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Tempora! evolution of lower hybrid waves in the presence
of ponderomotive density fluctuations

- Charies F. F. Kamney

Plasma Physics Laboratory, Princeton University,
Princeton, New Jersey 08544

‘The propagation of Tower hybrid waves in the presence of ponderamative density fluctuations is
considered. The problem is treated in two dimensions and, in order to be able to correctly impose
the houndary conditions, the waves are allowed 1o evolve in time. ‘The fields are described by
iv,— | vg d¢ + v+ |v[2v = 0 where v is proportional t the clectric field. 7 to time, and ¢ and §
measure distances across and along the lower hybrid ray. ‘The behaviar of the waves is investigated
aumerically. If the amplitude of the waves is large enc-ugh. the spectrum of the waves broadens
and their parallel wavelength becomes sherter. The assumptions made in the formulation preclude
the application of these results 1o the lower hybrid heating cxperiment on Alcator—A. Nevertheless,
there are indications that the physics cmbodicd in this problem are responsible for some of the
resulls of that experiment.

VAR MY T ey oy

Rt St dast e bl haanarr ik b st

]

CISCLAMER

Ths Luooh ik Bertiarad as 8 Tount Of wir s A0OMOHET by #1 iy BF the Lord S8
Férmitu it LOHOT Staret Government or any Mohoy 1aeaat 10! e, u* Ther =ON
WALy 2D, O mroiwg, or smaTer vy lwgel ity OF 1e0OM I
COmpieirin. o uMTuInER D BTy NIOMMON. J0OMINA, Podut
. (RAEmON (R 1 s WoukS ol hrings prpbrly et g4 Rctmerce

CIMREEN GOUCT. FOOS, OF WInCE Dy 11RO Mime Trademih mamalictiim




1. INTRODUCTION

The injection of rf power ncar the lower hybrid frequency is an attractive method for the auxiliary
heating of tokamak plasmas.’ Because of the high powers required (several MW) and because [ower
hybrid waves principally propagate along well-defined resonance cones,2 there has been considerable
interest in nonlincar effects an the propagation of lower hybrid waves. This problem was first addressed
by Morales and Lee® who studied the two-dimensiunal electrostatic propagation of one of the two lower
hybrid rays in a homogencous plasma. Althougl: this is perhaps the simplest model that can be con-
sidered, a correct treatment of this problem has yot to be made. It is this deficicacy that this paper
aticmpts to remedy.

Bricfly the difficulty of this problem arises as follows: if it is assumed that the f ficlds in the
plasma have rcached a steady state. ic.. that the patential is given hy @z, z} exp(—iwnt) (z and z are
coosdinates perpendicular and parallel to the ambicnt magnetic ficld By), then the clectric ficld obeys
the camplex modified Korteweg-deVrics cqlmlinn:ﬁ'7 This equation is mathcmatically well-posed when
solved s an initial value problem in one of the coordinates z, that is when ¢(z = 0,2) is given.
Unfortunately. this does not correspond to physically realizable boundary conditions since waves can
propagate in both the -~z and —z directions in a single ray.” ® When the correct boundary conditions
are imposed. there is numerical cvidence that solutions of the cemplex modified Korteweg-deVries
cquation need not exist and that this cquation is therefure ill-poscd.7 This is cunfirmed by our finding
soluttons inconsistent with the assumption of a steady state {see Scc. 1Y), The problem ariscs because
the direction of power flow which determines how to impose the houndary conditions is dcfined only
with reference to a problem in which a temporal evolution of the wave packet is allowed. In assuming a
steady state fur the electric ficld amplitude, the equatior no longer has built into it the crucial ingredient
which determines how the boundary conditions are imposed. This defect is corrected by including a
slow time dependence of the potential [so that the potential is given by é(z, 2, £} exp{—iuyt)]. This then
Ieads to a nonlincar partial differential equation in two spatial dimensions and time, which we will study
numerically in this paper.

In formulating this problem. v shall ignore many cfects which should possibly be included o
obtain a complete understanding of the propagation of lower hybrid waves. This will cnable us to study
the effect of the nonlincarity in as simple a system as possible. Fven so. the numerical solution of a
partial differential equation in two dimensions and time s time consuming and. as wc shall sce, the
behavior of the ficlds as described by this equation can be quite complicated. In the absence of any
analytical methods for solving this equation, we must therefore be content with the svlution for only a
few caces. This will cnable us o confirm the threshold for strong non linear cffects given in Ref. 7 and to
give a more complete description of the nature of these nonlineitr effects. Because of the approximations
made in formuLiting the prablem, we shall not be abic to apply these results-to the propagation of ower
hybrid waves near the edge of a tokamak plasma where nonlinear cffects are maost strong.  However,
there arc indications that the physical processes thal are considered in this paper do play a rolc in the
propagation in that region.

The plan of this paper is as follows: 1n Sec. Il we derive the partial differential equation gaverning
the temparal evolution of ¢. ‘The basic propertics of this equation will be discussed in Sec. Il In
particular, we will show how the right boundary conditions automatically drop eut from the equation.
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Since the cquation is analytically intractable, we resort to a numerical integration, the results of which
are given in Sce. IV, The threshold condition for a strog nonlinear interaction is derived in Sec. V. The
results are summarized and the consequences to lower hybrid heating of tokamaks are presented in Sec.
\Z8

IIl. FORMULATION OF THE PROBLEM

In this section, we derive the partial differential equation governing the evolution of the electric
ficld For onc of the lower hiybrid rays in two spatial dimensions and time. We assume that the fields
are electrostatic, that the plasma is homogencous, and that it is immersed m a uniform magnetic field.
‘The derivation closely follows that of the complex mudified Koreweg-deVrics eguation by Morales and
I ee;¥ the additional ingredient we consider is the slow time dependence of ¢.

‘The potential of the lower hybrid wave is tiken to have the form
Relg(z, z,£) exp(—iunt)]

whert the { dependence of ¢ is taken to be much slower than uy. Since we are only doing the two-
dimensional problem. we haved/8y = 0. In the electrostatic limit, ¢ obeys Poisson’s law

V- K(V,8/8, [V¢]%) - Vo = 0. m

Here we regard the dielectric tensor K as an operator through its arguments V and 8/8¢. The depend-
ence on | V|2 accounts for the nonlinearity. If the tomporal evolution of ¢ is sufficiently stow (compared
with iun acoustic time scales). then nonfincarities due to ponderomotive density changes can be written
in this way. Parametric instabilitics arc ¢xcluded from our consideration.

I the dependence of ¢ on z, 2. and ¢ is weak and if the ¢ iwsclf is small so that the nonlinearity is
weak, we may cxpand K to oblain :

K(V,8/3, |1V9|*) = K + }e % av 1YV

oK o
+ < sorana ﬂ,lw? +O0(e?). @

All the evaluations of K an the right hand side of Eq. (2) ase at the point V = 8/t = [V¢|? = 0, The
term involving 3K /87 is rero beeavre uf the symmetrics of a stationary plasma. We have introduced a
formal expansion parameter ¢ 1o aid in the ordering of terms. The fact that the last thiee terms in Eq. (2)
arc taken to be of order ¢ results a maximal ordering. I, in fact, onc of the terms i much smalter than
the others, a subsidiary ordering can be introduced to eliminate that term,

Since it is more usual w write K as o nomial function, rather than as an operator, we rewrite K as
K{k, w, ny where k is the Fourier-transform variable canjugate to space. « is tht conjugate to time, and
n is the plasma density. JA space-time dependence of exp{ik - 1 — fwt), where 1 = (z,2), is assumed.]
‘then *he derivatives in Fq, (2)become

&K &K K OK K M K
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In this casc, all the evaluations on the right hand sides are performed atk = 9, w == wy, and n = ny,
where ny is the unperturbed density of the plasma (i.c., in the absence of any electric fields),

We now write down Eq. (1) to various orders in ¢. To drder ¢®, we find
¥ - K0, un, n0) - Vo =0 3

where
K 0
K{0, wp, o =( - )
( ) 0 K

Assuming that Xy K is negative, Fq. (3) is kyperbolic and its solution is

¢=¢(s—g2)+é—(z+ @)

where g = (—K JK))'/2,

In general, both the right- and lefi-going rays will be present. However. if the source of the lower
hybrid rays is localized, the two rays will be separated far from the source and in that region we may
then treat cach ray in isolation. Similarly, only a singfc ray will be present if the source is adjusted so
that only that ray is excited. We may therefore assume that, 1o zeroth order, only the right-going ray is
present. i.c.. ¢_ = 0. To ordere’, we write ¢ = ¢{et’,ex’, 2V where ! = t, 2 = z, 2 = ¢z — o2, and
8 = (14 g¢%~'/% ¢ = ga. We shauld think of =’ and 2’ as measuring distances along and across the
lower hybrid ray. Substituting this form of ¢ into Eq. (1), we obtain to order ¢!
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where E = 8¢/8 is the electric field measured in the direction normal to the lower hybrid ray, A, B,
C, and D are real cocfficients given by

A=£-‘;d—"-i, B =12K,,
1p2 &K an 1 on
C—-—Ekk,ﬁ.kk, D——;W,

and k is the unit vector (—a,¢).

These expressions may be cvaluated using the cxpression for K for a stationary Maxwellian
plasma.? Usually the frequency of the incident rf power satisfies Q2 < w <« 02 where () is the
cyclotron frequency of species § (7 = i or e for ions or electrons). 1n that case, the components of the

zeroth-order diclectric tensor may be written
2 2 2 2
[ wo w, ws.
K, =1+ -E Ky=1—-2X__"2
LT mTe VT T

where w, is the plasma frequency for species j with density ng. The coefficients in Fg. (4) become
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C=3— +Z o — 8 + 3¢ ,
Wo (3 wghle '-"3
1 €0

D=1y

where v}; = T;/m;, T; is the temperature of species 7. and & is the dielectric constant of free space.
In writing the cxpression for D, we have used the formula for the density depression due to the pon-
deromative furce. 1% 1 Note that € is always positive. The fact that C and D have the same signs has
an important effect on the propagation of the lower hybrid waves.

We now rescale the variables in Eq. (4):

¢=1/(BVC), r=t|A, ¢=2/vVC, v=+DE. 0]

‘The equation for v is then
¢
v, — [ veds + v + oo =0 (6a)
—_—
«here subscripted Greek Jetiers denote differentiation. When integrating Fq. (4) to give Fq. (6a), we
assume that v and all its derivatives afe zero at ¢ = —oo (i.e., far from the ray). The accessibility
condition'? imposes an auxiliary condition on v namely
{= ]
/ vdg =0, (6b)
—oo

in other words, the clectric potential is egual at ¢ = J-oo. Eguation (6) describes the evolution of the
clectric ficld of a single lower hybrid ray in two dimensions and time under the influence of thermal
dispersion and nonlincar ponderomotive effects. Fquation (6a} is the same as Eq. (50) of Ref. 7 if the
replacementsy —» v°.0 - 1.7 — §.and £ — —¢ are made to the latter equation.

In order to give some appreciation of the scaling of the variables in Eg. (5), we give more explicit
forms for them in the limit w2, € wj < Ww?, € 02 and T; < T (these may be the conditions
applicable as the lower hybrid wave propagates through the fow density part of a wkamak plasma).
Equation (5) then becomes

z unt gz —z o Y/?
£€= y TE o, (=, v=(———) E m
2\/§hg¢ 2 \/éhuz AneT. !

where Ay, = ¢/, is the Debye length and g = wp/tatpe.




1. BASIC PROPERTIFS OF THE FQUATION

Equation (6) s invariant under the scaling transformation
R A L TS A @®)

This invariancc allows us, for example, to normalize the scale length of the ray in the ¢ direction to unity.

If we set 8/8r = 0 in Fq. (6). we obtain, as cxpected, the complex modified Korteweg-
deVries equation as the equation obeyed by steady-state ficlds. §8/8¢ = 0, we obtain the nonlinear
Schroedinger equation, which is soluble by the inverse scaticring wethod.? Unfortunately, not much
usc can be made of this fact because, as we shall see, the impesition of the correct boundary conditions
involves solving Eq. (6) in a finite domain in §.

For cuch of the four conservation laws obtained for the complex modificd Korteweg—deVries equa-
tion. these is a corresponding conservation law for Ey. (6). ‘These are given in Table 1. The sccond and
third of these faws are statements of the conscrvation of momenturn and cnergy respectively. We will
return Lo these shartly.

In order to determinc the correct boundary conditions for Eq. (6). we Fourier transform in <.

Defining the Fourier transform of v by
o0

V(E,u,7]=[_;v(ﬁ,g,f)exp(ming)dg

we obtain
V, 4 Ve + 0V +iN[V) =0, (92)
Vik=10)=0, (9b)
where ¢ = I/x. 1 = &2, and N(V) is the Fouricr transform of —|v|?v. This equatian is hyperbolic
in (7, £) space. However, the dircction of the characteristic velocity ¢ depends on k. This means that
we must specify boundary conditions at each end of a strip in §. More precisely, the full initial and
boundary conditions required for solving Eq. (9} in the domain

&<£<€ll —00 < § < %0 T 00

Vi< & <érm), Vitnn>07r>mn) Viés<0,7>n) 10

Taking the second and fourth conservalion Jaws in Table 1, intcgrating them over ¢ and €, and
ransforming them to x space, we obtain the laws of conservation of momentum and cnergy as they
apply 1o the domain of the problem :

E| oo 0o el
d =
o & /_w./l»dmdf-{- /_N'Idn 3 =0, (11
£=6
€ poo oo &
d _
ar & /_dendfi- ];w?dne=&-—l), (12)
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where Ab = k{V|? is the spectral momentum density. & = cb is the spectsal force density, 8 = V|2
is the spectral encrgy density, and @ = ¢8 is the speciral power density. The characteristic velocity ¢ is
the group velocity of the Tower hybrid waves. The boundary conditions given in Eg. (10) stipulate that
we should specify the waves entering the domain of the problem. but not those that leave this domain.

Given that we are treating a nonlincar problem, it may be a little surprising the boundary condi-
tions are applicd in the same way as for the corresponding lincar problem. The reason for this is that,
in deriving Fa. (6). we assumed that the nonlincas term was very simall. The expressions for the energy
densily, power density, eic, are therefore correctly given by Jincar theory. Although the nonlinearity
is smatl, it can have a finite cffect because the ordering also assumes that the length over which the
interaction takes place is large.

Notice that the nature of the equation has forced us to take boundary conditions which are in
20c0Td with physicat notions of power flow, ‘This hashappencd because we have the time variation in Fq,
(6). Il we cunsider the sicady-state cquation, the complex modified Korteweg-de Vries cquation, which is
obtained by setlingd/8r = 0 in Eq. (6)

v — vy — [jv)?0), = 0, 13

then we would clearly like to impose the same baundary conditions as for Eq. (6) namely Fq. (J0).
But the concept of power flow cannot be defined frum Eg. (13) and o there is no guarantee that the
boundary conditions given in Eq. (10) are sensible. Indeed., the cvidence of Ref. 7 suggests that Eq. (13)
s il)- poscd with these boundary conditiens. This can be so because, even if Kq. (6) is given steady-state
boundary conditions, i.e.,

Vit <£ <@mm— —oo) SVlos>0,7)= ZV(Ee <0,7)=0,

it is not necessarily the case that the solution to Fq. (6) approaches a sicady state.

As mentioned in Sec. 11, the ordering we wsed in deriving Fa. (6) was a maxima) ordering. We can
eliminate some of the terms in Eq. (6} using a subsidiary ordering. E.g.. the lincar limit is obtained by
letting & — & v and taking the Jimit § — 0. Similarly, the non-dispersive limi1 is obtained by letting
¢ — ¢/6, & — £/6 and apain taking the limit & — 0. Itis instructive (0 examine this case in more
detail because there are indications that if €, — £ is sufficiently large then the dispersive term must
be included, Cons;dcr the steady-state equation {13} without the dispersive 1erm v, Multiplying this
cquation by v* and adding the complex conjugate (these are the samic operations that lead to the second
conscrvation faw in 7ablc 1), we obtain

ug + uy = 0 (14

where v = 3[vf2. Since the boundary condiions involve arg v. Eqg, (14) should be supplemented by
another equation. However, this is nat so if we impase initial conditions u(€ = &, ¢). Asis well known,
the solution develops a shock at € = &, + 1/ maxfdu(€ = £, ¢)/d¢]. where Su/& is infinite. Before
this point is reached the ardering assymed for the independent variables, i.c., hat 8/ = O(@), breaks
down. Inclusion of the dispersive term pievents the shack from forming. Indeed. Eg. (13) when treated
as an initial value problem in £ is well-posed in an infinite domain in £. Although Fq. (6) with the corect
boundary conditions is different from Eaq. (13) with initial conditions, it is likely that Eq. (6) is also ill-
posed if the dispersive term is ignored and if the width of the domain in § js farge cnough.
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IV. NUMERICAL RESULTS

We investigate the solution te Eq. (6} by numericafly solving Eq. (9) with boundary and initial
conditions '

V0<g<f,7=0)=0, (15a)
V(€ =0,k > 0,7 > 0) = wrux — xols — Ko) exp[—§(x — xp)?), (15%)
V(e = b < 0,7 > 0) =0, (150)

where u is Lthe unit siep function, wy and Ko are real constants and xy 2> 0. The method of solution is
given i Appendix A. Without loss of generality, we have taken 7y = & = 0. In ¢ space Eq. (15b)
becomes

v{€ = 0)],, = [l + ¢Z(s)] exp{irog)

where Z is the plasma dispersion function. With this form of the boundary conditioris, we now have
three parameters to vary: w. o, and A€ = £ — £ = §;. The geometry of the waveguide, array which
mtight give this input spectrum will be discussed in Sec. V.

We begin by considering the lincar non-dispersive Jimit; i.c., we remove the third and fourth terms
in Eq. (6a). Figure 1 shows the solution as various times. Farly in the cvolution of the waves, only
the lowest «© components have prapagated throughout the plusma because these have the greatest group
velucitics. Later on, the ather x components have had time to reach the far end of the system, and the
steady state is attained. AS 7 — o0, we have v = o{¢). In the original (z, z) coordinate system, this
correspands to the familiar propagation along resonance cones.

In order w further diagnose the results, we identify three sets of waves, the incident waves (€ = 0
and £ > 0), the reflected waves (€ = 0 and & <C 0), and the transmitted waves (€ = ¢) and x > 0).
With our chuice of boundary cenditions the incident waves are constant for 7 >> 0 and there are no
waves incident at the boundary £ = £,. We defite reflection and transmission cocfficients, R and T, as
the ratios of the instantaneous power reflceted and the instantancous power transmitted to the incident
power. Thesc powers are defined by integrating % over the appropriate scgment of the boundary. Note
that, because energy can be stored in the plasma, we need not have R 4 T = 1, although this is true in
a time-averaged sense. Furthermore, it is possible that R or T can momentarily exceed unity. In order
to determine wherc in i space the power is concentrated, we define (<) for each wave component as the
ratio of the force to the power for that component. (Since @ = |V|*/x andF = |V, this ratio has the
dimensions of .)

For the case shown in Fig, 1, R is obviously ze10 and the average & of the reficcted waves, {s)y,
is zadefined. Figure 2 shows T and the cverage £ of the transmitted waves, {g}, for this case. The
transmission cocfficient T rises in steps as cach £ made reaches the far boundary. |Because of the use
of periodic boundury conditions in the numerical solution of Eq. (6). there are only a discrete set of &
modcs.] Similarly, (), fiscs with time since modes with higher values of & take longer to traverse the
domain. As T — oo, T approaches unity, signifying total transmission, and {x}; approachcs (x/2)"? =
1.25 which is the same as the average value of x for. the incident waves, {6)s.

We now Lurn (o the nonlinear dispersive problem. Because we expect that the effect of the non-
linearity will increase with both w and A€, we begin with a case where these quantities are chosen small

-
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enough that the nenlinearity only weakly modifies the propagation. Figure 3 shows the solution for
such a case with wy = 3. %9 = 0, and A¢ = 0.1, It is found thal v attains a steady state by r = 2
approximately and only this state is shown in Fig. 3. The cvolution to this stcady state is similar ¢o that
for the Yincar equation. In Fig. 4 arc displayed the reflection and transmission coefficients. Note that the
reflection coefficient scttles down 10 a smafl vatue (somewhat less than 2%).

As the amplitude of the boundary value w, is increased, the solution exhibits quite different be-
havior from the lincar sofution. In Fig. 5, we have chosen the same parameters as m Fig. 3, except that
w has been increased to 4. Now v appears never to reach a steady state, but insicad oscillates in some
aperiodic fashion. This can be scen in Fig, 6, where R, T, {x),. and (£}, are piotied. From Fig. 5, we can
see what is happening during these vscillations. Various & components in the forward wave nonlincarly
interact to proguce a reflected wave |Fig. 5(b)]. This interaction causes a severe depletion of the low
compongnis of the forward wave and transfer of this encrgy into higher £ components of the forward
wase ang meo the reffected wave [Fig (). Afear the interiction has nearly gowne & covnpletion, the
nonlincarly excited compunents of the fiedd transit out of the system and the ficlds relax to a state in
which there is little variation in [V] with £ [IFig. 5(d)). The nonlincar interaction then begins again and
the cycle approximately repeis itseli [Fig. 5(c)]. In ¢ space, this interaction is manifested by a narrowing
and peaking of the clectric ficld amplitude v, A typical field patern is shown in Fig. 5(f).

Rerrning w Fig, 6, we sce that the reflection is appreciable, oscillating around aboye 20%.
Currespondingly, T' oscillates around 808%. Because the energy stored in the field comes out in bursts,
T is vecasionally greater than unity. Finally, we note that (k) excceds {x); = 1.25 by approximately a
factor of 2.

Because the long-time sofutien of the fields does not reach a steady state, it is useful to describe
the sotution in terms of its temporal speetrum. To do this, we take a time record of the transmitted
and reflected waves for 7, << 7 << 7. We choose 7, to be large enough for the transients wo have
disappeared from the solution and 7, — 7, w0 be Jarge enough 1o include several oscillations of the
solution, Effects arising from the finite record fength 7, — 7, are partially eliminated by multiplying by a
cosine window {1 — cos{2x(r —~ 7,)/(n, — 7,)]}. The resulting function is then transformed in ime
using a discrete Fourier transform o give the output spectsum V{€', x, o) where o is the slow frequency
variable (conjugate with 7}, € = § for & > 0 (ihe transmitted wave), and ¢ = 0 for & < 0 (the
reflected wave). [We assume a space-time dependence of exp(is¢ — ior).]

In Fig, 7, we plot the output spectrum V(¢', x, a) for the case shown in Figs. § and 6. The spectrum
is compured between 7, = 1 and 7, = 5. The large peaks ut ¢ = 0 are the steady-staie companents
of the transmitted and reflected waves. The broad spectrum in o is sympromatic of the aperiodic namre
of the waves, There is an interesting correlation in the spectrum: the positive freguency () components
of buth the transmitted and reflected waves tend to have larger valucs of |} than the negative frequency
components,

We have seen that the solution becomes more turkulent and that the reflection increases as wp is
increased. "the olher paramelers that may be varied are A€ and xy. We now investigate the influcnce of
these parameters.

We begin by varying A¢. Figure 8 shows the output spectrum for wp = 4, kg = 0 and At =
0.05. We scc that there is almost no enery in the components of the wave with a0 5£ 0 ie., the
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fields nearly reach a steady statc.” The reflection cocfficient is smaller than in the previous case (where
Ag = 0.1) being approximately 4%. Similarly {x); is unly slightly greater than {x); (1.4 as compared
to 1.25). On the other hand, if we increase the value of A€ to 0.2 (twice its value in Fig, 7), a broad
turbulent spectrum is recovered (Fig. 9). Although R and {x), have approximatcly the same values as for
Ag = 0.1, there is now more crergy in the non-steady components of the output spectrum.

Figures 10 and 11 show the cffect on the output spectrum of increasing so (keeping wy = 4 and
A = 0.1). In Fig. 10, where kg = 1, we sec that spectsum consists of a few narfow bands indicating
that the solution is ncarly periodic. Fusthermore, the reflected wave consists almost entively of negative
frequency components. The reflection cocfficient for this casc is about 12%, or half of what it was with
rg = 0. The increase of {); over {k); is moderate {about 3 as compared 0 2.42). Increasing 4 to 2 (Fig,
I1). we sce much the sam : picture except that the frequency of the oscillations is higher. The reflection
coefficient of is further reduced to 7% and there is now little difference between (), and ().

Y. THRESHOLD FOR THE NONLINEARITY

In the case shown in Figs. 5-7. the nenlinearity causes three phenomena of importance to lower
hybrid heating experiments: (1) the reflection coefficient is appreciabic; (2) the solution reaches a
wirbulen! state; (3) the mean wavenumber of the waves transmitied into the plasma is increased.
Comparing the results presented here with those of Sec. VI of Rel, 7 in which the solution of the
steady-state problem was attempted, we.sce that the conditious for the occurrence of these phenomena
closcly agree with the conditions under which the steady-state problem had no solution and reflection
was large.

Before quoting the 2ueshold results from Ref. 7, we use the scaling invariance Eq. (8) to rewrite the
boundary condition Fg. (15b} as

V(€ = 0,6 > 0,7 > 0) = waulx — ro)(x — xo) A exp|— 4 A¢’(x — ko).
11 real space, we have
(€ = 0o = wll + (5/A5)Z(5/ Ag)] expineg)-

This roughly corresponds to cxcitation of lower hybrid waves by a wavcguide array of width A¢. The
amplitude of the electric field in the plasma is wy and the phasing of the waveguides is such as 10 give
a wavenumber of kg, Thus, if the waveguides are phased 0, 7,0, 7, .. ., we have ko = xM [ Ag where
M is the number of waveguides, [The average wavenumber of the spectrum of a single lower hybrid ray
is {&); which, for M large, is approximately kg -+ 2(2/7)"/2/A¢. The frst term is attributable to the
phasing of the waveguides and the second term arises because of the finite width of the waveguide array )

¥or these boundary conditions, the thresheld conditions given in Ref. 7 are
. w 2 2%0, (16a)
- a¢ > Vgl ‘ (16b)
"The latter conditions is only correct for M small (< 4). For larger values of M, it should be replaced by
ALz Agvg?, (16c)
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which specifies that A¢ should exceed the distaace for a shock to form in the dispersionless equation
(14). Equation (16) gives the conditions under which the three phenomena described at the beginning of

E this section occur.

}; If we now undo the normalizations using Eq. (7), we find that Eq. (16) becomes

i Eb2/T. 2 4V3x, (173)
} ' s 2 V(T Ex)/P, (175)
%f- Az z gAz/p, 17c)
;:.

where E.y and E,y are the clectric ficld amplitudes perpendicufar and parallel to the magnetic field
fso that Ep = gE0), Az is the width of the waveguide array, §z = Az/M is the width of a single
wineguide {(assuming a 0, 7, 0, 7, . . . phasing), Az is the width of the ponlincar region of the plasma in
the z direction, and B is §enEy/noT:. the ratio of the electric ficld energy to the plasma kinetic encrgy.

V1. INSCUSSION

o s e et s

We have cxamined the nonlincar evolution of a lower hybrid wave in two dimensions and time.
Under the conditions given in Eq. (17). the nonlincarity can cause appreciabie reflection, trbulent
variation in the ficlds, and an increase the wavenumbers of the trzasmitted waves. In Ref, 7, it was
found that these conditions could be satisfied in a sma'l laboratory plasma or near the cdge of a tokamak
plasma. In such circumstances, the assumgtion of a steady state and the analyses in Refs, 5-7 based on
this assumption arc wrong.

The most important application of lower hybrid waves is for heating a tukamak plasma to ignition
temperatures. It is therefore important to understand the processes that may modify the lower hybrid
waves before they have penetrated to the center of the plasma. Unfortunately, it is not possible to
obtain quantitative estimatc of these effects with the theory as outlined in the preceding sections, The
reason is that, as we have pointed out, the nonlinearity is only important in a tokamak near the edge
of the plasma and in that region many other physical processes are likely to be involved. Examples of
cffects which should probably be inciaded to give a full understanding of Tower hybrid wave propagation
ncar the edge arc: nonlincar ccupling to the second (lefl-guing) ray: clectromagnetic effects; density
and temperature gradients; saturation of the nonlinearity; ion inertia in the low frequency equations;
couplirg to low-frequency drift waves.

Although Fq. (6) should be regarded as a very simplificd medel cquation describing the propaga-
tion of lower hybrid waves necar the edge of a kamak plasma, some ~f the phenomena predicted by
this couation have been observed in the lower hybrid heating cxperiment on Alcator-A.™ 15 The COyp-
luser scattering diagnostic on that cxperiment indicated a breadening of the frequency spectrum of the
) waves, ‘This is consistent with the turbulent spectra seen in the solutions of Eq. (6). Furthermore, the
spectrum becomes.asymmctric as the wave propagates into the plisma, the peak of the spectrum being
shifted down fram the frequency of the injected waves. ‘This may be a result of the obscrvation in Sec.
IV that the components of the transmitted an reflected waves which are down-shifted in frequency have
a smaller (in ibsulute valuc) wavenumber than those vhich are up-shified. If those waves wiih higher
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wavenumbers are preferentially damped as the wave travels into the plasma {e.g., by electron Landau
damping). we would expect to sec a net downwards shift in the spectrum of waves.

The other somewhat puzzling result of the Alcator-A experiment was the apparent independence
of the heating results to the phasing of the waveguides. in addition, in order 10 explain the density
dependence of the heating resuits, it was postulated that the n, (parallel index of refraction k.c/w)
spectrum of the waves was shifted to being peaked at around n; = 5 irrespective of the phasing of
the waveguides. (This is to be compared with values of n. predicted on the basis of lincar theory of
less than 1.5 for the waveguides in phase and of 3 for the waveguides out of phase) Again, this is
qualitatively in agreement with the theoretical resulis of Sce. 1V. ‘There, the average wavenumber of
the wavces transmitied froms the nonlinear region into the center of the plasma was roughly wwice that of
the wave injected into the ronlinear region when kg = 0 (corresponding to the wave guidcs being in
phase). As the phase difference hetween neighboring waveguide becomes finite (i.c.. as &g is increased),
the amount by which the wavenumber spectrum is shified i reduced.

It is not clear whether the nonlinear refiection predicted by the theory given in this paper would be
observed as an increase in the reflected power measured in the waveguides. 1t may be that this power is
reflected again on the cutoff at w = w, very close 10 the plasma edge. This would convert the power
into the other lower hybrid ray.

Thus, it appears that the pbysics included in Fq. (6) may be responsible for some of the results
of the Alcator-A cxneriment. In order to be able to say definitively whether or not the experimental
observations arc a result of the processes included in Eqg. (6), the theory would have to be refined 10 a
point where quantitative comparisons are passible.

We should point out that other theories Iave beeen advanced to explain the Alcator-A results, 1n
panticular, Botoli and Ott'® have suggested a lincar theory. This is supported by the observed linear
dependence between the density fluctuations and the applied power (aver a fairly large range) which
suggests cither that the phenomcena are lincar or clsc that the nonlincar processes saturate ‘at a low
amplitude.

Anather interesting theoretical result, given by Morates,1” concerns the caupling of rf energy into
tower hybrid waves at the plasma edge. A density gradient was included in his model and a temporal
evolution was allowed. As in the theary presented here, it was found that a steady state nced not
be reached; rather, the f encrgy entered the plasma in bursts similar o the behavior scen in Fig
5. Hawever, only a single n, component was included so that the nonlincar coupling of difierent n,
components w+  "isallowed.

In suramay, we have presented a theory of the nonlinear propagation of lower hybrid waves, At
sufficiently large powers, the fields become turbulent and the wavenumber spectrum is shiftel  wards.
‘I'ne theory should accurately describe the propagation in small laboratory devices. While we may eap.ct
qualitatizely similar resulis near the edge of a tokamak plasma, other physical cficets need mf:hr: included
to abtain an accurate description of the lower hybrid ficlds in this region.
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APPENDIX A:  NUMERICAL PROCEDURE FOR SOLVING EQ. (6)

The numerical solution of Eq. (6) is carried out in Fourier space so that Eq. (6) becomes Fq. (9).
Periodic boundary conditions are used in the ¢ direction, »(€,¢ + L, 7) = v(€, ¢, 7}; therefore, the
Fourier spectrum is discrete the spacing between modes being d¢ = 2 /L. We use n points to describe
v over a single period L. Transformations between the & and ¢ spaces are achieved using a discrete
Fourier transform. Thus, V is appraximated by r Fourier modes. The € coardinate is approximated by a
grid whose spacing is €. "This equation is solved by splitting cach time step &7 into two cqual picces and
by approximating Eq.(9a) ia the interval 0 < 7 < 87 by

V.= —2 x {cVE, for0 < v < }ér,

tQV 4+ iN(V), for kb7 < 1 < &1 (Al)

(For simplicity. we describe the solution only fur the first time step.  Tke extension beyond this is
obvious.)

In cach half time step this equation is a partial differential equation in only two independent
variables. 1Juring the first half time step, & is mercly a parameter #nd we have a simple linear wave
equation o solve. We appraximate V' = V(1 = 187) us given by Eq. (A1) by shifting V(r = 0) over
= = cér/8¢ grid positions. This step is exact if € is an integer. Normally, this is aot the case and in
that cvent we interpolale between neighboring grid points. We use linear interpolation on the quantities
JVI2 and |V|¢ arg V. This cnsures that in this step energy and momentum are conserved. The reason for
interpolating in V% arg V rather than arg ¥ is that in the former case the ambiguity of the argument of
V = D isirrclevant. The grid pusitions within C of the boundary are set Lo the boundary value.

During the sccond has! time step we have 1 solve the nonlincar Schroedinger equation i each
position €. The victhad is similar to that used in Ref. 7 to soive the steady-state equation (13). The
dispersive term is treated exactly and the nonlincar term is treated with a seconu-order Runge-Kutta
scheme. Thus, V(7 == §7) is approximated by

V" = BV'4 DN(V'),
V(er) = BV' + {DIN(V") + N(V],
where B = exp(—ift6r) and D = —(1 — B)/Q. The nenlinear ierm N(V) is calcutated by trans-
forming V inte v using the discrete Fourier transform, camputing —]v]?v. and transforming back into
& space. In order to avoid problems of aliasing in the computation of N(V), the highest n/2 Fourier
mades are artificially set to zero.

The accuracy of the numerical integration is checked using the momentum- and encrgy-conserv-
ation laws. Specifically, the time integrals of Eys. (11} and (12) are numerically computed. These are
divided by the tal mementum input into the plasma (at € = §)) and by the t.tal energy injected into
the plasma (both al € = &.x > 0and at € = £,. £ < 0) w provide two meat nres of the accuracy of
the numerical integration, A A and AB.

“I'he results presented in Sec. [V were (with the exception of Figs. 1 and 2) computed with n = 28,
L = 20. and 6 = 10—, ‘The time step was taken @ be §r = 10— in Figs. 5-7, and 9, 67 =
2 x 10—%in Figs. 8. 10, and 11, and 67 = 5 x 10-~% in Figs. 3 and 4. The error parameters A% and
AB were less than about § X 10— at 7 = 5 in all these cases.
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‘Fhe casc shown in Figs. 5-7 was also computed with n = 2% L = 20, and 67 = 6 = 5 X 10—*
(i.c.. the grid spacing was halved in 7, ¢, and £). The solution agreed well with the solution obtained
using the coarser grid until about 7 = 1.5. Thereafter. the solutions diverged from cach other. This is to
L cxpected in a system which exhibits wrbulent solutions because the solution is typically very sensitive
1o the initial conditions. Numerical errors, which have an effect similar to changing the initial conditions
slightly. can thercfore lead to large changes in the solution. However, although the detailed solution is
different after 7 = 1.5 in these two cases. the geaeral eharacter of the solution is the same. Thus, the
auput spectrum for the case with the finer grid spacing shows the same featurcs as the spectrum given in
Fig. 7.
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Tables

TABLEY. Conservation Jaws for Eq. (6). The form of the conservation laws is 8T, /87 + 8X;/8¢ +
8Z;/8% = 0. Here g is given by g = v,

J ' T; X; Z;
! % -v v + v
2 —l'y.0§ |f;|2 3|u;|2 _ !,,2|W . glulq + iuu:

3 v’y lee]? — §lv]* —iv'o, —2Re{vgu,) + g2 -

W —ig' 2m(v's) + ig's
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(PPPL-802159)
FIG.1. The solution to £q. (6) with the Tast two terrs omitted. Here wg = 1, &4 = 0, and At =1
‘The solution is shown in both the k and ¢ spaces for [(a) and (b)] 7 = 0. Kc) and (d)) 7 = 0.5, and [(e)
and{N}r = 5.
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FIG.2. The reflection coefficient 1 (a) and mean value of & transmitted (), (b) as functions of time
for the case shown in Fig. 1.
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FIG.3. The solution to Fq. (6) for oo = 3.#0 = 0. and A¢ = 0.1. The solution is shown for v =5

in {a) k space and {b) ¢ space.
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FIG.  The reflection (a) and transmission {b) cecfficicnts, 2 and T, as functions of time for the case

{‘ shown in Fig. 3.
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(PPPL-802160)

FIG.S. The solution to Fg. (6) for oy == 4. &g == 0, and A = 0.} The solution is shown in « space
fur(;x).-r = 0.1, (b)r = 0.3.(t)7 = 0.5.(d) 7 = 0.7, () 7 = 0.8.and in ¢ spacc for (fyv = u.9.
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FIG. 6. The output waves as functions of time as described by (a) R, (b) T, (c) {x),. and (d) {x},.



-21-

i
%
%

I
5

%
e
¥,
I
TH
&573
2625
s

\
[.

4
%
<3

. :.“7‘.:?:
sk \
it
e
8

7
QU

(PPPL-802164)

I'he autput spectrum for the case shown in Figs. 5 and 6. Here and in -~ remaining figures the

FIG. 7.
spectrum is coinputed with 7,

land 75 = 5.
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The output spectrum for vy = 4, xy
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