company Oxygen and Combustibles Analyzer. This was a continuous analysis and was recorded on a time chart. The probe used to obtain the gas sample was a fixed probe, hence no traverses were made. This analysis was used to calculate the carbon balance designated "C". This will be discussed later.

3.3 GAS SAMPLING PROCEDURE

Prior to starting any gas sampling the gas sampling bottles were purged and filled with helium under a slight positive pressure. Helium was used since it was also the carrier gas for the gas chromatograph.

The gas sampling procedure at the above locations was essentially the same and was accomplished as follows:

1. Gas flow was started through the sampling system without the gas sample bottle connected. The system was allowed to purge for about 2-5 minutes.

2. After this purge period the gas sample bottle was connected via surgical tubing to the sampling apparatus; both stopcocks were still closed at this time.
3. The inlet valve was opened first and then the outlet valve. The make gas was allowed to flow into and through the sample bottle for a period of 5-10 minutes.
4. After this sampling period the stopcocks were closed; outlet first, inlet second.
5. The gas samples were then taken to our lab and analyzed on a Beckman GC-4 gas chromatograph.

3.4 SOLIDS LOADING APPARATUS

3.4.1 Gasifier Outlet Solids Loading

A solids loading was taken at the gasifier outlet using the apparatus shown in Figure 3.3. The pressure at this point was again sufficient to force a make-gas sample through the system without the need for a pump. An isokinetic sampling rate was maintained by adjusting the flow control valve.

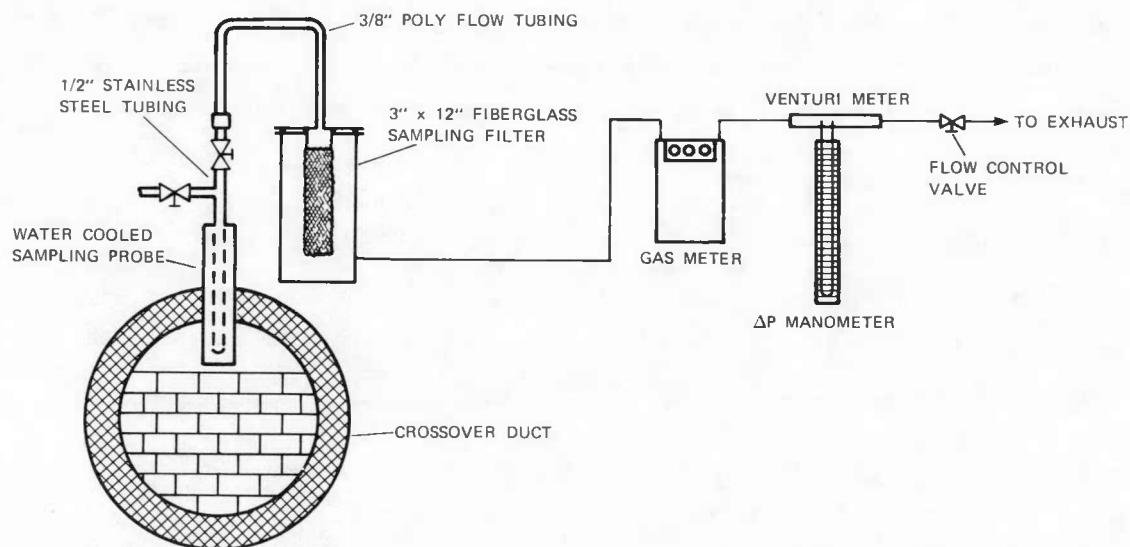


FIGURE 3.3 GASIFIER OUTLET SOLIDS SAMPLING SYSTEM

3.4.2 Solids Loading at Exit of Cyclones

A solids loading was taken at the exit of the cyclones using the apparatus shown in Figure 3.4. Because of low static pressure at this point, it was necessary to aspirate the make-gas sample through the sampling apparatus. An isokinetic sampling rate was maintained by adjusting the aspirating rate.

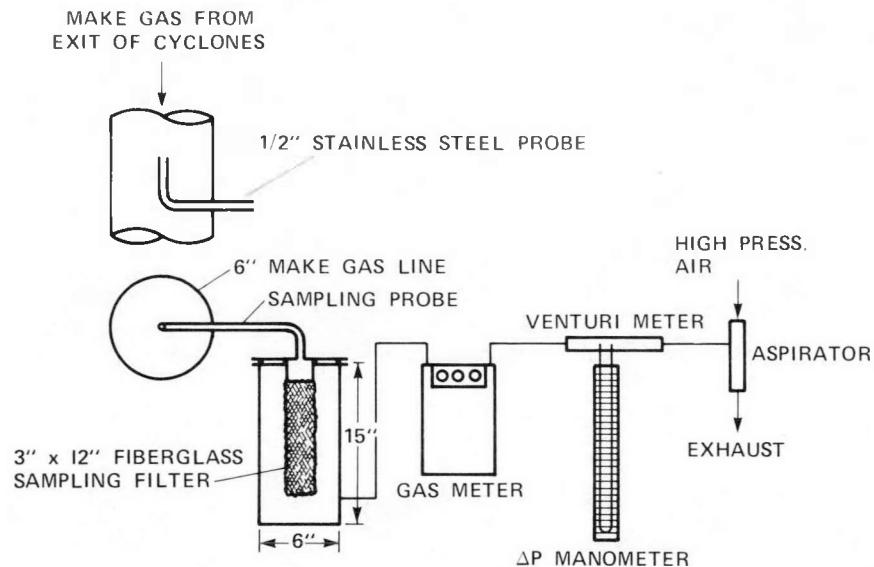


FIGURE 3.4 CYCLONE OUTLET SOLIDS SAMPLING SYSTEM

3.5 SOLIDS LOADING PROCEDURE

The fiberglass filters used for filtering the solid material out of the make gas were first dried in a drying oven and then immediately weighed to obtain an initial weight. A filter was then secured in the filter holder and the apparatus checked for leaks.

Immediately after initiating the sampling procedure the necessary adjustments were made to obtain an isokinetic sampling rate. Sampling time was in the order of 10-15 minutes, whereupon approximately 10 cubic feet of make gas had been sampled. The filter bag was removed from the filter holder immediately after sampling was complete and then weighed to obtain a final weight.

3.6 SOLIDS SAMPLE AT EAST CYCLONE

A ball valve was located at the very bottom of the first cyclone just ahead of the air ejector and was used to obtain a solids sample at this point. The procedure used to obtain a sample was to secure a fiberglass bag at the exit of the ball valve. The valve was then opened permitting gas and solids to enter the bag. The gas flowed through the bag leaving solids behind.

3.7 SOLIDS ANALYSIS

The material collected in a solids loading sample was subjected to a number of analyses:

- Proximate Analysis
- Ultimate Analysis
- Toluene Extraction - for tar determination, as described in Section 3.8.
- Thermogravimetric Analysis - see Section 4.6.1.

The results of the first three analyses are presented in Appendix A under the specific test for which they were run.

The solids sample obtained from the first cyclone was subjected to the following analyses, results of which are given under specific test data in Appendix A:

- Proximate Analysis
- Ultimate Analysis
- Toluene Extraction
- Screen Sizing.

3.8 TAR FORMATION DETERMINATION

Determination of the amount of tars produced by the system was accomplished by toluene extraction of the solid material collected in the fiberglass bag during a solids loading sampling. The toluene extraction procedure was carried out in a Soxlet extraction column and the material which was extracted was defined as tars.

A Soxlet extraction column is shown in Figure 3.5. A small amount of toluene (100 ml) is placed in a heated flask. The toluene distills off and is condensed in the upper portion of the apparatus by a water-cooled condenser. The condensed toluene then runs down into a porous ceramic cup in which the material to be extracted is contained. The toluene with the extracted material flows through the porous cup and back into the heated flask to complete the cycle.

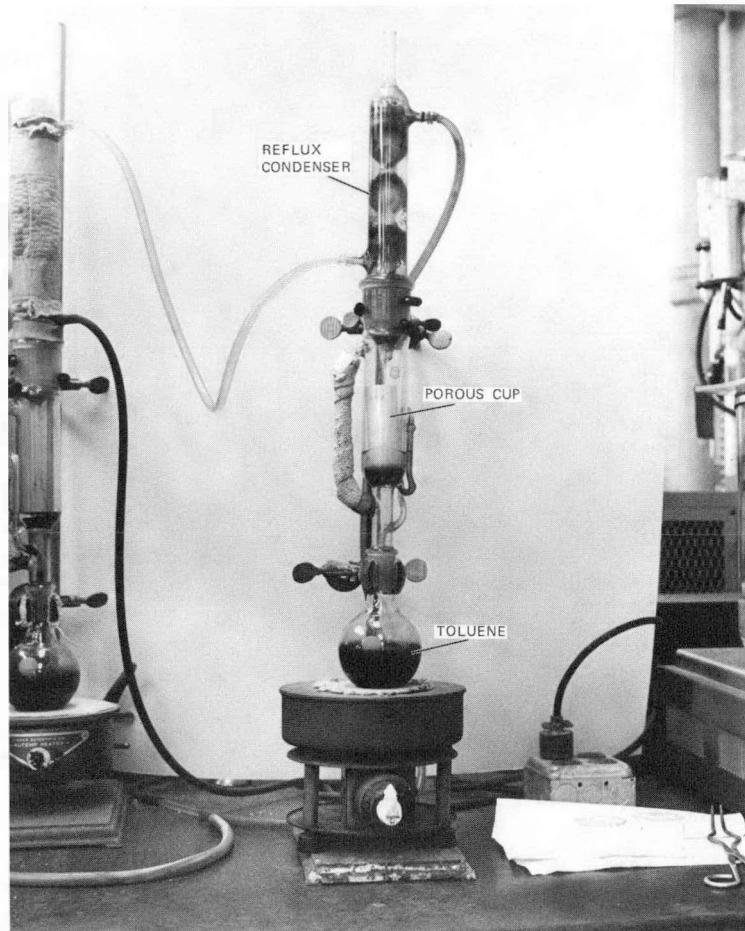


FIGURE 3.5 SOXLET EXTRACTION COLUMN FOR TAR EXTRACTION

The gas temperature was about 800°F at the point where the solids loading was conducted and measurements indicate that the fiberglass filter reached a temperature of 300-400°F within 2 minutes from the start of sampling. This may mean that tars which vaporize below a temperature of 300-400°F may have passed through the filter and were therefore not accounted for. This will be discussed further in a subsequent section.

3.9 PROCESS MEASUREMENTS AND LOCATIONS

The relative locations of previously described gas analysis and solids or particulate loadings are indicated in Figure 3.6. In addition to these measurements other process measurements were made:

- Air and gas temperature
- Air flows by orifice
- Natural gas flows by orifice.

The relative positions of these measurements are shown in Figure 3.6.

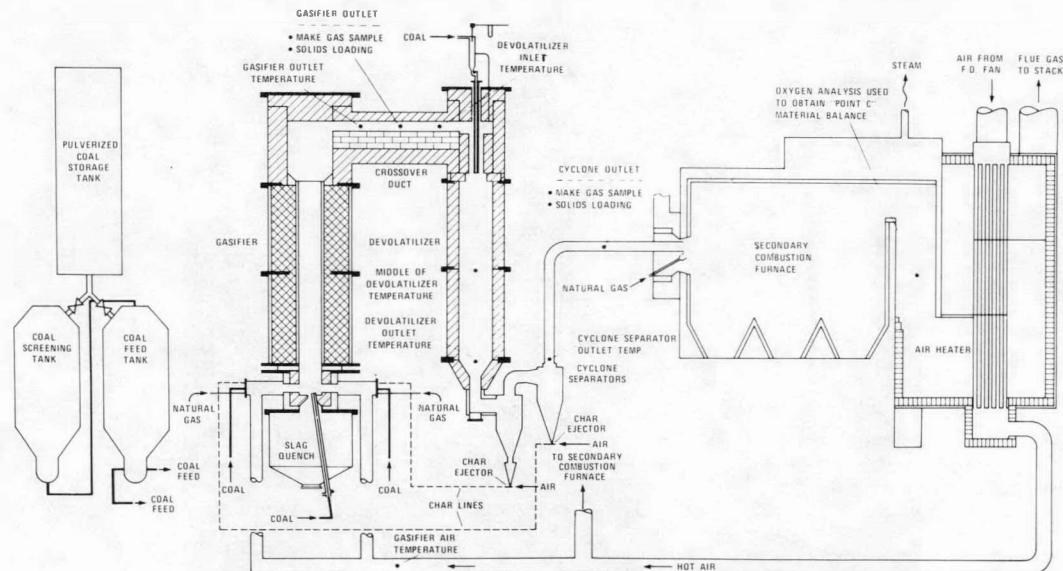


FIGURE 3.6 LOCATION OF PROCESS MEASUREMENTS

3.10 GAS ANALYZER - GAS CHROMATOGRAPH

A Beckman GC-4 gas chromatograph was used to analyze the gas samples. The chromatograph was equipped with a thermal conductivity detector, dual flow controller, temperature programmer, gas sampling valve system and a switching valve arrangement for column switching. A 13-foot x 1/8-inch Teflon column with Poropak QS packing (Waters Associates, Inc.) and a 8-foot x 1/8-inch stainless steel column with molecular sieve packing (Analabs, Inc. 5A Type, 80/90 mesh) was used to separate the gases. Helium was used as the carrier gas.

The data readout system consisted of an electronic integrator with a teletype printout. In addition, a Beckman Recorder was used for a visual display of data. Calibration curves were prepared for each gas by running known concentrations of the gas through the chromatograph. These standards were prepared using the partial pressure technique for gases.

The arrangement and selection of the gas detection columns were chosen based on the following criteria:

1. Short turnaround time for gas analysis
2. Ability to detect all gases of interest.

These criteria were met, but gas concentrations below 3000 ppm were not detectable. Table 3.1 presents a list of the chemical species which the chromatograph was able to detect.

TABLE 3.1 GAS ANALYSIS BY CHROMATOGRAPH
CHEMICAL SPECIES

PARAFFIN SERIES	OLEFIN SERIES	OTHER GASES
METHANE ETHANE PROPANE	ETHYLENE PROPYLENE	HYDROGEN OXYGEN CARBON DIOXIDE CARBON MONOXIDE NITROGEN SULFUR DIOXIDE HYDROGEN SULFIDE CARBONYL SULFIDE ACETYLENE

Section 4

RESULTS AND DISCUSSION

The data obtained during this test program are presented in computer output form in Appendix A. A total of 43 tests were run during the period of October 1975 to April 1976. Of these 43 tests, the data from 32 tests were chosen for analysis because they could be grouped into only four categories of equipment configurations. The eleven omitted tests involved some oxygen enrichment, some employed steam addition, and some test results were obviously erroneous.

Details of the energy and material balances are presented in Appendices B and C, respectively. Appendix D contains a detailed description of a very simple mathematical model that assumes rate control by gas-phase diffusion.

4.1 PRECISION OF MEASUREMENTS

A rather large scatter is evident when make gas heating value is plotted versus percent theoretical air, as in Figure 4.1. Since some of this scatter might be attributed to the precision of measurement, a study was conducted to estimate this for the relevant variables.

4.1.1 Make-Gas Heating Value

Table 4.1 summarizes the precision of measuring make-gas composition. Values of standard deviation were estimated for the concentration of all the gaseous species. The corresponding contributions of each species to total heating value were combined to produce an estimated standard deviation for that quantity using the rule of weighted variances.

4.1.2 Air-Fuel Ratio

It is conventional and convenient to express the air-fuel ratio as "Percent Theoretical Air," or the ratio (expressed in percentage) of the actual air flow rate to that which would be required in order to burn the fuel to its

theoretical combustion products of CO_2 , H_2O , SO_2 , and N_2 , with zero O_2 , CO , and H_2 . Thus coal flow rate, air flow rate, and coal composition could enter into the precision of measuring "Percent Theoretical Air."

Table 4.2 summarizes the results of this particular study. The precision to which the various air flows and coal flow could be determined were estimated based on our judgement of the precision of determination of the manometer differentials, rotameter float position, chart pen position, and time increment.

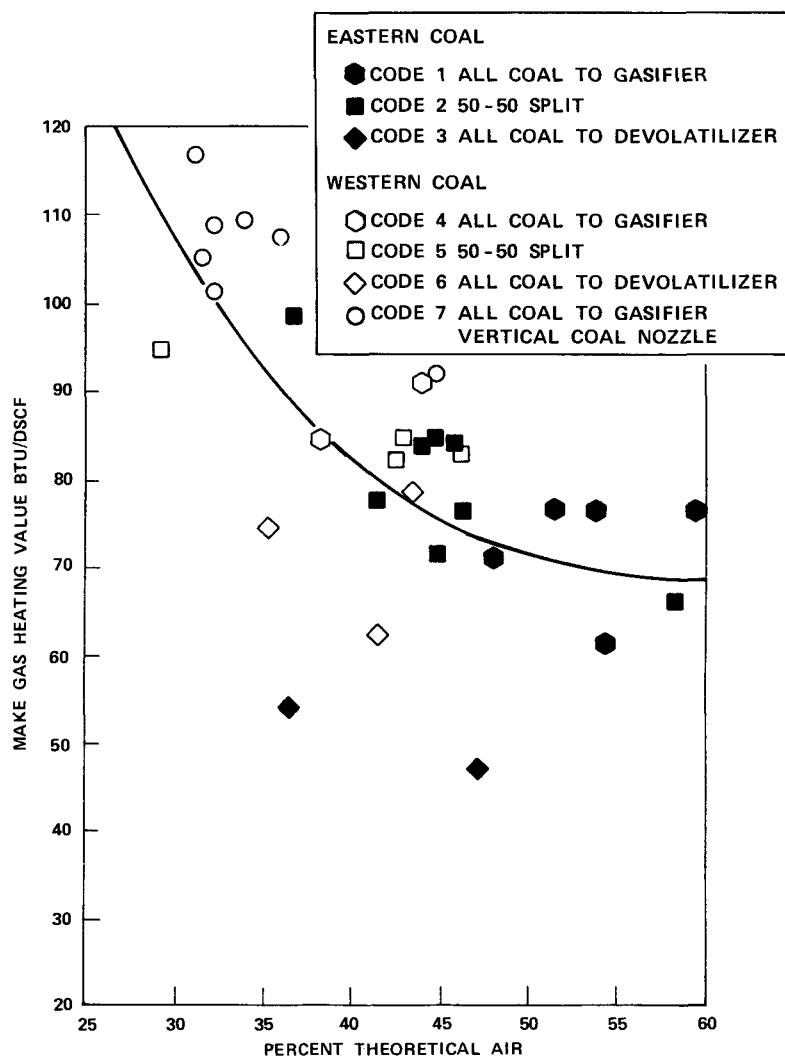


FIGURE 4.1 MAKE GAS HEATING VALUE VERSUS PERCENT THEORETICAL AIR

The variation in the composition of the two coals was estimated based on two complete analyses for each coal. The estimated standard deviation for the Western coal is larger because of the greater uncertainty as to its moisture content; this difference is carried through to the precision of measurement for the air-fuel ratio.

TABLE 4.1 ESTIMATED PRECISION OF MEASUREMENT
OF MAKE GAS COMPOSITION

	EST σ , %	H, BTU/SCF	$(\sigma H)^2$
H ₂	.20	325	14225
O ₂ +A	.23	0	
CO ₂	.23	0	
C ₂ H ₄	(.1)	1614	26009
C ₂ H ₂	(.1)	1499	22470
C ₂ H ₆	(.1)	1792	32112
H ₂ S	(.1)	647	4186
N ₂	.21	0	
CH ₄	(.1)	1013	10261
CO	.26	322	18009
			106,314

$$\hat{\sigma} = \left[\sum (\sigma H)^2 \right]^{1/2} = 326 \left(\% \times \frac{BTU}{DSCF} \right) = \boxed{3.26 \frac{BTU}{DSCF}}$$

TABLE 4.2 PRECISION OF MEASUREMENTS

MEASUREMENT	ESTIMATED STD. DEV.	
	ENGR. UNITS	%
AIR FLOWS		
GASIFIER COMBUSTION AIR	10 LB/HR	1.1*
COAL TRANSPORT AIR	4 LB/HR	0.4*
CHAR EJECTION AIR	3 LB/HR	0.3*
COAL FLOW (AS FIRED)	6 LB/HR	2.1
COAL COMPOSITION ASH, MOISTURE & HEATING VALUE		0.8/2.2**
AIR TO FUEL RATIO***		2.6/3.3**

NOTES: *AS % OF TOTAL AIR FLOW

**EASTERN COAL/WESTERN COAL; THE DIFFERENCE IS
DUE TO MOISTURE

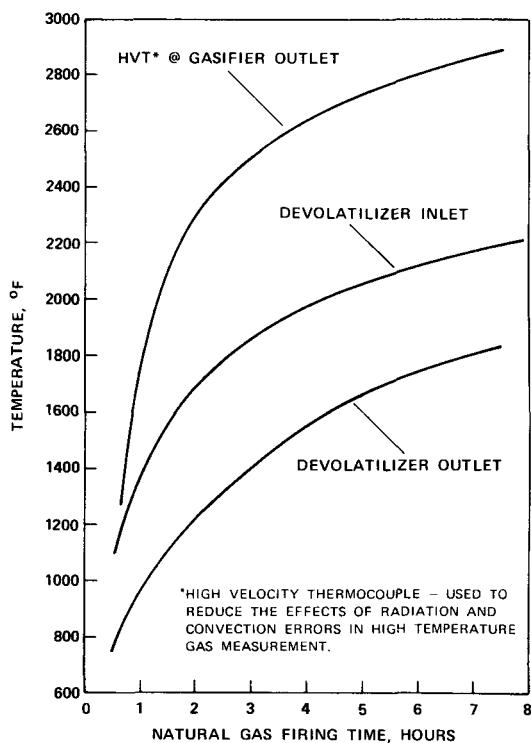
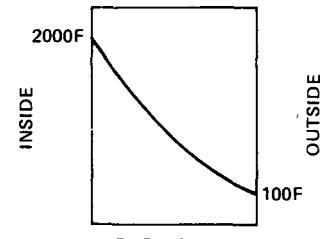
***AS % OF RATIO, i.e., 40% THEORETICAL AIR WOULD BE
40 \pm 40 (.049) OR 40 \pm 2.0% FOR THE ONE-STANDARD-
DEVIATION BAND

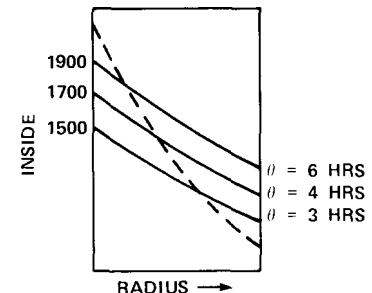
4.2 EFFECT OF NATURAL GAS FIRING PRIOR TO TESTING

4.2.1 Test Procedure

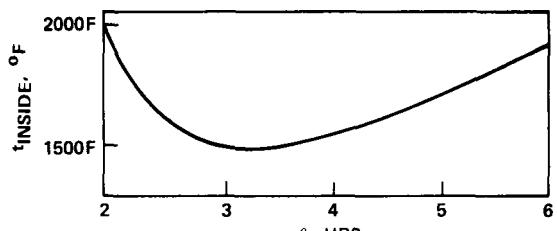
As preliminary tests have shown (Figure 4.2), the gasifier has a rather long thermal time constant - roughly two hours or more. Therefore, to get it up to gasification temperature quickly, each day's testing was started by firing natural gas at about 115% theoretical air for about two hours. Gasification tests were started at the end of this time; i.e., when the gasifier outlet temperature reached about 2000-2200°F.

Although coal flow to the system was started at this time the natural gas was not completely shut off. In fact during the majority of these tests, about 8 to 51 lb/hr of natural gas was fired in the gasifier at the same time as the coal. This was done to insure that a reducing atmosphere would be present in the event of possible coal or char recycle interruptions. If not for the natural gas, the interruptions would suddenly cause the gas composition to become oxidizing, which might precipitate an explosion or cause very large excursions in temperature.


FIGURE 4.2 GAS TEMPERATURE DATA FOR FIRING NATURAL GAS ONLY

4.2.2 Hypothetical Temperature Distribution in Gasifier Wall


As a result of this method of startup, it is conceivable that the gasifier heat losses could vary systematically during the balance of the day. They might even go through a maximum. How this might happen is illustrated in Figure 4.3, which shows hypothetical temperature distributions in the gasifier wall. For example, Figure 4.3A shows a steep gradient with a high inner-wall temperature immediately on completion of preheating. In Figure 4.3B, after an hour of gasification, the gradient has decreased substantially and, with it, the inner-wall temperature. However, the vessel wall is still not up to steady-state temperature in its entirety. So, at successively longer times, the inner-wall temperature rises again, although the lower gradient is maintained (consistent with the slower heating due to gasification compared with combustion). Figure 4.3C shows the resulting inner-wall temperature as a function of time. Heat losses from the gasification reactions would, of course, follow a complementary path, peaking at some intermediate time. Accordingly, time after startup of the gasifier ("Time of Day") was included as one of the initial correlating variables to be considered in statistical analysis.

A. AT $\theta = 2$ HRS CH₄ FIRING

B. AT LATER TIMES, GASIFYING

C. t_{INSIDE} VS TIME

FIGURE 4.3 POSSIBLE TEMPERATURE PROFILES IN GASIFIER WALL

4.2.3 Statistical Correlation Including "Time of Day"

A non-linear regression analysis was made using make-gas heating value as the dependent variable and "Time of Day," air-fuel ratio, expressed as a fraction of the amount of air that is theoretically required to burn the fuel (coal and natural gas included) completely to CO_2 and H_2O and operating mode as independent variables. Operating mode was broken down into seven cases, coded as follows:

<u>Code No.</u>	<u>Description</u>
1	Eastern Coal, all to gasifier, horizontal burners
2	Eastern Coal, 50-50 split
3	Eastern Coal, all to devolatilizer
4	Western Coal, all to gasifier, horizontal burners
5	Western Coal, 50-50 split
6	Western Coal, all to devolatilizer
7	Western Coal, all to gasifier, vertical upward nozzle

The functional dependencies on "Time of Day" and air-fuel ratio were required to be the same for all seven cases, but the parameter expressing the mean heating value was allowed to seek a different value for each case.

Results are summarized in Table 4.3. The relative importance of any parameter in the correlation is measured by the "F to remove" value. This value is a ratio of the value of that parameter to the random error associated with the data points about the curve. Thus, if the value contributed by a particular parameter is less than twice the random error about the curve, the parameter can be regarded as relatively unimportant. Therefore, we used a value of 2 as an approximate cut-off point; parameters with an "F to remove" value much less than 2 can be considered unimportant. Based on this criteria the parameters containing the time function (coefficients K_3 , K_4 , K_5) are relatively unimportant and hence the coefficients can be considered equal to zero for practical purposes.

A plot of the data points based on the above correlation is shown in Figure 4.4. On the vertical axis is plotted make-gas heating value with mode of coal injection and air-fuel ratio taken into account. On the horizontal axis is plotted the elapsed time as measured from the beginning of natural

gas firing up until the time the data for that particular test was taken ("Time of Day"). Time was measured from the beginning of natural gas firing for preheat purposes because this time would also contribute to the gasifier inner wall temperature. As confirmed in this plot, no significant correlation exists as far as the time function is concerned.

TABLE 4.3 STATISTICAL CORRELATION OF DATA: AIR-FUEL RATIO, GROUP, AND "TIME OF DAY"

$$H = C_0 + \sum_{n=1}^7 C_n X_n + K_1 A + K_2 A^2 + K_3 \theta + K_4 \theta^2 + K_5 \theta^3$$

A = AIR - TO - FUEL RATIO
 H = HEATING VALUE, BTU/DSCF
 C₀ = CONSTANT
 C_n = COEFFICIENT EXPRESSING RELATIVE POSITION OF n-TH DATA GROUP
 X_n = "DUMMY" VARIABLE HAVING VALUE OF UNITY FOR n-TH GROUP AND ZERO FOR ALL OTHERS
 K'S = COEFFICIENTS AS ABOVE
 θ = TIME OF DAY MEASURED FROM MORNING LITE-OFF

COEFFICIENT	F TO REMOVE	SENSIBLE VALUE
K ₁	1.77	- 1.589
K ₂	0.676	0.0103
K ₃	0.418	0
K ₄	0.674	0
K ₅	1.014	0

CONCLUDE: NO CONSISTENT TREND WITH TIME OF DAY

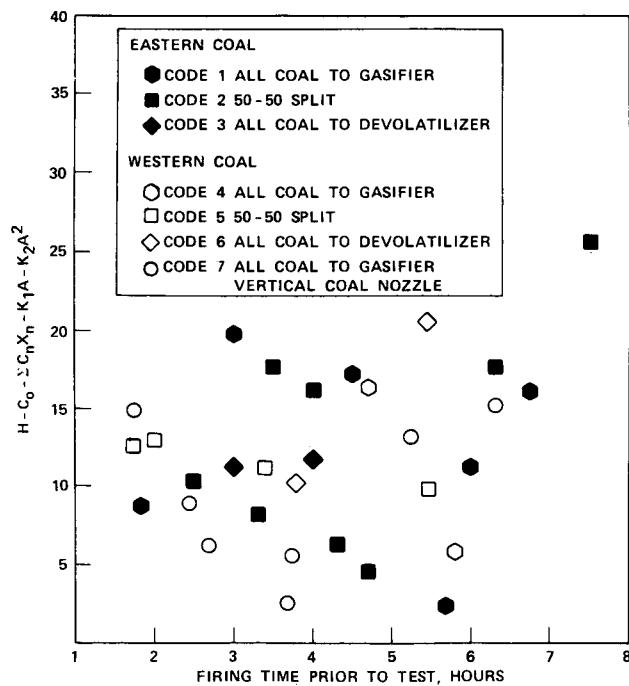


FIGURE 4.4 EFFECT OF TIME OF DAY

4.3 EFFECT OF NATURAL GAS FIRING DURING TESTING

Natural gas was fired in the gasifier during the majority of these tests because of possible interruptions of char recycle. If not for the natural gas, these interruptions would suddenly cause the gas composition to become oxidizing, which might precipitate an explosion or cause very large excursions in temperatures.

Only during the code 7 tests were we confident enough of char recycle to shut off the natural gas. Oddly enough it was during these tests that the highest Btu contents were obtained. So we asked the question, "Could it be possible that the firing of natural gas into the gasifier tended to produce lower Btu values?" To answer this question, two statistical analyses were made. The first is depicted in Figure 4.5 where we have fit the data to an equation of the general form indicated. This general form, quadratic in air-fuel ratio and linear in the amount of natural gas fired, was fitted to the data without regard to the effect of code. Plotted against the amount of natural gas fired is heating value less the effect of air-fuel ratio. From this, it indeed appears that there is a trend for the Btu content to go down as the amount of natural gas increases. However, upon closer examination, there is also a trend as far as code is concerned in that different codes tend to have different amounts of natural gas, e.g., code 1 employed 8-12 lb/hr natural gas, and codes 2, 5, and 6 employed 27 lb/hr natural gas.

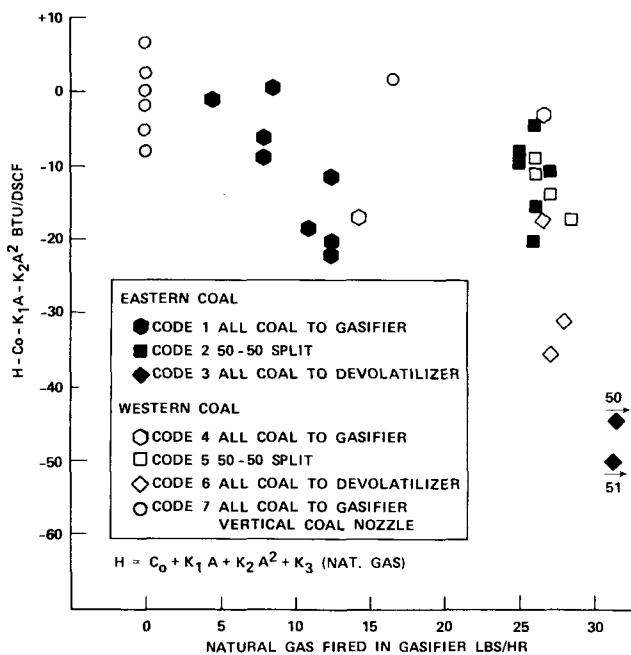
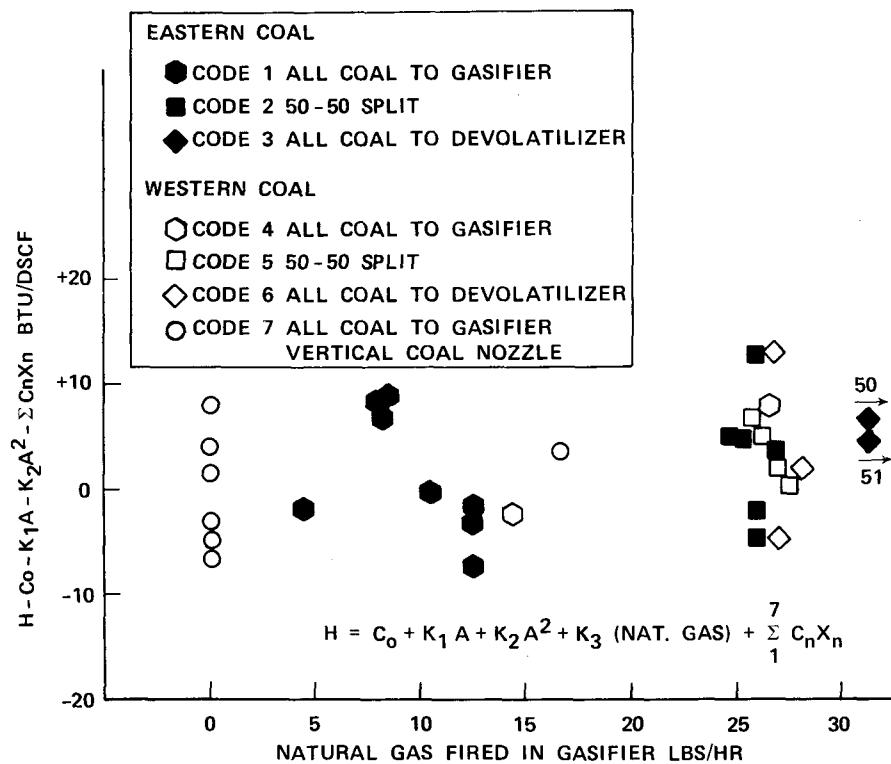
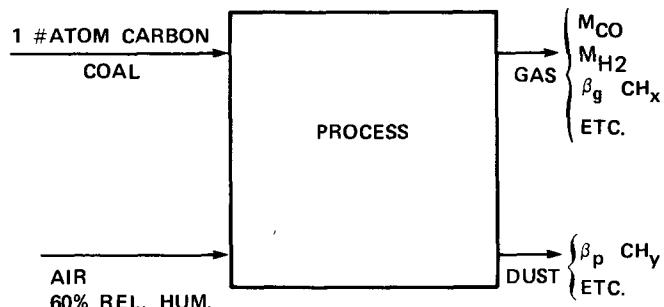


FIGURE 4.5 EFFECT OF NATURAL GAS FIRED IN GASIFIER

Therefore, the correlation was done again. This time, each code was allowed to "float" (so to speak) through the addition of the terms $\sum_1^7 C_n X_n$. In other words the same functional dependencies with respect to air-fuel ratio and amount of natural gas are forced upon each code, but each code is allowed to "seek its own level." Figure 4.6 presents this analysis showing a plot of heating value less the effect of air-fuel ratio and code as a function of the amount of natural gas fired. This analysis indicates that there is no correlation. In other words, although admitting inherent differences among the codes due to equipment arrangement or coal fired, natural gas firing had no effect on the heating value.




FIGURE 4.6 EFFECT OF NATURAL GAS FIRED IN GASIFIER

4.4 MATERIAL BALANCE

4.4.1 Basis for Material Balance

Figure 4.7 shows the basis for the material balances that were made. The general gasification stoichiometry can be explained as follows. We assume that into the process goes one pound atom of carbon in the form of coal along

with some amount of air to give a value of air-fuel ratio, A , defined as moles of air fed per mole of air theoretically required to burn the coal all the way to CO_2 , H_2O , and SO_2 . The gas produced in the process consists of some quantity of carbon monoxide, hydrogen, and an amount β_g of hydrocarbon gas with an average formula of CH_x . The value of β_g will range up to 0.10. Also coming out of the process is a certain amount of dust, β_p , defined as the fraction of inlet carbon which escapes from the process as char with an average formula CH_y . Thus, the process of Figure 4.7 will give a gas with a heating value which is a function of the A , β_p , and β_g — or approximately just of the air-fuel ratio and the β_p , since, over the range of values encountered, β_g has only a slight effect upon heating value.

$$A = \text{MOLS AIR/MOL AIR THEORETICAL}$$

$$\text{HEATING VALUE, } H = f(A, \beta_p, \beta_g) \cong f(A, \beta_p)$$

FIGURE 4.7 GASIFICATION STOICHIOMETRY

Table 4.4 shows the various values of β_g , x , β_p , y , and the amount of methane fired that were observed in the tests under consideration. For the material balance calculations, the value of β_g was taken to be 0.06. This choice was made so as to favor code 7 data a little more than the rest. However, the next figure will show that the value of β_g is not very important, anyhow. From Table 4.4 it is obvious that the x value runs at about 2.5, except for codes 4 and 5 where it is equal to 4.0 (indicating that methane was the major hydrocarbon produced). As a typical value for all material balance calculations, we have chosen a value of 2.5.

TABLE 4.4 MATERIAL BALANCE PARAMETERS

CODE NO.	TEST NO.	β_g	x	β_p (MEASURED)	y	PERCENT ASH IN DUST	$\beta'_{N.G.}$	
							#CH ₄ FIRED	#COAL (WET)
1	1	0	—	—	—	13.08	.06	
	2	0	—	3	—	13.08	.06	
	3	0	—	.032	—	13.08	.045	
	4	0	—	.033	—	13.08	.046	
	5	0	—	.122	—	13.08	.052	
	6	0	—	.020	—	13.08	.032	
	20	.0553	2.5	.119	.110	9.7	.083	
	21	.0475	2.29	.096	—	11.5	.06	
	22	0	—	.0506	—	13.08	.077	
2	9	.0366	2.33	—	—	32.8	.15	
	10	.0714	2.40	.148	.142	6.7	.144	
	11	.0923	2.50	.094	—	13.08	.163	
	13	.0649	2.40	.114	.446	2.6	.126	
	14	.0486	2.29	.129	.386	13.4	.154	
	16	.0588	2.50	.096	—	34.6	.17	
3	7	.0417	3.57	—	—	13.08	.417	
	8	.0556	3.33	—	—	13.08	.28	
4	27	.0192	4.0	.127	—	24.7	.122	
	32	.0062	4.0	.162	—	24.7	.049	
5	24	.0053	4.0	.0919	—	19.9	.119	
	28	.0117	4.0	.086	—	24.7	.111	
	29	.0128	4.0	.085	.405	26.2	.115	
	35	.0204	4.0	.180	—	26.6	.08	
6	26	.0194	2.67	.104	—	20.6	.114	
	31	.0409	2.67	.118	.576	19.4	.101	
	36	.0470	2.91	.066	—	21.8	.12	
7	33	.1446	2.60	.125	—	25.5	.050	
	34	.1255	2.64	.150	—	26.7	0	
	38	.0443	2.50	.051	—	27.05	0	
	39	.0705	2.86	.088	.208	29.0	0	
	40	.0541	2.00	.144	—	27.05	0	
	42	.0412	2.50	.104	—	27.05	0	
	43	.0886	2.25	.096	.220	27.0	0	

The value for β_p , Table 4.4, varied so much that we felt we couldn't pick an average, so we retained the individual values for each run. The value of y, the hydrogen-to-carbon ratio in the char, was chosen as a typical value of 0.22, again favoring the code 7 data.

The last column in Table 4.4 represents the methane fired in the gasifier in terms of pounds of methane per pound of coal fired. The individual values were used in calculating the air-fuel ratio; that is, the amount of methane fired was counted as part of the fuel in calculating air-fuel ratio.

4.4.2 Effect of Amount of Hydrocarbons on Heating Value

As we have already noted, within the range, 0-0.10, the value of β_g is relatively unimportant as far as heating value is concerned. This is shown in Figure 4.8 where the calculated heating value of the make gas is plotted against air-fuel ratio. This plot assumes 100% carbon utilization, i.e., no carbon loss from system. A fictitious hydrocarbon, $\text{CH}_{2.5}$, has been assumed and its amount, β_p , has been varied from 0 to 0.10. As will be seen there is only a small effect. Thus, a value of 0.05 or 0.06 could represent the entire range. It is interesting to note that, at a given air-fuel ratio, the more hydrocarbon in the gas, the lower the resulting Btu value. The reason for this is that the formation of hydrocarbons from CO_2 and hydrogen is exothermic, as is demonstrated by the heating value formulas of Figure 4.9.

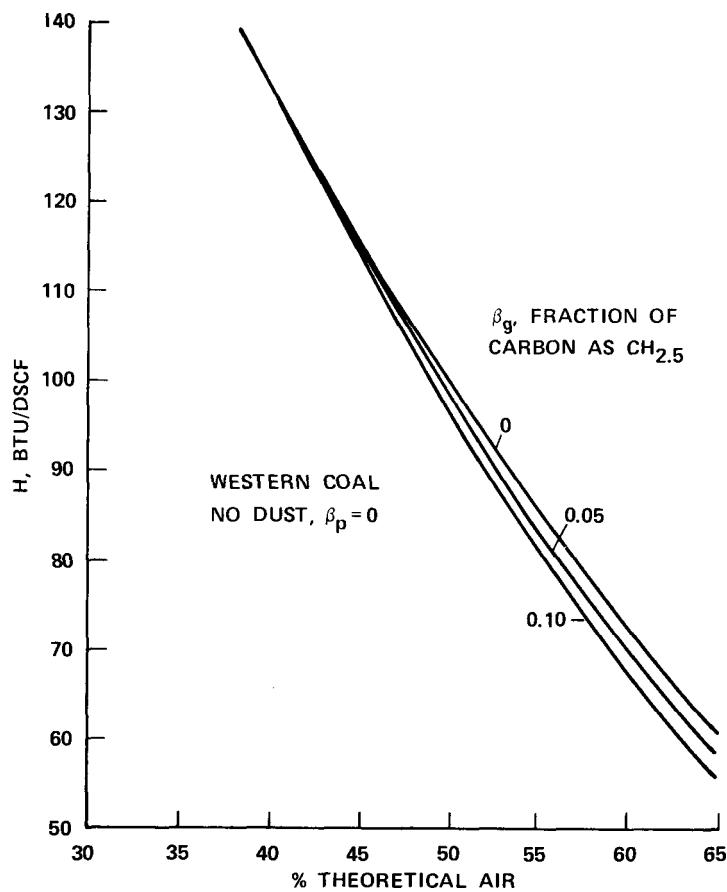


FIGURE 4.8 EFFECT OF AMOUNT OF HYDROCARBONS ON STOICHIOMETRIC HEATING VALUE

$$H = \frac{121,675 M_{CO} + 122,891 M_{H_2} + 284,287 M_{H_2S} + (240200 + 20160X) M_{CH_x}}{387 (\Sigma M - M_{H_2O})}$$

$$M_{CO} + M_{CO_2} + M_{CH_x} = \frac{W_c}{12} \quad \frac{\text{MOLES}}{\# \text{DRY COAL}}$$

$$\begin{aligned} \frac{\partial H}{\partial M_{CH_x}} &= [290,600 - 2(121,675) - \frac{2.5}{2} (122,891)] / 387 (\Sigma M - M_{H_2O}) \\ &= -106,364 / 387 (\Sigma M - M_{H_2O}) \end{aligned}$$

FIGURE 4.9 COMPUTATION OF GAS HEATING VALUE

4.4.3 Check of Heating Value and Particulate Loading

Figure 4.10 is a plot of heating value against air-fuel ratio with lines of constant percentage of carbon appearing as char. Put another way, these are lines of constant carbon utilization. The data from the code 7 tests has been plotted on this graph, and beside each data point is the "actual" amount of char in the gas as measured by sampling the gas. It will be noted that the percentage of carbon dictated by stoichiometry (i.e., by the position of the point with respect to the β_p graph) and that actually measured do not generally agree. For example, the point located at about 45% theoretical air lies on a 15% carbon line; however, only 6% was actually measured by sampling. This kind of discrepancy is also evident for all of the other data. The implication is, of course, either that we measured the heating value of the gas wrong or that we measured too little char in the gas.

We made several checks in an effort to verify the heating value data. The first of these is summarized in Figure 4.11. We attempted to condense out in a flask all of the low boiling hydrocarbons in the sample stream. As indicated, most of the condensed liquid appeared to be water as determined by distillation tests with little, if any, tars or oils. This implies that we did not miss low-boiling hydrocarbons in our gas analysis because there were none. Figure 4.12 summarizes the results of a second test of this nature. A solid residue was condensed out in this case, and infrared analysis showed it to be naphthalene. The quantity, however, was very small and would account for only about 0.5 Btu in heating value. A check was also made on the ability of our gas chromatograph to detect gaseous species

present in significant quantities (>3000 ppm). This was done by sending duplicate samples out to another lab for analysis (Gollob Analytical Service). The results of these analyses agreed closely with our own, Table 4.5. In neither case did the outside lab find significant quantities of hydrocarbons which we did not detect.

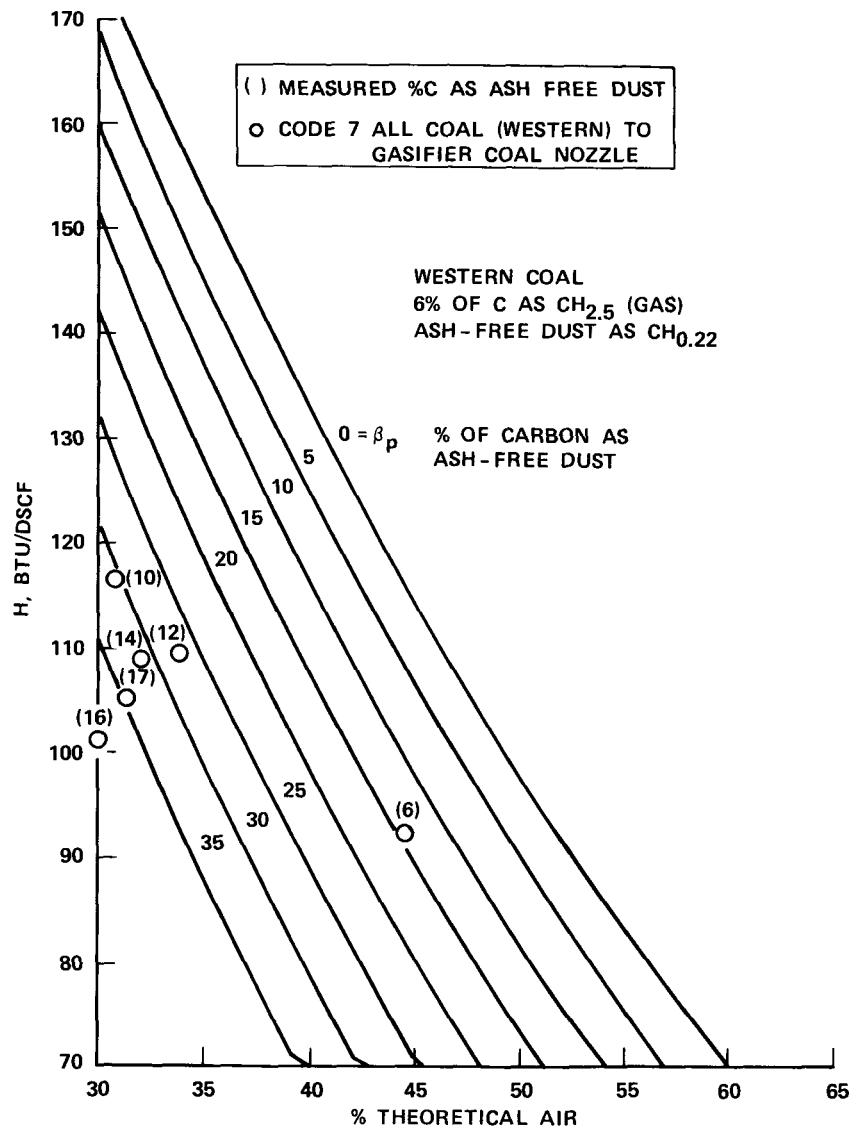


FIGURE 4.10 COMPARISON OF CODE 7 DATA WITH THEORY

DATE TIME	VOLUME GAS SAMPLED	SOLIDS CAUGHT IN GLASS BAG	MATERIAL CONDENSED	ALL COAL BEING FED TO VERTICAL GASIFIER NOZZLE
5/14/76 0949	14.35 FT ³	10.24g.	21.01g.	
5/14/76 1035	17.18 FT ³	28.06g.	25.54g.	A DISTILLATION TEST ON THIS LIQUID SHOWED THAT ALL OF IT DISTILLED OFF AT 100°C INDICATING THAT IT WAS WATER. VERY LITTLE TARS, OILS, OR OTHER MATERIAL WAS EVIDENT IN EITHER SAMPLE.

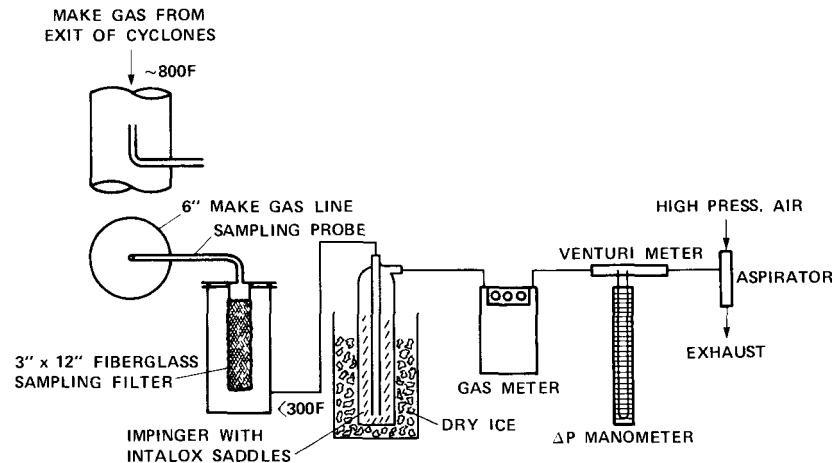


FIGURE 4.11 DRY ICE CONDENSATION TESTS

TEST #	VOLUME GAS SAMPLED	SOLIDS CAUGHT IN GLASS BAG	SOLID RESIDUE COLLECTED BY ICE BATH	SOLIDS FROM GLASS BAG #/HR	SOLIDS FROM ICE BATH #/HR	HEATING VALUE OF RESIDUE (ASSUME NAPHTHALENE)	ICE BATH RESIDUE AS % OF SOLIDS CAUGHT IN BAG FILTER
43	18.1 FT ³	18.08g	0.27 grams*	34.06	0.51	0.54 BTU SCf	1.5%

*IDENTIFIED BY IR AS PRIMARILY NAPHTHALENE

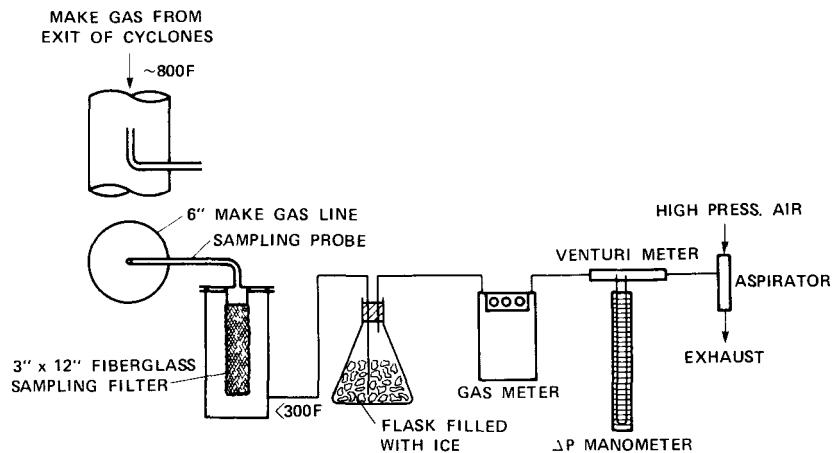


FIGURE 4.12 ICE BATH COLLECTION TEST

TABLE 4.5 GAS ANALYSES - COMPARISON OF ARC AND GOLLOB ANALYTICAL SERVICE

SAMPLE DESCRIPTION	DEVOLATILIZER* OUTLET TEST 29 GOLLOB ANALYTICAL SERVICE	DEVOLATILIZER** OUTLET TEST 29 ARC	DEVOLATILIZER* OUTLET TEST 30 GOLLOB ANALYTICAL SERVICE	DEVOLATILIZER** OUTLET TEST 30 ARC
NITROGEN (N ₂)	BALANCE (65.7)	65.1	BALANCE (62.0)	60.1
OXYGEN + ARGON (O ₂ + Ar)	0.132	0.9	0.582	0.9
CARBON MONOXIDE (CO)	15.0	15.1	19.4	18.0
CARBON DIOXIDE (CO ₂)	8.7	8.4	7.7	9.5
HYDROGEN (H ₂)	9.7	10.2	9.6	11.3
HELIUM (He)	0.015	(1)	0.057	(1)
CARBONYL SULFIDE (COS)	0.026	0	0.023	0.3
SULFUR DIOXIDE (SO ₂)	-	0	-	0.3
METHANE (CH ₄)	0.49	0.3	0.41	0.3
ACETYLENE (C ₂ H ₂)	-	0	-	0.3
ETHYLENE (C ₂ H ₄)	-	0	-	0.3
ETHANE (C ₂ H ₆)	0.14	0	0.17	0.3
PROPENE (C ₃ H ₆)	-	0	-	0.3
PROPANE (C ₃ H ₈)	0.018	0	N.D.	0.3
BENZENE (C ₆ H ₆)	0.013	(2)	0.0090	(2)
TOLUENE (C ₇ H ₈)	0.0085	(2)	0.0045	(2)
ORGANICS (C ₄ -C ₆ MIXTURE)	0.058	(2)	0.052	(2)

*ALL ANALYSES BY MASS SPECTROMETER EXCEPT CARBON MONOXIDE (GAS CHROMATOGRAPH).

**ALL GAS CHROMATOGRAPH.

(1) CHROMATOGRAPH CARRIER GAS

(2) NOT MEASURED

In the area of particulate measurement, we ran two checks on the effectiveness of the fiberglass sampling bag. The experimental setup and results of these checks are shown in Figure 4.13. It will be noted that less than 2% of the material got through the fiberglass fiber.

From the results of these checks, we concluded that:

1. The measured heating values are substantially correct.
2. The missing particulate was probably flowing around the sampling tube in the make-gas line.

TEST =	FIBERGLASS FILTER BAG CATCH, GMS	BACK-UP FILTER CATCH, GMS	= SOLIDS HR BASED ON BAG FILTER	= SOLIDS HR CAUGHT BY BACK-UP FILTER	% OF SOLIDS GETTING THRU BAG FILTER
11	4.65	0.07	15.88	0.24	1.5%
12	5.23	0.03	14.17	0.08	0.60%

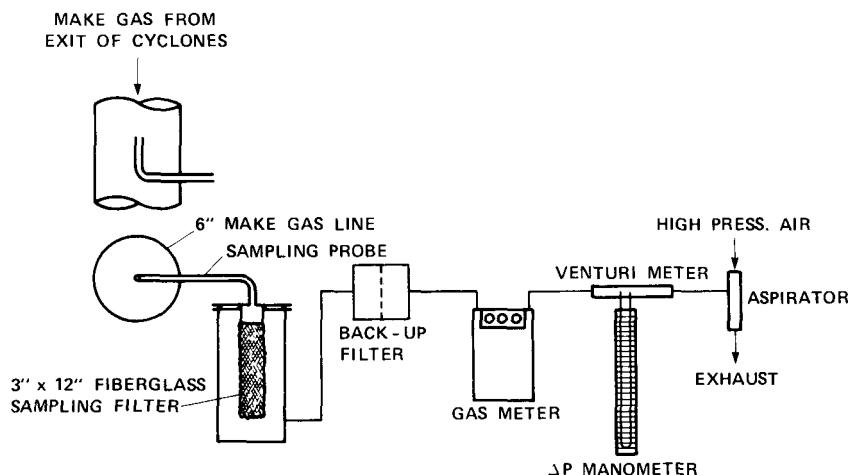


FIGURE 4.13 BACK - UP FILTER TESTS

4.4.4 Comparison of Data with Theory

Figures 4.14 through 4.17 present all 32 runs on H-A type plots, grouped according to code. As previously noted in connection with code 7 data, the measured amounts of particulates are far below what they must be if the heating values and air-fuel ratio are correct (which we believe they are). These plots can be used to read off the correct β_p values.

4.4.5 Carbon Balance at Cyclone Exit

The information from the previous four figures can be presented in another form as shown in Figures 4.18 and 4.19. Here we have plotted stoichiometrically required amounts of particulate versus that found by measurement at point B, the exit of the cyclones. Theoretically, the points should fall on a 45-degree line; however, as seen for the Eastern coal, the points are scattered above such a line with a few points below. The data for the Western coal are somewhat better in that there is a fairly good empirical correlation. Still, it is far from a 45-degree line.

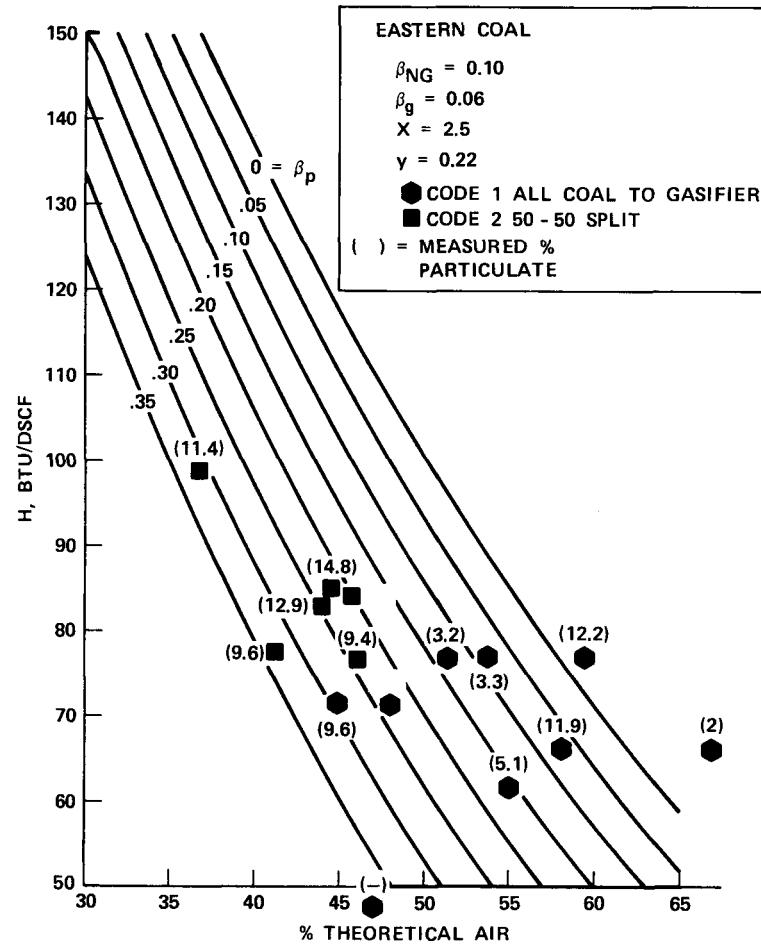


FIGURE 4.14 COMPARISON OF CODE 1 & 2 DATA WITH THEORY

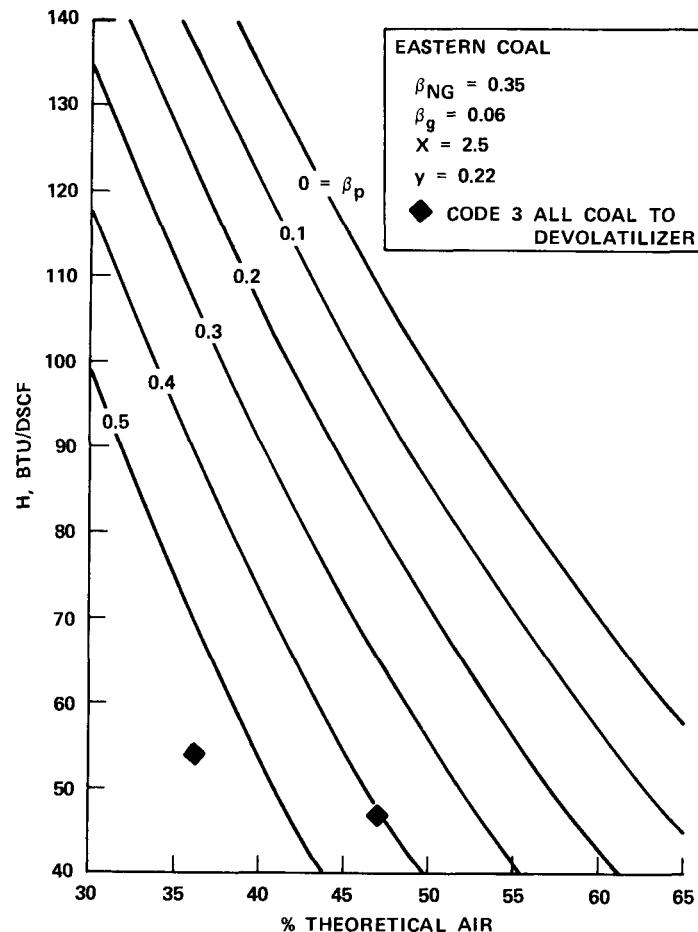


FIGURE 4.15 COMPARISON OF CODE 3 DATA WITH THEORY

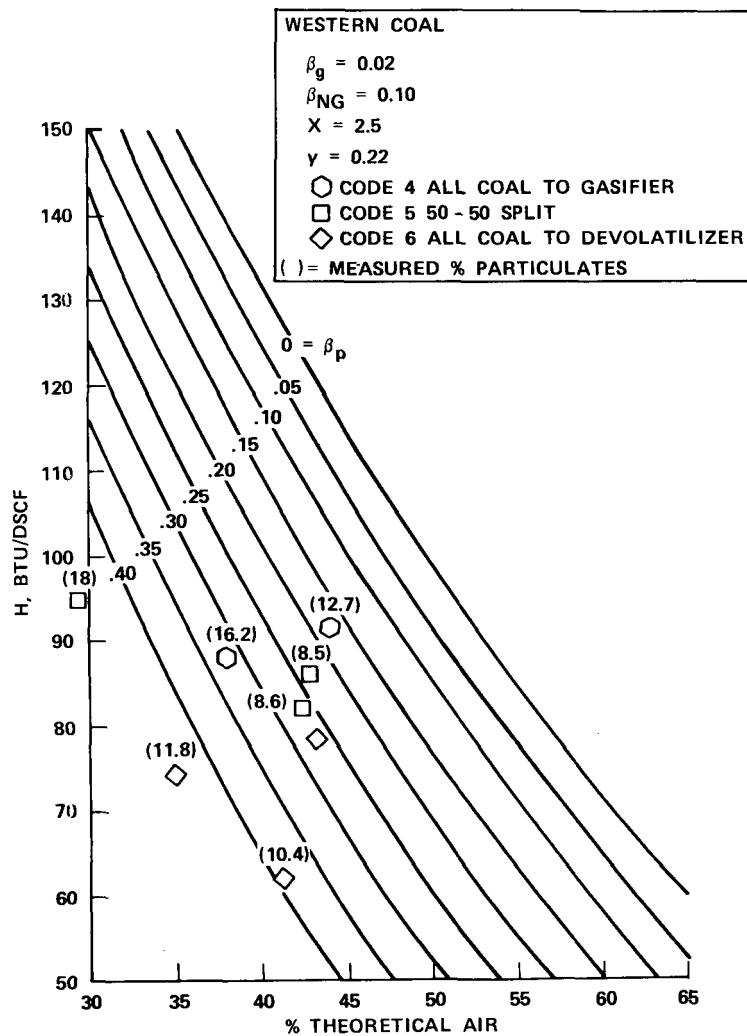


FIGURE 4.16 COMPARISON OF CODE 4, 5, 6 DATA WITH THEORY

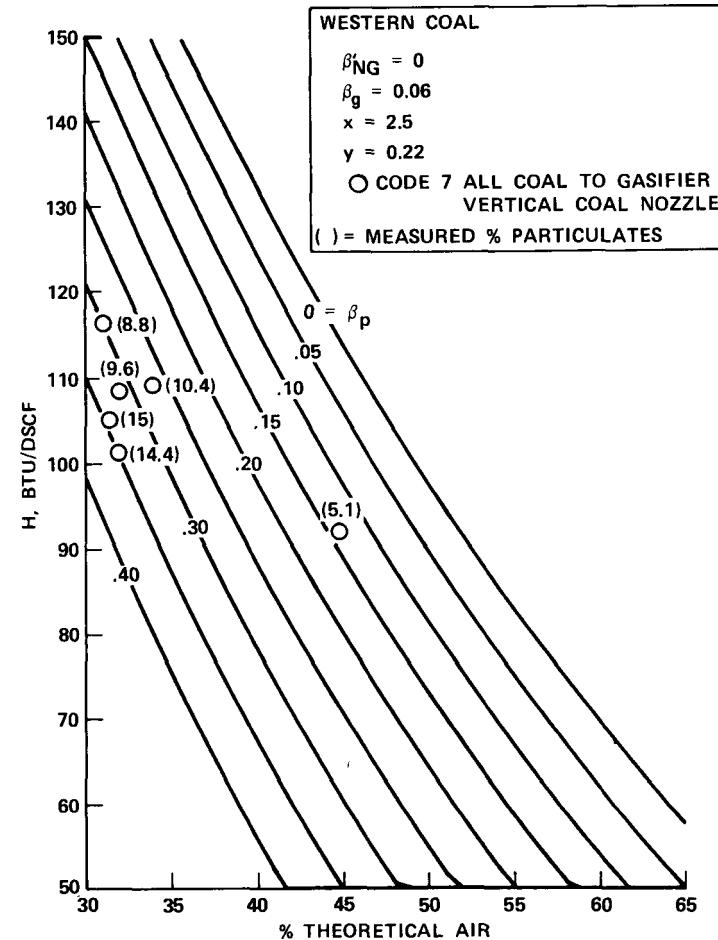


FIGURE 4.17 COMPARISON OF CODE 7 DATA WITH THEORY

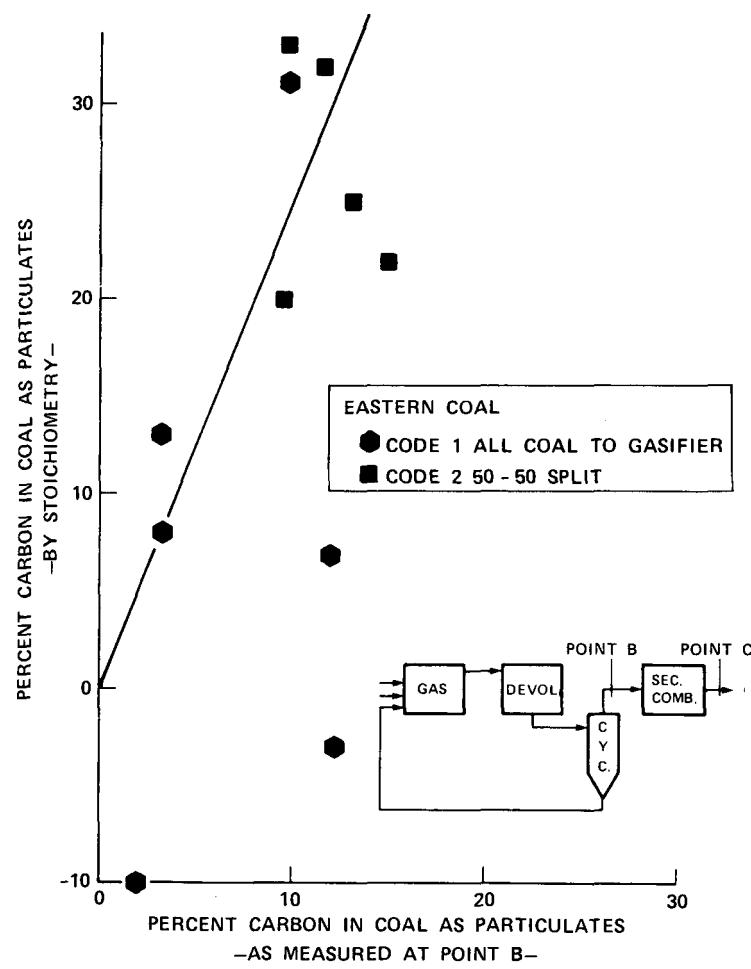


FIGURE 4.18 CARBON BALANCE AT POINT B - EASTERN COAL

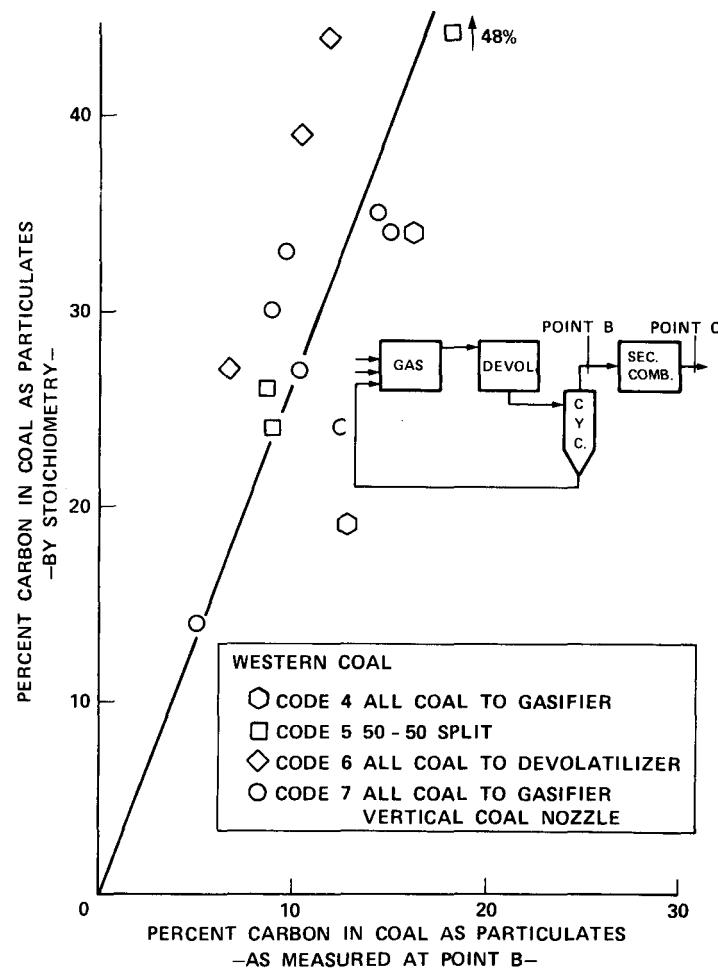


FIGURE 4.19 CARBON BALANCE AT POINT B - WESTERN COAL

4.4.6 Carbon Balance at Secondary Combustion Furnace

A second kind of carbon balance was made at point C, the exit of the secondary combustion furnace. For this balance we took the percent carbon as particulates which we found experimentally at point B and corrected it for the additional carbon found at point C. This new carbon balance is shown in Figures 4.20 and 4.21 for the Eastern and Western coals, respectively. For the Eastern coal, the data points are still widely scattered. For the Western coal, Figure 4.21, the correlation is better but all the carbon is still not accounted for.

4.4.7 Carbon Balance as a Function of Air-Fuel Ratio

Perhaps a more revealing way of presenting the carbon balances is that represented by Figures 4.22 and 4.23. Percent carbon accounted for at points B and C is plotted against air-fuel ratio. The open points represent the carbon balance at point B, and the solid points represent the carbon balance at point C.

Looking first at the data for Eastern coal, Figure 4.22, it is evident that in the majority of the tests more carbon was found at point C than at point B. However, sometimes when the points are close together the reverse is true. In any event, there is a definite tendency to miss carbon at points B and C at the lower air-fuel ratios. This implies more and more carbon was lost from the system as the air-fuel ratio decreased.

There are three possibilities that might account for our inability to account for all of the carbon:

1. Deposition of carbon within the system.
2. The carbon actually went through the secondary combustion furnace but did not burn completely. (There is some evidence that the solids slugged through the system which may account for its not all being burned.)
3. The oxygen analyzer at point C may have been inaccurate or subject to flow stratification causing a higher than actual oxygen reading. (If this were the case, however, one wouldn't expect a trend with air-fuel ratio.)

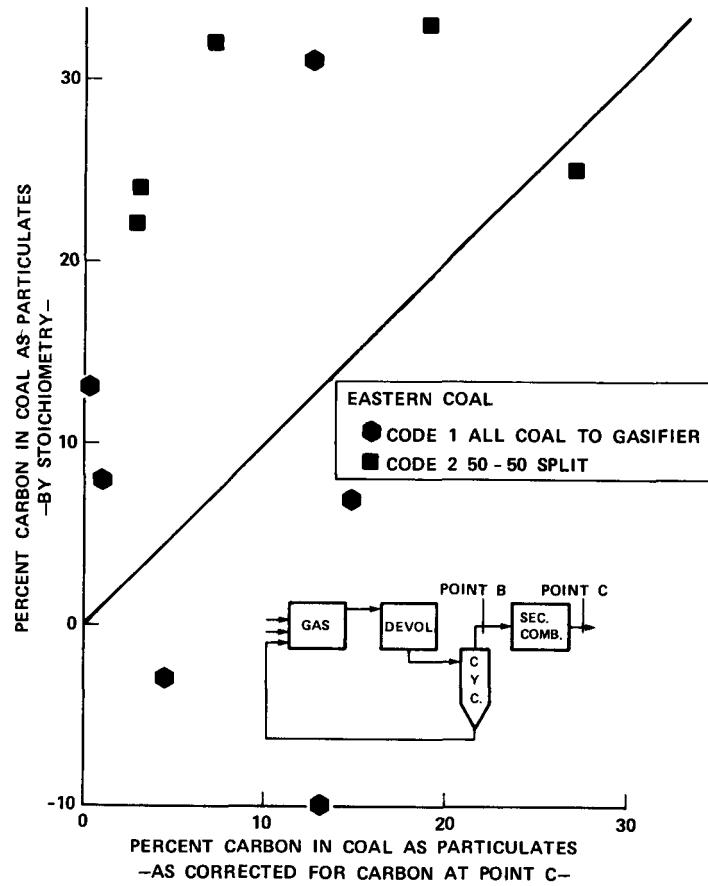


FIGURE 4.20 CARBON BALANCE AT POINT C

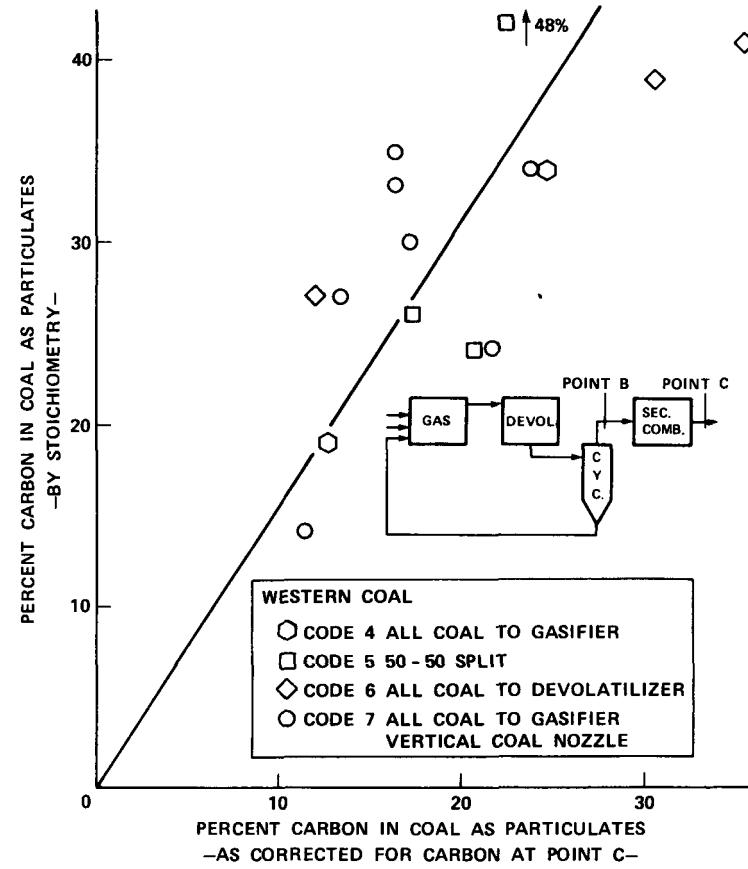


FIGURE 4.21 CARBON BALANCE AT POINT C - WESTERN COAL

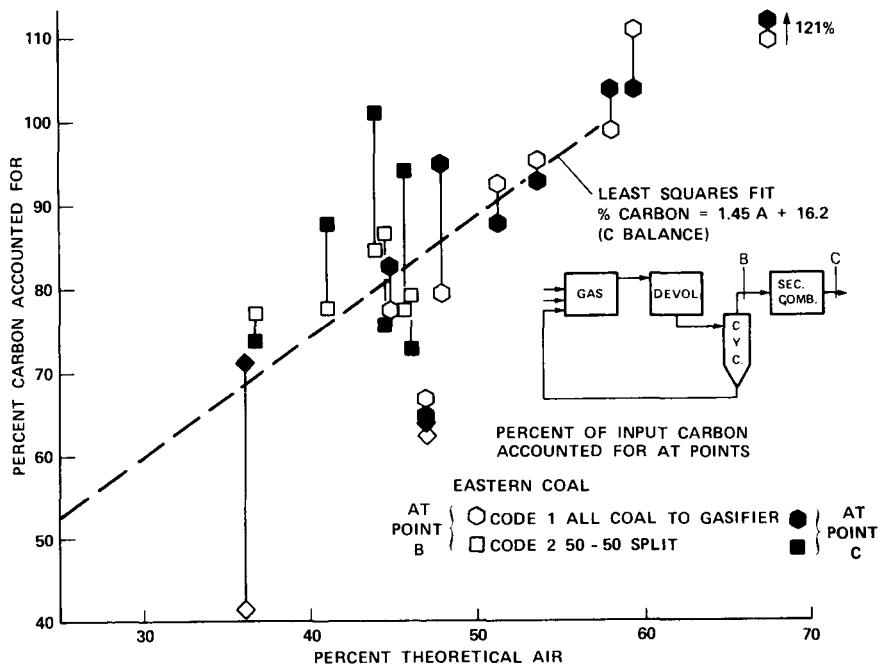


FIGURE 4.22 EFFECT OF THEORETICAL AIR ON CARBON BALANCE

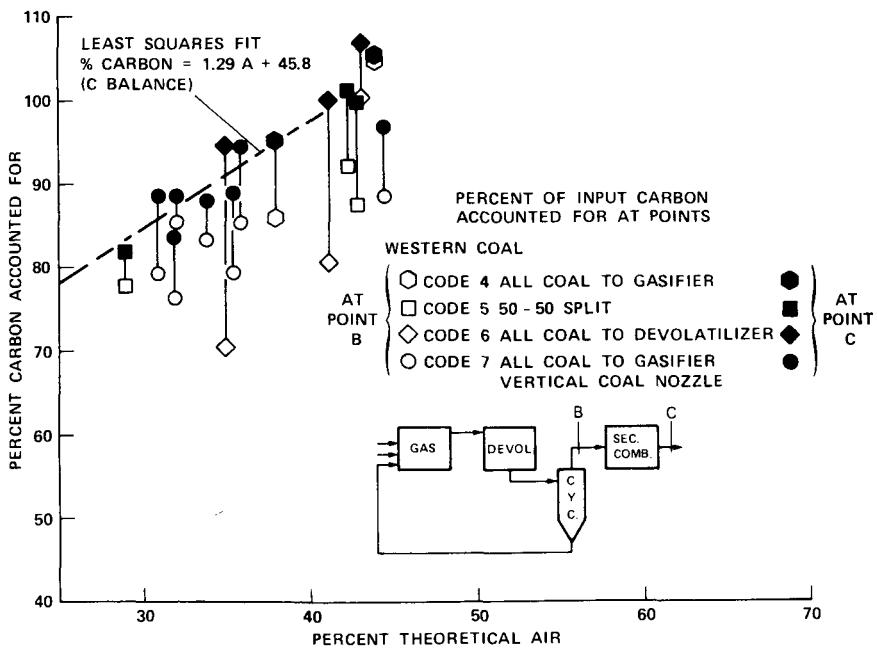
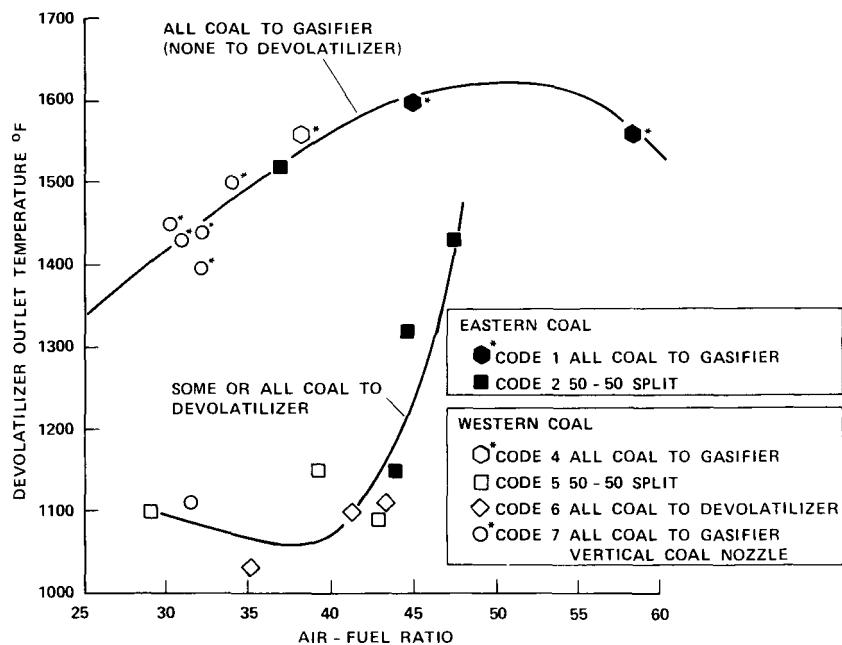


FIGURE 4.23 EFFECT OF THEORETICAL AIR ON CARBON BALANCE

In any event, the solid points in Figure 4.22, carbon balance at point C, indicate that at about 58% theoretical air we should be able to get 100% carbon utilization in this apparatus.

The data for western coal, Figure 4.23, are a little more consistent in that the point-C balance always indicates more carbon accounted for than the point-B balance. As for the Eastern coal data, the same trend is evident as far as a decrease in carbon accounted for at lower air-fuel ratios. A least-squares fit through the point-C data indicates that 100% carbon utilization might be achieved in this apparatus at an air-fuel ratio of about 43%.

4.5 ENERGY BALANCE


4.5.1 Devolatilizer Outlet Temperature Versus Air-Fuel Ratio

The curves shown in Figure 4.24 represent the measured devolatilizer outlet temperature as a function of air-fuel ratio. One curve (the upper one) applies where no coal was fed to the devolatilizer. The other applies where some coal was fed to the devolatilizer. Considering for a moment that the devolatilizer outlet temperature is virtually the same as the process outlet temperature (to a first approximation), then at a given air-fuel ratio, the devolatilizer outlet temperature should be unaffected by the point of coal injection. However, this expectation is not borne out by the data. This strongly suggests that the thermocouple at the devolatilizer outlet was getting fouled by tars and, therefore, reading low when coal was fed to the devolatilizer. True, there are other factors that might affect this situation, but they are best analyzed via energy balance.

4.5.2 Energy Balance Boundaries

Figure 4.25 shows the gasifier process and boundaries that were used to make the various energy balances. Three pieces of equipment are involved:

1. Gasifier
2. Devolatilizer
3. Cyclone Separators.

*AIR-FUEL RATIO IS EXPRESSED AS A FRACTION OF THE AMOUNT OF AIR THAT IS THEORETICALLY REQUIRED TO BURN THE FUEL (NATURAL GAS AND COAL INCLUDED) COMPLETELY TO CO_2 AND H_2O .

FIGURE 4.24 EFFECT OF AIR-FUEL RATIO ON MEASURED DEVOLATILIZER OUTLET TEMPERATURE

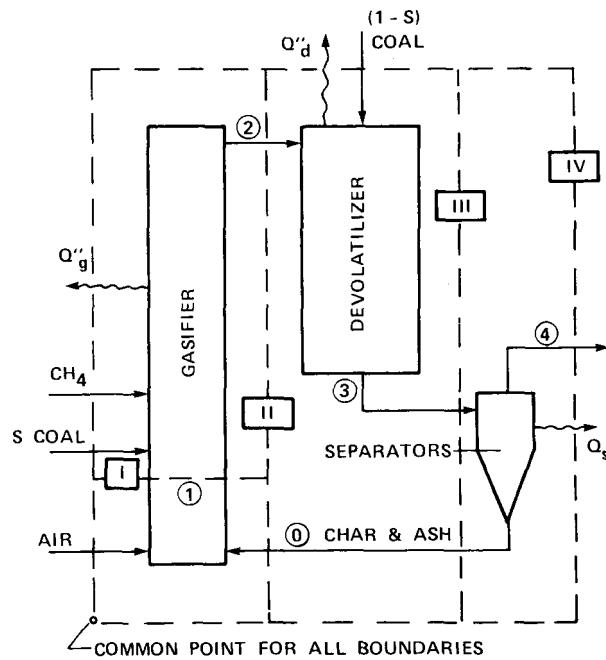


FIGURE 4.25 ENERGY BALANCE BOUNDARIES

Four different energy balances were made and these are described below:

Balance IV This balance is around the whole process and is useful for calculating the exit temperature, T_4 , leaving the cyclone separators.

Balance III This balance is cut just ahead of the cyclone separators and is useful for calculating T_3 , the temperature at the devolatilizer exit.

Balance II This is just around the gasifier and is used for calculating the gasifier outlet temperature, T_2 .

Balance I This balance is around the bottom portion of the gasifier. The assumption is made that at the bottom of the gasifier all of the oxygen is used for forming CO_2 and H_2O with no further H_2 nor CO reactions taking place. This permits the calculation of the maximum temperature that might be achieved in the gasifier.

4.5.3 Energy-Balance Assumptions

A number of assumptions were made for simplicity:

1. No chemical reactions occur in the cyclone separators; their only function is to separate the char from the gas.
2. Separator efficiency was assumed to lie between 80 and 95%, since data was not available to calculate this parameter.
3. The material balance closes. (This may appear to be questionable since it has been shown that the material balance rarely closed, often by a wide margin. However, it will be shown later that this assumption is justifiable.)
4. The make gas contains N_2 , CO_2 , CO, H_2O , and H_2 in water-gas shift equilibrium (down to 1700°F) plus a small amount of CH_x (gas) and CH_y (solid). All sulfur appears as H_2S . Note that the water-gas shift reaction has very little enthalpy change associated with it.)
5. Steady state. (This assumption was found to be not true and later abandoned.)

6. No reaction in the devolatilizer other than devolatilization; e.g., no char is gasified. (From our gas-composition data we believe that this is not quite right; no other assumption is feasible at this point. The result is that our calculated values of T_2 should be a little lower than reality. In other words, there should be a temperature drop across the devolatilizer due to actual gasification reactions which we are neglecting for analysis purposes.)
7. At T_1 all the oxygen reacts with char to form only CO_2 and H_2O ; no CO , H_2 , H_2S , or CH_x are formed.

4.5.4 Summary of Steady-State Heat-Loss Calculations

Figure 4.26 presents a summary of heat-loss calculations. As indicated in this figure, all the heat losses were broken up and assigned to the three major pieces of equipment: (1) gasifier, (2) devolatilizer, and (3) cyclone separators.

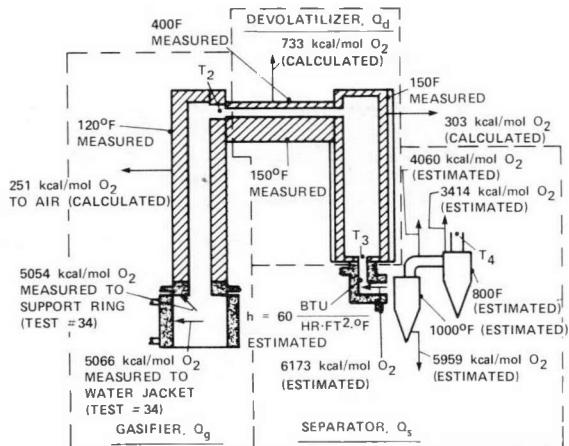


FIGURE 4.26 SUMMARY OF STEADY-STATE HEAT-LOSS CALCULATIONS

A brief description of these heat losses and their method of calculation follows:

Gasifier Water Jacket - This heat loss was calculated from measured water flow rates and inlet and outlet temperatures.

Water-Cooled Support Ring - This heat loss was calculated using measured water flow rates and inlet and outlet temperatures.

(Note: This support ring was removed just prior to Test 39 and was not reinstalled.)

Gasifier Surface - The outside surface temperature of the gasifier was measured at various times and at various positions along its length. The heat loss was estimated using an average overall temperature and an estimated convection coefficient to the surrounding air.

Crossover Pipe - Heat loss was calculated using measured surface temperatures taken during a couple of tests and an estimated convection coefficient to the surrounding air.

Devolatilizer Surface - Heat loss was calculated using measured surface temperatures and an estimated heat transfer coefficient of the surrounding air.

Water-Cooled Elbow at Devolatilizer Exit - The heat loss at this point presented a problem because neither water flow nor temperature was measured. We estimated the heat transfer coefficient from the gas to the metal wall via the Colburn equation and assumed the metal temperature to be 212°F. Actually, the Colburn equation should underestimate the heat transfer coefficient 1) because the equation applies for fully developed flow, whereas the elbow represents an entrance condition; 2) because the elbow is curved, whereas the Colburn equation presumes a straight pipe; and 3) because the particulate should tend to raise the coefficient over and above that for a clean gas. On the other hand, as a result of the low surface temperature of the elbow, considerable buildup of sticky tars and char might occur, and these could decrease the heat transfer coefficient by as much as an order of magnitude. Thus, the calculated value of the heat transfer coefficient (60 Btu/hr-ft²-°F) is quite uncertain. The possible effect of this uncertainty will be discussed later.

Cyclone Separators - A heat loss by convection and radiation was estimated from an estimated surface temperature. The surface temperature estimate was based on a measured inlet gas temperature and the fact that the cyclones were not hot enough to give off visible radiation. This put an upper limit on the temperatures.

4.5.5 Effects of Assumptions

4.5.5.1 Carbon Balance Study. One of the assumptions made in the energy balance calculations was that the material balance closes, i.e., all the input carbon is accounted for at the exit of the system. However, this was rarely the observed case; and we would like to discuss here the effect of this assumption.

Two runs (runs 40 and 43) were selected that display a relatively large carbon imbalance. To estimate the effect of the imbalance, the air-fuel ratio was "corrected" so as to make the carbon into the system equal to the carbon out. This had the effect of raising the air-fuel ratio as indicated in Table 4.6. For example, the actual air-fuel ratio for run 43 was 0.321 while the "corrected" value for run 43.1 was 0.397. We then computed the energy balances using these "corrected" values of A, and the results are as shown in Table 4.6. (In all cases, temperatures, T_4 , were forced to equal the measured values by adding additional heat losses. We'll discuss the reason for doing this later.) Comparing the T_3 values of Table 4.6, we note that the "corrected" values are a little over 100°F higher than the uncorrected. The T_2 temperature (into the devolatilizer) went up about 200°F in both cases. We can conclude from this that, in spite of the fact that the material balances didn't always close, the calculated temperatures are fairly accurate.

4.5.5.2 Cyclone Efficiency Study. Table 4.7 presents the results of a study to determine the effect of the assumed value of cyclone efficiency upon the results of the energy balance. We've taken run 43 and varied the cyclone efficiency from 80 to 90 to 95%, holding everything else constant. Here again the system outlet temperature, T_4 , has been forced to equal the measured outlet temperature by the addition of heat losses. The effect of going from 80 to 90% and 90 to 95% cyclone efficiency is about 100°F for T_3 and about 150°F for T_2 , the devolatilizer outlet and inlet temperatures, respectively. Since we feel that the actual cyclone efficiency was probably somewhere in this range, we conclude that the actual value used is not of crucial importance in making the energy balances.

TABLE 4.6 CARBON BALANCE STUDY

RUN NO.	43	43.1	40	40.1
A	.321	.397	.321	.407
β_p	.32	.17	.35	.17
S	1	1	1	1
H_m $\frac{\text{BTU}}{\text{DSCF}}$	108.9	108.9	101.2	101.2
$(\mu_{\text{CHAR}})_0$	8.14	3.50	8.9	3.41
$(\mu_{\text{ASH}})_0$	34.3	27.8	34.3	27.1
β_g #/#	.06	.06	.06	.06
$\beta'_{\text{N.G.}}$ #/#	0	0	0	0
η_c	.90	.90	.90	.90
Q_g'' $\frac{\text{kcal}}{\text{mol O}_2}$	19,700	20,800	22,000	22,300
Q_d'' $\frac{\text{kcal}}{\text{mol O}_2}$	9,900	10,800	11,800	12,000
Q_s'' $\frac{\text{kcal}}{\text{mol O}_2}$	19,600	19,600	19,600	19,600
COAL	WESTERN	WESTERN	WESTERN	WESTERN
T_4 , °F	1000	1000	970	970
H_{g4} $\frac{\text{BTU}}{\text{DSCF}}$	107.6	105.4	100.9	101.7
$(\mu_{\text{CHAR}})_4$.90	.388	.989	.378
$(\mu_{\text{ASH}})_4$	3.82	3.09	3.82	3.01
T_3 , °F	1316	1425	1278	1402
$(\mu_{\text{CHAR}})_3$	9.04	3.90	9.89	3.79
$(\mu_{\text{ASH}})_3$	38.2	30.85	38.16	30.1
T_2 , °F	1469	1647	1454	1654
$(\mu_{\text{CHAR}})_2$	9.04	3.89	9.9	3.79
$(\mu_{\text{ASH}})_2$	38.2	30.85	38.16	30.1
T_1 , °F	2718	3377	2639	3392
$(\mu_{\text{CHAR}})_1$	7.19	2.55	7.96	2.46
$(\mu_{\text{ASH}})_1$	34.3	27.77	34.34	27.08

TABLE 4.7 η_c STUDY

RUN NO.	43	43	43
A	.321	.321	.321
β_p	.32	.32	.32
S	1	1	1
H_m $\frac{\text{BTU}}{\text{DSCF}}$	108.9	108.9	108.9
$(\mu_{\text{CHAR}})_0$	3.62	8.14	17.18
$(\mu_{\text{ASH}})_0$	15.3	34.3	72.5
β_g #/#	.06	.06	.06
$\beta'_{\text{N.G.}}$ #/#	0	0	0
η_c	.80	.90	.95
Q_g'' $\frac{\text{kcal}}{\text{mol O}_2}$	19,700	19,700	19,700
Q_d'' $\frac{\text{kcal}}{\text{mol O}_2}$	9,900	9,900	9,900
Q_s'' $\frac{\text{kcal}}{\text{mol O}_2}$	19,600	19,600	19,600
COAL	WESTERN	WESTERN	WESTERN
T_4 , °F	1000	1000	1000
H_{g4} $\frac{\text{BTU}}{\text{DSCF}}$	107.6	107.6	107.6
$(\mu_{\text{CHAR}})_4$.904	.904	.904
$(\mu_{\text{ASH}})_4$	3.82	3.82	3.82
T_3 , °F	1412	1316	1216
$(\mu_{\text{CHAR}})_3$	4.52	9.04	18.1
$(\mu_{\text{ASH}})_3$	19.07	38.16	76.3
T_2 , °F	1612	1469	1321
$(\mu_{\text{CHAR}})_2$	4.52	9.04	18.1
$(\mu_{\text{ASH}})_2$	19.08	38.15	76.3
T_1 , °F	3472	2719	2096
$(\mu_{\text{CHAR}})_1$	2.67	7.19	16.24
$(\mu_{\text{ASH}})_1$	15.26	34.34	72.49

NOMENCLATURE

SYMBOL

SYMBOL	SYMBOL
A = AIR-FUEL RATIO EXPRESSED AS A FRACTION OF THE AMOUNT OF AIR THAT IS THEORETICALLY REQUIRED TO BURN THE FUEL (COAL AND NATURAL GAS INCLUDED) COMPLETELY TO CO_2 AND H_2O , DIMENSIONLESS.	Q_g'' = TOTAL HEAT LOSS FROM GASIFIER, kcal/kg MOL O_2 FED AS AIR.
β_p = CHAR OUTPUT EXPRESSED AS ATOMS CARBON PER ATOM CARBON INPUT IN COAL, DIMENSIONLESS.	Q_d'' = TOTAL HEAT LOSS FROM DEVOLATILIZER, kcal/kg MOL O_2 FED AS AIR.
S = FRACTION OF COAL FED TO GASIFIER, DIMENSIONLESS.	Q_s'' = TOTAL HEAT LOSS FROM CYCLONE SEPARATORS (INCLUDES HEAT LOSS FROM WATER JACKETED ELBOW AT DEVOL. EXIT), kcal/kg MOL O_2 FED AS AIR.
H_m = MEASURED HEATING VALUE OF THE MAKE GAS, BTU/DSCF.	T_1 , T_2 , = CALCULATED TEMPERATURES AT COMBUSTOR OUTLET, GASIFIER OUTLET, DEVOLATILIZER OUTLET AND CYCLONE SEPARATOR OUTLET, RESPECTIVELY, °F.
μ = MOLECULAR FLOW RATES OF INDIVIDUAL SPECIES, kg MOLS/kg MOL O_2 FED AS AIR.	T_3 , T_4 = CALCULATED HEATING VALUE OF THE MAKE GAS, BTU/DSCF.
β_g = FRACTION OF THE TOTAL INPUT CARBON APPEARING AS HYDROCARBONS, CH_x , IN STREAM LEAVING SYSTEM. THE VALUE OF X IS APPROXIMATELY 2.5, DIMENSIONLESS.	H_{g4} = CALCULATED HEATING VALUE OF THE MAKE GAS, BTU/DSCF.
$\beta'_{\text{N.G.}}$ = NATURAL GAS (METHANE) FEED RATE EXPRESSED AS kg OF METHANE PER kg OF AS-FIRED COAL, DIMENSIONLESS.	$0, 1, 2, = 3, 4$ = COMBUSTOR INLET, COMBUSTOR OUTLET, GASIFIER OUTLET, DEVOLATILIZER OUTLET AND CYCLONE SEPARATOR OUTLET, RESPECTIVELY.
η_c = OVERALL EFFICIENCY OF PARTICULATE COLLECTOR (BOTH CYCLONES IN SERIES TAKEN TOGETHER AS A SINGLE DEVICE), DIMENSIONLESS.	

SUBSCRIPTS

4.5.5.3 Heat Loss Study. One of the largest uncertainties in the energy balance calculations was the heat loss in the water-cooled elbow (which is considered as part of the separator heat loss). Therefore, a study was made to determine the magnitude of the effect of these uncertainties. Table 4.8 presents the results of this study. The heat loss from the cyclone separators, Q_2'' , was cut in half (a change of about 10,000 kcal/mol O_2) in going from run 42 to 42A and from 28 to 28A. This is probably a little more of a change than the uncertainty in the loss from the water-cooled elbow. It will be seen that the effect of T_4 , the separator outlet temperature, is in the order of 200°F between runs 42 and 42A. In the case of runs 26 and 26A, the outlet temperature, T_4 , was forced to be equal to the measured temperature of 840°F. This required the overall heat loss to be the same and hence the reduction in heat loss in the separator was distributed as additional heat loss in the gasifier and devolatilizer. The effect on T_3 is about 200°F and on T_2 about 100°F. Thus, the uncertainty in separator heat loss is significant, but not decisive, in its effect upon calculated temperatures.

4.5.6 Overall Heat Balance

Table 4.9 summarizes the results of overall heat balances (IV). For each run, we used as input to the calculation the fraction of unconsumed carbon (β_p) as previously obtained for the material-balance calculations, the air-to-fuel ratio, and the estimated steady-state heat losses. The resulting values of T_4 were calculated for each run and compared with the corresponding measured values. The entries in the column labeled ΔT_4 in Table 4.9 represent measured differences, arranged according to code. It will be noted that the differences, ΔT_4 , are far larger than could possibly be explained by the various approximations we have had to make in the calculations.

The third column in Table 4.9, labeled Q' , represents the amount of additional heat loss that would have to be present in the process in order to explain the T_4 differences. The rates in the fourth column, $dT/d\theta$, represent the average rate of change of refractory temperature required to provide this heat loss if transient heating up of refractory is the cause of the additional heat loss. (In making this calculation, we calculated the total mass of refractory in the gasifier, crossover pipe, and devolatilizer. We also estimated the mean temperature of each kind of refractory and its corresponding specific heat.)

TABLE 4.8 HEAT LOSS STUDY

RUN NO.	42	42A	26	26A	
A	.339	.339	.413	.413	
β_p	.27	.27	.39	.39	
S	1	1	0	0	
H_m <small>BTU DSCF</small>	109.3	109.3	62.1	62.1	
$(\mu\text{CHAR})_0$	6.503	6.503	7.0	7.0	
$(\mu\text{ASH})_0$	32.5	32.5	21.2	21.2	
β_g #/#	.06	.06	.02	.02	
$\beta_{N,G.}$ #/#	0	0	.114	.114	
η_c	.90	.90	.90	.90	
Q_g'' <small>kcal mol O₂</small>	9500	9500	33,300	38,800	
Q_d'' <small>kcal mol O₂</small>	1000	1000	19,500	23,800	
Q_s'' <small>kcal mol O₂</small>	19,600	9,800	19,600	9,800	
COAL	WESTERN	WESTERN	EASTERN	EASTERN	
T_4 , °F	1524	1790	840	840	
H_{g4} <small>BTU DSCF</small>	109.9	110.3	67.0	67.0	
$(\mu\text{CHAR})_4$.723	.723	.78	.78	
$(\mu\text{ASH})_4$	3.61	3.61	2.35	2.35	
T_3 , °F	1836	1939	1216	1032	
$(\mu\text{CHAR})_3$	7.23	7.23	67.0	67.0	
$(\mu\text{ASH})_3$	36.1	36.1	7.77	7.77	
T_2 , °F	1852	1955	2512	2410	
$(\mu\text{CHAR})_2$	7.23	7.23	6.51	6.51	
$(\mu\text{ASH})_2$	36.1	36.1	21.2	21.2	
T_1 , °F	3109	3226	2841	2841	
$(\mu\text{CHAR})_1$	5.56	5.56	6.05	6.05	
$(\mu\text{ASH})_1$	32.5	32.5	21.2	21.2	

<u>SYMBOL</u>	<u>NOMENCLATURE</u>
A	AIR-FUEL RATIO EXPRESSED AS A FRACTION OF THE AMOUNT OF AIR THAT IS THEORETICALLY REQUIRED TO BURN THE FUEL (COAL AND NATURAL GAS INCLUDED) COMPLETELY TO CO ₂ AND H ₂ O, DIMENSIONLESS.
β_p	CHAR OUTPUT EXPRESSED AS ATOMS CARBON PER ATOM CARBON INPUT IN COAL, DIMENSIONLESS.
S	FRACTION OF COAL FED TO GASIFIER, DIMENSIONLESS.
H_m	MEASURED HEATING VALUE OF THE MAKE GAS, BTU/DSCF.
μ	MOLECULAR FLOW RATES OF INDIVIDUAL SPECIES, kg MOLES/kg MOL O ₂ FED AS AIR.
β_g	FRACTION OF THE TOTAL INPUT CARBON APPEARING AS HYDROCARBONS, CH _x , IN STREAM LEAVING SYSTEM. THE VALUE OF X IS APPROXIMATELY 2.5, DIMENSIONLESS.
$\beta_{N,G.}$	NATURAL GAS (METHANE) FEED RATE EXPRESSED AS kg OF METHANE PER kg OF AS-FIRED COAL, DIMENSIONLESS.
η_c	OVERALL EFFICIENCY OF PARTICULATE COLLECTOR (BOTH CYCLONES IN SERIES TAKEN TOGETHER AS A SINGLE DEVICE), DIMENSIONLESS.
Q_g''	TOTAL HEAT LOSS FROM GASIFIER, kcal/kg MOL O ₂ FED AS AIR.
Q_d''	TOTAL HEAT LOSS FROM DEVOLATILIZER, kcal/kg MOL O ₂ FED AS AIR.
Q_s''	TOTAL HEAT LOSS FROM CYCLONE SEPARATORS (INCLUDES HEAT LOSS FROM WATER JACKETED ELBOW AT DEVOL EXIT), kcal/kg MOL O ₂ FED AS AIR.
T_1, T_2, T_3, T_4	CALCULATED TEMPERATURES AT COMBUSTOR OUTLET, GASIFIER OUTLET, DEVOLATILIZER OUTLET AND CYCLONE SEPARATOR OUTLET, RESPECTIVELY, °F.
H_{g4}	CALCULATED HEATING VALUE OF THE MAKE GAS, BTU/DSCF.
$0, 1, 2, 3, 4$	COMBUSTOR INLET, COMBUSTOR OUTLET, GASIFIER OUTLET, DEVOLATILIZER OUTLET AND CYCLONE SEPARATOR OUTLET, RESPECTIVELY.

TABLE 4.9 OVERALL HEAT BALANCE (IV)

CODE	ΔT_4 , °F	Q' kcal/mol O ₂	(dT/dθ) FOR Q' °F/HR
1	1412	41,634	114
2	1158	35,695	97
3	1522	49,043	134
4	880	29,123	79
5	1014	33,368	91
6	1162	38,938	106
7	611	21,093	58

$$\Delta T_4 = (T_4)_{\text{CALC.}} - (T_4)_{\text{MEAS.}}$$

Q' = AMOUNT OF ADDITIONAL HEAT LOSS THAT WOULD HAVE TO BE PRESENT IN THE PROCESS IN ORDER TO EXPLAIN THE ΔT_4 DIFFERENCES.

$\frac{dT}{d\theta}$ = RATE OF CHANGE OF REFRACTORY TEMPERATURE REQUIRED TO ACCOUNT FOR Q' ASSUMING THAT THE TRANSIENT HEATING OF THE REFRACTORY IS THE CAUSE OF THE ADDITIONAL HEAT LOSS.

When all of the coal is fed to the gasifier, the local air-fuel ratio in the gasifier is equal to the overall process air-to-fuel ratio. But when, as in codes 3 and 6, all coal is fed to the devolatilizer (at the same overall air-fuel ratio), the local air-fuel ratio in the gasifier is quite a bit higher than the overall value. This situation should produce a gasifier temperature that is higher than the case of all coal to the gasifier (codes 1, 4, and 7). Interestingly, in Table 4.9 the Q' values are highest for the condition of high gasifier temperature (codes 3 and 6). This is consistent with the inference that transient heat losses are the cause of the T_4 discrepancies.

Since, for the majority of the tests, the pilot plant was started up at about the same time every morning one might expect an unsteady state condition to reveal itself via a gradual heating up of the unit throughout the day. If this were the case the system outlet temperature (cyclone separator outlet) would be affected the most and conceivably would be a function of the "time of day". Admittedly although each test was run under different conditions and hence would produce different outlet temperatures a general trend might be expected to appear. A plot of cyclone outlet temperature T_4 as a function of "Time of Day", Figure 4.27, confirms the fact that the system was not at steady state, but was slowly heating up throughout the day. The slope of the least-squares fit through the data is about 60°F/hr. This is consistent with the required range of 58-134°F when one considers that the rate of rise of exit gas temperature will probably be less than that of the refractory and that we have not included the mass of the steel shells and their rate of temperature rise in estimating the required $dT/d\theta$'s.

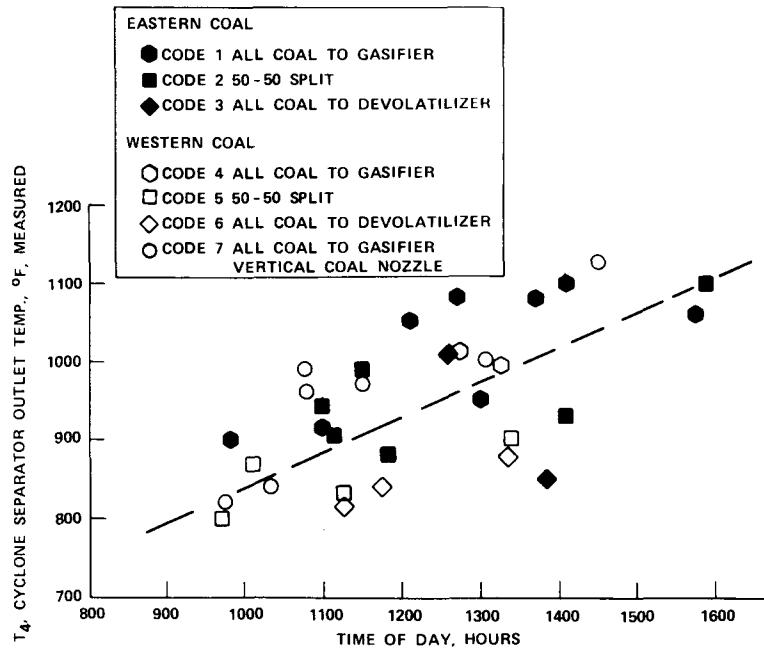


FIGURE 4.27 SEPARATOR OUTLET TEMPERATURE AS A FUNCTION OF "TIME OF DAY"

4.5.7 T_3 and T_2 Study

Having established that transient heat losses were significant, we repeated the energy balance calculations, this time forcing the separator outlet temperature, T_4 , to be equal to the measured value, i.e., we assumed that the measured separator outlet temperature was correct and calculated the required additional heat losses. These transient heat losses were distributed in the gasifier-devolatilizer on the basis of the weight-specific heat product. This amounted to roughly a 50/50 split.

Table 4.10 summarized the results of the T_2 (gasifier exit) and T_3 (devolatilizer exit) calculations. The table contains the average values of the differences, grouped according to code and differentiated according to the assumed value of separator efficiency, η_c . In comparing the ΔT_3 values for code 1 with codes 2 and 3 and code 4 with codes 5 and 6, it will be noted that the ΔT_3 tends to be higher for the cases where any coal at all is fed to the devolatilizer. This is consistent with the hypothesis that the measured T_3 values are low in this circumstance due to fouling by tars and soot. These changes are also consistent with the hypothesis of an actual heat loss below that estimated due to fouling of the water-cooled elbow. If in actuality the elbow had been fouled with tar deposits, thereby reducing separator heat losses, temperatures T_3 and T_4 (cyclone exit) would tend to approach each

other; in the extreme with no separator heat loss, T_3 would equal T_4 . However, the calculated value of T_3 does not take into account possible fouling (reduced heat loss). Therefore, T_3 tends to be calculated high since it must maintain a given heat loss across the separator.

TABLE 4.10 GASIFIER AND DEVOLATILIZER EXIT - AVERAGE DIFFERENCE BETWEEN CALCULATED AND MEASURED TEMPERATURES

η_c	CODE	1	2	3	4	5	6	7
.90	ΔT_3 AVG. (DEVOL. EXIT)	-22	+100	+84	-74	+117	+140	-10
	ΔT_2 AVG. (GASIFIER EXIT)	-96	+175	+542	-311	+183	+538	-182
.95	ΔT_3 AVG.	-86	-15	-32	-180	+13	+31	-110
	ΔT_2 AVG.	-262	-199	-62	-430	-139	-17	-332

$$\Delta T \triangleq T_{\text{CALCULATED}} - T_{\text{MEASURED}}$$

Comparing the values of ΔT_2 in Table 4.10 - code 1 with codes 2 and 3, code 4 with codes 5 and 6 - reveals that the codes where some coal is fed to the devolatilizer (codes 2, 3, 5, 6) give higher values of ΔT_2 than do the corresponding codes where all the coal goes to the gasifier. This is consistent with our picture of the devolatilization process; that is, for purposes of energy balances, we assumed that devolatilization is instantaneous, and the devolatilizer products are immediately reformed to carbon monoxide and hydrogen. As a matter of fact, devolatilization takes time, the reforming may not be completed in the devolatilizer, and both devolatilization and reforming are endothermic. Thus, failure of these assumptions would have the same effect as an exothermic reaction within the devolatilizer, tending to raise T_3 with respect to T_2 . Or, which amounts to the same thing, it would tend to make the actual value T_2 lower than that calculated. However, some of the ΔT_2 values seem a little too large (in the absolute sense) for this explanation. Bearing in mind that the ΔT_2 should be negative (because of the assumption of no reaction in the devolatilizer) the too large values of ΔT_2 would be, for $\eta_c = 0.9$, +175, +542, +183, and +538 - or precisely those where some coal goes to the devolatilizer. For $\eta_c = 0.95$, these values become -262, -430, and -332, - or just the values for no coal to the devolatilizer.

This leads us to conclude (somewhat tenuously, we admit) that $\eta_c = 0.90$ for runs wherein all the coal was fed to the gasifier (codes 1, 4, 7) and $\eta_c = 0.95$ when some coal was fed to the devolatilizer (codes 2, 3, 5, 6). With this choice, all of our a priori predictions are satisfied, and the largest discrepancy is about 300°F in absolute magnitude.

Thus, an explanation for the low measured values of T_3 when feeding coal to the devolatilizer (Figure 4.25) might be fouling of the thermocouple, or it might be just that the separator efficiency improves under this condition. Consequently, one can use the measured values of T_3 as characteristic of devolatilization — although this should be done with some reservations.

4.5.8 Summary of Effects of Steady-State and Transient Heat Losses

Table 4.11 presents a summary of the effects of steady-state and transient heat losses. The first column enumerates the various codes while the second, third, and fourth columns list the steady-state heat losses in the gasifier, devolatilizer, and separators respectively. The total of these steady-state heat losses, Q , is listed in the fifth column. The total heat loss, which is the sum of both steady-state and transient, is listed in the column labeled BOTH Q". It is evident that the transient heat loss is a major part of the total.

TABLE 4.11 SUMMARY OF EFFECTS OF STEADY STATE AND TRANSIENT HEAT LOSSES

CODE	STEADY STATE kcal/kg.mol O ₂ in				TRANSIENT ONLY Q'	BOTH Q"	ΔT ₄ °F
	Q _g	Q _d	Q _s	Q			
1	9242	1036	19606	29,884	41,634	71,477	2358
2	10271	1036	19606	30,913	35,695	66,608	2069
3	9635	1036	19606	30,277	49,043	79,320	2362
4	8999	1036	19606	29,641	29,123	58,764	1996
5	8958	1036	19606	29,600	33,368	62,968	2021
6	9635	1036	19606	30,277	38,938	69,215	2183
7	8283	1036	19606	28,925	21,093	50,018	1756

$$Q \stackrel{\Delta}{=} Q_g + Q_d + Q_s$$

$$Q'' \stackrel{\Delta}{=} Q + Q'$$

Q' IS DIVIDED 56% TO GASIFIER, 44% TO DEVOLATILIZER

$$\Delta T_4 \stackrel{\Delta}{=} (T_4) \text{ CALC., ZERO HEAT LOSS} - (T_4) \text{ MEASURED}$$

Q_g = TOTAL HEAT LOSS FROM GASIFIER

Q_d = TOTAL HEAT LOSS FROM DEVOLATILIZER

Q_s = TOTAL HEAT LOSS FROM CYCLONE SEPARATORS

T₄ = CYCLONE SEPARATOR OUTLET TEMPERATURE

The last column, labeled $\Delta T'_4$, is the difference between the adiabatic value of T'_4 (i.e., without any heat losses whatever) and the measured values of T'_4 . Obviously, complete elimination of all heat losses could produce very significant temperature increases (1700-2400°F), and even elimination of only the transient losses would produce much higher temperatures (roughly 700-1800°F). For example, in the case of code 1, the transient heat loss amounts to about 4/7 of the total, and elimination of it would raise the temperature 4/7 of 2358°F, which is about 1350°F.

4.6 TAR FORMATION

As described previously, "tars" are defined in this report as that material which is extracted from a particulate-loading sample by a toluene wash. These tars are condensed at temperatures above the temperature of the particulate filter, about 400°F. They are removed from the gases that pass through the particulate probe whose total quantity is measured. Assuming these tars are uniformly distributed throughout the gas volume, the total quantity captured in the filter will actually represent their quantity in the gas, even if much of the particulate escapes the sampling probe (as we believe it often did).

4.6.1 TGA Analysis of Captured Particulate

The data of Figure 4.28 help to establish the possible magnitude of the error in tar measurement due to missing particulate. The Thermogravimetric Analysis (TGA) apparatus permits determination of the weight of a sample as a function of the temperature to which it is exposed. Assuming that condensation of tars is reversible, then the "dust" sample contained a total of about 28% tars. This agrees well with the 25.9% extracted by the toluene wash. Of this total, the curve of Figure 4.28 implies that roughly 2/3 would have condensed at temperatures above 800°F and, therefore, presumably on the dust particles before they were drawn from the gas stream into the particulate filter via the dust-sampling probe. The amount of this portion might be low by as much as a factor of two, if half of the dust in the gas stream was actually missed due to stratification. The other 1/3 of the total must have condensed at temperatures between 800°F and 400°F, that is, after the gas sample was drawn out of the make-gas line. The concentration represented by this amount is, presumably, accurate because prior to condensation the tars should have been uniformly distributed through the gas stream. Thus, the nominal tar concentration of 26% possibly should have been: 26 (1/3) + 2 (26) 2/3 = 43%. In other words, our tar determinations might be low inasmuch as a factor of 43/26 = 1.67, but probably not more than that.

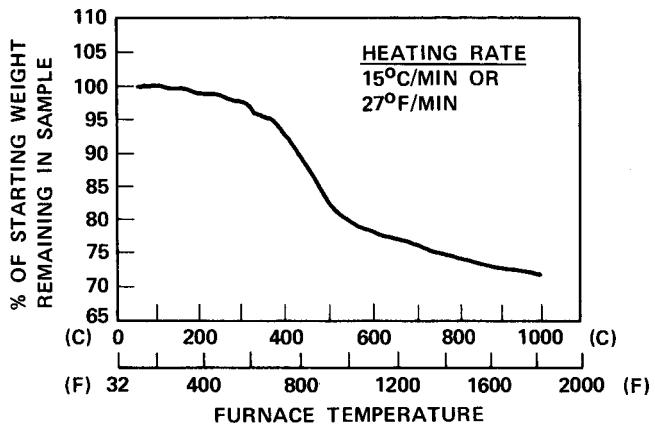


FIGURE 4.28 THERMOGRAVIMETRIC ANALYSIS (TGA) OF PARTICULATE FROM CYCLONE OUTLET TEST 26 – % TOLUENE EXTRACTED 25.9

4.6.2 Air-Fuel Ratio and Temperature Effect

The effects of air-fuel ratio and devolatilizer temperature are interrelated. With this in mind, Figure 4.29 shows the effect of air-fuel ratio on tar formation. Two curves are shown, one for all coal fed to the gasifier (points with an asterisk) and the other for some coal or all the coal fed to the devolatilizer. When all the coal is fed to the gasifier, relatively little tar is produced above an air-fuel ratio of 40%. Below this point, tar production rises dramatically. On the other hand, if any amount of coal is fed to the devolatilizer, relatively large amounts of tar are produced regardless of the air-fuel ratio.

Tar formation is plotted versus devolatilizer inlet temperature, T_2 , and devolatilizer outlet temperature, T_3 , in Figures 4.30 and 4.31 respectively. Again, the points corresponding to all the coal fed to the gasifier are denoted by an asterisk. As in the previous figure, the data seems to fall into two groups: (1) with all coal to the gasifier, tar production is low until the devolatilizer inlet temperature drops below 1700°F, and (2) when any amount of coal is fed to the devolatilizer, tar production is high regardless of temperature.

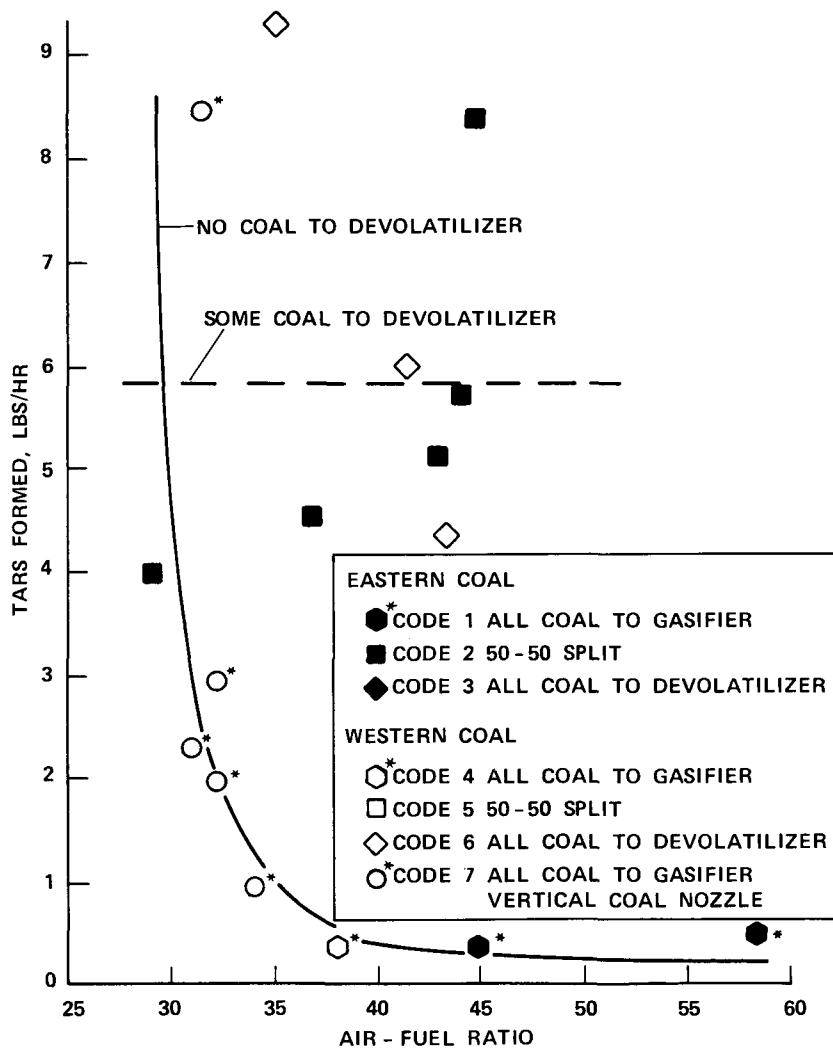
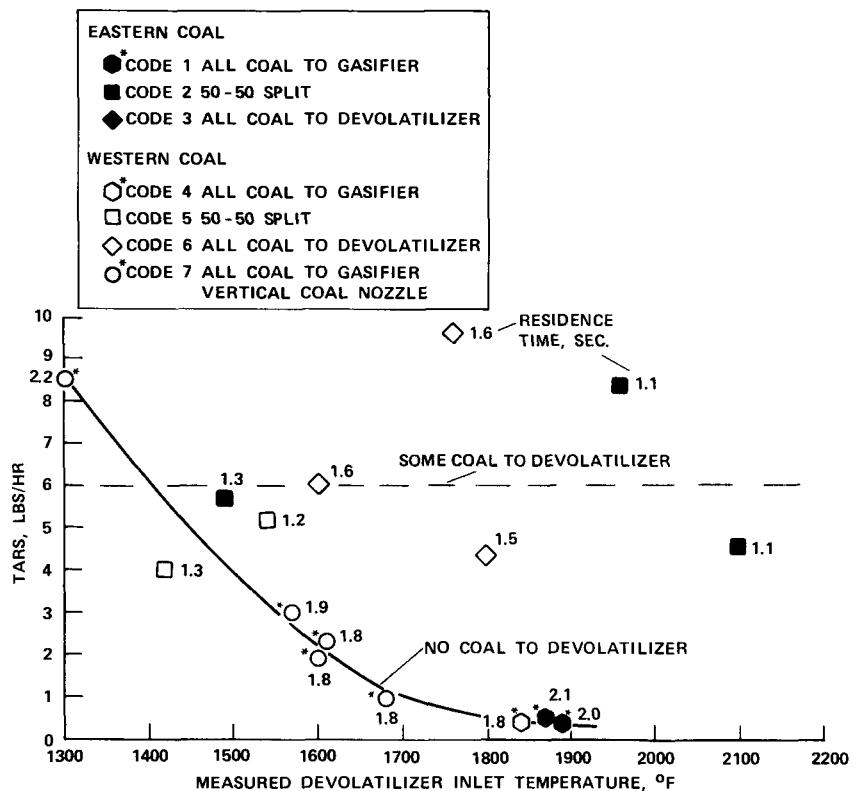



FIGURE 4.29 EFFECT OF AIR-FUEL RATIO ON TAR FORMATION

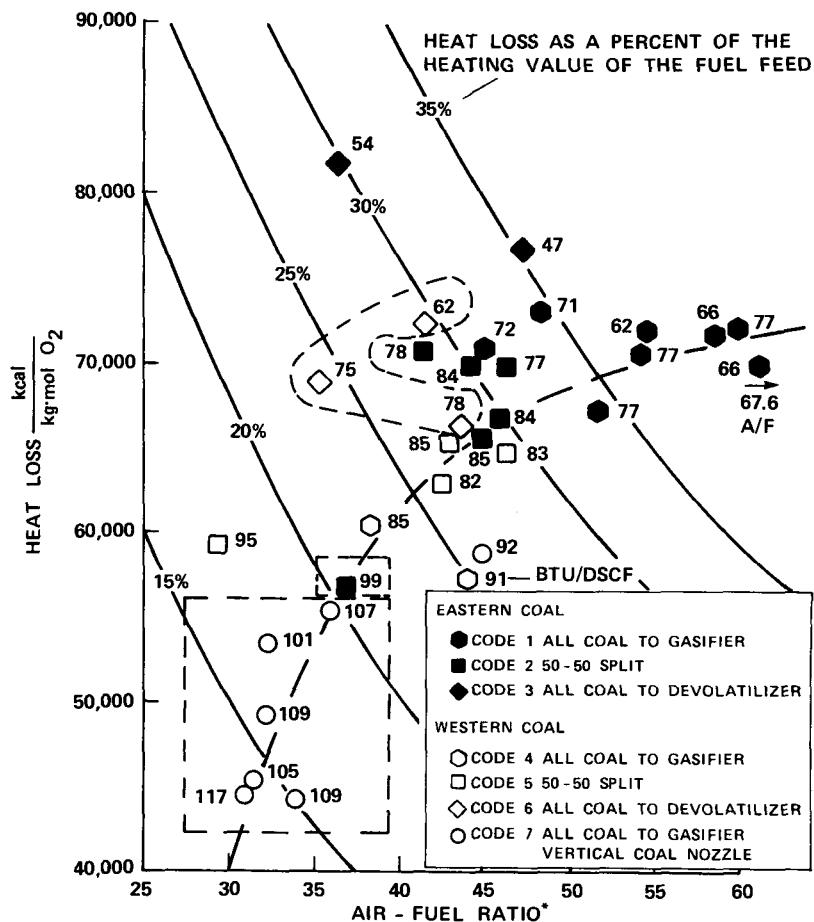

4.6.3 Residence Time

Residence times are shown along each data point in Figure 4.30. These were calculated from the point of coal injection to the devolatilizer outlet. For the codes 2 and 5, 50-50 split, the residence time was calculated as though all the coal was fed to the devolatilizer.

It will be noted that all of the longer residence times fall on the "no coal-to-devolatilizer" curve and all of the shorter on the "some-coal-to-devolatilizer" curve. This is due primarily to the fact that air flows to the gasifier were

FIGURE 4.30 TAR FORMATION AS A FUNCTION OF MEASURED DEVOLATILIZER INLET TEMPERATURE

FIGURE 4.31 TAR FORMATION AS A FUNCTION OF MEASURED DEVOLATILIZER OUTLET TEMPERATURE


held constant. Thus, it is not possible to say with certainty whether the higher tars in the devolatilizer case were due to the equipment configuration or to the short residence times. However, the fact that the two curves intersect — giving the same tar production for the same devolatilization inlet temperature with different residence times and different conditions — does seem to suggest that tar production is a more complicated phenomenon than can be described in terms of these three variables alone.

4.7 STATISTICAL ANALYSIS

4.7.1 Heating Value as a Function of Heat Loss and Air-Fuel Ratio

It seems obvious from stoichiometric considerations, etc., that air-to-fuel ratio (expressed as a fraction of the amount of air that is theoretically required to burn the fuel [coal and natural gas included] completely to CO_2 and H_2O , dimensionless) must be an important variable controlling make-gas heating value. It is not so obvious whether or not heat losses should have a similarly important effect, since the energy they represent might, in effect, simply come out of the sensible heat of the make gas. However, in spite of this limitation, our modeling study does suggest that heat losses may be important. Thus, it is of interest to investigate the question empirically.

Before we attempt to do this, however, we think it important to point out that, in our experiments, the "independent" variables heat loss and air-to-fuel ratio are interrelated (in the statistical sense). This situation is illustrated in Figure 4.32 where heat loss is plotted against air-fuel ratio for all 32 runs that were analyzed. It will be noticed that the points fall in a curved line that rises, at first steep, then more slowly with increasing air-fuel ratio. (In all probability, this is due to the fact that temperatures tend to rise with rising air-fuel ratio, leading to greater transient heat loss in the refractory of the gasifier.) Thus, one must be very careful of his interpretation of statistical analysis. That is, if the points were to lie along a precise curve in the heat loss-air fuel ratio domain, it would become impossible to say whether variations in heating value were due to heat loss or air-fuel ratio. Fortunately, this is not quite the case, so some inferences can perhaps be drawn, if tenuously.

*AIR-FUEL RATIO IS EXPRESSED AS A FRACTION OF THE AMOUNT OF AIR THAT IS THEORETICALLY REQUIRED TO BURN THE FUEL (NATURAL GAS AND COAL INCLUDED) COMPLETELY TO CO_2 AND H_2O .

FIGURE 4.32 TEST DATA PLOTTED AS A FUNCTION OF HEAT LOSS, AIR-FUEL RATIO, AND HEATING VALUE

Also shown in Figure 4.32 are values of heating value of the make gas. These permit a few inferences, as follows:

1. The three points for code 6 data, showing heating values of 62, 75, and 78 Btu/dscf, suggest a tilt of the make gas heating value surface that is downward as heat loss increases. In other words, a strong effect of heat loss is revealed.

2. The one point for code 2 data at 99 Btu/dscf, when compared with the rest of the code 2 data at 78, 84, 84, 77 Btu/dscf, could include either a heat loss effect or an air-to-fuel ratio effect, since it is displaced in both directions from the rest.
3. The six points for code 7 data generally suggest a moderate heat loss effect, since they lie at about the same air-fuel ratio value but tend to lower values at higher heat loss values. Thus, the data points themselves add a little empirical evidence to the theory, suggesting that heat loss has an effect on the heating value of the make gas.

4.7.2 Discussion of Various Statistical Analysis

This point was explored further via statistical analysis. However, due to an inherent correlation in the independent variables, and the consequent possibility of misleading results, a special effort was made to explain different kinds of correlating functions. The following terms were used in conjunction with this statistical analysis:

H = Heating Value, Btu/DSCF

C_o = Constant

C_n = Coefficient expressing relative position of n-th data group.

X_n = "Dummy" variable having a value of unity for the n-th group and zero for all others.

K's = Coefficients of air-fuel ratio and heat loss terms.

Q = Total heat loss, kcal/kg mol O_2 fed as air.

σ = standard error of prediction.

The results are summarized in Table 4.12. The same general system was used in all five cases, but certain terms were dropped to give the different kinds of functions. For example, the summation $\sum_n C_n X_n$ terms were omitted in cases A, C, and E to treat all of the data as if they belonged to the same population; cases B and D retain these terms so as to admit an influence of operating mode. The value of σ at the bottom of the table is the standard error of prediction that results in each case. Large values, of course, imply a less accurate fit of the data.

TABLE 4.12 SUMMARY OF STATISTICAL ANALYSIS INCLUDING HEAT LOSSES

CASE	A	B	C	D	E
C ₀	130.6	184.0	184.5	-1357.8	+179.2
C ₁	---	-76.1	---	1530.6	---
C ₂	---	-71.5	---	1534.6	---
C ₃	---	-105.9	---	1512.2	---
C ₄	---	-69.3	---	1529.9	---
C ₅	---	-71.5	---	1531.9	---
C ₆	---	-86.0	---	1523.4	---
C ₇	---	-55.8	---	1536.1	---
K ₁	-1.03	-.61	+.79	-.45	+.49
K ₂	---	---	-.0090	+.0010	-.0071
K ₃	-.000041	-.000030	-.0021	-.0013	-.0018
K ₄	---	---	+3.8x10 ⁻⁹	+2.3x10 ⁻⁹	+3.3x10 ⁻⁹
σ	13.3	5.9	5.9	4.5	4.9

GENERAL EQUATION:

$$H = C_0 + K_1 A + K_2 A^2 + K_3 Q + K_4 Q^2 + \sum_1^7 C_n X_n$$

The following conclusions are drawn from Table 4.12:

Case A

Simple linear fits were allowed for the effects of air-fuel ratio and heat loss. This amounts to fitting a single plane through the data points in heating value, air-fuel ratio, heat loss space. In this analysis the various codes were not permitted to "float"; all the data was lumped into one group. The statistical fit was not too good in that it produced a standard deviation of 13.3 Btu/dscf, compared with about half this value in the other four cases.

Case B

In this analysis the simplicity of the previous fit with respect to air-fuel ratio and heat loss was retained, but the various codes were permitted to "float". This produced a much better fit giving a standard deviation of 5.9 Btu/dscf. The constants, C₁ through C₇, are indicative of the relative heating values of the data in the various codes. For codes 1,

2, 4, and 5, the C values are about the same. Code 3 data (all coal to the devolatilizer, Eastern coal) is much lower, indicating that these data points were tending to fall below the correlation. In addition, code 6 also tended to fall a little below, and code 7 data was significantly higher than the others — about 20 Btu/dscf higher.

Case C

Here the "float" of the individual codes was eliminated, but we allowed more complicated functions to represent the effects of air-fuel ratio and heat loss. For this case the same degree of fit is obtained as in Case B, the standard deviation being 5.9 Btu/dscf.

Case D

This was the most complicated case in that the codes were permitted to "float" and the complicated functions were retained to represent the effects of air-fuel ratio and heat loss. This was the best fit as judged by the standard deviation of 4.5 Btu/dscf. Note that C_3 , the constant for code 3, is still significantly below the typical values of the other cases; and again the heating values for code 7 data are significantly above the average.

Case E

The "float" was eliminated but the complicated functions were retained to represent the air-fuel ratio and heat loss effect. However, the Code 3 data was eliminated from this case as it always seemed to be lower than all the other data. The standard deviation is 4.9 Btu/dscf, indicating a fairly good fit.

As far as picking the best case is concerned, Case E is our first preference as it is not overly complex yet it fits the data fairly well. Our second choice is Case B because it represents the "other extreme" in that it allows the various codes to "float", yet it is simple with respect to the air-fuel ratio and heat loss effects. This case also produces a good fit of the data.

Figures 4.33 through 4.36 present the two statistical analyses, E and B, in graphical form showing the effects of heat loss and air-fuel ratio. In Figure 4.33 the effect of air-fuel ratio has been subtracted out from the

heating value and the result plotted against heat loss. Figure 4.34 shows the same plot with respect to air-fuel ratio and Figures 4.35 and 4.36 show this same study for analysis B. It will be noted that in analysis E the heat loss effect is steep while the air-fuel ratio is flat. Just the opposite trends are present in the B analysis.

4.7.3 Projections for Reduced Heat Loss

The majority of the data was unfortunately obtained under conditions of high heat loss. This is evident from Figure 4.32 wherein most of the data displays heat losses in excess of 25% of the heating value of the fuel. The question we would like to answer is: What would be the heating value if the heat losses were reduced? Figure 4.37 attempts to answer this question. Extrapolation according to the two statistical analyses, B and E, have been superimposed on the plot of code 7 data. For the B analysis, there is very little effect of heat loss, hence only one curve. It will be noted that this correlation predicts a heating value of about 98 Btu/dscf at 50% theoretical air and 100% carbon utilization. In the E analysis, heat loss is a major factor; consequently, three curves are shown for different heat losses. By eliminating the transient heat losses and some of the steady-state losses, the total loss might be brought down to that of the middle curve, 20,000 kcal/kgmol O₂. Note that Case E predicts that, at this reduced loss, a heating value of about 150 Btu/dscf might be possible at 100% carbon utilization, at an air-fuel ratio of 35%. What is possible in actual practice probably lies somewhere between these two cases. Unfortunately, with the present state of knowledge, the extrapolation cannot be made any more precise than this.

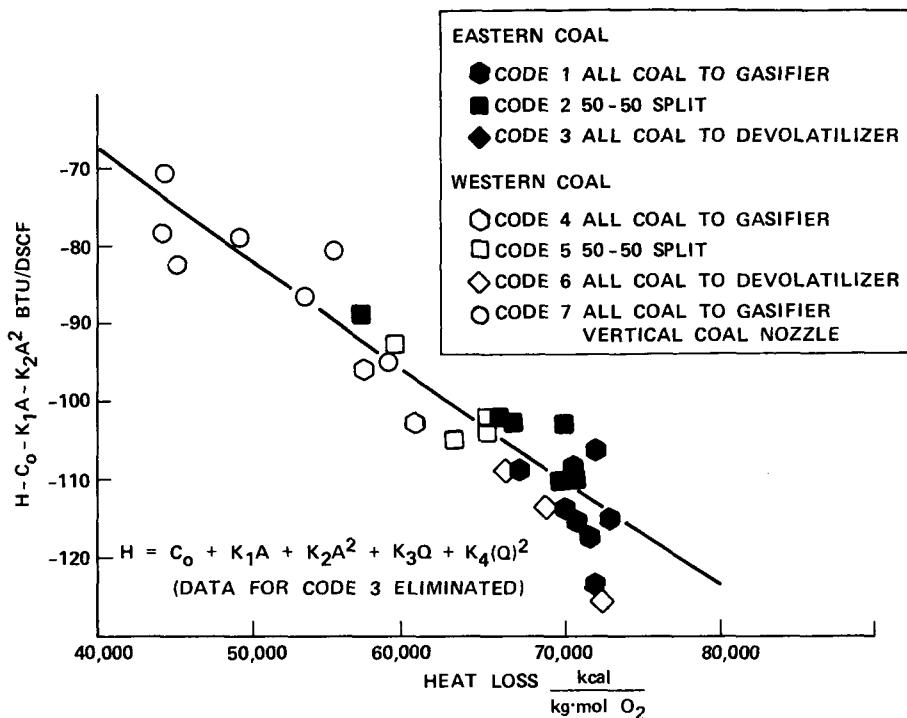


FIGURE 4.33 STATISTICAL ANALYSIS 'E', HEAT LOSS EFFECT

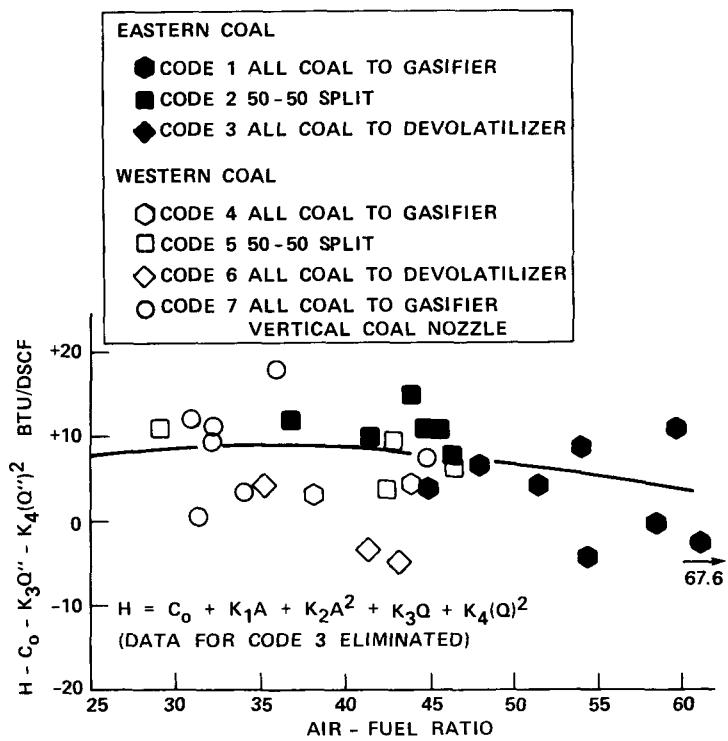


FIGURE 4.34 STATISTICAL ANALYSIS 'E', AIR-FUEL RATIO EFFECT

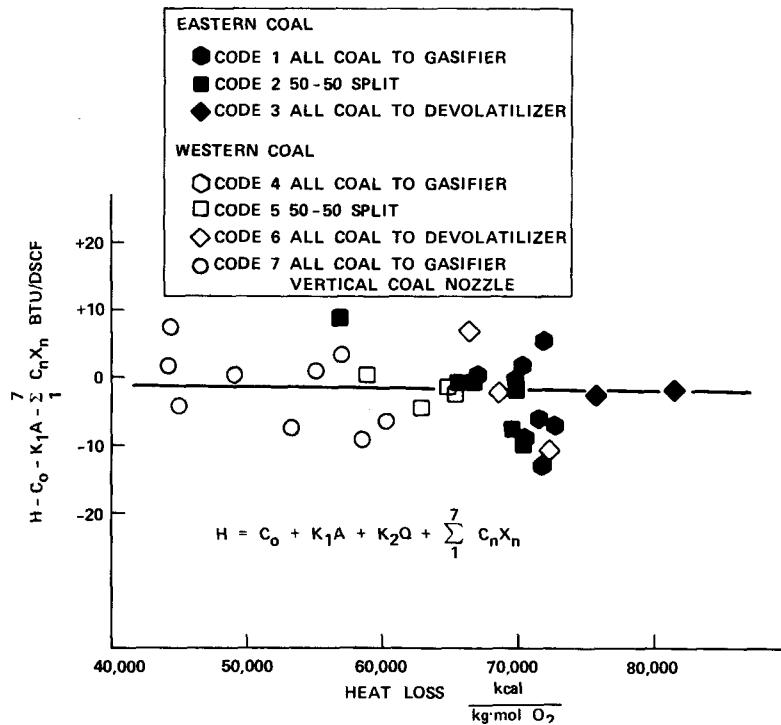


FIGURE 4.35 STATISTICAL ANALYSIS 'B', HEAT LOSS EFFECT

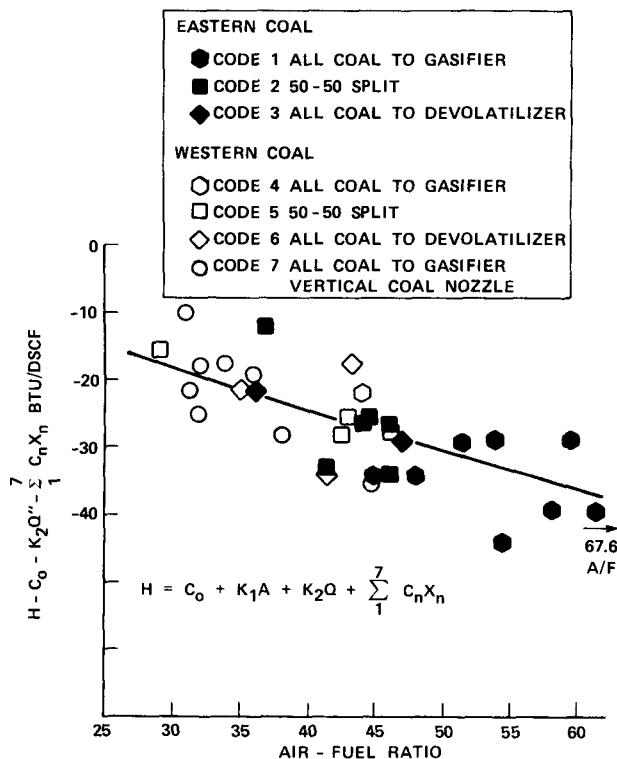


FIGURE 4.36 STATISTICAL ANALYSIS 'B', AIR-FUEL RATIO EFFECT

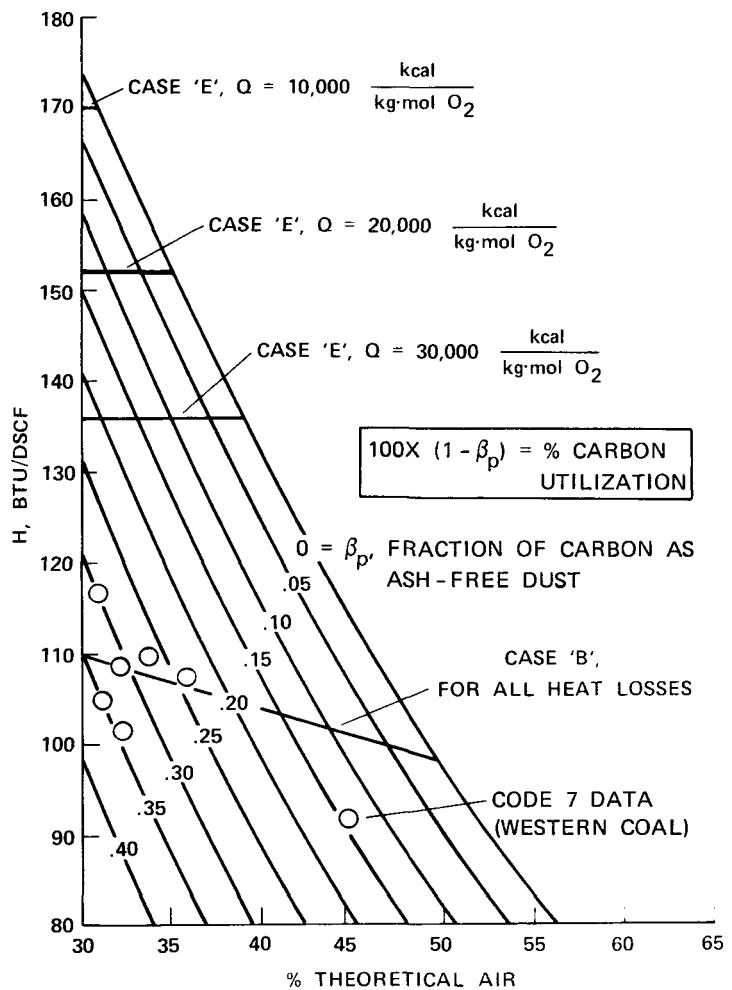


FIGURE 4.37 PROJECTIONS FOR REDUCED HEAT LOSS

Section 5

THERMAL ANALYSIS OF PILOT APPARATUS

Analysis of the data via material and energy balance has shown that unexpectedly large heat losses were encountered. These were due primarily to the transient heating of the large mass of refractory in the gasifier and, presumably, the crossover pipe and devolatilizer as well. Obviously, if the apparatus were run for a long enough period of time under constant operating conditions, transient heat losses could be completely avoided. However, it seems possible that steady-state heat losses might, then, increase to fairly large values. Consequently, it was decided to direct an analytical study toward answering the following questions:

- What heat losses might be achieved at steady-state, and how long might it take to achieve steady-state?
- What changes might be made in the apparatus to shorten thermal equilibrating times or reduce heat losses?

To answer these questions, a thermal model of the pilot apparatus was developed and programmed for a computer. Because of the complex geometry of the apparatus (various thicknesses and types of refractory, various internal dimensions, time varying internal boundary condition due to the gasification reaction), this program was necessarily fairly complex. The purpose of this section is to summarize the thermal model and its use in answering the above two questions.

5.1 DESCRIPTION OF THERMAL ANALYSIS MODELS

5.1.1 Equipment Components for Thermal Analysis

Figure 5.1 shows how the pilot apparatus was broken down into components for the purposes of thermal analysis. The eight major components were:

1. Combustor
2. Bottom of gasifier
3. Top of gasifier

4. Bottom of crossover duct
5. Top of crossover duct
6. Top of devolatilizer
7. Bottom of devolatilizer
8. Cyclone separators

Figures 5.2 through 5.8 show the detail of how each of the components of Figure 5.1 were further broken down into subcomponents for the purpose of thermal analysis. For example, the gasifier (Figure 5.3) was broken down into four axial sections, and each axial section was broken down into 17 radial sections. The radial sections were chosen for convenience in representing the five different kinds of refractory present. Provision was also made for thermal fouling of the inside surface of the carbide liner by char. The outermost steel shell was assumed to have infinite thermal conductivity. As is obvious from Figures 5.3, 5.5, 5.7, and 5.8, the number of radial segments varied from component to component according to the particular construction of each. In such cases as the top of the gasifier, the crossover duct, and the top of the devolatilizer, the geometry adopted for modeling purposes was slightly different from the actual. This was necessary because the actual geometry is three-dimensional and we wished to maintain the simplicity of a two-dimensional model. Consequently, the circular top of the gasifier was ignored, this component being considered to be simply a circular pipe without ends. The radial wall thickness was maintained the same as the actual apparatus; the density of the refractory was adjusted to maintain the same total mass of refractory as in the actual apparatus. The same kind of adjustment was made for the top of the devolatilizer.

In considering the top of the gasifier and devolatilizer to be circular pipes without ends, the lengths of the components were not increased so as to maintain the same internal surface area. Also the heat transfer coefficients on the outside were not adjusted so as to maintain the same product of heat transfer coefficient times outside area as in the actual apparatus. However, the errors introduced by neglecting these adjustments are very minor. Calculations show that the additional heat loss, if the areas and heat transfer coefficients had been properly adjusted, would have accounted for only a 2% increase for each of these components. The effect on the overall heat loss would have been an insignificant 0.1%.

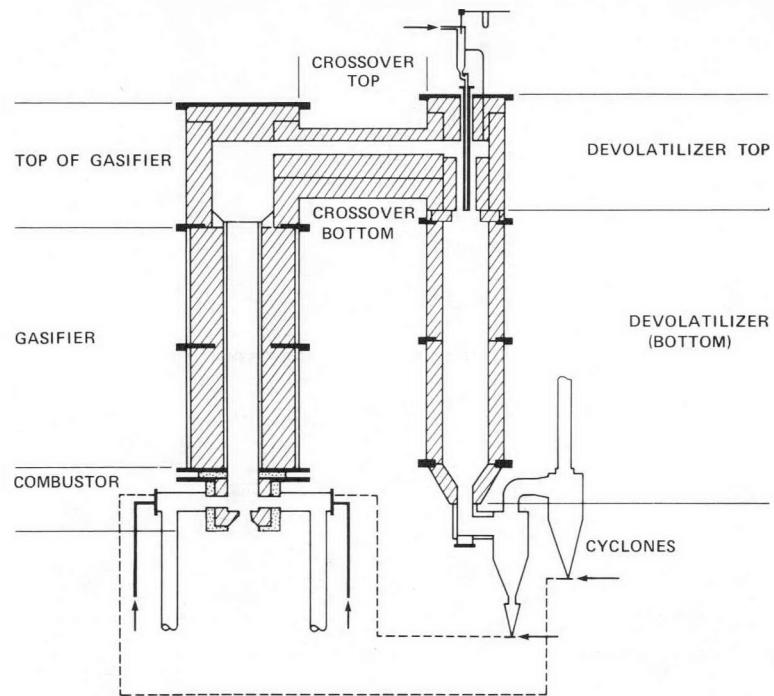


FIGURE 5.1 EQUIPMENT COMPONENTS FOR THERMAL ANALYSIS

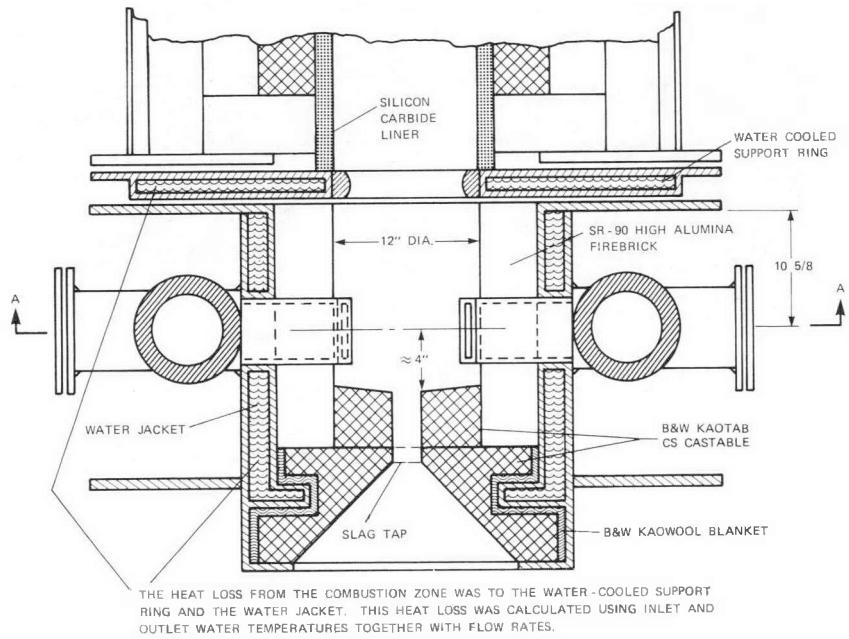


FIGURE 5.2 COMBUSTOR COMPONENTS FOR THERMAL ANALYSIS

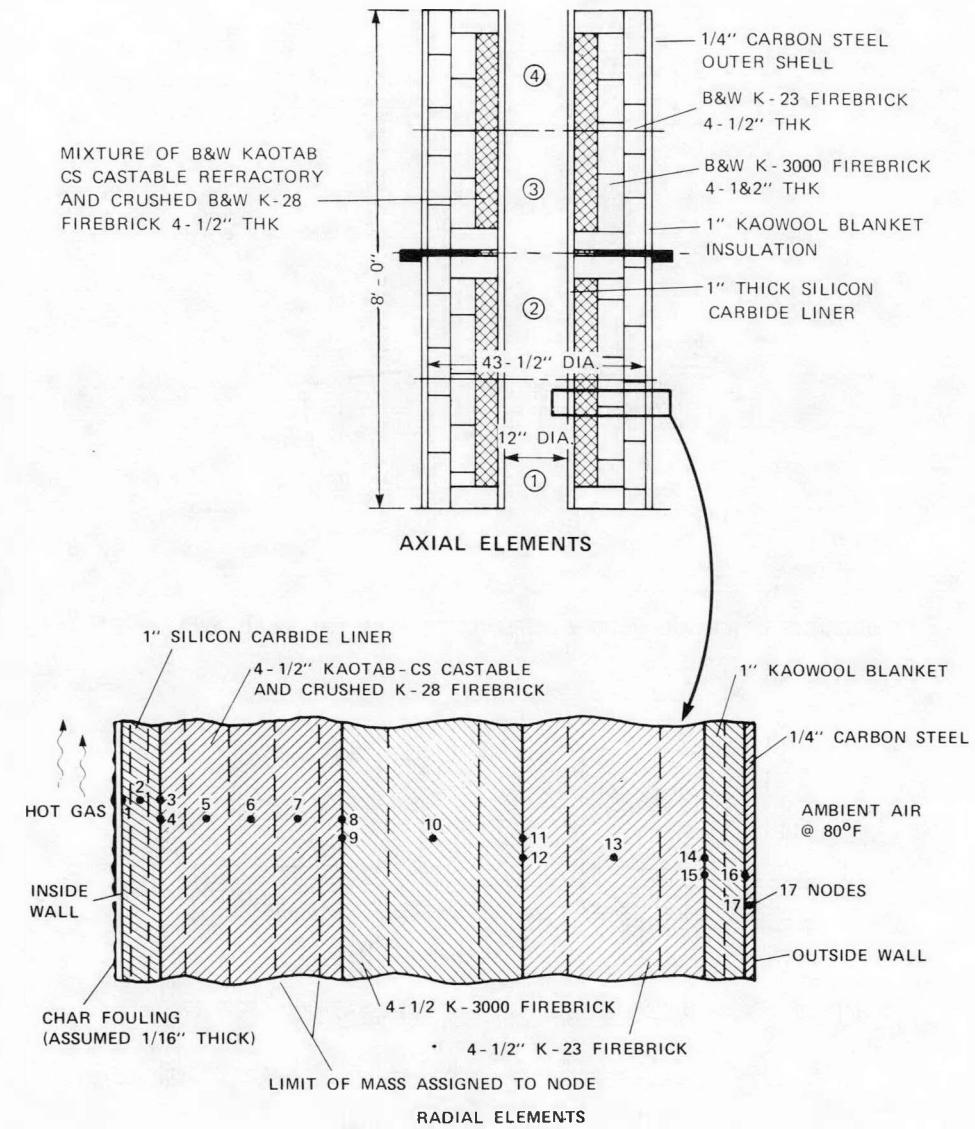


FIGURE 5.3 RADIAL AND AXIAL THERMAL ELEMENTS IN GASIFIER BOTTOM WALL USED IN THERMAL ANALYSIS

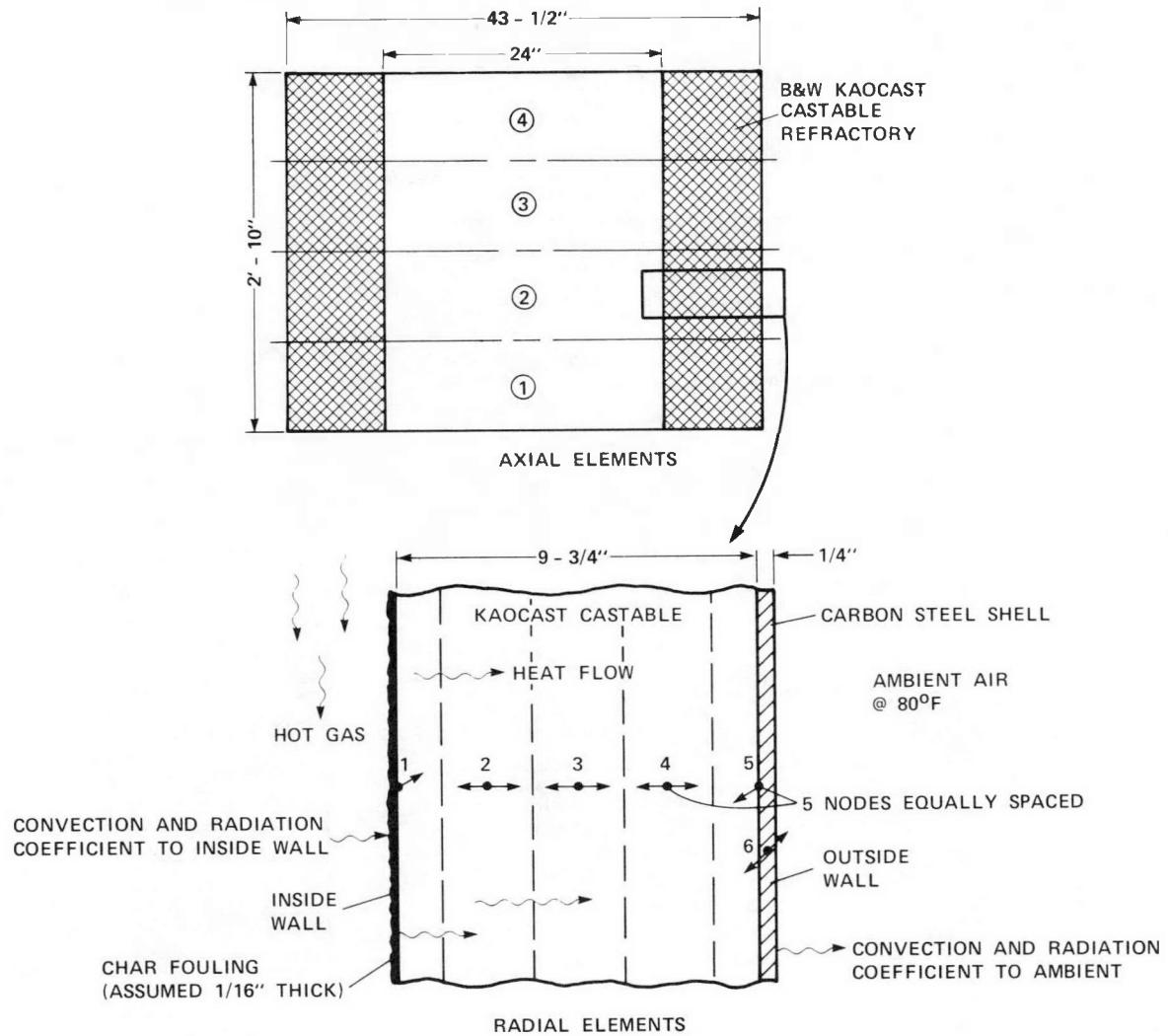


FIGURE 5.4 RADIAL AND AXIAL THERMAL ELEMENTS IN TOP OF GASIFIER USED IN THERMAL ANALYSIS

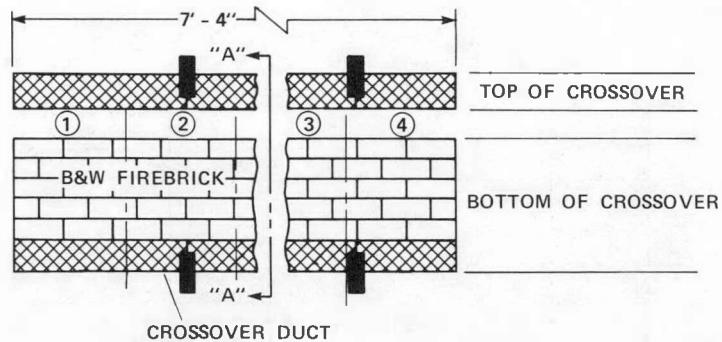
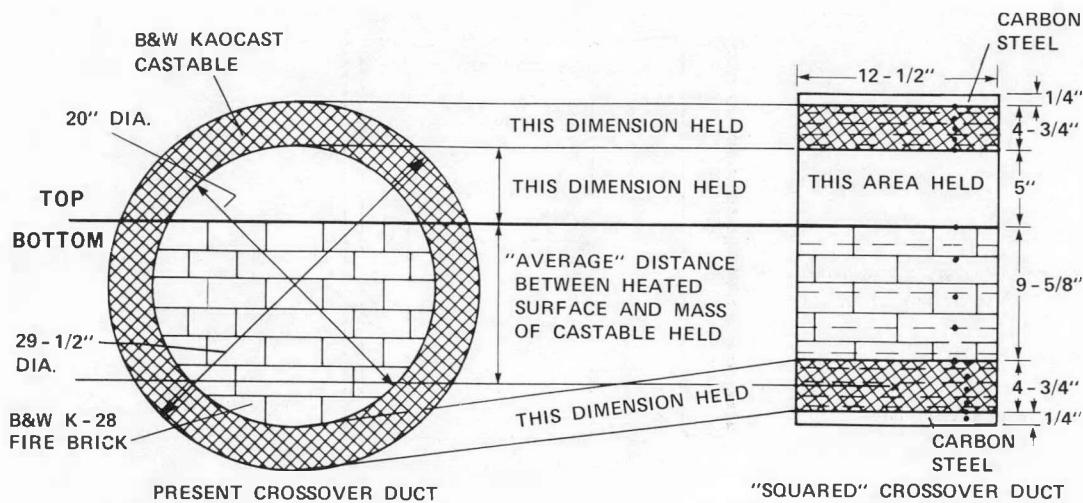



FIGURE 5.5 AXIAL ELEMENTS IN TOP AND BOTTOM OF CROSSOVER DUCT USED IN THERMAL ANALYSIS

NOTE: CERTAIN DIMENSIONS HELD,
ALL CONDUCTIVITIES HELD,
ALL DENSITIES AND HEAT
TRANSFER COEFS. ADJUSTED.

FIGURE 5.6 ILLUSTRATING "SQUARING" OF CROSSOVER DUCT

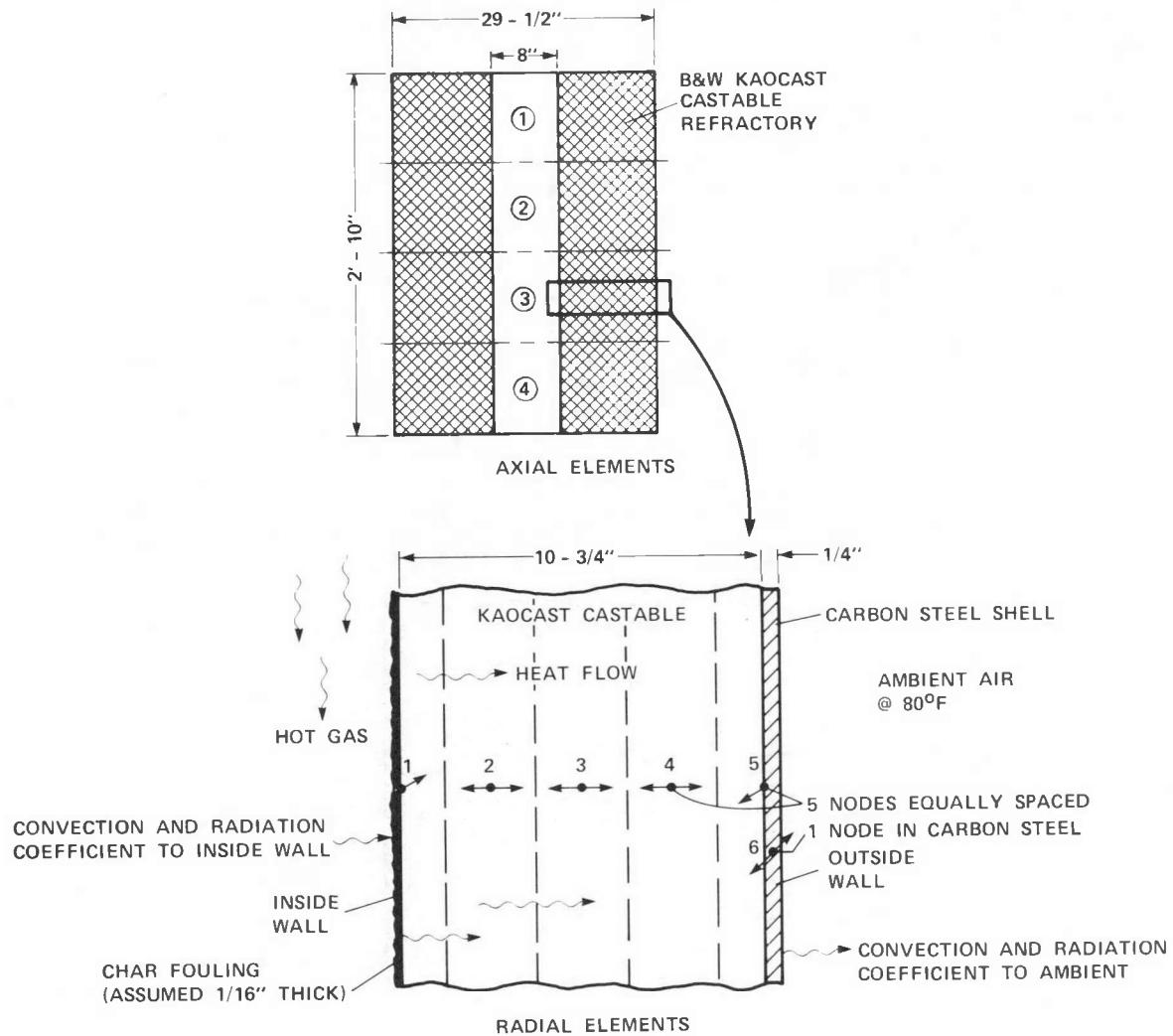


FIGURE 5.7 RADIAL AND AXIAL THERMAL ELEMENTS IN TOP OF DEVOLATILIZER USED IN THERMAL ANALYSIS

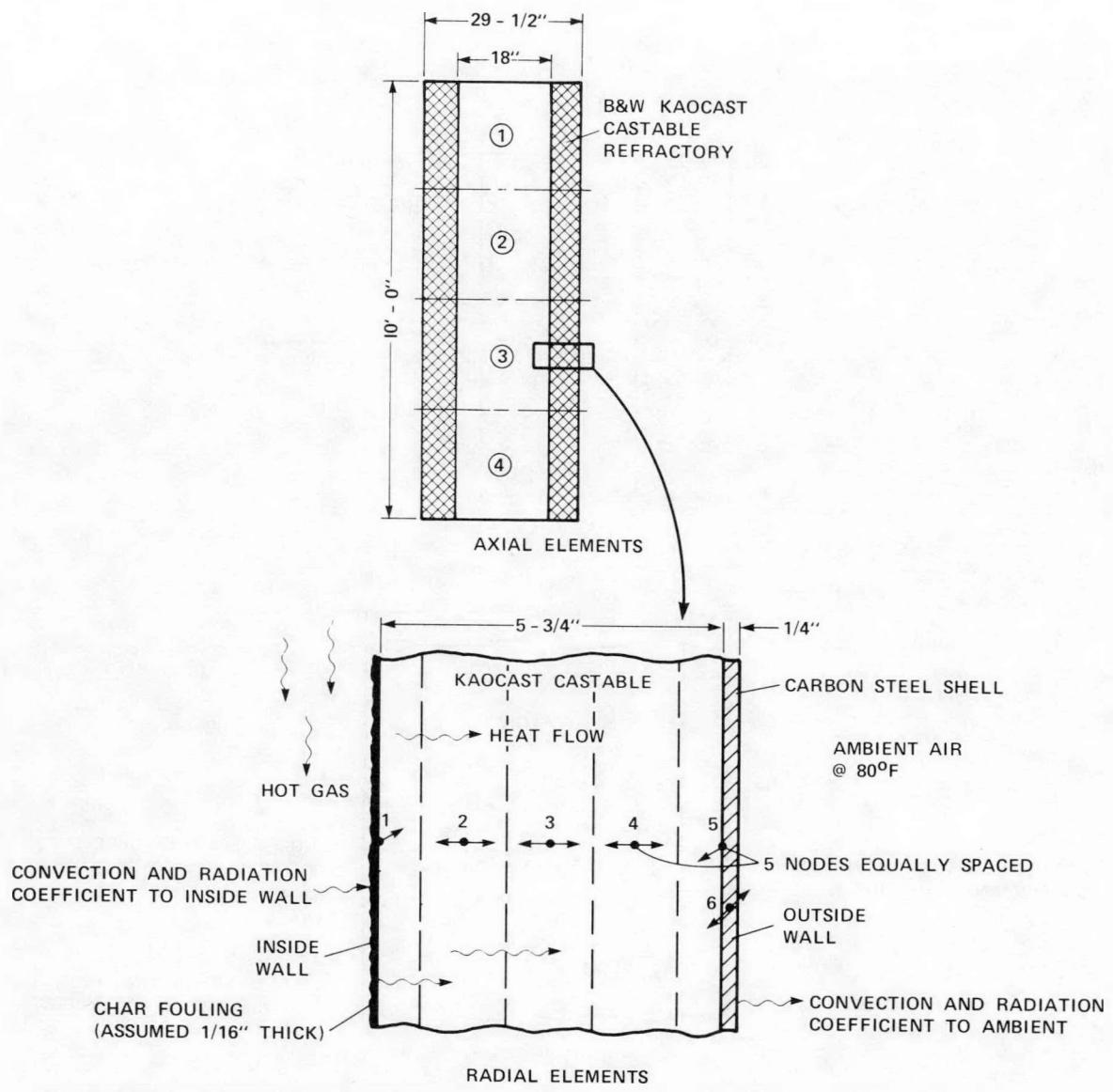


FIGURE 5.8 RADIAL AND AXIAL THERMAL ELEMENTS IN BOTTOM OF DEVOLATILIZER USED IN THERMAL ANALYSIS

For the crossover duct, the adjustment was more difficult because all of the shape is three-dimensional, not just a small fraction of it. Nevertheless, we thought it appropriate not to invoke the complexity of a three-dimensional model (later justified by results) and so made the simplifications as indicated in Figure 5.6. In particular we:

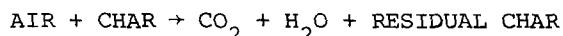
1. Maintained the height of the flow duct (5 inches) and the thickness of the castable refractory (4-3/4 inches) the same in the simplified model as in the actual apparatus.
2. Chose the width of the simplified model (12-1/2 inches) so that the flow area was the same as in the actual apparatus.
3. For the bottom of the duct, estimated the average distance between the heated surface and the mass of refractory, and adjusted the thickness of fire brick in the model to give the same value (9-5/8 inches).
4. Used the same values for thermal conductivities in the model as in the actual apparatus.
5. Adjusted the densities of the various refractory pieces and metal pieces to give the same mass as in the actual apparatus.
6. Adjusted the heat transfer coefficients on the external and internal surfaces so as to give the same coefficient-area product as in the actual apparatus. Used the actual flow and the hydraulic radius of the actual apparatus for computing the internal convection coefficient.
7. Used the actual geometry of the duct in computing the external convection coefficient.

Thus, the main approximation made in "squaring" this round duct was in estimating the mean distance between heated surface and mass of refractory in the bottom of the duct. This was actually done by drawing several vectors to represent approximately the heat flow paths, measuring their length, and averaging the result. We estimated that the error made in choosing this mean length would be less than 20%. The actual material properties used in the computations are listed in Appendix E together with the adjusted values where they apply. Adjustment factors for heat transfer coefficient are shown on the various figures where they apply.

In this fashion, the actual apparatus was transformed into a virtual or "model" apparatus consisting of a combustor of known heat loss, five sections of tubular refractory duct (without ends) comprising the gasifier, crossover duct, and devolatilizer, and the cyclone separators (including the water-cooled elbow at the bottom of the devolatilizer). The transient thermal analysis of

the refractory pieces was accomplished by writing the customary difference equations governing transient conduction in cylindrical geometry.

5.1.2 Model Assumptions


The thermal model has five general aspects, and we shall divide the discussion of assumptions accordingly. These aspects are:

1. The state of the internal fluid (temperature and composition) that is transferring heat to the internal walls of the apparatus
2. The description of the heat transfer from the internal fluid to the internal walls
3. The description of a heat transfer within the refractory walls of the equipment
4. The description of the external heat transfer from external surfaces of the apparatus to the ambient atmosphere
5. The process operating conditions

When methane was fired for the purpose of preheating, it was assumed that the excess air was 15%. The heat loss in the combustor was calculated from experimental measurements, and it was assumed that combustion was completed in the combustor. Thereafter, the combustion gas simply cooled as it passed through the apparatus. The temperature was determined by the firing conditions and the heat losses to the walls up to any given point.

To determine the state of the internal fluid when firing coal, we assumed that:

1. In the combustor air and char react according to:

Coal is then added which immediately devolatilizes to form additional char and gas which equilibrates with CO_2 and H_2O from air combustion, giving a gas containing char, N_2 , CO_2 , CO , H_2O , H_2 and ash.

2. In the gasifier, some of the char is gasified to form CO and H_2 . The total amount of char gasified is determined by material balance using experimental data. Axially, the amount gasified is linearly distributed with respect to gasifier length. The amounts of CO , CO_2 , H_2 and H_2O are dependent upon the temperature of the reacting mixture according to the water gas shift equilibrium.
3. No char is gasified in the crossover pipe or devolatilizer.

4. When part of the coal is fed to the devolatilizer, only devolatilization takes place; no gasification reactions occur. The resulting gas equilibrates via water gas shift down to a temperature of 1700°F.
5. Cyclone separator efficiency is 90%.
6. Heat loss from the water-cooled elbow at the bottom of the devolatilizer together with the cyclone heat loss was taken to be 19,606 kcal/kg mol O_2 fed as air, based on previous estimates.
7. Char recycle temperature was taken to be 500°K (440°F). (This requires an additional heat loss that is not otherwise considered in the model.)

Thus, the gas composition was determined from the air-fuel ratio and the temperature, and the temperature, in turn, was determined from heat losses including heat losses to the refractory walls. We have ignored the fact that hydrocarbons would actually be produced upon devolatilization, because the enthalpy change between the hydrocarbons and an equilibrium CO_2 , CO , H_2O , H_2 mixture is insignificant. The detail of the energy and material balance calculations based upon these assumptions is given in Appendix E.

The heat transferred to the internal walls of the gasifier, crossover duct, and devolatilizer consists of radiative and convective components. In the case of coal firing, the radiative heat transfer coefficient was computed with the assumption that the gas emissivity is unity. This is justified by the high particulate loading. In the case of gas firing, the gas emissivity was calculated from the CO_2 and H_2O concentrations together with the emissivity correlation presented in Weibelt (see Appendix F). In both cases, the convection coefficient was calculated from a Dittus-Boelter equation modified for entrance effect according to Feild, et al (see Appendix F). In this, mean gas viscosity was calculated at temperature from individual gas viscosities weighted according to the product of mol fraction and the square root of molecular weight according to Janka and Nalhatra. Mean thermal conductivity was calculated from individual conductivities using the product of mol fraction and the cube root of molecular weight as a weighting factor. Specific heat was calculated from individual molar specific heats weighted according to mol fraction. In the case of coal firing, the particulate loading in the gas was ignored in calculating viscosity and thermal conductivity but not in calculating heat capacity and mass flow rate. (Density per se was not used in calculating the Reynolds Number of the flow; mass flow rate was used instead.)

Thus, in effect, the gas density and the gas specific heat included the effect of ash and char particles. This was done in an attempt to allow for the fact that particulate loading tends to increase the heat transfer coefficient as reported by Depew and Kramer (Appendix F).

5.1.3 Determination of Internal Axial Temperature Profile

The basic problem addressed by a thermal model is one of two-dimensional transient conduction in the refractory of the gasifier, crossover duct, and the devolatilizer. Its computer solution is achieved by finite differences in both the space and time variables. As part of the solution, one requires, for each instant of time, a heat flux to the inside of the thick walled refractory cylinders. This, in turn, requires the axial temperature profile for both the inside refractory surface and the fluid. The surface temperature profile was approximated by using that of the previous timed increment. The fluid temperature, however, is a driving force for all other temperature changes, and cannot be approximated in this fashion. Instead, it was calculated for each time increment by energy and material balances as follows:

1. Given the fluid temperature at the entrance to an axial increment, that at the exit was estimated to be 100°K lower, as a starting point.
2. Using the estimated exit temperature, the fluid composition was calculated by energy and material balances (Appendix E). The amount of gasification along the total length of the gasifier, top and bottom, was linearly distributed according to the axial position.
3. The average gas temperature and composition for the increment was calculated by arithmetically averaging the known values at the beginning of the increment and the calculated values at the end of the increment.
4. The heat loss through the wall was calculated from these properties using the wall temperature from the previous increment.
5. From the heat loss to the wall and the known flow rate of the internal fluid and its composition, the fluid temperature at the apex of the increment was calculated. This value was compared with the initial estimate and, if they agreed within 0.01°K , the calculation proceeded to the next increment.
6. If agreement was not achieved, the second estimated temperature was taken 100°K lower than the first and the procedure repeated starting with step 2. For the third and successive trials, the new estimate was found by linear interpolation between the last two.

In this fashion, the internal temperature distribution and the internal heat flux were calculated throughout the axial length of the apparatus for one time increment. This was followed by conduction calculations to determine the change in radial temperature distribution during the time increment.

5.1.4 Determination of Refractory Temperatures

The partial differential equations describing transient heat conduction through the refractories were written in the form of difference equations. A typical equation describing the time rate of temperature change at an internal wall node is:

$$\frac{\Delta T}{\Delta \theta} = \frac{2}{(\rho C_p)_1 \Delta r_1^2} \left\{ \frac{q_1 R_1 \Delta r_1 - \left(\frac{k_1 + k_2}{2} \right) (T_1 - T_2) \left(R_1 + \frac{\Delta r_1}{2} \right)}{R_1} \right\}$$

where

k = conductivity

R = radius

Δr = incremental radius

T = temperature

q = heat flux density to wall

C_p = heat capacity of refractory material

ρ = density of refractory material

$\frac{\Delta T}{\Delta \theta}$ = rate of change of temperature

1, 2 = subscripts denote node, as in Figure 5.3

The very simple Euler's Method was used to calculate the temperature of a node at the next time increment. This algorithm is:

$$T_{(\text{Time} + \Delta \theta)} = T_{(\text{Time})} + \frac{dT}{d\theta} \Delta \theta$$

Thus, account was taken of conductive heat transport in a radial direction, but that in the axial direction was ignored. The justification for this is simply that the gradients in the radial direction are much steeper than those in the axial direction, making the additional precision to be gained by considering axial conduction of questionable value compared with the additional complexity.

To avoid stability problems and ensure a reasonable accuracy, the temperature changes for each time increment were computed twice. The first computation served to determine the maximum temperature change anywhere in the apparatus. In the second computation, the length of the time increment was adjusted to:

$$\Delta\theta = \frac{0.005}{\left(\frac{dt}{d\theta}\right)_{\max}} .05$$

where the dimensions of temperature are degrees Kelvin and time is in hours. This algorithm for setting the time increment was arrived at purely empirically based upon experience.

5.2 VERIFICATION OF COMPUTER PROGRAM

5.2.1 Preliminary Checks

The accuracy of each subroutine was verified by manual computation for at least one set of input parameters. In addition, computer-produced temperature distributions for the bottom of the crossover duct were checked against the Gurney-Lurie chart for a slab as taken from McAdams book on heat transfer.⁽¹⁾ Considering that the Gurney-Lurie chart assumes constant thermal properties, whereas we were calculating using properties that vary with temperature, the results were close enough to convince us of the general accuracy and validity of the program.

The stability of the computer program was checked by reducing the time increments by one-half and then verifying that the calculated temperature at any point was the same or nearly the same as for the full-time increments. The results of this check indicate the calculated temperatures were within 0.1°K, thus verifying the stability of the computer program.

5.2.2 Verification Against Pilot Plant Data

The computer program was tested by comparing its predicted gasifier outlet, crossover duct outlet, and the devolatilizer outlet temperatures against those produced on the day of tests 33, 34, 35, and 36. It was assumed that all points in the apparatus started at room temperature. The firing conditions used as input to the program were adjusted so as to be identical with those actually used on the day of these tests. The resulting temperatures are compared with experimentally observed temperatures in Figure 5.9. It will be

noted that all the predicted temperatures are within 100°K (180°F) for tests 33, 34, and 35. In test 36, differences are as much as 200°K (360°F). For this test, all coal was fired to the devolatilizer. This larger discrepancy might be due to one or both of two factors:

1. The higher outlet temperatures, especially out of the gasifier and crossover duct, may have been missed by the thermocouples due to conduction losses.
2. A cyclone efficiency of 90% was assumed throughout. However, it would not be unreasonable to expect it to be much higher in the case of firing all coal to the devolatilizer. If so, our use of too low a value of cyclone efficiency may account for our overpredicting the temperatures.

TABLE 5.1 HEAT LOSSES CALCULATED BY MATERIAL AND ENERGY BALANCE VERSUS HEAT LOSSES PREDICTED BY COMPUTER MODEL

TEST NO.	EXTERNAL SURFACE HEAT LOSSES				TRANSIENT HEAT LOSS		TOTAL HEAT LOSS				OVERALL HEAT LOSS
	COMBUSTOR	GASIFIER	DEVOLATILIZER INCLUDES CROSSOVER	CYCLONES INCLUDES WATER JACKET	GASIFIER	DEVOL.	GASIFIER	DEVOL.	CYCLONES	CHAR RECYCLE LINE	
33*	9164	0	297	19606	279	12752	9443	13049	19606	5091	47189
33**	9164	0	1036	19606	14262	11206	23426	12242	19606	0	55274
34*	10371	0	734	19606	1412	6351	11783	7085	19606	5549	44023
34**	10371	0	1036	19606	7874	6186	18245	7222	19606	0	45073
35*	8829	80	1484	19606	5191	7819	14100	9303	19606	8760	51769
35**	8829	0	1036	19606	16598	13041	25427	14077	19606	0	59110
36*	9875	635	3041	19606	10129	9051	20640	12093	19606	4951	57291
36**	9875	0	1036	19606	20120	15808	29995	16844	19606	0	66445

*PREDICTED BY THE MODEL

**MATERIAL AND ENERGY BALANCE CALCULATIONS

UNITS $\frac{\text{kcal}}{\text{kg mol O}_2}$

Table 5.1 compares the heat losses predicted by the model with those calculated by material and energy balance using the experimental data. These apply to the same four runs of Figure 5.9. The difference between the overall heat loss predicted by the model and that calculated by the material energy balance is consistent with the differences in predicted and observed outlet temperatures with one exception. This is the overall loss for test 35, where the two figures should agree quite closely. We have tried to find the explanation for this anomaly; no doubt, it is due to an error in transcription in some data input, but we have been unable to find it. In any event, it seems clear that the overall losses in general agree between computed and calculated. In studying the detail of Table 5.1, the reader will notice the following:

1. Among the "external surface heat losses", the computed and experimental values are either identical or else only very slightly different.
2. The computer model consistently estimates lower heat losses in the gasifier. This is largely compensated by a finite heat loss in the char recycle line compared with zero heat loss in this line according to the "experiments." The reason for this is

that, in analyzing the experimental data, we assumed no heat loss in the char stream recycle line. In the present computer model, on the other hand, we assumed a char recycle temperature (which is probably the more reasonable approach). Thus, the experimentally determined "transient" heat loss should probably have been lower. If it had been, the sums of the transient and devolatilizer heat losses for experimental and model predictions would have been much closer. On the other hand, the distribution between these two pieces of equipment wouldn't have been quite right. In this connection, it should be remembered that the "experimental" transient losses were arbitrarily assigned between devolatilizer and gasifier. Consequently, the model predictions are probably more accurate.

5.2.3 Effect of Cyclone Efficiency on Predicted Temperatures

The cyclone efficiency of 90% assumed and used to calculate the predicted temperatures in Figure 5.9 was arrived at by trial and error. Initially an efficiency of 60% was assumed, resulting in predicted temperatures shown in Figure 5.10, which are much higher than actually observed. This results from the fact that a lower cyclone efficiency causes less cold char to be recycled back to the gasifier thereby allowing temperatures to remain high throughout the system. The cyclone efficiency was then increased in increments up until 90% efficiency, a value which seemed to predict the observed data reasonably well.

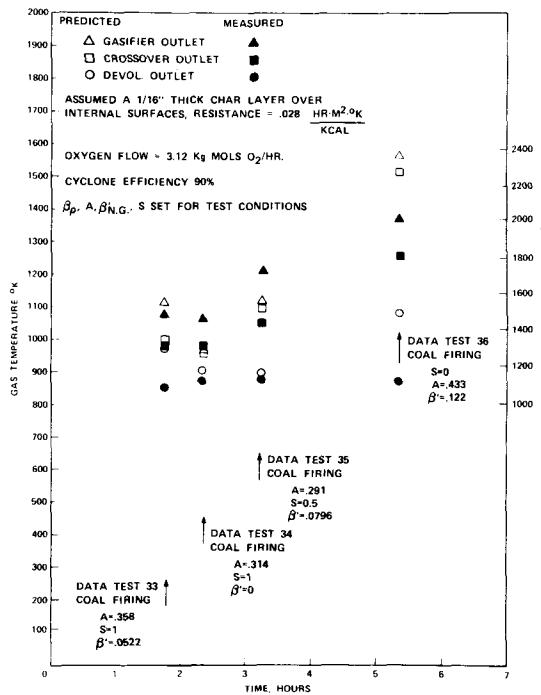


FIGURE 5.9 COMPARISON OF OBSERVED TEMPERATURES VS PREDICTED TEMPERATURES

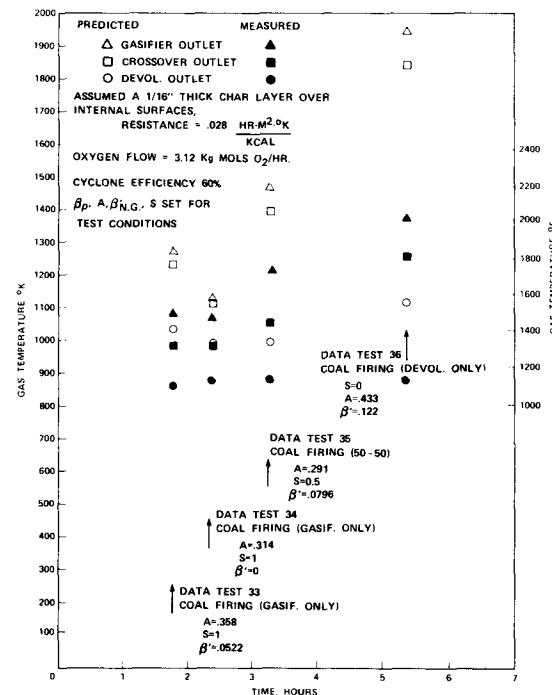


FIGURE 5.10 EFFECT OF LOW CYCLONE EFFICIENCY ON PREDICTED TEMPERATURES

5.3 PREDICTIONS OF THERMAL ANALYSIS MODEL

5.3.1 Achieving Steady-State

As previously stated, the first objective of the present analysis was to determine how long it would take for the pilot apparatus to achieve thermal steady-state and what might be its heat losses under this condition. To accomplish this, we simulated tests 33 and 38 extended to running times of 36 and 30 hours respectively. The results are shown on Figures 5.11 and 5.12.

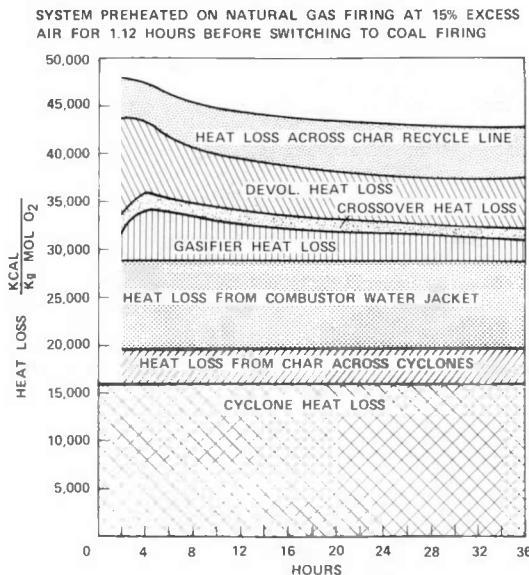


FIGURE 5.11 HEAT LOSSES DURING COAL FIRING AT TEST 33 CONDITIONS CALCULATED VIA MODEL

SYSTEM PREHEATED ON NATURAL GAS FIRING AT 15% EXCESS AIR FOR 1.12 HOURS BEFORE SWITCHING TO COAL FIRING

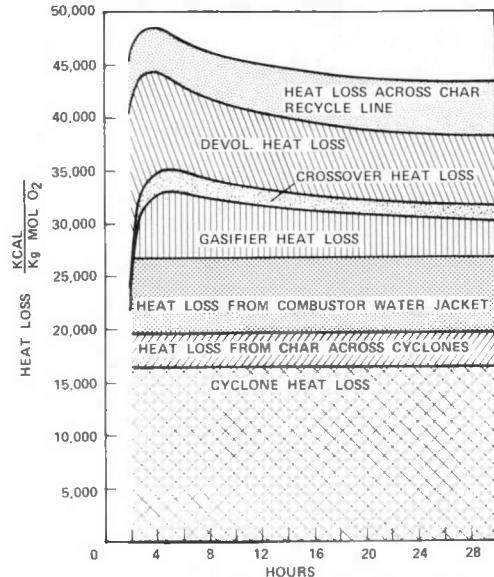


FIGURE 5.12 HEAT LOSSES DURING COAL FIRING AT TEST 38 CONDITIONS CALCULATED VIA MODEL

Before attempting to interpret these results, let us first clarify the meanings of the various heat losses in some detail.

The Cyclone Heat Loss represents the heat loss from the gas only (exclusive of the particulate) as it passes through the cyclone separators. Since this loss occurs after the major volume of the equipment, it is of no significance to the gasification reactions. It represents only cooling of the make gas. The Heat Loss from the Char Across Cyclones represents the heat loss from the char stream as it traverses the water-cooled elbow following the devolatilizer and the cyclone separators. This loss might have some significance for the process were it not for the fact that it is not practical to recycle char that is too hot. Consequently, one must consider this heat loss to be unavoidable in the pilot apparatus as well as in full scale. The Heat Loss Across Char Recycle Line (top of Figure 5.10) is another matter. This represents the heat loss from the char between the point of exiting from the cyclone separators and entering

the combustor. Its magnitude is based upon the assumption that the char enters the combustor at 500°K (440°F). In other words, it is the heat loss in the char in the pilot apparatus in cooling from about 1000°F to about 440°F. It would not be present in a full-scale installation, and it could probably be eliminated by redesigning the elbow and cyclone separators in the pilot apparatus. Returning to the middle of Figure 5.11, the Heat Loss from the Combustor Water Jacket is that which is lost in this pilot apparatus to the water jacket and the water-cooled support for the refractory. This loss might possibly be reduced by about a third by going to a much more difficult to design stainless steel air-cooled shell instead of the water-cooled. However, it seems unlikely that it can be reduced below about two-thirds its present magnitude. The problem is that the fluid dynamic agitation and the fluxing action of the slag determine the heat flux density from the combustion zone to a point in the refractory where the slag just solidifies. The thickness of the "refractory", then, adjusts itself to accommodate this heat flux density; if the solid refractory is too thin, more heat flows out through it than is supplied from the combustion, and slag is thus frozen until the thickness builds up to the point where the conduction through the solid equals the input from the fluid; conversely, if the solid is too thick, the slag fluxes the refractory out until the heat flux into and out of the freezing zone balance. On the other hand, this heat loss could probably be at least partially compensated by increasing air preheat. The remaining losses, Gasifier Heat Loss, Crossover Heat Loss, and Devolatilizer Heat Loss are those that are computed in the present mathematical model. They represent transient heating up of the refractory and convective heat losses from the external shells of the various vessels.

Turning now to the interpretation of the results of Figures 5.11 and 5.12, it will be noted that even after substantial steady-state is obtained, the significant heat losses are reduced by only about 10% from their values at the time the data were taken (at a time of about 2 hours on the abscissa of the plots). This is due partly to preheating and, actually, overheating the apparatus a little at the start, and also to the fact that the heat loss across the Char Recycle Line tends to increase as the apparatus equilibrates because the char temperature leaving the cyclone separators tends to increase.

Thus, the answer to the first question is that the pilot apparatus must run for about 24 hours to achieve thermal steady-state, but the significant heat losses are not substantially different at 24 hours than they were at 2 or 3

hours when the data were taken. Inasmuch as significant steady-state heat losses represent about 30% of the heat release capability of the oxygen being put into the system or, very roughly, 40 - 45% of the actual heat release in the process, they are probably very significant from the standpoint of limiting performance. Consequently, we must conclude that this particular pilot apparatus, operated at steady-state under the conditions of the tests performed in this series, is not capable of producing data representative of full scale apparatus.

However, this does not mean that this apparatus, if slightly modified, and operated in a different fashion, might not produce representative data. For example, if the water-cooled elbow beneath the devolatilizer and the stainless steel air-cooled cyclones were replaced by air-cooled ceramic parts, the char recycle temperature could probably be raised from about 440°F to about 1000°F. This would completely eliminate the Heat Loss Across Char Recycle Line. Moreover, although the Heat Loss from Combustor Water Jacket cannot be eliminated, it might be largely compensated by raising the air preheat temperature. For example, raising the air preheat temperature from about 800° or 850° to 1050° or 1100°F would provide an additional heat input equal to about 5000 kcal/kg mol O₂. This compares with 10,000 kcal lost to the combustor water jacket. Thus, raising the air preheat would compensate for all but about 5,000 kcal of water jacket loss, which would bring that loss to about 10% of the potential heat release of the oxygen, or about 7% of the actual heat release in the apparatus. In other words, by increasing the air preheat one could get the heat loss to the combustor water jacket down to a value that should be very comparable with that predicted for commercial practice.

With these modifications to the char recycle system and the air preheat system in mind, there still remains the question of whether or not the heat losses to the refractory in the devolatilizer and gasifier might be reduced to values comparable to that predicted for commercial practice. Inasmuch as the mass of refractory presents a possibility of overpreheating and operating the apparatus in an unsteady-state mode, which could drive these heat losses to zero or even below, we thought it advisable to investigate this question further.

5.3.2 Deliberate Unsteady-State Operations to Minimize Heat Losses Using Present Apparatus

Two series of computer "experiments" were conducted to investigate the possibilities inherent in preheating to internal temperatures above the steady-state temperatures on coal firing. In the first, we maintained the equipment exactly as it is, and in the second, we assumed the modification that would enhance the effect.

Three axial temperature distributions are shown on Figure 5.12. One of them is the computed temperature distribution for test 38 if there were no heat loss to the gasifier, crossover duct, and devolatilizer walls. The other two applied to gas firing at thermal equilibrium, chosen so as to make the refractory inside surface temperature roughly correspond to the adiabatic fluid temperature with coal firing. This was achieved by using an air to fuel ratio of 2.4 in the combustor, and then burning additional gas at the top of the devolatilizer.

Several axial temperature profiles after switching over to coal firing at the conditions of run 38 are shown on Figure 5.13. It will be noticed that just after switching over to coal firing, the gas temperature profile is slightly above the adiabatic profile, implying heat input from the refractory walls rather than loss. Thereafter, the internal temperature profile drops as heat losses pull the refractory temperatures down. Figure 5.14 shows what happens to heat losses during the 2 hour time period immediately after switching over to coal. As noticed in the temperature profiles (Figure 5.13) the heat losses to refractory are initially negative. But within a few minutes after switching over, they become positive and build very quickly to nearly their steady-state values. Thus, unless data could be obtained within 10 minutes or less after switching over to coal, there would be no period of substantially zero heat losses to refractory. Since this is too short a period of time to expect to stabilize flows and get an accurate reading on the coal flow rate, this particular operation would be impractical.

Figure 5.15 shows similar heat losses, but with preheat to somewhat higher temperatures. In fact, the preheat was high enough to produce substantial negative heat losses immediately after switching over to coal. In this case, substantially zero heat loss is obtained for a period from about 12 minutes after switching over to a period of about 24 minutes after switching over (i.e., from 24.2 to 24.4 hours along the abscissa). By stretching one's concept of "zero heat losses" a little bit, this period might be extended from, say, 12 minutes after switching over to 36 minutes after switching over, giving a period of about 24 minutes of substantially zero heat loss to the refractory. These time periods might be adequate to stabilize flows and get an accurate reading of coal flow. However, the "window" within which one can obtain data seems quite small, especially in view of the probable precision of our calculation. Thus, we feel that this would be a difficult way to operate - one that would probably result in one run discarded for every one that is accepted.

COMPUTER SIMULATION OF UNSTEADY - STATE OPERATION

CONDITIONS: AT 140% EXCESS AIR WITH AN ADDITIONAL 7500 $\frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ OF HEAT ADDED AT DEVOLATILIZER INLET

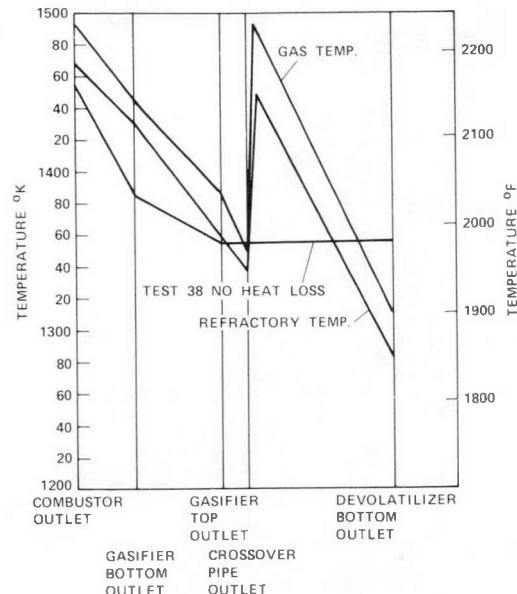


FIGURE 5.13 REFRactory AND GAS TEMPERATURES AFTER 24 HOURS ON NATURAL GAS FIRING

SYSTEM PREHEATED FOR 24 HOURS WITH NATURAL GAS FIRING AT 140% EXCESS AIR WITH AN ADDITIONAL 7500 $\frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ OF HEAT ADDED AT THE DEVOLATILIZER INLET

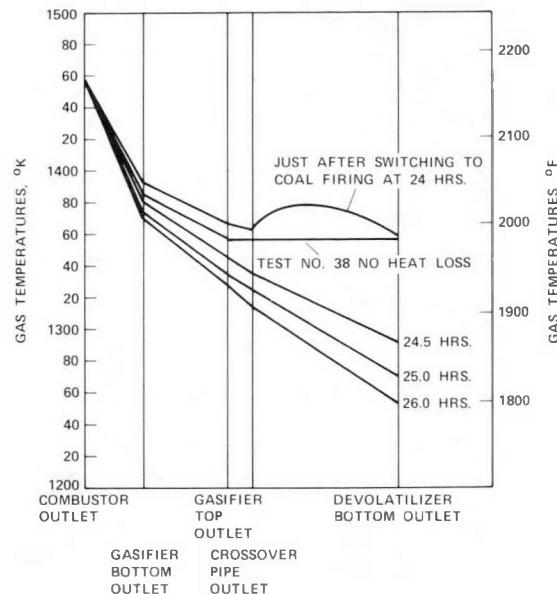


FIGURE 5.14 GAS TEMPERATURES FOR COAL FIRING AT TEST 38 CONDITIONS

SYSTEM PREHEATED ON NATURAL GAS FIRING AT 140% EXCESS AIR FOR 24 HOURS WITH AN ADDITIONAL 7500 $\frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ OF HEAT ADDED AT THE DEVOLATILIZER INLET

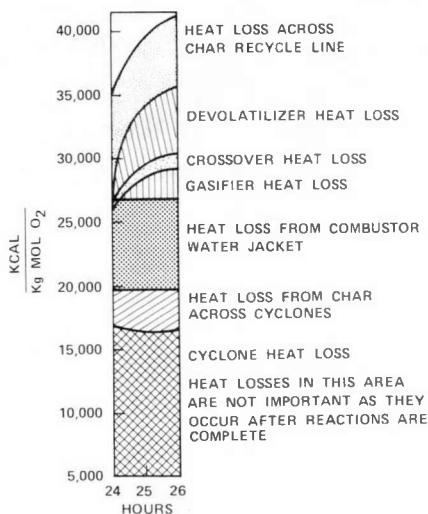


FIGURE 5.15 HEAT LOSSES DURING COAL FIRING AT TEST 38 CONDITIONS

SYSTEM PREHEATED ON NATURAL GAS AT 126% EXCESS AIR WITH AN ADDITIONAL 11500 $\frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ HEAT ADDED AT DEVOLATILIZER INLET

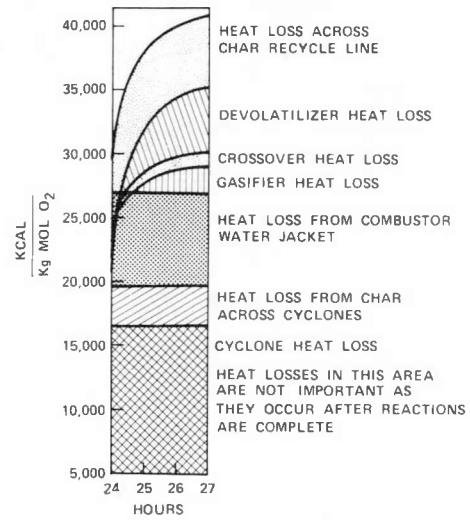


FIGURE 5.16 HEAT LOSSES DURING COAL FIRING AT TEST 38 CONDITIONS

*NOTE: THIS ADDITION OF HEAT WAS SIMULATED IN THE COMPUTER PROGRAM BY ADDING TO THE ENTHALPY OF THE GAS

Inasmuch as the operation implied by Figure 5.15 succeeds to a degree in promising elimination of refractory heat losses, we thought it would be beneficial to redesign the gasifier so as to take full advantage of the technique of over preheating and obtaining transient data. Fortunately, such kinds of changes can be made very readily on a computer model.

5.3.3 Design Change (Figure 5.17)

The light firebrick on the outside of the vessel (the K-3000 and K-23) is exactly the same as in the gasifier bottom in the present apparatus. However, we have replaced the present mixture of castable and broken firebrick with 4-1/2 inches of all castable refractory (no chunks of broken firebrick). This roughly doubles the mass of material in this area. The internal diameter has been retained at 12 inches, the same as the present gasifier bottom. The length is extended to 24 feet so as to maintain the volume of the apparatus the same as the gasifier plus crossover duct plus devolatilizer of the present pilot plant. Figure 5.17 shows a preheat temperature profile assumed using natural gas firing at an initial air/fuel ratio of 2.4. Additional gas added into the middle of the gasifier serves to "flatten" the preheat profile to match the "no heat loss" profile of coal firing. Figure 5.19 shows various axial temperature profiles computed for this equipment. It will be noted that just after switching over to coal (conditions of Test 38) the profile is far above what would be the gas temperature profile in Test 38 if the refractory walls were adiabatic. This implies a substantial negative heat loss at the switchover time. Thereafter, the gas temperature profiles drop until, between 26 and 28 hours (2 and 3 hours after switching over), the gas temperature profile almost exactly matches the adiabatic profile.

Figure 5.20 shows the heat losses corresponding to Figures 5.18 through 5.19. It will be noted that at 26.4 hours, the refractory heat loss is exactly zero. However, from about 25.3 to about 28.4 hours, the refractory heat loss is

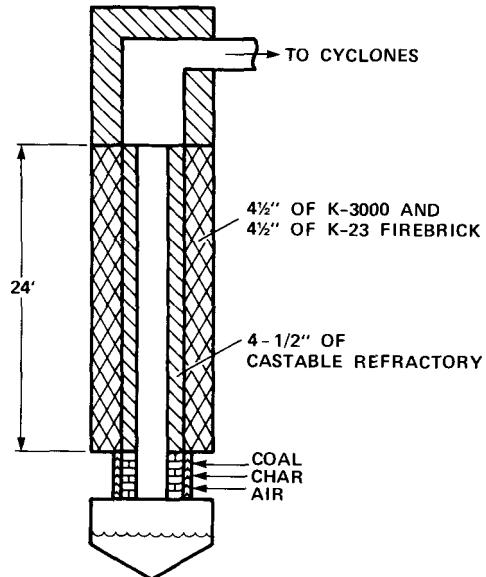


FIGURE 5.17 DESIGN CHANGE

within 2000 kcal of being zero. This amounts to about 0.8% of the heating value of the coal fired, or 3% of the actual heat release in the gasifier. Thus, it would be fair to say that this period of 3 hours would amount to essentially adiabatic operation. Thus in this case, the "window" in which data can be taken is quite broad. If data were taken every half hour from hour 25 through 30, one, and probably two, periods could be found wherein thermal balances would show zero heat loss to refractory.

COMPUTER SIMULATION OF UNSTEADY-STATE OPERATION

SYSTEM PREHEATED FOR 24 HOURS ON NATURAL GAS AT 140% EXCESS AIR
WITH AN ADDITIONAL $1150 \frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ OF HEAT ADDED
AT MIDPOINT OF GASIFIER

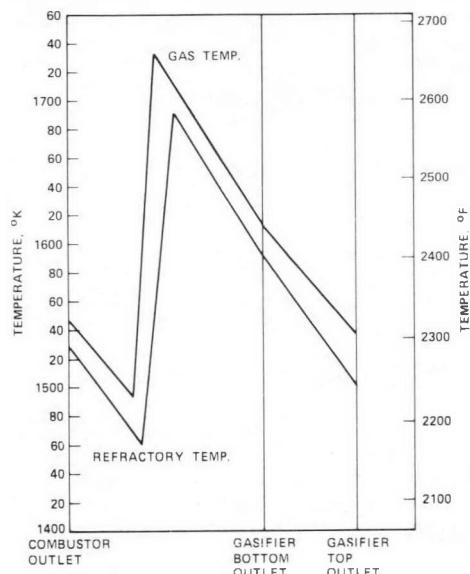


FIGURE 5.18 GAS AND REFRactory TEMPERATURES FOR "REDESIGNED" GASIFIER

*NOTE: THIS ADDITION OF HEAT WAS SIMULATED IN THE COMPUTER PROGRAM BY ADDING TO THE ENTHALPY OF THE GAS.

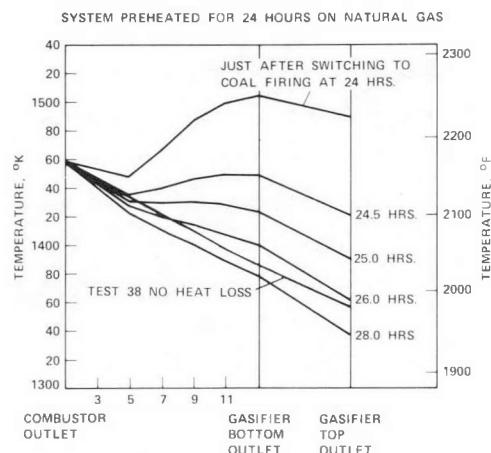


FIGURE 5.19 GAS TEMPERATURES FOR "REDESIGNED" GASIFIER FOR COAL FIRING

SYSTEM PREHEATED ON NATURAL GAS AT 126% EXCESS AIR FOR 24 HOURS
WITH AN ADDITIONAL $11500 \frac{\text{KCAL}^*}{\text{KG MOLE O}_2}$ ADDED AT
MIDPOINT OF "REDESIGNED" GASIFIER

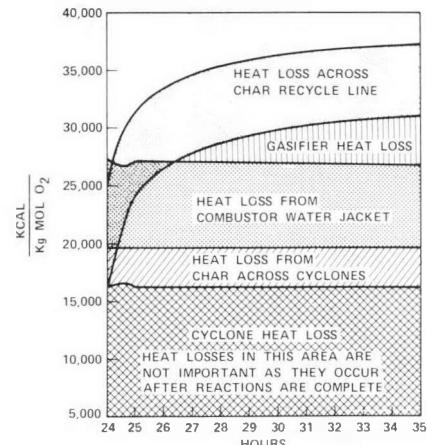


FIGURE 5.20 HEAT LOSSES DURING COAL FIRING FOR "REDESIGNED" GASIFIER AT TEST 38 CONDITIONS

In other words, by rebuilding the gasifier to the same "scale", but with different refractory, and by operating in the "high preheat-transient data" mode, we could completely eliminate heat loss in the refractory. As previously mentioned, the heat loss across the char recycle line could be completely eliminated by eliminating the water cooling and using refractory cyclones. By using more air preheat, the heat loss from the combustor could be compensated to the extent of bringing it into line with that predicted for full scale practice. The remaining heat loss from the char would be unavoidable in commercial practice, and, so, may not be eliminated. Finally, the remaining heat loss from the gas and the cyclone separators need not be compensated because it occurs after the process is complete. Thus, with these equipment modifications and the operation depicted in Figures 5.18 through 5.20, one could achieve in this small pilot scale, the heat losses that would be exactly comparable to those predicted in commercial scale.

5.4 SUMMARY OF CONCLUSIONS FROM THERMAL ANALYSIS OF PILOT APPARATUS

1. A mathematical model has been constructed to simulate the transient thermal behavior of our pilot apparatus. It accurately predicts the axial temperature distribution inside the gasifier according to the thermal history and coal-firing conditions.
2. Using this model, we have shown for the gasifier system as it presently exists that:
 - a. Although we have confirmed the presence of transient heat loss in the gasifier, a substantial portion of this heat loss can be attributed to recycling cold char.
 - b. There appears to be no way to operate the present apparatus so as to achieve heat losses that will be comparable to those predicted for a full scale installation.
3. By certain equipment modifications and by operating in a "high preheat-transient data" mode, a pilot apparatus of this scale (1000 lb/hr of air) can be made to produce heat losses fully comparable to the low losses expected in large commercial installations. The equipment modifications would include:
 - a. Removal of the water-cooled elbow and stainless steel cyclone separators and replacing them with air-cooled ceramic parts so as to produce a recycle char temperature of about 1000°F.

- b. Redesigning the char transport system so as to reinject the char at a temperature as close as possible to 1000°F.
- c. Adding air preheat up to at least 1050°F so as to compensate for roughly 40% of the combustor heat loss.
- d. Rebuilding the reaction volume (gasifier plus crossover duct plus devolatilizer) to employ about 4-1/2 inches of dense castable refractory enclosed in about 9 inches of light fire brick.

The operational mode consists of gas firing with high excess air (about 240% of theoretical) with injection of additional gas at one or more points along the apparatus. This is contrived so as to produce an additional internal refractory surface temperature profile that lies somewhat above the adiabatic gas temperature profile with coal firing. Data are then taken every half hour for 4 hours after changing over to coal firing. Analysis of these data should produce one or more half hour periods wherein the heat loss to the refractory is substantially zero. Under these conditions, the significant heat loss (which is the uncompensated combustor heat loss) should amount to about 2% of the heating value of the coal fired.

Section 6

SUMMARY OF RESULTS AND CONCLUSIONS

Analysis of the data yielded the following results for comparison of operation with all coal fed to the gasifier to all or some coal fed to the devolatilizer, under conditions of the same air-to-fuel ratio:

- The highest heating values were observed when all of the coal was fed to the gasifier.
- Unacceptably large tar quantities were generated when half or all of the coal was fed to the devolatilizer.
- Tar content of the make-gas tended to be negligible or low when all the coal was fed to the gasifier.

However, the data analyses also showed that heat losses were generally high--much higher than had been anticipated at the inception of this program. This was due to a combination of transient heating of the mass of refractory that had been substituted for the unsuccessful annular-fired design of the gasifier, too much heat loss due to recycling cold char, and excessive uncompensated combustor heat loss.

Within the range of substoichiometric air-to-fuel ratios studied utilizing this particular test apparatus, heat losses were related to the air-to-fuel ratio; the higher air-to-fuel ratios tended to produce higher internal temperatures which resulted in higher heat losses. This made it difficult to separate the independent effects of air-to-fuel ratio and heat loss. Consequently, statistical projections to reasonable levels of heat loss assuming virtually 100% carbon utilization could give only a broad range, 100-150 Btu/dscf for Western coal, all fed to the gasifier. However, the upper end of that range, if it would turn out to be actually attainable, would be quite encouraging.

A detailed thermal analysis of the pilot apparatus has shown that with the present design there appears to be no way to operate so as to significantly lower heat losses. However, by certain modifications and a change in operating procedure, a pilot apparatus of this scale can be made to produce heat losses fully comparable to low losses expected in large commercial installations.

Section 7

RECOMMENDATIONS

1. The next step should be a redesign, aided by the thermal model, of the pilot gasifier and adding of an externally fired air heater to the facility in order to reduce heat losses to that representative of a commercial installation.
2. Upon completion of the necessary modifications, additional tests using the gasification scheme only, should be conducted to achieve a definite answer to the question, "Can heat content be increased simply by reducing heat losses?"
3. The development of a mathematical model of suspension gasification based upon rate control by other than gas-phase diffusion (e.g., chemical kinetics) would make a significant contribution to continued development of this type gasification.

Appendix A

TEST DATA

A computer program was written for the purpose of consolidating all the pertinent data on one computer output sheet and also for the calculation of material balances. A brief description of how the various quantities on this output sheet were obtained follows:

INPUTS

COAL RATE, LB/HR

A total coal flow rate was measured via a load cell supporting the coal feed tank. A strip chart recorder was used to record the total weight of the coal feed tank as a function of time; from this a coal rate was obtained. Coal flow split was, for a given tank pressure, a function of transport air flow rate. A calibration was made of the system using the variables of coal feed tank pressure and transport air flow rate. The resulting curve, Figure A.1, was then used to determine the coal feed split.

AIR FLOWS, LB/HR

All the flows listed were measured using machined orifices for which curves were calculated; flow rates taken from these curves were used as input to the computer program. The exception to this was the transport air flow which was measured using a rotameter.

NATURAL GAS FLOW, LB/HR

GASIFIER

SEC COMB

The natural gas flowing to the gasifier was used to maintain reducing conditions in the event of char recycle interruptions. This flow was measured using an orifice; flow rate obtained from curve was input to computer program.

The natural gas to the secondary combustion furnace was measured with an orifice and flow rate obtained from a curve.

STEAM FLOW, LB/HR

GASIFIER

DEVOL

During a few tests steam was added to the system through a lance inserted in the horizontal burners to determine its effect on make-gas heating value. For the devolatilizer, steam was added at the coal injection probe. Steam flow was measured using an orifice; flow rate was obtained from a curve.

OXYGEN ADDED, LB/HR

During a few tests oxygen enrichment of the gasifier air was tried in an attempt to increase temperatures. Oxygen addition was made upstream of the gasifier burners. Flow rate measurement was made by an orifice; flow rate was obtained from a curve.

SEC COMB PERCENT

TOTAL AIR, %

The oxygen concentration of the flue gas leaving the secondary combustor was measured. The assumption of complete combustion was used to convert it to percent total air. This measurement was used to calculate the carbon balance at point "C", the exit of the secondary combustion furnace.

TEMPERATURES, °F

Temperatures at the gasifier outlet, devolatilizer inlet, devolatilizer mid-point, and devolatilizer outlet were measured using platinum thermocouples. The cyclone separator outlet and the preheated gasifier combustion air temperature were measured with chromel-alumel thermocouples. See Figure 3.6 for locations.

SOLID LOADINGS, LB/HR

This is the flow rate of solids passing a specific point in the system as measured by solids loading apparatus. Note: A value of 0.00 for a solids loading indicated NO MEASUREMENT.

MAKE GAS ANALYSIS, VOLUME %

The analysis was given on a volume percent dry basis, as sampled by our gas sampling apparatus and analyzed on the Beckman GC-4 Gas Chromatograph.

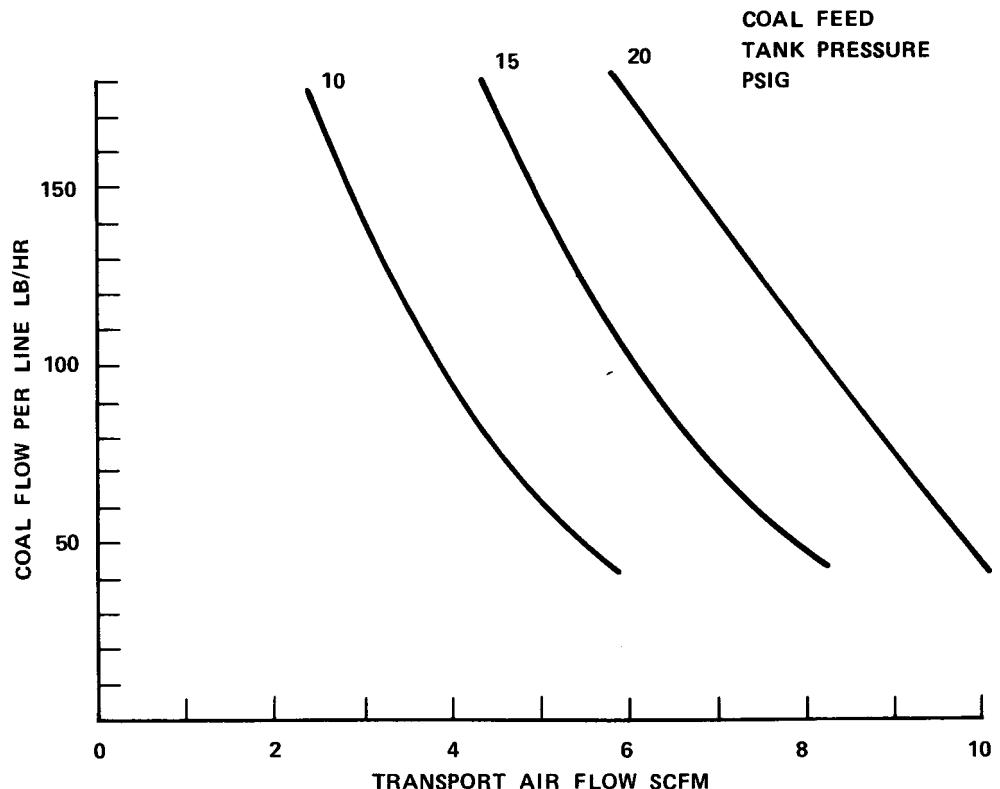


FIGURE A.1 DETERMINATION OF COAL FLOW SPLIT

MATERIAL BALANCE CALCULATIONS

COAL RATE (WET)
(DRY), LB/HR

The wet coal rate is measured via load cells, and the dry coal rate is calculated based on an average moisture content determined from moisture measurements.

DRY MAKE GAS RATE, LB/HR

This is calculated using the total flow rate of air and oxygen fed to the gasifier and the make-gas heating value. This calculation assumes that there is a direct relationship between the heating value of the gas and the amount of coal gasified. A plot of

$$\frac{\text{lbs make gas}}{\text{lbs air}}$$

as a function of make-gas heating value was made based on the data, Figure A.2.

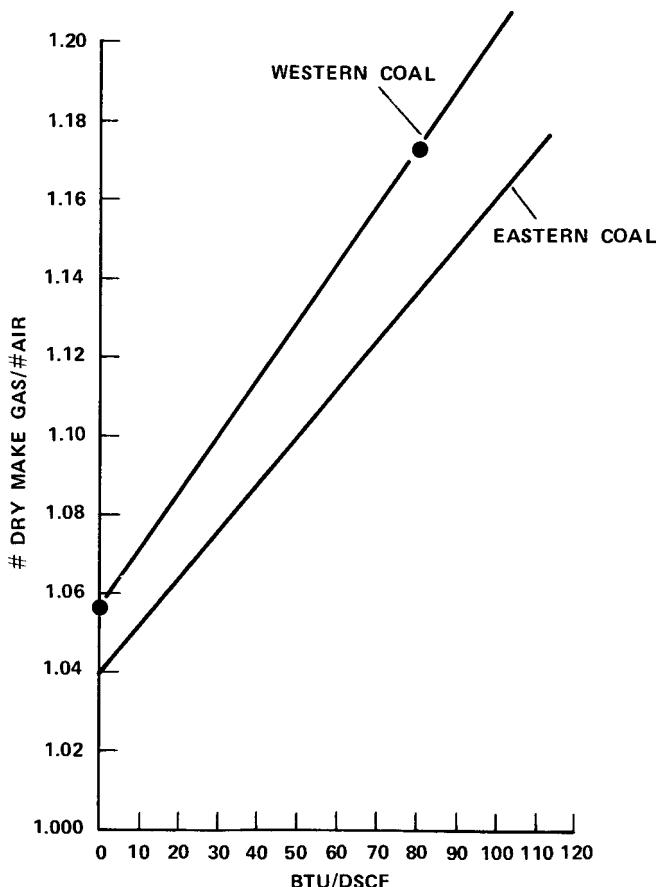


FIGURE A.2 RELATIONSHIP OF DRY MAKE GAS TO HEATING VALUE

WET MAKE GAS RATE, LB/HR	This is calculated as the sum of the DRY MAKE GAS, the TOTAL WATER FED, and WATER FROM REACTION.
TOTAL WATER FED, LB/HR	This is calculated as the sum of the water contained in the coal, the steam fed to the system, and the water content of the gasifier combustion air. Water content of gasifier air was assumed to be one percent.
WATER FROM REACTION, LB/HR	This is based on the difference between the oxygen input as measured and the oxygen accounted for in the dry make gas. The difference was attributed to the formation of water. The oxygen content of solids leaving the system was neglected.
PERCENT THEO AIR, %	This is the total air fed to the system expressed as a percent of the amount of air required to burn all the fuel, both coal and natural gas, completely to CO_2 and H_2O .
HEATING VALUE, BTU/DSCF	This is the heating value of the make gas calculated on the basis of the gas analysis.
MEASURED INPUT, LB/HR	The total carbon input includes the carbon in the coal and carbon in the natural gas. The hydrogen input includes that in the coal and natural gas. The hydrogen in the water is not included.
	The oxygen input to the system is the sum of oxygen in the coal, air, and any pure oxygen added to enrich the air. The oxygen in the water is not included.
	The nitrogen input includes that in the coal and air.
OUT AT POINT B, LB/HR	The carbon output is based on the amount in the make gas and in the solids. An average carbon content of 82.5% (based on the analysis of a number of samples) was assumed for the solids.
CARBON	
HYDROGEN	
OXYGEN	
NITROGEN	

The hydrogen out at this point is calculated on the basis of the hydrogen in the make gas, in the solids, and that hydrogen contained in the water formed by reaction. The average hydrogen content of the solids is assumed to be 2.9%. Other hydrogen in the form of water vapor is not included as the water content of the make gas was not measured.

The quantity of oxygen at this point is based on that found in the make gas as carbon dioxide and carbon monoxide plus the amount contained in the WATER FROM REACTION. Since the WATER FROM REACTION is based on the difference between oxygen IN and OUT, the oxygen balance at this point is forced to be equal to the input.

The amount of nitrogen is that analyzed in the make gas as free nitrogen.

OUT AS POINT C, LB/HR
CARBON

The amount of carbon at this point, the exit of the secondary combustion furnace, is calculated based on an oxygen analysis and the assumption of complete combustion.

MISCELLANEOUS CALCULATIONS

TOTAL BTU/HR IN COAL

This value represents the total coal feed rate multiplied by its heating value.

TOTAL BTU/HR IN NAT GAS

This value represents the natural gas feed rate to the gasifier multiplied by its heating value.

TOTAL BTU/HR IN FUEL

The sum of the above two values.

BTU/HR IN MAKE GAS

Product of the make gas flow rate and its heating value.

HYDROGEN IN GAS, LB/HR	This is the amount of hydrogen in the make gas only; solids are not included.
CARBON IN GAS, LB/HR	This represents the quantity of carbon in the make gas as CO, CO ₂ , CH ₄ , etc.
MAKE GAS MOL WT	Calculated based on make-gas composition.
COLD-GAS CONV EFF, %	This is equal to the ratio of the BTU/HR IN MAKE GAS to TOTAL BTU/HR IN FUEL.
MAKE GAS ANALYSIS WEIGHT FRACTION	Make gas analysis expressed on a weight basis.

SOLIDS ANALYSIS

This portion presents the results of the analysis that were done on solids samples taken at either the gasifier outlet, char recycle (from bottom of east cyclone), and at the cyclone outlet (solids which were entrained in the gas stream leaving the cyclones). In addition, a screen sizing analysis was occasionally done on the char recycle solids; this is presented here along with the results of the tar determinations.

Abbreviations and terms used are:

Proximate Analysis

V. M. - Volatile Matter
F. C. - Fixed Carbon

Ultimate Analysis

C - Carbon
H - Hydrogen
N - Nitrogen
S - Sulfur
O - Oxygen

Screen Analysis

% THRU	30	50	100	140	200
--------	----	----	-----	-----	-----

The above numbers refer to the screen mesh number

TEST 1

10-22-75 0950 HRS ALL COAL TO GASIFIER PITTSBURG 8 COAL

Input

COAL RATE	LB/HR
GASIFIER	170.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	790.00
TRANSPORT AIR	60.40
CHAR EJECT AIR	31.60
TOTAL AIR TO GASIFIER	882.00
SEC COMB AIR	4473.07

NATURAL GAS	LB/HR
GASIFIER	11.00
SEC COMB	170.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SEC CUMB PERCENT	
TOTAL AIR	117.50

Input

TEMPERATURES, F	
GASIFIER OUT	1950.00
DEVOL IN	1750.00
DEVOL MID	1360.00
DEVOL OUT	1160.00
CYC SEP OUT	900.00
GASIFIER AIK	790.00

SOLIDUS LOADING LB/HR	
GASIFIER OUT	0.00
CYCLONE OUT	0.00

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
-0.00	HYDROGEN	8.10
-0.00	CARBON MONOXIDE	14.00
-0.00	METHANE	0.00
-0.00	ETHANE	0.00
-0.00	ETHYLENE	0.00
-0.00	ACETYLENE	0.00
-0.00	HYDROGEN SULFIDE	0.00
-0.00	CARBON DIOXIDE	7.90
-0.00	NITROGEN	63.00
-0.00	OXYGEN+ARGON	1.00
0.00		94.00

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2193510.00
TOTAL BTU/HR IN NAT. GAS	259248.00
TOTAL BTU/HR IN FUEL	2452758.00
BTU/HR IN MAKE GAS	1045971.15
HYDROGEN IN GAS LB/HR	6.29
CARBON IN GAS LB/HR	102.20
MAKE GAS MOL. WT.	25.59
COLD-GAS CONV. EFF.	42.64

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006331
CARBON MONOXIDE	.153197
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.135845
NITROGEN	.689386
OXYGEN+ARGON	.015242

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	170.00
DRY MAKE GAS LB/HR	994.11
WET MAKE GAS LB/HR	1041.25
TOTAL WATER FED LB/HR	11.37
WATER FROM REACTION LB/HR	35.77
PERCENT THEO. AIK	47.99
HEATING VALUE BTU/DSCF	71.41

SOLIDUS ANALYSIS

TEST 2

10-28-75 1440 HRS ALL COAL FEED TO GASIFIER PITTSBURG & COAL

Input

COAL RATE	LB/HR
GASIFIER	180.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	800.00
TRANSPORT AIR	56.25
CHAR EJECT AIR	35.10
TOTAL AIR TO GASIFIER	891.35
SEC COMB AIR	4353.45

NATURAL GAS	LB/HR
GASIFIER	8.80
SEC COMB	180.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SFC COMB PERCENT	
TOTAL AIR	124.00

TEMPERATURES, F	
GASIFIER OUT	2200.00
DEVOL IN	2050.00
DEVOL MID	1610.00
DEVOL OUT	1460.00
CYC SEP OUT	1075.00
GASIFIER AIR	800.00

SOLIDS LOADING LB/HR	
GASIFIER OUT	0.00
CYCLONE OUT	0.00

GASIFIER	OUTLET	MAKE	
		GAS ANALYSIS	CYCLONE
		VOL PERCENT DRY	OUTLET
-0.00	HYDROGEN	5.00	
-0.00	CARBON MONOXIDE	9.60	
-0.00	METHANE	0.00	
-0.00	ETHANE	0.00	
-0.00	ETHYLENE	0.00	
-0.00	ACETYLENE	0.00	
-0.00	HYDROGEN SULFIDE	0.00	
-0.00	CARBON DIOXIDE	12.20	
-0.00	NITROGEN	72.00	
-0.00	OXYGEN+ARGON	1.10	
0.00		99.90	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2322540.00
TOTAL BTU/HR IN NAT. GAS	207398.40
TOTAL BTU/HR IN FUEL	2529938.40
BTU/HR IN MAKE GAS	605249.50
HYDROGEN IN GAS LB/HR	3.40
CARBON IN GAS LB/HR	89.12
MAKE GAS MOL. WT.	28.75
COLD-GAS CONV. EFF.	23.92

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.003479
CARBON MONOXIDE	.093512
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.186746
NITROGEN	.701339
OXYGEN+ARGON	.014924

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	180.00
DRY MAKE GAS LB/HR	978.29
WET MAKE GAS LB/HR	1028.81
TOTAL WATER FED LB/HR	11.61
WATER FROM REACTION LB/HR	38.90
PERCENT THEO. AIR	47.02
HEATING VALUE BTU/DSFC	47.16

MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
135.50	135.50	11.24	220.09	674.74
OUT AT POINT B	89.12	7.73	220.09	686.11
OUT AT POINT C	87.75			

SOLIDS ANALYSIS

TEST 3

11-10-75 1545 HRS ALL COAL TO THE GASIFIER PITTSBURG 8 COAL

Input

COAL RATE LB/HR
 GASIFIER 177.00
 DEVOL 0.00
 AIR FLOWS LB/HR
 GASIFIER AIR 850.00
 TRANSPORT AIR 52.40
 CHAR EJECT AIR 50.00
 TOTAL AIR TO GASIFIER 952.40
 SEC COMB AIR 4674.30

TEMPERATURES, F
 GASIFIER OUT 2240.00
 DEVOL IN 2080.00
 DEVOL MID 1890.00
 DEVOL OUT 1730.00
 CYC SEP OUT 1060.00
 GASIFIER AIR 840.00

SOLIDS LOADING LB/HR
 GASIFIER OUT 48.78
 CYCLONE OUT 5.41

NATURAL GAS LB/HR
 GASIFIER 8.00
 SEC COMB 170.00
 STEAM FLOW LB/HR
 GASIFIER 0.00
 DEVOL 0.00
 OXYGEN ADDED LB/HR
 0.00

MAKE
 GAS ANALYSIS
 OUTLET VOL PERCENT DRY CYCLONE OUTLET
 -0.00 HYDROGEN 7.10
 -0.00 CARBON MONOXIDE 16.70
 -0.00 METHANE 0.00
 -0.00 ETHANE 0.00
 -0.00 ETHYLENE 0.00
 -0.00 ACETYLENE 0.00
 -0.00 HYDROGEN SULFIDE 0.00
 -0.00 CARBON DIOXIDE 8.10
 -0.00 NITROGEN 67.00
 -0.00 OXYGEN+ARGON 1.00
 0.00 99.90

SEC COMB PERCENT
 TOTAL AIR 126.50

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL RTU/HR IN COAL 2283831.00
 TOTAL BTU/HR IN NAT. GAS 188544.00
 TOTAL BTU/HR IN FUEL 2472375.00
 BTU/HR IN MAKE GAS 1136738.27
 HYDROGEN IN GAS LB/HR 5.57
 CARBON IN GAS LB/HR 116.83
 MAKE GAS MOL. WT. 27.53
 COLD-GAS CONV. EFF. 45.98

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005158
CARBON MONOXIDE	.169839
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.129449
NITROGEN	.681389
OXYGEN+ARGON	.014165

MATERIAL BALANCE

	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE	132.75	10.89	234.03	720.81	
OUT AT POINT B	121.30	9.16	234.03	735.76	
OUT AT POINT C	116.60				

BASED ON MEASURED
 COAL RATE
 COAL RATE (WET) LB/HR 177.00 (DRY) 174.35
 DRY MAKE GAS LB/HR 1079.79
 WET MAKE GAS LB/HR 1122.86
 TOTAL WATER FED LB/HR 12.18
 WATER FROM REACTION LB/HR 30.90
 PERCENT THEO. AIR 51.41
 HEATING VALUE BTU/DSFC 76.85

SOLIDS ANALYSIS

TEST 4

11-14-75 1300 HRS ALL COAL FEED TO GASIFIER B COAL

Input

COAL RATE	LB/HR
GASIFIER	175.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	870.00
TRANSPORT AIR	60.00
CHAR EJECT AIR	55.00
TOTAL AIR TO GASIFIER	985.00
SEC COMB AIR	4798.49

TEMPERATURES, F	
GASIFIER OUT	2210.00
DEVOL IN	2010.00
DEVOL MID	1800.00
DEVOL OUT	1640.00
CYC SEP OUT	950.00
GASIFIER AIR	820.00

NATURAL GAS	LB/HR
GASIFIER	8.00
SEC COMB	170.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
0.00	

SOLIDS LOADING	LB/HR
GASIFIER OUT	59.09
CYCLONE OUT	5.50
MAKE	
GASIFIER	
OUTLET	
VOL PERCENT DRY	
CYCLONE	
OUTLET	
HYDROGEN	7.10
CARBON MONOXIDE	16.70
METHANE	0.00
ETHANE	0.00
ETHYLENE	0.00
ACETYLENE	0.00
HYDROGEN SULFIDE	0.00
CARBON DIOXIDE	8.10
NITROGEN	67.00
OXYGEN+ARGON	1.20
0.00	100.10

SEC COMB PERCENT	
TOTAL AIR	128.00

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2258025.00
TOTAL BTU/HR IN NAT. GAS	188544.00
TOTAL RTU/HR IN FUEL	2446569.00
BTU/HR IN MAKE GAS	1172326.76
HYDROGEN IN GAS LB/HR	5.74
CARBON IN GAS LB/HR	120.49
MAKE GAS MOL. WT.	27.61
COLD-GAS CONV. EFF.	47.9?

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005143
CARBON MONOXIDE	.169359
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.129084
NITROGEN	.679464
OXYGEN+ARGON	.016950

MATERIAL BALANCE

BASED ON MEASURED								
COAL RATE								
MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN				
	131.32	10.79	241.45	745.40				
CUAL RATE (WET) LB/HR	175.00	(DRY)	172.38	OUT AT POINT B	125.03	9.45	241.45	758.79
DRY MAKE GAS LB/HR	1116.75			OUT AT POINT C	121.81			
WET MAKE GAS LB/HR	1161.19							
TOTAL WATER FED LB/HR	12.48							
WATER FROM REACTION LB/HR	31.96							

PERCENT THEO. AIR	53.73
HEATING VALUE BTU/DSFC	76.85

SOLIDS ANALYSIS

TEST 5

11-19-75 1100 HRS ALL COAL TO GASIFIER PITTSBURG 8 COAL

Input

COAL RATE LB/HR
 GASIFIER 164.00
 DEVOL 0.00
 AIR FLOWS LB/HR
 GASIFIER AIR 908.00
 TRANSPORT AIR 58.00
 CHAR EJECT AIR 66.00
 TOTAL AIR TO GASIFIER 1032.00
 SEC COMB AIR 4237.33

TEMPERATURES, F
 GASIFIER OUT 2300.00
 DEVOL IN 2150.00
 DEVOL MIU 1930.00
 DEVOL OUT 1800.00
 CYC SEP OUT 915.00
 GASIFIER AIR 840.00

SOLID'S LOADING LB/HR
 GASIFIER OUT 0.00
 CYCLONE OUT 19.17

NATURAL GAS LB/HR
 GASIFIER 8.50
 SEC COMB 168.00
 STEAM FLOW LB/HR
 GASIFIER 0.00
 DEVOL 0.00
 OXYGEN ADDED LB/HR
 0.00

MAKE
 GASIFIER GAS ANALYSIS CYCLONE
 OUTLET VOL PERCENT DRY OUTLET
 -0.00 HYDROGEN 7.70
 -0.00 CARBON MONOXIDE 16.10
 -0.00 METHANE 0.00
 -0.00 ETHANE 0.00
 -0.00 ETHYLENE 0.00
 -0.00 ACETYLENE 0.00
 -0.00 HYDROGEN SULFIDE 0.00
 -0.00 CARBON DIOXIDE 7.90
 -0.00 NITROGEN 67.20
 -0.00 OXYGEN+ARGON 1.50
 0.00 100.40

SEC COMB PERCENT
 TOTAL AIR 115.00

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2116092.00
 TOTAL BTU/HR IN NAT. GAS 200328.00
 TOTAL BTU/HR IN FUEL 2316420.00
 BTU/HR IN MAKE GAS 1231607.65
 HYDROGEN IN GAS LB/HR 6.54
 CARBON IN GAS LB/HR 122.49
 MAKE GAS MOL. WT. 27.54
 COLD-GAS CONV. EFF. 53.17

MAKE GAS ANALYSIS
 WEIGHT FRACTION

HYDROGEN	.005592
CARBON MONOXIDE	.163695
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.126221
NITROGEN	.683249
OXYGEN+ARGON	.021243

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 164.00 (DRY) 161.54	OUT AT POINT B	123.81	10.36	251.54	780.78
DRY MAKE GAS LB/HR 1170.06	OUT AT POINT C	138.30	11.42	251.54	799.44
WET MAKE GAS LB/HR 1221.71		128.74			
TOTAL WATER FED LB/HR 12.78					
WATER FROM REACTION LB/HR 38.87					

PERCENT THEO. AIR 59.46
 HEATING VALUE BTU/DSFC 76.87

SOLID'S ANALYSIS

TEST 6

11-19-75 1405 HRS ALL COAL TO GASIFIER PITTSBURG 8 COAL USED

Input

COAL RATE	LB/HR
GASIFIER	142.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	850.00
TRANSPORT AIR	58.50
CHAR EJECT AIR	73.00
TOTAL AIR TO GASIFIER	981.50
SEC COMR AIR	3889.60

NATURAL GAS	LB/HR
GASIFIER	4.50
SEC CUMH	158.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SEC COMB PERCENT	
TOTAL AIR	111.50

TEMPERATURES, F	
GASIFIER OUT	2300.00
DEVOL IN	2150.00
DEVOL MID	1930.00
DEVOL OUT	1800.00
CYC SEP OUT	1100.00
GASIFIER AIR	860.00

SOLIDS LOADING LB/HR	
GASIFIER OUT	18.80
CYCLONE OUT	2.72

MAKE		
GAS ANALYSIS		
GASIFIER OUTLET	VOL PERCENT DRY	CYCLONE OUTLET
-0.00	HYDROGEN	5.50
-0.00	CARBON MONOXIDE	15.00
-0.00	METHANE	0.00
-0.00	ETHANE	0.00
-0.00	ETHYLENE	0.00
-0.00	ACETYLENE	0.00
-0.00	HYDROGEN SULFIDE	0.00
-0.00	CARBON DIOXIDE	9.00
-0.00	NITROGEN	69.00
-0.00	OXYGEN+ARGON	1.10
0.00		99.60

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	1832226.00
TOTAL BTU/HR IN NAT. GAS	106056.00
TOTAL BTU/HR IN FUEL	1938282.00
BTU/HR IN MAKE GAS	979969.24
HYDROGEN IN GAS LB/HR	4.32
CARBON IN GAS LB/HR	113.18
MAKE GAS MOL. WT.	28.02
COLD-GAS CONV. EFF.	50.56

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.003926
CARBON MONOXIDE	.149898
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.141333
NITROGEN	.689532
OXYGEN+ARGON	.015311

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	142.00
DRY MAKE GAS LB/HR	1100.00
WET MAKE GAS LB/HR	1146.51
TOTAL WATER FED LB/HR	11.95
WATER FROM REACTION LB/HR	34.56
PERCENT THEO. AIR	67.58
HEATING VALUE BTU/DSFC	66.18

SOLIDS ANALYSIS

TEST 7

12-10-75 1235 HRS ALL COAL FED TO DEVOLATILIZER PITTSBURG A COAL
NITROGEN TO DEVOLATILIZER 11.3 LB/HRInput

COAL RATE	LB/HR
GASIFIER	0.00
DEVOL	120.00
AIR FLOWS	LB/HR
GASIFIER AIR	880.00
TRANSPORT AIR	0.00
CHAR EJECT AIR	78.00
TOTAL AIR TO GASIFIER	958.00
SEC COMP AIR	4395.01

TEMPERATURES, F	
GASIFIER OUT	2350.00
DEVOL IN	1980.00
DEVOL MID	1450.00
DEVOL OUT	1350.00
CYC SEP OUT	1010.00
GASIFIER AIR	780.00

<u>GASIFIER-DEVOLATILIZER</u>	
TOTAL BTU/HR IN COAL	1548360.00
TOTAL BTU/HR IN NAT. GAS	1178400.00
TOTAL BTU/HR IN FUEL	2726760.00
BTU/HR IN MAKE GAS	661967.85
HYDROGEN IN GAS LB/HR	5.25
CARBON IN GAS LB/HR	77.68
MAKE GAS MOL. WT.	28.23
COLD-GAS CONV. EFF.	24.28

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.004109
CARBON MONOXIDE	.065460
METHANE	.002267
ETHANE	.001807
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.158974
NITROGEN	.753781
OXYGEN+ARGON	.013815

NATURAL GAS	LB/HR
GASIFIER	50.00
SEC COMP	150.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
0.00	

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
5.30	HYDROGEN	5.80
6.60	CARBON MONOXIDE	6.60
0.00	METHANE	.40
0.00	ETHANE	.15
0.00	ETHYLENE	0.00
0.00	ACETYLENE	0.00
0.00	HYDROGEN SULFIDE	0.00
10.20	CARBON DIOXIDE	10.20
76.80	NITROGEN	76.00
1.00	OXYGEN+ARGON	1.00

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	120.00
DRY MAKE GAS LB/HR	1051.07
WET MAKE GAS LB/HR	1141.11
TOTAL WATER FED LB/HR	11.38
WATER FROM REACTION LB/HR	78.67
MEASURED INPUT	CARBON 123.43 HYDROGEN 18.53 OXYGEN 231.12 NITROGEN 724.47
OUT AT POINT B	77.68 13.99 231.12 792.27
OUT AT POINT C	78.90

PERCENT THEO. AIR	46.89
HEATING VALUE BTU/DSFC	46.84

SOLIDS ANALYSIS

TEST 7 CHAR RECYCLE-- V.M. 9.1% F.C. 66.0% ASH 24.9%

TEST 8

12-18-75 1350 HRS ALL COAL TO DEVOLATILIZER WITH STEAM TO TOP OF DEVOLAT
PITTsburg R COAL USEDInput

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	0.00	GASIFIER OUT 2080.00
DEVOL	180.00	DEVOL IN 1800.00
		DEVOL MID -0.00
		DEVOL OUT 1080.00
AIR FLOWS	LB/HR	CYC SEP OUT 850.00
		GASIFIER AIR 800.00
GASIFIER AIR	831.00	SOLID LOADINGS LB/HR
TRANSPORT AIR	52.10	GASIFIER OUT 0.00
CHAR EJECT AIR	72.00	CYCLONE OUT 0.00
TOTAL AIR TO GASIFIER	955.10	
SEC COMB AIR	4733.85	
NATURAL GAS	LB/HR	MAKE
GASIFIER	51.00	GAS ANALYSIS
SEC COMB	160.00	OUTLET VOL PERCENT DRY CYCLONE OUTLET
STEAM FLOW	LB/HR	-0.00 HYDROGEN 7.30
GASIFIER	0.00	-0.00 CARBON MONOXIDE 6.80
DEVOL	33.00	-0.00 METHANE .30
OXYGEN ADDED	LB/HR	-0.00 ETHANE .30
	0.00	-0.00 ETHYLENE 0.00
		-0.00 ACETYLENE 0.00
		-0.00 HYDROGEN SULFIDE 0.00
		-0.00 CARBON DIOXIDE 9.40
		-0.00 NITROGEN 83.00
		-0.00 OXYGEN+ARGON 1.00
SEC COMB PERCENT		0.00 108.10
TOTAL AIR	124.00	

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2322540.00
 TOTAL BTU/HR IN NAT. GAS 1201968.00
 TOTAL BTU/HR IN FUEL 3524508.00
 BTU/HR IN MAKE GAS 726858.75
 HYDROGEN IN GAS LB/HR 6.20
 CARBON IN GAS LB/HR 71.33
 MAKE GAS MOL. WT. 29.95
 COLD-GAS CONV. EFF. 20.62

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.004874
CARBON MONOXIDE	.063564
METHANE	.001602
ETHANE	.003405
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.138078
NITROGEN	.775856
OXYGEN+ARGON	.013020

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 180.00 (DRY) 177.30	OUT AT POINT B	71.33	17.47	234.88	819.51
DRY MAKE GAS LB/HR 1056.27	OUT AT POINT C	118.63			
WET MAKE GAS LB/HR 1202.93					
TOTAL WATER FED LB/HR 45.25					
WATER FROM REACTION LB/HR 101.41					

PERCENT THEO. AIR 36.17
 HEATING VALUE BTU/SCF 54.04

SOLIDS ANALYSIS

TEST 9

12-23-75 1405 COAL FEED SPLIT TO THE GASIFIER AND THE DEVOLATILIZER

Input PITTSBURG 8 COAL USED. ADDITION OF 9 POUNDS PER HOUR N₂ TO DEVOLATILIZER

Calculations

COAL RATE	LB/HR	TEMPERATURES, F	GASIFIER-DEVOLATILIZER		
GASIFIER	83.00	GASIFIER OUT 2120.00	TOTAL BTU/HR IN COAL	2141894.00	
DEVOL	83.00	DEVOL IN 1900.00	TOTAL BTU/HR IN NAT. GAS	589200.00	
		DEVOL MID 1250.00	TOTAL BTU/HR IN FUEL	2731094.00	
		DEVOL OUT 1280.00	BTU/HR IN MAKE GAS	1234840.61	
AIR FLOWS	LB/HR	CYC SEP OUT 930.00	HYDROGEN IN GAS LB/HR	7.26	
		GASIFIER AIR 840.00	CARBON IN GAS LB/HR	108.10	
GASIFIER AIR	830.00		MAKE GAS MOL. WT.	27.68	
TRANSPORT AIR	30.00		COLD-GAS CONV. EFF.	45.21	
CHAR EJECT AIR	76.00	SOLIDS LOADING LB/HR	MAKE GAS ANALYSIS		
TOTAL AIR TO GASIFIER	936.00	GASIFIER OUT 0.00	WEIGHT FRACTION		
SEC COMB AIR	4428.1?	CYCLONE OUT 0.00			
NATURAL GAS	LB/HR	MAKE	HYDROGEN	.005275	
GASIFIER	25.00	GAS ANALYSIS	CARBON MONOXIDE	.141639	
SEC CUMB	165.00	OUTLET VOL PERCENT DRY	METHANE	.001734	
		CYCLONE OUTLET	ETHANE	.003686	
			ETHYLENE	.001518	
STEAM FLOW	LB/HR		ACETYLENE	.002818	
GASIFIER	0.00	6.80 HYDROGEN 7.30	HYDROGEN SULFIDE	0.000000	
DEVOL	0.00	14.90 CARBON MONOXIDE 14.00	CARBON DIOXIDE	.130366	
OXYGEN ADDED	LB/HR	0.00 METHANE .30	NITROGEN	.702125	
	0.00	0.00 ETHANE .30	OXYGEN+ARGON	.011273	
		0.00 ETHYLENE .15			
		0.00 ACETYLENE .30			
		.25 HYDROGEN SULFIDE 0.00			
		8.30 CARBON DIOXIDE 8.20			
		69.60 NITROGEN 69.40			
		.80 OXYGEN+ARGON .80			
		100.65	100.75		
SEC CUMA PERCENT					
TOTAL AIR	115.50				

MATERIAL BALANCE

BASED ON MEASURED	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE	137.62	14.59	229.42	708.32
COAL RATE (WET) LB/HR	166.00	(DRY) 163.51	OUT AT POINT B	108.10
DRY MAKE GAS LB/HR	1069.52		12.42	229.42
WET MAKE GAS LB/HR	1127.82		OUT AT POINT C	129.13
TOTAL WATER FED LB/HR	11.85			
WATER FROM REACTION LB/HR	46.45			
PERCENT THEO. AIR	45.74			
HEATING VALUE BTU/DSFC	84.14			

SOLIDS ANALYSIS

TEST 9 CHAR RECYCLE-- V.M. 7.7% F.C. 59.5% ASH 32.8%

TEST 10

01-09-76 1130 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.

PITTSBURG 8 COAL

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	87.00	GASIFIER OUT 2200.00
DEVOL	87.00	DEVOL IN 1960.00
		DEVOL MID -0.00
		DEVOL OUT 1320.00
AIR FLOWS	LB/HR	CYC SEP OUT 990.00
		GASIFIER AIR 785.00
GASIFIER AIR	844.00	
TRANSPORT AIR	32.00	SOLIDS LOADING LB/HR
CHAR EJECT AIR	72.00	GASIFIER OUT 3.55
TOTAL AIM TO GASIFIER	948.00	CYCLONE OUT 24.82
SEC COMB AIR	4750.00	
NATURAL GAS	LB/HR	MAKE
		GAS ANALYSIS
GASIFIER	25.00	OUTLET VOL PERCENT DRY
SEC COMB	166.00	CYCLONE OUTLET
STEAM FLOW	LB/HR	
GASIFIER	9.80	8.20 HYDROGEN 8.60
DEVOL	22.30	13.80 CARBON MONOXIDE 13.70
OXYGEN ADDED	LB/HR	0.00 METHANE .30
	0.00	0.00 ETHANE .15
		0.00 ETHYLENE .30
		0.00 ACETYLENE .15
		0.00 HYDROGEN SULFIDE 0.00
		6.30 CARBON DIOXIDE 7.30
		70.70 NITROGEN 68.70
		1.10 OXYGEN+ARGON 1.00
SEC COMB PERCENT		100.10 100.20
TOTAL AIR	130.00	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2245122.00
TOTAL BTU/HR IN NAT. GAS	589200.00
TOTAL BTU/HR IN FUEL	2834322.00
BTU/HR IN MAKE GAS	1286313.21
HYDROGEN IN GAS LB/HR	8.32
CARBON IN GAS LB/HR	105.48
MAKE GAS MOL. WT.	27.06
COLD-GAS CONV. EFF.	45.38

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006356
CARBON MONOXIDE	.141749
METHANE	.001774
ETHANE	.001885
ETHYLENE	.003104
ACETYLENE	.001441
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.118690
NITROGEN	.710812
OXYGEN+ARGON	.014411

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE		143.35	14.99	232.79	717.45
COAL RATE (WET) LB/HR	174.00	OUT AT POINT B	125.96	15.45	232.79
DRY MAKE GAS LB/HR	1084.09	OUT AT POINT C	108.55		770.58
WET MAKE GAS LB/HR	1185.96				
TOTAL WATER FED LB/HR	44.19				
WATER FROM REACTION LB/HR	57.68				

PERCENT THEO. AIR 44.64
HEATING VALUE BTU/DSFC 84.88

SOLIDS ANALYSIS

TEST 10 CHAR RECYCLE-- V.M. 6.78 F.C. 71.4% ASH 21.9%
CYCLONE OUT-- C 84.1% H 3.0% N 1.0% S 1.5% ASH 6.7% O 3.7%
TARS 8.39 LB/HR

TEST 11

01-23-76 1100 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.
PITTSBURG 8 COALInput

COAL RATE	LB/HR
GASIFIER	80.00
DEVOL	80.00
AIR FLOWS	LB/HR
GASIFIER AIR	820.00
TRANSPORT AIR	32.00
CHAR EJECT AIR	73.00
TOTAL AIR TO GASIFIER	925.00
SEC COMB AIR	4213.12

NATURAL GAS	LB/HR
GASIFIER	26.00
SEC COMB	160.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SEC COMB PERCENT	
TOTAL AIR	124.00

TEMPERATURES, F	
GASIFIER OUT	1950.00
DEVOL IN	1750.00
DEVOL MID	-0.00
DEVOL OUT	1200.00
CYC SEP OUT	940.00
GASIFIER AIR	800.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	18.67
CYCLONE OUT	15.88

MAKE	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
7.50	HYDROGEN	8.00
12.10	CARBON MONOXIDE	10.90
0.00	METHANE	.30
0.00	ETHANE	.30
0.00	ETHYLENE	.30
0.00	ACETYLENE	.15
0.00	HYDROGEN SULFIDE	0.00
8.60	CARBON DIOXIDE	8.60
70.90	NITROGEN	71.40
1.00	OXYGEN+ARGON	1.10

100.10		101.05
--------	--	--------

Calculations

GASIFIER=DEVOLATILIZER
TOTAL BTU/HR IN COAL 2064480.00
TOTAL BTU/HR IN NAT. GAS 612768.00
TOTAL BTU/HR IN FUEL 2677248.00
BTU/HR IN MAKE GAS 1102701.44
HYDROGEN IN GAS LB/HR 7.75
CARBON IN GAS LB/HR 93.69
MAKE GAS MOL. WT. 27.68
COLD-GAS CONV. EFF. 41.19

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005781
CARBON MONOXIDE	.110268
METHANE	.001734
ETHANE	.003685
ETHYLENE	.003035
ACETYLENE	.001409
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.136715
NITROGEN	.722307
OXYGEN+ARGON	.015500

MATERIAL BALANCE

CARBON	HYDROGEN	OXYGEN	NITROGEN
134.08	14.54	226.42	699.95
OUT AT POINT B	106.79	15.20	226.42
OUT AT POINT C	97.72		757.30

BASED ON MEASURED
COAL RATE

COAL RATE (WET)	LB/HR	160.00
DRY MAKE GAS	LB/HR	1048.45
WET MAKE GAS	LB/HR	1122.97
TOTAL WATER FED	LB/HR	11.65
WATER FROM REACTION	LB/HR	62.87

PERCENT THEO. AIR	46.11
HEATING VALUE BTU/DSFC	76.60

SOLIDS ANALYSIS

TEST 11 CHAR RECYCLE-- V.M. 6.6% F.C. 58.6% ASH 34.8%
CHAR RECYCLE % THRU 30-96.8% 50-94.3% 100-86.3% 140-77.3% 200-68.3%

TEST 12
01-23-76 1355 COAL TO GASIFIER AND TO DEVOLATILIZER
Input PITTSBURG 8 COAL

COAL RATE LB/HR

GASIFIER 55.00
DEVOL 100.00

AIR FLOWS LB/HR

GASIFIER AIR 820.00
TRANSPORT AIR 34.80
CHAR EJECT AIR 70.00
TOTAL AIR TO GASIFIER 924.80
SEC COMB AIR 4135.11

NATURAL GAS LB/HR

GASIFIER 26.00
SEC COMB 172.00

STEAM FLOW LB/HR

GASIFIER 0.00
DEVOL 0.00

OXYGEN ADDED LB/HR
0.00

TEMPERATURES, F

GASIFIER OUT 2200.00
DEVOL IN 2000.00
DEVOL MID 1960.00
DEVOL OUT 1430.00
CYC SEP OUT 1060.00
GASIFIER AIR 840.00

SOLIDS LOADING LB/HR
GASIFIER OUT 14.70
CYCLONE OUT 14.17

	MAKE		CYCLONE
GASIFIER OUTLET	GAS ANALYSIS VOL PERCENT DRY	OUTLET	
6.10	HYDROGEN	7.20	
11.30	CARBON MONOXIDE	0.00	
0.00	METHANE	.30	
0.00	ETHANE	0.00	
0.00	ETHYLENE	.30	
0.00	ACETYLENE	0.00	
0.00	HYDROGEN SULFIDE	0.00	
10.00	CARBON DIOXIDE	10.40	
71.60	NITROGEN	73.30	
.90	OXYGEN+ARGON	1.00	
99.90		100.50	

SEC COMB PERCENT
TOTAL AIR 112.00

Calculations

GASIFIER-DEVOLATILIZER
TOTAL BTU/HR IN COAL 1999965.00
TOTAL BTU/HR IN NAT. GAS 612768.00
TOTAL BTU/HR IN FUEL 2612733.00
BTU/HR IN MAKE GAS 787437.45
HYDROGEN IN GAS LB/HR 6.15
CARBON IN GAS LB/HR 83.63
MAKE GAS MOL. WT. 28.01
COLD-GAS CONV. EFF. 30.14

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005142
CARBON MONOXIDE	.079983
METHANE	.001714
ETHANE	0.000000
ETHYLENE	.002999
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.163394
NITROGEN	.732843
OXYGEN+ARGON	.013926

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 155.00 (DRY) 152.68	OUT AT POINT B	95.31	13.66	226.00	699.75
DRY MAKE GAS LB/HR 1026.15	OUT AT POINT C	110.67			
WET MAKE GAS LB/HR 1101.65					
TOTAL WATER FED LB/HR 11.57					
WATER FROM REACTION LB/HR 63.93					

PERCENT THEO. AIR 47.24
HEATING VALUE BTU/DSFC 57.04

SOLIDS ANALYSIS

TEST 12 CHAR RECYCLE-- V.M. 6.2% F.C. 59.9% ASH 33.9%
CHAR RECYCLE % THRU 30-98.4% 50-97.0% 100-90.8% 140-79.2% 200-66.6%
CYCLONE OUT-- C 85.9% H 3.2% N 0.6% S 1.6% ASH 5.8% O 2.9%
TARS 5.67 LB/HR

TEST 13

01-23-76 1555 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.

Input

PITTSBURG 8 COAL

COAL RATE LB/HR		TEMPERATURES, F		Calculations	
GASIFIER	103.00	GASIFIER OUT	2230.00	GASIFIER-DEVOLATILIZER	
DEVOL	103.00	DEVOL IN	2100.00	TOTAL BTU/HR IN COAL	2658018.00
		DEVOL MID	2020.00	TOTAL BTU/HR IN NAT. GAS	612768.00
		DEVOL OUT	1520.00	TOTAL BTU/HR IN FUEL	3270786.00
AIR FLOWS LB/HR		CYC SEP OUT	1100.00	BTU/HR IN MAKE GAS	1462053.15
		GASIFIER AIR	870.00	HYDROGEN IN GAS LB/HR	9.23
GASIFIER AIR	800.00	SOLID LOADINGS LB/HR		CARBON IN GAS LB/HR	112.95
TRANSPORT AIR	29.70	GASIFIER OUT	0.00	MAKE GAS MOL. WT.	26.67
CHAR EJECT AIR	70.00	CYCLONE OUT	21.26	COLD-GAS CONV. EFF.	44.70
TOTAL AIR TO GASIFIER	899.70				
SEC COMB AIR	4135.11				
NATURAL GAS LB/HR		MAKE GAS ANALYSIS		MAKE GAS ANALYSIS	
GASIFIER	26.00	GASIFIER OUTLET	VOL PERCENT DRY	WEIGHT FRACTION	
SEC COMB	157.00	9.50	HYDROGEN	HYDROGEN	.007499
		16.80	CARBON MONOXIDE	CARBON MONOXIDE	.174272
		0.00	METHANE	METHANE	.001800
STEAM FLOW LB/HR		0.00	ETHANE	ETHANE	.001912
GASIFIER	0.00	0.00	ETHYLENE	ETHYLENE	.003149
DEVOL	0.00	0.00	ACETYLENE	ACETYLENE	.001462
OXYGEN ADDED LB/HR	0.00	0.00	HYDROGEN SULFIDE	HYDROGEN SULFIDE	0.000000
		6.30	CARBON DIOXIDE	CARBON DIOXIDE	.107233
		66.50	NITROGEN	NITROGEN	.689738
		1.00	OXYGEN+ARGON	OXYGEN+ARGON	.013160
SEC COMB PERCENT		100.10			
TOTAL AIR	113.50		100.60		
MATERIAL BALANCE					
BASED ON MEASURED COAL RATE		MEASURED INPUT	CARBON	HYDROGEN	OXYGEN
COAL RATE (WET) LB/HR	206.00	(DRY) 202.91	167.02	16.85	223.95
DRY MAKE GAS LB/HR	1044.10	OUT AT POINT B	130.49	14.66	223.95
WET MAKE GAS LB/HR	1099.50	OUT AT POINT C	123.06		720.16
TOTAL WATER FED LB/HR	12.09				
WATER FROM REACTION LB/HR	43.31				
PERCENT THEO. AIR	36.71				
HEATING VALUE BTU/DSCF	98.77				

SOLIDS ANALYSIS

TEST 13 CHAR RECYCLE-- V.M. 4.5% F.C. 63.2% ASH 32.3%
 CHAR RECYCLE % THRU 30-99.9% 50-99.8% 100-98.7% 140-95.1% 200-89.1%
 CYCLONE OUT-- C 88.1% H 3.3% N 1.5% S 1.8% ASH 2.6% O 2.7%
 TARS 4.55 LB/HR

TEST 14

01-28-76 1150 HRS 50-50 SPLIT ON COAL TO GAS-DEVOL.

GAS COOLING PROBES INSERTED IN CROSSOVER PIPE PITTSBURG 8 COAL

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	87.50	GASIFIER OUT 2080.00
DEVOL	87.50	DEVOL IN 1490.00
		DEVOL MID -0.00
		DEVOL OUT 1150.00
AIR FLOWS	LB/HR	'CYC SEP OUT 880.00
		GASIFIER AIR 875.00
GASIFIER AIR	850.00	SOLIDS LOADING LB/HR
TRANSPORT AIR	31.00	GASIFIER OUT 106.79
CHAR EJECT AIR	72.00	CYCLONE OUT 23.80
TOTAL AIR TO GASIFIER	953.00	
SEC COMB AIR	4393.75	
NATURAL GAS	LB/HR	MAKE
		GAS ANALYSIS
GASIFIER	27.00	OUTLET VOL PERCENT DRY CYCLONE
SEC COMB	164.00	OUTLET
STEAM FLOW	LB/HR	HYDROGEN 8.70 8.70
		CARBON MONOXIDE 14.50 14.50
GASIFIER	0.00	0.00 METHANE .15
DEVOL	0.00	0.00 ETHANE .15
OXYGEN ADDED	LB/HR	0.00 ETHYLENE .15
	0.00	0.00 ACETYLENE .15
		0.00 HYDROGEN SULFIDE 0.00
		7.20 CARBON DIOXIDE 7.10
		68.60 NITROGEN 68.60
		1.00 OXYGEN-ARGON 1.10
SFC COMB PERCENT		100.00 100.60
TOTAL AIR	109.50	

Calculations

GASIFIER-DEVOLATILIZER
TOTAL BTU/HR IN COAL 2258025.00
TOTAL BTU/HR IN NAT. GAS 636336.00
TOTAL BTU/HR IN FUEL 2894361.00
BTU/HR IN MAKE GAS 1272189.67
HYDROGEN IN GAS LB/HR 7.93
CARBON IN GAS LB/HR 107.03
MAKE GAS MOL. WT. 27.15
COLD-GAS CONV. EFF. 43.95

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006410
CARBON MONOXIDE	.149567
METHANE	.000884
ETHANE	.001879
ETHYLENE	.001547
ACETYLENE	.001437
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.115086
NITROGEN	.707607
OXYGEN+ARGON	.015804

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
		145.57	15.54	234.02	721.24
CUAL RATE (WET) LB/HR 175.00 (DRY) 172.38	OUT AT POINT B	126.67	14.85	234.02	770.30
DRY MAKE GAS LB/HR 1088.60	OUT AT POINT C	147.07			
WET MAKE GAS LB/HR 1156.74					
TOTAL WATER FED LB/HR 12.16					
WATER FROM REACTION LB/HR 55.98					

PERCENT THEO. AIR 43.94
HEATING VALUE BTU/DSCF 83.84

SOLIDS ANALYSIS

TEST 14 GASIFIER OUT-- V.M. 1.4% F.C. 60.2% ASH 38.4%
CHAR RECYCLE-- V.M. 6.2% F.C. 59.6% ASH 34.2%
CYCLONE OUT-- C 77.2% H 2.5% S 1.8% N 0.9% ASH 13.4% O 4.2%
TARS 5.71 LB/HR

TEST 15

02-09-76 1020 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL. OXYGEN ADDED TO
GASIFIER

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	115.00	GASIFIER OUT 2010.00
DEVOL	115.00	DEVOL IN 1790.00
		DEVOL MID 1440.00
		DEVOL OUT 1280.00
AIR FLOWS	LB/HR	CYC SEP OUT 890.00
		GASIFIER AIR 830.00
GASIFIER AIR	821.00	
TRANSPORT AIR	27.50	SOLIDS LOADING LB/HR
CHAR EJECT AIR	68.00	GASIFIER OUT 119.69
TOTAL AIR TO GASIFIER	916.50	CYCLONE OUT 21.99
SEC COMB AIR	4491.38	
NATURAL GAS	LB/HR	MAKE
		GAS ANALYSIS
GASIFIER	26.50	OUTLET VOL PERCENT DRY CYCLONE
SEC COMB	155.00	9.80 HYDROGEN 9.90
		16.60 CARBON MONOXIDE 16.60
STEAM FLOW	LB/HR	0.00 METHANE 0.00
		0.00 ETHANE 0.00
GASIFIER	0.00	0.00 ETHYLENE .30
DEVOL	0.00	0.00 ACETYLENE 0.00
		0.00 HYDROGEN SULFIDE 0.00
OXYGEN ADDED	LB/HR	9.20 CARBON DIOXIDE 9.10
		63.40 NITROGEN 63.00
		1.00 OXYGEN+ARGON 1.10
SEC COMB PERCENT		100.00
TOTAL AIR	110.00	100.00

Calculations

GASIFIER-DEVOLATILIZER
TOTAL BTU/HR IN COAL 2967690.00
TOTAL BTU/HR IN NAT. GAS 624552.00
TOTAL BTU/HR IN FUEL 3592242.00
BTU/HR IN MAKE GAS 1380751.79
HYDROGEN IN GAS LB/HR 8.49
CARBON IN GAS LB/HR 126.45
MAKE GAS MOL. WT. 27.00
COLD-GAS CONV. EFF. 38.44

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.007333
CARBON MONOXIDE	.172129
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	.003111
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.148280
NITROGEN	.653261
OXYGEN+ARGON	.015887

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
		184.58	18.18	268.62	694.22

COAL RATE (WET) LB/HR	230.00	(DRY)	226.55	OUT AT POINT B	144.60	14.51	268.62	714.22
DRY MAKE GAS LB/HR	1093.32			OUT AT POINT C	172.20			
WET MAKE GAS LB/HR	1154.31							
TOTAL WATER FED LB/HR	12.62							
WATER FROM REACTION LB/HR	48.38							
PERCENT THEO. AIR	40.31							
HEATING VALUE BTU/DSFC	90.47							

SOLIDS ANALYSIS

TEST 15 CHAR RECYCLE-- V.M. 4.4% F.C. 61.3% ASH 34.3%

TEST 16

02-09-76 1110 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.

Input PITTSBURG 8 COAL

COAL RATE	LB/HR
GASIFIER	93.60
DEVOL	93.60
AIR FLOWS	LB/HR
GASIFIER AIR	840.00
TRANSPORT AIR	29.70
CHAR EJECT AIR	68.00
TOTAL AIR TO GASIFIER	937.70
SEC COMB AIR	4462.56

NATURAL GAS	LB/HR
GASIFIER	26.00
SEC COMP	145.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SEC COMB PERCENT	
TOTAL AIR	122.50

TEMPERATURES, F	
GASIFIER OUT	2010.00
DEVOL IN	1810.00
DEVOL MID	1500.00
DEVOL OUT	1340.00
CYC SEP OUT	905.00
GASIFIER AIR	840.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	94.33
CYCLONE OUT	25.79

MAKE			
GASIFIER	GAS ANALYSIS	CYCLONE	
OUTLET	VOL PERCENT DRY	OUTLET	
9.30	HYDROGEN	9.00	
13.70	CARBON MONOXIDE	11.80	
0.00	METHANE	.30	
0.00	ETHANE	.15	
0.00	ETHYLENE	.15	
0.00	ACETYLENE	.15	
0.00	HYDROGEN SULFIDE	0.00	
7.80	CARBON DIOXIDE	8.60	
68.30	NITROGEN	68.40	
1.00	OXYGEN+ARGON	1.70	
100.10		100.25	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL RTU/HR IN COAL	2415441.60
TOTAL BTU/HR IN NAT. GAS	612768.00
TOTAL BTU/HR IN FUEL	3028209.60
BTU/HR IN MAKE GAS	1146879.95
HYDROGEN IN GAS LB/HR	8.19
CARBON IN GAS LB/HR	99.27
MAKE GAS MOL. WT.	27.26
COLD-GAS CONV. EFF.	37.87

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006604
CARBON MONOXIDE	.121217
METHANE	.001761
ETHANE	.001871
ETHYLENE	.001541
ACETYLENE	.001431
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.138827
NITROGEN	.702645
OXYGEN+ARGON	.024324

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	187.20
DRY MAKE GAS LB/HR	1064.03
WET MAKE GAS LB/HR	1132.49
TOTAL WATER FED LB/HR	12.19
WATER FROM REACTION LB/HR	56.28
PERCENT THEO. AIR	41.33
HEATING VALUE BTU/DSFC	77.64

MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
	153.55	15.90	231.38	709.81

OUT AT POINT R	120.55	15.19	231.38	747.64
OUT AT POINT C	134.56			

SOLIDS ANALYSIS

TEST 16 CHAR RECYCLE-- V.M. 4.6% F.C. 60.8% ASH 34.6%

TEST 17

02-09-76 1230 HRS 50-50 COAL FEED SPLIT TO GAS-DEVOL. OXYGEN ADDITION TO
GASIFIER PITTSBURG & COALInput

COAL RATE	LB/HR
GASIFIER	113.00
DEVOL	113.00

AIR FLOWS	LB/HR
GASIFIER AIR	749.00
TRANSPORT AIR	27.50
CHAR EJECT AIR	70.00
TOTAL AIR TO GASIFIER	846.50
SEC COMB AIR	4311.10

NATURAL GAS	LB/HR
GASIFIER	26.50
SEC COMP	145.00

STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00

OXYGEN ADDED	LB/HR
SEC COMB	51.00

PERCENT	
TOTAL AIR	114.00

TEMPERATURES, F	
GASIFIER OUT	2120.00
DEVOL IN	1870.00
DEVOL MID	1505.00
DEVOL OUT	1390.00
CYC SEP OUT	1020.00
GASIFIER AIR	825.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	31.89
CYCLONE OUT	19.38

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
8.70	HYDROGEN	9.70
17.10	CARBON MONOXIDE	15.80
0.00	METHANE	.40
0.00	ETHANE	0.00
0.00	ETHYLENE	.30
0.00	ACETYLENE	0.00
.30	HYDROGEN SULFIDE	0.00
10.20	CARBON DIOXIDE	10.40
62.40	NITROGEN	62.00
.90	OXYGEN+ARGON	1.40
99.60		100.00

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2916078.00
TOTAL BTU/HR IN NAT. GAS	624552.00
TOTAL BTU/HR IN FUEL	3540630.00
BTU/HR IN MAKE GAS	1295348.07
HYDROGEN IN GAS LB/HR	.835
CARBON IN GAS LB/HR	121.63
MAKE GAS MOL. WT.	27.25
COLD-GAS CONV. EFF.	36.59

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.007120
CARBON MONOXIDE	.162361
METHANE	.002349
ETHANE	0.000000
ETHYLENE	.003083
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.167939
NITROGEN	.637111
OXYGEN+ARGON	.020038

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN		
COAL RATE	MEASURED INPUT	181.71	17.98	264.08	641.33		
COAL RATE (WET) LB/HR	226.00	(DRY) 222.61	OUT AT POINT B	137.62	14.34	264.08	653.45
DRY MAKE GAS LB/HR	1025.64		OUT AT POINT C	158.42			
WET MAKE GAS LB/HR	1086.35						
TOTAL WATER FED LB/HR	11.86						
WATER FROM REACTION LB/HR	48.85						

PERCENT THEO. AIR	40.21
HEATING VALUE BTU/DSCF	91.29

SOLIDS ANALYSIS

TEST 17 CHAR RECYCLE-- V.M. 6.9% F.C. 56.1% ASH 37.0%

TEST 18

02-09-76 1400 HRS 50-50 COAL SPLIT TO GAS-DEVOL.** STEAM AND OXYGEN ADDITION
TO GASIFIER**PITTSBURG B COAL

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	110.00	GASIFIER OUT 2240.00
DEVOL	110.00	DEVOL IN 2000.00
		DEVOL MID 1690.00
		DEVOL OUT 1540.00
AIR FLOWS	LB/HR	CYC SEP OUT 1110.00
		GASIFIER AIR 790.00
GASIFIER AIR	696.00	
TRANSPORT AIR	27.50	SOLIDS LOADING LB/HR
CHAR EJECT AIR	68.00	GASIFIER OUT 7.91
TOTAL AIR TO GASIFIER	791.50	CYCLONE OUT 14.52
SEC COMB AIR	4347.41	
NATURAL GAS	LB/HR	MAKE
		GASIFIER OUTLET GAS ANALYSIS CYCLONE OUTLET
GASIFIER	26.50	VOL PERCENT DRY
SEC COMP	150.00	10.90 HYDROGEN 11.10
		12.90 CARBON MONOXIDE 14.50
		0.00 METHANE .30
STEAM FLOW	LB/HR	0.00 ETHANE 0.00
		0.00 ETHYLENE .30
GASIFIER	84.50	0.00 ACETYLENE 0.00
DEVOL	0.00	0.00 HYDROGEN SULFIDE 0.00
OXYGEN ADDED	LB/HR	13.10 CARBON DIOXIDE 13.30
		62.20 NITROGEN 59.70
		.90 OXYGEN+ARGON .90
		100.00 100.10
SEC COMB PERCENT		
TOTAL AIR	110.00	

Calculations

GASIFIER-DEVOLATILIZER
TOTAL HTU/HR IN COAL 2838660.00
TOTAL BTU/HR IN NAT. GAS 624552.00
TOTAL BTU/HR IN FUEL 3463212.00
BTU/HR IN MAKE GAS 1218178.33
HYDROGEN IN GAS LB/HR 8.76
CARBON IN GAS LB/HR 121.65
MAKE GAS MOL. WT. 27.33
COLD-GAS CONV. EFF. 35.17

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008122
CARBON MONOXIDE	.148538
METHANE	.001756
ETHANE	0.000000
ETHYLENE	.003073
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.214100
NITROGEN	.611568
OXYGEN+ARGON	.012842

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
		177.42	17.68	263.88	599.75
CUAL RATE (WET) LB/HR 220.00 (DRY) 216.70	OUT AT POINT B	133.63	12.81	263.88	596.09
DRY MAKE GAS LB/HR 974.69	OUT AT POINT C	167.50			
WET MAKE GAS LB/HR 1103.05					
TOTAL WATEK FED LB/HR 95.72					
WATER FROM REACTION LB/HR 32.65					

PERCENT THEO. AIR 41.16
HEATING VALUE BTU/DSCF 90.65

SOLID ANALYSIS

TEST 18 CHAR RECYCLE-- V.M. 5.2% F.C. 54.2% ASH 40.3%

TEST 19

02-09-76 1450 HRS ALL COAL TO DEVOL.-OXYGEN AND STEAM ADDED TO GASIFIER

Input PITTSBURG 8 COAL

COAL RATE	LB/HR
GASIFIER	0.00
DEVOL	154.00
AIR FLOWS	LB/HR
GASIFIER AIR	756.00
TRANSPORT AIR	0.00
CHAR EJECT AIR	68.00
TOTAL AIR TO GASIFIER	824.00
SEC COMB AIR	4411.39

NATURAL GAS	LB/HR
GASIFIER	27.00
SEC COMB	155.00
STEAM FLOW	LB/HR
GASIFIER	82.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	64.00

SEC COMB PERCENT	
TOTAL AIR	125.50

TEMPERATURES, F	
GASIFIER OUT	2500.00
DEVOL IN	2230.00
DEVOL MID	1900.00
DEVOL OUT	1705.00
CYC SEP OUT	1170.00
GASIFIER AIR	800.00

SOLIDS LOADING LB/HR	
GASIFIER OUT	.85
CYCLONE OUT	23.11

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
0.00	HYDROGEN	4.70
1.30	CARBON MONOXIDE	2.80
0.00	METHANE	.50
0.00	ETHANE	0.00
0.00	ETHYLENE	.50
0.00	ACETYLENE	.30
0.00	HYDROGEN SULFIDE	0.00
21.20	CARBON DIOXIDE	19.70
75.20	NITROGEN	70.50
2.20	OXYGEN+ARGON	1.00

99.90	100.00
-------	--------

GASIFIER-DEVOLATILIZER

TOTAL RTU/HR IN COAL	19870±2.00
TOTAL BTU/HR IN NAT. GAS	636336.00
TOTAL RTU/HR IN FUEL	262339±0.00
BTU/HR IN MAKE GAS	506575.80
HYDROGEN IN GAS LB/HR	4.49
CARBON IN GAS LB/HR	91.86
MAKE GAS MOL. WT.	29.97
COLD-GAS CONV. EFF.	19.31

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.003136
CARBON MONOXIDE	.026156
METHANE	.002669
ETHANE	0.000000
ETHYLENE	.004671
ACETYLENE	.002602
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.289184
NITROGEN	.658571
OXYGEN+ARGON	.013011

MATERIAL BALANCE

BASED ON MEASURED						
COAL RATE						
MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN		
CAL RATE (WET) LB/HR	154.00	(DRY) 151.69	130.53	14.49	266.54	623.64
DRY MAKE GAS LB/HR	963.10	OUT AT POINT B	110.92	11.26	266.54	634.27
WET MAKE GAS LB/HR	1110.63	OUT AT POINT C	121.78			
TOTAL WATER FED LB/HR	92.55					
WATER FROM REACTION LB/HR	54.98					

PERCENT THEO. AIR	55.98
HEATING VALUE BTU/DSFC	41.92

SOLIDS ANALYSIS

TEST 19 CHAR RECYCLE-- V.M. 4.4% F.C. 62.6% ASH 33.0%

TEST 20

02-12-76 1205 HALF OF COAL TO HORIZ. GASIFIER BURNER AND HALF TO TOP OF
GASIFIER PITTSBURG NO. 8 COALInput

COAL RATE	LB/HR
GASIFIER	75.00
DEVOL	75.00
AIR FLOWS	LB/HR
GASIFIER AIR	870.00
TRANSPORT AIR	32.00
CHAR EJECT AIR	71.00
TOTAL AIR TO GASIFIER	973.00
SEC COMB AIR	4412.17

TEMPERATURES, F	
GASIFIER OUT	2100.00
DEVOL IN	1870.00
DFVOL MID	1740.00
DEVOL OUT	1560.00
CYC SEP OUT	1050.00
GASIFIER AIR	815.00

NATURAL GAS	LB/HR
GASIFIER	12.50
SEC COMB	150.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	0.00
CYCLONE OUT	16.87

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	1935450.00
TOTAL BTU/HR IN NAT. GAS	294600.00
TOTAL BTU/HR IN FUEL	2230050.00
BTU/HR IN MAKE GAS	968527.47
HYDROGEN IN GAS LB/HR	6.63
CARBON IN GAS LB/HR	104.10
MAKE GAS MOL. WT.	28.28
COLD-GAS CONV. EFF.	43.43

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005022
CARBON MONOXIDE	.100997
METHANE	.001697
ETHANE	.001804
ETHYLENE	.001485
ACETYLENE	.001379
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.178938
NITROGEN	.695099
OXYGEN+ARGON	.013792

SEC COMB PERCENT
TOTAL AIR 128.00

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR	150.00	116.79	10.66	236.82	736.09
DRY MAKE GAS LB/HR	1090.64	OUT AT POINT R	118.01	11.06	236.82
WET MAKE GAS LB/HR	1138.13	OUT AT POINT C	121.19		
TOTAL WATER FED LB/HR	11.98				
WATER FROM REACTION LB/HR	35.51				

PERCENT THEO. AIR	58.23
HEATING VALUE BTU/DSFC	66.32

SOLIDS ANALYSIS

TEST 20	CHAR RECYCLE--	V.M. 1.6%	F.C. 60.5%	ASH 37.9%			
	CYCLONE OUT---	V.M. 3.2%	F.C. 87.1%	ASH 9.7%			
	CYCLONE OUT--	C 86.4%	H 0.8%	N 0.8%	S 1.9%	ASH 9.7%	O 0.4%
		TARS 0.472 LB/HR					

TEST 21

02-12-76 1240 HRS HALF OF COAL TO MORIZ. GASIFIER BURNER AND HALF TO TOP OF
GASIFIER PITTSBURG NO. 8 COALInput

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	200.00	GASIFIER OUT 2090.00
DEVOL	0.00	DEVOL IN 1890.00
AIR FLOWS	LB/HR	DEVOL MID 1760.00
		DEVOL OUT 1600.00
		CYC SEP OUT 1080.00
		GASIFIER AIR 830.00
GASIFIER AIR	865.00	SOLIDS LOADING LB/HR
TRANSPORT AIR	31.00	GASIFIER OUT 0.00
CHAR EJECT AIR	70.00	CYCLONE OUT 18.20
TOTAL AIR TO GASIFIER	966.00	
SEC COMB AIR	4412.17	
NATURAL GAS	LB/HR	MAKE GAS ANALYSIS
GASIFIER	12.50	OUTLET VOL PERCENT DRY CYCLONE
SEC COMB	150.00	7.00 HYDROGEN 8.20
		9.20 CARBON MONOXIDE 11.20
STEAM FLOW	LB/HR	0.00 METHANE .15
		0.00 ETHANE .15
		0.00 ETHYLENE .15
GASIFIER	0.00	0.00 ACETYLENE .15
DEVOL	0.00	0.00 HYDROGEN SULFIDE 0.00
OXYGEN ADDED	LB/HR	11.30 CARBON DIOXIDE 10.90
	0.00	71.60 NITROGEN 68.90
		1.00 OXYGEN+ARGON 1.00
SEC COMB PERCENT		100.10
TOTAL AIR	126.00	100.80

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2580600.00
TOTAL BTU/HR IN NAT. GAS	294600.00
TOTAL BTU/HR IN FUEL	2875200.00
BTU/HR IN MAKE GAS	1056686.25
HYDROGEN IN GAS LB/HR	7.33
CARBON IN GAS LB/HR	106.42
MAKE GAS MOL. WT.	27.93
COLD-GAS CONV. EFF.	36.75

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005872
CARBON MONOXIDE	.112289
METHANE	.000859
ETHANE	.001826
ETHYLENE	.001504
ACETYLENE	.001396
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.171727
NITROGEN	.690776
OXYGEN+ARGON	.013964

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN	
COAL RATE		MEASURED INPUT	152.59	13.17	238.89	731.30
COAL RATE (WET) LB/HR	200.00	OUT AT POINT B	121.43	11.94	238.89	752.26
DRY MAKE GAS LB/HR	1089.01	OUT AT POINT C	125.73			
WET MAKE GAS LB/HR	1138.42					
TOTAL WATER FED LB/HR	12.66					
WATER FROM REACTION LB/HR	36.75					

PERCENT THEO. AIR	44.84
HEATING VALUE BTU/DSFC	71.59

SOLIDS ANALYSIS

TEST 21	CHAR RECYCLE-- V.M. 2.28	F.C. 60.5%	ASH 37.3%
	CYCLONE OUT--- V.M. 2.6%	F.C. 85.9%	ASH 11.5%
	TARS 0.364 LB/HR		

TEST 22

02-12-76 1340 HRS A/I COAL FEED TO GASIFIER

Input PITTSBURG 8 COAL

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	163.00	GASIFIER OUT 2160.00
DEVOL	0.00	DEVOL IN 1910.00
AIR FLOWS	LB/HR	DEVOL MID 1800.00
GASIFIER AIR	840.00	DEVOL OUT 1620.00
TRANSPORT AIR	68.00	CYC SEP OUT 1080.00
CHAR EJECT AIR	70.00	GASIFIER AIR 840.00
TOTAL AIR TO GASIFIER	978.00	
SEC COMB AIR	4331.86	
NATURAL GAS	LB/HR	SOLIDS LOADING LB/HR
GASIFIER	12.50	GASIFIER OUT 24.24
SEC COMB	150.00	CYCLONE OUT 7.74
STEAM FLOW	LB/HR	
GASIFIER	0.00	MAKE
DEVOL	0.00	GAS ANALYSIS
OXYGEN ADDED	LB/HR	CYCLONE
	0.00	OUTLET VOL PERCENT DRY
		OUTLET
SEC COMB PERCENT		
TOTAL AIR	130.00	

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2103189.00
 TOTAL BTU/HR IN NAT. GAS 294600.00
 TOTAL BTU/HR IN FUEL 2397789.00
 BTU/HR IN MAKE GAS 901170.11
 HYDROGEN IN GAS LB/HR 5.04
 CARBON IN GAS LB/HR 108.88
 MAKE GAS MOL. WT. 28.16
 COLD-GAS CONV. EFF. 37.58

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.004617
CARBON MONOXIDE	.125289
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.168756
NITROGEN	.686104
OXYGEN+ARGON	.015235

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGFN	NITROGEN
COAL RATE (WET) LB/HR 163.00 (DRY) 160.56	OUT AT POINT B	115.27	8.59	238.94	748.36
DRY MAKE GAS LB/HR 1090.73	OUT AT POINT C	112.11			
WET MAKE GAS LB/HR 1132.97					
TOTAL WATER FED LB/HR 12.23					
WATER FROM REACTION LB/HR 30.01					

PERCENT THEO. AIR 54.43
 HEATING VALUE BTU/DSFC 61.70

SOLIDS ANALYSIS

TEST 22 CHAR RECYCLE-- V.M. 17.7% F.C. 72.8% ASH 9.5%

TEST 23

02-12-76 1410 HRS ALL COAL FEED TO GASIFIER OXYGEN ADDED

PITTSBURG B COAL

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	181.00	GASIFIER OUT 2250.00
DEVOL	0.00	DEVOL IN 1960.00
		DEVOL MID 1840.00
		DEVOL OUT 1690.00
AIR FLOWS	LB/HR	CYC SEP OUT 1115.00
		GASIFIER AIR 800.00
GASIFIER AIR	784.00	
TRANSPORT AIR	58.00	
CHAR EJECT AIR	70.00	
TOTAL AIR TO GASIFIER	912.00	SOLIDS LOADING LB/HR
SEC COMB AIR	4139.33	GASIFIER OUT 21.70
		CYCLONE OUT 8.00
NATURAL GAS	LB/HR	MAKE
GASIFIER	12.50	GAS ANALYSIS
SEC COMB	150.00	CYCLONE
		OUTLET VOL PERCENT DRY OUTLET
STEAM FLOW	LB/HR	-0.00 HYDROGEN 8.70
GASIFIER	0.00	-0.00 CARBON MONOXIDE 15.90
DEVOL	0.00	-0.00 METHANE 0.00
OXYGEN ADDED	LB/HR	-0.00 ETHANE 0.00
	51.00	-0.00 ETHYLENE 0.00
		-0.00 ACETYLENE 0.00
		-0.00 HYDROGEN SULFIDE 0.00
		-0.00 CARBON DIOXIDE 11.20
		-0.00 NITROGEN 63.30
		-0.00 OXYGEN+ARGON .90
SEC COMB PERCENT		0.00 100.00
TOTAL AIR	121.00	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	2335443.00
TOTAL BTU/HR IN NAT. GAS	294600.00
TOTAL BTU/HR IN FUEL	2630043.00
BTU/HR IN MAKE GAS	1179942.48
HYDROGEN IN GAS LB/HR	6.85
CARBON IN GAS LB/HR	128.18
MAKE GAS MOL. WT.	27.63
COLD-GAS CONV. EFF.	44.86

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006298
CARBON MONOXIDE	.161135
METHANE	0.000000
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.178363
NITROGEN	.641500
OXYGEN+ARGON	.012704

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE		138.99	12.22	275.96	690.34

CUAL RATE (WET) LB/HR	181.00	(DRY)	178.29	OUT AT POINT B	134.78	11.38	275.96	697.89
DRY MAKE GAS LB/HR	1087.90			OUT AT POINT C	132.27			
WET MAKE GAS LB/HR	1138.42							
TOTAL WATER FED LB/HR	11.84							
WATER FROM REACTION LB/HR	38.68							
PERCENT THEO. AIR	57.46							
HEATING VALUE BTU/DSFC	79.47							

SOLIDS ANALYSIS

TEST 24 02-23-76 1005 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.
Input WESTERN COAL

COAL RATE LB/HR

GASIFIER 109.50
 DEVOL 109.50

AIR FLOWS LB/HR

GASIFIER AIR 850.00
 TRANSPORT AIR 58.00
 CHAR EJECT AIR 70.00
 TOTAL AIR TO GASIFIER 978.00
 SEC COMB AIR 4411.39

NATURAL GAS LB/HR

GASIFIER 26.00
 SEC COMB 140.00

STEAM FLOW LB/HR

GASIFIER 0.00
 DEVOL 0.00

OXYGEN ADDED LB/HR

0.00

SEC COMB PERCENT
 TOTAL AIR 125.50

TEMPERATURES, F

GASIFIER OUT 1860.00
 DEVOL IN 1600.00
 DEVOL MID 1250.00
 DEVOL OUT 1100.00
 CYC SEP OUT 870.00
 GASIFIER AIR 810.00

SOLIDS LOADING LB/HR
 GASIFIER OUT 52.24
 CYCLONE OUT 18.96

MAKE	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
9.90	HYDROGEN 10.60	
13.30	CARBON MONOXIDE 14.60	
0.00	METHANE .15	
0.00	ETHANE 0.00	
0.00	ETHYLENE 0.00	
0.00	ACETYLENE 0.00	
0.00	HYDROGEN SULFIDE 0.00	
8.40	CARBON DIOXIDE 6.40	
67.50	NITROGEN 67.30	
.90	OXYGEN+ARGON 1.10	
100.00		100.15

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2202154.50
 TOTAL BTU/HR IN NAT. GAS 612768.00
 TOTAL BTU/HR IN FUEL 2814922.50
 BTU/HR IN MAKE GAS 1365335.27
 HYDROGEN IN GAS LB/HR 9.52
 CARBON IN GAS LB/HR 110.89
 MAKE GAS MOL. WT. 26.41
 COLD-GAS CONV. EFF. 48.50

MAKE GAS ANALYSIS
 WEIGHT FRACTION

HYDROGEN	.00R026
CARBON MONOXIDE	.154772
METHANE	.000909
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.106614
NITROGEN	.713437
OXYGFN+ARGON	.016242

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGFN	NITROGEN
COAL RATE (WET) LB/HR 219.00 (DRY) 186.15	OUT AT POINT B	126.53	18.41	258.17	822.51
DRY MAKE GAS LB/HR 1152.88	OUT AT POINT C	139.28			

WET MAKE GAS LB/HR 1270.59

TOTAL WATER FED LB/HR 42.63

WATER FROM REACTION LB/HR 75.08

PERCENT THEO. AIR 46.10
 HEATING VALUE BTU/DSFC 82.98

SOLIDS ANALYSIS

TEST 24 CHAR RECYCLE-- V.M. 2.98 F.C. 56.7% ASH 40.4%
 CYCLONE OUT--- V.M. 28.48 F.C. 51.7% ASH 19.9%

TEST 25

02-23-76 1055 HRS 25-75 SPLIT ON COAL FLOW TO GAS-DEVOL.

Input WESTERN COAL

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	67.00	GASIFIER OUT 1930.00
DEVOL	201.00	DEVOL IN 1670.00
		DEVOL MID 1300.00
		DEVOL OUT 1150.00
AIR FLOWS	LB/HR	CYC SEP OUT 850.00
		GASIFIER AIR 865.00
GASIFIER AIR	850.00	
TRANSPORT AIR	58.00	SOLIDS LOADING LB/HR
CHAR EJECT AIR	72.00	GASIFIER OUT 62.97
TOTAL AIR TO GASIFIER	980.00	CYCLONE OUT 21.27
SEC COMB AIR	4393.75	
NATURAL GAS	LB/HR	MAKE
		GAS ANALYSIS
GASIFIER	26.00	OUTLET VOL PERCENT DRY
SEC COMB	145.00	CYCLONE OUTLET
STEAM FLOW	LB/HR	9.60 HYDROGEN 10.70
		14.20 CARBON MONOXIDE 13.10
		0.00 METHANE .30
		0.00 ETHANE 0.00
		0.00 ETHYLENE 0.00
GASIFIER	0.00	0.00 ACETYLENE 0.00
DEVOL	0.00	0.00 HYDROGEN SULFIDE 0.00
		10.60 CARBON DIOXIDE 7.10
OXYGEN ADDED	LB/HR	64.70 NITROGEN 68.20
		.90 OXYGEN+ARGON .90
SEC COMB PERCENT		100.00
TOTAL AIR	116.00	100.30

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2694874.00
 TOTAL BTU/HR IN NAT. GAS 612768.00
 TOTAL BTU/HR IN FUEL 3307642.00
 BTU/HR IN MAKE GAS 1309452.35
 HYDROGEN IN GAS LB/HR 9.81
 CARBON IN GAS LB/HR 106.94
 MAKE GAS MOL. WT. 26.50
 COLD-GAS CONV. EFF. 39.59

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008075
CARBON MONOXIDE	.138410
METHANE	.001411
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.117882
NITROGEN	.720577
OXYGEN+ARGON	.013245

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 268.00 (DRY) 227.80	OUT AT POINT H	177.59	17.21	265.63	741.95
DRY MAKE GAS LB/HR 1150.91	OUT AT POINT C	124.49	19.91	265.63	829.32
WET MAKE GAS LB/HR 1286.17		159.15			
TOTAL WATER FED LB/HR 50.00					
WATER FROM REACTION LB/HR 85.26					

PERCENT THEO. AIR 39.32
 HEATING VALUE BTU/DSCF 80.00

SOLIDS ANALYSIS

TEST 25 CHAR RECYCLE-- V.M. 2.2% F.C. 57.0% ASH 40.8%
 CYCLONE OUT---- V.M. 27.2% F.C. 48.6% ASH 24.2%
 TARS 6.17 LB/HR

TEST 26

02-23-76 1145 HRS ALL COAL TO DEVOLATILIZER
WESTERN COALInput

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	0.00	GASIFIER OUT 1660.00
DEVOL	236.00	DEVOL IN 1600.00
		DEVOL OUT 1250.00
AIR FLOWS	LB/HR	CYC SEP OUT 840.00
		GASIFIER AIR 865.00
GASIFIER AIR	840.00	
TRANSPORT AIR	26.00	NO. 100 LOADINGS LB/HR
CHAR EJECT AIR	70.00	GASIFIER OUT 10.75
TOTAL AIR TO GASIFIER	936.00	CYCLONE OUT 23.30
SEC COMB AIR	439.75	
NATURAL GAS	LB/HR	MAKE
GASIFIER	27.00	GAS ANALYSIS
SEC COMB	140.00	OUTLET VOL PERCENT DRY CYCLONE
		6.20 HYDROGEN 6.70
		10.60 CARBON MONOXIDE 11.30
		6.00 METHANE .15
STEAM FLOW	LB/HR	0.00 ETHANE 0.00
		0.00 ETHYLENE .15
GASIFIER	0.00	0.00 ACETYLENE 0.00
DEVOL	0.00	0.00 HYDROGEN SULFIDE 0.00
OXYGEN ADDED	LB/HR	11.40 CARBON DIOXIDE 11.90
	0.00	70.50 NITROGEN 68.70
		1.00 OXYGEN+ARGON 1.00
		100.00 40.90
SEC COMB PERCENT		
TOTAL AIR	117.00	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL HTU/HR IN COAL	2373094.00
TOTAL HTU/HR IN NAT. GAS	636334.00
TOTAL HTU/HR IN FUEL	3009434.00
HTU/HR IN MAKE GAS	891149.60
HYDROGEN IN GAS LB/HR	5.56
CARBON IN GAS LB/HR	107.45
MAKE GAS MOL. WT.	28.23
COLD-GAS CONV. EFF.	20.61

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.004747
CARBON MONOXIDE	.112095
METHANE	.000450
ETHANE	0.000000
ETHYLENE	.001488
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.185503
NITROGEN	.681499
OXYGEN+ARGON	.013817

MATERIAL BALANCE

RATED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 236.00 (DRY) 200.60	OUT AT POINT H	126.68	16.18	250.85	732.23
DRY MAKE GAS LB/HR 1074.44	OUT AT POINT C	159.00			
WET MAKE GAS LB/HR 1160.50					
TOTAL WATER FED LB/HR 44.76					
WATER FROM REACTION LB/HR 41.29					

PERCENT THFG. AT 41.27
HEATING VALUE HTU/DSCF 62.10

SOLIDS ANALYSIS

TEST 26 GASIFIER OUT-- V.M. 4.4% F.C. 38.29% ASH 57.4%
CHAR RECYCLE-- V.M. 18.6% F.C. 56.7% ASH 24.7%
TAHS 6.03 LB/HR

TEST 27

02-23-76 1240 HRS ALL COAL TO GASIFIER
Input WESTERN COAL

COAL RATE LB/HR

GASIFIER	218.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	835.00
TRANSPORT AIR	25.20
CHAR EJECT AIR	71.00
TOTAL AIR TO GASIFIER	931.20
SEC COMB AIR	4296.11

TEMPERATURES, F

GASIFIER OUT	1930.00
DEVOL IN	1730.00
DEVOL MID	1600.00
DEVOL OUT	1400.00
CYC SEP OUT	1010.00
GASIFIER AIR	890.00

NATURAL GAS LB/HR

GASIFIER	26.50
SEC COMB	145.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
0.00	

GASIFIER GAS ANALYSIS CYCLONE

OUTLET	MAKE	VOL PERCENT DRY	OUTLET
12.10	HYDROGEN	12.40	
12.60	CARBON MONOXIDE	14.20	
.30	METHANE	.50	
0.00	ETHYLENE	0.00	
0.00	ACETYLENE	0.00	
.30	HYDROGEN SULFIDE	0.00	
10.50	CARBON DIOXIDE	11.80	
63.70	NITROGEN	60.40	
.70	OXYGEN+ARGON	.80	

SEC COMB PERCENT

TOTAL AIR 114.00

100.20

100.10

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2192099.00
 TOTAL BTU/HR IN NAT. GAS 624552.00
 TOTAL BTU/HR IN FUEL 2816651.00
 BTU/HR IN MAKE GAS 1424736.83
 HYDROGEN IN GAS LB/HR 11.12
 CARBON IN GAS LB/HR 132.10
 MAKE GAS MOL. WT. 26.72
 COLD-GAS CONV. EFF. 50.58

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.009281
CARBON MONOXIDE	.148802
METHANE	.002994
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.194311
NITROGEN	.632934
OXYGEN+ARGON	.011677

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 218.00 (DRY) 185.30	OUT AT POINT B	155.22	11.41	247.17	704.72
DRY MAKE GAS LB/HR 1108.88	OUT AT POINT C	155.21			
WET MAKE GAS LB/HR 1146.20					
TOTAL WATER FED LB/HR 42.01					
WATER FROM REACTION LB/HR -4.70					

PERCENT THEO. AIR 43.87
 HEATING VALUE BTU/DSFC 91.09

SOLIDS ANALYSIS

TEST 27 GASIFIER OUT-- V.M. 2.7% F.C. 63.4% ASH 33.9%
 CHAR RECYCLE-- V.M. 3.6% F.C. 61.3% ASH 35.1%
 CYCLONE OUT---- V.M. 10.2% F.C. 65.1% ASH 24.7%
 TARS AT GASIFIER OUTLET 0.0 LB/HR

TEST 28

02-23-76 1325 HRS 50-50 SPLIT ON COAL FEED TO GAS-DEVOL.

Input WESTERN COAL

COAL RATE LB/HR

GASIFIER 117.00
DEVOL 117.00

TEMPERATURES, F

GASIFIER OUT 1950.00
DEVOL IN 1720.00
DEVOL MID 1420.00
DEVOL OUT 1270.00
CYC SEP OUT 905.00
GASIFIER AIR 895.00

AIR FLOWS LB/HR

GASIFIER AIR 830.00
TRANSPORT AIR 56.00
CHAR EJECT AIR 70.00
TOTAL AIR TO GASIFIER 956.00
SEC COMB AIR 4296.11

NATURAL GAS LB/HR

GASIFIER 27.00
SEC COMB 150.00SOLIDS LOADING LB/HR
GASIFIER OUT 67.95
CYCLONE OUT 20.26

STEAM FLOW LB/HR

GASIFIER 0.00
DEVOL 0.00MAKE
GAS ANALYSIS
OUTLET VOL PERCENT DRY CYCLONE
HYDROGEN 9.90
13.30 CARBON MONOXIDE 14.60
0.00 METHANE .30
0.00 ETHANE 0.00
0.00 ETHYLENE 0.00
0.00 ACETYLENE 0.00
0.00 HYDROGEN SULFIDE 0.00
8.60 CARBON DIOXIDE 11.10
67.40 NITROGEN 63.30
.90 OXYGEN+ARGON .80OXYGEN ADDED LB/HR
0.00

99.90 100.00

SEC COMB PERCENT
TOTAL AIR 111.00CalculationsGASIFIER-DEVOLATILIZER
TOTAL BTU/HR IN COAL 2352987.00
TOTAL BTU/HR IN NAT. GAS 636336.00
TOTAL BTU/HR IN FUEL 2989323.00
BTU/HR IN MAKE GAS 1280549.64
HYDROGEN IN GAS LB/HR 8.68
CARBON IN GAS LB/HR 129.02
MAFK GAS MOL. WT. 27.25
COLD-GAS CONV. EFF. 42.84MAKE GAS ANALYSIS
WEIGHT FRACTIONHYDROGEN .007265
CARBON MONOXIDE .149996
METHANE .001761
ETHANE 0.000000
ETHYLENE 0.000000
ACETYLENE 0.000000
HYDROGEN SULFIDE 0.000000
CARBON DIOXIDE .179203
NITROGEN .650327
OXYGEN+ARGON .011448

MATERIAL BALANCE

BASED ON MEASURED
COAL RATE
CARBON 158.29 HYDROGEN 16.10 OXYGEN 255.21 NITROGEN 723.57COAL RATE (WET) LB/HR 234.00 (DRY) 198.90
DRY MAKE GAS LB/HR 1125.88
WET MAKE GAS LB/HR 1183.66
TOTAL WATER FED LB/HR 44.66
WATER FROM REACTION LB/HR 13.12PERCENT THEO. AIR 42.44
HEATING VALUE BTU/DSFC 82.23

SOLIDS ANALYSIS

TEST 28 GASIFIER OUT-- V.M. 2.0% F.C. 56.7% ASH 41.3%
CHAR RECYCLE-- V.M. 6.8% F.C. 61.2% ASH 32.0%
CYCLONE OUT---- V.M. 21.7% F.C. 53.6% ASH 24.7%

TEST 29

03-01-76 0940 HRS 50-50 SPLIT ON COAL FLOW TO GAS-DEVOL.

Input WESTERN COAL

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	117.50	GASIFIER OUT 1810.00
DEVOL	117.50	DEVOL IN 1540.00
		DEVOL MID 1190.00
		DEVOL OUT 1090.00
AIR FLOWS	LB/HR	CYC SEP OUT 800.00
		GASIFIER AIR 810.00
GASIFIER AIR	860.00	
TRANSPORT AIR	27.50	SOLIDS LOADING LB/HR
CHAR EJECT AIR	72.00	GASIFIER OUT 0.00
TOTAL AIR TO GASIFIER	959.50	CYCLONE OUT 20.42
SEC COMB AIR	4300.49	
NATURAL GAS	LB/HR	MAKE
GASIFIER	26.00	GAS ANALYSIS
SEC COMB	145.00	OUTLET VOL PERCENT DRY CYCLONE
		-0.00 HYDROGEN 10.20
		-0.00 CARBON MONOXIDE 15.10
		-0.00 METHANE .30
STEAM FLOW	LB/HR	-0.00 ETHANE 0.00
		-0.00 ETHYLENE 0.00
GASIFIER	0.00	-0.00 ACETYLENE 0.00
DEVOL	0.00	-0.00 HYDROGEN SULFIDE 0.00
OXYGEN ADDED	LB/HR	-0.00 CARBON DIOXIDE 8.40
	0.00	-0.00 NITROGEN 65.10
		-0.00 OXYGEN+ARGON .90
SEC COMB PERCENT		0.00 100.00
TOTAL AIR	114.00	

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2363042.50
 TOTAL BTU/HR IN NAT. GAS 612766.00
 TOTAL BTU/HR IN FUEL 2975810.50
 BTU/HR IN MAKE GAS 1354758.30
 HYDROGEN IN GAS LB/HR 9.15
 CARBON IN GAS LB/HR 121.13
 MAKE GAS MOL. WT. 26.76
 COLD-GAS CONV. EFF. 45.53

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.007625
CARBON MONOXIDE	.158027
METHANE	.001794
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.138142
NITROGEN	.681293
OXYGEN+ARGON	.013119

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 235.00 (DRY) 199.75	OUT AT POINT B	137.98	14.71	256.16	772.36
DRY MAKE GAS LB/HR 1133.67	OUT AT POINT C	157.71			
WET MAKE GAS LB/HR 1223.20					
TOTAL WATER FED LB/HR 44.85					
WATER FROM REACTION LB/HR 44.69					

PERCENT THEO. AIR 42.79
 HEATING VALUE BTU/DSCF 84.81

SOLIDS ANALYSIS

TEST 29 CYCLONE OUT-- V.M. 25.4% F.C. 48.4% ASH 26.2%
 CYCLONE OUT-- C 68.1% H 2.3% N 0.6% S 1.9% ASH 26.2% O 0.9%
 TARS 5.11 LB/HR

TEST 30

03-01-76 1035 HRS 50-50 SPLIT ON COAL FLOW TO GAS-DEVOL.

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	132.00	GASIFIER OUT 1970.00
DEVOL	132.00	DEVOL IN 1690.00
		DEVOL MID 1290.00
		DEVOL OUT 1200.00
AIR FLOWS	LB/HR	CYC SEP OUT 865.00
		GASIFIER AIR 830.00
GASIFIER AIR	800.00	SOLIDS LOADING LB/HR
TRANSPORT AIR	28.10	GASIFIER OUT 0.00
CHAR EJECT AIR	74.00	CYCLONE OUT 29.63
TOTAL AIR TO GASIFIER	902.10	
SEC COMB AIR	4221.64	
NATURAL GAS	LB/HR	MAKE
GASIFIER	27.50	GAS ANALYSIS
SEC COMB	122.00	OUTLET VOL PERCENT DRY CYCLONE OUTLET
STEAM FLOW	LB/HR	
GASIFIER	0.00	10.70 HYDROGEN 11.30
DEVOL	0.00	16.70 CARBON MONOXIDE 18.00
OXYGEN ADDED	LB/HR	0.00 METHANE .30
	50.00	0.00 ETHANE 0.00
		0.00 ETHYLENE 0.00
		0.00 ACETYLENE 0.00
		0.00 HYDROGEN SULFIDE 0.00
		10.10 CARBON DIOXIDE 9.50
		61.70 NITROGEN 60.10
		.90 OXYGEN+ARGON .90
SEC CUMB PERCENT		100.10
TOTAL AIR	114.00	100.10

100.10

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2654652.00
 TOTAL BTU/HR IN NAT. GAS 648120.00
 TOTAL BTU/HR IN FUEL 3302772.00
 BTU/HR IN MAKE GAS 1565140.92
 HYDROGEN IN GAS LB/HR 10.11
 CARBON IN GAS LB/HR 141.86
 MAKE GAS MOL. WT. 26.67
 COLD-GAS CONV. EFF. 47.39

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008473
CARBON MONOXIDE	.168955
METHANE	.001800
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.156713
NITROGEN	.630900
OXYGEN+ARGON	.013159

MATERIAL BALANCE

BASED ON MEASURED	CARBON	HYDROGEN	OXYGEN	NITROGEN		
COAL RATE	176.36	17.42	296.99	683.11		
CUAL RATE (WET) LB/HR	264.00	OUT AT POINT B	166.30	16.63	296.99	714.87
DRY MAKE GAS LB/HR	1133.09	OUT AT POINT C	192.06			
WET MAKE GAS LB/HR	1232.70					
TOTAL WATER FED LB/HR	48.62					
WATER FROM REACTION LB/HR	50.99					

PERCENT THEO. AIR 44.92
 HEATING VALUE BTU/DSFC 97.72

SOLIDS ANALYSIS

TEST 30 CYCLONE OUT- V.M. 19.7% F.C. 55.2% ASH 25.1%

TEST 31

03-01-76 1115 HRS ALL COAL TO THE DEVOLATILIZER
Input WESTERN COAL

COAL RATE	LB/HR
GASIFIER	0.00
DEVOL	277.00
AIR FLOWS	LB/HR
GASIFIER AIR	840.00
TRANSPORT AIR	0.00
CMAR EJECT AIR	72.00
TOTAL AIR TO GASIFIER	912.00
SEC COMB AIR	4269.07

NATURAL GAS	LB/HR
GASIFIER	28.00
SEC COMB	125.00

STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00

OXYGEN ADDED	LB/HR
0.00	

SEC COMB PERCENT	
TOTAL AIR	115.00

TEMPERATURES, F	
GASIFIER OUT	2070.00
DEVOL IN	1760.00
DEVOL MID	1210.00
DEVOL OUT	1030.00
CYC SEP OUT	820.00
GASIFIER AIR	850.00

SOLIDS LOADING LB/HR	
GASIFIER OUT	0.00
CYCLONE OUT	29.94

GASIFIER	OUTLET	MAKE	
		VOL PERCENT	DRY
7.80	HYDROGEN	8.20	
12.50	CARBON MONOXIDE	12.40	
0.00	METHANE	.30	
0.00	ETHANE	0.00	
0.00	ETHYLENE	.30	
0.00	ACETYLENE	0.00	
.30	HYDROGEN SULFIDE	0.00	
8.90	CARBON DIOXIDE	9.60	
69.40	NITROGEN	68.20	
1.00	OXYGEN+ARGON	.90	
99.90		99.90	

Calculations

GASIFIER-DEVOLATILIZFR
 TOTAL RTU/HR IN COAL 2785373.50
 TOTAL BTU/HR IN NAT. GAS 659904.00
 TOTAL BTU/HR IN FUEL 3445277.50
 BTU/HR IN MAKE GAS 1087783.52
 HYDROGEN IN GAS LB/HR 7.28
 CARBON IN GAS LB/HR 105.23
 MAKE GAS MOL. WT. 27.44
 COLD-GAS CONV. EFF. 31.57

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005977
CARBON MONOXIDE	.126535
METHANE	.001749
ETHANE	0.000000
ETHYLENE	.003061
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.153941
NITROGEN	.695944
OXYGEN+ARGON	.012792

MATERIAL BALANCE

BASED ON MEASURED	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE	184.40	18.07	251.14	690.68

COAL RATE (WET)	LB/HR	277.00	(DRY)	235.45
DRY MAKE GAS	LB/HR	1063.57		
WET MAKE GAS	LB/HR	1176.01		
TOTAL WATER FED	LB/HR	50.67		
WATER FROM REACTION	LB/HR	61.77		

PERCENT THEO. AIR	35.13
HEATING VALUE BTU/DSFC	74.46

SOLIDS ANALYSIS

TEST 31 CYCLONE OUT-- C 68.8, H 3.3% N --- ASH 19.4% O 7.2%
TARS 9.64 LB/HR

TEST 32

03-01-76 1315 HRS ALL COAL TO GASIFIER
WESTERN COALInput

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	294.00	GASIFIER OUT 2040.00
DEVOL	0.00	DEVOL IN 1840.00
		DEVOL MID 1700.00
		DEVOL OUT 1560.00
AIR FLOWS	LB/HR	CYC SEP OUT 990.00
		GASIFIER AIR 830.00
GASIFIER AIR	850.00	SOLIDS LOADING LB/HR
TRANSPORT AIR	23.40	GASIFIER OUT 0.00
CHAR EJECT AIR	72.00	CYCLONE OUT 44.26
TOTAL AIR TO GASIFIER	945.40	
SEC COMB AIR	4269.07	
NATURAL GAS	LB/HR	MAKE
GASIFIER	14.30	GAS ANALYSIS CYCLONE
SEC COMB	125.00	OUTLET VOL PERCENT DRY OUTLET
		11.20 HYDROGEN 11.70
		13.30 CARBON MONOXIDE 14.10
		.30 METHANE .15
STEAM FLOW	LB/HR	0.00 ETHANE 0.00
GASIFIER	0.00	0.00 ETHYLENE 0.00
DEVOL	0.00	0.00 ACETYLENE 0.00
OXYGEN ADDED	LB/HR	.30 HYDROGEN SULFIDE 0.00
	0.00	10.00 CARBON DIOXIDE 10.10
		64.10 NITROGEN 63.10
		.90 OXYGEN+ARGON 1.00
SEC COMB PERCENT		100.10 100.15
TOTAL AIR	118.00	

Calculations

GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2956317.00
 TOTAL BTU/HR IN NAT. GAS 337022.40
 TOTAL BTU/HR IN FUEL 3293339.40
 BTU/HR IN MAKE GAS 1339260.75
 HYDROGEN IN GAS LB/HR 10.04
 CARBON IN GAS LB/HR 122.35
 MAKE GAS MOL. WT. 26.71
 COLD-GAS CONV. EFF. 40.67

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008761
CARBON MONOXIDE	.147821
METHANE	.000899
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.166392
NITROGEN	.661525
OXYGEN+ARGON	.014602

MATERIAL BALANCE

BASED ON MEASURED	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE	MEASURED INPUT	184.16	15.32	261.32
COAL RATE (WET) LB/HR	OUT AT POINT B	158.86	15.26	261.32
DRY MAKE GAS LB/HR	OUT AT POINT C	174.72		739.05
WET MAKE GAS LB/HR				
TOTAL WATER FED LB/HR				
WATER FROM REACTION LB/HR				

COAL RATE (WET)	LB/HR	(DRY)	249.90
DRY MAKE GAS	LB/HR	1117.20	
WET MAKE GAS	LB/HR	1206.17	
TOTAL WATER FED	LB/HR	53.55	
WATER FROM REACTION	LB/HR	35.42	
PERCENT THEO. AIR		38.09	
HEATING VALUE BTU/DSCF		84.95	

SOLIDS ANALYSIS

TEST 32 CYCLONE OUT-- V.M. 3.8% F.C. 73.0% ASH 23.2%
TARS 0.35 LB/HR

TEST 33

03-04-76 0945 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE ONLY

Input WESTERN COAL

COAL RATE	LB/HR
GASIFIER	316.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	865.00
TRANSPORT AIR	25.90
CHAR EJECT AIR	72.00
TOTAL AIR TO GASIFIER	962.90
SEC COMB AIR	4331.50

NATURAL GAS	LB/HR
GASIFIER	16.50
SEC COMB	127.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
SEC COMB PEWCENT	
TOTAL AIR	114.50

TEMPERATURES, F	
GASIFER OUT	1480.00
DEVOL IN	1300.00
DEVOL MID	1200.00
DEVOL OUT	1090.00
CYC SEP OUT	820.00
GASIFER AIR	830.00
SOLIDS LOADING	LB/HR
GASIFER OUT	0.00
CYCLONE OUT	37.36

GASIFER	OUTLET	MAKE		CYCLONE
		GAS ANALYSIS	VOL PERCENT DRY	
10.00	HYDROGEN	9.90		
14.40	CARBON MONOXIDE	13.80		
.60	METHANE	1.20		
0.00	ETHANE	.15		
.70	ETHYLENE	.70		
0.00	ACETYLENE	.30		
0.00	HYDROGEN SULFIDE	0.00		
9.80	CARBON DIOXIDE	10.40		
63.70	NITROGEN	62.70		
.90	OXYGEN+ARGON	1.00		
100.10		100.15		

Calculations

GASIFIER-DEVOLATILIZER

TOTAL BTU/HR IN COAL	3177538.00
TOTAL BTU/HR IN NAT. GAS	388872.00
TOTAL BTU/HR IN FUEL	3566410.00
BTU/HR IN MAKE GAS	1749270.27
HYDROGEN IN GAS LB/HR	12.45
CARBON IN GAS LB/HR	137.77
MAKE GAS MOL. WT.	27.10
COLD-GAS CONV. EFF.	49.05

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.007308
CARBON MONOXIDE	.142609
METHANE	.007086
ETHANE	.001882
ETHYLENE	.007234
ACETYLENE	.002879
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.168887
NITROGEN	.647942
OXYGEN+ARGON	.014394

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 316.00 (DRY) 268.60	OUT AT POINT B	198.78	16.75	268.52	729.41
DRY MAKE GAS LB/HR 1169.66	OUT AT POINT C	168.59	17.19	268.52	757.87
WET MAKE GAS LB/HR 1259.58		186.89			
TOTAL WATER FED LB/HR 57.03					
WATER FROM REACTION LB/HR 32.89					

PERCENT THEO. AIR 35.83
HEATING VALUE BTU/DSFC 107.25

SOLIDS ANALYSIS

TEST 33 CHAR RECYCLE-- V.M. 7.1% F.C. 67.4% ASH 25.5%
CYCLONE OUT---- V.M. 19.2% F.C. 54.6% ASH 26.2%

TEST 34

03-04-76 1020 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE ONLY
 NO AUXILIARY NATURAL GAS WESTERN COAL

Input

COAL RATE LB/HR
 GASIFIER 364.00
 DEVOL 0.00
 AIR FLOWS LB/HR
 GASIFIER AIR 770.00
 TRANSPORT AIR 25.20
 CHAR EJECT AIR 72.00
 TOTAL AIR TO GASIFIER 867.20
 SEC COMB AIR 4267.47

NATURAL GAS LB/HR
 GASIFIER 0.00
 SEC COMB 117.00
 STEAM FLOW LB/HR
 GASIFIER 0.00
 DEVOL 0.00
 OXYGEN ADDED LB/HR
 0.00

SEC COMB PERCENT
 TOTAL AIR 117.00

TEMPERATURES, F
 GASIFIER OUT 1440.00
 DEVOL IN 1300.00
 DEVOL MID 1200.00
 DEVOL OUT 1110.00
 CYC SEP OUT 840.00
 GASIFIER AIR 655.00

SOLIDS LOADING LB/HR
 GASIFIER OUT 0.00
 CYCLONE OUT 49.46

MAKE
 GAS ANALYSIS
 CYCLONE
 OUTLET VOL PERCENT DRY OUTLET
 9.30 HYDROGEN 9.50
 14.50 CARBON MONOXIDE 14.00
 .90 METHANE 1.20
 0.00 ETHANE .15
 .60 ETHYLENE .60
 0.00 ACETYLENE .30
 0.00 HYDROGEN SULFIDE 0.00
 11.40 CARBON DIOXIDE 12.30
 62.40 NITROGEN 61.20
 1.00 OXYGEN+ARGON 1.00

100.10 100.25

Calculations
 GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 3660202.00
 TOTAL BTU/HR IN NAT. GAS 0.00
 TOTAL BTU/HR IN FUEL 3660202.00
 BTU/HR IN MAKE GAS 1513682.15
 HYDROGEN IN GAS LB/HR 10.55
 CARBON IN GAS LB/HR 130.94
 MAKE GAS MOL. WT. 27.53
 COLD-GAS CONV. EFF. 41.36

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.006901
CARBON MONOXIDE	.142385
METHANE	.006974
ETHANE	.001852
ETHYLENE	.006102
ACETYLENE	.002833
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.196578
NITROGEN	.622426
OXYGEN+ARGON	.014166

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 364.00 (DRY) 309.40	OUT AT POINT B	214.72	14.54	253.17	657.52
DRY MAKE GAS LB/HR 1050.50	OUT AT POINT C	171.75	14.13	253.17	653.86
WET MAKE GAS LB/HR 1133.08		190.44			
TOTAL WATER FED LB/HR 63.27					
WATER FROM REACTION LB/HR 19.31					

PERCENT THEO. AIR 31.44
 HEATING VALUE BTU/DSCF 104.98

SOLIDS ANALYSIS

TEST 34 CYCLONE OUT-- V.M. 15.4% F.C. 57.9% ASH 26.7%
 TARS 8.46 LB/HR

TEST 35

03-04-76 1115 HRS 50-50 SPLIT ON COAL FLOW BETWEEN NORTH HORIZ. GASIFIER BURNER

Input

COAL RATE	LB/HR
GASIFIER	179.00
DEVOL	179.00
AIR FLOWS	LB/HR
GASIFIER AIR	840.00
TRANSPORT AIR	23.40
CHAR EJECT AIR	72.00
TOTAL AIR TO GASIFIER	935.40
SEC COMB AIR	4330.19

TEMPERATURES, F	
GASIFIER OUT	1710.00
DEVOL IN	1420.00
DEVOL MID	1200.00
DEVOL OUT	1100.00
CYC SEP OUT	830.00
GASIFIER AIR	830.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	0.00
CYCLONE OUT	63.98

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	3599869.00
TOTAL BTU/HR IN NAT. GAS	671688.00
TOTAL BTU/HR IN FUEL	4271557.00
BTU/HR IN MAKE GAS	1524991.62
HYDROGEN IN GAS LB/HR	11.67
CARBON IN GAS LB/HR	127.95
MAKE GAS MOL. WT.	26.27
COLD-GAS CONV. EFF.	35.70

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.009669
CARBON MONOXIDE	.160950
METHANE	.003045
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.157448
NITROGEN	.655526
OXYGEN+ARGON	.013362

NATURAL GAS	LB/HR
GASIFIER	28.50
SEC COMB	112.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
0.00	

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
-0.00	HYDROGEN	12.70
-0.00	CARBON MONOXIDE	15.10
-0.00	METHANE	.50
-0.00	ETHANE	0.00
-0.00	ETHYLENE	0.00
-0.00	ACETYLENE	0.00
-0.00	HYDROGEN SULFIDE	0.00
-0.00	CARBON DIOXIDE	9.40
-0.00	NITROGEN	61.50
-0.00	OXYGEN+ARGON	.90
0.00		100.10

MATERIAL BALANCE

BASED ON MEASURED				
COAL RATE				
MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
	232.56	21.43	268.14	708.97

COAL RATE (WET) LB/HR	358.00	(DRY) 304.30	OUT AT POINT B	180.73	18.13	268.14	733.69
DRY MAKE GAS LB/HR	1119.25		OUT AT POINT C	190.16			
WET MAKE GAS LB/HR	1223.71						
TOTAL WATER FED LB/HR	63.05						
WATER FROM REACTION LB/HR	41.41						

PERCENT THEO. AIR	29.06
HEATING VALUE BTU/DSCF	94.96

SOLIDS ANALYSIS

TEST 35 CYCLONE OUT-- V.M. 16.4% F.C. 57.0% ASH 26.6%
TARS 3.97 LB/HR

TEST 36

03-04-76 1320 HRS ALL COAL TO DEVOLATILIZER WITH CHAR RECYCLE

Input WESTERN COAL

COAL RATE	LB/HR
GASIFIER	0.00
DEVOL	218.00
AIR FLOWS	LB/HR
GASIFIER AIR	845.00
TRANSPORT AIR	0.00
CHAR EJECT AIR	73.00
TOTAL AIR TO GASIFIER	918.00
SEC COMB AIR	4219.99

NATURAL GAS	LB/HR
GASIFIER	26.50
SEC COMB	143.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
0.00	

SEC COMB PERCENT	
TOTAL AIR	112.00

TEMPERATURES, F	
GASIFIER OUT	2000.00
DEVOL IN	1800.00
DEVOL MID	1450.00
DEVOL OUT	1110.00
CYC SEP OUT	880.00
GASIFIER AIR	835.00

SOLIDS LOADING LB/HR	
GASIFIER OUT	0.00
CYCLONE OUT	44.09

MAKE	
GASIFIER OUTLET	
GAS ANALYSIS	
VOL PERCENT DRY	
CYCLONE OUTLET	
HYDROGEN	7.60
CARBON MONOXIDE	13.60
METHANE	.50
ETHANE	0.00
ACETYLENE	.30
ACETYLENE	0.00
HYDROGEN SULFIDE	0.00
CARBON DIOXIDE	9.80
NITROGEN	67.30
OXYGEN+ARGON	1.00

0.00	100.10
------	--------

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL RTU/HR IN COAL	2192099.00
TOTAL BTU/HR IN NAT. GAS	624552.00
TOTAL BTU/HR IN FUEL	2816651.00
BTU/HR IN MAKE GAS	1149172.40
HYDROGEN IN GAS LB/HR	7.15
CARBON IN GAS LB/HR	113.03
MAKE GAS MOL. WT.	27.67
COLD-GAS CONV. EFF.	40.80

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.005493
CARBON MONOXIDE	.137622
METHANE	.002891
ETHANE	0.000000
ETHYLENE	.003036
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.155837
NITROGEN	.681026
OXYGEN+ARGON	.014095

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	218.00
DRY MAKE GAS LB/HR	1075.92
WET MAKE GAS LB/HR	1159.78
TOTAL WATER FED LB/HR	41.88
WATER FROM REACTION LB/HR	41.97

MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
	148.47	15.33	244.11	694.76
OUT AT POINT B	149.41	13.09	244.11	732.73
OUT AT POINT C	157.96			

PERCENT THEO. AIR	43.25
HEATING VALUE BTU/DSFC	78.40

SOLIDS ANALYSIS

TEST 36 CYCLONE OUT-- V.M. 27.6%	F.C. 50.6%	ASH 21.8%
TARS 4.34 LB/HR		

TEST 37

03-04-76 1410 HRS ALL COAL TO DEVOLATILIZER NO CHAR RECYCLE
 WESTERN COAL LOW VOLATILE FURNACE OXYGEN VARYING FROM 2.0-5.6 AVG USED

Input

COAL RATE LB/HR
 GASIFIER 0.00
 DEVOL 230.00
 AIR FLOWS LB/HR
 GASIFIER AIR 580.00
 TRANSPORT AIR 0.00
 CHAR EJECT AIR 73.00
 TOTAL AIR TO GASIFIER 653.00
 SEC COMB AIR 4219.37

TEMPERATURES, F
 GASIFIER OUT 2100.00
 DEVOL IN 1640.00
 DEVOL MID 1340.00
 DEVOL OUT 1030.00
 CYC SEP OUT 790.00
 GASIFIER AIR 820.00

SOLIDS LOADING LB/HR
 GASIFIER OUT 0.00
 CYCLONE OUT 9.59

Calculations
 GASIFIER-DEVOLATILIZER
 TOTAL BTU/HR IN COAL 2312765.00
 TOTAL BTU/HR IN NAT. GAS 1555488.00
 TOTAL BTU/HR IN FUEL 3868253.00
 BTU/HR IN MAKE GAS 881900.66
 HYDROGEN IN GAS LB/HR 8.45
 CARBON IN GAS LB/HR 59.31
 MAKE GAS MOL. WT. 25.91
 COLD-GAS CONV. EFF. 22.80

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.009803
CARBON MONOXIDE	.094014
METHANE	.003087
ETHANE	0.000000
ETHYLENE	.003242
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.122265
NITROGEN	.751032
OXYGEN+ARGON	.016557

NATURAL GAS LB/HR
 GASIFIER 66.00
 SEC COMB 100.00
 STEAM FLOW LB/HR
 GASIFIER 0.00
 DEVOL 0.00
 OXYGEN ADDED LB/HR
 0.00

MAKE
 GAS ANALYSIS
 OUTLET VOL PERCENT DRY
 CYCLONE OUTLET
 -0.00 HYDROGEN 12.70
 -0.00 CARBON MONOXIDE 8.70
 -0.00 METHANE .50
 -0.00 ETHANE 0.00
 -0.00 ETHYLENE .30
 -0.00 ACETYLENE 0.00
 -0.00 HYDROGEN SULFIDE 0.00
 -0.00 CARBON DIOXIDE 7.20
 -0.00 NITROGEN 69.50
 -0.00 OXYGEN+ARGON 1.10
 0.00 100.00

MATERIAL BALANCE

BASED ON MEASURED COAL RATE	MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET) LB/HR 230.00 (DRY) 195.50	OUT AT POINT B	185.18	25.69	184.34	494.77
DRY MAKE GAS LB/HR 766.11	OUT AT POINT C	67.23	18.09	184.34	575.37
WET MAKE GAS LB/HR 891.41		148.45			
TOTAL WATER FED LB/HR 41.03					
WATER FROM REACTION LB/HR 84.27					

PERCENT THEO. AIR 22.40
 HEATING VALUE BTU/DSCF 79.20

SOLIDS ANALYSIS

TEST 37 CYCLONE OUT-- V.M. 29.5% F.C. 57.5% ASH 13.0%
 CYCLONE OUT AFTER TOLUENE EXT. V.M. 20.4% F.C. 61.0% ASH 18.6%
 TARS 0.90 LB/HR

TEST 38

03-11-76 1047 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE
NO NATURAL GAS TO GASIFIER WESTERN COAL

Input

COAL RATE	LB/HR
GASIFIER	285.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	860.00
TRANSPORT AIR	32.40
CHAR EJECT AIR	72.00
TOTAL AIR TO GASIFIER	964.40
SEC COMB AIR	4411.39

```

  TEMPERATURES, F
  GASIFIER OUT 1820.00
  DEVOL IN 1510.00
  DEVOL MID 1420.00
  DEVOL OUT 1290.00
  CYC SEP OUT 960.00
  GASIFIER AIH 863.00

```

SOLIDS LOADING LB/HR
GASIFIER OUT 75.28
CYCLONE OUT 13.32

NATURAL GAS	LB/HR
GASIFIER	0.00
SEC CUMB	142.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR

		MAKE	
GASIFIER	OUTLET	GAS ANALYSIS	CYCLON
		VOL PERCENT	DRY OUTLET
10.40		HYDROGEN	11.10
13.30		CARBON MONOXIDE	14.10
.30		METHANE	.30
0.00		ETHANE	.15
.30		ETHYLENE	.15
0.00		ACETYLENE	.15
0.00		HYDROGEN SULFIDE	0.00
11.40		CARBON DIOXIDE	13.00
63.30		NITROGEN	60.60
.90		OXYGEN+ARGON	.90
99.90			100.45

Calculations

<u>GASIFIER-DEVOLATILIZER</u>	
TOTAL BTU/HR IN COAL	2865817.50
TOTAL BTU/HR IN NAT. GAS	0.00
TOTAL BTU/HR IN FUEL	2865817.50
BTU/HR IN MAKE GAS	1458487.22
HYDROGEN IN GAS LB/HR	10.57
CARBON IN GAS LB/HR	140.53
MAKE GAS MOLE. WT.	27.38
COLD-GAS CONV. EFF.	50.89

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008107
CARBON MONOXIDE	.144177
METHANE	.001753
ETHANE	.001862
ETHYLENE	.001534
ACETYLENE	.01424
YDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.208889
NITROGEN	.619655
OXYGEN+ARGON	.012818

MATERIAL BALANCE

CARBON HYDROGEN OXYGEN NITROGEN
 168-12 11-39 264-44 730-30

COAL RATE (WET)	LB/HR	285.00	(DRY)	242.25
DRY MAKE GAS	LB/HR	1149.54		
WET MAKE GAS	LB/HR	1195.94		
TOTAL WATER FED	LB/HR	52.39		

MEASURED INPUT	168.12
OUT AT POINT B	151.52
OUT AT POINT C	162.35

PERCENT THEO. AIR 44.65
HEATING VALUE BTU/DSCF 91.87

SOLIDS ANALYSIS

TEST 39

03-18-76 1045 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE
NO NATURAL GAS TO GASIFIER WESTERN COAL

Input

Calculations

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	403.00	GASIFIER OUT 1760.00
DEVOL	0.00	DEVOL IN 1610.00
AIR FLOWS	LB/HR	DEVOL MID 1540.00
GASIFIER AIR	850.00	DEVOL OUT 1430.00
TRANSPORT AIR	23.00	CYC SEP OUT 990.00
CHAR EJECT AIR	70.00	GASIFIER AIR 880.00
TOTAL AIR TO GASIFIER	943.00	
SEC COMB AIR	4333.83	
NATURAL GAS	LB/HR	SOLIDS LOADING LB/HR
GASIFIER	0.00	GASIFIER OUT 0.00
SEC COMR	121.00	CYCLONE OUT 33.38
STEAM FLOW	LB/HR	
GASIFIER	0.00	MAKE GAS ANALYSIS
DEVOL	0.00	OUTLET VOL PERCENT DRY CYCLONE OUTLET
OXYGEN ADDED	LB/HR	
	0.00	
SEC COMR PERCENT		
TOTAL AIR	112.00	

GASIFIER-DEVOLATILIZFR
 TOTAL BTU/HR IN COAL 4052366.50
 TOTAL BTU/HR IN NAT. GAS 0.00
 TOTAL BTU/HR IN FUEL 4052366.50
 BTU/HR IN MAKE GAS 1914704.89
 HYDROGEN IN GAS LB/HR 13.60
 CARBON IN GAS LB/HR 163.13
 MAKE GAS MOL. WT. 26.73
 COLD-GAS CONV. EFF. 47.25

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.009504
CARBON MONOXIDE	.184397
METHANE	.005388
ETHANE	.001908
ETHYLENE	.003143
ACETYLENE	.001459
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.200861
NITROGEN	.580430
OXYGEN+ARGON	.013134

100.00 100.30

MATERIAL BALANCE

BASED ON MEASURED	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE	237.73	16.10	276.32	715.05
COAL RATE (WET) LB/HR	403.00			
DRY MAKE GAS LB/HR	1158.88			
WET MAKE GAS LB/HR	1211.43			
TOTAL WATER FED LB/HR	69.88			
WATER FROM REACTION LB/HR	-17.33			

OUT AT POINT B	190.67	12.65	276.32	672.65
OUT AT POINT C	210.40			

BASED ON MEASURED
COAL RATE

COAL RATE (WET) LB/HR	403.00	(DRY)	342.55
DRY MAKE GAS LB/HR	1158.88		
WET MAKE GAS LB/HR	1211.43		
TOTAL WATER FED LB/HR	69.88		
WATER FROM REACTION LB/HR	-17.33		

PERCENT THEO. AIR	30.88
HEATING VALUE BTU/DSFC	116.84

SOLIDS ANALYSIS

TEST 39 CYCLONE OUT-- C 68.9% H 1.2% N 0.4% S 1.4% ASH 29.0% O 0.0%
TARS 2.30 LB/HR

TEST 40

03-18-76 1130 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE
 NO NATURAL GAS TO GASIFIER WESTERN COAL SEC. COMB. OXY VARYING

Input

COAL RATE	LB/HR	TEMPERATURES, F
GASIFIER	390.00	GASIFIER OUT 1700.00
DEVOL	0.00	DEVOL IN 1570.00
AIR FLOWS	LB/HR	DEVOL MID 1490.00
		DEVOL OUT 1395.00
		CYC SEP OUT 970.00
		GASIFIER AIR 865.00
GASIFIER AIR	855.00	SOLIDS LOADING LB/HR
TRANSPORT AIR	23.00	GASIFIER OUT 0.00
CHAR EJECT AIR	70.00	CYCLONE OUT 50.99
TOTAL AIR TO GASIFIER	948.00	
SEC COMB AIR	4382.30	
NATURAL GAS	LB/HR	MAKE
		GAS ANALYSIS
GASIFIER	0.00	OUTLET VOL PERCENT DRY CYCLONE OUTLET
SEC COMB	100.00	11.30 HYDROGEN 11.90
		16.20 CARBON MONOXIDE 15.20
STEAM FLOW	LB/HR	.30 METHANE .15
		0.00 ETHANE .15
GASIFIER	0.00	.30 ETHYLENE .30
DEVOL	0.00	0.00 ACETYLENE .30
OXYGEN ADDED	LB/HR	0.00 HYDROGEN SULFIDE 0.00
	0.00	11.80 CARBON DIOXIDE 15.30
		59.30 NITROGEN 56.45
		.90 OXYGEN+ARGON .80
SEC COMB PERCENT		100.10 100.55
TOTAL AIR	125.00	

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	3921645.00
TOTAL BTU/HR IN NAT. GAS	0.00
TOTAL BTU/HR IN FUEL	3921645.00
BTU/HR IN MAKE GAS	1584781.68
HYDROGEN IN GAS LB/HR	11.22
CARBON IN GAS LB/HR	156.44
MAKE GAS MOL. WT.	27.58
COLD-GAS CONV. EFF.	40.41

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008631
CARBON MONOXIDE	.154343
METHANE	.000870
ETHANE	.001850
ETHYLENE	.003046
ACETYLENE	.002629
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.244134
NITROGEN	.573200
OXYGEN+ARGON	.011315

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN		
COAL RATE		230.06	15.58	275.63	718.72		
COAL RATE (WET) LB/HR	390.00	(DRY) 331.50	OUT AT POINT B	198.51	9.12	275.63	655.18
DRY MAKE GAS LB/HR	1143.03	OUT AT POINT C	202.73				
WET MAKE GAS LB/HR	1178.79						
TOTAL WATER FED LB/HR	67.98						
WATER FROM REACTION LB/HR	-32.22						

PERCENT THEO. AIR 32.08
 HEATING VALUE BTU/DSFC 101.17

SOLIDS ANALYSIS

TEST 40 TARS 2.96 LB/HR

TEST 41

03-18-76 1250 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER COAL NOZZLE
Input NO NAT. GAS TO GASIFIER WESTERN COAL

COAL RATE	LB/HR
GASIFIER	410.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	840.00
TRANSPORT AIR	23.00
CHAR EJECT AIR	72.00
TOTAL AIK TO GASIFIER	935.00
SEC COMB AIR	4383.39

NATURAL GAS	LB/HR
GASIFIER	0.00
SEC COMB	98.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
	0.00

SEC COMB	PERCENT
TOTAL AIR	129.00

TEMPERATURES, F	
GASIFIER OUT	1800.00
DEVOL IN	1650.00
DEVOL MID	1560.00
DEVOL OUT	1450.00
CYC SEP OUT	1000.00
GASIFIER AIR	830.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	0.00
CYCLONE OUT	49.26

MAKE		
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
11.40	HYDROGEN	11.95
15.60	CARBON MONOXIDE	15.60
0.00	METHANE	.30
0.00	ETHANE	0.00
0.00	ETHYLENE	0.00
0.00	ACETYLENE	0.00
0.00	HYDROGEN SULFIDE	0.00
11.60	CARBON DIOXIDE	11.60
60.60	NITROGEN	59.80
.80	OXYGEN+ARGON	1.10

100.00	100.35
--------	--------

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	4122755.00
TOTAL BTU/HR IN NAT. GAS	0.00
TOTAL BTU/HR IN FUEL	4122755.00
BTU/HR IN MAKE GAS	1437166.90
HYDROGEN IN GAS LB/HR	10.39
CARBON IN GAS LB/HR	136.73
MAKE GAS MOL. WT.	26.93
COLD-GAS CONV. EFF.	34.86

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.004874
CARBON MONOXIDE	.162186
METHANE	.001782
ETHANE	0.000000
ETHYLENE	0.000000
ACETYLENE	0.000000
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.189514
NITROGEN	.621714
OXYGEN+ARGON	.015929

MATERIAL BALANCE

BASED ON MEASURED	
COAL RATE	
COAL RATE (WET) LB/HR	410.00
DRY MAKE GAS LB/HR	1114.82
WET MAKE GAS LB/HR	1206.12
TOTAL WATER FED LB/HR	70.85
WATER FROM REACTION LB/HR	20.45
PERCENT THEO. AIR	30.09
HEATING VALUE BTU/DSFC	92.11

MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
	241.86	16.38	275.47	709.06

OUT AT POINT B	177.38	14.09	275.47	693.10
OUT AT POINT C	194.30			

SOLIDS ANALYSIS

TEST 41 TARS 0.99 LB/HR

TEST 42

03-18-76 1430 HRS ALL COAL TO VERTICAL BOTTOM GASIFIER NOZZLE
NO NAT. GAS TO GASIFIER WESTERN COAL

		Input				Calculations	
COAL RATE	LB/HR		TEMPERATURES, F			GASIFIER-DEVOLATILIZER	
GASIFIER	369.00		GASIFIER OUT	1810.00		TOTAL BTU/HR IN COAL	3710479.50
DEVOL	0.00		DEVOL IN	1680.00		TOTAL BTU/HR IN NAT. GAS	0.00
AIR FLOWS	LB/HR		DEVOL MID	1600.00		TOTAL BTU/HR IN FUEL	3710479.50
			DEVOL OUT	1500.00		BTU/HR IN MAKE GAS	1796881.93
			CYC SEP OUT	1125.00		HYDROGEN IN GAS LB/HR	13.21
			GASIFIER AIR	845.00		CARBON IN GAS LB/HR	156.01
GASIFIER AIR	854.00					MAKE GAS MOL. WT.	26.58
TRANSPORT AIR	23.00		SOLIDS LOADING LB/HR			COLD-GAS CONV. EFF.	48.43
CHAR EJECT AIR	72.00		GASIFIER OUT	0.00			
TOTAL AIR TO GASIFIER	949.00		CYCLONE OUT	34.97			
SEC COMB AIR	4383.39						
NATURAL GAS	LB/HR		MAKE			MAKE GAS ANALYSIS	
			GAS ANALYSIS			WEIGHT FRACTION	
GASIFIER	0.00		OUTLET	VOL PERCENT DRY	CYCLONE		
SEC COMB	107.00		13.10	HYDROGEN	13.70	HYDROGEN	.010309
			17.30	CARBON MONOXIDE	16.90	CARBON MONOXIDE	.178035
			.30	METHANE	.30	METHANE	.001806
STEAM FLOW	LB/HR		0.00	ETHANE	.15	ETHANE	.001919
			0.00	ETHYLENE	.15	ETHYLENE	.001580
GASIFIER	0.00		0.00	ACETYLENE	.15	ACETYLENE	.001467
DEVOL	0.00		0.00	HYDROGEN SULFIDE	0.00	HYDROGEN SULFIDE	0.000000
OXYGEN ADDED	LB/HR		11.50	CARBON DIOXIDE	12.20	CARBON DIOXIDE	.201964
			57.00	NITROGEN	56.00	NITROGEN	.589939
			.80	OXYGEN+ARGON	.90	OXYGEN+ARGON	.013206
			100.00		100.45		
SEC COMB PERCENT							
TOTAL AIR	126.00						

MATERIAL BALANCE

BASED ON MEASURED COAL RATE		MEASURED INPUT	CARBON	HYDROGEN	OXYGEN	NITROGEN
COAL RATE (WET)	LB/HR	369.00	(DRY)	313.65	217.67	14.74
DRY MAKE GAS	LB/HR	1155.71			272.86	719.32
WET MAKE GAS	LB/HR	1203.89				
TOTAL WATER FED	LB/HR	64.84	OUT AT POINT B	184.86	12.38	681.80
WATER FROM REACTION	LB/HR	-16.66	OUT AT POINT C	191.18		

PERCENT THEO. AIR 33.94
HEATING VALUE BTU/DSCF 109.34

SOLIDS ANALYSIS

TEST 42 TARS 0.98 LB/HR

TEST 43

04-20-76 1305 HRS ALL COAL TO VERTICAL GASIFIER COAL NOZZLE NO NATURAL GAS TO
Input GASIFIER WESTERN COAL

COAL RATE LB/HR

GASIFIER	390.00
DEVOL	0.00
AIR FLOWS	LB/HR
GASIFIER AIR	853.00
TRANSPORT AIR	22.50
CHAR EJECT AIR	72.00
TOTAL AIR TO GASIFIER	947.50
SEC COMR AIR	4120.20

NATURAL GAS LB/HR

GASIFIER	0.00
SEC COMH	110.00
STEAM FLOW	LB/HR
GASIFIER	0.00
DEVOL	0.00
OXYGEN ADDED	LB/HR
SEC COMR PERCENT	
TOTAL AIR	118.00

TEMPERATURES, F

GASIFIER OUT	1720.00
DEVOL IN	1600.00
DEVOL MID	1530.00
DEVOL OUT	1440.00
CYC SEP OUT	1000.00
GASIFIER AIR	860.00

SOLIDS LOADING	LB/HR
GASIFIER OUT	0.00
CYCLONE OUT	34.06

	MAKE	
GASIFIER	GAS ANALYSIS	CYCLONE
OUTLET	VOL PERCENT DRY	OUTLET
11.10	HYDROGEN	11.90
15.60	CARBON MONOXIDE	15.10
.50	METHANE	.90
.30	ETHANE	.30
0.00	ETHYLENE	.15
.30	ACETYLENE	.30
.30	HYDROGEN SULFIDE	0.00
11.60	CARRON DIOXIDE	12.00
59.80	NITROGEN	58.60
.90	OXYGEN+ARGON	.90

100.40 100.15

Calculations

GASIFIER-DEVOLATILIZER	
TOTAL BTU/HR IN COAL	3921645.00
TOTAL BTU/HR IN NAT. GAS	0.00
TOTAL BTU/HR IN FUEL	3921645.00
BTU/HR IN MAKE GAS	1768856.79
HYDROGEN IN GAS LB/HR	13.04
CARBON IN GAS LB/HR	148.44
MAKE GAS MOL. WT.	26.86
COLD-GAS CONV. EFF.	45.10

MAKE GAS ANALYSIS
WEIGHT FRACTION

HYDROGEN	.008861
CARBON MONOXIDE	.157415
METHANE	.005361
ETHANE	.003798
ETHYLENE	.001564
ACETYLENE	.002904
HYDROGEN SULFIDE	0.000000
CARBON DIOXIDE	.196582
NITROGEN	.610894
OXYGEN+ARGON	.013068

MATERIAL BALANCE

BASED ON MEASURED		CARBON	HYDROGEN	OXYGEN	NITROGEN		
COAL RATE	MEASURED INPUT	230.06	15.58	275.51	718.35		
COAL RATE (WET) LB/HR	390.00	(DRY) 331.50	OUT AT POINT B	176.55	14.86	275.51	704.36
DRY MAKE GAS LB/HR	1153.00		OUT AT POINT C	192.17			
WET MAKE GAS LB/HR	1228.40						
TOTAL WATER FED LB/HR	67.98						
WATER FROM REACTION LB/HR	7.42						

PERCENT THEO. AIR 32.06
HEATING VALUE BTU/DSCF 108.71SOLIDS ANALYSISTEST 43 CYCLONE OUT-- V.M. 10.5% F.C. 62.3% ASH 27.2%
CYCLONE OUT-- C 70.3% H 1.3% N 0.6% S 1.0% ASH 27.2% O 0.0%
TARS 1.91 LB/HR

APPENDIX B ENERGY BALANCE DATA

TEST NO.	STEADY STATE HEAT LOSS: kg-cal/kg. mole of O ₂ fed			TRANSIENT HEAT LOSS: kg-cal/kg. mole of O ₂ fed			TOTAL HEAT LOSS			OVER-ALL HEAT LOSS	AVERAGE HEAT LOSS STEADY STATE	AVERAGE HEAT LOSS TRANSIENT	Calc. T ₄ Zero heat loss °F	Measured T ₄ °F
	Gasifier	Devol.	Cyclones	Gasifier	Devol.	Gasifier	Devol.	Cyclones						
Code 1	1	8928	1036	19,606	24,248	19,052	33,176	20,088	19,606	72,870			3251	900
	2	9553			25,987	20,418	35,540	21,454		76,600			3478	1075
	3	8712			21,371	16,792	30,083	17,827		67,156			3274	1060
	4	7356			23,784	18,687	31,140	19,723		70,468			3303	950
	5	8816			23,842	18,733	32,658	19,769		72,033			3388	915
	6	8909			22,591	17,750	31,500	18,786		69,892			3550	1100
	20	12559			21,499	16,892	34,058	17,928		71,592			3457	1050
	21	9633			22,661	17,805	32,294	18,841		70,741			3285	1080
	22	8712			23,850	18,739	32,562	19,775		71,943			3447	1080
	Averages	9242	1036	19,606	23,315	18,319				71,477	29,884	41,634		
Code 2	9	9633			20,416	16,041	30,049	17,077		66,732			3048	930
	10	9633			19,893	15,630	29,526	16,666		65,798			3055	990
	11	9633			22,084	17,351	31,717	18,387		69,710			3143	940
	13	9633			14,870	11,683	24,503	12,719		56,828			2777	1100
	14	9633			22,214	17,454	31,847	18,490		69,943			3070	880
	16	13461			20,458	16,074	33,919	17,110		70,635			3063	905
	Averages	10271	1036	19,606	19,989	15,706				66,608	30,913	35,695		
Code 3	7	9635			26,133	20,533	35,768	21,569		76,943			3382	1010
	8	9635			28,795	22,625	38,430	23,661		81,697			3201	850
Averages	9635	1036	19,606	27,464	21,579				79,320	30,277	49,043			
Code 4	27	9890			14,880	11,698	24,778	12,734		57,118			3041	1010
	32	8107			17,734	13,933	25,840	14,969		60,415			2951	990
Averages	8999	1036	19,606	16,307	12,816				58,764	29,641	29,123			
Code 5	24	9218			19,546	15,357	28,764	16,393		64,763			2834	870
	28	9890			18,125	14,241	26,015	15,277		62,848			3040	800
	29	7893			20,475	16,088	28,368	17,124		65,098			3045	905
	35	8829			16,598	13,041	25,427	14,077		59,110			2569	830
Averages	8958	1036	19,606	18,686	14,682				62,968	29,600	33,368			
Code 6	26	9765			23,539	18,495	33,304	19,531		72,441			3110	840
	31	9265			21,756	17,094	31,021	18,130		68,757			2879	820
	36	9875			20,120	15,808	29,995	16,844		66,445			3100	880
Averages	9635	1036	19,606	21,806	17,132				69,215	30,277	38,938			
Code 7	33	9164			14,262	11,206	23,426	12,242		55,274			2755	820
	34	10371			7,874	6,186	18,245	7,222		45,073			2515	840
	38	7224			17,215	13,526	24,439	14,562		58,607			3109	960
	39	8371			8,632	6,782	17,003	7,818		44,427			2563	990
	40	8342			13,677	10,746	22,019	11,782		53,407			2689	970
	42	6141			9,703	7,624	15,844	8,660		44,110			2707	1125
	43	8371			11,324	8,897	19,695	9,933		49,234			2656	1000
Averages	8283	1036	19,606	11,812	9,281				50,018	28,925	21,093			

APPENDIX C MATERIAL BALANCE DATA

Cyclone Efficiency ⁽¹⁾	MAXIMUM TEMPERATURE (IN GASIFIER T_1 , °F)			GASIFIER OUTLET TEMPERATURE T_2 , °F			DEVOLATIZER OUTLET TEMPERATURE T_3 , °F			CYCLONE SEPARATOR OUTLET TEMPERATURE T_4 , °F			AIR-FUEL RATIO	η_p (2) by STOICHO- METRY	S FRACTION OF COAL TO GASIFIER	H _m MAKE-GAS HEATING VALUE BTU/DSFC	
				$\eta_c = .90$	$\eta_c = .95$	Measured	$\eta_c = .90$	$\eta_c = .95$	Measured	$\eta_c = .90$	$\eta_c = .95$	Measured					
	TEST NO.	Calculated	Calculated	Measured	Calculated	Calculated	Measured	Calculated	Calculated	Measured	Calculated	Calculated	Measured				
Code 1	1	3350	2646	----	1831	1602	1950	1373	1258	1160	900	-----	-----	.48	.23	1	71.4
	2	3020	2372	----	1882	1640	2200	1476	1354	1460	1075	-----	-----	.47	.38	1	47.2
	3	3814	3144	----	2038	1843	2240	1592	1484	1730	1060	-----	-----	.514	.13	1	76.9
	4	4060	3417	----	2066	1883	2210	1530	1433	1640	950	-----	-----	.537	.08	1	76.9
	5	4810	4481	----	2232	2145	2300	1597	1550	1800	915	-----	-----	.595	.03	1	76.9
	6	5356	5685	----	2527	2563	2300	1848	1862	1800	1100	-----	-----	.676	.10	1	66.2
	20	4212	3617	----	2154	1990	2100	1650	1559	1560	1050	-----	-----	.582	.07	1	66.3
	21	3159	2489	----	1866	1643	2090	1496	1375	1600	1080	-----	-----	.448	.31	1	76.1
	22	3737	3737	----	2091	1877	2160	1604	1492	1620	1080	-----	-----	.544	.17	1	61.7
	Avg. Diff. between Calc. and Meas.				-96	-262		-22	-86								
Code 2	9	3526	2824	----	2447	1999	2120	1420	1308	1280	930	-----	-----	.457	.19	.5	84.1
	10	3422	2725	----	2337	1984	2200	1455	1341	1320	990	-----	-----	.446	.22	.5	84.9
	11	3379	2679	----	2323	1956	1950	1410	1293	1200	940	-----	-----	.461	.24	.5	76.6
	13	2979	2338	----	2173	1831	2230	1471	1358	1520	1100	-----	-----	.367	.32	.5	98.8
	14	3295	2584	----	2238	1870	2080	1337	1221	1150	880	-----	-----	.439	.25	.5	83.8
Code 3	16	3038	2350	----	2124	1754	2010	1316	1198	1340	905	-----	-----	.412	.33	.5	77.6
	Avg. Diff. between Calc. and Meas.				175	-109		100	-15								
	7	3147	2467	----	3006	2392	2350	1431	1311	1350	1010	-----	-----	.469	.41	0	46.8
Code 4	8	2464	1860	----	2509	1915	2080	1167	1056	1080	850	-----	-----	.362	.60	0	54.0
	Avg. Diff. between Calc. and Meas.				542	-62		84	-32								
	27	3514	2822	----	1746	1692	1930	1467	1364	1400	1010	-----	-----	.439	.19	1	91.1
Code 5	32	2876	2225	----	1601	1417	2040	1345	1237	1560	990	-----	-----	.381	.34	1	85.0
	Avg. Diff. between Calc. and Meas.				-311	-430		-74	-180								
	24	3528	2816	----	2213	1894	1860	1347	1243	1100	870	-----	-----	.461	.19	.5	83
	28	3215	2614	----	2100	1771	1950	1329	1220	1270	905	-----	-----	.424	.26	.5	82.2
	29	3296	2572	----	2080	1747	1810	1246	1138	1090	800	-----	-----	.428	.23	.5	84.8
Code 6	35	2333	1754	----	1668	1561	1710	1106	1010	1100	830	-----	-----	.291	.47	.5	95.0
	Avg. Diff. between Calc. and Meas.				183	-139		117	13								
	26	2841	2165	----	2512	1950	1860	1216	1103	1100	840	-----	-----	.413	.39	0	62.1
	31	2550	1920	----	2325	1779	2170	1142	1037	1030	820	-----	-----	.351	.45	0	74.5
Code 7	36	3177	2473	----	2707	2150	2000	1303	1193	1110	880	-----	-----	.433	.28	0	78.4
	Avg. Diff. between Calc. and Meas.				538	-17		140	31								
	33	3039	2332	----	1439	1274	1480	1209	1105	1090	820	-----	-----	.358	.24	1	107.2
Code 8	34	2764	2101	----	1303	1167	1440	1182	1082	1170	840	-----	-----	.314	.26	1	105.0
	38	3604	2902	----	1760	1591	1820	1431	1330	1290	960	-----	-----	.447	.14	1	91.9
	39	2727	2100	----	1426	1290	1760	1305	1260	1430	990	-----	-----	.309	.30	1	116.8
	40	2639	2024	----	1454	1298	1700	1278	1178	1395	970	-----	-----	.321	.35	1	101.2
	42	2945	2311	----	1606	1462	1810	1463	1362	1500	1125	-----	-----	.339	.27	1	109.3
Code 9	43	2719	2096	----	1469	1321	1720	1315	1216	1440	1000	-----	-----	.321	.32	1	108.3
	Avg. Diff. between Calc. and Meas.				182	-331		-10	-110								

(1) the cyclone separator efficiencies, η_c , give here are assumed values.

(2) ratio of actual air flow to that required to burn the total fuel (coal and natural gas) completely to CO_2 , H_2O , and SO_2 .

(3) fraction of total input carbon appearing as char in the cyclone separator outlet gas.

Appendix D

DIFFUSION-BASED MATHEMATICAL MODEL OF SUSPENSION GASIFIER

INTRODUCTION AND SUMMARY

To aid in understanding and extrapolating gasification data, it would be extremely valuable to have a mathematical model of its operation. The development of the present model was undertaken in connection with the analysis of data recently obtained on the pilot gasifier at ARC. Time being very limited, the customary preliminary literature review was skipped, and the model was kept as simple as possible.

The main features of the model are:

1. Assumption of reaction rate controlled by gas-phase diffusion of CO_2 and H_2O to the surface of char particles.
2. Recycle of char until each particle is either completely consumed by reaction or else escapes the process by the inefficiency of the separator.
3. Assumption of complete conversion of all O_2 and air to CO_2 and H_2O by reaction with recycled char just prior to coal injection.

The reasons for choosing diffusion rather than chemical kinetic rate control were:

- A. It provides a simple model that requires no empirical constants.
- B. Since pulverized coal combustion seems to be diffusion controlled, there seems to be reasonable hope that the assumption might be valid.

As it turns out, the diffusion assumption was proven to be wrong. Nevertheless, the modeling effort succeeded in achieving some valuable insights, namely:

- I. The gasification reaction in suspension gasifiers must be controlled by chemical kinetics. Their performance should, therefore,

be strongly dependent upon the temperatures achieved in the gasifier. Thus, heat losses should play an important role in determining make-gas quality with respect to both Btu content and char carryover.

- II. The operating characteristics of recycle-gasifier processes – in terms of make-gas heating value versus percent theoretical air – must run across lines of constant carbon utilization. That is, as one strives to obtain higher heating values by firing more coal to a given gasifier with given air flow, he must invariably encounter more char carryover and lower carbon utilization.
- III. In suspension gasifiers, the separator efficiency is just as important as the gasifier volume in determining performance. In fact, it might even be more important considering that larger gasifier volumes inherently entail higher heat losses whereas higher separator efficiencies might not.

We conclude that the modeling effort should be continued, but redirected towards chemical kinetic control of the rate. To aid in testing such models in the future, it would be very helpful to have experimental data on the actual separator efficiency.

THE MODEL

Figure D.1 shows the gasification process in schematic form. It consists of a reactor vessel, into which are fed coal, char, and air, and a separator that separates recycled char from the make gas to give a product consisting of make gas plus a small amount of char. The gasifier is considered to consist of three separate zones. Into the very bottom are fed air and char, and the air burns completely to CO_2 and H_2O , consuming in the process a portion of the char. The amount of reactor volume required for this combustion is assumed to be small and is henceforth neglected. Coal is fed at only one place into the system, immediately above the combustion zone. It is assumed that the coal almost immediately devolatilizes, that the volatile immediately equilibrates with the combustion gas, and that all the char particles so produced have the same size. As a matter of fact, the combustion assumption is probably not too important because the combustion section doesn't require much space anyhow. The assumptions about the behavior of the coal immediately upon an injection are, of course, all unrealistic. However, if the char particles make several transits through the apparatus, the error introduced by assuming immediate devolatilization may not be too important. Moreover, whether or not the volatile material equilibrates immediately with the combustion gas, or whether it does so over the whole

volume of the reactor affects only in a relatively minor way the concentrations of the diffusing species. Thus, this assumption should at least give a good first approximation. Neglect of the polydispersity of char particle sizes may be more serious; but it is justified for the present by the simplicity that it provides.

As illustrated in Figure D.1, it is further assumed that each char particle makes several passes through the gasifier. (In the illustration, three passes are assumed.) For the sake of simplicity, we assume that the number of passes is an exact integer. That is, we assume that each char particle that does not escape through the separator is completely consumed exactly at the place where coal is introduced. While at first this might seem like an outrageously unrealistic assumption, actually it is not, for we might imagine that the reactor size can be adjusted so as to cause each char particle just to disappear at the coal inlet point. Thus, it amounts to assuming that reactor vessels come in discrete sizes that just allow one, two, three, etc., respectively, char-particle passes. To accommodate an actual reactor size lying between these discrete sizes, we simply interpolate between the results for two discrete sizes.

The foregoing and some additional important assumptions are summarized in Table D.1. Since both CO_2 and H_2O are assumed to react with char, the extent of the water gas shift reaction is not too important, although it still retains some significance since the diffusivity of H_2O is about 1.56 times the value for CO_2 . Thus, the concentrations of both CO_2 and H_2O are needed in order to compute the reaction rate at any station, and the H_2O is 1.56 times as important as the CO_2 . At first blush, assuming the separator efficiency η_c , to be independent of particle size would seem to be at variance with theory. It is made for two reasons. Firstly, it's the simplest assumption one can reasonably make. Secondly, considering that char particle sizes should be of the order of 50 microns and the cyclone cut size of the order of 10 microns, it may actually be fairly accurate. That is, cyclone efficiencies generally don't reach 100 percent, even for very large particles. In any event, the assumption is correct to a first approximation in that the function of the separator is to let some of the particles through, but not all of them.

Assumption No. 6 of Table D.1 is intended to provide a rational starting point for the gasification calculation. It is based upon the fact that this is the experimentally determined course of the reaction in fixed bed gasifiers. It is also based upon the rational that CO_2 and H_2O are probably the main products of reaction up until the point where most, if not all, of the O_2 is consumed.

Nevertheless, it must be admitted that some CO and H_2 are probably reaction products before all the O_2 is consumed, so that the actual starting point for gasification reactions is probably at somewhat lower CO_2 and H_2O concentrations than given by Assumption No. 6. Still, without getting bogged down in this detail, this should be a good first approximation. Assuming that the rate is diffusion controlled is a good assumption, especially if the gasifier itself is diffusion controlled. Characterizing the diffusion by a constant Sherwood number should be valid for particle sizes up to about 100 microns. The reason is that such particles should experience little relative motion with respect to the gas and, thus, the Sherwood number approaches its asymptotic value of 2.0. The effect of a constant Sherwood number is to make the amount of surface removed from a particle in a given portion of the gasifier independent of the initial size of the particle. (A constant diffusion coefficient would make the amount of radius removed a cost independent of particle size.)

As it turns out, the heat losses assumed in this model, Assumption No. 8 of Table D.1, are completely unrealistic with respect to the pilot gasifier. Thus, the assumption made here amounts to a minimal heat loss assumption. In actual execution, we have assumed that the char stream supplies all of the heat loss, with the make-gas temperature being the same as the separator inlet temperature. The char stream was assumed to lose heat to the surroundings, which are the constant temperature, through a heat transfer coefficient, h_s . Thus, the heat loss parameter becomes one proportional to this heat transfer coefficient and the area of the "separator", normalized to the material-balance basis of the flow sheet, namely, one mol of O_2 as in air.

Tables D.2 and D.3 summarize the model itself based upon these assumptions. Table D.2 gives the equations, and Table D.3 the nomenclature. The first set of equations at the top of Table D.2 determines the value of ϵ_3 , the relative amount of surface to be removed from a particle between the injection point (2) and the gasifier exit (3). This is obtained from a trial and error solution of equation 3. The second set of equations determines the gas composition at points between points (2) and (3). The points are equally spaced in terms of amount of surface removed from a given particle. The water gas shift equilibrium is satisfied by solving the quadratic equation (8). The third set of equations in Table D.2 determines the temperature at these various points within the gasifier. This is done by trial and error solution of the enthalpy balance, Equation 15. The value of T_3 necessary for us to obtain the char temperature is obtained by an initial estimate at the beginning of the calculation, and then subsequently

from the previously calculated T_3 value. The fourth set of equations in Table D.2 is the set that determines the required reactor volume for given operating conditions. Actually, the nominal reactor volume, V_R is included in the definition of the constant K_{VR} , so that the summation of Δv_R represents the relative reactor volume required for given conditions. Thus, v_R greater than unity means that the reactor would have to be larger than it actually is in order to satisfy the conditions. The various factors that go into the rate constant, K_{VR} , have to do with the initial surface area of the char particles, the Sherwood number, the actual reactor volume, the diffusivity of carbon dioxide, and the variation of diffusivity with temperature and pressure. It is a variation of diffusivity with temperature (proportional to the three halves power of temperature) that gives the peculiar unity to K_{VR} , $(^{\circ}K)^{-1/2}$.

In actual execution, we have evaluated the model of Table D.2 by first assuming successive values of v , one, two, three, etc. The relative reactor volume, v_R , was calculated for each successive v value. As a rule, the initial value of v_R was larger than unity, and it became smaller with increasing v . The end result of the calculation, as indicated by the equations at the bottom of Table D.2, was an interpolation between results for the v value that first gave v_R less than unity and the preceding one which, of course, gave v_R greater than unity. When a v value of unity gave v_R less than unity, we discarded the results, or at least earmarked them as probably incorrect.

CALCULATIONAL PROCEDURE

The model was programmed for the Hewlett-Packard Model 9100A with extended memory. It was arranged in various subroutines so as to minimize programming. Each subroutine was debugged and checked by a manual calculation starting with the lowest order routines. (That is, with those subroutines that, themselves, call no other subroutines.) The debugged subroutines were then used in manual checking and debugging of the higher order subroutines. This process was continued until the whole program had been checked and debugged. A final check included a manual (or semi-manual) verification of every value in memory. The calculations were carried out with the following initial values of the constants:

1. A values between 0.3 and 0.55
2. η_c values between 0.7 and 0.95
3. A value of K_{VR} of $2.5 \times 10^{-5} (^{\circ}K)^{-1/2}$, which corresponds to an initial char particle diameter of 45 microns (45×10^{-6} meters), a char density of 0.44 grams/cc (440 kg/cubic meter), a diffusivity

of CO_2 at 298°K of $0.157 \text{ cm}^2/\text{sec}$ ($1.57 \times 10^{-5} \text{ meter}^2/\text{sec}$), a Sherwood number of 2.0, a reactor volume of 24.44 cubic ft (0.693 meters^3), and an air flow rate of 950 lb/hr ($8.67 \times 10^{-4} \text{ kg mols O}_2/\text{sec}$).

4. A value of β_s of 4.5 kcal/mol O_2°K , which corresponds to an h_s value of 30 Btu/hr $\text{ft}^{2^\circ}\text{F}$. (The value of the heat transfer coefficient was a compromise between the expected value of 3 Btu/hr $\text{ft}^{2^\circ}\text{F}$ for transfer from a cyclone to air and as high as 100 Btu/hr $\text{ft}^{2^\circ}\text{F}$ for transfer from char to the water-cooled elbow at the bottom of the devolatilizer.)

RESULTS

The most immediate and striking result obtained was that the a priori set of constants mentioned above could in no way predict the experimental results observed from the pilot gasifier. With char making only one pass through the apparatus ($v = 1$), calculated reactor volumes were far below the actual reactor volume. Only when the value of K_{VR} parameter was raised nearly four orders of magnitude (corresponding to an initial char particle size of 2.5 mm, rather than a few microns), were we able to "predict" actual experimental results. Since char particles of this size were never found in practice, we must conclude that the diffusion assumption is wrong. The alternative is, of course, rate control by chemical kinetics, probably involving gaseous molecules and the char surface. Since chemical-kinetic rate constants are usually more temperature sensitive than diffusivities, this also implies greater temperature sensitivity than assumed in the present model.

Figures D.2 through D.4 show the model's "predictions" with empirical values of the rate cost, K_{VR} . In Figure D.2, we show the data for code 7, wherein Western coal was fired vertically upward in the gasifier with no coal to the devolatilizer. The effects of variation of separator efficiency are illustrated by the three curves for 85, 90, and 95 percent separator efficiency. Figure D.3 shows the data for code 4, wherein Western coal was fired in the conventional manner all into the gasifier. The same central curve, $K_{VR} = 0.10$, $\eta_C = 90$ percent, fits these data fairly well, as it did for the data of code 7, Figure D.3. The effects of varying the rate constant from 0.05 to 0.2 $(^\circ\text{K})^{-1/2}$ are also shown in Figure D.3. In comparing Figures D.2 and D.3, it will be noticed that the effect of varying the rate constant by a factor of 2 is about the same as the effect of varying the separator "penetration" by a factor of 2. (Penetration is 100 - separator efficiency.) Thus, just as one might suspect, it turns out

that the separator efficiency is just as important as the rate constant in determining the overall performance of the gasifier process.

Another effect obvious from Figures D.2 and D.3 is that the operating curve predicted by the model tends to cut across the lines of constant carbon utilization. This, too, is as one might expect since, as one increases the amount of coal fired (decreases percent theoretical air), he puts more char into suspension, achieves more reaction and a higher Btu gas, but also loses more char through the separator.

Figure D.4 shows the model "prediction" for code 1 data, Eastern coal fired all into the gasifier. The curve here, $K_{VR} = 0.1$, $\eta_c = 90$ percent, is the same as the middle curve of Figures D.2 and D.3, except that the coal-composition parameters have been changed to correspond to the Eastern coal. It will be noted that the predicted curve lies some 8 Btu's above the same curve for Western coal, and the agreement with the Eastern-coal data is fairly good. Thus, the model appears to correctly predict trends with coal composition. On the other hand, since the diffusion assumption is obviously erroneous, this kind of agreement with experimental data may be purely fortuitous.

DISCUSSION

In spite of the failure of the diffusion assumption, this simple model still appears to have some virtue. That is, even though the constant K_{VR} , had to be adjusted empirically in order to fit the data, the recycle portion of the model remains valid. Thus, it correctly predicts the trend of data with air fuel ratio, and it demonstrates the importance of separator efficiency. It's also obvious that future efforts to fit a model to experimental data will be facilitated considerably if experimental data are available on separator efficiency. This will, of course, require a method of measuring the particulate flows in at least two of the three streams entering or leaving the separator. (We have a method in mind for measuring char flow.)

The fact that the diffusion assumption failed by so wide a margin, two orders of magnitude in particle size, virtually proves that the actual rate is controlled by chemical kinetics. Consequently, we can be fairly sure that it is temperature sensitive, and therefore, sensitive to heat losses.

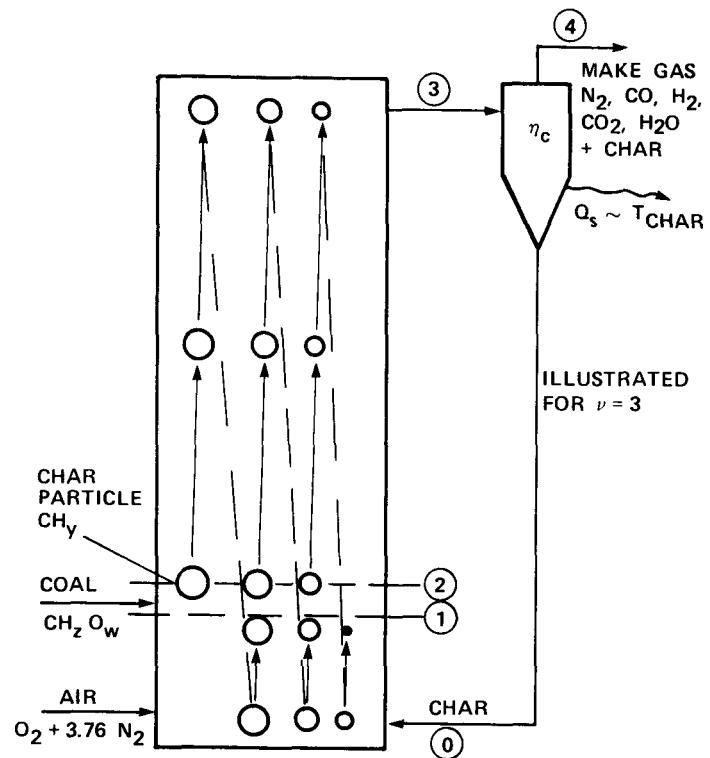
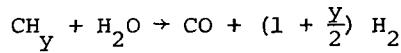
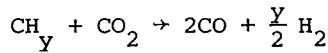
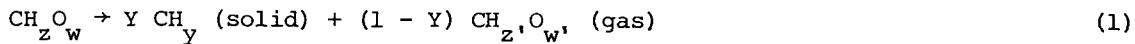




FIGURE D.1 REACTION ENGINEERING MODEL 1B

TABLE D.1 REACTION ENGINEERING MODEL I: MAIN ASSUMPTIONS

1. Gasification reactions, between (2) and (3), are:



and rate is controlled by a diffusion of H_2O and CO_2 to char particle surface.

2. Char particles are formed immediately upon coal injection and are initially uniformly sized.
3. If not lost through the separator, char particles are recycled exactly an integral number of times, v , until consumed.
4. The separator efficiency is η_c for all particles regardless of size.
5. Within the bulk of the reactor, which lies between points (2) and (3), the gas is at all times in water gas shift equilibrium.
6. All of the air is burned with part of the recycled char to produce a gas containing only CO_2 , H_2O , N_2 , and CH_y (solid) particles. The rate is diffusion controlled.
7. In both gasifier, (2) - (3), and combustor, (0) - (1), the diffusion rate is characterized by a constant Sherwood number, e.g., $N_{Sh} = 2.0$.
8. There are no heat losses except from the separator and char return line.

TABLE D.2 GASIFIER MODEL IB EQUATIONS

Determining ε_3

$$\tau_{O_2} \triangleq A \left(1 + \frac{3}{4} - \frac{w}{2}\right); \Delta\omega_{01} \triangleq 4 \tau_{O_2} / (4 + Y) Y \quad (2)$$

$$\Delta\omega_{01} = \eta_c [s(v, \varepsilon_3) - s(v, 1)]; s(v, \varepsilon) \triangleq \sum_{\xi=0}^{\xi=v-1} \eta_c^\xi (1 - \frac{\xi}{v} - \frac{\varepsilon}{v})^{3/2} \quad (3)$$

Gas Composition at Increments Between (2) and (3)

$$\Delta\varepsilon \triangleq \varepsilon_3/N; \varepsilon = \sum \Delta\varepsilon; \Delta\omega_{2+} = s(v, \varepsilon) - s(v, 0) \quad (4)$$

$$\alpha_N = 2(3.76); \alpha_O = 2 + w/\tau_{O_2}; \alpha_C = \frac{4}{4+y} + \frac{1 - Y (1 + \Delta\omega_{2+})}{\tau_{O_2}} \quad (5)$$

$$\alpha_H = \frac{4y}{4+y} + \frac{z - Y Y (1 + \Delta\omega_{2+})}{\tau_{O_2}}; \beta \triangleq K_w (\frac{1}{2} \alpha_H + \alpha_C) - (K_w - 1) \alpha_O \quad (6)$$

$$\alpha \triangleq 4 \alpha_C (\alpha_O - \alpha_C); K_w \triangleq p_{CO} p_{H_2O} / p_{CO_2} p_{H_2} \quad (7)$$

$$\mu_{CO_2} = [-\beta + \sqrt{\beta^2 + (K_w - 1) \gamma}] / 2(K_w - 1), K_w \neq 1 \quad (8)$$

$$= \gamma/4\beta, K_w = 1, \text{ i.e., } |(K_w - 1) \gamma| < 0.01$$

$$\mu_{CO} = \alpha_C - \mu_{CO_2}; \mu_{H_2O} = \alpha_O - \alpha_C - \mu_{CO_2} \quad (9)$$

$$\mu_{H_2} = \frac{1}{2} \alpha_H - \mu_{H_2O}; \mu_{N_2} = \frac{1}{2} \alpha_N; \lambda \triangleq \sum \mu_i \quad (10)$$

Determining T

$$\mu_{O \text{ char}} = Y \eta_c \omega_3 / \tau_{O_2}; \omega_3 = s(v, \varepsilon_3); \mu_{char} = Y s(v, \varepsilon) / \tau_{O_2} \quad (11)$$

$$B_s' \triangleq h_s A_s / (0.21 w_A / 29); \beta_s \triangleq B_s' / (C_p \mu) \text{ char}; \quad (12)$$

$$T_{char} = 298 + (T_3 - 298) e^{-\beta_s} \quad (13)$$

TABLE D.2 CONT'D

$$h_{IN} \stackrel{\Delta}{=} h_{O_2} (T_{air}) + 3.76 h_{N_2} (T_{air}) - \mu_O \text{char} h_{char} (T_{char}) + \frac{h_{coal} (T_{coal})}{\tau_{O_2}} \quad (14)$$

$$h_T = h_{IN}; \quad h_T \stackrel{\Delta}{=} \sum_{i=1}^6 \mu_i h_i (T) \quad (\text{includes char}) \quad (15)$$

$$h_i (T) \stackrel{\Delta}{=} a_i (T - 298) + \frac{b_i}{2} (T^2 - 298^2) - c_i \left(\frac{1}{T} - \frac{1}{298^2} \right) + h_{fi} \quad (16)$$

Determining v_R

$$K_{VR} \stackrel{\Delta}{=} \frac{\rho_{CH_4} D_{PO}^2 (R_g/P)^2 (0.21 w_A/29) (P 298^{3/2}/1 \text{ atm})}{4 (12 + y) N_{Sh} v_R D_{CO_2} 298} \quad (17)$$

$$\Delta v_R = K_{VR} \lambda^2 T^{1/2} \Delta \varepsilon / \nu (\mu_{CO_2} + 1.56 \mu_{H_2O}), \quad T \geq T_{KR} \quad (18)$$

$$= \infty, \quad T < T_{KR}; \quad v_R \stackrel{\Delta}{=} \sum \Delta v_R$$

Interpolation

$\bar{\xi} \stackrel{\Delta}{=} (1 - v_R) (\xi' - \xi) / (v_R' - v_R) + \xi$, where $\bar{\xi}$ is an average between

ξ values for the first v value given, $v_R \leq 1$ and the previous

$$H = (124675 \bar{\mu}_{CO} + 122891 \bar{\mu}_{H_2O}) / 387 (\bar{\lambda} - \bar{\mu}_{H_2O}); \quad \beta_p = (1 - \eta_i) \bar{w}_3 y \quad (20)$$

TABLE D.3 GASIFIER MODEL IB EQUATION NOMENCLATURE

English

a_i	= constant in empirical heat-capacity equation, kcal/kg mol $^{\circ}\text{K}$
A	= air-to-fuel ratio expressed as a fraction of that theoretically required to burn completely to CO_2 and H_2O with no O_2 , nor CO , nor H_2 , dimensionless
A_s	= heat transfer area of separator, m^2
b_i	= constant in empirical heat-capacity equation, kcal/kg mol $(^{\circ}\text{K})^2$
B_s	= heat loss factor for separator, kcal/sec mol O_2 $^{\circ}\text{K}$
c_i	= constant in empirical heat-capacity equation, kcal $^{\circ}\text{K}/\text{kg mol}$
C_p	= $a + bT + c/T^2$ = heat capacity, kcal/kg mol $^{\circ}\text{K}$
D_{po}	= diameter of newly formed char particle, m
$D_{\text{CO}_2 298}$	= diffusivity of CO_2 at 298°K , m^2/sec
h_s	= heat transfer coefficient from char to surroundings, kcal/sec m^2 $^{\circ}\text{K}$
h_T	= enthalpy of gas-solid mix at temperature, T , referred to elements at 298°K and calculated from heat capacities of components, kcal/kg mol O_2 in air feed
h_{IN}	= combined enthalpy of streams that produce gas-solid mix, referred to elements at 298°K , kcal/kg mol O_2 in air feed
h_{fi}	= enthalpy of formation at 298°K of i -th component of gas-solid mix, kcal/kg mol
$h_i(T)$	= enthalpy of i -th component at temperature, T , referred to elements at 298°K , kcal/kg mol
H	= heating value of make-gas, Btu/dscf
K_w	= equilibrium constant for water-gas shift reaction, dimensionless
K_{VR}	= rate constant characteristic of gasifier volume, $(^{\circ}\text{K})^{-1/2}$
N	= number of steps in numerical integrational over gasifier volume, dimensionless
N_{Sh}	= Sherwood number $\stackrel{\Delta}{=} k_g D_p/D$, where k_g is mass transfer coefficient, mols per sec m^2 per (mol/m^3) ; D_p is particle diameter, m ; D is diffusivity m^2/sec ; N_{Sh} is dimensionless

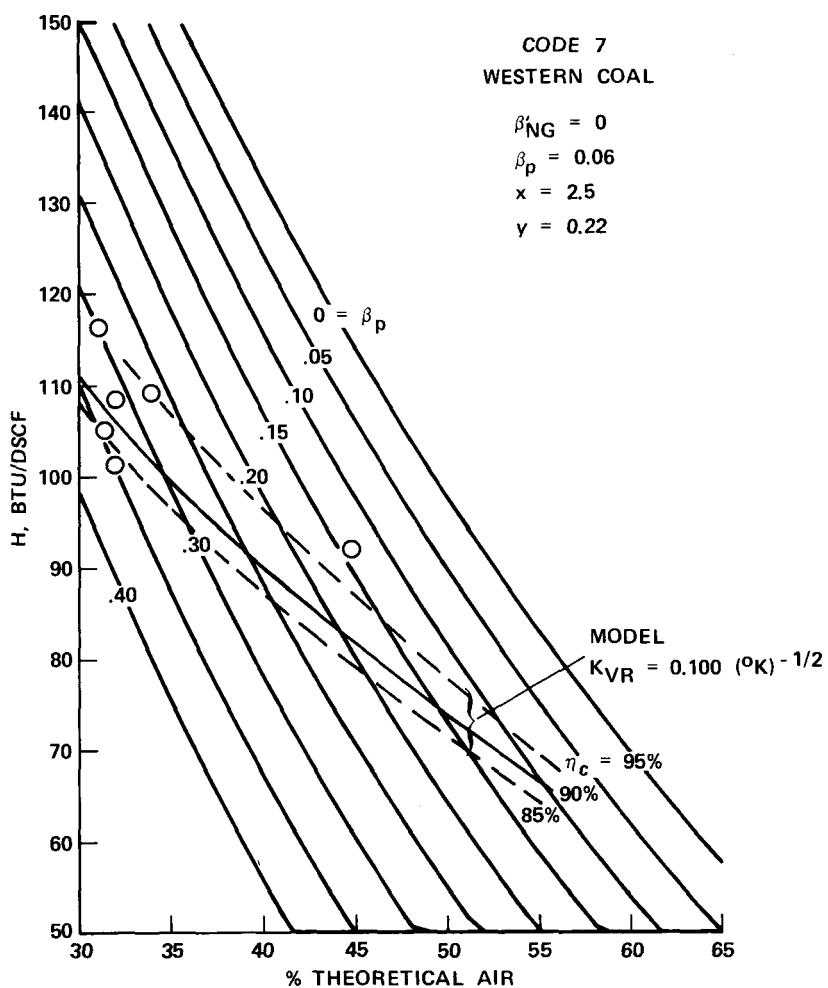
TABLE D.3 CONT'D

p	= partial pressure atmosphere
P	= total pressure, atmosphere
R_g	= universal gas constant, atmosphere $\text{m}^3/\text{kg mol } ^\circ\text{K}$
$S(v, \varepsilon)$	= relative volume of char, i.e., volume of char for given values of v and ε , per unit volume of char input from coal, dimensionless
T	= temperature, $^\circ\text{K}$
T_{KR}	= critical temperature below which chemical kinetic rate is no longer much larger than diffusion rate and reaction rate (for practical purposes) stops, $^\circ\text{K}$
v_R	= relative gasifier volume up to point under consideration, i.e. gasifier (reactor) volume divided by total actual gasifier volume, v_R , dimensionless
V_R	= gasifier (reactor) volume (exclusive of combustion volume below coal feed point), m^3
w	= oxygen in coal, atoms oxygen per atom carbon
w'	= oxygen in volatile, atoms oxygen per atom carbon
w_A	= air feed rate, kg/sec
y	= hydrogen in char, atoms H per atom C
Y	= amount of char produced by coal, mols char as CH_Y per mol coal as $\text{CH}_{z/w}$
z	= amount of hydrogen in fuel, atoms H per atom C
z'	= amount of hydrogen in volatile, atoms H per atom C

Greek

α	= elemental concentration in gas at a given point, kg atoms/kg mol O_2 in air feed
β	= a constant appearing in the solution of the water-gas-shift equilibrium, kg atoms/kg mol O_2 in air feed
β_p	= char output expressed as atoms carbon per atom carbon input in coal, dimensionless
β_s	= a heat-loss parameter appearing in the solution of the char-cooling problem, dimensionless

TABLE D.3 CONT'D


γ	= a constant appearing in the solution of the water-gas-shift equilibrium, (kg atoms/kg mol O_2 in air feed) ²
ϵ	= relative amount of char particle area removed between point of first appearance of char particle, point (2), and a given point in the reactor. That is, ϵ is the amount of area removed divided by the total amount of area removed per pass, where the number of passes is ν . ϵ is dimensionless.
ϵ_3	= the value of ϵ at station (3), dimensionless
$\Delta\epsilon$	= the change in ϵ per unit computational increment, dimensionless
η_c	= separator efficiency, dimensionless
λ	= total gas flow, kg mols/kg mol O_2 in air feed
μ, μ_i	= flow of a given component such as CO_2 , CO , H_2O , H_2 , N_2 , char, kg mols/kg mol O_2 in air feed
μ_0	= value of μ at station (0), kg mols/kg mol O_2 in air feed
ν	= number of passes a char particle makes before it is completely consumed (assuming it does not escape through the separator), dimensionless
ξ	= an index variable used in summations or used to stand for several other variables that are manipulated in similar fashions
ξ'	= previous value of ξ
$\bar{\xi}$	= linearly interpolated value between current ξ and previous ξ'
ρ_{CH_Y}	= density of char, kg/m^3
τ_{O_2}	= mol ratio of oxygen in air feed to mols of coal feed, dimensionless
ω	= relative volume of char flowing, i.e., volume of char flow per unit volume of char input, dimensionless
ω_3	= relative volume of char flowing at station (3), dimensionless
$\Delta\omega_{01}$	= relative volume of char consumed in combustor, dimensionless
$\Delta\omega_{2+}$	= relative volume of char consumed between point (2) and arbitrary point in reactor between (2) and (3), dimensionless

Subscripts

C, O, H, N = pertaining to carbon, oxygen, hydrogen, and nitrogen

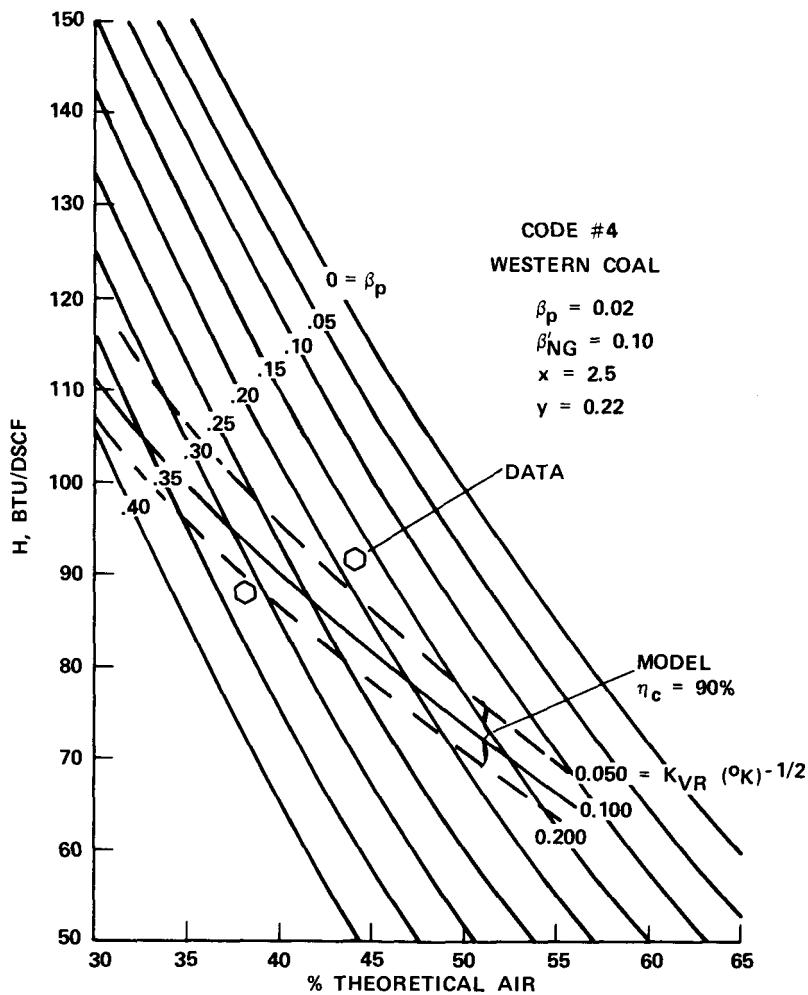
 CO_2 , CO , H_2O , H_2 , N_2 , Char, Coal = pertaining to these species

i = an index standing for the first six of the above

β_p = FRACTION OF TOTAL INPUT CARBON APPEARING AS CHAR IN GAS LEAVING CYCLONE SEPARATORS.

β_g = FRACTION OF THE TOTAL INPUT CARBON APPEARING AS HYDROCARBONS, CH_x , IN STREAM LEAVING SYSTEM. THE VALUE OF x IS APPROXIMATELY 2.5.

β'_{NG} = NATURAL GAS (METHANE) FEED RATE EXPRESSED AS kg OF METHANE PER kg OF AS-FIRED COAL, DIMENSIONLESS.


x = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE HYDROCARBON GAS MIXTURE COMPOSED OF CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , ETC. IN THE MAKE GAS, DIMENSIONLESS.

y = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE CHAR, DIMENSIONLESS.

η_c = CYCLONE SEPARATOR EFFICIENCY, DIMENSIONLESS.

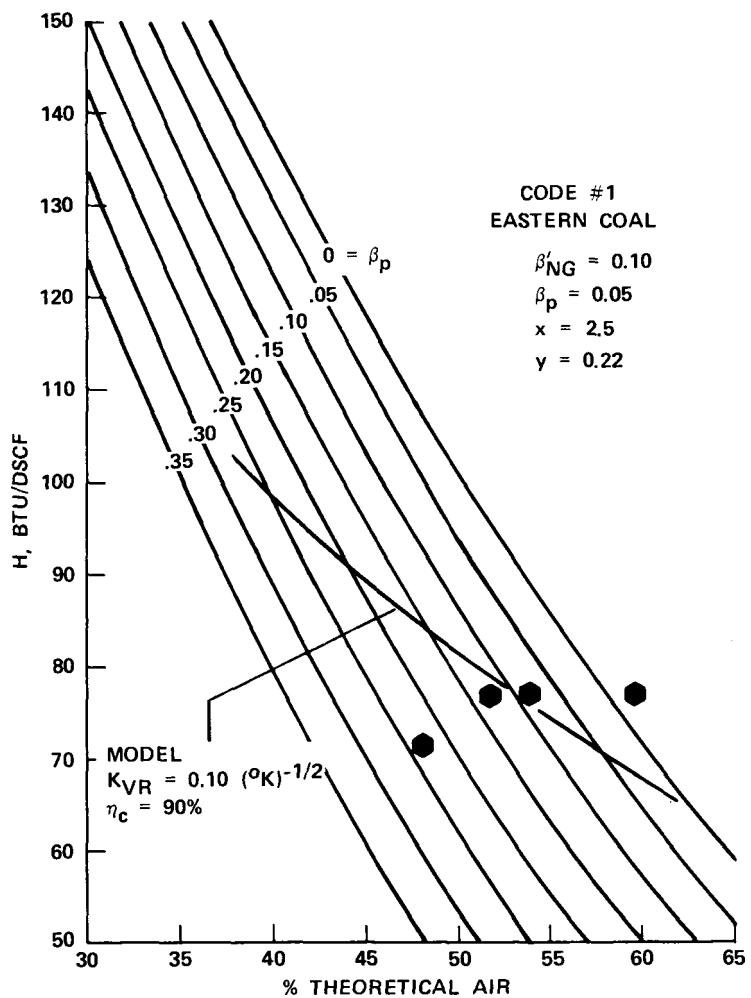
K_{VR} = RATE CONSTANT CHARACTERISTIC OF GASIFIER VOLUME, $({}^\circ\text{K})^{-1/2}$.

FIGURE D.2 DATA OF CODE 7

β_p = FRACTION OF TOTAL INPUT CARBON APPEARING AS CHAR IN GAS LEAVING CYCLONE SEPARATORS.

β_g = FRACTION OF THE TOTAL INPUT CARBON APPEARING AS HYDROCARBONS, CH_x , IN STREAM LEAVING SYSTEM. THE VALUE OF x IS APPROXIMATELY 2.5.

β'_{NG} = NATURAL GAS (METHANE) FEED RATE EXPRESSED AS kg OF METHANE PER kg OF AS-FIRED COAL, DIMENSIONLESS.


x = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE HYDROCARBON GAS MIXTURE COMPOSED OF CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , ETC. IN THE MAKE GAS, DIMENSIONLESS.

y = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE CHAR, DIMENSIONLESS.

η_c = CYCLONE SEPARATOR EFFICIENCY, DIMENSIONLESS.

K_{VR} = RATE CONSTANT CHARACTERISTIC OF GASIFIER VOLUME, $(0K)^{-1/2}$.

FIGURE D.3 DATA OF CODE 4

β_p = FRACTION OF TOTAL INPUT CARBON APPEARING AS CHAR IN GAS LEAVING CYCLONE SEPARATORS.

β_g = FRACTION OF THE TOTAL INPUT CARBON APPEARING AS HYDROCARBONS, CH_x , IN STREAM LEAVING SYSTEM. THE VALUE OF x IS APPROXIMATELY 2.5.

β'_{NG} = NATURAL GAS (METHANE) FEED RATE EXPRESSED AS kg OF METHANE PER kg OF AS-FIRED COAL, DIMENSIONLESS.

X = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE HYDROCARBON GAS MIXTURE COMPOSED OF CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , ETC. IN THE MAKE GAS, DIMENSIONLESS.

Y = RATIO OF ATOMS OF HYDROGEN PER ATOM OF CARBON IN THE CHAR, DIMENSIONLESS.

η_c = CYCLONE SEPARATOR EFFICIENCY, DIMENSIONLESS.

K_{VR} = RATE CONSTANT CHARACTERISTIC OF GASIFIER VOLUME, $({}^{\circ}\text{K})^{-1/2}$.

FIGURE D.4 DATA OF CODE 1

APPENDIX E

SUMMARY OF MATERIAL AND ENERGY BALANCES FOR
DETERMINING THE TEMPERATURE AND COMPOSITION OF
THE INTERNAL FLUID IN THE THERMAL MODEL

Note: The figures and tables of this appendix assume the apparatus consists of the six components: combustor, gasifier, crossover duct, second combustor devolatilizer, and cyclones. The fact that the complete model contains two additional components, gasifier top and devolatilizer top, required that the equations be modified slightly in translation from the present algebraic form to the FORTRAN program. However, the sense of the present equations was preserved as described in the body of the report.

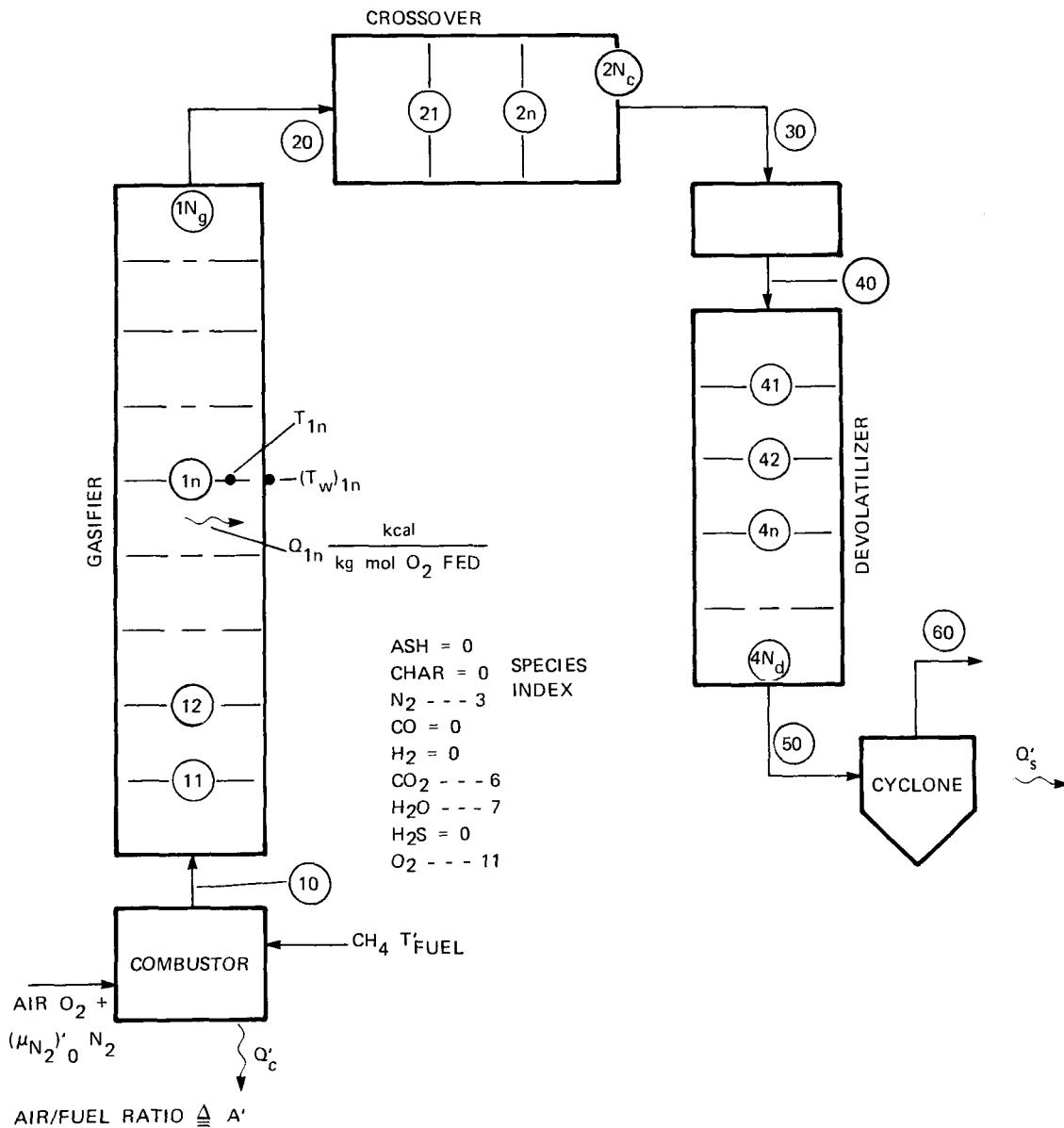


FIGURE E.1 GAS FLOW DIAGRAM AND NOMENCLATURE - NATURAL GAS FIRING

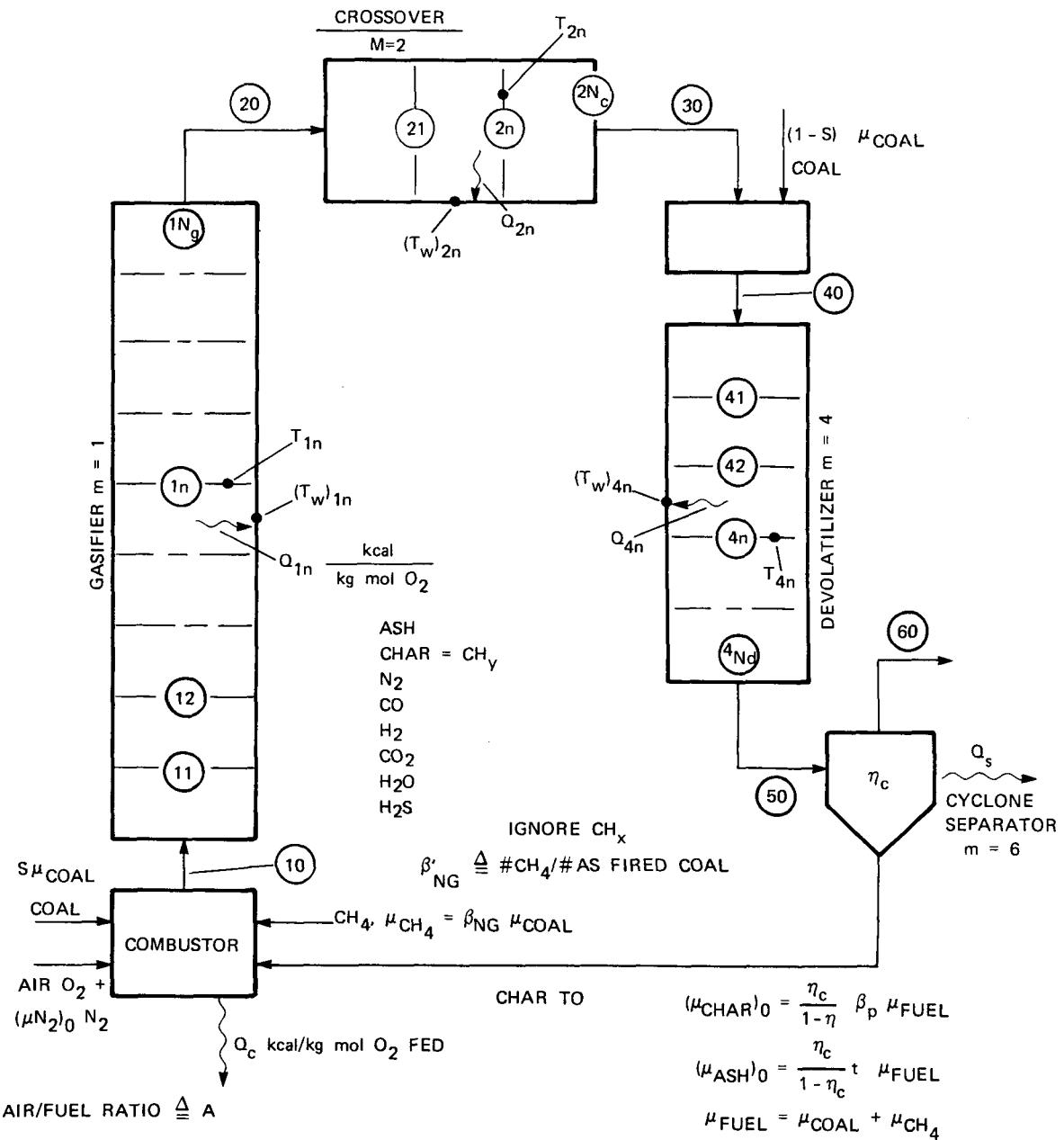


FIGURE E.2 GAS FLOW DIAGRAM AND NOMENCLATURE – COAL FIRING

TABLE E.1 BASIC EQUATIONS FOR NATURAL GAS FIRING
Preliminary Calculations

$$(\mu_{N_2})_{10} = (\mu_{N_2})_0 ; \quad (\mu_{CO_2})_{10} = \frac{1}{2A} \quad (1)$$

$$(\mu_{H_2O})_{10} = \frac{1}{A} ; \quad (\mu_{O_2})_{10} = (1 - \frac{1}{A}) \quad (2)$$

10

$$g_{10} = h_{O_2}(T'_{air}) + (\mu_{N_2})_0 h_{N_2}(T'_{air}) + \frac{1}{2A} h_{CH_4}(T'_{fuel}) - Q_c \quad (3)$$

$f'(T_{mn})$

$$\begin{aligned} f'(T_{mn}) &\stackrel{\Delta}{=} (\mu_{N_2}) h_{N_2}(T_{mn}) + (\mu_{CO_2}) h_{CO_2}(T_{mn}) + (\mu_{H_2O}) h_{H_2O}(T_{mn}) \\ &+ (\mu_{O_2}) h_{O_2}(T_{mn}) - g_{mn} \end{aligned} \quad (4)$$

$g's$

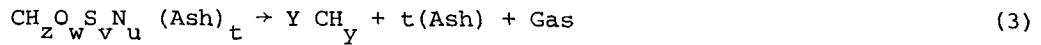
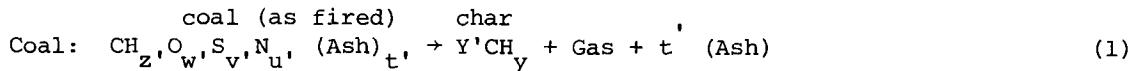
$$g_{1n} = g_{1,n-1} - Q_{1,n} \quad (5)$$

$$g_{20} = g_{1N_g} ; \quad g_{2n} = g_{2,n-1} - Q_{2n} \quad (6)$$

$$g_{40} = g_{2N_c} ; \quad g_{4n} = g_{4,n-1} - Q_{4n} \quad (7)$$

$$g_{50} = g_{4,N_d} \quad (8)$$

$$g_{60} = g_{50} - Q_s$$



All Stations

$$(\mu_{N_2}) = (\mu_{N_2})'_o ; (\mu_{CO_2}) = (\mu_{CO_2})_{10} ; (\mu_{H_2O}) = (\mu_{H_2O})_{10} \quad (10)$$

$$(\mu_{O_2}) = (\mu_{O_2})_{10} \quad (11)$$

TABLE E.2 BASIC EQUATIONS FOR COAL FIRING

Preliminary Calculations

$$\beta_{NG} = \beta'_{NG} \frac{(12.01 + 1.008z' + 16w' + 32.06v' + 14.01u' + t')}{16.042} \quad (4)$$

$$t \triangleq t' / (1 + \beta_{NG}) ; \mu \triangleq u' / (1 + \beta_{NG}) ; v \triangleq v' / (1 + \beta_{NG}) ; \quad (5)$$

$$w \triangleq w' / (1 + \beta_{NG}) ; z \triangleq (z' + 4 \beta_{NG}) / (1 + \beta_{NG}) ; y \triangleq y' / (1 + \beta_{NG}) \quad (6)$$

$$\tau_{O_2} \triangleq A (1 + \frac{z}{4} + v - \frac{w}{2}) ; \mu_{coal} = \frac{1}{\tau_{O_2} (1 + \beta_{NG})} ; \mu_{CH_4} = \frac{\beta_{NG}}{\tau_{O_2} (1 + \beta_{NG})} \quad (7)$$

$$(\mu_{char})_0 = \frac{\eta_c}{(1 - \eta_c)} \frac{\beta_p}{\tau_{O_2}} ; (\mu_{ash})_0 = \frac{\eta_c t}{(1 - \eta_c) \tau_{O_2}} \quad (8)$$

$$\Delta_{12} = - \mu_{coal} [y' - \beta_p (1 + \beta_{NG})] + 4 / (4 + y) \quad (9)$$

f(T)

$$h_i(T) \triangleq a_i (T - 298) + \frac{b_i}{2} (T^2 - 298^2) - c_i (\frac{1}{T} - \frac{1}{298}) + h_{f_i} \quad (10)$$

$$f(T) \triangleq \left[\sum_{i=1}^8 \mu_i h_i(T) \right] - g, \quad i = \text{ash, char, } N_2, \text{ CO, } H_2, \text{ CO}_2, \text{ H}_2O, \text{ H}_2S \quad (11)$$

At 10

$$g_{10} = -Q_c + h_{O_2}^{(T_{air})} + (\mu_{N_2})_0 h_{N_2}^{(T_{air})} + s \mu_{coal} h_{coal}^{(T_{fuel})} + \mu_{CH_4} h_{CH_4}^{(T_{fuel})} + (\mu_{char})_0 h_{char}^{(T_c)} + (\mu_{ash})_0 h_{ash}^{(T_0)} \quad (12)$$

$$(\mu_{ash})_{10} = (\mu_{ash})_0 + s \mu_{coal} t' ; \quad (\mu_{char})_{10} = (\mu_{char})_0 + s \mu_{coal} \\ y' = \frac{4}{4 + y} \quad (13)$$

$$(\alpha_c')_{10} = \frac{4}{4 + y} + s \mu_{coal} (1 - y') + \mu_{CH_4} ; \quad (\alpha_0)_{10} = 2 + s \mu_{coal} w' \quad (14)$$

$$(\alpha_H')_{10} = \frac{4y}{4 + y} + s \mu_{coal} (z' - y'y) - 2(\alpha_s)_{10} + 4\mu_{CH_4} ; \quad (\alpha_s)_{10} = s \mu_{coal} v' \quad (15)$$

$$(\alpha_{N_2}')_{10} = 2(\mu_{N_2})_0 + s \mu_{coal} u' \quad (16)$$

ln

$$g_{ln} = g_{1,n-1} - Q_{ln} ; \quad (\alpha_H')_{ln} = (\alpha_H')_{10} - ny \Delta_{12}/N_g ; \quad (\alpha_c')_{ln} = (\alpha_c')_{10} - \frac{n \Delta_{12}}{N_g} \quad (17)$$

$$(\alpha_N)_{ln} = (\alpha_N)_{10} ; \quad (\alpha_s)_{ln} = (\alpha_s)_{10} ; \quad (\alpha_0)_{ln} = (\alpha_0)_{10} \quad (18)$$

$$(\mu_{ash})_{ln} = (\mu_{ash})_{10} ; \quad (\mu_{char})_{ln} = (\mu_{char})_{10} + n \Delta_{12}/N_g \quad (19)$$

$$n = 1, 2, \dots n \dots N_g \quad (20)$$

WATER GAS SHIFT

$$\beta \stackrel{\Delta}{=} K_w (\frac{1}{2} \alpha_H' + \alpha_C') - (K_w - 1) \alpha_0 ; \quad \gamma \stackrel{\Delta}{=} 4\alpha_C' (\alpha_0 - \alpha_C') \\ (K_w \stackrel{\Delta}{=} P_{CO} P_{H_2O} / P_{CO_2} P_{H_2}) \quad (21)$$

$$\mu_{CO_2} = -\beta + \left[\sqrt{\beta^2 + (K_w - 1) \gamma} \right] / 2(K_w - 1); \quad K_w \neq 1 \quad (22)$$

$$= \gamma/4\beta, \quad K_w = 1, \quad \text{i.e.} \quad |K_w - 1| < 0.01 \quad (23)$$

$$\mu_{CO} = \alpha'_C - \mu_{CO_2}; \quad \mu_{H_2O} = \alpha'_O - \alpha'_C - \mu_{CO_2}; \quad \mu_{N_2} = \frac{1}{2}\alpha'_N \quad (24)$$

$$\mu_{H_2} = \frac{1}{2}\alpha'_H - \mu_{H_2O}; \quad \mu_{H_2S} = \alpha'_S \quad (25)$$

2n

$$T_{20} = T_{1N_g}; \quad g_{20} = g_{1N_g}; \quad (\mu_i)_{20} = (\mu_i)_{1N_g}; \quad i = 1, \dots, 8 \quad (26)$$

$$(\alpha'_C)_{2n} = (\alpha'_C)_{1N_g}; \quad (\alpha'_H)_{2n} = (\alpha'_H)_{1N_g}; \quad (\alpha'_O)_{2n} = (\alpha'_O)_{1N_g} \quad (27)$$

$$(\alpha'_N)_{2n} = (\alpha'_N)_{1N_g}; \quad (\alpha'_S)_{2n} = (\alpha'_S)_{1N_g} \quad (28)$$

$$g_{2n} = g_{2,n-1} - Q_{2n}; \quad n = 1, 2, \dots, N_c \quad (29)$$

40

$$(\alpha'_C)_{40} = (1 + \beta_{NG}) \mu_{coal} (1 - \beta_p); \quad (\alpha'_O)_{40} = 2 + \mu_{coal} w' \quad (30)$$

$$(\alpha'_H)_{40} = \mu_{coal} \left[z' - 2v' + 4\beta_{NG} - (1 + \beta_{NG}) y\beta_p \right] \quad (31)$$

$$(\alpha'_N)_{40} = 2(\mu_{N_2})_0 + \mu_{coal} u'; \quad (\alpha'_S)_{40} = \mu_{coal} v' \quad (32)$$

$$(\mu_{char})_{40} = \beta_p / (1 - n_c) \tau_{O_2}; \quad (\mu_{ash})_{40} = \mu_{coal} t' / (1 - n_c) \quad (33)$$

$$g_{40} = g_{2N_c} + (1 - s) \mu_{coal} h_{coal}(T_{fuel}) \quad (34)$$

4n

$$(\alpha'_c)_{4n} = (\alpha'_c)_{40} ; (\alpha'_H)_{4n} = (\alpha'_H)_{40} ; (\alpha'_N)_{4n} = (\alpha'_N)_{40} \quad (35)$$

$$(\alpha_S)_{4n} = (\alpha_S)_{40} ; (\alpha_O)_{4n} = (\alpha_O)_{40} ; (\mu_{char})_{4n} = (\mu_{char})_{40} \quad (36)$$

$$(\mu_{ash})_{4n} = (\mu_{ash})_{40} ; g_{4n} = g_{4,n-1} - Q_{4n} \quad (37)$$

$$n = 1, 2 \dots N_d \quad (38)$$

60

$$(\mu_i)_{60} = (\mu_i)_{4N_d} , i = 1 \dots 8 ; g_{60} = g_{4N_d} - Q_s \quad (39)$$

NOMENCLATURE

English

A = ratio of actual air flow to that required to burn the total fuel (including CH_4 , if any) to CO_2 (g), H_2O (l), SO_2 (g), N_2 (g), and ash with no O_2 (g) or CO (g) in the mixture, dimensionless

a = constant in heat capacity equation, kcal/kg mol $^{\circ}\text{K}$

b = constant in heat capacity equation, kcal/kg mol $(^{\circ}\text{K})^2$

c = constant in heat capacity equation, $C_p = a + bT + c/T^2$, kcal $^{\circ}\text{K}/\text{kg mol}$

$f(T)$ = enthalpy error between enthalpy out in a given stream and enthalpy in by all other streams, kcal

h = molal enthalpy referred to the elements in their normal state as 298°K , kcal/kg mol

h_f = heat of formation, kcal/kg mol

K_w = equilibrium constant for water gas shift reaction, dimensionless

Q = heat loss, kcal/mol O_2 fed in air

S = fraction of coal fed to gasifier, dimensionless

T = stream temperature, $^{\circ}\text{K}$

t = ratio, kilograms of ash to kilogram atoms of carbon in "fuel" ("fuel" is coal plus methane, if any), kg/kg atom

t' = ratio, kilograms of ash to kg atoms of carbon in coal, kg/kg atom

u = ratio, atoms of nitrogen in "fuel" to atoms of carbon in fuel, dimensionless

u' = ratio, atoms of nitrogen in coal to atoms of carbon in coal, dimensionless

v, w, z = ratios similar to u, but for sulfur, oxygen, and hydrogen, respectively, dimensionless

v', w', z' = ratios similar to u' , but for sulfur, oxygen, and hydrogen, respectively, dimensionless

x = ratio, atoms of hydrogen per atom of carbon in the hydrocarbon gas mixture composed of CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , etc. in the make gas, dimensionless

y = ratio of atoms of hydrogen per atom of carbon in the char, dimensionless

Y = mols of char formed per mol of "fuel" (A mol of fuel is $CH_zO_wS_vN_uAsh_t$), dimensionless

Y' = mols of char formed per mol of coal (A mol of coal is $CH_zO_wS_vN_uAsh_t$), dimensionless

Greek

α = amount of atoms of a given kind in a given stream, kg atoms/kg O_2 fed as air

α'_c = amount of carbon atoms in a given stream exclusive of those in char (measured by β_p) and hydrocarbons (measured by β_g), kg atoms/kg mols O_2 fed as air

α'_H = amount of hydrocarbon atoms in a given stream exclusive of those in char, hydrocarbons, and H_2S , kg atoms/kg mol O_2 fed as air

β_p = fraction of total input carbon appearing as char in stream (6), dimensionless

β_{NG} = methane feed rate expressed as mols of methane per mol of coal, dimensionless

β'_{NG} = methane feed rate expressed as kg of methane per kg as-fired coal, dimensionless

γ = a constant defined in equation 21

η_c = overall efficiency of particulate collector (both cyclones in series taken together as a single device), dimensionless

λ = dry gas flow rate, mols dry gas per mol O_2 fed as air
 μ = molecular flow rates of individual species, kg mols/kg mol O_2 fed as air
 μ_{coal} = total input rate of as-fired coal, mols/mol O_2 fed as air
 μ_{CH_4} = input rate of CH_4 , mols/mol O_2 fed in as air
 $(\mu_{\text{N}_2})_O$ = input rate of atmospheric nitrogen, mols/mol O_2 in as air.
 $(\mu_{\text{N}_2})_O = 3.76$ in ordinary air
 τ_{O_2} = oxygen requirement to completely burn one mol of "fuel," mols O_2 /mol fuel
 Δ_{12} = increment of char flow through the gasifier, mols char per mol of O_2 fed as air - a negative number if char is gasified by CO_2 or H_2O

Subscripts

$i, l, 1, 2, 3, \text{etc}$ = subscript denoting chemical "specie", e.g., char, ash, N_2 , CO , H_2 , CO_2 , H_2O , H_2S , CH_x

$1, 2, 3, 4$ = where specie is denoted by chemical subscript, numerical subscript denotes stream number

Air, Fuel = pertaining to feed streams

c,g,d,s = combustor, gasifier, devolatilizer, separator, respectively

C,O,H,N,S = pertaining to the elements carbon, oxygen, hydrogen, nitrogen, and sulfur, respectively

Appendix F

MATERIAL AND CHEMICAL SPECIES PROPERTIES
AND HEAT TRANSFER COEFFICIENTSTABLE F.1 TABLE OF ACTUAL AND ADJUSTED MATERIAL DENSITIES
(REFS. F.9, F.10, F.11)

<u>Location</u>	<u>Material</u>	<u>Actual Density, kg/m³</u>	<u>Adjusted Density, kg/m³</u>
Gasifier Bottom	Silicon Carbide	2563.2	
	Kaotab CS Castable	2658.7	
	K-28 Firebrick	768.8	
	50/50 mix of Kaotab Cs and Crushed K-28 Firebrick	1714.0	
	K-23 Firebrick	496.5	
	K-3000 Firebrick	929.2	
	Carbon Steel	7689.6	
	Kaowool	96.1	
Top of Gasifier	Kaocast Castable	2018.0	2997.7
	Carbon Steel	7689.6	14418.0

TABLE F.1 CONT'D

<u>Location</u>	<u>Material</u>	<u>Actual Density, kg/m³</u>	<u>Adjusted Density kg/m³</u>
Top of Crossover	Kaocast Castable	2018.0	4708.8
	Carbon Steel	7689.6	222171.7
Bottom of Crossover	K-28 Firebrick	768.8	1624.4
	Kaocast Castable	2018.0	7846.6
Top of Devolatilizer	Carbon Steel	7689.6	34843.5
	Kaocast Castable	2018.0	2659.3
Bottom of Devolatilizer	Carbon Steel	7689.6	20633.8
	Kaocast Castable	2018.0	
	Carbon Steel	7689.6	

TABLE F.2 MATERIAL CONDUCTIVITY EQUATIONS
(REFS. F.8, F.9, F.10, F.11)Units: $\frac{\text{KCAL}}{\text{hr} \cdot {}^\circ\text{K} \cdot \text{M}}$

Silicon Carbide	$k = 11.46999 + 2.284821 \times 10^{-3} T - 5.02232 \times 10^{-7} T^2$
Kaotab CS	$k = 4.962047 - 4.276949 \times 10^{-3} T - 1.294516 \times 10^{-6} T^2$
K-28 Firebrick	$k = 0.1790266 + 3.72752418 \times 10^{-5} T + 8.9717814 \times 10^{-8} T^2$
K-23 Firebrick	$k = 0.077187126 + 9.0657337 \times 10^{-5} T + 1.9578549 \times 10^{-8} T^2$
K-3000 Firebrick	$k = 0.2836668 - 1.1380847 \times 10^{-4} T + 1.6013019 \times 10^{-7} T^2$
Kaocast	$k = 1.3026305 - 1.0754459 \times 10^{-3} T + 5.296965 \times 10^{-7} T^2$
Kaowool	$k = 0.977500$
Carbon Steel	$k = 44.60$

TABLE F.3 MATERIAL HEAT CAPACITY EQUATIONS
(REFS. F.8, F.9, F.11)

Units: $\frac{\text{KCAL}}{\text{kg} \cdot {}^\circ\text{K}}$

Silicon Carbide $C_p = 0.285$ - not a function of temperature

Carbon Steel $C_p = 0.107$ - not a function of temperature

All refractories
castable and
firebrick $C_p = 0.155861 + 1.184536 \times 10^{-4} T - 3.13417 \times 10^{-8} T^2$
(for T in ${}^\circ\text{K}$)

TABLE F.4 HEAT CAPACITIES, ENTHALPYS, AND HEATS OF FORMATION
FOR PROCESS SPECIES

Units: $\frac{\text{KCAL}}{\text{kg mol}}$ for T in ${}^\circ\text{K}$

$$C_{Pi} = a_i + b_i T + c_i / T^2$$

$$h_i = a_i(T-298) + b_i / 2(T^2 - 298^2) - c_i \left(\frac{1}{T} - \frac{1}{298} \right) + h_f$$

	Species	<u>a_i</u>	<u>b_i</u>	<u>c_i</u>	<u>h_f</u>
1	Ash	0.189	0.000081	0	0
2	Char	2.23	0.00291	0	0
3	N_2	6.66	0.00102	0	0
4	CO	6.79	0.00098	-1100	-26416
5	H_2	6.52	0.00078	1200	0
6	CO_2	10.55	0.00216	-204,000	-94,052
7	H_2O	7.17	0.00256	800	-57,798
8	H_2S	7.02	0.00368	0	-4815
9	Coal	5.13	0	0	*
10	CH_4	8.5	0	0	-17,889
11	O_2	7.16	0.001	-4000	0

*Eastern coal -4923, Western coal -19930

TABLE F.5 COEFFICIENTS FOR CALCULATION OF VISCOSITY; CONDUCTIVITY
AND MOLECULAR WEIGHT (REFS. F.3, F.5)

Specie i	N ₂ 3	CO 4	H ₂ 5	CO ₂ 6	H ₂ O 7	H ₂ S 8	O ₂ 11
d _i	1.38 x 10 ⁻³	1.35 x 10 ⁻³	7.46 x 10 ⁻⁴	1.51 x 10 ⁻³	1.60 x 10 ⁻³	1.58 x 10 ⁻³	1.67 x 10 ⁻³
s _i	102.38	88.93	176.13	206.48	510.54	332.00	116.40
k _i	.06702	.06850	.48417	.07287	.11527	.07233	.07323
p _i	.750	.776	.897	.870	1.444	.975	.704
m _i	28.01	28.01	2.016	44.01	18.02	34.08	32.00

TABLE F.6 COAL PROPERTIES

Analysis by Weight

#/# dry coal	Eastern	Western
C	0.727	0.694
H	0.051	0.047
N	0.010	0.009
Ash	0.105	0.078
S	0.032	0.004
O	0.075	0.188
H_2O (l)	<u>0.015</u>	<u>0.150</u>
Total	1.015	1.150
Fixed Carbon (CH_y)	0.489	0.511
Heating Value	13,100	11,830 Btu/# dry coal

Analysis by Atom Ratios

kg atoms/kg atom carbon	Eastern	Western
H , z'	0.863	1.095
N , w'	0.012	0.011
Ash, t'	1.735**	1.350**
S , v'	0.017	0.002
O , w'	0.091	0.347
CH_y , Y'	0.660	0.723
y	0.24*	0.22*
CH_x , β_g	0.06*	0.06*
x	2.5*	2.5*
h_f	-4923**	-19930**kcal/kg atom c

* Typical values found in these tests; individual runs may show slight variance

** Calculated assuming molecular weight of ash is unity and heat of formation is zero

F.1 CALCULATION OF HEAT TRANSFER COEFFICIENTS

INTERNAL WALLS

Coal Firing:

$$N_{RE} \triangleq 0.3537 \frac{\dot{w}}{\nu D}$$

$$N_{PR} \triangleq 3.6 \frac{\bar{C}_p \bar{v}}{\bar{k}}$$

$$N_{NU} = 0.023 (N_{RE})^{0.8} (N_{PR})^{0.4} \left\{ 1 + \left[\frac{D}{(N-0.5) L} \right]^{0.7} \right\} \quad (\text{Ref. F.1})$$

(N = index number of axial element, L = length of axial element)

Heat Transfer Coefficient For Convection

$$h_c = \frac{N_{NU} \bar{k}}{D}, \quad \frac{\text{KCAL}}{\text{M}^2 \cdot \text{HR} \cdot {}^\circ\text{K}}$$

Heat Transfer Coefficient For Radiation

$$h_r = 4.88 \times 10^{-8} \frac{\left[\frac{\bar{T}^4}{T} - (T_{wall} + 100)^4 \right]}{\left[\frac{\bar{T}}{T} - (T_{wall} + 100) \right]} \epsilon, \quad \frac{\text{KCAL}}{\text{M}^2 \cdot \text{HR} \cdot {}^\circ\text{K}}$$

(\bar{T} = average gas temp. over element, $\epsilon=1$ for coal firing)

Heat Flux Density to Internal Walls

$$q = \frac{\bar{T} - T_{wall}}{\frac{1}{h_c} + \frac{1}{h_r} + \text{Resistance of Char Layer}}$$

Heat Flux to Wall

$$Q = \frac{q \text{ (Area)}}{\dot{M}_{O_2}}, \frac{\text{KCAL}}{\text{Kg Mol } O_2}$$

Natural Gas Firing:

The equations for natural gas firing are identical to those for coal firing with the one exception of that for the HEAT TRANSFER COEFFICIENT FOR RADIATION. For coal firing the presence of a large amount of fine char would make the gas emissivity very nearly equal to unity, the value which we assumed. However, for natural gas firing at A/F ratios of 1 or greater very little char would result, therefore the gas emissivity was calculated. This calculation was based on the assumption that CO_2 and water vapor would be the main source of radiant energy. The fact that the emissivity varies as a function of temperature was taken into account by breaking the system up into three main temperature ranges. The calculation of the emissivity is shown below (Ref. F.2) :

$$\epsilon = e^{-(\gamma_m + \delta \bar{T})} + e^{-(\zeta_m + \eta_m \bar{T})} + \theta_m$$

	γ_m	δ_m	ζ_n	η_m	θ_m
Top and Bottom of Gasifier	1.57	2.72×10^{-4}	1.59	2.89×10^{-4}	-.04
Top and Bottom of Crossover Pipe	1.88	2.69×10^{-4}	1.31	2.73×10^{-4}	-.001
Top and Bottom of Devolatilizer	1.62	2.41×10^{-4}	1.76	6.41×10^{-4}	-.012

F.2 CALCULATION OF PHYSICAL PROPERTIES AND FLOW OF PROCESS SPECIES

Individual Species:

Viscosity (centipoise) $\nu_i = \frac{d_i \bar{T}^{3/2}}{(S_i + \bar{T})}$ where \bar{T} is the average temperature over an axial element (Ref. F.4, F.5)

$$\text{Conductivity} \left(\frac{\text{KCAL}}{\text{M} \cdot \text{HR} \cdot {}^\circ\text{K}} \right) k_i = \left(\frac{\bar{T}}{1200} \right)^{pi} k_{O_i} \quad (\text{Ref. F.3, F.6})$$

$$\text{Heat Capacity} \left(\frac{\text{KCAL}}{\text{kg} \cdot \text{mol} \cdot {}^\circ\text{K}} \right) C_{p_i} = a_i + b_i \bar{T} + \frac{c_i}{\bar{T}^2} \quad (\text{See Table E-2 for coefficients})$$

Gas Mixture:

$$\text{Viscosity (centipoise)} \bar{\nu} = \frac{\sum_{i=3}^8 \bar{\mu}_i v_i M_i^{1/2}}{\sum_{i=3}^8 \bar{\mu}_i M_i^{1/2}} \quad (\text{Ref. F.3})$$

$$\text{Conductivity} \left(\frac{\text{KCAL}}{\text{kg} \cdot \text{mol} \cdot {}^\circ\text{K}} \right) \bar{k} = \frac{\sum_{i=3}^8 \bar{\mu}_i k_i M_i^{1/3}}{\sum_{i=3}^8 \bar{\mu}_i M_i^{1/3}} \quad (\text{Ref. F.3})$$

$$\text{Heat Capacity} \left(\frac{\text{KCAL}}{\text{kg} \cdot \text{mol} \cdot {}^\circ\text{K}} \right) \bar{C}_p = \frac{\sum_{i=1}^8 \bar{\mu}_i C_{pi}}{\sum_{i=1}^8 \bar{\mu}_i M_i}$$

$$\text{Flowrate} \left(\frac{\text{kg}}{\text{hr}} \right) \dot{w} = \dot{M}_{O_2} \sum_{i=1}^8 \bar{\mu}_i M_i$$

where $\bar{\mu}_i$ is the flow of a given species such as CO, CO_2 , etc.,

$$\text{in } \frac{\text{kg mols}}{\text{kg mol } O_2 \text{ in air feed}}$$

M_i is the molecular weight of a species

\dot{M}_{O_2} flow rate of OXYGEN from AIR to system kg mols O_2/hr

F.3 REFERENCES

F.1 M. A. Feild, D. W. Gill, B. B. Morgan and P. G. W. Hawksley, "Combustion of Pulverized Coal," BCURA, Leutherheud, Surrey, England, 1967. (Also Institute of Fuel, 1974).

F.2 J. A. Weibelt, "Engineering Radiation Heat Transfer," Holt, Reinhart and Winston, New York, 1966.

F.3 J. C. Janka and R. Malhotra, "Estimation of Coal and Gas Properties, for Gasification Design Calculations," Inst. Gas Technology, Chicago, R&D Report No. 22, Interim Report No. 7, OCR Contract 14-01-0001-381, 1971.

F.4 R. C. Reid and T. K. Sherwood, "The Properties of Gases and Liquids," McGraw Hill Chemical Engineering Services, Second Edition, New York, 1966.

F.5 K. Raznjevic, "Handbook of Thermodynamic Tables and Charts," Hemisphere Publishing Co., Washington/London, 1976. (Also McGraw Hill, New York.)

F.6 N. V. Tsederberg, "Thermal Conductivity of Gases and Liquids," MIT Press, Cambridge, Mass., 1965.

F.7 C. A. Depeu and T. J. Kramer, "Heat Transfer to Flowing Gas-Solid Mixtures," Advances in Heat Transfer, Academic Press, New York, 1973.

F.8 F. H. Norton, "Refractories," Third Edition, McGraw Hill, New York, 1949.

F.9 Babcock & Wilcox Company, Refractories Division, Product Literature.

F.10 Carborundum Company, Refractories & Electronics Division, Product Literature.

F.11 J. H. Perry, "Chemical Engineers Handbook," Fourth Edition, McGraw Hill, New York.