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"ITic propagatiun of lower hybrid waves in the presence of pondcrumotivc density fluctuations is 
considered. 'ITic problem is treated in two dimensions and, in order in be able to correctly impose 
idc boundary conditions, the waves arc allowed to evolve in time. The fields are described by 
ivT — j i)£ <if + % 4-1 w|2t' = 0 where v is proportional to the electric field, T to lime, and f and £ 
measure distances across and along die lower hybiid ray. The behavior of the waves is investigated 
numerically. If die amplitude of the waves is large cn<-ugh. die spectrum of the waves broadens 
and Uieir parallel wavelength becomes shorter. Hie assumptions made in die (oi initiation preclude 
the application of these results to the lower hybrid healing experiment on Alcator-^. Nevertheless, 
Uicrc are indications that the physics embodied in this problem arc responsible for sonic of the 
results of dial experiment 
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1. INTRODUCTION 

The injection of i f power near the lower hybrid frequency is an attractive method for the auxiliary 
heating of tokamak plasmas.1 Because of the high powers required (several MW) and because lower 
hybrid waves principally propagate along well-defined resonance cones,2"4 there has been considerable 
interest in nonlinear effects on the propagation of lower hybrid waves. This problem was first addressed 
by Morales and Lee5 who studied the two-dimensional electrostatic propagation of one of the two lower 
hybrid rays in a homogeneous plasma. Although this is perhaps the simplest model that can be con­
sidered, a correct treatment of this problem has yet to be made. It is this deficiency that this paper 
attempts to remedy. 

Rriefly the difficulty of this problem arises as follows: i f it is assumed that the rf fields in the 
plasma have reached a steady stale, i.e.. that die potential is given by <p(x, z)exp(—iwot) (x and z are 
coordinates perpendicular and parallel lo the ambient magnetic field B»), then the cleclric field obeys 
the complex modified Kortcwcg-deVrics equation.- This equation is mathematically well-posed when 
solved as an initial value problem in one of the coordinates x, thai is when ${z = 0,z) is given. 
Unfortunately, this does not correspond to physically realizable boundary conditions since waves can 
propagate in both ihc -\~x and —x directions in a single ray.7- " When the correct boundary conditions 
are imposed, there is numerical evidence that solutions of the ccniplex modified Korteweg-deVries 
equation need nut exist and that this equation is therefore ill-posed.7 This is confirmed by our finding 
solutions inconsistent with die assumption of a steady slate (sec Sec. V). flic problem arises because 
the direction of power flow which determines how to impose the boundarj conditions is defined only 
with reference to a problem in which a temporal evolution of the wave packci is allowed. In assuming a 
steady slate for the electric field amplitude, the equation no longer has built into it the crucial ingredient 
which determines how the boundary conditions arc imposed. This defect is corrected by including a 
slow, time dependence of the potential |so that the potential is given by 4>{x, -> t) exp(—iutifj]. l i t is then 
leads to a nonlinear partial differential equation in (wo spatial dimensions and lime, which we will study 
numerically in this paper. 

In formulating this problem, vc shall ignore many effects which should possibly be included to 
obtain a complete understanding of the propagation of lower hybrid waves. ITiis will enable us to study 
the effect of die nonlincarity in as simple a system as possible. F.vcn so. the numerical solution of a 
partial differential equation in two dimensions and lime is time consuming and. as wc shall sec, the 
behavior of the fields as described by this equation can be quite complicated. In the absence of any 
analytical methods for solving this equation, wc must therefore be content with die solution for only a 
few ca:"r.. This will enable us to confirm the threshold for strong noi linear effects given in l ief 7 and to 
give a more complete description of the nature of these nonlinear effects, liccausc of the approximations 
made in formulating Ihc problem, we shall not be able lo apply these rcsultsio the propagation of ower 
hybrid waves near the edge of a tokamak plasma where nonlinear cffccls arc mosl strong. However, 
there arc indications that die physical processes that arc considered in this paper do play a role in the 
propagation in that region. 

The plan of this paper is as follows: In Sec. I I wc derive the partial differential equation governing 
the temporal evolution o f ^ . The basic properties of this equation will be discussed in Sec. I I I . In 
particular, wc will show how the right boundary conditions automatically drop out from die equation. 
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Since the equation is analytically intractable, we resort to a numerical integration, the results of which 
are given in Sec. IV. The threshold condition for a strong nonlinear interaction is derived in Sec. V. The 
results are summarized and the consequences to lower hybrid heating of tokamaks arc presented in Sec. 
VJ. 

II. FORMULATION OF THE PROBLEM 

In this section, we derive the partial differential equation governing the evolution of the electric 
field for one of flic lower hybrid rays in two spatial dimensions and time. We assume that the fields 
,ire electrostatic, (hat the plasma is homogeneous, and that it is immersed in a uniform magnetic field. 
the derivation closely follows that of the complex modified Kortewcg-dcVrics equation by Morales and 
I ec;5 (lie additional ingredient wc consider is the slow time dependence of 4>-

'I lie potential of the lower hybrid wave is token to have the form 

Re|#r,z,i)exp(—iutf.)] 

where the I dependence of ^ is taken to be much slower than wn. Since wc arc only doing the two-
dimensional problem, we ha\ed/dy = 0. In the electrostatic limit, ̂  obeys Poisson's law 

V • K(V,<9/<», |V^| 2) • V<t> = 0. (1) 

Here we regard the dielectric tensor K as an operator through its arguments V and 8/di. The depend­
ence on | V#| 2 accounts for the nonlincafity. If the temporal evolution of 4> is sufficiently slow (compared 
with inn acoustic time scales), then nonlincarities due to pondcromotive density changes can be written 
in this way. Parametric instabilities are excluded from our consideration. 

If me dependence of <£ on i . z. and t is weak and if the <p itself is small so that the nonlinearity is 
weak, wc may expand K to obtain 

K(V,d/dt, |V^|2) = K + $t£±- : VV 

AN the evaluations of K on the right hand side ofKq.(2)arcai the point V =<9/<9t = |V#| 4 = O.The 
term involving *9K/<97 is zero becau.-e of the symmetries of a stationary plasma. Wc have introduced a 
formal expansion parameter t to aid in the ordering of terms. The fact that the last three terms in Eq. (2) 
arc taken to be of order t results a maximal ordering. If, in fact, one of the terms is much smaller than 
the others, a subsidiary ordering can be introduced to eliminate that term. 

Since it is more usual to write K as a normal function, rather than as an operator, wc rewrite K as 
K(k, u, rt) where k is the Fourier-transform variable conjugate ui space, w is dial conjugate to time, and 
n is the plasma density. |A space-time dependence of exp(*k • r — imt), where r = (x,z), is assumed.] 
Ihcn 'he derivatives in Kq. (2)become 

&K = _&K_ SK _ .dK dK _ dn dK 
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In this case, all the evaluations ort the right hand sides are performed at k = 0, w — u*,, and n = no, 
where TJ<> is the unperturbed density of the plasma (i.e., in the absence of any electric fields). 

We now write down Eq. (1) to various orders in e. To drdcr e°, we find 

VK(0 , tH) ,T io}V^ = 0 <3) 

where 
K(0,<M,,no) = (^- L ^ J 

Assuming ti\aiK±K\\is nc6 a t ' v e . ^A (3) is hyperbolic and its solution is 

4> = <t>+{x — gz) + 4>-{x + &) 

where g = {-K_L/KtY'i. 

In general, both the right- and left-going rays will be present However, if the source of the lower 
hybrid rays is localized, the two rays will be separated far from the source and in that region we may 
then treat each ray in isolation. Similarly, only a single ray will be present if the source is adjusted so 
that only that ray is excited. We may therefore assume that, to zcrnth order, only the right-going ray is 
present, i.e.. # _ = 0. To order*', wc wrile^ = $e(' , tx1,^ where t' = t, J = z . y = cz — ex, and 
a = (1 -f s 2 ) - 1 ' ' 2 . c = gt. Wc should think of x1 and ̂  as measuring distances along and across the 
lower hybrid ray. Substituting this form of 0 into Eq. (1), wc obtain to order*1 

where E = ift^/cV is the electric field measured in the direction normal to the lower hybrid ray, A, B, 
C, and D are real coefficients given by 

« <9K * A = k — k, B = 2.K±, 

1«A «JBK «« 1 On 
2 <3fc9k' ' nd\VW 

and it is the unit vector (—*, e). 
These expressions may be evaluated using the expression for K for a stationary MaxwclUan 

plasma.' Usually the frequency of the incident if power satisfies iif < uij <S fi2 where £!_,- is the 
cyclotron frequency of species j(j = iare for ions or electrons). In that case, the components of the 
zcroth-ordcr dielectric tensor may be written 

is i j . v , £* is,, i ££ SI 

where uipj is the plasma frequency for species j with density no. The coefficients in Hq. (4) become 
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where vfj = Tj/nij, Tj is the temperature of species j . and to is the dielectric constant of free space. 
In writing the expression forD, we have used the formula for die density depression due to the pon-
dcroinoiivc force.5 I 0 '' Note that C is always positive The fact that C and D have the Siimc signs has 
iin important effect on the propagation of die lower hybrid waves. 

Wc now rescalc Uic variables in Rq. (4): 

€ = x'liBVC), T = t'/A, f = z'/x/C, v = s/DE. (5) 

ilic equation for v is then 

+ tfc + \v\2v = 0 (6a) 

~herc subscripted Greek letters denote differentiation. When integrating Rq. (4) to give Rq. (6a), -ue 
assume that v and all its derivatives are zero at f = —00 (i.e., far from the ray). The accessibility 
condition12 imposes an auxiliary condition on v namely 

/ : vd( = 0; (6b) 

in other words, the electric potential is equal at f — ± 0 0 . Kquation (6) describes die evolution of the 
electric field of a single lower hybrid ray in two dimensions and lime under the influence of thermal 
dispersion and nonlinear pondcromotivc effects. Rqualion (6a) is the same as Kq. (SO) of Rcf. 7 if die 
replacements v —> v'.o —» r. r —• J. and £ —• —c arc made to the latter equation. 

In order to give some appreciation of the scaling of the variables in Eq. (5), we give more explicit 
forms for them in the limit w^ <K wg < w^ < ft,2 anc> T, <S T, (these may be the conditions 
applicable as the lower hybrid wave propagates through the low density part of a tokamak plasma), 
liquation (S) then becomes 

, x uiat gz — x f to \ i f 2 „ 

where K/Jf = tyc/w^,. is the l)cbyc length and g = UQ/CI^.. 



-6-

111. BASIC I'ROPKRTIFSCH THE FQIIVTION 

Equation (6) is invariant under the scaling transformation 

e - * * - ^ , r-»fc- 2r, f->X _ 1 f, t>-»Xo. (8) 

This in variance allows us, for example, to normalize die scale length of the ray in the f direction to unity. 
If we set d/&r = 0 in Kq. (6). wc obtain, as expected, the complex modified Korteweg-

dcVrics equation as the equation obeyed by steady-state fields. lf<9/<9f = 0, wc obtain the nonlinear 
Schrocdingcr equation, which is soluble by die inverse scattering method.13 Unfortunately, not much 
use can be made of this fact because, as wc shall sec, the imposition of the correct boundary conditions 
involves solving Kq. (6) in afinite domain in £. 

For each of the four conservation laws obtained for the complex modified Kortcwcg-deVries equa­
tion, there is •• corresponding conservation law for Kq. (6). These arc given in Table 1. The second and 
third of these laws arc statements of die conservation of momentum and energy respectively. We will 
return to these shortly. 

In order to determine the correct boundary conditions for Kq. (6), we Fourier transform in f. 
Defining die Fourier transform oft; by 

V ( £ , K , T ) = / t>U,e,T)*xp(—«f)df 

wc obtain 
VT + cVe + tfiV + iN{V) = 0, (9a) 

V[K = t) = 0, (9b) 

where c = I/*, ft = K2. and N(V] is the Fourier transform of — |v|2u. This equation is hyperbolic 
in (T:, £) space. However, the direction of die characteristic velocity c depends on K. This means that 
we must specify boundary conditions at each end of a strip in £. More precisely, flic full initial and 
boundary conditions required for solving Kq. (9) in the domain 

to < i < &, —OO < { < CO, T 0 < T < O O 

are 
V((0<i<il,K,T0), Vfa,K>0,T>TO), V(«,,K<0,T>r o). (10) 

Talcing die second and fourth conservation laws in Table 1, integrating them over f and £, and 
transforming them to « space, wc obtain tiic laws of conservation of momentum and energy as they 
apply to (he domain of the problem 

> tea CI 
Jhttit.d£+ I fdit 

© / — O 
= 0, (11) 

f - / / 6d«d£+ / 9ds = 0 , (12) 
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wherc J*> = <i\V\2 is the spectral momentum density. <$ = cJta fe the spectral force density, 6 = |VJ2 

is the spectral energy density, and ̂  = e$ is the spectral power density. The characteristic velocity c is 
the group velocity of the lower hybrid waves. The boundary conditions given in Kq. (10) stipulate that 
wc should specify the waves entering the domain of the problem, but not those that leave this domain. 

Given that we are treating a nonlinear problem, it may be a little surprising the boundary condi­
tions arc applied in the same way as for the corresponding linear problem. The reason for this is that, 
in deriving Fq. (6). we assumed that the nonlinear term was very small. The expressions for the energy 
density, power density, etc. arc therefore correctly given by linear theory. Although the rjonJincirity 
is small, it can have a finite effect because the ordering also assumes that the length over which the 
interaction takes place is targe. 

Notice that the nature of the equation has forced us to take boundary conditions which are in 
accoTd with physical notions of power flow. 'l"his hashappened because we have the time variation in Hq, 
(6), tf we consider the steady-state equation, die complex modified Kwtewcg-dcVries equation, which is 
obtained by sctu'ng<9/<9r = 0 in Eq. (6) 

«*-*ff-{MH-°. (13) 
then *e would dearly like to impose the same boundary conditions as for Eq. (6) namely Kq. (10). 
Hut the concept of power Bow cannot be defined from Kq. (13) and so there is no guarantee that the 
boundary conditions given in Kq. (10) arc sensible. Indeed, the evidence of Rcf. 7 suggests that Eq. (O) 
is ill posed with these boundary conditions. This can be so because, even if Kq. (6) is given steady-state 
boundary conditions, i.e., 

Vffo < C < &,*, m - -«>) , J r ^ l f c * > «. r) «= j ^ f f i , * < 0, r) = 0, 

it is not necessarily the case that the solution to Fq. «i) approaches a steady state. 
,\s mentioned in Sec. II, the ordering wc used in deriving Fq. (6) was a maxima) ordering. We can 

eliminate some of the terms in Eq. (6) using a subsidiary ordering. K.g., the linear limit is obtained by 
letting v -> Sv and taking the limit S -* 0. Similarly, the non-dispcrsivc limit is obtained by letting 
C —* C/*, 6 —* t/6 and again taking the limit 6 -t 0. It is instructive to examine this case in more 
detail because there are indications that if fr — £» is sufficiently large then die dispersive term must 
be included. Consider die steady-state equation (13) without the dispersive term » f c < . Multiplying this 
equation by v and adding the complex conjugate (these are the same upcrations that lead to the second 
conservation law in 1 able I), wc obtain 

uj + «Uf = 0 (14) 

where u = 3|t>|2. Since the boundary conditions involve arg v. Kq. (14) should be supplemented by 
another equation. However, this is not so if we impose initial conditions u(£ = fo, f). As is well known, 
die solution develops a shock at £ = &i + I / max jduft = £,,, ()/d(\. where du/fls is infinite. Before 
this point is reached the ordering assumed for the independent variables, i.e., Ihat3/0f = 0{$), breaks 
down. Inclusion of the dispersive term pievcnts the shock from forming. Indeed, liq. (13) when treated 
as an initial value problem in t is well-posed in an infinite domain in £. Although Eq. (6) with the correct 
boundary conditions is different from Kq. (13) with initial conditions, it is likely that Eq. (6) is also ill-
poscd if the dispersive term is ignored and if the width of the domain in £ is large enough. 
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IV. NUMERICAL RESULTS 

Wc investigate the solution to Eq. (6) by numerically solving Eq. (9) with boundary and initial 
conditions 

V(0<Kt„T = 0) = 0, (15a) 
K(f = 0, K > 0, r > 0) = tb» «(« - KoX* - *o) « p [ - 4 ( K - /co)2], (15b) 

V(£ = £ I , ' C < 0 , T > 0 ) = 0 1 (15c) 

where u is the unit step function, va and «b are real constants and K̂  > 0. The method of solution is 
given in '\ppcndix A. Without loss of generality, we have taken r u = fci = 0. In c space Eq. (15b) 
becomes 

«(£ = °)U>d == »*[i + &(t)) «p{t«oc) 
where iT is the plasma dispersion function. With this form of the boundary conditions, we now have 
three parameters to vary: v». /Co, and A£ = fcj — &> = £,. The geometry of the waveguide, array which 
might give this input spectrum will be discurscd in Sec. V. 

Wc begin by considering the linear non-dispersive limit; i.e., wc remove the third and fourth terms 
in Kq. (fia). Figure 1 shows the solution at various times, larly in the evolution of the waves, only 
the lowest K components have propagated throughout the plasma because these have the greatest group 
velocities. later on, the other K components have had time to reach the far end of the system, and the 
steady state is attained. As t -» eo, we have v — v[(). In the original (z,z) coordinate system, this 
corresponds to the familiar propagation along resonance cones. 

In order tu further diagnose the results, we identify three sets of waves, the incident waves (£ = 0 
and it > 0), the reflected waves (£ = 0 and K < 0), and the transmitted waves (£ = £i and K > 0). 
With our choice of boundary conditions the incident waves arc constant for r > 0 and there are no 
waves incident at the boundary £ = £|. We dcfif<e reflection and transmission coefficients, R and T, as 
the ratios of the instantaneous power reflected and the instantaneous power transmitted to the incident 
power. These powers arc defined by integrating 9* over the appropriate segment of the boundary. Note 
that, because energy can be stored in die plasma, we need not have R + T = 1, aldiough this is true in 
a u'mc-avcraged sense. Furthermore, it is possible that A or T can momentarily exceed unity. In order 
to determine where in K space the power is concentrated, we define (re) for each wave component as the 
ratio of the force to the power for that component. (Since 9 = \V\2/n and 5 = |V| !, this ratio has the 
dimensions of/c.) 

For the case shown in Fig. 1, R is obviously zeio and the average « of the reflected waves, {«),, 
is 'jndefined. Figure 2 shows T and the cveragc /c of the transmitted waves, {/c}t, for this case. The 
transmission coefficient T rises in steps as each K mode reaches the far boundary. |llcc.ii«c of the use 
of periodic boundary conditions in uV .numerical solution of Fq. (6). there arc only a discrete set of n. 
modes.] Similarly, {/c)j rises with lime since modes with higher values of/c take longer to traverse the 
domain. As r —» oo. T approaches unity, signifying total transmission, and (K)I approaches (n/2)^2 *» 
1.25 which is the same as die average value of/c for the incident waves, {K}<. 

Wc now turn to the nonlinear dispersive problem. Because wc expect that the effect of the non-
linearity will increase with both to and A£, wc begin with a case where these quantities arc chosen small 

file://'/ppcndix
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cnough that the nonlincarity only weakly modifies the propagation. Figure 3 shows the solution for 
such a case with n> = 3. KQ = 0, and A£ = 0.1. It is found that v attains a steady state by r = 2 
approximately and only this state is shown in Fig. 3. 1Tw evolution to this steady state is similar to that 
for the linear equation. In Fig. 4 are displayed the reflection and transmission coefficients. Note that the 
reflection coefficient settles down to a small value (somewhat less than 2%). 

As the amplitude of the boundary value n, is increased, the solution exhibits quite different be­
havior from the linear solution. In Fig. 5, we have chosen the same parameters as in Fig. 3, except that 
Hi has been increased to 4. Now v appears never to reach a steady slate, but instead oscillates in some 
aperiodic fashion. This can be seen in Fig. 6, where R. T. {K)T. and (it}i arc plotted. From Fig. 5, we can 
see « hai is happening during these oscillations. Various K components in the forward wave nonlincarly 
interact U i produce a reflected wave |Fig. 5(b)]. This interaction causes a severe depletion of the low* 
components of the forward wave and transfer of this energy into higher K components of the forward 
«,-»<• anrf min tfre reflected « w (Fig. %c)]. After the intenKtNur hits narrly gtmc tt> ampktion, the 
nonlinear!} excited components of the field transit out of the system and the fields relax to a state in 
which there is little variation in |V| with £ [Fig. 5(d)). The nonlinear interaction then begins again and 
the cycle approximately repeats itself [Fig. 5(e)]. In f space, this interaction is manifested by a narrowing 
and peaking of the electric field amplitude u. A typical field pattern is shown in Fig. 5(f). 

Returning to Fig. 6, wc see that the reflection is appreciable, oscillating around about 20%. 
Correspondingly, T oscillates around 80%. Because the energy stored in the field comes out in bursts, 
T is occasionally greater than unity. Finally, wc note that (rc)i exceeds {«:), »» 1.25 by approximately a 
factor of 2. 

Because the long-time solution of die fields docs not reach a steady state, it is useful to describe 
die solution in terms of its temporal spectrum. To do this, wc take a time record of die transmitted 
and reflected waves for ra < T < TJ,. Wc choose T„ to be large enough for die transients to have 
disappeared from the solution and n — r„ to be large enough to include several oscillations of the 
solution, Kffccts arising from the finite record length TJ, — ra arc partially eliminated by multiplying by a 
cosine window £{1 — COS[2TT(T — r„)/(7j, — T„}]}. 'ITie resulting function is then transformed in lime 
using a discrete Fourier transform to give die output spectrum V(£', K. a) where a is die slow frequency 
variable (conjugate with T), f = ft for it > 0 (the transmi'itecf wave), and f = 0 lor K < 0 (the 
reflected wave). [We assume a space-time dependence of exp(wcf — it"").] 

In Fig. 7, we plot the output spectrum V(£', K, a) for die case shown in Figs. 5 and 6. The spectrum 
is computed between T„ = 1 and T& = 5. The large peaks at o = 0 arc the steady-state components 
of lite transmitted and reflected waves. 'ITic broad spectrum in a is symptomatic of the aperiodic nature 
of the waves. There is an interesting correlation in the spectrum: the positive frequency (a) components 
of both the transmitted and reflected waves tend to have larger values of \K,\ than the negative frequency 
components. 

We have seen that die solution becomes more turbulent and dial the reflection increases as tt, is 
increased. The other parameters that may be varied are A£ and ««. We now investigate the influence of 
these parameters. 

Wc begin by varying Aff. Figure 8 shows the output spectrum for n, = 4. «o = 0 and Af = 
0.05. Wc sec that there is almost no energy in the components of the wave with o ^ 0 ; i.e., the 
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ficldr, nearly reach a steady state. The reflection coefficient is smaller than in the previous case (where 
A£ = 0.1) being approximately 4%. Similarly {K)/ is only slightly greater than (re), (1.4 as compared 
to 1.25). On the other hand, if we increase the value of Af to 0.2 (twice its value in Fig. 7), a broad 
turbulent spectrum is recovered (Fig. 9). Although R and {K)I have approximately the same values as for 
A£ = 0.1, there is now more energy in the non-steady components of the output spectrum. 

Figures 10 and 11 show the effect on the output spectrum of increasing «o (keeping to = 4 and 
A£ = 0.1). In Fig. 10, where KQ = 1, wc sec that spectrum consists of a few narrow bands indicating 
that the solution is nearly periodic. Furthermore, the reflected wave consists almost entirely of negative 
frequency components. 1"hc reflection coefficient for this case is about 12%, or half of what it was with 
«(i = 0. Ilic increase of (-0) ever (it),- is moderate (about 3 as compared to 2.42). Increasing^, to 2 (Fig. 
11). we sec much the sam ? picture except that the frequency of the oscillations is higher. The reflection 
coefficient of is further reduced to 7% and there is now tittle difference between (K) ( and (*),-. 

Y. THItESHOU) FOR THE NONJ,INEQUITY 

In the case shown in Figs. 5-7. the nonlincarity causes ihrcc phenomena of importance to lower 
hybrid heating experiments: (1) the reflection coefficient is appreciable; (2) the solution reaches a 
turbulent state: (3) the mean wavenumber of the waves transmuted into the plasma is increased. 
Comparing the results presented here with diose of Sec. VIII of Ref. 7 in which die solution of the 
steady-state problem was attempted, wc.scc that the conditions for the occurrence of these phenomena 
closely agree with the conditions under which the steady-stale problem had no solution and reflection 
was large. 

Before quoting the Jiu'shold results from Ref. 7, we use the scaling invariance F.q. (8) to rewrite the 
boundary condition fiq. (15b) as 

V(£ = 0, K > 0, T > 0) = von U(K — reo)(re — «o) Ac 2 e x p ( - J Af 2(K - Ko)2]. 

In real space, we have 

*-K = 0)L>o = t*[l + (c/Af)Z(f/Af)l«p(fcW). 
This roughly corresponds to excitation of lower hybrid waves by a waveguide array of width A(. The 
amplitude of the electric field in the plasma is va and the phasing of the waveguides is such as in give 
a wavenumbcr of «o. Thus, if the waveguides are phased 0, ir, 0, ir, . , . , we have /to = *M/A£ where 
M is Uic number of waveguides. [1 "he average wavcnuinber of the spectrum of a single lower hybrid ray 
is {it)i which, for M large, is approximately «o -f 2{2/i)' ,' 2/Af. ITie first term is attributable to the 
phasing o( the waveguides and the second term arises because of the finite width of the waveguide array.] 

For these boundary conditions, the threshold conditions g'ven in Rcf. 7 are 

vo £ 2KD, (16a) 

A£ £ V2UQ- 3 . (16b) 

The latter conditions is only correct for hf small ( ^ 4). For larger values of M, it should be replaced by 
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which specifics that A£ should exceed the distance for a shock to fori in the dispcrsionless equation 
(14). Equation (16) gives the conditions under which the three phenomena described at the beginning of 
this section occur. 

If we now undo the normalizations using Eq. (7), we find that Eq. (16) becomes 

EatziT^ii/U, (17a) 

As ;> 4v/6(7«/£io)//5, (17b) 
±z~£.9*zlP, (17c) 

where Fj-o ;ind E-xi are the electric field amplitudes pcipcndicufar and parallel to the magnetic field 
(so that EM — gE^i), Az is the width of the waveguide array, 6z = Az/M is the width of a single 
waveguide (assuming a 0, it, 0, i r , . . . phasing). As if the width of the nonlinear region of the plasma in 
the x direction, and/7 is ^toE^/mT,, the ratio of the electric field energy to the plasma kinetic energy, 

VI. DISCUSSION 

We have examined the nonlinear evolution of a lower hybrid wave in two dimensions and time. 
Under the conditions given in Kq. (17), the nonlincarity can cause appreciable reflection, turbulent 
variation in the fields, and an increase the wavenumbers of the irc.ismittcd waves. In Rcf. 7, it was 
found that these conditions could be satisfied in a sma!l laboratory plasma or near the edge of a tokamak 
plasma. In such circumstances, the assumption of a steady state and the analyses in Kefs. S-'' based on 
this assumption arc wrong. 

The most important application of lower hybrid waves is for heating a tokarnak plasma to ignition 
temperatures. It is therefore important to understand the processes dial may modify die lower hybrid 
waves before diey have penetrated to the center of the plasma. Unfortunately, it is not possible to 
obtain quantitative estimate of these effects with die uheory as outlined in the preceding sections. The 
reason is that, as we have pointed out. die nonlincarity is only important in a tokamak near die edge 
of the plasma and in that region many other physical processes are likely to be involved. Examples of 
effects which should probably be included to give a full understanding of lower hybrid wave propagation 
near the edge arc: nonlinear coupling to (he second (left-going) ray; electromagnetic effects; density 
avid temperature gradients; saturation of the nonlincarity; ion inertia in the low frequency equations; 
coupling to low-frequency drift waves. 

Although Eq. (6) should be regarded as a very simplified model equation describing the propaga­
tion of lower hybrid waves near me edge of a U;Scamak plasma, some «f the phenomena predicted by 
this equation have been observed in the lower hybrid heating experiment on Alcalor-/4.R , s The COj-
lascr scattering diagnostic on that experiment indicated a broadening of the frequency spectrum of me 
waves, 'litis is consistent with the turbulent spectra seen in the solutions of Eq. (6). Furthermore, the 
spectrum becomes asymmetric as the wave piopagatcs into the pk.srna, the peak of the spectrum being 
shifted down from the frequency of the injected waves. This may be a result of die observation in Sec. 
IV that the components of the transmitted an14, reflected waves which arc down-shifted in frequency have 
a smaller (in absolute value) wavenumber than those w.hich arc up-shifted. If those waves whh higher 
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wavenumbers arc preferentially damped as the wave travels into the plasma (e.g., by electron Landau 
damping), wc would expect to sec a net downwards shift in the spectrum of waves. 

The other somewhat puzzling result of the Alcator-zi experiment was the apparent independence 
of the heating results to the phasing of the waveguides. In addition, in order to explain the density 
dependence of the heating results, it was postulated that the TJJ (parallel index of refraction hfi/txi) 
spectrum of the waves was shifted to being peaked at around n^ = 5 irrespective of the phasing of 
the waveguides. (This is to be compared with values of nz predicted on the basis of linear theory of 
less than 1.5 for the waveguides in phase and of 3 for the waveguides out of phase.) Again, this is 
qualitatively in agreement with the theoretical results of Sec. IV. There, the average wavcnumbcr of 
the waves transmitted from the nonlinear region into the center of the plasma was roughly twice that of 
the wave injected into the nonlinear region when «o = 0 (corresponding to the wave guides being in 
phase). As the phase difference between neighboring waveguide becomes finite (i.e.. as«o is increased), 
the amount by which the wavenumbcr spectrum is shifted is reduced. 

It is not clear whether the nonlinear reflection predicted by the theory given in this paper would be 
observed as an increase in the reflected power measured in the waveguides. It may be that this power is 
reflected again on the cutoff at w = Wp, very close to the plasma edge. This would convert the power 
into the other lower hybrid ray. 

Thus, it appears that the physics included in Eq. (fi> may be responsible for some of the results 
of the Alcator-/! experiment. In order to be able to say definitively whether or not the experimental 
observations arc a result of the processes included in Eq. (6), ihe theory would have to be refined to a 
point where quantitative comparisons arc possible. 

Wc should point out that other theories have becen advanced to explain the AlcatoM results. In 
particular, Bonoli an^ Ott ! 6 have suggested a linear theory. This is supported by the observed linear 
dependence between the density fluctuations and the applied power (over a fairly large range) which 
suggests cither that the phenomena are linear or else that the nonlinear processes saturate at a low 
amplitude. 

Another interesting theoretical result, given by Morales," concerns the coupling of rf energy into 
lower hybrid waves at the plasma edge. A density gradient was included in his model and a temporal 
evolution was allowed. As in the theory presented here, it was found that a steady state need not 
be reached; rather, the if energy entered the plasma in bursts similar to the behavior seen in Fig. 
5. However, only a single ns component was included so that the nonlinear coupling of different n? 
components w> 'isallowed. 

In suramaiy, wc have presented a theory of the nonlinear propagation of lower hybrid waves. At 
sufficiently large powers, !he fields become turbulent and the wavenumber spectrum is shifter; .wards. 
The theory should accurately describe the propagation in small laboratory devices. While we may cxp.it 
qualitatively similar results near the edge of a tiibimuk plasma, other physical effects need to be included 
to obtain an accurate description of the lower hybrid fields in this region. 

http://cxp.it
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APPENDIX A: NUMERICAL PROCEDURE FOR SOLVING EQ. (6) 

The numerical solution of Eq. (6) is carried out in Fourier space so that Fjq. (6) becomes F.q. (9). 
Periodic boundary conditions arc used in the < direction. u(£,f -f- L, T) = v(£,f, T); therefore, the 
Fourier spectrum is discrete the spacing between modes being 6K = 2r/L. We use n points to describe 
v over a single period L. Transformations between the K and c spaces arc achieved using a discrete 
Fourier transform. Thus. V is approximated by n Fourier modes. The £ coordinate is approximated by a 
grid whose spacing is 4£. Illis equation is solved by splitting each time step br into two equal pieces and 
by approximating Kq. (9a) in the interval 0 < r < ST by 

cVf, for0< T < kit, 
5" _ j , ( A 1 ) 

v T =_2x{; : W + tjV(V), for Jfir < r < ST. 

(For simplicity, we describe the solution only for the first time step. The extension beyond this is 
obvious.) 

In each half time step this equation is a partial differential equation in only two independent 
variables. During the first half time step, K is merely a parameter and we have a simple linear wave 
equation to solve. We approximate V" = V(r — \ST) as given by Fq. (A I) by shifting V(T = 0) over 
C = C5T/6£ grid positions. Iliis step is exact if C is an integer. Normally this is not the case and in 
that event we interpolate between neighboring grid points. We use linear interpolation on the quantities 
\V\l and |y | 2 argV. This ensures that in this step energy and momentum are conserved. ITie reason for 
interpolating in |V| 2arg V rather than arg V is that in the former case the ambiguity of the argument of 
V = 0 is irrelevant. The grid positions within C of the boundary are set to the boundary value. 

During the second half lime step wc have to solve the nonlinear Schrocdingcr equation ; each 
position £. Ilic Method is similar to that used in lief. 7 to suivc the steady-state equation (l.»). The 
dispersive term is treated cxactlj and the nonlinear term is treated with a seconu-order Kunge-Kutta 
scheme. Thus, V(r — ST) is approximated by 

V" = BY + DN[Y), 

V{ST) = BY + p|N(V") + N(V% 

where B = exp(—tfi BT) and D = —(1 — B)/fi. The nonlinear term N(V) is calculated by trans­
forming V into v using the discrete Fourier transform, computing — | t i |V and transforming back into 
K. space. In order to avoid problems of aliasing in the computation of N(V). the highest n/2 Fourier 
modes are artificially set to zero. 

The accuracy of the numerical integration is checked using Ihc momentum- and encrgy-conserv-
at'on laws. Specifically, the time integrals of Fx|s. (11) and (12) arc numerically computed. ITicsc are 
divided by the total momentum input into the plasma (at { = £11) and by the total energy injected into 
the plasma (both at £ = 61. * > 0 and at i = t\. K < 0) to provide two incai 'ires of the accuracy of 
the numerical integration, A-It and AS. 

Ilie results presented in Sec. IV were (with the exception of Figs. 1 and 2) computed with n = 2 8 , 
L = 20. and *£ = 10—•'. The time step was taken to be ST = 1 0 _ : ( in Figs. 5-7, and 9, ST = 
2 X IQ~ : l in Figs. 8.10, and 11, and ST = 5 X 1 0 " 3 in Figs, i and 4. The error parameters AJh and 
AS were less than about 1 X 1 0 _ " at r = 5 in all these cases. 
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The case shown in Figs. 5-7 was also computed with n = 2 9 , L = 20. and 6T = 6£ = 5 X 10 — * 
(i.e.. die grid spacing was halved in r, c. and {). The solution agreed well with the solution obtained 
using the coarser grid until about r — 1.5. Thereafter, the solutions diverged from each other. This is to 
jc expected in a system which exhibits turbulent solutions because the solution is typically very sensitive 
to the initial conditions. Numerical errors, which have an effect similar to changing the initial conditions 
slightly, can therefore lead to large changes in the rotation. However, although the detailed solution is 
different after T = 1.5 in these «w« cases, the general character of the solution is the same. Thus, the 
•Hitput spectrum for the case with the finer grid spacing shows the same features as the spectrum given ip 
Fig. 7. 
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Tabte 

TAUI.EV Conservation laws forEq.(6). The fonn of Ihc conservation laws is <Wj/&r+ dXjfSi + 
dZj/d; = 0. Here g is given by ft = v. 

J Tj Xj Zi 

1 iv( —v v(( + \v\2v 

2 - ™ \ |«|» 3|«tP — !»*l« — il»l* -I- *«v 

3 iv\ K | 2 -§ | v |< -»«A> r -2R e(«*» f) + |^|2 

4 |«| a —ig*v 2Im(«;*«j) -f- iq"^ 
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(PPPL-302159) 
FIG. 1. The solution to Hq. (6) with the last two terms omitted. Here «a = 1, «<> = 0, and A£ — 1. 
I he solution is shown in both the it and f spaces for |(a) and (b)] 7 = 0. [(c) and (d)] r = 0.5, and [(e) 
and(f)]?" = 5-

0 0.5 1.0 1.5 2.0 25 3.0 3.5 40 4.5 5.0 

0 0.5 1.0 1.5 2.0 Z.i 3.0 3.5 4.0 4.5 5.0 

(PPPL-802155) 
KIO. 2. The reflection coefficient R (a) and mean value of K transmitted (K), (b) as functions of time 
for the dsc shown in Fig. 1. 
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(PPPL-802155) 
FIG. 3 The solution to F.q. (6) for « = 3. IAI =• 0. and A£ = 0.1. The solution is shown for r = 5 
in (a) K space and <b) f space. 

0 0.5 1.0 J5 20 2.5 3.0 35 4.0 4.5 5.0 

J I L 
0 0.5 1.0 1.5 SJ) U 10 3.5 4.0 4.5 50 

{PPPL-8021S8) 
KfO. The reflection (a) and transmission (b) coefficients. R and T. as functions of time for th« case 
shown in Fig. 3. 
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(PPPL-802160) 
l-IG 5 The solution to fiq, <6> for *\, = 4.*„ = 0, mi A£ = O.J The solution is shown in K space 
f u r ( a ) r = 0 . 1 , (t» r = 0.3. (t) T = 0.5, (d> r = 0.7, (c) r = 0.9. r.nA <n f space for (I) r = U.S. 

,^MA/I A. : U WWl/w 
0 0-3 1.0 i.i ;o !.J JO J.J W * J j .o "Q 0 1 i.Q L ? 2.0 21 3.0 51 *.CJ 4 5 JQ 

OS I? IS ?0 2.S 3D 3S * 0 

(PPPL-80Z157) 
FIG. 6. The output waves as ftinctioiis of time as described by (a) A (b) T. (c) («;) p. and (d) (JC)(. 
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(PPPL-802164) 
l 'IG.7. "I*hc output spectrum foi the case shown in Rgs. 5andC. Here and in >*:• remaining figures the 
spectrum is computed with T U = 1 and TJ, = 5. 

FIG. 8. 'flic output spectrum for m = 4, «u = 0, and A£ = 0.05. 
1PPPL-80215<V) 
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K1G. 9. 'ITie output spectrum form>= 4,«o = 0,and A£ = 0.2, 
(PPPL-802151) 

y 

(PPPL-802152) 

KIG. 10. The output spectrum for ifo = 4, tst, = 1, arid A£ = 0.1. 
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-60 

(PPPL-802I53) 

FIG. 11. Itic IIIJ pur spectrum for tt> = 4. «o = 2. and £ £ = O.J. 


