(™) UCRL-15420
$/C 6448509

. HOTICE _ _ =
PORTIONS OF T4iS REPORT 113 !M.EGlBI.E; : .
it Rhas égén reprsﬁuceﬁ_irnﬁsthe hes ;‘
avai%ame cepy to permit ths broadest UCRL--15420 ‘
inie availability.
i — DE82 011066 }

DESIGN GUIDE FOR COMPOSITE-MATERIAL
. FLYWHEELS: ROTOR DYNAMIC CONSIDERATIONS
PART I - SYSTEM WHIRLING AND STABILITY

...
-
x

C. H. Bert
G. Ramunujam

School of Aerospace, Mechanical and Nuclear Engineering M_? .
The University of Oklahoma Y 1 . |
Norman, Oklahoma 73019 o

September 1981

a “This document is
PUBLICLY RELEASABLE

Gra A
Authorizing Official CISTRBUTION OF THIS GCCHMENT IS UNLIWD

Date: %2907




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Research Report
OU-AMNE-81-5

DESIGN GUIDE FOR COMPOSITE-MATERIAL
FLYWHEELS: ROTOR DYNAMIC CONSIDERATIONS
PART I - SYSTEM WHIRLING AND STABILITY

Final Report on

Subcontract No. 6448509

by

C.W. Bert and G. Ramanujam
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma

Norman, Oklahoma 73019

Prepared for

University of California
Lawrence Livermore National Laboratory
Livermore, California 94550

September 1981

DISCLAIMER

This DOk was DreDAEC a5 an ACCOUN: Of WOrs SDOMIISI oy an apenty 37 e Unitar Sistss Gowernsrens
Neither the Umited States Government a0y any aency Trerso!, no¥ o7 OF IRy emTiowsss, Tatss #w

not necessarily constitute Of Imoky 13 RTTENL. 7 5 {avorts 2 e
States Government or anv gency therect, The wews JnG ICHKONS Of JUTNOPs Lalresuas MErsin 30 £O1
necessarily state or redlect ihose o the Unitec States Governmeni ar sy apncy thereod.

DISTRIYTINH OF THi% TATLIATHT '3 (HLINHRED

Mew/



LA

FOREWORD

This report has been prepared under Lawrence Livermore National
Laboratory Subcontract No. 6448509 with the University of Oklahoma. Work
accomplished herein is part of the Flywheel Rotor and Containment Technology
Task of the Mechanical Energy Storage Project. Professor Charles W. Bert

was the Principal Investigator and Dr. Satish V. Kulkarni was the LLNL Project

Engineer.




ABSTRACT

This report is the first part of a design guide for composite-material
flywheel dynamics. In this report, the flywheel itself is considered as a
rigid body, although shaft flexibilities are considered. In Part II, three
types of flexible flywheels are considered.

The objective of this report is to provide information to designers of
flywheels which will enable them to predict many aspects of the dynamic
behavior of their flywheel systems when spin-tested with a quill-shaft
support and driven by an air turbine.

Computer programs are presented for the following dynamic analyses to
obtain the results indicated:

1. Free whirling: natural frequencies versus rotational speed (or for
brevity critical speeds of various orders) and the aésociated mode shapes.

2. Routh-type stability analysis: to determine the stability limits,
i.e., the speed range within which small perturbations attenuate rather than
causing catastrophic failure.

3. Forced whirling analysis: to estimate the response of major com-
ponents of the system to flywheel mass eccentricity and initial tilt.

For the first and third kinds of analyses, two different mathematical
models of the generic system are investigated. One is a seven-degree-of-
freedom lumped-parameter analysis, while the other is a combined distributed-
and lumped-parameter analysis. When applied to an existing flywheel system
(the Garrett AiResearch multi-ring design), the two models yielded numerical
values for the lowest first-order forward critical speed in very close agree-

ment with each other and with experimental results obtained in spin tests.
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Thus, in the interests of computational economy, for the second kind of

analysis, only the lumped-parameter model is implemented.

Qualitative discussions as to why forced retrograde whirling is not

as severe as forward whirling are also presented.

The analyses are applied to three specific prototype flywheel systems:

the multi-material ring type mentioned above, a constant-thickness-disk

ring type (General Electric), and a tapered-thickness-disk type (Lawrence

Livermore National Laboratory). In addition, the effects of the following

flywheel design parameters on system dynamics are investigated:

1.
2.
3.

Flywheel mass

Flywheel diametral and polar mass moments of inertia

Location of flywheel mass center from the lower end of the
quill shaft

Quill shaft length

Lower turbine-bearing support stiffness

Equivalent viscous damping coefficient of the external damper
Flywheel dead weight

Torque applied at the turbine




TABLE OF CONTENTS

Page

FOREWORD . . . . . . . . o o o e e e e e e e e e e e e e e e e e ii

ABSTRACT . . . . o ot o e e e e e e e e e e e e e e e e e e e e e iii

GLOSSARY OF TERMS . . . . . . . . o o e e e e e e e e e e e e e vii

1. INTRODUCTION . . . . . . . o o s e e e e e e e e e e e e e e ]

2. LUMPED-PARAMETER MODEL . . . . . . . . . .« « o v v v v v v v v v 5

2.1 Description of Model . . . . . . . . . . . .. .. ... .. 5

2.2 Free Whirling Analysis . . . ., . . . . . . o o o oo 0. 7

2.3 Stability Analysis . . . . . . .« .« . . . 0 oo e e e e 10

2.4 Forced Whirling Analysis . . . . . . « . . o « v v o v o o . 11

3. COMBINED (DISTRIBUTED- AND LUMPED-PARAMETER) MODEL . . . . . . . . 13

3.1 Descriptionof Model . . . . . . . . . . . . .. . ... 13

3.2 Free Whirling Analysis . . . . . . . . . . .« o o o ..., 15

3.3 Forced Whirling Analysis . . . . . . . . . . o . . . . ... 16

4. NUMERICAL RESULTS FOR A BASELINE FLYWHEEL SYSTEM . . . . . . . . . 17

4.1 Free Whirling: Campbell Diagrams and Mode Shapes . . . . . . . 17

4.2 Stability Growth Factor . . . , . . . . . . . . . . . ... 31

4.3 Forced Whirling Response . . . . . . . « . v v v v v v v v o 39

5. PARAMETRIC STUDIES . . . . . . . « . o v v v i v v e e e e e o 46

5.1 Forward Critical Speeds . . . . . . . . . . .« . . .. ... 46

5.2 Instability Limits . . . . . . . . . o o o o o 0000 54

5.3 Forced Whirling Response of Forward Branches . . . . . . . . . 55

5.4 Forced Whirling Response of Retrograde Branches . . . . . . . 59

6. CONCLUSIONS . . . . . & o e i e e e e et e e e e e e e e e e e 60

ACKNOWLEDGMENTS . . . . &« o v e i e et e e e e e e e e e e e e e 64

REFERENCES . . & v o i e e e e e e e e e e e e e e e e e e e e e 65
APPENDICES:

A DETAILED DERIVATIONS FOR LUMPED-PARAMETER MODEL . . . . . . . 69

B DERIVATIONS RELATED TO THE COMBINED MODEL . . . . . . . . .. 80



vi

Page
COMPUTER CODES, FLOW CHARTS, AND NOTES FOR USERS . . . . . . . 102
C.1 Free Whirling & Stability Using the Lumped Model . . . . . 102
C.2 Forced Whirling Using the Lumped Model . . . . . . . . . . 130
C.3 Free Whirling Analysis Using the Combined Model . . . . . 138
C.4 Simplified Program for Critical Speeds Using the "
Combined Model . . . . . . . .« v v ¢ v v v v v v v o 160
C.5 Forced Whirling Analysis Using the Combined Model . . . . 166
EFFECTS OF FLYWHEEL DEAD WEIGHT AND TORQUE ON THE LOWEST )
FIRST FORWARD CRITICAL SPEED OF A PENDULOUSLY SUPPORTED
FLYWHEEL . . . . v v o o e e e e e e e e e e e e e e e e e e 174
D.1 Effect of Flywheel Dead Weight . . . . . . . . . . . . .. 174
D.2 Effect of Load Torque . . . . . .« « + ¢« ¢ v « ¢ v v v v 178
LIST OF SYMBOLS . . . . & v ¢ v e e v v e e e e e e e e e 180

SUGGESTIONS FOR FURTHER RESEARCH ON ANALYSIS OF FLYWHEEL
ROTOR DYNAMICS . . & & v v v v v e e v e v o e o o o o o o 187




vii

GLOSSARY OF TERMS™®

Different investigators in the field of rotor dynamics have used certain
terms in quite a variety of different contexts. Therefore, for purposes of
clarity, most of the specialized terms for this field are defined, in the
way that they are used in this design guide, in this section. The terms are

arranged in alphabetical order.

Bearing - any support, with low rotational friction, which carries the rotor
and offers radial restraint.

Branch - in a plot of whirling frequency of a given mode (see Mode) versus
rotational speed, there is only one curve at zero rotational speed; however,
as rotational speed is increased, this single curve splits into two curves
(unless there is negligible gyroscopic action associated with this particular
mode). Each of these curves is referred to as a branch. The higher-frequency
branch is associated with forward whirling (see Forward Whir]ing) and the
lower-frequency one with retrograde whirling (see Retrograde Whirling).

Campbell Diagram - a plot of curves of whirling frequencies of various modes

and branches versus rotational speed.

Combined Analysis - a rotor dynamic analysis (see Rotor Dynamics) containing

both distributed-parameter and lumped-parameter models of various components

of a rotor (see Rotor).

*A Complete list of symbols used in this design guide is presented in
Appendix E.
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Critical Speed - a rotational speed () at which a resonance occurs; usually

this occurs when the whirling frequency (w) is equal to nQ, where n is the

order of the excitation (usually an integer, either positive or negative).

Damping - a ve]ocity-dependentvaction (force or couple) resisting motion; .
see External Damping and Internal Damping.

Diametral Mass Moment of Inertia - the mass moment of inertia (see Mass Moment

of Inertia), about a diameter passing through the component's mass center, of
a rotor component in the form of a body of revolution.

Distributed-Parameter Analysis (Model) - a rotor dynamic analysis (or model) in

which all of the components of the rotor are modeled as having distributed mass,
damping, and/or stiffness.

Dynamic Unbalance - the type of unbalance in which rotational speed sets up an

unbalanced couple; an example is a flywheel system in which the flywheel axis
has an initial tilt with respect to the axis of rotation.

Eccentricity - distance from the mass center of a body at rest to the axis of
rotation. | |

External Damping - damping (see Damping) between a rotating member and a

stationary member; in a flywheel system, the largest source of such damping is
intentionally introduced in an external damping device that acts on the fly-
wheel shaft.

Flywheel - the main energy-storage element of a flywheel system.

Flywheel Shaft - the shaft on which the flywheel is mounted; called the quill

shaft on Barbour Stockwell air-turbine-drive spin-test facilities.

Flywheel System - a complete mechanical-energy-storage system in which energy

is stored in the form of kinetic energy.
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Forced Whirling - the response of a system, to an unbalance excitation due to

static or dynamic unbalance or both.

Forward Critical Speed - critical speed (see Critical Speed) associated with

forward whirling and in which the order (see Order) is positive.

Forward Whirling - whirling (see Whirling) in which the direction of whirling

coincides with the direction of rotor rotation, due to forward-precession
gyroscopic action.

Free Whirling - whirling of a rotor (see Rotor) without an excitation; analogous

to free vibration of a nonrotating system.
Frequency - the number of cycles of vibration (in this case, whirling) per unit
time.

Generalized Displacement - translation or tilt.

Generalized Force - force or couple.

Growth Factor - a Routh-type stability parameter which indicates an unstable

exponential growth with time if positive and a stable exponential decay if

negative.

Gyroscopic Action - a modification of the basic transverse whirling action,

due to the gyroscopic couple associated with tilting of a massive component
of a rotor (such as the flywheel or the air turbine).

Initial Tilt - angle between the geometric axis of a rotor component and the

axis of rotation of the rotor; this angle is measured when the rotor is at

rest. .
Instability - opposite of stability (see Stability); highly undesirable from

the standpoint of system safety and reliability.



Internal Damping - damping (see Damping) within any of the rotating parts

of a flywheel system; in such a system, the principal source of this kind of
damping is internal material damping (sometimes called hysteretic damping).

Lumped-Parameter Analysis (Model) - a rotor dynamic analysis (or model) in

which all of the components of the system are modeled by lumped (concentrated)
mass damping, and/or stiffness.

Mass - the inertial coefficient (m) in Newton's second law for translational
motion. | |

Mass Moment of Inertia - the inertial coefficient in Euler's equations for

rotational motion, given by the following volumetric intregral

where p is the material density, ry is the distance of an arbitrary point from
the axis of rotation, and V is the volume.

Material Damping - see Internal Damping.

Mode - a distinct vibration configuration with associated natural frequency and
mode shape; a discrete system with N degrees of freedom has N modes of vibration
(or less if the system has one or more degrees of freedom associated with rigid
body motion); a continuous system theoretically has an infinite number of degrees
of freedom. |

Mode Shape - a plot of the generalized displacements (translation and tilt), n
associated with a given mode, versus position in the system.

Natural Frequency - the number of cycles per unit time at which a system under-

goes free whirling (or free vibration).
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Operating Speed Range - speed range over which a flywheel is expected to be

operated, usually from 25% (or 50%) of maximum to maximum operating speed.
Order - frequency of an excitation source, measured in multiples of rotational
speed, i.e., w/Q.

Polar Mass Moment of Inertia - the mass moment of inertia (see Mass Moment of

Inertia)(of a rotor component in the form of a body of revolution) about its
axis of revolution.

Quill Shaft - the flywheel shaft on a pendulously supported flywheel system
under spin test on a Barbour Stockwell air-turbine-drive system.

Resonance - the forced-vibration (or forced-whirling) phenomenon in which a
peak response occurs.

Restoring Action - a generalized force (force or couple) tending to restore

a system to equilibrium.

Retrograde Critical Speed - critical speed (see Critical Speed) associated with

retrograde whirling (see Retrograde Whirling) and in which the order (see Order)
is positive.

Retrograde Whirling - whirling (see Whirling) in which the direction of

whirling is backward, i.e., opposite to the direction of rotor rotation, due
to backward-precession gyroscopic action.

Rotational Speed - the speed at which the rotating components of the flywheel

system turn in the bearings; also called running speed.
Rotor - a generic term referring to all of the rotating components.

Rotor Dynamics - the dynamic behavior of a rotor.

Shaft - a flexible beam (usually circular in cross section) which connects any

two components of a rotor; see Flywheel Shaft, Quill Shaft, and Turbine Shaft.
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-
Shear Factor - a correction factor used with Timoshenko beam theory to more .

accurately account for the distribution of transverse shear strain across a

shaft cross section.

Stability - the tendency for the respbnse of a system (to a small, sudden

perturbation) to decay with time; this, of course, is a highly desirable

characteristic. : ‘ -

Static Unbalance - the type of unbalance in which rotational speed sets up

an unbalanced force; may be specified either as eccentricity of the local
mass center or its product with the local mass.

Stiffness - the derivative of generalized restoring force with respect to
generalized displacement, i.e., the spring constant.

Synchronous Whirl - a forward whirling in which the shaft rotational speed

equals the shaft whirling frequency; i.e., it has an order of +1.

System - the interacting combination of rotor(s), bearings, pedestals, etc.
Tilt - angle between the geometric axis of a rotok component and the axis of
rotation of the rotor.

Turbine Shaft - shaft, supported on bearings, to which the air turbine and

quill shaft are attached.

Unbalance - see Dynamic Unbalance and Static Unbalance.

Whirl - rotor transverse orbital motion about the static equilibrium position
at any location along the length of the rotor(s).

Whirl Map - see Campbell Diagram.

Whirling Frequencies - frequency of whirling action (see Whirl).




1. INTRODUCTION

The use of a rotating wheel, called a flywheel, to store mechanical
energy dates back to antiquity in the form of the potter's wheel, believed
to be approximately 5,500 years old [1]. In the present century, flywheels
have been used in buses, spacecfaft auxiliary power systems, regenerative
braking systems for railroad trains, and automobiles.

The scarcity and rising costs of petroleum have motivated international
interest in reducing the use of petroleum-derived fuels. In view of the large
number of automobiles in service and the nearly universal use of gasoline or
diesel fuel to power them, an important means of reducing petroleum usage could
be by introducing hytrid automobiles using flywheels for energy storage. Until
Just recently, practically all of the flywheels developed have been constructed
of materials that are essentially homogeneous and isotropic, such as steel
and titanium alloy. Thus, these flywheels have been quite heavy and not
competitive with storage batteries in energy storage per unit weight.

Recently, with the continuing development and commercialization of improved
filamentary composite materials, there has been considerable interest in the
possibility of using these high-strength lightweight materials to construct
flywheels that are lighter in weight and more compact in size and yet having
excellent energy-storage capacity. It is well established that in designing
for steady centrifugal stresses, the only material parameter affecting the
energy storage per unit weight is the governing failure strength per unit
density [2]. Thus, a variety of high-performance flywheel systems under develop-

ment in the United States for automotive energy storage use fiber-reinforced,

polymer-matrix composite materials [3]. However, to actually achieve



this higher energy-storage potential of composite-material flywheels, it is
imperative that they be operated at much higher rotational speeds than is
feasible for flywheels constructed of conventional homogeneous materials.
Unfortunately, however, this higher speed requirement has been very difficult
to achieve in practice because of rotor-dynamic considerations.

In view of the preceding discussion, it is apparent fhat the success of
the U.S. high-performance flywheel program depends very critically upon the
rotor-dynamic characteristics of such systems. The rotor-dynamics field has
a long history extending over a century to the work of Rankine in 1869 [4],
and including numerous treatises and monographs [5-10]. However, these works,
as well as numerous research papers, have been concerned almost exclusively
with geometrical configurations typical of steam and gas turbines, compressors,
and electric motors.

Probably the first rotor-dynamic analysis appropriate to flywheel systems
is due to Thomson, Younger, and Gordon in 1977 [11]. They analyzed whirling
of a single-mass system with a single vertical shaft mounted on flexible
bearing supports and compared the predicted critical speeds with experimental
results obtained from two different small models. The system was modeled as
a lumped-parameter system having two degrees of freedom: flywheel lateral
translation and flywheel tilt. Shortly thereafter, McKinnon [12] made a
lumped-parameter analysis including these three degrees of freedom: 1lateral
translation and tilting of the flywheel hub and tilting of the flywheel rim.
Unfortunately, some program errors were found in [12], making its reéu]ts
questionable. This work was corrected and extended by Bert et al. [13] to
include one more degree of freedom: lateral translation of the flywheel rim

with respect to the hub.




In the majority* of the major spin-testing facilities in the United
States, the flywheel is pendulously supported by a vertical quill shaft, which
in turn is mounted concentrically at its top end to an air-turbine drive
system. The first analysis to consider the turbine-wheel dynamics and the
flexibility of the turbine shaft on its bearing supports was the work of Bert
and Chen [17]. This was a lumped-parameter analysis which included six degrees
of freedom: lateral translation and tilt of the flywheel rim, flywheel hub,
and turbine wheel. This analysis was later extended by Chen and Bert [18] to
include two more degrees of freedom: translation and tilt of an external vis-
cous damper mounted between the flywheel shaft and ground. Further studies of
this system, with a more refined variable-coefficient model of the damper, were
reported in [19].

A11 of the FRD (flywheel rotor dynamics) analyses mentioned so far have
been lumped-parameter analyses. To the best of the present investigators'
knowledge, the only FRD analyses which considered the distributed nature of
the stiffness and mass of the shafts were the limited applications of finite-
element codes reported in [16,20].

The purpose of this report is to present FRD analyses of flywheels supported
in a manner typical of current flywheel test facilities, i.e., with the flywheel
pendulously supported by a quill shaft concentric to a ball-bearing-supported
air turbine and provided with oil-type external damping. Based on the studies
in [18-19,21], it can be concluded that the internal flexibility between the

flywheel rim and hub, even in such a flexible band system as in the Sandia

*These include: Johns Hopkins University Applied Physics Laboratory,
Laurel, MD [14]; Oak Ridge Flywheel Evaluation Laboratory, Y-12 Plant, Oak
Ridge, TN [15]; Sandia National Laboratories, Livermore, CA [16]; and General
Electric Co., Corporate Research and Development, Schenectady, NY. One
exception is the Rocketdyne facility at Canoga Park, CA, which has provisions
for a horizontal shaft mounted on a fixed bearing support at each end.



20-inch-diameter flywheel, has a negligible effect on rotor dynamics for
speeds up to design burst speedsf Furthermore, in view of the long length
of the damper on the 4-inch Barbour Stockwell air turbine as used in the
Oak Ridge Flywheel Evaluation Laboratory [15], it was decided to assume "
that the damper is constrained to move only laterally (no tilting). Thus,
one system model used in the present investigation is a seven-degree-of-
freedom Tumped-parameter analysis. The other is a combined model consisting
of three shafts modeled as distributed-parameter elements and the remaining
rigid-body mass elements.

The three kinds of analyses conducted are the same three considered in
[18]:

1. Free whirling

2. Routh-type stability criteria

3. Forced whirling due to both mass eccentricity and initial tilt

of the flywheel

However, here, in the free whirling analysis, results are presented for mode
shapes as well as Campbell diagrams (whirl maps of frequency versus running
speed).

Detailed numerical results are given for a baseline flywheel system.
Then the results of parametric studies are presented to show the effects of
a variety of system parameters.

Suggestions for further research in the area of flywheel rotor dynamics -

are presented in Appendix F.

*Interna1 flexibilities of various flywheel systems are studies in Part ﬁii
IT of this project.




2. LUMPED-PARAMETER MODEL

The most widely used approach to model mathematically the lateral
dynamic behavior of rotating machinery is the lumped-parameter model. In
this approach, each of the bulky masses of the system is treated as a rigid
body and each of the flexible, dissipative shafts is treated as a lumped
complex-stiffness spring. Since the system is a rotational one, the
combination of centrifugal force and gyroscopic action must be included, as
first suggested by Stodola [22] in 1918; see also [6]. A very clear discussion
of the rotor dynamics of single-shaft, single-rotor systems was presented by
Hartog [23].

The literature contains a few lumped-parameter analyses of more complicated
systems involving more than one rigid body and/or flexible shaft, for example, [18,

24 - 28]. The methodology used here follows that presented in [18].

2.1 Description of Model

The flywheel system,mounted in an air-turbine-driven flywheel testing
facility,is modeled as shown schematically in Fig. 2.1. The turbine is modeled
as a rigid-body mass clamped to a turbine shaft which is mounted 6n ball bear-
ings, assumed to act as momentless elastic supports. Concentric within the
turbine shaft is the flywheel or quill shaft. It is'clamped at its upper end
to the turbine, and also is assumed to be supported by the bottom end of the
turbine shaft, due to the very small clearance at that point. At a relatively
short distance below the lower turbine bearing, an oil-type damper connects
the quill shaft to ground. Due to the high length-to-diameter ratio of the
damper assembly, it is assumed that the damper restrains the quill shaft
from tilting, so that it is free to move only radially. The flywheel itself

is modeled as a rigid-body mass clamped to the lower end of the quill shaft.
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2.2 Free Whirling Analysis

In the presence of gyroscopic action and in the absence of excitation

and damping actions, the equations of motion of a multi-degree-of-freedom,

. . . . *
Tumped-parameter, linear dynamic system can be expressed in matrix form as

M1{q} - i[G]{q} + [K]{q} = {0}

(2.7)

Here, [G], [K], and [M] are the respective gyroscopic, stiffness, and mass

matrices, i = /-1, and {q} is the generalized displacement vector. For the

system modeled as shown in Fig. 2.1, {q} is

where r is lateral displacement, ¢ is tilt, and subscripts f, d, i, and t

{q} = {rfs¢f,rdaria¢isrt9¢t}

(2.2)

refer to the flywheel, damper, intermediate mass, and turbine, respectively.

Note that ¢d = 0 because of the details in the damper construction. The

matrices [M] and [G] appearing in equation (2.1) are defined as

M =

"¢

Taf

(2.3)

(6] =

puser

0

* See [18] for derivations of governing equations.

I

pf

Q

0

(2.4)



To obtain the stiffness matrix [K], we start with the following
generalized force-generalized displacement relations expressed in compliance

form (see Appendix A for details):

I C :
Ff r'f
Me b )
Fq "4
M ¢

14 4% - (M (2.5)

Fi "y |
M; b
Ft | "t
M ¢

Lt ALY

Inverting the equation (2.5) and setting ¢d = 0, one obtains
\
\

(¢ [ ¢
Me bf
Fa "4
M _ 0

¢ 4 - K] { > | (2.6)
i | "
M; ¢
Ft "t ;
M ¢

L ) \ t)

where [a]-l = [K]. Hence, by deleting the fourth row and fourth column in (K1,

one has




() a
Fe e
Me b
Fy ry
«Fr - (KIS ry b (2.7)
M ¢
Ft "t
M { * |

Note that Md is an unknown which could be calculated upon knowing {q}.

We assume the form of solution for {q} as
_ =y dwt
{q} = {qle (2.8)
where » is real. Substituting the above into equation (2.1), we obtain
-w?[M]{q} + w[G]{q} + [KI{q}={0} (2.9)

Premultiplying by [M]'1 and rearranging yield

o[MIT624a) + [MTUIKIME) = w2(@) (2.10)
Let
[B,] = [MIT'[6] , [I] = identity matrix , |
(8.1 = MI7'[K] ., [0] = zero matrix |, (2.11)
and 2
{(p} = wiq)

Thus, equation (2.10) becomes

w{p} (2.12)

(8,165} + [8,14d) =
or _
o1 'm | [@ @)
-=——— === -- = w - (2.]3)
(8,1 | (8,1 | | )
|

which can be solved numerically by standard eigenvalue algorithms.
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2.3 Stability Analysis

For the stability analysis, internal material damping (hysteretic damping)
*
is incorporated by using complex stiffness [K ] and adding external viscous

damping (in the system damper) to equation (2.1):
[MIta} - i[G1{a} + [C14d} + [K' Tta} = {0} (2.14)

where for the presént system the only external damping [C] present is located

at the system damper (coefficient Cd):

— -
0

[c] = 0 ‘ ' (2.15)

0

— ved

In equation (2.14), [K*] is a complex stiffness matrix which is derived in the
same way as [K] in Section 2.2 except that the moduli E and G used in the [a]
matrix in Section 2.2 are replaced here by the corresponding complex moduli

* *
E and G defined by

£ = (1+iy)E , & = (1% iy )G (2.16)

A solution of the form {q} ='{a}ei“’t for equation (2.14) is assumed, where
w=wp iwI, and wp and wy are the respective real and imagfnary parts of w.
Note that the response {q} will grow exponentially with time if -0y is positive.
Denoting -wy as the growth factor, we see that a positive growth factor causes

instability of the system and a negative growth'factor the stability of the
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system (by exponentially attenuating the disturbances). In equation (2.16)
the positive sign is used when 9 < g and the negative sign when Q > wp -
(See Section 4.2 for a detailed discussion.) With the assumed form of

solution and equation (2.14), we obtain

-w2[M]{q} + ©[G){q} + iw[C]{q}+ (K1) = (0) (2.17)
Premultiplying by [M]™' and rearranging yield
[IMI7Y(L6] + i[C])14a) + (MMM KT 134a) = w2(d) (2.18)

Using the definitions of {p}, [I], and [0] previously defined in equations

(2.11), we can rewrite equation (2.18) as

! - -
o] , I[1] {q} {q}
et i IR S SRR S (2.19)

where [BY] = [M]7}([6] + i[C]) and [B}] = [M]™'[K"].
To resolve the difficulty in using different signs for the complex
stiffnesses in different regions in the wp = Q plane, the above eigenvalue

problem is solved twice at each rotational speed, once with the plus sign

and then with the negative sign. The real component of « is compared to the
rotational speed Q. If the relation between Q and wp is not satisfied,
that wy is discarded. Then the stability growth factor, -wys is plotted

against rotational speed @ to determine stability plots.

2.4 Forced Whirling Analysis

Here, the internal material damping does not come into play because
the synchronous motion does not induce an alternating stress state in the
shaft. Hence, with the addition of the steady-state harmonic exictation

vector on the right side, the governing equation of motion is
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[M1{q} - i[61{q} + [CI{q} + [K{q} = (Fle %t (2.20)

Here, the excitation vector can be expressed as

( mfreQ2 A
(Tgg - Tpp)ogace™®
0
{F} = < 0 } (2.21)
0
.
\ 0 p

where L is the mass eccentricity, ¢0 the initial tilt, and 8 the phase lag
between the in-plane eccentricity re and initial tilt 4 (see Fig. B9).
The steady-state solution is

iqt

{q} = {qle (2.22)
Then, equation (2.20) becomes
[-22[M] + @[G] + i[C] + [K]1{q} = (F} (2.23)

Note that {q} consists of the steady-state amplitudes of the seven degrees

of freedom of the system, as defined in equation (2.2).
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3. COMBINED (DISTRIBUTED AND LUMPED-PARAMETER) MODEL

To more accurately model the lateral dynamic behavior of rotating mach-
inery, one can model the flexible shafts as elements having distributed elastic,
damping, and mass properties. This approach has been used before for simple,
single-rotor systems having a thin shaft modeled as a Bernoulli-Euler beam
[8,29-30] or a thicker shaft taken to be a Timoshenko beam [31-33]. The pre-
sent work is an extension of the latter work to multimass, multishaft systems
and it is unique, except for some concurrent research [21], in comparing results

obtained by the combined model with those of a lumped-parameter model.

3.1 Description of Model

The primary difference between this model and the strictly lumped-parameter
model discussed in Section 2 is that here the turbine shaft and the quill shaft
are modeled as distributed-parameter elements; see Fig. 3.1.

The assumptions on which the analysis is based are:

1. The shafts are treated as flexural systems with axisymmetrically dis-
tributed mass and stiffness.

2. The effects of rotatory inertia, transverse shear deformation, gyro-
scopic action, and, for the quill shaft, the pendulum-effect moment due to the
dead weight of the flywheel, are included.

3. The coupling between flexural and torsional vibrations is neglected.

4. A1l components are assumed to be geometrically perfect.

5. The shafts are assumed to be of linearly elastic material and under-
going small deflections.

6. The flywheel and air turbine (in the spin-test configuration) are
considered not as point but as rigid, finite masses, i.e., their lateral trans-

lational inertias, rotatory inertias, and gyroscopic actions are included.
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7. The only external damping included is a linearized oil-type damper
which is assumed to provide only axisymmetric radial damping forces and is
constrained from tilting. (Aerodynamic dampihg is neglected, since the
flywheels will be expected to operate in an evacuated container.)

8. A1l of the support bearings are assumed to be ball bearings, approxi-

mately axisymmetric in nature, and modeled as momentless elastic supports.

3.2 Free Whirling Analysis

A single reduced differential equation governing the whirling of a shear-
flexible shaft is derived (see Appendix B.2) with the shaft deflection, w, as
the dependent variable. To solve the system, consisting of such a differential
equation for each shaft, for the relative displacements and eigenvalues
(natural whirling speeds) suitable boundary conditions and continuity condi-
tions are written (see Appendix B.3). Note that the system is composed of
three whirling shaft sections and the continuity conditions are those which
connect adjacent shaft sections appropriately.

The boundary and continuity conditfions are cast into a matrix form (see

Appendix B.4) (A,

[c] 4 P22 %= (o) (3.1)
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where A;;, ..., Ay, are the unknown constants in the assumed solution for
shaft section 1; Ay, ..., Ay, for shaft section 2; and A3y, ..., A3, for
shaft section 3. In order to have a nonzero solution for the set of
equations in the matrix equation (3.1), the determinant of [C] should be
zero. From this condition the eigenvalues (natural whirling frequencies)

of the system are computed.

3.3 Forced Whirling Analysis

In this analysis, the effects of mass eccentricity (re) and initial tilt
(¢°), which are shown in Fig. B9, are taken into account when formulating the
boundary conditions on the shaft to which the flywheel is attached. The set
of equations in equation (3.1) takes the following form (see Appendix B.5):

( Allw ( -mer )

e
-iB
A12 '¢°(Ipf" Idf)e

BERR S 4 (3.2)

>
N
=

O © © o © o o ©o o o

\ Asy / \ /

From equation (3.2) the forced whirling responses of any point on a shaft

section can be calculated.

¥
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4. NUMERICAL RESULTS FOR A BASELINE FLYWHEEL SYSTEM

"In this section, we present and discuss the numerical results obtained
by applying the various analyses derived in Sections 2 and 3 to a specific
flywheel system, the 23-in.-diameter, 80-w-hr/kg wheel developed by Garrett
AiResearch in Torrance, CA and described in detail in [34]. The air-turbine-
drive data are for a four-inch Barbour Stockwell turbine as installed at
the Oak Ridge Flywheel Evaluation Laboratory [15]. This flywheel/air turbine
combination is used as the baseline for various parametric studies in Section
5 and is hereafter referred to as System A for brevity.

4.1 Free Whirling: Campbell Diagrams and Mode Shapes

One of the most informative ways of presenting numerical data on rotor
dynamics is the Campbell diagram or "whirl map" originated in 1924 [35] in
connection with turbine-disk flexural vibration. This diagram is a plot of
various natural whirling frequencies of lateral vibration versus rotational
speed. A Campbell diagram for System A, as predicted by the lumped-parameter
analysis derived in Section 2.2, 1is shown in Fig. 4.1%. As is customary, in
carrying out this analysis, we omitted both internal matgria] and external
viscous damping. Since this model has seven degrees of freedom, equation
(2.2), it has seven natural frequencies (and a Tike number of associated
vibration modes) at zero rotational speed @ (see the intercepts along the
vertical axis in Fig. 4.1). However, as @ is increased, each of these
frequencies (and associated mode shapes) fsp]its" into two distinct
branches. The deviation betweén_thé two branches associated with a given
zero-speed mode is caused by the gyroscopic tilting moments induced in the

various masses which are free to tilt. The branches having the higher

*Complete FORTRAN computer documentation is provided in Appendix C. Of
course, the program can be used to obtain Campbell diagrams for other fly-
wheel systems in a spin-test facility of the type assumed here.
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frequencies in each set are associated with forward whirling, i.e., the
shaft is whirling in the same direction as the rotation. The branches
with the lower frequencies in each set are associated with backward (or
retrograde) whirling, i.e., the direction of whirling is opposite to the
direction of rotation.

Notice that the lower modes have the most pronounced splitting
deviation. In fact, within the range of the plot (rotational speeds up to

100,000 rpm*), no splitting is discernible in the two highest frequency

modes. The net effect of the gyroscopic action is to stiffen the system for

forward whirling and soften it in the case of retrograde whirling.

In rotating machinery, one of the most important classes of excitation
is that caused by mass eccentricity and initial tilt of the principal axes
of the larger rotating masses. This is still true, although to a smaller
extent, even in the case of a carefully balanced system. The frequency of
this sinusoidal forcing system is the same as the rotational speed. Thus,
the intersections of the dotted 1ine labeled w = @ (a straight line, in Fig.
which 1is a Tlog-log plot) with the various modal-frequency curves result

in so-called first-order "critical speeds”. Although all of these are

potential resonances, experiments [7,11,36] have shown that those associated

with the forward whirling branches are more severe than those associated
with the retrograde branches. Furthermore, there is considerable variation
in the "severity" of the various forward-whirling critical speeds (see
Section 4.3). Practical experience has shown that generally the lower-

speed critical speeds are much less important than the higher-speed ones.

*The spin-test facility is rated to only 60,000 rpm.

4.1
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Theré are two reasons for this: first, the higher thg rotational speed
the higher the kinetic energy in the system and the stiffer it becomes

(in forward whirling). Secondly, and perhaps more importantly, it is
usually much easier to accelerate sufficiently rapidly through lower-speed
critical speeds than higher-speed ones [7,10,37]. The reason for this is
that typically air-turbine drives have a torque capacity that decreases as
the rotational speed is increased [13], pp. 48-51.

Another important class of excitation may result from a combination
of gravity force (only in the case of a horizontal or -nearly horizontal
axis of rotation) and nonaxisymmetric shaft cross section (due to eijther
small errors in machining or the presence of a fatigue crack) [38]. This
excitation has a frequency of exactly twice the rotational speed. Hence,
the upper dotted line labeled w = 20 determines this excitation frequency,
and the associated intersections with the various whirling branches give
the second-order critical speeds (read from the abscissa, rotational speed)
[23], pp. 247-249; [39], pp. 290-294.

A11 of the first- and second-order critical speeds predicted for
System A up to 100,000 rpm are listed in Table 4.1.

To supplement the information provided in a Campbell diagram, experi-
ence has shown that mode shapes are very helpful. In the case of a lumped-
parameter system, the mode shapes depict the relative motions* of the
various rigid-body masses of the system.

The mode shapes for System A predicted by the lumped-parameter-model

analysis at speeds close to the first- and second-order critical speeds

*In free whirling, as in free vibration of a nonrotating system, only
relative motions, not absolute ones, can be determined.

-
-3
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Table 4.1 Critical Rotational Speeds, in rpm, for System A (Garrett)

Order First (w/9 = 1) Second (w/9 = 2)

Mode & Branch®* | 1R 1F 2R 3R IR 1F 2R 2F 3R 3F 4R 4F

Lumped Model 301 1,027 12,450 54,480 | 172 269 6,615 16,020 30,530 42,510 64,400 61,330
Combined Model | 304 1,038 14,140 56,120 } 173 271 7,516 18,100 31,400 43,390 74,000 70,050

* ¥k
Experimental 1,040

*For example, 1R denotes the first (lowest) mode, retrograde branch, while 4F denotes the fourth
mode, forward branch.

**Data provided by Dr. R.S. Steele, Union Carbide Corp., Nuclear Division, Oak Ridge, TN.

Le



22

are shown in Figs. 4.2 and 4.3. They were plotted by computer graphics,
using simple, straight 1ines to connect adjacent mass-center locations. The

dotted lines denote flexible shaft portions, which obviously will deflect

-~
>

in smooth curvilinear fashion (as will be seen in Fig. 4.5). Also note that

in each of the mode-shape plots the turbine wheel is at the top of the page
and the flywheel is at the bottom. As would be expected at a speed (1,023 rpm)
near the first-order critical speed, the most drastic mode in Fig. 4.2 is the
first one (1F) and in this mode the main action is taking place in the lower
end of the quill shaft, the damper and turbine being relatively unaffected.

It can be seen in Fig. 4.3, at a rotational speed of 269 rpm, that the
damper is operative in the second and fourth forward modes, but not the
first, third, and fifth or higher forward modes. At both 15,849 and 41,687
rpm, the damper is operative for the first, second, and fourth forward modes.
In contrast, at 63,096 rpm, the damper is operative in only the first, third,
and fourth modes.

Although the combined model of the system has an infinite number of
forward modes, each with a forward and retrograde branch, only a relatively
small number intersect the w = 2 and w = 22 lines in the region up to a
rotational speed of 100,000 rpm. These are shown in the Campbell diagram,
Fig. 4.4. The associated first- and second-order forward and retrograde
critical speeds are listed in the second line of Table 4.1.

Comparison of the Campbell diagrams in Figs. 4.1 and 4.4 shows very
good qualitative agreement, especially at the lower rotational speeds. The
major difference between the two is that in the combined model, the critical

speeds are shifted into higher regions. This is especially noticeable at
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Fig. 4.3(b) Mode shapes of the forward branches of the seven modes
at 15,849 rpm, near the second second-order critical
speed, using the lumped-parameter analysis (System A).
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speed, using the lumped-parameter analysis (System A).
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higher rotational speeds and higher modes. This same trend is also revealed
in Table 4.1. This trend suggests that the distributed shaft masses stiffen
the system.

It is interesting to note that in the region covered (up to 100,000
rpm rotational speed), although this system has many second-order forward
critical speeds and first-order retrograde ones, it has only one first-order
forward critical speed. For this critical speed, there is good agreement
among the two different models and test data obtained at Oak Ridge, as can be
seen in Table 4.1.

The mode shapes associated with those forward branches that intersect
the w = @ and w = 20 Tines (in Fig. 4.4) are plotted by computer graphics
in Fig. 4.5. Again, in the mode shapes, the point of attachment of the turbine
shaft to the turbine wheel is at the top of the page and the point of attach-
ment of the flywheel to the quill shaft is at the bottom. An idea of the
relative magnitudes of the tilts of the rigid masses can be obtained by
observing the slopes of the shafts at the points of attachment of the respec-
tive rigid masses. It is noted that now the shafts deflect smoothly in con-
trast to those depicted in Figs. 4.2 and 4.3.

It is important to note the different basis for the mode shape plots
in Figs. 4.2 and 4.3 on one hand and Fig. 4.5 on the other. In Figs. 4.2

and 4.3, the mode shapes associated with a fixed rotational speed are plotted,

while in Fig. 4.5, those associated with a fixed order (w/Q ratio) are shown.
Thus, the mode shapes obtained by means of the two different analyses can be

compared only for the conditions listed in Table 4.2.
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Fig. 4.5 Forward-whirling mode shapes using the combined analysis
for the branches that intersect the Tines (a) w/2 = 1 and
(b) w/@ = 2, at speeds corresponding to their intersections.
The mode shape corresponding to the second first-order
forward critical speed (2F at 108,500 rpm) is also included

in (a).
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Table 4.2 Conditions for Comparison of Forward Mode Shapes
for System A (Garrett)

Rotational Lumped-Parameter Model Combined Model
Speed Fig. Mode & Branch Fig. Mode & Branch
269 4.3(a) 1F 4.5(b) 1F
1,023 4.2 1F 4.5(a) 1F
15,849 4.3(b) 2F 4.5(b) 2F
41,687 4.3(c) 3F 4.5(b) 3F
63,096 4.3(d) 4F 4.5(b) 4F

In both models, the mode shapes associated with the retrograde branches
were very similar to the forward ones in the vicinity of the corresponding

critical speeds and thus, for brevity, are not shown here.

4.2 Stability Growth Factor

Rotor instability due to internal material damping (hysteresis) was
first reported in 1924 by Newkirk [40], who observed it experimentally. It
was first explained by Kimball [41] in the same year. It has been discussed
in several books [9], pp. 17-69, [23], pp. 295-299. Recently, Iwatsubo
[42,43] has presented two extensive surveys of this topic.

Hysteresis in the stress-stfain relation of shaft material involves a
damping force which, in linear theory, is proportional to the first derivative
of the strain (and, thus, of the lateral deflection of the shaft) in confrast
to the restoring force which is proportional to strain (or deflection) itself.
Thus, there is a 90° phase difference between the damping force (Fd) and the
restoring force (Fr)' For forward whirling, there are three cases, depending
upon the relative magnitudes of rotational speed () and whirling speed (wR),
as shown in Fig. 4.6. The relative rotation of the shaft with respect to a

frame of reference, attached to the shaft and rotating with it, is shown at
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Fig. 4.6 Relationship between side force due to hysteretic damping
(Fq) and restoring force $F ) due to shaft stiffness
for forward whirling for as $ < wp's (b) a = wp s (c) @ > wp -
the top of the figure for each of the three cases. In each case the diagram
is drawn so that the shaft center (SC) is deflected upward from the center
of rotation (RC); thus, the top flexural fibers of the shaft are in tension
and those at the bottom are in compression. Also, as a consequence of the
upward deflection, the restoring force (Fr)’ due to the elastic stiffness
of the shaft, acts downward.
In case (a) for running speed below the first whirling frequency (wR),
(?d) acts in the opposite direction to the first-critical whirling motion
of the shaft. Thus, the motion is damped out, even in the absence of external -
damping. Since Fd leads Fy by 90 degrees with respect to the rotational-
speed direction, a positive sign must be used in equation (2.16) when Q < -
In case (b), since there is no relative rotation between the shaft

whirling (wR) and the shaft rotation (o), the shaft does not undergo any

hysteretic/cyc1ing and hence, Fd = 0.
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In case (c), the side force F4 acts in the same direction as the
forward whirling motion of the shaft, and unstable motion would result
unless there is sufficient external damping action in the oil-type damper.
Since Fd lags Fr by 90 degrees with respect to the rotational-speed direc-
tion, a negative sign must be used in equation (2.16) when @ > -

The total force on a shaft, in general, is given by

F=F +if,=F(1+iy)

which is proportional to
*

(Ew)(1 + 'iYS) =tw

where i = /-1, v, = loss tangent (= Fd/Fr), E = Young's modulus, E* = complex
modulus, and w = shaft deflection.

For retrograde whirling, the situation is as depicted in Fig. 4.7. Here,

Fd is always opposed to the whirling motion and thus, the system should be

stable at all rotational speeds.

wt
/5 3
—
/ \
w
Fig. 4.7 Relationship between damping l
and restoring forces for W
retrograde whirling. F,
8 J‘

To summarize, instability due to internal damping of the shaft can occur
at most only in forward whirling with @ > wg » i.e., to the right of and below
the w = @ line in the Campbell diagram (Fig. 4.1). This general statement is

supported by the analytical results obtained for System A by means of the
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Tumped-parameter stability analysis (see Section 2.3) and depicted by the
plots of growth factor, -wps Versus rotational speed in Figs. 4.8 and 4.9.
Thus, all of the retrograde branches have zero or negative growth factors,
i.e., -wg is negative. The second, third, and fifth retrograde branches -
are shown in Fig. 4.8. The first retrograde branch has a constant value of
-~y = 0 for all rotational speeds, while the fourth, sixth, and seventh
have constant values of —wp < -200; thus, they are not plotted.

The non-trivial stability plots for the forward branches are shown in
Fig. 4.9. The sixth and seventh forward branches are not shown, since they
have simply constant values of ~up < -200. Only the first forward branch
enters the region q > wp (the region of potential instability for forward
whirling) by cutting across the first-order 1ine (dotted line ¢ = o in Fig.
4.1) at the first-order critical speed. Thus, we expect the first forward
branch to become unstable at the lowest first-order critical speed as pre-
dicted by the lumped-model free whirling analysis (1,027 rpm from Table 4.1).
This is indeed the case as can be seen in Fig. 4.9(a), where the growth
factor for this branch becomes positive (unstable) above 1,027 rpm. In order
to show the instability regions more clearly, a considerably enlarged view
of Fig. 4.9(a) is shown in Fig. 4.10. For small values of external damping
in the system's oil-type damper (Cd < 1.0 1b-sec/in. approximately) the
instability region extends indefinitely (at least up to 100,000 rpm) from
1,027 rpm upward. However, for larger values of Cd (> 2.0 1b-sec/in. approxi- -
mately), the unstable region has a finite band-width which has an upper limit
that decreases as Cd is increased. The situation is summarized in Table 4.3.

Unfortunately, an oil-type damper is not linear [19]; thus, it is

difficult to select a proper value of linear damping coefficient.
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Table 4.3 Effect of External-Damping Coefficient on the
Upper and Lower Limits of the Unstable Region
for the First Forward Branch .

Limit External damping Cd’ 1b-sec/in.

0 1 5 10

Lower 1imit of
instability band, rpm | 1,027 1,027 1,027 | 1,207

Upper Timit of At least

instability band,.rpm. | . « - .1100,000.( 5,012 | 3,162"
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4.3 Forced Whirling Response

Potentially the excitation for forced whirling can be misalignment of
any masses in the rotating system. This misalignment is of two types:

1. Eccentricity, i.e., the radial distance between the mass center
and the center of rotation,

2. Tilt, i.e., the smallest angle between a principal-inertia axis*
and the axis of rotation.

The nature of the design of current and projected energy-storage fly-
wheels is such that by far the largest rotating mass in the system is the
flywheel itself. For example, in the system analyzed by Bert et al. [13],

p. 13, the flywheel assembly comprised 76.6% of the total rotating mass. Thus,
in the present analysis, the only mass eccentricity and jnitial tilt considered
are those associated with the flywheel itself. Values believed to be typical
for a flywheel system such as System A, when installed on the 4-inch Barbour
Stockwell air-turbine spin-test facility, are re = 0.001 in. and 9 = 0.0025
radians, respectively. Thus, these values are used in the present study.

It has been found in previous studies [19,21] that the phase angle

between the eccentricity and tilt (see Fig. 4.11) has an important effect on

*For an arbitrary rigid body, there exist three mutually perpendicular
axes passing through the mass center (x=y=2z=0) such that the mass pro-
ducts of inertia (J xy o dV, I yzpdv, JV zxp dV) are exactly zero. These

v v
axes are called the principal-inertia axes and the mass moments of inertia

- = V2 + 32 - = 72 4 42 - = X2 + v2 :

(Imx Jv(y +22)p dV, Imy J;(z +x2)p dv, I Jv(x +y2)p dV) associated

with them are relative minima or maxima known as principal mass moments of

inertia.
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LOWEST POINT ON THE FLYWHEEL
THAT GOES INTO THE PAPER FLYWHEEL WITH NO

N INITIAL TILT
.%) >
\ ; fo

¢

\HIGHEST POINT ON THE
FLYWHEEL THAT COMES
(a) OUT OF THE PAPER

Fig. 4.11 Representation of mass eccentricity and initial tilt as vectors
for convenience of defining the phase relations between them,
(a) g = 0, (b) B = 180 degrees.
the forced whirling response. Probably this phase angle is a random variable
in actual systems, however, there is no body of empirical data available on
this parameter, especially for flywheel systems. Thus, in the present study,
this angle is taken conservatively to be 180 degrees, since it has been
found that this angle results in the largest response [21].

As mentioned previously in Section 2.4, the synchronous nature of forced
whirling precludes internal material damping from being operative (see also
case (b) in Fig. 4.6) here. Since external damping in the oil-type damper tends
to decrease the forced whirling response, the most drastic case ié that of

no external damping. Figure 4.12 shows the response of all seven degrees of
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freedom of the lumped-parameter model with no external damping. The solid
curves represent the amplitudes and the dotted curves represent the cor-
responding phase lags with respect to the radius (from the center of rota-
tion) on which the flywheel mass center lies.

Let the displacements (due to whirling) of the various mass centers
from their undeflected original positions be imagined as different radius
vectors. Also, assume that the tilts of the various masses (induced due to
whirling) are represented as line vectors such as the one depicted in Fig.
4.11 for the flywheel. Now the phase angles that are represented in all
the forced whirling plots depict the lagging of these vectors with respect
to the radius vector of mass eccentricity Te in Fig. 4.11. Thus, at any
specific shaft running speed, these vectors maintain their relative positions
(generally not in a single plane when there is an external damping) while
whirling at the shaft running speed. It is noted that in the absence of
external damping, the response at resonance theoretically increases without
bound. Also, the phase lag is always either 0 or 180 degrees, except at
resonance for which it changes by + 180 degrees. (Note that a 360-degree
phase lag is the same as O degrees.)

The system's responses for a rather large external damping coefficient

(C, = 10 1b-sec/in.) were found to be essentially identical to the corre-

d
sponding ones shown in ng. 4.12. Thus, the damper is predicted to be
ineffective.

Three responses, for zero external damping, as determined by the combined
model, are shown in Fig. 4.13. For brevity only the flywheel responses

(rf and ¢f) and damper response (rd) are shown. The close agreement between

the corresponding responses presented in Figs. 4.12 and 4.13 is gratifying.
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Again, when the external damping coefficient was increased to 10 1b-sec/in.,
there was no noticeable change in response.

The lumped model predicts a slightly larger damper displacement than
the combined model. This is believed to be due to a slight difference in
the technique used to obtain the computer plots. For the lumped model, the
rotational speed Q@ was changed in 6-rpm increments while in the combined
model, 10-rpm increments were used. It so happened that one of the points
plotted fell closer to the critical speed in the lumped model than in the

combined model and hence the resonant response was larger.
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5. PARAMETRIC STUDIES

The numerical results presented in Section 4 completely describe the
free and forced whirTing responses and stability characteristics of a parti-
cular flywheel system (System A) which was used as a baseline. However, to
obtain data applicable to all of the existing.or conceivable flywheel
systems would require not only extensive computafions but also a prohibitive]y
large number of plots. Thus, in this section, the present investigators have
chosen to give in tabular form the results of parametric studies in which
selected parameters are varied.

In this section, two additional existing flywheel systems are studied.
These are the General Electric Company's constant-thickness, alpha-ply,
disk-ring-type flywheel [44] and the Lawrence Livermore National Laboratory's
tapered-thickness, quasi-isotropic, composite-disk-type flywheel [45]. These
are designated hereafter simply as Systems B and C, respectively.

5.1 Forward Critical Speeds

In Section 4.1, the importance of the first (lowest) forward critical
speed of the first order was discussed for System A. The dynamic parameters
of Systems A, B, and C are listed in Table 5.1 along with their first forward
critical speeds of first order. In all three of the systems the second
first-order forward critical speeds occur at 108,500 rpm. It can be seen -
from the mode-shape analysis in Fig. 4.5(a) of Section 4.1 that at 108,500
rpm the main action takes place at fhe turbine end with the flywheel remain-
ing inactive. Further, the first and second first-order forward critical
speeds are so far apart that there is no coupling between them. Thus,

variations in flywheel parameters do not affect the forward critical speed

related to the turbine-end action significantly.
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Table 5.1 Parameters of Systems A, B, and C and Their
First First-Order Forward Critical . Speeds

m I I t Q
f pf df I g/mt2 1 ./1 -
System (1b-s2/in) (1b-in-s2?) (1b-in-s2?) (in) ‘pf'f"f df’ 'pf  (rpm)
A 0.0951 8.517 4.830 7.05 1.802 0.5671 1,038
B 0.0576 2.036 1.648 3.45 2.970 0.8094 1,907
C 0.0336 1.645 0.823 3.15 4.934 0.5003 14,230

The effect of varying flywheel mass on the first first-order forward
. . . . 2
critical speed is summarized in Table 5.2. Here, tf, Ipf/mftf , and Idf/lpf
are held constant at the same values as those of System A. Notice that Q,,
increases as the mass is reduced, like a single-degree-of-freedom spring-

mass system, with Qll/ﬁ;'staying constant.

Table 5.2 Effect of Flywheel Mass (mg) on the Lowest
First-Order Forward Critical Speed®

m I I 2

(b-s2/in) (1b-tms?) (1b-ines?) (rpm) P11
0.0951 8.517 4,830 1,038 320
0.08 7.165 4,063 1,133 320
0.06 5.373 3.047 1,307 320
0.05 4.478 2.539 1,432 320
0.03 2.687 1.524 1,848 320

*Fixed parameters: e/mete? = 1.802, Iye/1 ¢ = 0.5671, t. = 7.05 in.

fn order to study the influence of Idf on the lowest first-order forward
critical speed (Q4y,), Mg, Ipf’ and tf were held constant at values corresponding
to those in System C, and Idf/Ipf ratio was varied. The results are presented
in Table 5.3. Thus, increasing Idf is seen to bring down the c:itica] speed.
Flywheels used in fixed-based applications usually have an Idf/Ipf ratio > 1.

For flywheel systems of such ratios (with fixed parameters of System C), the

second first-order critical speeds (9,,), are listed in Table 5.3. The critical
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9

speed associated with the large motions of the intermediate mass and the

turbine still remains at 108,500 rpm for all the cases discussed in this

section unless otherwise stated. Further, unless mentioned otherwise, there

are no second first-order critical speeds below 100,000 rpm for all of the *

parametric cases studied here.

Table 5.3 Effect of Flywheel Diametral Mass Moment of Inertia (Igf)
on the Two Lowest First-Order Critical. Speeds?t

qu I,/ 211 2,
(1b-in-s2) df’ “pf (rpm) (rpm)
0.823 0.5003 14,230 f
0.987 0.6 12,400 none below
1.151 0.7 8,851 100,000 rpm
1.316 0.8 4,018 *
1.645 1.0 2,003 86,000
1.974 1.2 1,503 29,480

Fixed parameters: me = 0.0336 1b-s2/in, Ipf = 1.645 1b-in-s2, tf = 3.15 in.

In Table 5.4 the effect of Ipf’ with Mes Idf’ and te held constant at
their respective values as in System C, on the first first-order forward
critical speed is shown. From the results we see that as Ipf is increased,
the critical speed Q5 also increases. That is, with the other parameters

remaining the same, increasing I £ produces a larger gyroscopic action on

p
the system, thus stiffening the system in forward whirling.

What happens to the lowest first-order forward critical speed when the
non-bending length (tf in Fig. 3.1) of the quill shaft is increased? The
answer to this question may be seen by inspecting Table 5.5. Here, all the

parameters are kept the same as those of System C éxcept tf, which is increased.

.The decrease in 2, is explained as follows. Increasing length tf increases ﬁi’
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Table 5.4 Influence of Flywheel Polar Mass Moment of Inertia
(Ipf) on the Lowest First-Order Critical Speed*

Ipf 2 Q11
(1b-in-s2) Loe/Mets Lyg/ Toe (rpm)
1.000 3.0 0.8228 2,619
1.334 4.0 0.6171 9,358
1.645 4.934 0.5003 14,230

*
Fixed parameters: me = 0.0336 1b-s2/in, I = 0.823 1b-in-s2, te = 3.15 in.

Table 5.5 Effect of the Distance (tf) of the Flywheel Center of Mass
from the Lower End of the Quill Shaft on the Lowest First-
Order Forward Critical Speed (System C)

te 2,
(in) (rpm)
3.15 | 14,230
4.0 9,817
5.0 3,143
6.0 1,752
7.05 1,280

the moment arm at which the flywheel force is applied and thus, makes the
system more flexible and reduces @,,. Note that the lengths of the flexible
portions of the shaft sections have been held constant.

For purposes of comparison of the critical-speed characteristics of
Systems B and-C, all of the forward and retrograde critical speeds of first
and second order up to 100,000 rpm are listed in Tables 5.6 and 5.7,
respectively.

Although each system has three retrograde first-order critical speeds

and three retrograde second-order critical speeds in the range up to 60,000



Table 5.6 First- and Second-Order Critical Rotational Speeds (rpm) for
System B as Calculated by the Two Different Models

Order First (w/Q=1) ' Second (w/9=2)

Mode & Branch 1R 1F 2R 3R IR 1F 2R 2F 3R 3F 4R AF

Lumped Model 611 1,895 14,970 54,480 |347 535 7,740 10,230 30,530 42,500 61,530 62,160
Combined Model | 612 1,907 17,000 56,140 348 536 8,790 11,600 31,400 43,370 70,310 71,170

Table 5.7 Critical Rotational Speeds (rpm) for System C

Order First (w/0=1) RER ‘ ‘Second”(m/n=;2) '

Mode & Branch 1R 1F 2R 3R 1R 1F 2R 2F 3R 3F 4R
Lumped Model 765 12,540 18,980 54,490 452 1,000 9,814 38,640 30,540 42,580 62,010
Combined Model | 766 14,230 21,530 56,160 453 1,002 11,130 41,620 31,420 44,390 70,910

0S
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rpm, these should not cause any serious problems in spin testing*. Also,
each system has three forward second-order critical speeds in the range up

to 60,000 rpm. However, there should not be much excitation available to
excite such critical speeds unless the systems were operated with the shafts
horizontal instead of vertical. (We are assuming that the shaft out-of-round
tolerances are reasonably close to ensure axisymmetric stiffness of the
shafts.)

As previously mentioned on page 33, rotating machinery with a horizontal
axis of rotation has a double-frequency excitation source in the form of
gravity force. In pendulously supported flywheels, i.e., those supported in
vertical cantilever fashion from above, gravity also has an effect, but it
is a steady effect in the form of a restoring action. Thus, it is equiva-
lent to stiffening of the flywheel shaft and tends to increase the first-
order forward critical speeds. Since this gravity effect has not been
treated in the literature, except for simple single-mass systems, this
effect is investigated in detail in Appendix D.1.

A brief analysis which shows that the effect of steady applied torque
is negligible for flywheels in spin testing is contained in Appendix D.2.

Within the constraints of the model and the actual spin test facility,
two other parameters were varied independently for Systems A and B. One
parameter was the flexible shaft length L, between the flywheel and the end
of the damper nearest the flywheel (see Fig. 3.1). The other parameter was

the lower turbine-bearing spring constant Ksz‘ The two lowest first-order

*
See Section 5.3 for a discussion of the forced-response characteristics
of retrograde modes.
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v

critical speeds associated with these changes are presented in Tables 5.8

and 5.9, respectively.

Table 5.8 Effect of a 3.00-Inch Increase in Flexible Length L; on the Two
Lowest First-Order Critical Speeds (Ksz = 2 x 106 1b/in.) .

Original* With Increased L,

L, (changed 911 21 991

System from 0.7455 in.) (rpm) (rpm) (rpm)
A 3.746 in. 1,038 ‘ 286 85,650

B 3.746 in. 1,907 502 85,650

*
The original system had an Q,;, of over 100,000 rpm.

Table 5.9 Effect of Decreasing K.,, the Lower Turbine-Bearing Spring Con-
stant, to 2x 102 1b/in. on the Two Lowest First-Order Critical
Speeds (L, = 0.7455 1in.)

Original* With Decreased K¢y
Ksz (changed from 2, 2, 2,
2x 106 1b/in.) (rpm) (rpm) (rpm)
System A~ 2 x 102 1b/in. 1,038 441 4,822
System B 2 x 102 1b/in. 1,907 653 4,720

*See footnote for Table 5.9.

In studying the effect of decreasing the lower-bearing spring constant,
it was observed that the first-order critical speeds related to the turbine-
end action for Systems.A and B were lowered to 106,800 rpm and 104,000 rpm,
respectively. Notice that the effects of increasing L; and decreasing Ksz
are to decrease the critical speeds. More discussions on these effects can

be found in Section 5.3.

The following questions may arise in the reader's mind. Can the systems
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(A, B, and C) we have studied so far be simplified further for easier analysis?
Is there a faster way to compute the critical speeds than by the analyses pre-
sented in this report? Consider the lumped analysis presented in [11] for a
pendulously supported flywheel system with two degrees of freedom (flywheel dis-
placement and flywheel tilt). 1In order to apply this analysis to systems A, B,
and C, one must modify these systems such that the flywheel is supported pendu-
lously from the damper end nearest it. Thus, the flexible shaft length to be
used is L, (see Fig. 3.1). To obtain the first-order forward critical speeds,
the rotational speed is set equal to the whirling frequency and to obtain the
retrograde first-order critical speeds, the whirling frequency is set equal to
the negative of the rotational speed. The results are presented in Table 5.10.
Table 5.10 Comparison of Predictions on First-Order Critical Speeds (rpm) by

Analysis of [11] and the More Refined Seven-Degree-of-Freedom
Lumped Analysis of . this Report '

System 1F[11] 1F* 1R[11] 1R* R[11] - 2R*
A 1,038 1.027 301 301 23.110 12.450
B 1.919 1.895 611 611 27.890 14.970
C 23.170 12.540 765 765 35,620 18.980

*Calculated using the seven degree-of-freedom lumped model

Notice that the agreement is very good for the first retrograde (1R)
critical speeds. The numbers are reasonably close for 1F of systems A and B.
The refined model predicts coupling of the flywheel motion, to a small extent
(systems A and B) or to a large extent (éystem C), with the movements of the
rest of the masses in the model. Thus, the refined model is always softer
than the simplified model. As the extent of coupling increases, the difference
in the critical-speed predictions can be seen to increase. Thus, when there
are more than two degrees of freedom in the flywheel system, the simplified
two-degree-of-freedom model of [11] should be used with caution for critical-

speed predictions.
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5.2 Instability Limits
\ For pukposes of comparison, Tables 5.11 and 5.12 present the upper and

lower instability limits for Systems B and C (see Table 4.3 for System A).

Table 5.11 Effect of External Damping Coefficient on the Upper and Lower
Limits of the Unstable Region for the First Forward Branch*

of System B
External Damping Cy, 1b-sec/in.
Limit
0 1 5 10

Lower 1imit of instability 1,895 1,895 1,895 | 1,895
band, rpm ,

{Upper 1imit of instability ® At least 5,830 4,575
band, rpm 100,000

*A11 other branches are stable.

Table 5.12 Effect of External Damping Coefficient on the Upper and Lower
Limits of the Unstable Region for the First Forward Branch®

of System c
External Damping Cd, 1b-sec/in.
Limit :
0 1 5 10
Lower Tlimit of instability 12,530 12,530
band, rpm Stable at
Upper 1limit of instability % 15,540 all speeds : )
band, rpm

*All other branches are stable.

It is noted that System C is more responsive to an increase in external

damping than is System A or B. However,‘all three systems are stable with a

damping coefficient of 5 1b-sec/in. for speeds over 5,830 rpm (19.4% of a -

maximum operating speed of 30,000 rpm).
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5.3 Forced Whirling Response of Forward Branches

The effects of increasing the lowest first-order forward critical speed
to higher values on forced whirling response are shown in Figs. 5.1 to 5.3.

In Figs. 5.1 and 5.2, the forced response of System C (t. = 3.15 in.) for

£
Cd values of 0 and 10 1b-sec/in. are presented. Note that the resonance
response near 14,230 rpm is diminished by the addition of external viscous
damping. Figure 5.3 is the response of System C with tf = 7.05 in.; the
resonance occurs at 1,280 rpm. It was found that adding external viscous
damping (Cd = 10 1b-sec/in.) does not alter the response significantly at

all. Furthermore, the mode shape at 14,230 rpm for the lowest forward branch
showed a larger damper movement than that at 1,280 rpm. Comparing Figs. 5.1,
5.2, and 5.3, we see that at smaller resonance speeds the responses are sharper
than those at higher resonance speeds. Thus, smaller Jowest first-order
critical speeds can be easily passed through, even though the damper is
ineffective. At higher resonance speeds, the inability to pass through fast
enough to minimize the response is usually compensated for by the increased
effectiveness of the damper.

The effectiveness of a damper (in attenuating forced whirling
responses and helping in stability) at a critical speed can be better under-
stood by studying the mode shapes at that critical speed. For example, see
Fig. 4.5(b) of Section 4 which shows the mode shapes at various critical
speeds of the second order. From these mode shapes we see that the damper
has relatively large movements only at the second and fourth critical speeds.

Hence, all large motions in the system are likely to get dampened at these

critical speeds. Thus, a damper need not be effective at all critical speeds.
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Forced whirling responses were obtained for the cases when L, and Ksz
were changed independently. Increasing L; lowered 9;; (see Table 5.8), at
which only the flywheel had large displacements, and brought in a second
critical speed Q,; < 100,000 rpm in which the damper was the component
having the most displacement. Drastically decreasing the lower turbine-
bearing spring constant Ksz (see Table 5.9) also brought down 2;; and
introduced Q,; within the operating range of the system. In this parti-
cular parametric study, it was observed that there was an active

participation of the damper in the first critical speed which attenuated

all of the system's responses. However, it was noticed that at 2,; there
was a large motion of the intermediate mass and the damper was relatively
inactive.

5.4 Forced Whirling Analysis of Retrograde Branches

In all of the forced vibrational analyses for steady-state response,
we assumed that the response has the same frequency as the forcing function
(see sections 2.4 and 3.3). Hence, a forcing function of a frequency @, or
of the form emt (due to mass eccentricity and initial tilt), alone cannot
induce a retrograde response of the form e’mt [7,8]. There are various other
forcing functions that might induce a retrograde response. These include
asymmetry of the bearings and shafts, and load torque (not driving torque).
The analysis presented in this report can only predict forced whirling responses
for a synchronous forward whirling (n=+1). Note that when n#+1, the shaft
undergoes stress cycling which brings in the material damping action (see
section 4.2). Thus, for forced retrograde whirling, in addition to external
viscous damping, we also have internal material damping which is of a helpful
nature when n is negative. Thus, the forced response of a retrograde branch

js very difficult to observe experimentally [7,11,36].
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6. CONCLUSIONS

In this report the system analysis of the spin test facility at Oak
Ridge for three different flywheel systems was described. Two linear
models, a lumped-parameter model and a combined lumped- and distributed-
parameter model, were used for the system analysis. The air-turbine-drive
wheel and turbine shaft dynamics were included in the formulation. Free
whirling and forced whirling analyses were performed using both of the models.
Stability was studied using the lumped-parameter model only. It should be
emphasized that all of the solutions were exact and no other approximations
than. suitable engineering assumptions were used.

Critical Speeds and Mode Shapes: For all the flywheel systems, the

critical speeds predicted by the combined model were higher than those from
the Tumped model. Thus, the effect of the distributed mass, which was neglected
in the lumped model, is to increase the apparent stiffness of the system. This
effect is pronounced at larger rotational speeds and higher.modes of vibration
(only the lowest four modes were considered for comparison). The mode shapes
from the combined model showed the relative motions of all points on the flexi-
ble shaft portions, whereas, in contrast the lumped modé] predicted only the
relative motions of the lumped masses which approximate the actual system.

The simplified ‘analysis of [11], for a pendulously supported flywheel
system with two degrees of freedom for the flywheel, was applied to predict
the critical speeds of Systems A, B, and C. It was shown that the results of
critical speeds from the seven-degree-of-freedom model of this report and those
predicted with the model of [11] differed from one another‘by various amounts.

The extent of difference depended on the coupling of flywheel motion with the
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rest of the masses in the system. In cases having coupling, the seven-
degree-of-freedom model predicted lower critical speeds differing by as much
as 46% (for System C) from those arrived at by [11] for the lowest forward
critical speed. Thus, the analysis of [11] cannot always be used successfully
to predict critical speeds in a spin-test facility.

The effects of flywheel dead weight and applied torque on 2;; (the Towest
first-order forward critical speed) for the pendulously supported flywheel
were also studied (see Appendix D). It was shown that neglecting flywheel
dead weight introduced an error of less than 1% in the calculation of @,;.
Neglecting the drive torque resulted in an error of only about 40 parts in
10° in the determination of Q-

Stability: It was shown that all retrograde branches are stable under
hysteretic material damping of the shaft. For all the three flywheel systems,
only the first (lowest) forward branch becomes unstable beyond the lowest
first-order critical speed in the presence of internal material damping.

With no external viscous damping the instability extends without limit. When
external viscous damping is introduced, the instability extends up to a

finite upper 1imit which decreases with increasing external damping. With
suitable external viscous damping, this instability could be removed altogether.

Forced Whirling: The forced responses, due to mass eccentricity and

initial tilt, predicted by both models are in close agreement. It was noticed
that the damper was ineffective in Systems A and B. This is because these
systems have the lowest first-order critical speeds less than 2,000 rpm, at
which speed the damper movement is negligible. For System C, the lowest first-
order critical speed is predicted to occur at a much higher speed, around

14,200 rpm (combined model), where the damper displacement is significant.
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Thus, the damper is more effective for this system. It was also observed
that responses were larger when the lowest first-order critical speed
shifted into higher running-speed regions.

It was found that the best way to predict the effectiveness of the damper
is to look at the mode shapes of the system at various critical speeds. The
forced responses at the critical speeds which had associated mode shapes with
relatively larger damper movements were attenuated effectively by the damper.
It also was noted that mass eccentricity, initial tilt, or a combination of
them cannot excite retrograde whirling. A retrograde whirling response excited
by other means can be expected to be of a milder nature than that of forward
whirling. This is explained as follows: In addition.to the external viscous
damping, the internal material damping participates in absorption of energy
input by material stress hysteresis.

Parametric Studies: The effects of various flywheel parameters

(mf, Ipf’ Iyes and tf) on the lowest first-order forward critical speeds (9;;)
were investigated. Decreasing me increased Q;; with QIIVE;'remaining constant.
When I £ Was increased, Q;; increased also, due to the larger gyroscopic
action'of the flywheel. It was found that Q;; increased with decreasing Idf
and that increases in t. made the system softer (Q;; decreased). A four-fold
increase in L; (the flexible length of the shaft between the flywheel and the
damper end nearest it) was observed to cause a drop in critical speed ;; (72%
.drop for System A and 74% for System B). However, this increase in length L,
caused a second critical speed Q,; of first order (in the region of 86,000 rpm
for both systems) to occur within 100,000 rpm. A ten-thousand-fold decrease

in K, (the lower turbine-bearing spring constant) also brought down o,
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(a decrease of 58% and 66% for Systems A and B, respectively) and introduced

a second critical speed Q,; (in the region of 4,800 rpm for both systems).
Unlike the previous cases in the parametric study, a drastic reduction in Ksz
made the damper effective at Q;; but not at Q,;. The critical speed Q,; for
this particular case turned out to be a mode related to the intermediate mass,

which is connected directly to the lower turbine-bearing spring.
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APPENDIX A - DETAILED DERIVATIONS FOR

LUMPED-PARAMETER MODEL

A.1 Derivation of Compliance Coefficients

The Oak Ridge National Laboratory's flywheel system is modeled as
shown in Fig. 2.1. The lumped masses are shown in cross-hatched lines. The
dimensions that have been used in the derivation are marked in Fig. 2.1. A
positive system of generalized forces is presented in Fig. 2.2(a). The
bearings are represented as springs. All eight degrees of freedom (rf,

)T

¢f, rye ¢d’ ri ¢i’ res ¢t are assumed to be present in the following

derivation. From statics,

Ry = F (1 + jﬁL) + F. (1 - 330 + F (1 - 330 +F (1 -2
L / ay i ay d ay ' a,
M, + M. + M, + M
t i d f
- 3y | (A-1)
t a a a M, + M, + M, + M
Ry=-F, —b+F Lo 2ep 34t 1 _d F
t a, i ay d ay, f ay, ay
where

a, = zb + td
a3 = Zg + tf
au = 23 + tS

A positive system of shear forces and bending moments is shown in Fig.
2.2(b). The shear-force and bending-moment variations in the shaft (flexible)

portions, from statics, are
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( t a a a (M, +M, +M_ +M_)
—t _ L .2 3y ot i d f
Ft ay ¥ F'l(] aq) ¥ FCl(.l aq,) * Ff(] a;_,,) ay
J 0<z<2
V(z) = (A-2)
Fd tFe g S22 8y
L Ff 2.2 2 g_zg
a, a
-2y . oLy L - 22y _ -3
( Fety (1 aq) Fyz(1 al+) Fyz(1 ‘éu)_ Fez(1
(M, +M,+M,.)
i 'd °f z
+ ” z - Mt(l - 5:) 0<z< 2,
Mz) =4 (A-3)
My + M+ Fd(a2 -z) + Ff(as - z) fasz2hy
Mf + Ff(aa - 2) 222 5_29

\

The total potential energy U of the system, including the energy in the

springs, is given as follows:

23 L
o= [ @1, D@, [Pl D@l
2El5 2K3A 3G 2ET, 2K,A,G
d

Qg .2 2 R2 R2

+ (LMXZ)J_.+ LYiZ)lgdz PR e S B
2ET, 2K,A 6 2K, Ky
c

where KSu and Ksz are the upper and lower bearing spring constants.

Castigliano's least work theorem

= AU

Y5 T 3F.
where j = f,d,i,t

_ 3U

%5 = M,

J

By

(A-4)

(A-5)

o




71

For example,
=3 + + F, + M, + F. + + F, +
re = 3. = 911fp ¥ opMe +aggFy +agMy +oaggF, + aggM, + aggFp + oMy

etc. Therefore, using equations (A-1) - (A-5), we derive the following

compliances:

. a, 2 2y = 2, a, 23 - 23
e = AR (1 -2+ (gas ) Y Er, (%) (s 2y 2y) v =)
L -2 a 23-43
g_¢ 3 - -0 - 9 __ ¢
* (K1A1G )+ El, (s EC)(a3 AN 3 }
a a
+ __141 3" + _l_{_é.z
Ksu y Kgg 2u
_ 1 43 b~ *a ittt 2q-*¢ Lg%
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1 3 1 73
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3 2\ T b "a 1 b
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a 1 2 3 1 7273
+ } o+ 0-H0 -7 + 77— ==
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A = 7z AAH 7+ p
a, Ksuau Kszau
t t, 2,2 t
t t 73 1 t 1 t
ap7 = - —5 AR + (M+—=) - — —%
2 a, auEI3 2 Ksuau a, Ksz 4
2
WU B S S B I
8 = 5 Z - )
2 a, a kT, 2 Ksual+ K2,
a_ , 8, -8 a(% -%) 2,3 -23 -
= _2 b "a 2°b "a o - a
o3 = (1-3) M+ pas * (ap - 2y - 2, + ——5—)
+ 1 (1_.32)2 +.J_ 32.2
Ksu a, K2 a,

G3y ~ Q23
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G35
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@37

G38

oy

Qus

oy

ay7

ug

ass

Gs5p

Q57

Gsg

(1-22)(1-23y g+ 1 g “2y(1- 2y
- - AA + — - < -—) + —
a, a, KSu a, a,

1 az = 1 a2 1 9
-—(1-==) AR - (1--=5) +to— =
a, a, Ksua4 a, Ksz al+
tt (] a2) KK tt (] az) Qf 1 (]
—_— - — - —— - -
a, a, EI3 a, 2 KSu

2
1 4 — 3, %3 1
-—(1-=5) AR+ — (1--2) 3 _
ay ay I, y 2 suls
L, -4
T +— b ~a 1 1
AA + + +
P2 7 7
ak EI2 Ksual+ ngak
Q55
G426
Qo7
Gsg
a. 2 a 2 a., 2
i 1 1 1 1
(1-7) M+— (-2 + 1 (Y
ay Ksu ay" Ksz a,

1 a1 — 1 a1 1 al
-—(1-—=) AA - (1-=) + —— —
ay a, Ksuau a, Ksl a,

a t a 22

t 1 t 1 3 1
(T-F) AR - == (1-2) =+ 1 (1-
a, a, EI3 a, 2 Ksu
2
] - | a, 23 ]
-—(1-=) AR + = 1-==) = -
a, a, EI3 a“ 2 Ksual+
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] laz
sy s
a t t,a
__2_)(1+ t)_K] t22
ak au ) ay
( 32 1 a2
1--5) + — 2,
3y Ksl 2y
1 tt 1 ttal
700+ 7 ) - X 3.2
Y 4 sg b
1 4
(1-22) + X 77
a," Ky 3y
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Qg = Q25
Qg7 = Op7
Ogg = O28
2 2
t tl 2,3 2 t
- e 3 1 2
a7 = - g M+ 2 (1-0) + - (14=h) 4 (b
b4 3 4 su Y 3 2
t t.e. 2 t
_ t t°3 3 L ty 1
ayg = - —7 AA + (‘—‘"1)- (1+ )——-——%—
au EI3 al+ Ksuau au Ksz al+
2 L
1 ++ 3 3 1 1
agg = 7z A + 7 (1-) + —Z + 7 (A-7)
a, I3 a, Ksuau Kszau
where
2 233

__= 3
A= (g2 * 3T
Further, the compliance matrix is symmetric.

- A.2 Derivation of an Equivalent Shaft for the Stepped Turbine Shaft

The forces and moment acting on the turbine and its shaft are as
shown in Fig. Al. The turbine shaft is assumed to be pinned at the

locations marked by x. From statics,

R, = Folty *+2,) - M,

1 9‘3
V(z) = (M, - F, tt)/zs (A-8)
M(z) = (M -F, t)(1 - g%)

ir

>
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Fig. Al. Dimensioned stepped turbine shaft for which an
equivalent shaft with a uniform outside diameter
is determined (see Fig. B1(b)).

The strain energy U* is given by

L3

2 2
* M V
v = J ety * (o ety (A-9)
0

Let o denote the deflection of turbine center of mass; then

23 M(z) f%L V(z) f%L

_ ol _ 0 0
"o 7 3F, [z * iAEd? (A-10)
0
Substituting equations (A-8) into equation (A-10) and carrying the
integrations over the three shaft portions I, II, and III, one obtains
ro = aprFy + a{zmo (A-11)
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where
iy 3 12
03] = t [( R ) + {a; + = }( T~ |)
t- 3EI3 K3A3613 1 32% 23 EI1 EI2
Y Co (B (el
o G ) O e - Merr - &) >
3 11 22 3 3 2 3
L' ‘
2 1 1 2
+ 2 ( Tpg! ~ 1 l)] = t. 8 -
st A2K2 A3K3 t .
' (A-12)
1o = - tt ¢}
Let $o be the rotation of the turbine wheel. Then,
R M(z) gh%i V(z) a—‘“’MM—
- _ U - 0 0
% = M et * k@AEe142 o (A-13)
0 .
Using equations (A-8), one obtains
% © 0‘izFo *oay M ' (A-14)
where a;Z = 9.

The equivalent uniform shaft is defined so that the same generalized
displacements are produced by the same force and moment system as in the
actual shaft. Let A;, I, and K, be the cross-sectioﬁa] area, area moment
of inertia of the cross section, and shear factor, respectively, of the

equivalent uniform shaft. Then _ -
}

* * - % *
ro = onafp YoMy 3 g Tor2fy *azoM, (A-15) .
where
* _ .20 %3 1 W2k x * o x %
AL S palrovw: s I e L R PR R (A-16)
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Herice,

8 =6 (A-17)

From scaled drawing, the dimensions dy, d,, d3, £, %,, and 24
(Fig. A1) were determined. The shear factors were determined for each
stepped-shaft portion from the following formula

6(1+v)(1+m2)2
K= (7-+6v)(%4'm2%g*-(gol-12v)m2 (A-18)

where v is the Poisson's ratio for the material and m is the ratio of the
inner diameter to outer diameter.

From calculations,
6 = 1.9146 x 10”° radians/in-1b

Assuming that the inner diameter di is the same for the equivalent shaft

and that

I = (w/64)(d-d}) 5 Ay = (w/8)(d, - d))

ﬂj+vH1+ﬁQ?
(7+69)(1+m2)% + (20+ 12v)m>

where dO is the outer diameter of the equivalent shaft and m = di/do’ we

arrive at the following equation, which is derived from equation (A-17)

[5?.7657 . _‘0.4713 {1.1299(1 +m2)? + 3.0396 m2}]
(m*-1) (m*-1)(m2+1)

1.9146

By trial and error, m = 2.3599. Since di = 0.3175 in., do = 0.7493 in.
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A.3 Summary of Data Used in Lumped-Parameter Model

Table A-1. Data Used for Lumped-Parameter Model of the
Oak Ridge System (see Fig. 2.1)

Y

Lengths L 2.978 in.
% 3.658 in. ~
% 7.324 in.
zg 8.070 in.
N 2.127 in.
Lac (see Fig. B1) 3.597 in.
tt 0.894 in.
t, 0.435 in.
tS 0.243 in.
ty 1.833 in.
tf: )
System A 7.05 in.
System B 3.45 in.
System C  3.15 in.
a, 2.562 in,
a, 5.491 in.
a, 15.120 in.
a, 2.37 in.
Diameter of shaft 1 -0.3125 in.
Diameter of shaft 2 ' 0.3125 in.
Equivalent uniform outer diameter
of turbine shaft (d,) 0.7493 in.
Inner diameter of turbine shaft (d;) 0.3175 in. )
Young's modulus of shaft material (E) 29.5x 106 psi
Shear modulus of shaft material (G) 11.5x 10 psi
Specific weight of shaft material 0.283 1b/in? E
Loss tangent of shaft material (yg) 0.005
Shear correction factor for shaft 1 (K;)
and shaft 2 (K,) 0.885

Shear correction factor for the
equivalent turbine shaft (Ki) 0.657
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Table A-1 (Cont'd)

Shear correction factor for the equivalent
quill shaft within the turbine shaft (Keq)

Mass of turbine wheel (my)

Diametral mass moment of inertia of
turbine wheel (I4;)

Polar mass moment of inertia of turbine
wheel (Ipt)

Mass of intermediate mass (mi)

Diametral mass moment of inertia of
intermediate mass (Ig;i) ]

Polar mass moment of inertia of
intermediate mass (Ipi)

Mass of damper (my)

Mass of flywheel (mf):
System A
System B
System C

Diametral mass moment of inertia of flywheel (I4f):
System A
System B
System C

Polar mass moment of inertia of flywheel (Ipf):
System A
System B
System C

Upper and lower bearing spring constants™

0.885
0.00479 1b-s2/in.

0.00340 1b-in-s2

0.00628 1b-in-s?
0.000202 1b-s2/in.

.798 x 10”° 1b-in-s2

1.15x 10" 1b-in-s2
0.00300 1b-s2/in.
.0951 1b-s2/in.

.0576 1b-s2/1in.
.0336 1b-s2/in.

OO O

4.83 1b-in-s2
.648 1b-in-s2
0.823 1b-in-s2

—

8.517 1b-in-s2
2.036 1b-in-s2?
1.645 1b-in-s2

(Kgy» Ksz) "~ 2x108 1b/in. each

External viscous damping coefficient (Cq),

values used 0,1,

5, and 10 1b-s/in.

*
Since the experimental values of the ball-bearing stiffnesses were not

available, they were assumed, based on [46].
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APPENDIX B - DERIVATIONS RELATED TO THE COMBINED MODEL

B.1 Turbine and lewheé] Shaft Modeling

The experimental set-up is simplified to the system shown in Fig. 3.1.

VY

Note that there are three shaft portions between discontinuities. The cross-
hatched portions are assumed to be rigid masses. The damper is assumed not :
to tilt because of constructional details and narrow clearances. Also, notice
that the turbine shaft end is clamped over a portion of the flywheel shaft.
Furthermore, the éctua1 turbine-flywheel shaft connection, Fig. Bl(a), has
been modified, Fig. B1(b), by suitable transformation of flywheel shaft
dimensfons within the turbine shaft. It.is assumed that the transformed
flywheel shaft within the turbine shaft and the turbine shaft itself act as
some equivalent single shaft. This transformation reduces the number of

shaft portions from four to three, thereby saving computational time and any
appreciable error from this modification is assumed to enter only at very

high rotational speeds.

B.2 Governing Differential Equation for a Whirling Shaft and the Solution Form

In the analysis, forces, moments, displacements and small rotations are
positive if they point along the positive coordinate axis when treated as
vectors. | | _ N
Consider a shaft element of length 'dz' as shown in Fig. B2. Here;
XoYo0%o is anlinertial reference frame, and xyz is a reference frame attached 5
to the shaft center such that it tilts with the shaft as it deflects (as shown)

but does not change its orientation as the shaft rotates.

The‘projections of the shaft element on x_z

o%o and YoZo planes with forces

and moments acting on it are shown in Figs. B3 and B4.
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NUT

xSl At’It““///// ZEn !
§/'4ﬂ; LOCK NUT v
%
|
;
(a) (b)

Fig. Bi. Modeling of turbine wheel, turbine shaft, and flywheel shaft within
the turbine shaft: (a) actual system (b) assumed model. See Appendix
A.2 for derivation of the outer diameter of an equivalent shaft for
the stepped turbine shaft. To determine the equivalent flywheel
shaft (which is inside the turbine shaft) diameter the relation

b - [T
EIac/LaC Equ/L3 is used.

'

dz

aln

Fig. B2. A typical whirling shaft element.



_____ slope of shaft center line with
shear deformation

—-—- slope with bending only (shear
deformation neglected

Fig. B3. Projection onto the xyz, plane of a
deformed shaft e]emen% with its
system of generalized forces.

— - — —— slope of shaft cent i
w1tﬁ shear deformat$8n11ne

T AR sdfng,gnjy (shear

Fig. B4. Projection onto the YoZo Plane of
a deformed shaft element with its
system of generalized forces.

z8
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In Fig. B4, Yy and wx are marked negative, since when they are
measured from the positive z, axis, they point in the negative Xo direction.
Further, the moments are shown negative since this system of moments
causes negative rotation of the shaft elements.

The constitutive relations between bending moments and bending slopes

are as follows:

3, 3y
Mx = EI 3z My = EI =3 (B-1)
Let
V= wy - T, s M= My - 1Mx (B-2)
Hence,
= p1 &¥ -
M= EI 3 (B-3)
Further,
aw aw
X - Y-l - _
32 Iby + 'Yy s 3z l]}x ‘Yx (B 4)
If
LV L S T (B-5)
Then,
Meyry (B-6)
Shear force V and shear strain y are related by
V = KAGy (B-7)
where
vV = Vx + ivy (B-8)

Writing the force equation for the element, we obtain:
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= dz = pAdZ”SEiK ' : (B-9)
SV . azwx "
—a? dz = pAdZW . (B-]O)

Note that all forces in the section are resolved into components parallel
and perpendicular to the face of the element. 1In view of equation'(B-B),

equations (B-9) and (B-10) can be combined to give

2y

Q

oV _ &
357 ° A (B-11)

‘:J

Considering the rotational equation of motion of the element about the y

and x axes respectively, we have the following equations of motion:

oM oY

Yy =9 —y _

3z dz + Vx dz ot (Id at ng 1px)

aMX w (B-]2)

T a dz - Vy dz = (Id at + 1 Q w )
Since

p[\dZ(Rg + Rf) pl&dZ(R(zJ + Rf)

Id = 4 H] Ip = 2 (8-13)
we get

aM A(RZ+R%) 52y By

= 1 __7¥._ _X
9z * Vx 4 (at 20 at)
" A(RZ + R2) , (B-14)
_.345 vV = o i ¥y - 20 iEX)

3z y 4 ot ot

Hence, | , -
A2 2
A(R”+R))
M P % TN 82y 5so AW
sz VT3 .(ﬁ'ﬂf} 2ia o3) (B-15)

Combining equations (B-7) and (B-]]), we obtain

(B-16)

TJN
=

KI\G—;— /R
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Now substituting equation (B-6) into equation (B-16), we get

3%w _ 3y _ p 32w
322 "3z KG 32 (B-17)

Taking the derivative of both sides of equation (B-15), we get

A(R? + R?)
32M _ aVv _ PPV T R 53y 2y
322 | 3z 4 (523¢2 - 219 azat) (B-18)

Substituting equations (B-1) and (B-11) into equation (B-18) yields
p/A\(R2 + R2)

33 ~ 32%w 0 33 .32
EIEE* toh gzt — (azag2 - 2ia 555%) (B-19)

From equations (B-17) and (B-19), we have
AlDn2 2
pA(Ro+ Rj)

a'w _ p _3'w ~3%w _ 3" o 3w
EI(57w - &G 32%¢2) * PR 5%z 4 {52717 ~ K@ 3¢9
Y 9w _~p_33w _
210 (G775t - X5 529 (B-20)
or
NIV o2, n2 R
WL 4 AR +RY) 5y, N pA(R +RY) 9ig dW_, pA 32w
az% ~ 'KG 4E1 3z23t? 4E1 azZat  EI at?
" 2 2 S rn2 2
oA(RZ +R%) 02A(RZ + R%)
Jpg 0o 1T A%, 0_il 3w _ (B-21)
KG ~— 4El ot AKGET ath

Using equations (B-3), (B-6), (B-11), and (B-15), we similarly obtain

oA(RZ + R?) pA(R +R2)

at ot A 32
s -t e et aer—— 219 3 2 * %T‘”‘g

o 0 179 0 1737y _ _
T s R T T (B-22)

- 2iQ

Note that equation (B-22) is identical in form to equation (B-21), except
that y reptaces w. Thus, the general solutions of the two equations are of
the same functional form, i.e.,

=24
W = Aea iwt

’4'1 = Be(lz"’ ‘iwt (8_23)
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and substituting into equation (B-21) or (B-22), we obtain the following

characteristic equation:

A2 2 Y 2
oA(R” +R3) pA(RZ + R%) A
G4 + [ —— 0 V7000 0 ' o pA o
8"+ g * —gEr e i wias - Fr oo
pZA(R§+-R§) 3 pZA(R§+-R§) .
PKGET Qo + —oeFT w* =0

or

- 2 2 2 2 ,

A(R +R-) A 2 p(R +R.)
5% + pulge + —g2r—— (u-20)1a2 + 92? [ (w-20) - 11 =0 (B-24)

Equation (B-24) yields four roots for & and hence the closed-form
solutions of equations (B-21) and (B-22) are (in any portion of the system

between discontinuities)

L - &-J'Z + iwt [ a-Z + iwt
w= I A.e , v= I Bel (B-25)

From equations (B-11), (B-15), and (B-25), we get two relations between

Aj's and Bj's. The simpler one, given below, alone will be used in later

calculations ,
Bj = Aj(aj + f&f%T) (B-26)
J

Thus, for each of the three shaft sections 1, 2, 3, (see Fig. 3.1), we

have

p=1,2,3 (B-27)

Here, Epj, p=1,2,3and j = 1,2,3,4 are obtained when the characteristic

equation is applied to the three shaft sections 1, 2, and 3. Also, it is

o
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assumed that w = nQ. Hence, n is to be specified to solve equation (B-24).
Symbols z;, z,, and z3 denote the local coordinates of the shaft sections
1, 2, and 3, respectively.

B.3 Derivation of Boundary and Continuity Conditions

In the various boundary conditions discussed in the following, all of
the numerical subscripts to variables denote that they are associated with

that shaft portion having the same number.

Boundary Conditions on the Shaft Attached to the Flywheel :
Forces and moments acting on the flywheel are shown in Fig. B5.

Variables subscripted as 1 are to be evaluated at z; = L;.

§ @

4 Z ’
Fig. B5. System of forces and moment acting on the flywheel.

Force equations of motion:
aw 22w

- - Yy . __1¥
Viy T ™9 %z, T M ot
- (B-28)
oW 32w
A} lx - x
“Vix T ™9 3z, T Mf el
i.e.,
o 32w

Vit med g7t me gz < O (8-29)
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W
Since w = w, + tf 77, the preceding equation becomes
oW oW oW
1 _ _1 32 1y _
ABGZ, ~¥a) M8 g me e (W +tp g7 = 0 (B-30)

Rotational equations of motion about the center of mass of flywheel:

a3w1X azwl
B Mly Vs T Lar 3z,3t? ¥ Ipr 8z,8t
(B-31)
a3w 82w1X
“Mix - Vlytf = - Tyr 52 357 Ipr ax 3t
Combining the last two equations, we obtain
a3w1 _ 32w,
S My Vate = Ly grmer - Mt azet (8-32)
or
3V, oW, ai“w1 _ 32w
- EIl ‘a—'z‘“+ tf K A G( = 11’1) - (Idf 5’2_1—3TZ' - 1Ipr azlat) =0 (B'33)
Continuity Conditions Across the Damper:
Variables subscripted as 1 are evaluated at z, =0 and those sub-
scripted as 2 are evaluated at z, = L,. Since the damper is assumed not
to tilt
W, = W, (B-34)
W,
5;; =0 _(B-35)
M= 0 (B-36)
3z,

The forces and moments acting on the damper are shown in Fig. B6.

Note that there is an additional external moment on the damper which
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— Yy o
oW, \ /, aw
C N A C 1x
d st d at
—— V o
ly ==t ) Rt VlX
PY 2 ] K W
Kneop ly \\Tr// N neop 1X
-MIX ’ l ly
Z,

Fig. B6. Damper forces and moments. Note that damper weight has been neglected.

prevents the tilting. Considering the force equation of the damper:

3w, 32wl
" Vay *Viy T Kneoptiy T b4 3t T M —Sffx
(B-37)
W, 32w1X
" Vox T Vix 7 Kneop¥ix T €4 3t T "4 3tz
Combining the above two equations,
w, azwl
-Vt Vo - Kaopiy - Gy 3 T Mg ez T O (B-38)
or
W, W, 3w, 3w,
KZAZG(B—Z"Z‘- ‘1’2) - KIAIG(B—Z-;- \pl) + Kneopw1 + Cd _at_ + md W— =0 (3-39)

Continuity Conditions Across the Intermediate Mass:
The free-body diagram of the intermediate mass is drawn in Fig. B7.

Note that the center of mass and the bearing center (where the spring
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Fig. B7. Intermediate mass and its system of generalized
forces. HWeight of the intermediate mass is neglected.

approximating the bearing is assumed to act) do not coincide. Variables
subscripted as 3 are evaluated at z; = Ly and those subscripted as 2 at

z, = 0. From kinematics,

ow ow
3-__2
3—2—3— = 5z, (B-40)
W,
= Wy + (tr+t3) — -41
Wp = W3+ (ta+1t5) 5 | (B-41)
The translational equations of motion of the intermediate mass are:
32w
Yoy “Vay " Ksg Wys =™ 7ﬁ?¥
- _ (B-42)
_ 32w,
V.. -V, ~-K =

2X 3X (3 wxs mi at?

Combining the above two, we obtain

32-,
= W
Vy = Vg - K Wg = my 557 ' (B-43)
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Since
ow
- 2
W' =Wy -ty
2 2 322
and
} aw,
= - + - —<
WS Wo (tz t3 tS) 322

equation (B-43) becomes

aw 3W3 P

W
KzAzG(ggi- o) - K3A35(5;;"-¢3) - Ko [wa - (L t5-t) 525]

32 3W2
Mo Mamtagg) =0
K A +KA
Note that A3 = A, + Aeq and K3 = eg eq+ A: t (see Fig. B1).
€q

the rotational equations cfmotion about the center of mass,

33w

- = _ 2
sz-Msx-vUtz-v&yts-Ksz(ta-ts)wys (- 144 an%f”pi“

3
3 w2x

2y
From the above two equations, we get

ow
2
Mz - M3+ V2t2+ V3t3+ KSl(t3 - ts)[wz - (t2+ t3 - tS) 3_2_2-

3 2
3 W2 W

. 2 =
- (g5 57,e2 - i % 55550

or

Y 3y, ow W,
El, ﬁz' - Ely gyt KZAZGtZ(Ez-- b2) + KahsGts(57=- ¥a)

3w, a3w2

Moy~ M3y+'vzxt2*-v3xt3*'Ksz(t3' bWy = (g 3z,3t? * Ipin

(B-44)
(B-45)
Considering
2
9 w2x)
3223t
, (B-46)
9 w2 )
3223t
0 (B-47)
32w

2

t Kot -t )Wy - (ta ¥ty -t ) EE;J - Iy 27,0t - gy @ azzat) =0

Note: I, = It + Ie (see Fig. B1).

q

(B-48)
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Boundary Conditions on the Shaft Attached to the Turbine:
Here, all the variables are evaluated at z; = 0. The forces and

moments acting on the turbine are shown in Fig. g

Ksuw3x
Fig. B8. Turbine wheel forces and moments.
Translational equations of motion give
oW 2w
3X _ X
Vax = KsuWax = M9 Y M 3t2
- (B-49)
3W3y azw}
Vsy"Ksuwsy"mtg 3z, My 32
which combine as -
W, 32w"
Vy = KgyWs = M9 3z, "t atZ 0 (B-50)
Since _ oW, )
WeEws - Yo
the above equation becomes
aw,, W, 32 aw,
KehsB(Gzy = ¥a) = KgWa =myd 57~ My spzlws - by 570 = 0 (8-51)

The moment equations about the center of mass are:
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. a3w3 azwsx
ng - tvsy ¥ Ksuwsy tt = (- Idt 3z;0t2 ¥ IptQ az3at)
(B-52)
. . a3w3x 32w,
May otV t KegMax Tt T (Idt 3z33t? ¥ Ith az3at)
When combined, they give
. . 33w, . 3%w,
Mo+ TeVa- Koy Bevs - (gt 57557 - 1Tpe? gzp0) = O (B-53)

or
3y, T 3%, 32w,
Els 3z, * Kshsb t(SEE“'w3) - Koy BeWa - (Ige 9z50t2 08 az3at) =0

(B-54)

The equations (B-30), (B-33)-(B-36), (B-39)-(B-41), (B-45), (B-48),

(B-51) and (B-54) are cast into the following form (see Appendix B.4):

( Arp )

N A |
[ < = S (B-55)
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Here, {Apj}(p‘ =1,2,3 and j = 1,2,3,4) is the unknown column vector
which determines the deflections of the three shaft portions [equation (B-27)].
The matrix [C] has elements which are functions of Epj (j =1,2,3,4), » and
Q. Note that, since each shaft portion has four boundary conditions (two on
each end) and each shaft, p(p = 1,2,3) has four unknown coefficients Apj -
(j = 1,2,3,4), [C] is a 12x 12 matrix. Now, for a chosen n such that » = ng,
any @ that makes det [E] = 0 is a critical running speed for that n.

B.4 Transformation of Boundary/Continuity Conditions for Computer Implementation

Equation (B-27) is substituted into equation (B-30) to obtain the following

result:

a_.L
[K)A6(A - Byy) * meoh me(-w?h 5 - teh 58 50%) Je Mlso

1 15%13 1j

(SN
[ =2

15%5 °
Using equation (B-26) and dividing by -w2, we reduce the preceding

equation to the following:

AL L - gt
J.—Z.][EIJ = w2 + mf(] + tfalj)]Alje =0 (B-56)

Similarly, substitution into equation (B-33) gives

n : a_.L
- - (- = 2 - 1) 1_
j51[_E11aljBlJ KlAIGItf(alJAlJ 1j) ( Ideljaljw +'IprA1jaljm)]e 0
Using equation (B-26) and dividing by -w2, we get
a2 A o .L
“ 15, _o P - 2 171 _
LB (G gg) *te g - Byl - A e 0= 0 (8-57)
Jj=1 19 1j .
In similar fashion, substitution into equations (B-34)-(B-36) gives ‘
4 a_.L B
: [A,-A.e??]=0 (B-58)
o 1] 2J
j=1
; A =0
ji] 13 1y ° (B-59)

L
e 2=9 (B-60)

[T
>
Qt
n

2ja2j

[N
—_
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Substitution into equation (B-39) yields

gL,
- ZJ - _
] [KoA,G(A, &, ;- B, e KIALG(3 A 5 =B 3) ¥ K oA S

[T e I =g

J

+ ideAlj - mdszlj] =

which can be reduced, using equation (B-26), to

p d _ 2 272 - _
E [(=— + /=2 + — - md)Alj =e Azj] 0 (B-61)

Similarly equations (B-40), (B-41), and (B-45) give

: [-5 A A 3JL3] = 0 62)
jo1 i " oaihsst (B-
; . ST LEN
jz] [Azj{1 - (tzi-t3)a2j} - Aaj ]=0 (B-63)
; A -B ALG(A B )633'L3 A . -A .3
551 (KoAG(A 53,5 = Bay) - (Ay5%55 7 Bagle TR RS TS IUR RN
- - 24 . 25 . =
m, (-A 3@ Asz athz)] 0
which can be reduced to
y A2 pA. w..L
2 s _ _ -3 3j°3 -
I [Azj{' a . TET'(] (tzi'ta ts)°2 )4'mi (1-3 Jtz)} * A3J 3. ° 1=0
j=1 2J 3
(B-64)
Equation (B-48) becomes
4 - anL a.3\]'L3
r[E1,B,53,5 ¢ 1.8, 55,5 +K2A26t2(A2J 25" By3) HKAGE (A G . -B e

v

- - - - a - 2 . . o— - =
P Kepltym tl Ry = {6+t t0a 3R 50 = (g Bpgofhyg ¥ Iy wh, 53,501 = 0
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or
4 aé} ' tszzv Ksp
jil [Azj{EIZ (]Fr4'KZG) N o5 oz (-t )=t +t, - ts)azj)
al, t oA, G..L
+5,5(1y -% I )3+ Ay -EL (le+ KJ;G) - .§3j3}e 3731=9 (B=65)

Equation (B-51) yields

= - s o (=2 2= =
[KsASG(A a B .)-K A3j m‘[_.gozajAS:j mt( mA3j+ ttw aSjAaj)] 0

33733~ 73] su

H™ME

1

which can be reduced to
K go. . : S
4 3 su 3 - -
E [- =— A mt{_‘;zl - (1~ tt aSj)}]ASJ 0 (B-66)

Equation (B-54) can be rewritten as

N _ .
J.E] [E13°‘3j83j * K3A3G tt (A3j°‘3j - st) - Ksu ttAa\j
- (- 3z = -
( Idtw aajA3j+ Ithwa3jA3j)] 0
or
L a3j 0 teeAy Koyt Q _
JE] [EI3(—(:2—+@ -—?!—33—-__—_2_—(0 +a3j(1dt- Ipt Z)-)]A3j =0 (B—67)

The above twelve conditions, (B-56)-(B-67), can be expressed in the

matrix form of equations ( 3.1) for free whirling analysis.
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-
' B.5 Derivations Relating to Forced Whirling Analysis

Mass eccentricity (re) and initial tilt (¢o) are illustrated in Fig. B9.
- The modifications in the boundary conditions on the shaft attaching to the

flywheel is explained in the following equations.

— — —~ - shaft center line '
a b
(a) - . — flywheel center line (b)

Fig. B9. Exaggerated (a) mass eccentricity and (b) initial tilt in the flywheel.

W=y et (B-68)
oW .
- 1 it
=Wt tf aZ,y * ree
where w is the displacement of the flywheel mass center. Hence, from
equation (B-29), we obtain
aw 2 3w .
1 3 _1 iaty _ _
Vy, + meg 37 L (wy + tg 7 tree ) =0 (B-69)
which reduces to
oW oW 2 W .
1 1 3 _1 - 2 int _
KlAIG(E - \bl) + mfg a—z—l- + mf -a-fz- (Wl + tf 321) me ree (B 70)
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-
The above equation is similar to equation (B-30) except that here there is ‘

a forcing term on the right. Similarly, equation (B-32) is modified to

326 368

- M ity = Lye ogr - T 5y ' (8-71) ]
where
W .
_ M i(at - B) .
§ = 37, + g e (B-72)

and %% is the initial tilt and g8 the phase lag of initial tilt relative to
the mass eccentricity. Hence,
3y 33w 32w

2
1 1 1 . 1 =
- Ehgg* tKiMB (7 - v) - Uge st~ e 520t

j(at -8)

0092(1 ¢ - Ty)e (8-73)

The above equation is similar to equation (B-33) with the exception
that here there is a forcing term on the right. Hence, in the computer

implementation, we have the following form:

\
( All w ( - mfre

€1 < r (8-74)

>
N
=
o o o o o o o o o o
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Note that in this synchronous forced whirling due to mass and tilt

unbalances, w = @ with n = 1. Further, any steady-state response at a

point zp = z*, p=1,2,3 for a running speed 2" can be obtained from equation

(B-27) after solving equation (B-74) for A_. (p = 1,2,3; j = 1,2,3,4).

pJ
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B.6 Summary of Data Used in Combined Model

Table B-1. Data Used for Combined Model of the
Oak Ridge System (see Fig. 3.1)

Lengths L, 0.746 in.
L, 0.670 in.
L, 2.127 in.
L.c (see Fig. B1) 3.597 in.
tf:
System A 7.05 in.
System B 3.45 in.
System C 3.15 in.
tq 1.833 in.
t, 0.243 in.
t, 0.416 in.
ts 0.435 in.
tt 0.894 in.
Diameter of shaft 1 0.3125 1in.
Diameter of shaft 2 0.3125 in.
Equivalent uniform outer diameter of
turbine shaft (d,) v 0.7493 in.
Inner diameter of turbine shaft (dj) 0.3175 in.
Young's modulus of shaft material (E) 29.5x 106 psi
Shear modulus of shaft material (G) v 11.5x 106 psi
Specific weight of shaft material 0.283 1b/in?
Shear correction factor for shaft 1 (K;)
and shaft 2 (K,) 0.885
Shear correction factor for the equivalent B
turbine shaft (Kg) 0.6569
Shear correction factor for the equivalent
quill shaft within the turbine shaft (Keq) 0.885
Mass of turbine wheel (m,) 0.00479 1b-s2/in.

Diametral mass moment of inertia of
turbine wheel (Idt) 0.00340 1b-in-s?
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Table B-1 (Cont'd)
Polar mass moment of inertia of
turbine wheel (Ipt) 0.00628 1b-in-s?
Mass of intermediate mass (m;) 0.000202 1b-s2/in.
Diametral mass moment of inertia of _
intermediate mass (I4;) 1.798x 107> 1b-1in-s2
Polar mass moment of inertia of s
- intermediate mass (Ipi) 1.15x 10 ° 1b-in-s2
Mass of damper (my) 0.00300 1b-s2/in.
Mass of flywheel (m¢)
System A .0951 1b-s2/in.

0
System B 0.0576 1b-s2/in.
0

System C .0336 1b-s2/1in.
Diametral mass moment of inertia of flywheel (I4¢):

System A 4.83 1b-in-s?

System B 1.648 1b-in-s?

System C 0.823 1b-in-s2
Polar mass moment of inertia of flywheel (Ipf):

System A 8.517 1b-in-s2

System B 2.036 1b-in-s2

System C 1.645 1b-in-s2

*

Upper and lower bearing spring constants

(Ksu’ Keg) 2x 106 1b/in. each
Neoprene pad spring constant (Kneop) 0 1b/in.
External viscous damping coefficient

(Cq) values used 0 and 10 1b-s/in.

- *See footnote in Table A-1.
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APPENDIX C - COMPUTER CODES, FLOW CHARTS, AND NOTES

FOR PROGRAM USERS

The programs presented here were written in FORTRAN IV for the IBM
System 370, Model 158J with graphical outputs on a COMPLOT DP-853 plotter.

C.1 Free Whirling and Stability Using the Lumped Model

The same program is used for both the free whirling (including mode
shapes) and stability analyses. However, for the sake of clarity, separate
flow charts are presented for free whirling and for stability.

The use of the subroutine CRITCL for determining the approximate loca-
tions of first- and second-order critical speeds on a logarithmic Campbell
diagram (log of natural frequency w versus log of rotational speed @) is
explained in Fig. C1. The flow chart for free whirling analysis is shown in
Fig. C2, and the computation takes approximately 7 minutes of CPU time. A1l
of the input data related to the Oak Ridge spin-test facility and the three
flywheel systems investigated are listed in Table A-1.

For stability analysis, subroutine CRITCL is used to compute the rota-
tional speeds associated with the respective beginning and end 1imits of
the unstable region. The flow chart for stability analysis is shown in Fig.

€3, and the computation takes abproximate1y 25 minutes of CPU time.
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—— FIRST-ORDER CRITICAL

3 w : SPEED COMPUTED AS AN
4 ! : ; INTERSECTION POINT OF
~ _ , ; TWO STRAIGHT LINES
INT OF TWO f E
LINES ;
]
. AR —- ——-AQ—-E
i |
| | -
log @

Fig. C1. Approximate determination of first- and
second-order critical speeds on a forward
branch (A), using subroutine CRITCL.
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Fig. C2. Flow chart for free whirling analysis (including
mode shapes) using the lumped model.

INPUT DATA
v

DETERMINE [M]™*

Y

COMPUTE [a] AND [
DERIVE [K] FROM [

{

SELECT RPM

K]
K]

DEFINE [G]. COMPUTE
[B;] AND [B,]

T
[0] }[1]

DETERMINE [H] = | ===+—-~--

[B,] ! [8,]

USE A STANDARD IMSL SUBROUTINE TO DETERMINE THE .
EIGENVALUES (CRITICAL SPEEDS) AND THE EIGEN- .

VECTORS THAT ARE NEEDED FOR MODE-SHAPE PLOTTING.

THE RPM VALUES FOR WHICH THE EIGENVECTOR OPTION

IN THE IMSL ROUTINE IS USED IS DETERMINED BY THE =
SUBROUTINE TYPSOL.

!

Continued on next page
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Fig. C2 (continued)

|

NOTE: WITH NO EXTERNAL AND INTERNAL DAMPING, THE IMAGINARY
PART OF THE ,EIGENVALUES (CRITICAL SPEEDS) SHOULD BE
ZERO OR VERY SMALL COMPARED TO THE REAL PART.

\

THE FOURTEEN CRITICAL SPEEDS ARE ARRANGED BY THEIR REAL
PARTS IN A DESCENDING ORDER. THE FIRST SEVEN ARE NUM-
BERED 1 TO 7. THE OTHER SEVEN ARE NEGATIVE (RETROGRADE)
AND NUMBERED 8 TO 14. THUS, FOR EXAMPLE, 1,7,8, AND 14
WILL CORRESPOND TO 7F,1F,1R, AND 7R BRANCHES RESPECTIVELY.

!

THE SEVEN NEGATIVE VALUES (CORRESPONDING TO THE SEVEN RETROGRADE BRANCHES)
ARE MADE POSITIVE AND ALL FOURTEEN CRITICAL SPEEDS ARE STORED FOR PLOTTING.

FOR EACH’
CRITICAL SPEED,
CHECK THE FOLLOWING:

IS RPM > CRITICAL

CALL SUBROUTINE
CRITCL TO DETER-
MINE THE FIRST/

SPEED? SECOND-ORDER
IS 2(RPM) > CRITICAL SPEEDS.
CRITICAL SEE FIG. C1.

SPEED?

INCREASE RPM ~—

ves | REQUIRED COMPUTATIONS
COMPLETED. READY FOR
PLOT OF WHIRL DIAGRAM

NO

GO TO 1




Fig. C3.
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INPUT DATA

1

DETERMINE [M]™*

!

Flow chart for stability analysis using the lumped model.

AND STORE IN [KP].

DETERMINE [K*] WITH (+) SIGN IN THE COMPLEX STIFFNESSES
COMPUTE [K*] WITH (-
PLEX STIFFNESSES AND STORE IN [KN].

) SIGN IN COM-

!

CHOOSE C AND COMPUTE [C].

B

SELECT RPM

Q_

DEFINE [G]. COMSGN =

DETERMINE [B*], [B,] AND

Continued on next page

.. |[01 j[1] .
H*] = | == -+-=-| WITH
(8,1 [B}]
[K*] = [KkN]
* DETERMINE [B}], [B;] AND
x| [0 i[1]
1= =5z | WITH 1
(851 1 [B]]
[K*] = ke]
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Fig. C3 (continued)

{ i

CALL A STANDARD IMSL SUBROUTINE TO SOLVE
FOR EIGENVALUES (COMPLEX CRITICAL SPEEDS)

|

THE FOURTEEN COMPLEX CRITICAL SPEEDS ARE ARRANGED IN DESCENDING ORDER
ACCORDING TO THEIR REAL PARTS AND ARE NUMBERED AS IN FREE WHIRLING.

STORE THE CRITICAL LET
SPEEDS JUST FOUND [~*—1 COMSGN *1G0 TO 2
WITH COMSGN = +1 = -]

FOR EACH
CRITICAL SPEED
OBTAINED WITH
COMSGN = -1,
CHECK THE
FOLLOWING:
wp < 0?7

THE APPROPRIATE COMSGN IS -1
FOR THE CRITICAL SPEED BEING
t CHECKED. RETAIN THE CRITICAL
SPEED FOUND WITH COMSGN = -1.

THE APPROPRIATE COMSGN IS +1 FOR THE CRITICAL
SPEED BEING CHECKED. SUBSTITUTE FOR THE CRITI-
CAL SPEED FOUND BY USING COMSGN = -1 THE ONE
OBTAINED BY USING COMSGN = +1.

i -
!

STORE -0y OF EACH BRANCH IN SUITABLE ARRAYS.

v

CHECK FOR
EACH BRANCH:
-wg > 0?

CALL SUBROUTINE CRITCL WHEN -wy > O

FOR THE FIRST TIME TO ESTIMATE

APPROXIMATELY BY LINEAR INTERPOLATION

WHEN -wj BECOMES > O FOR THE BRANCH
BEING CHECKED.

INCREASE RPM —e——

NO YES| READY FOR PLOTTING GROWTH
GO TO 1 FACTOR VS ROTATIONAL SPEED
FOR THE FOURTEEN BRANCHES.
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NOTE: THE COMPONEANTS UF THE Q VECTCR ARE:
(RF 4PHIF 3RDy RIZFHILIRTHZPHIT)

IMPLICIT REAL%*8(A=1H,C=2)

REAL ¥4 RCPM7UL16) UM 7016)sY1aY24EV(T7)
REAL*4 ICONAL(7014),ICPMAZ2{7014 ), ICPMA3(7014)41CPMAG(TDL14)
REAL*4 AL Z2+sAL 295124511 sALENSPL o XF B
REAL*4 ICPML{70G16), ICPM2(TOL1E),ICPMI( 7I1E)ICPNEG(Tu1E)
REAL*4 BN,BAP(14)

REAL ¥4 CDS,

RPDIVS.CDSvV{4)

REAL*%8 LE»LGyL 3

REAL%X8 MDyMF ¢ MINMT

REAL%X8 ILF,IPFL,IDIN, [PIN, IDT,IPT
ALPH(BOB)fKN(797)0KD(707)0KZ(7’7)oSTlF(BoB)

COMPLEXX%16
COMPLEX *1 6
CONMPLEX %16
CONPLEX%16
COMFLEX ¥16
CCMPLEXX]1 6
COMPLEX=%*16

CPMT(14)sZT(7414)

WAL (8B )wA2(R)

MIC747) 0G(797)+sCELT 97)sK(7 47
E1{7e¢7)eB2(7¢7)eH{(14,14)w(1

ZMAXSSE(T?)

ALLTs7)sA2( 747 )CPM(14),INUM

TAB ILI1IT
)

)
4)eZ( 14a514)

»S»S1

¥

ODIMENS [ON R(14),RPNUAS(lQ)’CRITol(l4)oCRITSZ(lQ)oV«l(Qﬂﬁ)
DIMENSICN UPLUNS(14)
DIMENSICN MMV (14)9JSTART(4)sJtND(4)

THE FLYWHEEL DATA

TF: FLYWRHEEL CG DISTANCE FROM END CGF QUIL
CG DISTANCE FROM DAMPER EDGE. TT1: TURBINE CG DISTANCE FROM

ONE END OF TURBINE., SEE FIGeB1le TT1 IS THE SANME AS 17

LBsLGyL3I: LENGTHS CEFINED IN APPENDIX Al

IN THIS PRUOGRAM ARE F#CR THE LLULM. FLYWHELL

L SHAFT. TO: DAMPER

MFsMDoMT: MASS OF FLYWHEEL » DAMPER AND TURBINE

IDFIPF: FLYWHEEL DIAMETRAL AND PULAR MASS

IDTolPT:VTUREINE CIAMETRAL AND PCLAR NASS MOMENTS OF

7

MINI MASS OUF THE INTERMELCIATE MASS

SMENTS OF

IDIN, IPIN: DIAMETRAL AND PUGLAR MASS MCMENTE OF INERTIA
INTERMEDI ATE MASS

THE VARTABLES
PLOTTING

IN THE CCMMON BLOCK MODLMZ

ARE RELATED TO

IN F1

NERTIA

INERTIA

UF THE

MCDE

Ge

SHADPE
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CCMMUN/MAINL/TD.TF,TT1
CCMNCN/ MAIN2/LBSLGHL3

6;) COMMON/MCDULM3/ALZ2sAL 29 S129S11 sALENGPI oXFE
C
C * * * DATA [NPUT: SCME CF THE DATA CAN EE SEEN [IN SUURUUTINE CUOMPLI,
C SUBROUTINE MCDLUM AND IN *BLLCK DATA®* % * #
C
C
C THE FOLLOWING THREE DATA STATEMENTS ARE KELATED TC MUDE SHAPE FLUTS

- DATA MMV/7 66955893352 e1 48199 10+11512+1341487

DATA JUSTART/4,+8,1s12/

DATA JUEND/ 791143514/

DATA MFsMD s NT/04033600:000299800,0 .0047900/
- DATA IDF+IPF/0.823D0+1.645D0/

DATA IDT,IPT/00C3402C0,0.00628D0/

DATA MIN/0,00020200/

DATA IDIN, IPIN/1e7S8D=U5, le 15D0=05S/

IPLOTY INDICATES WFHICH PLCT IS DESIREC:

IPLOT=0D o« o o FOR FREE WHIRLING MAPS (CCMBINED PGCSa. AND NEG.
BERANCHES, JUST NEGe BRANCHES, JLST PCS. BRANCHFS)
ANC MGOE SHAPES IF ANY

IPLOT=1 o e o FUR PLOTS OF MINUS THE IMAGINARY PART OF TrE
WHIRLING SPEEC(CROWTH FACTOR ) VSe ROTATIONAL SPEED

IDAMP=0 o o o CAUSES THE STATEMENT *NGC MATEFIAL DAMPING' TO
BE ORAWN IN GRUOwTH FACTCR PLCTS

IDAMP=2 + o+ o CAUSES THE STATEMENT *'CCMPLEX STIFFNESS' TC BE
DRAWN IN GROWTH FACTCR PLOTS.SEE SUBROUTINE LECNDS

sl s N el N NN o NaN a NN Walale!

IPLOT=0
IDAMP=0

THE FOLLOWING REAL®*4 VARIABLES ARE REGUIREC EY SUEROUT INE MODLUM
WHICH PLOTS THE MODE SHAPES.AXIAL LENGTHS HAVE BEEN SCALED YO (/3
ACTUAL SIZE -

DoNnON

AL 2=2.,0%TD/3.9
AL3=TF/3.0
S12=(LB+TT1)/3.0
S11=(L3+TT1)/3.0
- XFB=(LG+TT1)/3.0
ALEN=(LG+TT1+TF)/3.0
PII=2+0D0*DARSIN(1.0LC0)
PI=Pil
INUM=(0.0D0s1.000)
DO 100 IM=1,7
DO 100 IN=1.,7
- MI{IM,IN)=(0Qe0D0,0.000)
GUIM,IN)=(0,0D00,0.00D0)
CE( IM, IN)=(0,0D0,0.000)
100 K(IMJIN)=(0.000,0.000)

C
@ C INVERSE OF MASS MATRIX DEFINED.SEE CHAPTER 2
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MICLls1)=1.0DO/MF
MI(2+,2)=1.0CO/IDF
MI{3,3)=1,0D00/MD
MI(4+4)=1e0DO0/MIN
MI(545)=1,006/71DIN
MI{(6+6)=1eDDO/MT
MI(7+7)=1000/1DT

DG 110 [=1,8

DO 110 J=1,E8

ALPH{ I, J)=(0e0D0eV0DD)

COMSGN: SIGN IN COMPLEX MODULUS. COMSGN=0 FOR FREE wWHIRLING,
COMSGN=+1 -1 FOR STABILITY ANALYSIS

112

IF{IPLOT EQ.D) COMSGN=0.0D0
IF{IPLOT.EQel ) COMSGN=1.0C0
CONTINUVE

SUBRCOUTINE COMPLI CCMPUTES THE 8X8 CONPLIANCE MATRIX

114

CALL COMPL I{ALPH, COMSGN)

DO L1114 1=1,8

DO 114 JU=1l,8
STIF{(I+J)=(Ce0QD0+0.0D0)

IF(1+EQed) STIF(1+J)=(1.0D0,0.,0D0)
CONTINUE

INT=0

LEQ2C: IMSL SUBROUTINE FOR NMATRIX INVERSICN

CALL LEQZC(ALPH.B’S’STIF’BDBOINT’uA!‘“AZOIER,

DETERMINATION OF THE 7X7 STIFFNESS MATRIX CF THE SYSTEM

115

120

DC 115 [I=1+7

I1=1

IF(1«GTa3) II=]+1

DO 115 J=1.7

Ji=Jd

IF{JeGYT:3) JI=J+1

IF (COMSGNeEGe 0-0D0) KZ(I,J)=STIF(11L,J9)
IF(CUMSGN<EQe 10D0) KP(IsJI=STIF(I1yJ49)
IF(COMSGNeEQe=1+0C0) KN{IsJ)=STIF(11,JJ)
CONTINUVE

IF(CCMSGNaNE«140CO) GO TO 120
COMSGN==1,0D0

GO 10 112

CONTINUE

CALL SETMSG(47,*PLEASE SET THE STEPSIZ2E YO 005 INCHES. THANKS.?)
CALL PLOT(0+0s=4040+-3)

CALL pLGT(loOol0.0,‘3)

IXSTP=1

IF(IPLOTEQaCG) IXSTP=3

DO G600 IX=1+4+IXSTP
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DO 145 [I=1.,14
UPLUNS(I)=6G5999.9
RPMUNS(1)=9999G.9
CRITS1(1)=69999.9
145 CRITS2( 1)1=5G6GG5S5S

UPLUNS(I}: UPPER LIMIT COF UNSTABLE REGICN [N GRCWTH f ACTUKR VSe RPHY
PLOT «RPMUNS(I): BEGINNING OF INSTABILITY IN GROWTH FACTCR VS. PM
PLGTLCRITSI(I): ARRAY (CF FIRST QORDER CRITJCAL SPEEDSCRITSZ(1): ARRAY
OF SECOND ORDER CRITICAL SPEEDS

IF (IXeEQel) CD=0.0C0

IF (IXeEQe2) CD=14000

IF (iXeEWe3) CD=5.0D0

IF (IXeEQe4) CD=10,0D0
CCsS=CD

COSV{IX)=CD

THE ONLY NUN-ZERQ ELEMENT OF THE DAMPING MATRIX IS DEFINEOD

CE(32,3)=DCMPLX{CDe0.009)
RPM=1.0D0

DC 800 I=1,501

IKT=1-1
IPTST=MQOD(IKT,100)
RAD=RPM*PI [ /30.0D0

COMPUTATION OF NCN-Z2ERC ELEMENTS UF THE GYROSCOP IC MATRIX

G(2,2)=IPF*RAD
G{5+5)=1PI N¥RAD
G(7,7)=1PT%RAD
DO 240 IM=1,7
DO 240 IN=1.7
AL(IMs IN)I=G{IMIN)+INUME CE(IM,IN)
240 CONTINUE
[F(IPLOT.EQ.0) GC TC 180
"COMSGN=1.0D0
GO TO 180
175 COMSGN==1.00D0
180 CONTINUE
DO 245 IM=1.7
DO 245 IN=1+7
IF(IPLOT.EQeD) A2 (IM, IN)=KZ(IM, IN)
IF{COMSGNEQe 1.0D0) A2{IMsIN)=KP(IM,IN)
IF(COMSGNeEGe=10L0) AZ2( IMs IN)I=KN(IMeIN)
245 CONTINUE

MULTYC: SUBROUTINE THAT PERFCRMS MATRIX WMULTIPL ICATIONS
CALL MULTYC(MIsAl1sB1,7)

CALL MULTYC(MI sA2.B2+7)
DO 250 KD=1+7
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DO 250 KE=1,14

250 HIKD»KE)=(0D0:+0+L0)
DO 260 KD=1+7
KDD=KD+7

260 H{KCyKDD)=(1eD0sGDO)
D0 270 KD=1,4,7
KDD=KD+7
DC 270 KE=],7

270 HAKDD +KE)= B2{ KD KE)
DD 280 KD=1,7

KDD=KD+7
DO 280 KE=1,+7 .
KEE=KE+7

280 H{KDD,KEE )= B1(KD sKE)
1JGB=0

SEE SUBROUTINE TYPSOL FOR AN EXPLANATICN OF THE VARIABLE JEVST.
JEVST=0

THE FOLLOWING CALL TO SUBROUTINE TYPSCL WILL CAUSE E~VECTCRS YC Bt
COMPUTED AT VARIOUS SPEEDSTHE SPEEDS CHOSEN ARE CBTAINED FROM AN
INITIAL RUN WITHCUT THIS CALL INCLUDECTHE SPEEDS INDICATED BY TYPSOL
ARE CUNSERVATIVEsIeEs LGWsESTIMATES OF THE ACTUAL CRITICAL SPEENDS
CORRESPONDING TO THE MATHEMATICAL NMNCDEL CF THE PFRCBLEM

CALL TYPSOLU(I+IJOELJEVST,. IPLUT»JDAMP)

EIGCC: IMSL SUBROUTINE FOR COMPLEX VALUED EIGENVALUES/VECTCRS.H [S
THE MATRIX FOR WHICH EIGENVALUES ARE TO BE DETERMINED

CALL EIGCC(Hs14+14,1J0BsWsZs14suK1,IER)
DO 290 IP=1,14
290 CPM(IP)=W(IP)*30.,0D0/PI1I

THE FCLLCWING LOCP CRDERS THE COMPUTED EIGENVALUES SUCE THAT R(1)>R(2) o
» o DR(14)s WHERE R(1) IS THE REAL PART QF CPM(l)o IN ADDITIGN, THE
E~VECTORS ARE ALSC CCRRESPCNCINGLY GCGRDERED

SI=(0.0D00, 0.0D0) _
DO 320 JJ=1,13
S=S1
DG 310 Jy=1,13
R{JI=DREAL(CPM(I))
R{(J+1)=DREAL(CPM{U+1))
IF (R{J)GELR(J+1)) GC TO 310 RY
S=CPM(J) '
CPM(J)I=CPM(JU+1)
CPM(J+1 )=S
IF(1J0BEQ+0) GC TO 310
DG 300 JK=1,7
SE(JIK)=Z( IKsJ)
ZEIK+JII)=Z(IKsJ+1)
Z{JKy J#1 )=SE{JK)

300 CONTINUE
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310 CONTINUE
SR=DREAL(S)
IF (SR.EQ«D+0) GO TO 325

320 CONTINUE

325 IF(IPLOT.EQsD) GO TO 280
IF(COMSGNLT.0.000) GO TO 350

IF COMSGN IS PUSITIVE THE E-VALLES AND E-VECTCURS ARE PLACED IN
TEMPORARY STORAGE

Ooan b

DO 340 IN=1,14
CPMT(UIN)=CPM( IN)
IF(1lJ0B«EQ«0) GO TU 340C
DO 330 IM=1,7

330 ZT{(IMsINI=Z(IMLIN)

340 CONTINUE
GO TO 175

IN THE FOLLGWING LGCOUP, CPM{IN) AND Z{(IM,IN) CORRESFOND TU CUOMSGN==1.M1,
IF RPM IS NOT > DREAL(CPM(IN)),THE VALUES OBTAINED FOR COMSGN=+1.(
ARE SUBSTITUTED FCR CPM(IN) AND Z(IM,IN)

sl ol o Nalal

350 DO 370 IN=1,14
IF{RPMeGT+DREAL(CPM(IN))) GC TC 370
CPM(IN)=CPMT( IN)
IF{1J0B.EQe0Q) GC TO 370
DO 3€0 IM=1,7 »
360 Z{IM,INI=ZT(IM,IN)
370 CONTINUE
380 IF (1J0B.EQ.D) GO TO 710
C
C THE FOLLOWING LOOP NORMALIZES EACFr E~-VECTOR,
C
DG 410 Ju=1.14
IMAX={0.0D0,00D0O)
DQ 390 JUK=1.7
DZMAX=CDABS(ZMAX)
IF(CDABS{Z(JUKs»J)).LE.DZMAX) GO TO 360
ZMAX=Z( UK+ J)
390 CONTINUE
DG 400 JUK=1,7 .
400 ZUUKsJ)=Z2(JUKeJ)/ZNAX
410 CONTINUE
PRINT 420+RPMsCC
420 FORMAT( "1 7" 414X +"AT" 401436, FPV' ,10X,6%%%x% CD =% 4sF6e24°? LA X
*s//)
PRINT 440
440 FORMAT(2X+s2(13X+*EIGENVECTOR® ,3X+* CORRESPONDING TO® ,3X.,*EICENVALUE
%2 ,8X)ys7)
00 S500 LVv=1,14,2
C
C ONLY THE FIRST SEVEN ELEMENTS OF EACH E-VECTOR CCRRESPOND TO THE
C GENERALIZED DISPLACEMENTY Q=VECTOR
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DO 480 KvV=]1,7
IF {KV.EQel) PRINT 45092(KV’LV)UCPM(LV,oZ(KVoLV+l)'CPM(LV+1)
IF (KVeNE«a1) PRINT 4604Z(KVLV)sZ{KVsLV+L)
450 FORMAT(SX32(2X32D1344:2X+2D178))
460 FORMAT(SX2(2X+2D1364,36X))
480 CONTINUE
PRINT 490
490 FORMAT{(//)
500 COCNTINUE
PRINT S10 . -
S10 FORMAT(//777)
540 IF(CDeGTeD0D0O) GC TC 710
IF{IPLOTEQel ¢+OR« IDAMPNEO) GO T3 7190
CALL PLOT(0O o0 96675,-3)

C .
C THE FCLLOWING LOCP PLUTS THE MODE SHAPES FOR ROTATIUNAL SPEEDS
C INDICATED BY THE SUBROUTINE TYPSCL
C
DC 700 JX=1,4
IF(JUXeEWQe2 sURe IXeEQead) CALL PLCT(0.0’-4.75'-3,
IF{JUXeEQe3) CALL PLOT(BeODs4e75,~3)
JST=JSTART (JX)
JNO=JEND(J X)
DO 670 J=JST,JND
DO 650 JK=1,7
650 EV(JK)I=DREAL(Z(JKsJ))
TAXIS=0
IF(JEQeJND) IAXIS=
MM=MMV(J)
CALL MODLUM(EVsMM,,IAXIS)
IF{(JeEQ+7) CALL LEGNDI1
IF{J+EQell) CALL LEGND2
IF(JEQe3) CALL LEGNDZ
IF({J«EQs14) CALL LEGND4
IF{J+sEQeJIND) CALL LEGND7 (RPM)
670 CONTINUE
700 CONTINUE
CALL PLOT(10.0+-2.00,-3)
710 CONTINUE
RPM2=2 o, 0 DU *RPM
C

C RCPM, ICPM, AND OM ARE REAL*4 VECTORS REQUIRED FCFR THE PLCTTING
€ ROUTINES »

DO 750 M=1,14

IDAT=I+(M-]1 )%501 ' ' .
IDATP=IDAT~-1

A=DREAL (CPM(M) )

IF {(MeGTe7) A==A

IF (Al Tesle0) A=1e0D

RCPM(IDAT)I=A

OM( IDAT)=RPNM

C FIRST ORDER CRITICAL SPEEDS CALCULATED US ING SUEBRGUTINE CRITCL
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IF (AdLEeRPM +ANCeCRITSI1(M J+GT 6599950} CALL CRITCL(CM(IDATP),0OM(

$JDAT) sRCPM(IDATP) 4 RCPM(IDAT) s 103 CRITS1 (M))

DETERMINATION OF SECCND ORDER CRITICAL SPEEDS USING CRITCL

IF (ALE«RPM2ANDCRITS2{M)eGTe65595.0) CALL CRITCL(OM{IDATPR) ,DN(

*xIDAT) yRCPM(IDATP)RCPM(IDAT )20, CRITS2(M))

B=DIMAG(CPM(M))
8BN=-8
IF{(ABS(BN) +LTele0E-~10) BN=0,0

CALCULATICN OF BEGINNING OF INSTABILITY BY CRITCL

IF(BNeGT 20 s 0 e ANDeRPMUNS( M) GT,59595,0) CALL CRITCL{CM(IDATF) ,GM(ID

*AT ) o BNP (M) s BNs O «D + RPMUNS (M) )

UPPER INSTABILITY LIMIT IS FCUND BY USING SUBROLTINE CRITCL

IF(BN«GT00) UPLLNS(M)=BEEBB.E
IF(BNeLTsDeDe ANDtUPLUNS{(M )eEQa888E8.8) CALL CRITCL(CU(ICATP), ,OM{(

XIDAT) +BNP (M) +BN,0 .0 UPLUNS (M))

750

BNP (M )=BN

IF{IXeEQel ) ICPMAL(ICAT)=BN
IF(IXeEQe2) ICPMA2(IDAT)=BEN
IF{IXeEQe3) ICPMAZ(ICAT)=DBN
IF(IXeEQead) ICPMA4(ICAT)I=EN

IF (BNeGT+200.0) BN=200.0

IF (BNeLT<—=200.0) BN==200.0

IF (IX«EQel) ICPMI(IDAT)=BN

IF (IXeEQe2) ICPM2(IDAT)=8BN

IF (IXeEQe3) ICPM3(IDAT)=EN

IF (IX.EQ.48) ICPMA(IDAT)=8BN .
IF (BNeGT e0 40 e ANDeRPMUNS (M) eEQe99995.G) RPMUNS(M)=RPM
CONTINUE

 RPM=10.0%*{[*¥0,.01)

800

S10

912

915

$30
940

941

942

943
944

CONTINUE
PRINT 910,CD
FORMAT ('10 461 X+°CO =%, Fb6e2+//)

PRINT 912
FORMAT(11X,*RPM AT ONSET OF UNSTABLE MOTION®?,12X,*FIRST CROER CRIT

*JCAL SPEEOS',14Xs*SECCND ORDER CRITICAL SPEEDS*,/)

PRINT 915 -
FORMAT({1X+»3(10Xs * ERANCH RETROGRADE FCRYAFRD'))

D0 S40 M=1,7
PRINT Q930 MNyRPMUNSI{M+7) sRPMUNS(8=M) yMeCRITSL(M47) +CRITS1(8=N),M,

ECRITS2(M+7 ) +CRITS2(8-M)

FORMAT(1X,3(13XI1s7XeF7e1+6XeF741))
CONTINUE

PRINT 941 . : )
FORMAT(//+11Xs *UPPER LIMIT OK UNSTABLE MGTICN(RPM)*)
PRINT 942

FORMAT(/s11Xs* ERANCH RETRCGRADE FORWARC?)

DO 944 M=1,7

PRINT 943, M,UPLUNS(M+7 ), UPLUNS (8=-M)
FORMAT( 14X Il s7XsF 741 +6XsFT7el)
CONTINUE
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PRINT 945 . ' : =
945 FORMAT(//+ 11X *NOTE: IF 99999.,9 APPEARS IN AECVE TABLE, NC INSTAE

*ILITY OR CRITICALY,/,18X,*SPEEC wWAS ENCOUNTYEREL WITHIN SPEED RANGE

*# 0.0 TO 1000000 RPM,*+/+18X+" 888888 IMPLIES THAT INSTABILITY uPP

*ER LIMIT IS AT LEAST UPTO 10000060 RPM,. )

BEGINNING OF WHIRL DIAGRAM PLOTS

OM{7015)=1.0

OM{7016)=1.%

RCPM{7015)=1,.,0 .

RCPM(T7016)=1e5 n
CALL FACTOR(1.30)

IF(IPLOT.EQel) GO TG G600

DO 955 I=1,3

ISTART=6514

ISTGP=0

IF (1eEGe2) ISTOP=3507

IF {I1eEGe3) ISTART=3007

CALL LAXIS{D0e0+0¢0,*WHIRLING FREQUENCYs CPM? 3225106 5¢90.0RCPM( 701
*5) sRCPM(7016))

CALL LAXIS(0e0+De0+s*RCTATICNAL SPEEDe RPN? 3=2137e540e0+CM{7015) ,0M
*x(7016))

KK=]START

950 DOMI=0OM(KK+501)

DOM2=0OM(KK+502)

DRC 1=RCPM(KK+501)

DRC2=RCPM(KK+502)

OM{KK+501 )=CM{7015)

OM{KK+502)=0M(701¢)

RCPM(KK +501 )=RCPM(7015)

RCPM(KK+502)=RCPM(7016) .

CALL LINE(OMIKK)+sRCPM(KK) +501s1+050,3)

OM{(KK+501 )=D0OM1

OM{KK+502)=p0OM2

RCPMIKK+501 )=DRCY

RCPM{KK+502)=DRC2

KK=KK~-501

IF (KKeGTISTOP) GG TC 950

CALL LAXIS{0,0+105+® *31e=7e5+s0s0,CM(7015),0NM(7016))

CALL LAXIS(7e¢530005° "9=1,3=10s5,50s0,RCPM(T7018),RCPM(T7016))

CALL PLOT(0.0+040,43) :

CALL DASH( 7e597+554)

YI=DLOGLIO (2000 )%1.5

Y2=Y1+75 -
CALL PLOT(0e02Y143)

CALL DASH(759Y2,+4)

CALL SYMBOL (2¢90+=1e7030:164°C D =9 ,04.0,5)

CALL NUMBER(99%9¢ 1=1e7090e16sCDSs0e022)

CALL LEGNDS{RPDIVS+4.809=1.70, IDAMP)

IF {(1+.£Qe2) CALL SYMOBOL{(2620511e309¢20¢°NEGATIVE BRANCHES® 40esl 7)
IF (1.EQe3) CALL SYMBGOL (26209114305 420+ *POSITIVE BRANCHES® 40 es17)
CALL PLOT(1320+060,—-3) :

955 CCNTINUE
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THE FCLLOWING CARCS THRGUGH 960 WwWILL CAUSE A SMALL PCGRTICN CF THE
C FORWARD WHIRLING MAP TC BE ENLARGEC AND FLOYTED SEPARATELY,

CM(7015)=8.0E3
OM(7016)=6.0

RCPM{7015)=2.0E4

RCPM(7016)=64.0
ISTART=250¢€

ISTOP=0
DO 956 I=1

»3006

IFIRCPM({I).LTa2.0E4) RCPM(I)=2.0E4
IF(RCPM (1) «GT ¢2e0ES) RCPM(I)=24DES

IF{OM(I)LTe8.,0E3)
IF(OM{I )eGT «aBL,0E4) OM(1)=8,0E4

956

ONM(1)=8.,0E3

CALL LAXIS(0«0s0.0,*wHIRL ING FREQUENCY,
%)y RCPM(7016))

CALL LAXIS(0e40,0 .0y *ROTAT IONAL SPEED,

*¥(7016))
KK=ISTART
958

OM(KK+501)=CM(7015)

OM(KK+502)=0M(7016€)
RCPM(KK+501 )=RCPM(7015)
RCPM(KK+S02)=RCPM(7016)
CALL L INE(OM(KK) +RCPM(KK) +50141505043)

KK=KK-501

IF (KKeGTL.ISTOP) GO TC 958
95 19=6eD30e0,0M(7015S),0M(7016))
P =]l 1=6e0 190 0 s RCPN¥ (7015 ), RCPM(7016))

CALL
CALL
CALL
CALL
CALL
CALL

LAXIS{(De0s640s
LAXIS(6e0:060,?
SYMBOL(1eG09s—1e70+0e16+°C D
NUMBER(999 ¢9~1e7030e16:CDSs0e0+2)
LEGND S(RPDIVE1380,4,=1,70,10AMP)

PLCT(12:0+000,~-2)

=% 3060,

CPM? 4 22,6604 90.0,RCPAL7015

S)

IF{IXeEQoel eCReIXeEQeZ2) CALL FLLT(=S1e0+20604~-2
IF(IXeEQe2) CALL PLOT(3e¢04+s=2000,-3)

960 CONTINUE

IF {IPLOT«EGe0) GC TC 990

DGO 975 M=5,7

IF{MeEQ.1)
IF{M.EQ,2)
IF{MeEQe3)
IF(MeEQ44)
IF(M«EQeS)
IF{M.EQe6)
IF(MeEQe7)
961 FORMAT(*1°
*4/77)
962 FORMAT(*1?
X9//)
963 FURMAT(*1?
*,/7)
964 FORMAT({*1°*
*y/7)
965 FORMAT('1°?*
¥4,/7)
S66 FORMAT('1"®
¥o4//)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

361
62
963
964
$65
966
S67

»1Xs t0R S

slXytkkex

e IX g ¥k %X%

s1X P BE RS

X, tXEES

o 1X g "®%k¥x

7TH
6TH
5£H
4TH
3TH

2TH

FORWARD

FCRWARD

FCRWAERC

FCRWARC

FCRWARD

FCRWARD

BRANCH:

BRANCH

ERANCH

ERANCH?

BRANCH

BRANCH?

GROWTH

GROWTH

GROWTH

GROWTH

GROWTH

GRCW Th

FACTORS

FACTCRS

FACTORS

FACTORS

FACTORS

FACTORS

(IN

{IN

RPM? 4=219€e0s00sCNVM(7C1S5) 4CM

CPM)*

CPM)*

cPM) e

CPM)*

CPV)

CPNV )¢
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967 FORMAT(*17 g1X,e *%&x 1TH FORWARD BRANCH: GROWTH FACTQORS (IN CPw¥v)
*o/7/)
PRINT 970, (COSV(IX)sIX=1,4)
970 FORMAT(13Xs*'RPM?,4X54{11Xs°'CD =*'4F5+2),7)
DO 975 1=1+501+10
IDAT=1+(M-1)%501
PRINT 974.DM(IDAT)'ICPNA1(IDAT).ICPNAz(IDAT);ICPMAS(IDAT).[CDMAA(I -
*DAT)
974 FORMATY(1Xs5E20e5)
975 CONTINUE
C
C BEGINNING OF GROWTH FACTOR PLOTS
C
RCPM{7015)=10.0
ICPM1(7015)==200.0
ICPM2{(7015)==200.0
ICPM3(7015)==200.0
ICPNM4{(T7015)==200.0
ICPM1(7016)=506,0
ICPM2(7016)=50.0
ICPM3(7016)=50.0
ICPM4{T7016)=50.0

C
C TO HAVE ALL GRCWTH FACTOR PLOTS SET ISTART=6514, ISTOP=0. IF ONLY THE

€ FIRST THREE FCRWARD BRANCHES ARE DESIREDSET ISTART=3007.ISTOP=2004
C :
ISTART=6514
ISTOP=0
KK=[START
I=1
980 OM{KK+501)=CM(7015)
OMKK+#502)=CM(7016)
ICPMI(KK+501)=ICPM1(7015)
ICPM2{KK+501 )= 1CPM2(7015)
ICPM3{KK+501)=ICFM3(7015)
ICPMA(KK+501)=1CPM4(7015)
ICPMLIKK+502)=ICPML (701i6)
ICPM2(KK+502)=ICPM2(7016)
ICPM3 (KK+502)=1CPM3(7016)
ICPM4(KK+502)=1CPM4(7016) b

CALL AXTIS{(O0e004s* GRO\TH FACTOR®* .16, 8-.90.,1CPM1(7015).ICPMI(

*7016))

CALL LAXIS{(000+0.0s*ROTATIONAL SPEEDs RFN® =21 ,7¢5900sCM(701S5) ,0M -
*(7016))

CALL LINE(OM(KK) s ICPNL(KK)»50151,100,1,2)

CALL LINE(OM{KK) 4 ICPM2(KK)+501+14100+2+2)

CALL LINE(CMIKK) + ICPVMI(KK)2S50191+100s392)

CALL LINE(OMIKK) s ICPMA(KK) sS01+1+100+4,2)

CALL AXIS(7e590:0+" *9=1+8400+s90:D4ICPM1(7015),.,ICPM1I(701€))
CALL LAXIS{00098e0+" *413=7:.5:,00,0M(7D015),0M(7016))

CALL LEGNDS(RPDIVSsDea45¢7:20, 1DAMP)

CALL LEGNDS6{0 e4596¢88,0:16-,CDSV, KK)

CALL PLDT(0.0’8000-3)
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J=MCD(I+2)
IF (JEQ.d) GO TO 982
CALL PLOT(0e0970,-3)
GO TO 985
982 CALL FPLOT(1€40+=2340+-3)
I=0
985 KK=KK-501
I=1+1
IF(KKeGTLISTOGR) GC TO 980
990 CALL PLOT(0.0,0.0,99G)
STCP
END

SUBROUT INE COMPL I (ALPH,COMSGN)

IMPLICIT REAL*8(A-H+C=2Z)

REAL*8 TA(3),K(3),.KEQ

REAL*¥8 TEQ.LACL3sLALBLChLG

REAL%*¥8 KB,y KSLyKSU

COMPLEX®16 ALPH(E8+8)+EI(3)sEsGoKAG( 2)HsINUM
COMPLEX*16 FACL,FAC2

DIMENSION AREA(3) +DIN(3),00UT(3)

ER,GR: REAL PARTS COF THE COMPLEX YCUNG?®*S AND SHEAR MCDULT

DOUT AND DIN ARE SHAFT CUTER AND INNER DIAMETER CATA RESPECTIVELY
DOUT(3) AND DIN(3) ARE THOSE OF THE TURBINE SHAFTY

K{1)+K(2)+K(3): SHEAR CCRRECTICN FACTGCRS.K(3) IS THAT OF THE

TURBINE SHAFT
KEQ: SHEAR CORRECTION FACTOR OF THE EQUIVALENT CUILL SHAFT

INSIDE THE TURBINE SHAFT

LAC: ACTUAL LENGTHK CF QUILL SHAFT INSIDE TURBINE SHAFT
L3sLAWNBILCILGoAL»AZ2,A3,A42 LENGTHS DEFINED IN AFPENDIX Al

T3,TS: DIMENSIONS ON THE INTERMEDIATE MASS.SEE FIGeAl

GAMAS: LOSS TANGENT FOR STEEL

L3 o o o DISTe FROM THE CENTER OF UPPER BEARING TO BEGINNING OF
LOWER BEARING '

LA e o« o DIST. FROM THE UPPER BARING CENTER (UBC) TO END OF [INTER-
MEDIATE MASS
LB o e ¢ DIST, FROM UBC TO THE BEGINNING OF DAMPEF
LC « » o DIST. FROM UBC TO DAMPER END 4
Lo DISTe FROM UBC TO FLYWHEEL SHAFT END

* e *
Al e o o« DISTe FROM UBC TO INTERMEDIATE MASS CG
A2 ¢« o o DIST. FRCM UBC TO DAMPER CG
A3 e « DISTes FROM UBC TUO FLYWHEEL CG

L J
A4 « o o SEPARATIGN CF THE TWC BEARING CENTERS
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COMMON/MAINI/TD«TF,TT1
CCMMON/MAIN2/LESsLGoL3

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

ER»GR/29e5D0C6s1165D06/
DOUT/0312500,0.3125D00¢04,749300/
DIN/2%¥040D0+0+3175D0/

Ky KEQ/2%0 «8BEDD +»0.6565D0G,0.885D00/

LACsLAJLC/ 35969D0+25784D0,76324D0/
T3+.7S/704435200 306243100/

KSUKSL/72%2,Q0D0€/

ALl sA20A34A4/2e5621D0+15e4608D0+112195D0¢2.37D0/
GAMAS/0. 00500/

PII=2.0%DARSIN(1.0D0)

INUM={0 «0D0+1+0D0)
E=(1e0D0+COMSGNXINUMRGAMAS) XER
G={1s0D0+COMSGN*INUMXGAMAS) *GR

AREAS AND MOMENTS OF INERTIA OF SHAFT SECTIONS 1 &€ 2 AND
THAT OF TURBINE SHAFT ARE CALCULATED

DO 30 J=1,3
AREA(J)I=PIL1*¥(DOUT(J)%%2=-DIN(J)*%2)}/4.0
IA{J)= PII*(O0UT(U)*¥4=DIN(JI)*%4)/64.0
CONTINUVE :

CALCULATION OF DIAMETER AND AREA OF EQUIVALENT GUILL SHAFT

40

45

INSIDE

TURBINE SHAFT

IEQ=IA(2)*(L3/7LAC)I*%*4
DEG=(64 JOXIEQ/P I )¥%0 .25
AEQ=PLI *DE Q*%2 /440

K(3)'AREA(3)'IA(3) ARE NEWLY DEFINED FOR THE EQUIVALENT SECTION
CONTAINING BOTH THE TURBINE SHAFT AND FLYWHEEL SHAFT

K(3)=

{KEQ*AEG+K{(3 J*AREA(3) )/ (AEQ+AREA(3))

AREA( 3) =AREA(3)+AEQ
IA(3)=TA(3)+IEQ

DO 40 I=1,+3

KAGL1)=K{ I)*AREA( 1) *G
DO 45 I=1,3
ET(I)=E*IA(I)
Al1A4=1,0~-A1/A4

A2 A4=

1+ 0~A2/7A4

A3A4=1,0~A3/A4
TTAA=1.0+TT1/ A4
A4S=A4%k %2

FACI1=

1o0/KAGL 3)+L3%32/( 3. 0%EI( 2))

FAC2=1 0/ (KAG(3)*AG)=L3¥(0+5=L3/7(3+0%A%))/7E1(2)
FAC3=A3/7{A4S*KSL)—=A3A4/{KSU%RA4)

¥

»

-y




L

eo

121

FAC4=(1.0/KSU+1.,0/KSL) /A4S
FACS=A2/(AAS®KSL )=A2A4/(A4%KSU)
FAC6=AL1/{AASEKSL)-Al A4/ (AQ*KSU)

COMPUTATION CF COMPLIANCE MATRIX

ALPH{ 1¢ 1)=L3%A3A4%825FACLI+(LB-LA)/KAG(2)+{A3%(LEB-LA)*(A3-LE~-LA)+(L
CBEEI=L AEE3 ) /3e0)/ET(2)4{LG-LCI/KAGC L) #( A3H(LG-LC)I*(A3-LG-LCI+(LG%x
$3-1 C*¥%3)/3,0)/EI1(1)+A3A4222/KSU+(A3/A4) #%2/KSL

ALPH{152)==L3%A3A4/A4FAC1+{(LB-LA)*(A3=(LB+LA)/2eC)/FI{2)+ (LG~LC)*
$(A3=(LG+LC)I/2.0)/EL(1)+FAC3

ALPH( 1, 3)=L3%A3A4%A2A4FACI+(LD=LA) /KAG(2)+((LE=LA)*(A25A3~(LB+LA)
/2D (A2#A3) ) +(LB3=LAXS3)/3.0)/E1(2)4+A2A4%A3A4/KSU+A2*A3/(KSL*
*A4 %)

ALPH(1+4)==L3%A3A4/A4%FAC 1+{(LB-LA)*(A3-(LB#+LA)/2.0) /EI(2)+FAC3

ALPH(1,5)=0L3%A3A4 %A1 A0%FACI+ALAG*A3AG/KSU+AL$AZ/(KSL*ASLS)

ALPH( 14 6)=—=L3%A3A4/A42FACI+FACZ

ALPH(1,7)=L3%A3A4%TT1*FAC2+TTA4%A3AG/KSU-TT1%A2/(KSL*A4S)

ALPH{ 1, 8)=—L3%A3A4%F AC2+FAC3

ALPH( 2, 2)=L3/A4%2%FACLI+{LB=LA)/EI(2)+(LG-LC)/EI(1)+FACA4

ALPH(2,3)==L3%A2A4/A4¢FACL+(LB-LA)®(A2-(LBH . A)/20)/E1(2)~A24a8/(
*A4XKSU)+A2/(KSLEAALS)

ALPH(2,4)=L3/A43%2%FACL+{LB~LA)EIL( 2)+FACA
ALPH{2+5)=—L38A1 A4/A4%FAC1=ALA4/ (KSU®AG)+AL/(KSL%XA4S)

ALPH(2,6)=tL.3/A4%82%FAC1+FACA4

ALPH(2.7)==L38TT1/A4*%FAC2-TTAG/(KSU*A4)-TT1/(A4SEKSL )

ALPH( 2, 8)=L3/A4%xFAC2+4FACS

ALPH( 3+ 3)=L3%A2A4%%2¢FACI4(LB-LA)/KAGI2)+(A2%(LB=LA)®(A2-t E~LA) +(L
*BEA3-LA¥%3)/3,0)/7EL(2)+A2A8%%2/KSU+(A2/ A4) %2/ KSL

ALPH(3,4)=ALPH(2,3)

ALPH(3,5)=L3%A2A4 $A1 AGSFACLI+ALAGSARAL/KSU+AL®AZ/(AGSHKSL)

ALPH(3,6)=—L3%A2A4/A4SFACL+FACS

ALPH( 3, 7)=L3%A2A48TT1*xFAC24A2AGTTA4/KSU~A2%TT1 /(A4 S¥KSL)

ALPH(3,8)=—=L3%A2A4%FAC2+FACS

ALPH( 4, 4)=L3/A4%%x 2%FAC1¢+(LB=-LA)/E1(2)+FACA

ALPH(4,5)=ALPHI(2,5)

ALPH(4 .6 )=ALPH(2 ,6)

ALPH( &, 7)=ALPH{2,7)

ALPH(4 +8)=ALPH(2,.8)

ALPH( 59 S)=L 3I*A1A4%5:28FACL1+A1AG%E2/KSU+(AL/AL) *82/KS L

ALPH(S,6)==L3%A1 A4/ A4 2FAC1+FAC6

ALPH{ Se7T)=L3&TT1 Al AAXFAC2¢A1A4RTTAL/KSU-TT1 %A1/ (A4S%KSL)

ALPH( S5, 8)=—L3%A1A48FAC2+FAC6

ALPH(6+6)=ALPH(2,6)

ALPH{( 64 7)=ALPH(2,:7)

ALPH( 64 8)=ALPH(2.8)

ALPH(7,7)=TT1 #3280 L3%(FAC2/A4+( 1 0~L3/(2.0%A4) )/EE(3))+TTAG*¥2/KSU+
*(TT1/A4 J*%2/KSL

ALPH(7+8)==TT1*L3&(FAC2/A4+4(1+0-L3/(2.0%A4))/EI(3))-TTA4/(A4EKSL)~
*TT1/(A4SEKSL)

ALPH(8,8)=L3%(FAC2/A44(1.0-L3/(2+0%A4))/ET(3) )+FACS

DO 80 J=1,8

DO 80 M=J,8

ALPH( M, J)I=ALPH(Js V)

CONTINUE

RETURN

END
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SUBROUTINE NULTYC{(AeBeCsN) :
COMPLEX*16 A(NIN) +BUNsN) 2C{NsN)
DG 5 I=1N
DG 5 J=1sN
Cl{1+3)=(0.00+06D0)
DC 5 K=1,N
S C{I+J)=ClI14+J) +A(IK}*B{KyJ)
RE TURN
END

SUBRCUT INE CRITCL(X1eX2sY1sY24+0RDERCRVALUY)

THIS SUBROUTINE COMPUTES THE X-=CCCRDINATE CF THE INTERSECTICN CF TwC
STRAIGHY L INESs THE FIRST STAIGHT LINE IS THAT CCNNECTING THE PCINTS
X1sY1 TO X2s¥2, THE SECCND STRAIGHT LINE IS Y = CFRCER * X

IMPLICIT REALX¥4( A-HsC=2)
SLOPE=(Y2~Y1)/7(X2=X1)
CRVALU={Y1-SLOPE*X1)/(CRDER~SLUOPE)
RETURN

END

SUBROUT INE TYPSOL (I1,1J0Bs JEVSY»IPLOT, IDANMP)

THE VARIABLE JEVST INDICATES WHICH CRITICAL SPEEC IS5 CURRENTLY BEING

CONS IDEREDe FIRSY ORDER FORWARD CRITICALS FOR 7F THRU 1F HAVE JEVST

1 THRU 7 RESPECTIVELY. THAT IS, JEVST CCRRESPONCS TO THE ORDERING OF
CRITICALS FROM HIGHEST TO LOWESTe THUS, FIRST ORDER RETRUGRADE

CRITICALS FOR 1R THRU 7R HAVE JEVST 8 THRU 14 RESPECTIVELY.(RECALL

THAT RETROGRADE CRITICALS ARE NEGATIVE).FOR SECCNC ORDER CRITICALS,
ADD 14 TGO THE ABQVE JEVST VALUES '

OBYIOUSLY A RUN MUSTY BE ACCONMPLISHED WITH [JCB=0 TC OBTAIN THE CRITICAL
SPEEDS REFERRED TO BY THE VARIABLE I.

IMPL ICIT REAL*4(A-Hes0=-2)
JEVST=0
IF(1.EQe302) JEVST=7?

SINCE MGDE SHAPES ARE PLOTTED ONLY FCR [PLCT=0 ANC IDAMP=0, E~VECTORS
FOR SECOND ORDER CRITICAL SPEEDS ARE NOT EVEN COMPUTED UNLESS MODF
SHAPES ARE TG BE PLCTTED

IF(IPLOT oEQel «OR IDAMP.NE«O) GO TO 20
IF(1+EQe244) JEVST=2]
IF(1.EQe421) JEVST=20
IF{1EQe463) JEVST=19
IF(1+EQ.481) JEVST=18
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20 IF(JEVSTNEO) 1JCB=1

NOTES THIS SUBROUT INE DOES NGCT ALLOW FOR THE PCSSIBILITY THAT TWO (OF
MORE) CRITICAL SPEEDS MAY OCCUR AT THE SAME ROTATIONAL SPEED.IF THIS
WERE TO OCCURCHOOSE HIGHER (OR LCwER VALUES OF TFHE VARIABLE*I* SO
THAT NC TWO VALUES OF *[' ABOVE ARE EQUALTHIS WILL ONLY AFFECT THE
MODE SHAPE ANDO THE OIFFERENCE SHCULD BE SUL IGHT

RETURN
END

SUBROUT INE MODLUM(EV,MM, TAXIS)
IMPLICIT REAL*4(A-H,C=-2)
DIMENSION EV(7)+XV(S),YV(E)

T2: DIMENSION ON [INTERMEDIATE MASS.SEE FIG.Al
SOME OF THE VARIABLES USED IN THIS SUBROUTINE ARE DEF INED AS:
Rl o ¢ e RADIUS CF TURBINE (NCTY YO SCALE)
R4 « ¢ o« RADIUS COF FLYWHEEL RIVM (NCT TC SCALE)
ALZ2 e o » AXIAL LENGTH OF DAMPER ‘320031’0/300)
AlL3e ¢ o AXIAL LENGTE FROM ENC OF FLYWFEEL SFAFT TO FLYWHEEL CG
{=TF/3.0)

S12¢ ¢ o AXIAL LENGTH FROM TYURBINE CeGe TO UPPER END CF DAMPER
ALEN o o AXIAL LENGTH FROM TUREBINE CeGe TO FLYWHEEL CG WHERE
ABOVE AXIAL LENGTES HAVE BEEN SCALED T0 1/2 ACTUAL SIZE
EV{(J)e o THE EIGENVECTOR REPRESENTING THE MODE SHAPE TGO BE DRAWN

ORIGIN,STEP « « ARE REQUIRED BY THE LIERARY SLBROUTINE LINE
XV{J)sYV(J) « o« COCRDINATES OF POINTS TO BE PLGTYED

COMMON/MODLML /R1 +RE
COMMON/MODLM2/0RIGIN,,STEP,
CCMMON/ MODLM3/7AL2+AL3+4S12+S11sALENJPL I XFB

DATA TT14T2+7T3708942+044163+0.4352/

CALL FACTOR(2.00)

THE FCGLLOWING MULTIPLIER CAUSES MAXIMUM DISPLACEMENTS TO APPEAR
IN THE PLOT AS 3/4 INCHES

DSCALE=V .75
DO 10 J4=1,7
10 EV(J)=EV(J)*OSCALE

DUE TO THE 1/3 SCALING,s TILTING ANGLES MUST BE MULTIPLIED BY 3 TU BE
CONSISTENT .
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EV(2)=EV(2)*3.0
EV(S)=EV(5)*3.0
EV(7)=EV(7)%3.0

THE FCLLOWING CARDS (THRCUGH 20) INSURE THAT THE MAXIMUM TILTING
ANGLE WILL BE PI/6 RADIANS OR LESS

EVM2=ABS(EV(2)) v
EVMS=ABS(EV(S5))
EVM7=ABS(EV(7))
PHIMAX=AMAX1{EVM2 sEVM5 ,EVNT7)
IF(PHIMAXSLTPI/640) GO TC 30 : a
DG 20 J=1.7

20 EV(JI=EV(J)*¥PI/{6.0%PHIMAX)

IT 1S POSSIBLE THAT THE HUB-FLYWHEEL SEAFT ATTACHNENT#OiNT wiLL HAVE
THE MAXDISPLACENMENT. THE FOLLCWING STATEMENTS (THROUGH 40) L IMIT
THIS HUB DISPLACEMENT TO APPROXIMATELY 3/4 INCHES

30 AHFA=ABS(EV(1)—=AL3%SINI{EV(2)))
IF{AHFA LT «0s75) GO 7O 590
DO 40 J=1,.,7 .

40 EV{(J)=EV(J)I%®X0.75/7AHFA

THE FOLLOWING CARDS (THRCUGH 90) CAUSE THE MODE SHAPES UF UDD=-NUMBERED
BRANCHES TO BE PLOTTYED PRIMARILY IN THE UPPER HALF-PLANE AND THCSE OF
EVEN~NUMBERED ERANCHES IN THE LOWER HALF-PLANE

50 IMM=MDOD(MM,2)
IF(MM«GTe7) GC TG 70
IF(IMM.NELO) GO TO 90
DO 60 JU=1,7

60 EV(J)==EV(J)

GO 10 90

NOTE THAY RETRCGRADE BRANCHES 1 THRU 7 ARE ASSOCIATED WITH MM VALUES OF
8 THRU 14 RESPECTIVELY ’ ‘

70 IF{IMM.EG.0) GC TG 90
DO 80 JU=1.7

80 EV(J)==EV{J)

90 CONTINUE
XV(4)=0RIGIN
YV{4)=0RIGIN
XV{5)=STEP
YV(S)=STEP

COMPUTE POINTS DEPICTING THE DISPLACED TURBINE

XV{(1)==R1%SINC(EV(7))
YV(1)=R1%COS{EV(7))+EV(6)
XV{(2)=0.0

YV(2)=EV(6)

XV{3)==XV(1)
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YV(3)=~RI&CCS(EV(T7))+EV(6)
CALL LINE(XVoYVe34l el ¢MM)
CALL PLOT(XV(2)»YV(2),3)
TT=TT1/360
TYY=TT«SIN(EV(7))+EV(E)
CALL PLOT(TTY,TTY,2)

CALL SYMBOL(TTaTTYs0.08¢MM0,0,~1)
CALL PLOT(TT,TTY,3)
XV{(3)=0RIGIN

YV{ 3)=0RIGIN

XV{(4)=STEP

YV{4)=STEP

C COMPUTE POINTS TO PLCT INTERMEDIATE MASS

C

C

C COMPUTE

C

C
C
C

AXL IN=(T2+T7T2)/3.0

Xv(1)=S11
YV(1)=SEV(43)~=T2/3,0%SIN(EV(S))
XV{(2)=S11+AXLIN
YV(2)=EV(4)+T2/3.9*SIN(EV(S))
CALL DASH( XV(1)sYV(1),s12)
CALL LINE(XVeYVs2,141,MM)
CALL PLOT(XV(2)sYV(21),3)

XVv(l)=s1z2

YV{1)=EV(3)
XV{2)=XV({1)+AL2
YV2)=yYv(l)

CALL DASH{XV{1)sYV(1),+12)
CALL LINE(XVeaYVy2slel,MM)
CALL PLOT(XV(2)sYVI2) ,3)
XV{4)=0ORIGIN
YV(4)=0RIGIN

XV{S5)=STEP.

YV(S)=STEP

COMPUTE POINTS DEPICTING THE OISPLACED FLYWHEEL

YFB=EV(1)-AL3*SIN(EV(2))
CALL DASH{ XFB .YFB,12)
CALL SYMBOL{XFBsYFBs0 «0BsMMs0eVs~1)
CALL PLOT(XFB.YFB,3)
XV(1)=ALEN=RA%XSIN(EV(2))
YV(1)=EV{(1)+RA*CCS(EV(2))
XV(2)=ALEN

Yvi{2)=egvi{l)
XV(3)=ALEN+R4sSIN(EV(2))
YV{3)=EV(1)=-K42COS(EV{2))
CALL PLOT(XVI(2)sYV(2),2)
CALL LINE{(XVeYVs3,1lel,MM)
CALL PLOT(0.0+0.0+3)

POINTS DEPICTING THE DISPLACED DAMFER



126

IF{IAXI SeEQeD) GO TO 100
CALL DASH(ALEN+0<0s4)
CALL PLOT(0.04+020,3)

100 RETURN
END

SUBROUT INE LEGND1
IMPLICIT REAL*B(A=H,C~2)
C
C THIS SUBROUTINE PROVIDES CAPTIUONS FOR BRANCHES 1F THROUGH 4F.
C
CALL FACTOR(2.00) ’
CALL SYMBOL (0 «0¢1e35+010, *MODE IDENTIFIERSI®+0e0,17)
CALL SYMBUL (1295914091091 90 e04s~1)
CALL SYMBOL(2¢17913S40100*1F?3060,+2)
CALL SYMBOL(2 673140910+ 390+085-1)
CALL SYMBOL(228G41e3S9010s%3F® 40+0+2)
CALL SYMBOL (169591209 ¢10:2+0e0,5~1) .
CALL SYMBOL(2e¢17 91615010+ 22F"* 40 40,2)
CALL SYMBOL (2673120201094 ¢0.0+—1) .
CALL SYMBOL(Z248991e¢150¢104+°4F *5060,2)
RE TURN
END

SUBROUT INE LEGAND2
IMPLICIT REAL*¥8(A~H,0~2)
C
C THIS SUBROUTINE PRCVIDES CAPTICONS FCR ERANCHES K THROUGH 4R,
C
CALL FACTOR(2.00)
CALL SYMBOL(0e0+1e35 40105 *MODE IDENTIFIERSZI' 3040,17) J
CALL SYMBOL (1959104090108 0+04—-1) '
CALL SYMBOL(217 210350104 "1R*4s0e0,42)
CALL SYMBOL(20€7414809:10+1000+05~1)
CALL SYMBOL (2689913554109 '3R*400+2)
CALL SYMBOLI{1:9551¢20+0104950:0,-1)
CALL SYMBOL(2¢17416155¢10+°2R*"40.0+2)
CALL SYMBUOL (267116205105 1150609-1)
CALL SYMBOL{2¢8951¢183e10+%°4R? 50,0:2) )
RETURN V b
END

I

SUBROUT INE LEGNDJ

IMPLICIT REAL*8(A-H»0-2)
C :
C THIS SUBROUTINE PROVIDES CAPTIONS FOR BRANCHES S5F THROUGH 7F.
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FACTOR{2.00)

SYMBOL (040910350105 "MODE IDENTIFIERS:®4040,17)

SYMBOL (169561 4035610 9590.04+—-1)
SYMBOL (2e1701e3S9e¢10+°5F* 30e0+2)
SYMBOL (2667 5104006103570 e0s5-1)
SYMBOL (26 E9431635+9¢10,"7F? ,060,+2)
SYMBOL (169541142091 0e63500,~1)
SYMBOL (21701 2154:10+%6F"*40.0,2)

RETURN

END

SUBROUTINE LEGNDS
IMPLICIY REAL*B(A~H,G=2)

THIS SUBRGUTINE PROVIDES CAPTICNS FGR BRANCHES SF THROUGH 7K.

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

FACTOR(2.,00)

SYMBOL (0 e0¢1e35S+¢10s *MODE IDENTIFIERSZ? 4000,17)

SYMBOL ({1 e¢95+1¢40+010061290e09~-1)
SYMBOL (21791 35+210?SR? 3040,2)
SYMBOL(2e67+1640+010514,0+09~-1)
SYMBOL (28941 359¢104°7R*,0.,0,2)
SYMBOL (1095516205010 ¢1340:09-1)
SYMBOL (2175161550109 %6R*500,2)

RE TURN

END

SUBRGOQUT INE LEGKND7 (RPM)
IMPLICIY REAL*8{A-H,0~2)
REAL %4 RS

RS=RPM

SINCE A CAPITAL OMEGA {S NOT AN AVAILABLE CrRARACTER,

MANUAL INSERTICN.

CALL
CALL
CALL
CALL

SYMBOL(177+=1e¢359e129%'= ?,0e0s2)
NUMBE R(995¢ ¢o=1035:012sRS,00+2)
SYMBOL (99F e+ =1¢2355¢12:* RPM*40604+4)
PLOT{0e0:000,3)

RETURN

END

SUBROUT INE LEGNDS (RPDIVS,XCOOR,YCCCR, IDANP)

IMPLICIT REAL#%4(A=-H,C=Z)

SPACE IS LEFT FOR
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YPLUS=YCOOR#+0. 24

XPLUS=XCOOR+0.48

IF{IDAMP-1) 10,20030

CALL SYMBOL{(XCOORYCOCR, Ooléc'hﬂ MATERI AL DAMP[NG'.0.0.IQ’

GO TO 40
CALL SYMBOL(XCCOReYPLUS,0416+% VISCOLS INTERNAL DAMPING® o0 .0 +24)
CALL SYMBOL(XPLUS,YCOORs0 16+ *WITH =%430e0,9)

CALL NUMBER(9994¢ YCUCR 1016 sRPCIVS3s0e0e~-1)

CALL SYMEBOL(9GGesYCOORDe169* RPM®*,0,0,4)

GO 10 490

CALL SYMBOL(XCCORIYCCCRy 016 COCMPLEX STIFFNESC'OOOOo17)
RETURN

END .

SUBROUT INE LEGNDG (XCCOR, YCOOR s HGHT » CDSV 4KK)

IMPLICIT REAL*4( A=HyC~=Z)

DIMENSION CDSV(4)

IF (KKeEQe6514) CALL SYMBOL{3¢S3s 9¢10+0416+% 7=R" 4D +0,3)
IF (KKeEQe6013) CALL SYMBOL{3e53, 9e10,06169%6=R*4040,2)
IF (KKeEQeS5S12) CALL SYMBOL( 3453y 9210500169 ?5=R% 43¢0 +3)
IF (KKeEQeS5011) CALL SYMBOL(3eS3s 91050165 '4=~R?,0,0,3)
IF (KKeEQ.4510) CALL SYMBOL(3¢53, 94104016, *3=R?,0..0,3)
IF (KKeEQe4009) CALL SYMBOL(3eE3s 9410:06164*2=R*+04043)
IF (KKeEQe3508) CALL SYMBOL(3e53, 9¢10,0416,91=R?,0.0,3)
IF (KKeEQe3007) CALL SYMBOL(3,53s 9¢10s0e¢16+% 1=~F" 30 o0 +3)
IF (KKeEQe2506) CALL SYMBOL{34S3s 9410500164 92=F*40.053)
IF (KK+sEQe2005) CALL SYMBOL(3¢53s 9103016, °3=F*,5,0,3)
IF (KKeEQe1504) CALL SYMBOL(3e53s 9¢10s0e169%4~F® 0e093)
IF (KKeEQel10U03) CALL SYMBOL(3e53s 9610,0e164 'S~F9,0,0,3)
IF (KKeEQeS5S02) CALL SYMBOL(3e535s 910 +De16+°6~F% 0l 43)
IF (KKeEQel) CALL SYMBOL{ 34535 9¢1050e16+°7=F 430404 3)
X1=XCOOR

Y1=YCOOR

X2=X1+6 « 0 ¥HGHT

X3=X2412e 0%HGH T

Y2=Y1=2 0 %HGHT

YS1I=Y1+HGHT/2.0

YS2=Y2¢HGHT/2.0 \
IF(CDSV(1) eGT «9¢940R «COSV(2)eGTe9+3) X3I=XI+HGHT .
IF{CDSV(1) eG6Te99¢9¢0ReCDSV(2)eGT299¢9) X3=X3++CRT

CALL SYMBOL(X15Y1sHGHTL*ANDI*»0e054)

CALL SYMBOL(X2,YS1lsHGHT, 1 00¢—1) o . ,

CALL SYMBOL{999s s Yl sHGHT ' C D = 4,00 +6) ' -
CALL NUMBER{999 49 Y1 s HGHT 4 CDSV(1):0e0+2)
CALL SYMBOL(X3+sYS1+sHGHT 43 40e0+-1)

CALL SYMBOL (99Ges Y1 +HGHT s * C D =¢,04+0+6)
CALL NUMBER{(99944 Y1l s HGHT, CDSV{2) 4040, 2)
CALL SYMBOL{X2,YS2sHGHT 42400 ¢~1)

CALL SYMBOL(9994sY2+sHGHT,* C D =7,040:6)
CALL NUMBER(999¢ ¢ Y2 s HGHT 4CDSV(2) 5000, 2)
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CALL SYMBOL(X3+YS2sFHGHT 44480, -1)

CALL SYMBOL{9GSe s Y2eHGHT +* C D =% 40 0 ¢6)
CALL NUMBER(99G ey Y2, HGFT,CDSV(4)90e0+2)
CALL PLOT (0.0 4000 +3)

RETURN

END

BLOCK DATA

IMPLICIT REAL*8(A=H,0~2Z)

REAL®4 R1+FR4+CRIGIN,STEP

REAL*8 LB,LG,L3

CCMMCN/MAINL/TCTF,TTY
COMMON/MAINZ2/LBeLG,L3
COMMON/MODL ML /R1 4R4

COMMCN/ MOOLM2/CFRIGIN,STEP

DATA TD oTF oTT1/1.833200+31500,08394200/
DATA LBslLGsL3/3e66576D0+18¢0€E9500+241266D0/
DATA RLyR4/0.70+L .20/
DATA ORIGIN,STEP/0e0s1.0/
END
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C.2 Forced Whirling Using the Lumped Model

The purpose of this computation is to obtain plots of the amplitudes
of the various deflections and slopes versus rotational speed, with flywheel
mass eccentricity, initial tilt, and the phase angle between them as para-

meters. The flow chart is shown in Fig. C4, and the CPU time required is

qn]y 40 seconds, approximately.
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Fig. C4. Flow chart for forced whirling using lumped model.

INPUT DATA
|

CHOOSE Cq

!

DEFINE [M], [C]
COMPUTE [K]

!

SELECT RPM

DETERMINE -@2[M] + @[G] + i[C] + [K]

SOLVE EQUATION (2.23) FOR {q}

USING A STANDARD IMSL SUBROUTINE.

1
INCREASE RPM

YES

COMPUTATIONS COMPLETE.
READY FOR FORCED
RESPONSE PLOTTING.

NO
GO TO 1
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FGRCED . VIBRATION
( LUMPED MCDEL)

NOTE: THE COMPCNENTS OF THE Q VECTCR ARE:
{RF yPHIF sRD 4RINSPHINSRT,PHIT)

IMPLICIT REAL*8(A=-H,C=2) o : -
DIMENSION AMP(7) JANG(7) sYM{7+:500) +ZM(7,500)

REAL*4 BETAsECCEN,PHIZRO, COP, YVMAX

REAL¥4 XV{502) sYV(502)+2V(502)

REAL*8 MDysMF, MINJMTL,IDF, IPF.IDIN.IPIN"DT’[pT »
COMPLEX*16 INUMsTHETALALPH(848)sF{7)sK(7+7)sSTIF(B8,8)+S(7,7)

CUMPLEX*16 WAL1(80) ,WA2(8B) ,WA3(E3),WA4(7)

NDEG: NO., OF DEGREES CF FREEDGOM CF THE SYSTEM

BETA: PHASE LAG CF INITIAL TILT FROM MASS ECCENTRICITY

\

ECCEN: MASS ECCENTRICITY
PHIZROG: INITIAL TILT

REFER TO *FREE WHIRLING AND STABILITY (LUMPED MODEL )* PROGRAM
FOR OTHER DEFINITIONS OF VARIABLES IN THE DATA

FLYWHEEL DATA IN THIS PROGRAM ARE THOSE OF GARRET

DATA NDEG/7/

DATA MF o IDF, IPF/ «095100+4¢83D0+84517D0/

DATA MD/0.002%98D0/ ,

DATA MINs IDINs IPIN/0.0O0202009s 14798D-05s1615D0~05/
DATA MTLIDTHIPT/0 4004730040 «003402D0,0.,00628D0/
DATA BETASECCENIPHIZR0O/3,1415506001 300025/

PLI=2.0*DARSIN(1.0D0)
INUM=(0,000,1.0D0)
COMSGN=U »0 -

COMPLI: SUBROUTINE TO CALCULATE THE 8XB8 COMPLIANCE MATRIX OF
THE SYSTEM

CALL COMPLI(ALPH»CUMSGN)

DD 50 I=1,8

DO 50 J=1.8

STIF(1,4)=(0.000,0.0D0)

IF{1eEQeJd) STIF(I+J)=(10D0,+0.0D0)
S0 CONTINUE
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INT=¢

LEQ2C: IMSL SUBROUTINE

CALL LEQ2C(ALPH 818+ STIF +8¢8+INKT WAL JWA2,1LER)

COMPUTATION OF THE 7X7 SIFFNESS MATRIX OF THE SYSTEM

60

306

350

DG €60 1=1.7

11=1

IF(1eGTe3) 1I=1+1

DO 60 J=1,7

Jd=J

IF(JeGTe3) JI=Jt1

S(IsJ)=STIF(IIs9J)

CUNTI NUE

PR INT 300

FORMAT(SXs 'RFEF(INCHES ) * «SX» *PHIF(DEGe) *eSXs *RD{INCHES)*¢5X,s *RIN(INC

*¥HES) * sS X9 "PHIN(DEGe ) * 4 SX o *RT(INCHES)® 4SXs* PHIT (DEGe ) * +SX s RPN,/ /)

CD=10.0 .

cDP=CD

RPM=0.000

DO 9U0 I=1,500
RPN=RPM+6, 0D0
RAD=RPMxPI11/30.
D0 350 IF=1,NDEG
FOIF)=(0.DV0,0.,D0)
CONTINUE

THETA=] NUMX*BET A

COMPUTATION OF THE NON-ZERO TERMS OF FORCING VECTOR

360

F{1)=ECCEN¥MF SRAD*x%x2

F(2)=PHIZRUOW®(IDF—IPF )*RAD*%2%CDEXP(-THETA)
DG 3690 [X=1,7

DO 360 1Y=1,7

K{IXsIY)=S{IX,1Y)

INCLUSION OF MASS, GYROSCOPIC AND DAMPING MATRICES.CHAPTYER 2

K(141)=K(1s1)~-MFERAD*%*2
K{2+2)=K(242)~(IDF~IPF)®RAD*%2
K(393)=K(33)=MD*RAD*%2+ I NUMCD*RAD
K(4,4)=K(4,4)~-MIN*RAD*%2
K{S5+5)=K(5+5)=(IDIN=-IPIN)*RAD*%2
K(6+€)=K(6,6)—-MT2RAD*%2
K(737)=K(7+7)=(1DT=IPT)*RAD*%*2

CALL LEQ2C TO SOLVE LINEAR SIMULTANECUS EGSe

CALL LEQ2C(KoNDEGIsNDEGeF sl ¢sNDEG0 oW A3 ,W A4, IR)
DU 400 IP=]1,NDEG

AMP(IP)=CDABS(F{(IP))

YM{IP I )=AMP(IP)



C

134

ANG(IP)=0 «0
FIMAG=DIMAG(F(IP))
FREAL=DREAL(F(IP))
IF (FIMAGeEGsU o2 e ANDeFREALSEQ.00) GO TO 370
ANG(IP)==DATANZ2(F IMAGFREAL)*180.,0/P11
370 IF (ANG(IP )elT el eGG) ANG(IP)I=ANG(IP)#+360.0
IF (ANG(IP)eGTe360.0) ANG(IP)=ANG{IP)=360.0
430 ZM(IP.1)=ANG(IP)}
PRINT 590 » {AMP (L) sL=1 + NDEG) s RPM
S00 FORMAT(4Xs8(D11e44+4X) /)
XV{I)=RPM
900 CONTINUE

ALL OF THE FOLLOWING STATEMENTS ARE FOR PLOTTING THE COMPUTED RESULTS.

XV{501)=0.0

XV(502)=750.0

YV(501)=0.0

ZV{501)=00

ZV(502)=180.D

CALL SETMSG(39+'PLEASE SET THE STEPSIZE TO <005 INCHES.?')

CALL FACTOR(1.3)

CALL PLOT{0+:0s~4040,~3)

CALL PLOT(4 e +404+-3)

DG 950 IP=1,NDEG

IF{IP+EQel) CALL PLOT(0e04+ 16e0,-3)

IF(IP«EQed) CALL PLCT(B2:0:9.0,=-3)

IF(IPsNE sl eAND e IP eNEe48) CALL PLOT(O0e0 9=4:5,~3)

YV(502)=0.05

IF(IP+GTe3) YV(SOZ)—0.00S

IF{IP «EQel ) CALL AXIS(De0+s0e09s'RF { INCHES)*51142¢0590.0,YV(501)
*xYV(502))

IF(IPEQe2) CALL AXIS{0Os0+0e60+*PHIF (RADIANS) * 314 52 40 s9040,YV(501)
*,YV(502))

IF(IPeEUe3) CALL AXIS(O0e0+0e0+*RD (INCHES)? 411+20,90.80,YV(501),
¥YV(5D2))

IF(1PeEQe4) CALL AXIS(O oD 300+ *RIN (INCHES )%, 12+2¢0s90.0,YV(501),
xYV(502))

IF(IPeEQeS) CALL AXIS({De0s0 04 '"PHIN (RADIANS) '31452¢0¢90.0,YV(S501)
¥,YV(502))

IF{IP¢EQe6) CALL AXIS{0eD ¢0e04s*RT (INCHES)*+11+2¢0+50.0,YV{(501),
*YV{(502)) ,

IF(IPLEQe7) CALL AXIS(DeU 00 *PHIT (RADIANS) * 314 92 00 2900 ,YV(501)
*,YV(502))

CALL AXIS(0eD40e03*OMEGA (RPM)® y=1144 ¢0:s0e0sXV(501)eXV(502))
YVMAX=2 4O %*YV(502)

DO 935 1I=1 590

ZV(1)=ZM(1IP,.I)

YVII)=YM{IP, 1)

IF (YV(I)eGTsYVMAX) YV(I)=YVMAX

8935 CONTINUE

CALL LINE(XVeYVeS500+140:,0)

CALL DLINE(XV4ZV3500,1 ,5)

CALL AXIS(4 e5+0e09"PHASE LAG (DEGe) " 5~1€32.0+9040:ZV(501)4+s2V(502))
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PLOT(4.,0,0.0,3)
PLAOT (4 0320+ 2)
PLOT(0e042e0,2)

CONTINVE

CALL
CALL

PLOT (=8¢0 32e00+=3)
SYMBOL(0¢04060+0612Ss*CAKRIDGE SYSTEM® 30 60,15

CALL SYMBOL(U0+s—~0 e5+:0.08¢*'BETA=*,0.0+5)

CALL
CALL
CALL

NUMBER (99940 =0 590 «a 08, BETA 0 0+4)
SYMBOL(0a0s=0e73Qs08,'ECCEN=*,0,0,6)
NUMBER(999 ¢00 9=0 ¢ 740 ¢ OB8sECCENsD sUs4)

CALL SYMBOL(O0e03~0e930¢08+"PHIZRU=®40e0+7)

CALL
CALL
CALL
CALL
STOP
END

NUJMBER(999¢0+-0:6950e08sPHIZR0O+060+4)

SYMBOL (D eC 9s—1 sl 30.08,°CDO (LB=SEC/IN)=',040,15)
NUMBER(999:0+= 16 1+0e08:COP 0D +2)

PLOT (O eV 90 eD999)

SUBROUTINE COMPLI(ALPH,COMSGN)

IMPLICIT REAL*8(A=H0-2)

REAL*8 1A(3)sK{(3)+KEQ

REAL*¥8 [EQ+LACIL3ISLASLBILCHLG

REAL*8 KB+KSL +KSU

CUMPLEX %16 ALPH(8+8)+EI(3)+sEsGeKAG(3)s INUM
COMPLEX*16 FACL1,FACZ

DIMENSION AREA(3)sDIN(3),D0UT(2)

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

ER sy GR/ 29 ¢SD0D6s11.5D06/

DOUT/0 «3125D040.312500,0.749300/
DIN/2%0.0D0,0.3175D0/

Koy KEQ/2%0 88500, 0.6569D0»0.885D0/

T e TF s TT1/1e8332D0+7.05D00,0.894200/
LBsLGoL 3/ 36576D098.0695D04 26126900/
LACSLAWLC/365969D0+2 «978400,7 32400/
T3sTS/04435200+0243100/

KSU+KSL/2%2 «0D06/

Al sA2+A39A4/2.56210D0 9564908006151 195D00423700/
GAMAS/0.005D0/

PI1I=2.0%DARSIN(1.000)

INUM=(G+0D0 +s1000) )
E=(10DO+COMSGN*INUMXGAMA S)*ER

G=(1 ¢0DU +COMSGN*¥INUMSGAMAS ) *GR

DO 320 J=1,3
AREA(JU)=PII¥(DOUT(J)332-DIN(J)**2)/4.0
TA(J)= PILI*X{DOUT (J)*%4=DIN(J)*%*4)/64 0
CONTINUE

IEQ=TA(2)*{L3/LAC)%x%4
DEQ=(64.0%EQ/P1])%%0.,25
AEQ=P I T *DEQ*%2/4 ,0
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K(3)=(KEQ*AEQ+K(3)*AREA(3))/(AEQ+AREA(3))

AREA(3)=AREA( 3)+AEQ

IA(3)=1A(3)+1EQ
DO 40 1=1,3 ,

KAG(I)=K(I)*AREA(1)*G
D3 45 [=1,3

EI(I)=ExIALI)

Al A4=1.0~A1 /A4

A2A4=1.0~A2/A4

A3A4=1.0-A3/A4

TTA4=10+TT1 /A4

A4Sz AGE*D :

FACI=1+U0/KAG(3)4+L3%22/(30*EI( 3))

FAC2=1+0/7(KAG(3)%A4)=L3%(0e5~L3/(3.0%A4))/EI(3)

FAC3=A3/(A4S*KSL )=A3A4/(KSU%A4)

FAC4=(1e0/KSU+1+U/KSL)/AGS
FACS=A2/(A4S%KSL)~A2A4/(A4%KSU)

FAC6=A1/{A4S*KSL )=Al A4/ (A& *KSU )

ALPH( 11 )=L3%A3A4%%2%FACL+(LB-LA)/KAG(2)+(A3%(LB~LA)®(A3-LE~-LA)+(L
XBERI=L A%%3)/30)/E1(2)4(LG~LC)/KAG( 1) +( A3%(LG=LC)* (A3~-LG-LC)I+(LG**
*3—LC**3)/3.0)/E[(1)+A3A4*#2/KSU+(A3/A4)*QZIKSL

ALPH( 19 2)=~L3%A3A4/A4%FACLI+(LB=LA)* (A3~ (LB+LA)/2.D)/7EL(2)+(LG-LC)*
% (A3={LG+LC)/20)/7EL (1 )+FAC3

ALPH(1s 3)=L 3%A3A4¥A2A4%F ACL+(LB~LA) /KAG(2)+{ (LB~LA) * (A2%A3-(LB+LA)
£/2 0% (A2+A3) )+ (L B¥%k3=LA%%3)/3.0)/ET1(2)+A2A4%AIAG/KSU+A2*¥A 3/ (KSL *
®*XA4S)

ALPH(1,4)==~L3%A3A4/A4%FAC 1+(LB-LA)*{(A3-(LB+LA)/2.0) /EI (2)+FAC3

ALPH(l,5)=L3*A3A4*A1A4*FAC1+AAA4*A3A4/KSU+A1*AE/(KSL*A4S)

ALPH{ 1, 6)==L 3%xA3A4/A4%FACI1+FAC3

ALPH(1,7)=L3%A3A4 *TT1%FAC2+TTAGXA3AG/KSU=TT1%A2/(KSL*A4S)

ALPH(1,8)==L3%A3A4*FAC2+FAC3

ALPH( 2, 2)=L 3/ A4 %% 2%FACLI+(LB-LA)/EI(2)+(LG-LC) /EI(1)+FACS

ALPH(2+3)==L3%A2A4/ A4%FACL+(LB-LA)*(A2~(LB+LA)/2.0)/E1(2)~A2A4/(
ALK SU)+A2/7(KSL*A4S)

ALPH(2+4 )=L3/7 A4 %¥2%xFACL+(LB-LA )/EI( 2)+FACA

ALPH(2,5)=~L3%A1A4/A4%F AC1—A1 A4/ (KSU¥ A4 ) +A1/ (KSL*A4S)

ALPH( 2, 6)=L3/A4%%x2¥FACL1+FACA

ALPH(24+:7)==L3%TT1/A4%FAC2-TTA4/(KSU*A4)=TT1/(A4S*¥KSL)

ALPH(2+8) =L 37A4xFAC2+FACS

ALPH( 3, 3)=L3%A2A0%%2%FACLI+(LB-LA)/KAG(2)4(A2%(LB~LA)*(A2-LB-LA)+(L
*Bkk3=LA%%3)/3.0) /ELI(2)+A2A4%%2/KSU+{A2/ A4 ) *%2/KSL

ALPH( 3, 4)=ALPH(2,43)

ALPH(3,5)=L3%*A2A4 %A1 AA*FAC1+A1AG%A2AL/KSU+AL*A2/({A4S*KSL)

ALPH(3:6)==L3%A2A4/A4%FACI+FACS

ALPH(3,7)=L3%A2A4 $TT1#FAC2+A2A4XTTA4/KSU-A2%TT1 /(A4 S¥KSL) -

ALPH(3+8) ==L 3%A2A4%FAC2+FACS

ALPH{ 4 6)=L 3/A8%% 2¥FAC1+(LB~-LA)/EI1( 2) +FAC4

ALPH(4+5)=ALPH{(2+5)

ALPH( 4, 6)=ALPH(2,6)

ALPH( 4, 7)=ALPH(2,7)

ALPH{4 s 8)=ALPH(2,8)

ALPH( 5, 5)=L3%kA1A4%%2%FACL+A LA 4% 2/KSU+{ A1 /7AG) *¥2/KSL

ALPH(5,6 )==L3%A1A4/ A4 ¥FACL+FACSH

ALPH( S 7)=L3%TT1 %Al AGXFAC2+A1A4%TTAG/KSU~TT1 %A1/ (A45%KSL)
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ALPH{S5 +8)==1L3%A1 A4FAC2+FACHE

ALPH( 6+ 6)=ALPH(2,6)

ALPH( 6, 7)=ALPH(2,7)

ALPH(6,8)=ALPH(2,+8)

ALPH( 7+ 7)=TTL1*32% 3% (FAC2/A484+( 1.0-L3/(2.0%A4) J/EL(3))+TTAG%*2/KSU+
#(TT1/7A8 )%%2/KSL
ALPH(748)==TT1%L3%(FAC2/A4+(1e60=L3/(20%A4))/EI(3))~TTA4/(A4GXKSU )~
*TT1/7(A4STKSL)

ALPH(8,8)=L3*¥ (FAC2/ A4+ (1 e0—=L3/7(2.0%A4))/EI(3))+FACS

DO 80 J=1,8

DC 80 M=),8

ALPH(Me J)=ALPH(J,N)

CONT INUE

RE TURN

END
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C.3 Free Whirling Analysis Using the Combined. Model
Notes: |
1) The relation w = nQ defines the order of the whirﬁing critical
speeds. Positive n denotes forward whirling speedé and negative n denotes -
retrograde whirling speeds. For example, n = 1 denotes a first-order forward
whirling speed, n = -2 denotes a second-order retrograde whirling speed. <
2) In the program there are in total 200 n-lines, beginning at n = IOL+

3.56 The same 200 1ines are used for both forward

and ending with n = 10°
and retrograde branches.

3) Initially, the n = 10* line is chosen. Rotational speed o(RPM) is
varied from some initial value in steps of AQ(ARPM). Each time, the complex
determinant value of [C] is found. By some initial runs the values of the
complex determinant of [C] should be determined to see which of the real and
imaginary parts is the most significant number. Any sign change in the signi-
ficant part of the determinant while changing 2(RPM) in steps, signals that
the det [C] will become zero between the values of Q(RPM) which produced the
sign changes. Using this technique and narrowing down AQ(ARPM) to required
accuracy, the critical speeds corresponding to the required number of forward
branches are found for n = 10%. Now n is changed to -10". Assuming the
same initial value for Q(RPM) and AQ(ARPM), the corresponding retrograde-
branch critical speeds are determined.

4) From numerous previous investigations [8,18,19], it is known that

3

the forward whirling speeds increase and the retrograde ones decrease as the
- shaft running speed is increased. This knowledge is utilized in determining
critical speeds of the forward and retrograde branches on an n-line when the

critical speeds of the corresponding branches on a previous n-line are known

as explained in Figs. C5 and Cé6.
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Fig. C5. Determination of the critical speed on
a forward branch (point 2) along an n-1ine when
the critical speed on a previous n-line (point 1)
for the same branch is known. Positive and nega-
tive signs denote the signs of det [C]. These
are arbitrary and are shown only to emphasize the
idea of a sign change across a branch.
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Fig. C6. Determination of the critical speed on

a retrograde branch (point 2) along an n-line when
the critical speed on a previous n-line (point 1)
for the same branch is known. Positive and nega-
tive signs denote the signs of det [C]. These
are arbitrary and are shown only to emphasize the

idea of a sign change across a branch.
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B) Thus, having obtained the critical speeds at n = i_]O”, one
3.56

generates the whole whirling plot by decreasing n to + 10° in steps and

repeatedly applying the ideas in item 4, above. The plotter performs plotting

essentially by joining the adjacent points by straight lines. .
6) The program calculates the critical speeds corresponding to the

lowest four forward and retrograde branches. The forward branches from the N

lowest to the highest are numbered from 1 to 4 and the retrograde branches

from the lowest to the highest from 5 to 8.
7) Since the ideas expressed in Figs. C5 and C6 are used in locating

critical speeds on a branch, a problem arises (close to the point of inter-

section) when two consecutive branches approach each other for intersection.

This is shown in an exaggerated sense in Figs. C7 and C8. An arbitrary set

of sign changes across the branches is shown in the figures. Note that

while marching up, from point 1 or 2, a sign change in det[E] is detected

only once. Thus, the actual intersection point is shifted to point 3. For

ease of computation and plotting,a switch in branch names is carried out

after an intersection of two consecutive forward branches (see Fig. C8).

Imagine points 5 and 6 to be 1ying on the n = 1 line (w =q 1ine). Let branch
A (before intersection) represent the branch corresponding to the second for-
ward mode and branch B (before intersection) that of the third forward mode.
When a flywheel is run through a spin test, the qritica] speed corresponding
to point 5 will be observed before that of point 6 despite the fact that point .
5 belongs to a third-mode motion of the system. Notice that, by experiment,

‘point 5 will be called the second first-order forward critical speed. Once

point 5 has been determined, the starting place for point 6 lies beyond that




R4

VALUES

STORED PREVIOUS w

141

NEXT

CURRENT
n-LINE n-LINE —\
\
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\

3
o
[=]
~ | B
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y; POINT ON BRANCH B
/ ‘I START HERE TO LOCATE NEXT
POINT ON BRANCH A
i
!
]
log @
Fig. C7. A true magnified picture of what happens near the point of

intersection of two forward branches. Points 1 and 2 are the
starting points for branches A and B, respectively. The
points to be located are 3 and 4 on the current n-line and

5 and 6 on the next n-line.
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Fig. C8. Diagram showing the actual branch intersection and the i

computed branch intersection. Immediately after inter-
section, point 5 is located by the usual way as
explained in Fig.C5 But point 6 is located by using

a higher value from that of point 5.
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of point 5 as shown in Fig. C8. Thus, when the computer senses that two
consecutive branches have the same critical-speed value, the above changes
automatically come into play in the actual program.

8) The logic of the program is explained in a flow chart shown in Fig.
C9. For clarity, in this flow chart, it is assumed that no two consecutive
forward branches intersect.

9) It is possible that one of the forward branches may become parallel
to one of the n-lines. What is actually drawn in such a case is explained
in Fig. C10.

10) This program requires about 62 minutes of CPU time.
11) The input data used for the Oak Ridge system in the analysis by the

combined model are presented in Table B-1.



Fig. C9. Flow chart for free whirling analysis
by the combined model.
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Fig. €9 (continued)
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Continued on next page

Spli



YES
in| = 10*?

NO

oeT (T

YES CALCULATED FOR
FIRST TIME WHEN START-

60 70 7 | ING FOR A CRITICAL

Fig. C9 (continued)

DET [T]
CALCULATED FOR
FIRST TIME WHEN STARTING
FOR CRITICAL SPEEDS ON
FORWARD BRANCHES?

NO

DET [)
CALCULATED FOR
FIRST TIME WHEN START- \JYES
NG FOR CRITICAL SPEED

YE@, STORE ISIGN & RPM
IN ISIGNP & RPMP

YES INCREASE RPM
BY ARPM

NO

9l

SPEED ON A NEW ON RETROGRADE INCREASE (DECREASE)
BRANCH? BRANCHES? | RPM BY ARPM FOR FOR- [
WARD (RETROGRADE) ]
NO NO BRANCH
COMPARE ISIGN WITH ISIGNP NO IS RPM
GO TO 4 | BEYOND

1.2X105

UPDATE RPMP TO RPM

YE

ON A FORWARD (RETROGRADE )

BRANCH: THERE ARE NO CRITI-

CAL SPEEDS < 1.2X 105 FOR

THE REST OF THE FORWARD

(RETROGRADE) BRANCHES. GO
T0°5 (GO 10 1)

REDUCE ARPM TO
1/10 OF ITS VALUE

CURRENT ARPM < CERTAI
IMIT DICTATED BY ACCURACY.

SET RPM = RPMP
SET ISIGNP = - ISIGN
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Y Continued on next page
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GO TO 2
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Fig. C9 (continued)
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ACTUAL BRANCH

— — — BRANCH DRAWN
BY PLOTTER /////

log w
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n-LINE

-
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log @ A
(upper Timit on @)

Fig. C10. Diagram explaining the case of one forward
branch becoming parallel to an n-line.
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FREE wWwHIRULING ANALYSIS BY
COMBINED MODEL : wHIRL
DI AGRAMS AND MODE SHAPE PLOTS

IMPL ICIT REAL*8(A-H,0-2)

REAL*8 Ns IA(3)sK(3) L (3)eKSU,KSL,NOMSQ,NABS

REAL*8 MF sMD+MT

REAL*8 IDF+ IPF+10C, IPD, IDT, IPT

REAL*8 ISIGNsISIGNP 4NTRPM

REAL*8 IDMOD, IPMQD,MM0OD

REAL*8 I[EQ.KEQ.KNEQOF,LAC

REAL*4 OM(1€02)+RCPM(1602),Y1,Y2

REAL#*4 ALEN

COMPLEX*16 CDESINJRADINC«OSOUTI] +DSQUT2,ALP(12),C(12+12),B(12,12)
COMPLEX*16 DET,A(12).,CR(11,11),AR(11)

COMPLEX*16 UNITIM

COMPLEX*16 WA(143) WwK(11)

COMPLEX*16 W10.willL W20

DIMENSION DOUT(3)+DIN(3)»AREA(3) s ANUM(3)+BB(3)sC1l(3)sC2(3)sWB(12)
DIMENSION Z1(101),22(101),Z3(101%)

THE FLYWHEEL OATA [N THIS PROGRAM ARE FOR THE LLNL FLYWHEEL
TF: FLYWHEEL CG DISTANCE FROM END OF QU ILL SHAFT. TD: DAMPER
CG DISTANCE FROM DAMPER EDOGEe. TT1: TURBINE CG DISTANCE FROM

ONE END OF TURBINE. SEE FIGeBle TT1 IS THE SAME AS TT IN FIG.

L(1)sL(2)sL(3) ARE LENGTHS OF THE THREE FLEXIBLE PORTIONS COF
THE SHAFT

TMOD2,TMOD3: SAME DIMENSIONS AS T2,T3 IN FlIG.B1

ALEN: TOTAL LENGTH FROM TURBINEWHEEL-TURBINE SHAFT ATTAHMENT
TO FLYWHEEL-QUILL SHAFT ATTACHMENT

EsG,WL: SHAFT MATERIAL PROPERTIES

DOUT AND OIN ARE SHAFT CQUTER AND INNER DIAMETER DATA RESPECTIVELY
DOUT(3) AND DIN(3) ARE THOSE OF THE TURBINE SHAFT ’

K(1)sK(2)+eK(3): SHEAR CORREC?ION‘FACTORSoK(3) IS THAT OF THE
TURBINE SHAFT

MF +MD,MT: MASS OF FLYWHEEL s DAMPER AND TURBINE
IDF, IPF: FLYWHEEL DIAMETRAL AND POLAR MASS MOMENTS OF INERTIA
IDT, IPT: TURBINE DIAMETRAL AND POLAR MASS MOMENTS OF INERTIA

KSU+KSL: BEARING SPRING CONSTANTS
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KEG: SHEAR CORRECTION FACTOR OF THE EQUIVALENT GUILL SHAFT
INSIOE THE TURBINE SHAFT

LAC: ACTUAL LENGTH CF QUILL SHAFT INSIDE TURBINE SHAFT
MMOD: INTERMEDIATE MASS

IPMOD L, IOMOD: POLAR AND DIAMETRAL MASS MOMENTS OF INERTIA OF THE
INTERMEDI ATE MASS

TSP: DISTANCE OF LOWER BEARING SPRING FROM ONE €DGE OF THE
INTERMEDIATE MASS.SEE FIGeB1

KNEOP: SPRING CUGNSTANT OF NEOPRENE PAD IN DAMPEFR -

CD:I EXTERNAL VISCOUS DAMPING COEFFICIENT

COMMON/MAINLI/TF s TDLTT1
CCMMON/MAIN2/7L
COMMON/MODE S1/7TMOD2 + TMUOD3 s ALEN
COMMON/MODES2/21+22+23

* ¥ ¥ DATA INPUTI SOME OF THE DATA CAN BE SEEN IN 'BLOCK DATA',
TMGD2, TMOD3 ARE DEFINED IN THE BODY OF THE MAIN
PRUGRAM % & =%

DATA EsGeWl/2945D64+114506+0.283D0/

DATA DOUT/043125D0,043125D00404749300/

DATA DIN/U «UGDO 90 e0ODG 90317500/

DATA K/0+.885D0,0. B35D0+0.,6569D0/

DATA MF yMD s MT/062033600+0.002998D0,0.00479D0/
DATA IDFsIPF/70.823D0,+1,645D0/

DATA IDT+IPT/70.003402D0.000628D00/

DATA KSUIKSL/2.6D6192.006/

DATA KEQst.ACosMMOD /0 ¢ 88500 43.5969D0,0,000202D00/
DATA IPMOD, IDMOD/1+4150~05,1.798D-05/

DATA TSP/D.243100/

DATA KNEUP/0«0DO/

DATA CD/70.0DO/

THE FOLLUOWING CARDS THROUGH LOGP 20 ARE REQUIRED BY THE SUBROUTINE
MOD SHP

&

NUMPT =101

WMA XP=0 .8

TMOD2=0 +4163D0

TMOD3=0 «4352D0

ALEN=(L(1)+L(2)+L (3)+2.0%TD+TMOD24TMOD3)/2 .0 .
NUM=NUMPT - 1

THE LENGTHS L(1)sL(2)+AND L{3) ARE EACH DIVIDED INTO 100 EQUAL
PARTS
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DO 20 J=1sNUMPT
Z1(J)={J=-1 D)8 (1)/NUM
22(3)={J=-1)*%L(2) /NUM
23{J)={J=-1 ) (3)/NUM
20 CONTINUE
PII=2.0%DARSIN{(1.0D0)

TO NEGLECT THE RESTCRING EFFECT QF GRAVITY ON THE MOTION OF THE

DISKS,y, SET GR=0s40.0THERWISE SET GR=386,.,0

GR=0.0
RHO=wWL/ 386.0
UNITIM={(0.000,+1.000)

AREAS AND MOMENTS OF INERTIA OF SHAFT SECTIONS 1 & 2 AND

THAT OF TURBINE SHAFT ARE CALCULATED

DO 30 J=1.3
AREA(J)=PLI*(COUT(J)**2=DIN(J)*%2)/4,4,0
IA(J)=PIIX(DOUT(J)**%4=DIN(J)%%4) /64 .0
ANUM(J)=E*TA(J)

30 CONTINUE

CALCULATION OF DIAMETER AND AREA OF EQUIVALENT QUILL SHAFT

INSIDE TURBINE SHAFT

IEQ=TA(2)*(L{(3)/LAC)*%4
DEQ=(64.0%IEQ/PI1])*%0,25
AEQ=PII1 ¥DEQ*%2/4 .0

K{3),AREA{3),1A(3) ARE NEWLY DEFINED FOR THE EQUIVALENT SECTION
CONTAINING BOTH THE TURBINE SHAFT AND FLYWHEEL <SHAFT

K(3)=(KEQ* AEQ+K( 3)*AREA(3))/(AEQ+AREA(3))
AREA(3)=AREA(3)+AEQ

IA(3)=1A(3)+IEQ

ANUM(3)=E*1A(3)

CALL SETMSG(47 +*PLEASE SET THE STEPSIZE TO 005 INCHESe THANKS. ')

CALL FACTOR(2.00)

CALL PLOT(Q0e00s=40s0,-23)
CALL PLOT(OOO.‘0.0'-B)
CALL LEGEND

CALL PLOT (0 oD0 +s=4+450+-3)

DO-LOOP FOR THE 200 °*N* LINES

DO 800 IN=1,200
IPRINT=1

MM REPRESENTS THE BRANCH WE ARE CURRENTLY INe 1 THROUGH 4

STAND FOR THE FIRST THROUGH FOURTH FORWARD MODES.
REPRESENT THE FIRST THROUGH FOURTH RETRCOGRADES

MM=1

5 THROUGH 8
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EX=4.000=( IN-1)%0.04D0
IFCINSGT91) EX=EX+(IN~91)%0 .02D0
IFCINSGTe111) EX=EX=(IN-111)%0.:0200
N=10 .00 0 **E X
IF (INeEQe 96) N=2.00D0
IF (DABS (N=140D04) el Te1+0D~6) IPRINT=0
IF(DABS (N=10 0D ) oLT o1 40D=6) IPRINT=0
IF(DABS(N~2+00D0) «LTe1+0D~6) IPKINT=0 .
IF(DABS(N~1e0000) el Te140D=-6) IPRINT=0
NABS=N
RPMST=100.0/N
C : ' <
C  RPMINX IS THE RPM INCREMENT STEPS
C

RPMINX=10+0/N
ARPMN X=RPMI NX
IFCINGEUe1) RPMINX=100.0/N
GO TO 40 :
35 N==N
IF(IN.GT a1 ) RPMINX=—=RPMINX
40 DO S0 J=1,3
BB(J)=RHO*IA(JI*N*(N*E/(K(JI*G)+N=2.0)
CL{JI=(RHO*$2 ) ¥IA(J ) *+(N$%3)*(N=2,0)/7(K(J )*G)
C2( J)=RHO®AREA (J) EN**2 '
S50 CONT INVE
55 IRETEQ=D
INDTB=IN=1+(MM=1) %200
IF(IN+EQel) GG TO 65 _
IF(OM(INDTB)«LTel+20E5) GO TO 60
56 DO 58 IM=MM,8
RCPM(IN+{1M=1)%200)=NABS *1 «2ES
OMCIN+( IM=1)%200) =14 2E5
S8 CONTINUE
IF(MM.GT.4) GO TO 780
MM=5 -
GO TO 35
60 RPMST=RCPM(INDTB)/NABS
61 RPMST=RPMST—1.0D0*RPMINX

THE ABQVE TWO STATEMENTS DETERMINE THE RPM STARTING VALUE
FOR EACH BRANCH ON A *N®' LINEJEXCEPT FUOR THE STARTING °*N* LINE : =

sl ol aNel

IF(MM,EQel sORaMM,EQs8) GO TO 65
IF(MMsGEeS e« ANDeMM L Te8) GO TO 62
INDPB=INDTB~-200

THE FOLLOWING STATENENT COMPARES THE CRIT ICAL RUNNING SPEEDS OF
THE CURRENT BRANCH AND THE PREVIOQUS BRANCH o IF THEY ARE VERY CLOSE
THEN THE RPM START VALUE FOR THE CURRENTY BRANCH IS MODIFIED AS
EXPLAINED IN THE NOTES PERTAINING TO THIS PROGRAM

a e Mol ol olWs]

IF (ABS(OM(INDTB)=OM{INDPB))elLEelOF=15ARPMNX) RPMST=0OM(INDPB+1) ‘ﬁ'
*4+0410%«RPMINX '
GO TO 65
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62 INDNB=INDTB+200
TIF(ABS(OM( INDTB)-COM{INDNB) ) eLE s 1.0E-1%ARPMNX) IRETEQ=1
GO TO 65
64 IRETEQ=D
65 ISIGNP=0.0
IF (IPRINT.NE.O) GG TO 100
IF(MMNEel eANDeMMNE.S) GO TO 100

PRINT 70N
70 FORMAT( *1°® 42X s %% 2K XEX%¥ N = ©®,F14¢66,° F¥XXEHEEXENT ,//)

THE FOLLOWING LCCP INCREASES RPM [N STEPS FROM °*RPM START* TO
LOCATE A SIGN CHANGE IN THE DETERMINANT IN ORDEFR TQ FIND A
CRITICAL SPEEC

100 DO 750 1=1,100000
IDET=M0D(1I-1+10)
IF(INaGTel) IDET=]
RPMINC=RPMINX
RPM=RPMST + { I-1 ) *RFM]INX
IF(INeEQel) GO TO 170
IF{MM.LE«4) GO TO 170
IF{RPMJLT.OM{INDTB)=2.0%#ARPMNX) GO TO 61

170 IF(RPM=1,19DS) 210,210,456

200 RPM=RPM+RPMINC

210 UMEGA=RPM*PlI[/30.0
NOMS G=N*€2 &OMEGA**2

DETERMINATION OF THE ALPHAS

DO 300 J=1,3
M=4%x(J~-1)
DESIN=BB(J})*%2-4 0k ANUM(J )*(CL1(J)}-C2(J)/(OMEGA#*22))
CODESIN=DCMPLX{DESIN,:0.0D0)
RADIN=CDSQRT(CDESIN)
DSOUT1I=(-BB(J)+RADIN)/Z(2.0%ANUM(J))
DSOUT2=(-BB(J)-RADIN)I/(2+0%ANUN(J)})
ALP(M+1 )=OMEGA*CDSQRT(DSOUT])
ALP(M$2 )=~ALP(M+ 1)
ALP (M+3 )=0OMEGA*CDSQRT(DSOUT?2)
ALP(M#4 )=—ALP(M+3)

300 CONTINUE
DG 350 J=1,12
DO 350 M=1,12
B(JsM)=(0.,000,0.0D0)

350 C(J4aM)I=(0e0OD0s0.000)

DEFINING CBAR MATRIX.SEE CHAPTER 3

DO 400 J=1,4
Cl1sJ)=(RHO*AREA(L1)I/ALP(J J+MF S (] ,0¢ALP( J)*{ TF=GR/NOMSQ) ) )*COEXP (AL
*P(J)*L(1))
C(20J)=(E*JA(1)*(ALP(J)**$2/NOMSQ+RHO/ (K(1)%G) ) ¢RHO®AREA(1)*xTF/ALP({
*J)=(IDF=IPF/N)*ALP(J))*COEXP(ALP{J)INH (1))
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C{3+J)=(10D0,0.0D0)

C{3+J+4 )==CDEXP(ALP (J+4)*L(2))

ClAa,J)=ALP(J) :

C(5eJ)= RHO¥AREA(1)/ ALP(J ) +KNEOP/NOMS G+UNI TIM*CD/(N*OMEGA ) =MD
C(SeJ+4)=~RHD*¥AREA(2)/ALP (J+4 ) ®*COEXP(ALP(J+4 ) ¥ (2))
C(64J+8)=ALP(J+4 )FCDEXP (ALP(J+4)*L(2))

CU7 sJ+4 )==ALP(J*+4)

C(7,0¢8) =ALP(J+8)%*CDEXP(ALP(J+8)%L(3))
C(BsJ#6)=1 0~ ( TMOC24TMOD3 ) *ALP( J+4)

C(By J+8)==CDEXP{ALP (J+8) *¥L(3)) *
C(9sJ+4 )==-RHO*AREA(2) JALP (J+4 )=KSL/NOMSQ* (1, 0~{ TMOD2+ TMOD3=TSP ) *AL
*P(J+4 ) ) +MMOD* (1.0 -TMUOD2%ALP(J+4))

C(9,J+8) =RHC*AREA(3)/ALP (J+8)*COEXP(ALP (J+8)%L(3))
Cl10,I+4)=E*XIA(2)%(ALP(J+4)%%x2/NOMSQ+RHO/(K(2)*G) )~ TMOD 2*RHO*AREA {
$2)/7ALP ( J+4 ) +ALP( J+4 )% ( IDMCD~IPMOD/N)+KSL/NOMSG#(TMOD3~TSP)#*(1.0-( T
EMOD3+TMOD 2= TSP ) *ALP( J+4))
Cl10+J48)=(~E*[A(3) % (ALP(J+8) *%¥2/NOMSQ+RHO /(K { 2) %G ) )= TMOD 3*RHO*ARE
$A(2)/ALP{ J+8) ) *CDEXP (ALP{ J+8) %L (3)) ‘
Cl{119J+8)==(RHOKAREA(2)/ALP{J+8)+MT*{ GR*ALP(J#+E8)/NOMSQ=1.0+TT1*ALP
% (J+8))+KSL/NOMSQ)
Cl12:J+¢8)=E*IA(3)*¥{ALP(J+B)**2/NCMS G+ RHO/(K(3) *G) )-TT1*RHO*AREA(3)
#/ALP( J+8 )= KSL*TT1/NOMS Q+ALP(J+8)*{ 1DT~-IPT/N)

400 CONTINUE

DO 420 JR=1,11

AR{ JR)==C(JRs1)

DO 420 JC=1,11

CR{JCsJRI=C(ICsIJR+1)

420 CONTINUE
1J0B=1
JN=12

LEQT1IC IS AN IMSL SUBROUTINE
CALL LEQTIC(CoJINs INsBs N3 JINS1JCB,WB,LIER)

CALCULATION OF THE DETERMINANTY OF CBAR NATRIX FCLLOWING
THE PROCEDURE GIVEN IN THE IMSL ROUTINE LEQT1Ce

DET=(1s000,0,0D0)
DO 450 JQ=14JN
IPVT=wB{(JQ)
IF(IPVT.NE«JQ) DET==DET
DET=DET #C{(JQyJQ)

450 CONTINUE
ARPMNC=DABS{RPMINC)
IF(ARPMNC » GT s ARPMNX/1.008D3) GO TO 650 1.00D3

THE ACCURACY OF THE CRITICAL SPEEDS CALCULATED IS DECIDED IN THE
ABOVE STATEMENT

NTRPM=NABS *RPM
IF(IRETEQeEQsQ) GC TC 455
RPMST=RPM+ 0o 10%RPMINX

GO TO 64
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455 RCPM(IN+(MM=1)%200)=NTRPM '
CMUIN+(MM—1 ) %200 )=RPM

THE ABOVE TW0O STATEMENTS STORE THE CRITICAL SPEED AND THE
CORRESPONDING RUNNING SPEED FOR THE CURRENT BRANCH
IF(IPRINT«.NE.D) GO TO €45

THE FOLLOWING CARDS UPTG 640 ARE RELATED TO MODE SHAPE PLOTTING

1JC8B=D
JM=11
M=1

LEQ2C 1S AN IMSL SUBROUTINE

CALL LEQ2C(CRs JMy JMs AR M, UM, 1 J0OB.WAsWK,y [ER)
A(1)=(1.0004,0.0D0)
DO 460 J=1,11
A(J+1)=AR(J)
460 CONTINUE
CALL MODSHP(As ALP NUMPT,WMAXP ¢ Ny MM)
PRINT 490
490 FORMAT(/¢2X,130(*%*))
PRINT S00A(1) +sALP(1)
SO0 FURMAT(/+2Xs*MODE SHAPE COEFFICIENTS CORRESPONDING TO THE FOLLOWIN
*G CRITICAL: A 1 =',2D1263,4Xs%ALP 1 =',2D12¢2)
DO S50 J=1l,11
JI=J+1l
PRINY S840+ JIsA(JI)eJIALP(II])
5S40 FORMAT(68Xs'A,[29" = ,2D12e6308Xe%ALP', 124" =?,2D12.3)
550 CONTINUE
PRINT 630
630 FURMAT{7X+*'ROTe SPEED (RPM)*,4X:"NATe, FREQe (CPM)* ,11X,"COMPLEX DE
*TERMINANT®)
PRINY 640 +.RPMNTRPMIDET
640 FORMAT (22X * 388 2X o F 136 08X sF10¢6206X02D17:862X,49( %) ,/)
645 MM=MM+] )
IF{(MM .,EQ.5) GO TO 35

IF MM,EQ.5,THE CRITICAL SPEEDS OF ALL THE FOUR FORWARD BRANCHES
HAVE BEEN COMPUTED FOR A °N*® LINEe. THE °GO YO 3S5* STATEMENT
STARTS THE PROCESS FOR DETERMINATION OF RETROGRADE BRANCHES

IF(MM.EQ.9 ) GO TO 780

IF MM,EQe 9+ CRITICAL SPEEDS OF THE FUUR FORWARD AND RETROGRADE
BRANCHES HAVE BEEN COMPUTED

IF(INeGTel) GO TO 55
ISIGNP=-=IS IGNP
RPMP=RPM+RPMINX/100.0
GO T0 750

650 DETIP=DIMAG(DET)
ISIGN=DETIP/DABS(DETIP)
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HE FOLLOWING STATEMENY CHECKS THE SIGN CHANGE 1IN THE DETERMINANT

IF(CABS( ISIGN+ISIGNP).GT+0.0D00) GO TO 670
PM INCREMENT IS REDUCED BECAUSE OF S IGN CHANGE

RPMINC=RPMINC/10.0

RPN=RPMP

GO T0O 200

IF(IDET «NE.O) GO TO 700

PRINT 690 +RPM,DET
FORMAT(8X+F1366+424X,20178,/)
ISIGNP=ISIGN

RPMP=RPM .
IF(RPMINC.NE «RPMINX) GO YO 200
CONTINUE

PRINT 790, INs{RCPM(IN+(MK—=1)%200) s MK=1,8)
FORMAT (2Xs *IN=%4 I3,8E15.5)
"CONTINUE

T LIMITS ON THE VALUES TO BE PLOTTED

DO 850 J=1,1600

IF{(OM(J)LTal ¢OE0) OM(J)=1.0E0
IF(UM{J)eGTels0ES) OM{J)=160ES
IF{RCPM(J ) oL T el o0EC) RCPM{JI=1.0E0
IF{RCPM(J)eGTe1+0E6) RCPM({J)=1,0E6
CONTINUE

ALL OF THE FOLLOWING STATEMENTS CAUSE WHIRLING DIAGRAMS (l1.E. NATURAL
FREQUENCY VSe. ROTATIONAL SPEED) TO BE GENERATED ON THE COMPUTER

S5Y

STEM®*S DIGITAL PLCTTER

OM (1601 )=1 0

OM(1602)=1.5

RCPM(1601)=1.0

RCPM(1602)=1e5

CALL FACTOR(1.3)

CALL PLOT (0 e0+=40e0,~3)

CALL PLOT(1660+600,~3)

00 958 I=1,3

ISTART=1401

ISTOP=0

IF (I1.EQe2) ISTOP=800

IF (I+EQe3) ISTART= 601 )
CALL LAXIS(0e0+s040,*'WHIRLING FREQUENCY (CPM)® 424,9,0,90¢00¢ RCPM(160

%1 ) o RCPM(1602))

950

CALL LAXIS(0404+0+0,*ROTATICNAL SPEED (RPM)® 3=22¢7¢5+00sCM(1601),0
*M(1602))

 KK=ISTART

DUM1=0OM(KK +200)

DOM2=0OM(KK+201)

DRC1=RCPM{KK+200)

DRC2=RCPM({(KK+201)

OM(KK+200)=CM(1601)
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OM(KK+201)=0M( 1602)
RCPM(KK+200 )=RCPM(1601)
RCPM(KK+201)=RCPM(1602)
CALL LINE(OM(KK)yRCPM(KK ),200+1+04+0+3)
OM{ KK+200)=0D0M1
OM(KK +201 )=D0OM2
RCPM(KK+200 )=DRC1
RCPM(KK+2D1)=DRC2
KK=KK=200
IF (KK.GT.ISTOP) GO TC 950
CALL LAXIS(O0e0sFe0s? * 4] +=7e¢5+060,0M(1601),0M(1602))
CALL LAXIS(7¢540e09s? *35-1:4=9.0:90.0+sRCPM(1601) +RCPM(1602))
CALL PLOT(0e0 400 +3)
CALL DASH{ 7eS5+7e5+4)
Y1=DLOGLID(2.,0D0)%1.5
Y2=Y1+75
CALL PLOT(0.0,Y1,3)
CALL DASH(759Y2,+4)
IF (IeEQe2) CALL SYMBOL(2420,10e300¢¢20+°NEGATIVE BRANCHES® 304417
IF (I+EQe3) CALL SYMBOL(2420+10¢300¢ 205 *POSITIVE BRANCHES®"+0e917)
CALL PLOT(134040.0,-23)
958 CUNTINUE
CALL PLOT (0604040 ,999)
sSTOP
END

SUBROUTINE MODSHP (A sALPyNUMPY WMAXP ¢ Ny MM)
IMPLICIT REAL *#8(A-H,0-2)
REAL*8 L(3).N
REAL*4 BGD AMP BGMOD,ENDMOD ,ENDAMP
REAL%4 WBMOD, WEMDD, WBDAMP  WEDAMP
REAL*4 ZV(305) +WV(305) ALENNS
COMPLEX*16 A(12),ALP(12)
COMPLEX%16 wW1{(101),w2(101).W3(101)
DIMENSION Z1(101),22(101) ,23(101)
CCMMON/MAINI/TF,TD,TT1
COMMON/MAIN2/L
COMMON/MODES1/TMOD2 , TMOD 3 ,ALEN
CCMMON/MODES2/7 2122423
NS=N
IF(MM.NE.1) GO YO 10
CALL PLOT(75094¢50+—-3)
CALL DASH(ALEN+0+0+4)
CALL SYMBOL(1e069s=1e755012s *FORWARD WHIRLING WNODES® s0+0+22)
CALL SYMBOL(16€6:=165Sse12+*N = * 3,060 4)
CALL NUMBER(999¢1=1+¢95+¢12sNS500,4)

10 IF(MM.NE«S) GO TO 20
CALL PLOT{(0.00+-4:50,-3)
CALL DASH(UALEN0 «0+4)
CALL SYMBOL(0e88,=1e¢7510129 RETROGRADE WHIRL ING MODES?® 40D 525)
CALL SYMBOL (1¢665=1e959¢12s'N = *,0¢0+4)
CALL NUMBER (995G ¢ 1=1 ¢9S5 +e12sNS +0.0,:4)
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20 WMAX=0.0
CALCULATION OF RELATIVE DISPLACEMENTS OF VARIGQUS PQINTS ON
EACH SHAFT SECTION

DC 60 12Z=1 +NUMPT

W1(IZ)=(0.0D0+0.0D0)

W2(IZ)=(0.0D0 0 .0D0 )

W3(IZ)={0.0D0,0.000)

DO S0 JZ=1,4

W1 (IZ)=wl (IZ)+A(JIZ)*CDEXP{ALP(JZ)*Z1(1Z))

W2(1Z2)=W2{12)¢+A{JZ+4)*COEXP(ALP(JZ+4)*%22(12))

W3(IZ)=W3(IZ)¢A(JIZ+8)*%CDEXP(ALP(JZ+8)*Z3(1Z))
50 CONTINUE

W1ABS=CDABS(W1(1Z))

W2 ABS=CDABS(W2(12Z))

W3ABS=CDABS(W3(12))

IF(W1ABS<GTWMAX) WMAX=W1ABS

IF(W2ABSeGTeWMAX) WMAX=W2 ABS

IF(W3ABS.GT+WMAX) WMAX=W3ABS

60 CONTINUE

NOTE THAT THE DIPLACEMENT VECTOR IS NORMALIZED BY WMAX

DO 100 1Z=1,NUMPT
ZV(12Z)=23(12)
ZV{IZ+#NUMPT)I=L(3)+TMCOD24TMCD3422(12)
ZV(IZ 42 ¥NUMPT )=L( 3) + TMOD24TMOD 3¢L(2)+ 2, 0%TD+21(12)
WV(IZ)=DREAL{W3(12Z))*WMAXP/WMAX
WV{IZ+NUMPT)=DREAL(W2(IZ) )*xWMAXP/WMAX
WY (IZ+2%NUMPT )=DREAL (¥1(12Z) ) *WMAXP /WMA X

100 CONTINUE
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NPPT=3xNUMPT

NEPL1=NPPT+1

NP2=NPP T+2

ZVINP1)=0.0

ZV (NP2 ) =2,0

WVINP1)=0e0

WVINP2)=1.0

CALL LINE(ZVsNVoNPPT 15100 +MM)
ENDMOQO=ZV{(NUMPT+1)/2.0

WEMOD=WV{ NUMPT +1) ]

CALL SYMBOL(ENDMODSWEMOD 20«08 MM30+0,~1)
ENDAMP= 2V ( 2¥NUMPT+1) /2.0

WEDAMP=WV (2XNUNPT +1)

CALL SYMBOL (ENDAMP ¢ WEDAMP 23008 oMM 0 40 s~1)
RETURN

END

SUBROUT INE LEGEND :
CALL SYMBOL(000200040a0101'MODE‘:O.O.#)

CALL SYMBOUOL{=0¢48+0¢202¢10+* IDENTIFICATION®,0:0,14)

CALL SYMBOL{(0 +00s=0e055¢1051+0+00—1)




Ly

159

CALL SYMBOL(0e22¢=0e10+610+°1F? ,0.0,42)
CALL SYMBOL (0e00+=0+25+01042+00s~1)
CALL SYMBOL(0422+=0e30¢e¢10+'2F*,0.0,2)
CALL SYMBUOL(0e00+=0e45¢¢10:+3:000,~-1)
CALL SYMBOL(0 229050610+ 3F?',0.0,2)
CALL SYMBOL(De¢00+=0e€59610+490,04¢-1)
CALL SYMBOL (0 e22+—=0¢70+¢10:"4F°,0.0+2)
CALL SYMBOL(0400¢~0¢85 40104590 40s~1)
CALL SYMBOL(0e22+=0690+010:'5F°,0.,0+2)
CALL SYMBOL(04009=1e1S5S3¢10:6+0e09s—-1)
CALL SYMBOL(0622:=162050610+°1R* 0402
CALL SYMBOL (0 e00s=1035+¢10:790¢0,-1)
CALL SYMBOLA(0622 +=1+4090104'2R?*,0.04+2)
CALL SYMBOL(0 «¢00+=1e¢55+¢1048,40¢04-1)
CALL SYMBOLA{0 ¢229=1e604e10¢'3R?*,0.0+2)
CALL SYMBOL(0«00+=1e6759¢10194+0e0+~1)
CALL SYMBOL(0229=1e¢80350104'4R"*30¢0+2)
CALL SYMBOL(0 00 s=1 959410410 +040,~1)
CALL SYMBOL{0e22¢=2¢00¢0105°'°5SR*3,00.0+2)
RE TURN

END

B8LOCK DATA

IMPLICIT REAL*8(A-H.+0~2)

REAL*8 L(3)

COMMON/MAINL/TFLTLC,TT)

COMMON/MATN2/7L

DATA TF+TDsTT /7315006 1¢8332D0,0.894200/
DATA L/0+7455D0+0.679200,2.126900/

END
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C.4 Simplified Program for Critica]'Speeds'Using'the‘Combined Model
1. This program, which gives the critical speeds (forward and retrograde)

on a single n-line, is a simplified version of the program listed in Appendix

c.3. ’ -

2. The relative displacements and rotations of the four rigid masses,
at the critical speeds computed, can also be obtained by this program by setting
TPRINT = 0.

3. Note that for n=1, A2=100 rpm and for n=2, AQ= 50 rpm. Checking
back on the Campbell diagram in Fig. 4.1, we see that on the n= 2 Tine there
are many crossings of the branches. Hence, if it is.necessary, the step
size AR should be decreased further so that two branches (either forward or
retrograde) which are very close together will not bé missed altogether.

4. With ap=100 rpm, the program takes about 3 minutes and 30 seconds
of CPU time on the IBM 370 Model 158J. It should be noted that the CPU time

increases when the rpm step size is reduced.
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IMPLICIT REAL%8(A-k,C~-2)

REAL %8 NyIA(3)sK{2)4L(2)sKSU,KSL «NGVNSGC+NARS

REAL%X8 MFJNC,NMT

REAL %8 IDF (IPF ,IDC,IFD,IDT,1PT

REAL*8 ISIGN,ISIGNP,NTRPM

REAL*8 [DMCC,IFNCC.MNMCO

REAL%®S IEQKEG.KNECF,LAC

CONMPLEX*16 CDESINIRACINGDSCUT 14,DSOUT2,ALP(12)C(12412)48B(12,12)
CONPLEX*®16 DETWA(12) +CR{114,11)44R(11)+DINTE,DTILREE

CONPLEX%16 UNITIM,YY(7)

CCNFLEX%16 wa(14a2),wkK(11)

COVMPLEX®16 WIO0WIL W20,uFSENDFACTR

CINENSICN DOUTH(3)sDIN{3)LAREA{(Z)+ANUM(3) +BB(3)sC1(3)sC2(3)4uR(12)

C SEE SECTION Ce2 FCR CETAILS RELATING TC INFUT DAT?

DATA
DATA
DATA
DATA
CATA
DATA
DATA
CATA
DATA
CATA
CATA
DATA
CATA
DATA
CATA
CATA

NN

EsGeWL/29eSDE11e506,Ce2EE2D0/
DOUT/043125D00,C4212500,0.7463DC/
DIN/O0e0DO+0,000+06217ED0/
K/0e88SDO0+CLEESDO,0.6S€SCCY
MDyMT/70.0C26580C»0.0047GCC/

ME 4 IPF 3 IDF/0.0GS100+,8.517C0,+8.83C0Q/
IDT+IPT/0.00340200+0,00€2EDO/
KSUWKSL/2.0D€E,2.0C8/

KEQ+sLAC +MNCD/70.E8SCO0+2e¢5SCESCC,0,00020200/
IPMOD+ICMCC/1415C-0541+.7GSED=-08/
TSP/04.2431D0/

KNECP/7C.0DO/

CD/0.0D0/ .

TMOD2 s TMCD3/7Ce4162D0sCeAZE2CO/

TF o TD+TT1/7e05D0041e83220CsCe854200/
L/Z70e7455D0+0e6792N0s2+12€SD0O/

FI1I=2.0%DARSIN(1.000)

SET GR

N O NN

TC NEGLECT THE RESTCRING EFFECT CF GRAVITY ON THE MOTICN OF TrE D1ISKS,

= 0e0e

GR=0.0
RHC=WL/38¢€.C
UNITIM=(0,0C041.,0C0)
DO 320 J=1,2
AREA(JII=PIT#H{DOUT(U)#*2-DIN{(J)%22)/4,0
IA(J)=PII*(DCGUT(J)I*%4-DIN(J)*24)/64,.0
ANUM(J)=ExTA(J])

30 CONTINUE
[EC=TA(2)x(L(3)/LAC)*»%4
DEC=(64 +0*IEQ/PI[)%%0.25
AEGC=PI [ *DEQ*%2/4,C

C K{(3)+,AREA(3)+1A(3) ARE NEWLY DEFINED FCR THE EGULIVALENT SECTICN
C CONTAINING BOTH THE TURBINE SHAFT ANDC FLYWHREEL SPHAFT
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K(3)=(KEG*AEG+K( 2I)*AREA(3))/(AEGHAREA(2))
AREA(3)=AREA(32)+AEQ :
IA(2)=1A(3)+1EQ

ANUN(3)=E%xIA(3)

IPRINT=0
MM=1 .
C
C SELECTING N-LINE CF INTEREST
C
N=1.0D0 .
NABS=N '
C
€ CHCCSING RPM EEGINNING ANC RPM STEPS
C
RP¥NST=1004,0/N
RPMINX=1C0+0/N
C
ARFMNX=RPMINX
GO TC 40
35 N==N

40 DC SO J=1+3
BE(J)I=RHOX TA(JIRN®{NIE/(K{JI)*CI+N=-2.0)
Cl{J)=(RHO*%2)*TA(J ) (N2%k3 )% (N=2,0)/7(K{J)%G)
C2(J)=RHO* AREA(J)%Nk#2
50 CONTINUE
GC 1C 65
55 CONTINUE
PRINT 60
60 FORMAT(/+2Xs10(*$%),*NC MORE FCRWARD CRITICAL SPEEDS<120,0CC
ERPMY,10('5%)e/)
IF(MML.GT,.4) GC TC 800
MM=S§
Gt 1O 35
65 ISIGNP=0,.0
IF (MM NE el AND MM NEWLS) GG TO 100
ERINT 70,N
70 FUORNMAT (P19 42X 0%t dkktkdhk N = *,F 1446, Fksdidkkxst,//)
100 DO 750 I=1,100000
IDET=MOC{I-1+1C0) v
RPMINC=RPMINX
ROM=RPMST+ {(1=1)*RPMINX
IF{RPM-1,19C5) 2104210455
200 RPM=RPM+RPMINC
210 CMEGA=RPM:*PII/20.0
NONSG=N*%2kCMEGA®%2

3

C

C CALCULATION OF ALFFrAS

C
DO 300 J=1,3
M=4%(J~1)
DESIN=BB(J)%%2-4 ¢ CX*ANUM(J)*(C1{J)-C2(J)/7{ONEGA*%2))
CDESIN=DCMPLX(CESINs0.0D0)
RACIN=CDSQRT(COESIN)
DSCUT1=(-BB{J)4RADIN)/{2.0%ANLN{J))
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DSCUT2=(-BEB(J)~-RADIN)/(2.0%ANLN(J))
ALP(M+1)=0OMEGAXCCSQART(DSOUT1)
ALF(N+2)==-ALP(N+1)
ALP(M+3)=0OMEGA*CDSCRT(DSOUT2)
ALF(NM+4)=-ALP(M+3)
30C CONTINUE
DC 250 J=1,12
BC 250 M=1,12
B(JsM)=(CeCDO0sCe000)
350 C(JsM)=(0.CCO04Cs0CO)
c .
C DEFINING CBAR MATRIX
C
DO 400 uy=1,4
C(loJ)‘(RHC*ARFA(l)/ALP(J)+MF‘(1.0#ALF(J)*(TF ~CR/NOMSQ) ) )%RCCEXP (AL
#P(J)%xL(1))
C(2'J)=(E*IA(1)*(ALP(J)**2/NONSG*RHC/(K(l)*G))4RHO*AREA(1)*TF/ALD(
*J)-(IDF=1IPF/N)2ALP(J) )®CDEXFLALF(J)*L (1))
C(24J)=(1.000,Ce0D0)
C(3+J44)=—CLEXF(ALP(Jea)sL(2))
ClasJd)=ALP (D)
C(E+J)= RHCHAREA(1)/ALP(J)+KNECF/NCMSGH+UNITIMICD/(N®CMEGA)-MD
C{E+J+4 )=-RHC*XAREA(2)/ALP(J+4 )*COEXF(ALP(J+a) L (2))
C(EJ+4 )=ALP(J+4 ) 3CDEXP(ALP(J+4)%L(2))
C{7+,J44)=—-ALP(J+48)
C(?7,J+8) =ALP(J+8)*CCEXP(ALP( J+2)%L (3))
C{EsJ+4)=]1 «C-{TMOC2+TMOC3 ) *ALF(J+4)
C(EWU+8)=—CCEXF(ALP(J4+8)3L(3))
C{S+JU+4 )=~FRHOSAREA(2) JALP{ J+A4)-KSL/NOMSC* (1, 0 (TMOOZ*TNCC3—YSP)‘AL
*P(J+4))+MMCCE(1.0-TMCC2*ALF(J44))
CUS+JU+B)=PHCHAFEA(J)/ALP(J+48)#CDEXF(ALP(J+8) %L (3))
Cl10+J4a)=EXTA(2)2(ALP(J+4)*+2/NOMSCH+RHC/(K(2)%G))-TMCD2*RHGC*AREA(
*2)/ALP(J+Q)+ALP(J¢4)¢(lDNCD-IFNCD/N)+KSL/NCMSC#(TMOOS—TSP)‘(l.O-(T
*MOCI+TMOD2-TSP )% ALP(J#+4))
C(lOoJ+8)=(-E*IA(3)*(ALP(J+8)‘*2/NGMSC+FHO/(K(3)‘6))-TMCDE#RHO*ARE
*A(2)/7ALP(J+8) ) *CDEXF(ALP{J+8)L(2))
C(11pJ*8)=-(RHC#AREA(3)/ALF(JOE)#MT'(GR#ALP(JOG)/NOHSG-I-OfTTl#ALP
*(J+8))+KSL/NOMSQ)
C(12.J+8)=E*IA(3)*(ALP(J*B)**EINGNSC*FHC/(K(B)tG))-TTl#RPO*AREA(3)
¥/ALP(J+8B)—KSL*TT1/NCNSQ+ALP(J+E8)S(ICT=-IPT/N)

400 CCNTINUE
DC 420 JR=1,11
AR(JRI=-C(JF,1)
CO 420 JC=1,11
CRIJCIIR)I=CULICsJFR+1)
420 CONTINUE
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CALCUJLATION OF OETERMINANT OF CBAR

1JCB=1
JN=12

CALL LEQTIC(CoJINIINSEsIN NS IJCBWWELIER)

DET=(1.0D00+0,0D00)

DO 450 JA=1.Jb
IPVT=WB{JQ) :
IF (IPVT .NE «JQ) DET=-CET
DET=0DET*C(JGyJC)
CONTINUE
ARPMNC=DABS{RPNINC)

IF{ARPMNC+GT+ARPMNX/1,0003) €L TC

NTRPM=NABS *RPM

\.

1.0002

ESTIMATING THE MCODE SHAFE COEFFICIENTS3A{J) J=lseeeseesl2

460

1gce=0
JM=11
M=1

CALL LEQ2CI{CRsJMyJMJARINMgINo I JCRBIWA WKy IER)

A(1)=(1.,0DC,Ce0DO)
DC 460 J=1s11
A{J+1)=AR(J)

CONT INUE

RELATIVE DISPLACEMENTS AND ROTATICNS ARE CALCULATED FOR _
THE FLYWHEEL,DAMPER, INTERMEDIATE MASS ANC TURBINE .THESE ARE

STORED IN ORDEFR

(FLYKHEEL DISPe oFLYWHFEEL RCTe+DANFER DISPoeos

INTeMASS DISP ae INTeNMASS ROT.s TUREDISP s AND TURBFOTW)

IN

VECTOR YY{1l)seenseasYY(T)

Yy(3)=(0-00090-000’
DC 495 JU=1+4
YY(2)=YY(3)}+A(J)

» CGNTINUE

WFSEND={(0.CC0+0.0D0)
YY(2)=(0.00C+0.,0D00)

CO £00 J=1.4
FACTR=A(J)*CODEXP{ALP(J)*L (1))
WESEND=WFSEND+FACTR
YY(2)=YY{(2)+ALP(J)I*FACTR
CONTINUE
YY(1)=WFSENC+TF®YY(2)
CINTE=(0.0DC+0.,0DC)
YY(5)=(0.0D0+0+0D0)

DU 510 J=5,8

CINTE=DINTE+A(J)

YY(S)=YY{S)I+ALFP(J}*A(J)
YY(4)=DINTE-TMCD3I*YY({E)
YY(7)=(0+0D0,040D0)
DTURBE={0.C00,+0.000)

K
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DC S20 J=9.12
CTURBE=DTURBFE+A(J)
Giﬁ 520 YY(7)=YY(Z)+ALF(J)I%A(J)
YY(&)=DTURBE-TT1 #YY(7)
C
€C TFE RELATIVE MCVEMENTS ARE NGRMALIZED EY THE MAXeVALUE
C
YYMAX=0.,0D0
DG S30 J=1,7
YYD=DABS(DREAL(YY(J)))
IF(YYMAX.GE.YYD) CO TC 530
YYNAX=YYD
530 CONTINUE
> DG 540 J=1 47
€40 YY(J)=YY(J)/YYMAX

W

PRINT 545
€45 FORMAT(/s2Xe12C(*-*))
PRINT 550
550 FORMAT(/ +2X,*RELATIVE DISPLACENENTS AND RUTATICNS OF THE FCUR
*RIGID MASS CENTERS ®WeR«eT, THE FCLLCWING CRITICAL SPEED*,/)
PRINT 5604 (YY{J)eJ=1,7)
560 FORMAT(G90X s2D12e5)
PRINT 630
€30 FORMAT(7X+'RCTe SFEEL (RPM)*,4X, *NAT, FREQes (CFM)*,11X, *CONPLEX DE
*TERMINANT?)
FRINT 640, RFMNTRFM,LET
€40 FORMAT(2X, *4%2%? (2X gF 1306 98XgF1l0e2+EX92017eB42X%X449(%%%),4/)
PRINT 545
NM=NMN+1
IF(MVNEQ.S5) GC TC 23S
IF(MM,EQ.9 ) GO TC 8CO
ISICGNP==1SIGNP
RPNP=RPM+RPNINX/100.0
GO 70 750
€50 OETIP=DIMAG(DET)
ISIGN=DETIF/7DAES(CET IP)
IF(DABS{ISIGN+ISIGNP ) eGT.0,0DC) CO TO 670
REMINC=RPMINC/ 1060
FPN=APMP
GG TO 200
670 IF(ICEY.NE.O0) GO TO 700
PRINT 6G0.RPMDET
690 FORMAT(8XsF13e€924X+42D17e8457)
700 ISIGNP=ISIGNKN
RPMP=RPM
IF(RPMINC.NE+RFMINX) GO TO 20C
750 CONTINUE
800 CONTINUE
PRINT 810
810 FORMAT{/+2Xe10(*$*)+*NC MCFE FETRCGFADE C(RITICAL SPEEDS
%< 120,000 RPM*,10(*'$?),/)
STCF

iii END
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C.4 Forced Whirling Analysis Using the Combined Model

A flow chart for this program is presented in Fig. C11. This program

takes approximately 1 minute, 15 seconds of CPU time.
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Fig. C11. Flow chart for forced whirling by combined model.

INPUT DATA
\

CHOOSE Cg
SELECT RPM

COMPUTE &ij
i=1,2,3 j=1,2,3,4
1

COMPUTE [C]

!

DETERMINE THE FORCING COLUMN MATRIX OF EQUATION
(3.62) AND SOLVE FOR Aij i=1,2,3; 3=1,2,3,4

1

THE DISPLACEMENT AT ANY FLEXIBLE SHAFT SECTION
IS OBTAINED FROM THE FIRST OF EQUATIONS (3.27)

1

THE DISPLACEMENTS -ARE STORED
FOR PLOTTING PURPOSES

Y

INCREASE RPM

COMPUTATIONS COMPLETE
AND READY FOR FORCED
RESPONSE PLOTTING

GO TO1
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roe

IMPLICIT REAL%XB(A-H,(C~2)

REAL%*4 BETALECCENPHI ZRO

REAL*4 AWFWCG(S503)s AWDAMP(503) yASLFSE(503)

REAL¥*4 PHFWCG(S03 )¢ PHFRSL(S03) PHDAMP(503)+RPMARY(S503)
REAL*8 NeITA(3)+sK{32)sL(3)sKSUSKSLKNEOR s NCMSG

REAL¥*8 MF 4, MDe MT

REAL%®8 [DF o1IPF 4IDDLIPDSIDTSIPTLIEG,KEG

REAL*8 IDMOD,s IPMODLAC,MMOD

CONMPLEX*16 CDESINsRACIN,DSOUT1,DSOUT2,ALP(12),C(12,12)5sB(12),A(12)

COMPLEX %16 FACTRsPHASE WFSBGN +WFWCG s WFSEND$SLFPFSE
CONPLEX*16 UNITIM

COMPLEX*16 ®A{168),6K(12)

DIMENSION DQUT(3)+DIN(3)+AREA(3)sANUM{3),8B(3),+C1(3),C2(3)

SEE * FREE WHIRLING BY COMBINED MODEL® PRUGRAM FCR DEFINITION
OF VARIABLES IN THE DATA STATEMENTS

FLYWHEEL DATA IN TRHIS PROGRAM ARE THUSE OF LLULNL

BETA: PHASE LAG OF INITIAL TILT FRCM MASS ECCENTFICITY
ECCEN: MASS ECCENTRICITY
PHIZROS INITIAL TILT

DATA EoGeWL/29.5D6+11.5D650.283D0/

DATA DOUT/03125D0+0+3125D0+0749300/

DATA DIN/0eUD0+0+0D0+0.3175D07/

DATA K/70.885D00,50+885D0+0+6565D0/

DATA KNEOP/70.0DO/

DATA MF s MD sMT/0,0336D04+0,002998D0,0,00479D0/
DATA TF oTD+TT1/315D0+1.,8332D0+08942D00/

DATA IDF+IPF/0.823D0+1.5645D0/

DATA IDT,IPT/0.003402D00,0.00628D0/

DATA L/0+7455D0+N+6792D0» 2126900/

DATA KSU4KSL/240D6+,2.006/

DATA BETA, ECCENs PHIZRO/3+1415+0.001,0.0025/
DATA KEQsLAC«MMOD/0 +885SD0 +3459695D00,0.000202D0/
DATA TMOD2+TMOD3sTSP/04163D0+04425200,0.24310D0~/
DATA IPMOD»IDMOD/115D-0551798D~-05/

PIl1=2.0%DARSIN{1.0D0)

TO NEGLECT THE RESTCRING EFFECT OF GRAVITY ON THE MOTION OF THE DISKS,

SET GR = 0.0

>
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GR=386.,0
RHO=WL/ 386.0
THETA=BETA
PHASE=DCMPLX(0.0D0,THETA)
CD=0.0
STPI=1.0
STP2=169
STP3=0.5
DC 30 J=1,3
AREA(J)=PITO(DCUT(J)*%2=DIN(J)%%x2)/4.0
IA{JV)=PII*(DOUT(J)*23=DIN(J)*%4)/64.0
ANUM(J)=Ex[A(J)
30 CONTINUE '

CALCULATICNS RELATING TO THE EQUIVALENT QUILL SEAFT INSIDE
THE TURBINE SHAFT

aAnon

IEG=IAC2)*(L(3)/LAC)*%4
DEQ={64 +0*EQ/PI1)*%0,25
AEQ=PIISDEQe¢%2/4 .0

K{3)+AREA(3)s IA(3) ARE NEWLY DEFINED FOR THE EGUIVALENT SECTION
‘CONTAINING BOTH THE TURBINE SHAFT AND FLYWHEEL SFAFT

A"nnn

K(3)=(KEQ*2EQ+K( 2)*AREA( 2))/( AEQ+AREA( 3))
AREA{(3)=AREA(3)+AEQ
IA(3)=TA(3)+1EQ
ANUM(3)I=E*1A(3)
N=1,000
DO 50 J=1,3
BBl J)=RHO* TA(JISEN*(NXE/(K(J)E*GI)+N=240)
Cl(JII=(RHO**2 ) *[A(J ) *(N%& 3 ) (N=-2.0)/7(K( J)*G)
C2{JI=RHO*AREA(J JeN*$2
50 CONTINUE
RPM=13980.0
RPMINC=20.0
IN=501
DO 900 I=1,IN
RPN=RPM+RPMINC
RPMARY(1)=RPM
OMECA=RPM*PII[/30.0
NOMSQ=NE¥2 2 CMEGA*%*2
C .
C COMPUTATION OF ALPHAS
C
DG 300 JU=1,3
M=4%(J=-1)
DESIN=BB(J)*%2=4 ,0xANUM(J)*(C1 (J)=~C2(J)/(QMEGA*%2))
CDESIN=DCMPLX(DESIN,0.0D0)
RADIN=CODSQRT{(CLCES IN)
DSOUTI={(=BB(JI+RADINI /(2.0 ANUM(J))
DSOUT2=(-BB(J)I-RACIN)I/(2.0%ANUM( J))
ALP(M+L )=0ONEGAX(CDSQRT(DSOUT1)
ALP(M+2 )==ALP(M+1)
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ALP(M+3 )=OMEGA*CDSQRT (OSOUT2)
ALP{M+4 )==ALP(M+3)
300 CONTINUE
DO 350 uJu=1,12
DO 350 M=1,12
350 C(JsM)=(0s0D0+0,000)

C

- C DEFINING THE CBAR MATRIX

c - -
DO 400 JU=1,4
C(l9J’—(RHD*AREA(1)/ALP(J)*MF*(IoO+ALP(J)*(TF-GR/NDM$Q)))*CDEXP(AL

xP(JI*L( 1))
Cl29sJ)={EXTA(LI*(ALP(J)EX2/NOMSQ+RHCZ(K(1)%G) V4+RHOXAREA( 1) *TE/ALP( -
$¥J)=( IDF=IPF/N)*ALP{J) )*CDEXP{ALP(J) %L (1))
C(34J0=(1000,0.000) ,
C 3sU+4)==CDEXF(ALP(J+4)%L{(2))
Cla,Jd)=ALPLY)
C(6,J4+4 )=ALP(J+4 ) 2COEXP(ALP(J+4)3L(2))
Cl74J+4 )==ALP{I+4)
C(7+J48) =ALP{J+8)%CODEXP(ALP{J+B) . {3))
ClB»J+4)=1 «0—( TMCD2+TMOD3 ) xALP (JI+4)
C{8,J+8)==CDEXP(ALP(J+8) %L (3))
C{9,J+4 )=—~RHO*AREA(2)/ALP(J+4 )=KSL/NOMSQ*( l.O—(TMOD 2+*TMOD3-TSP ) *AL
*P{ J+4) ) tMMOD* ( 1. 0=-TMOD2xALP{ J+4)) )
C{9,3+8)=RHC*AREA(3)/7ALP{ J+8B) *CDEXP(ALP(J+8)%L(3))
Cll102J+4)=E¥JA(2) % (ALP(J+4)*%2/NOMSQ+RHO/(K{2)2G) )= TMOD 2*RHO*AREA(
*¥2)/7ALP(J+3)+ALP(J+4)x( IDMOD—IPMOD/N)+KSL/NCMSC*(TMOD3=TSP)*(1.0=(T
*MOD3+TMOD2=TSP )%ALP(J+4))
Cl10,+8)=(~E*JA(3)*(ALP (J+8)%*2/NCMSG+FRHO/Z (K (3)%G) )=-TMCD3I*RHD *ARE
¥A(3)/7ALP(J+B) )R COEXP(ALP(J+8)%L(3))
C(ll-J#8)=~(RHC*AFEA(3)/ALP(J#B)#MT*(GR#ALP(J’E)/NUMSQ-1.0+TT1*ALP
*¥{(J48) )+KSL/NOMSQ) —
Cl12,048)=E¥TA(3)*(ALP{J+8 ) ¥2/NOMSQ+RHO/(K(3)#G) )~ TT1%*RHO*AREA(3)
*/ALP{ J+8)=KSL*¥TT1/NOMSGQ+ALP{ J+8)%{ IDT=IPT/N) :
400 CONTINVE
DC 403 J=l,12
403 B{J)={0.000:,0.0D0)
B{1)=-MF*ECCEN
B(2)=PHIZROG*( ICF-IPF)*CDEXP(~PKASE)
UNITINM=(0.0D0,1.000)
DC 410 J=1,4 , ‘
C{SesJd)= RHOXAREA(1)/7ALP(J)I+KNECP/NCMSCH+UNITIMECD/ (INSONEGA ) =MD, "
C{S+sJ+4 )=—RHO*AREA(2)/ALP(J+4 )FCDEXP(ALP(J+4)%L(2))
410 CONTINUE
JN=12 .
1JCB=0
M=1

C LEQ2C: IMSL SUBROUTINE FOR SOLUTION OF LINEAR ALGEBRAIC EQUATICNS

CALL LEGZC(CQJNQJNQB.M.JNO[JCBohAsﬂK_oIER’ B

DO 420 JR=1,12 '

A(JR)=B(JIR)
420 CONTINUE
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WF SBGN=(0+000+0.0D0)
DO 450 JG=1,4
WFSBGN=WFSBGN+A(JC)

450 CONTINUE
WFSEND=(0.000,+,0.000)
StLPFSE=(0. 000+0.000)
DO 484 JQ=1,4
FACTR=A(JQ)*CDEXP(ALP(JQ)2L(1))
WF SEND=WF SEND+FACTR
SLPFSE=SLPFSE+ALP (JQ)*FACTR

484 CONTINUE

NOTE: ALL VARIABLES ENDING WITH *FWCG* ARE RELATED TU THE GEONETIRIC
CENTER OF THE FLYWHEEL .

WFSEND: DISPLACEMENT AT FLYWHEEL SHAFT END

SLPFSE: SLOPE AT FLYWHEEL SHAFTY END

AWFWCG{I): ARRAY OF ABSGLUTE VALUE OF FLYWHEEL CGC DIPLACEMENT
AWDAMP (1): ARRAY OF ABSOLUTE VALUE OF DAMPER DI SPLACEMENT
ASLFSE(1): ARRAY CF ABSCLUTE VALUE OF SLGPE AT T+E END OF FLYWEEEL
SHAFT '

ARRAYS BEGINNING WITHE *Ph* ARE RELATED TO PHASE LAGS

WFWCG=WFSEND+TF$SLPFSE
AWFWCG(I)=CCABS(WFWCG)
AWDAMP( 1)=CDABS( WFSBGN)
ASLFSE( I1)=CDABS(SLPFSE)
PHFWCG (I )=DATAN2(CIMAGI(WFWCG) +CREAL(WFWCG))*180.0/P 11%(~1.0)
PHFWSL{ 1 )=DATAN2(DIMAG(SLPFSE) yDREAL(SLPFSE) )*%180.0/PI1%(=140)
PHDAMP( 1 )=CATAN2 (D IMAG (WFSEGN) sDREAL(WFSBGN) ) *180.u/PlI*(~1.0)
IF(PHFWCG{I)eGT o= 1e 0E~03 ANDPFRFECG(I)elLTel eDE=04) PHFUWCG(I)=N,0O
IF(PHFWESL (1) eGT e=1¢e0E=U3+ANDePHFWSL(I JelLTele0E=04) PHFWSL(I)=De
IF(PHDAMFP( ) eGTe=1+0E-03cAND+PFEDAMP(I)eLTe1,0E~04) PHOAMP(I)=0.0
IF(PHFWCG( I )elLTe0e0) PHFWCG{1)=260¢0¢PHFWCG(1)
IF(PHFWSL(I)elLTe0+0) PHFWSL(I)=360.0+PHFWSL(1)
IF(PHDAMP(1)eLTe040) PHDAMP(TI)=360+0+PHOAMP (1)
IF(PHFWCG(I)eEQe36040) PHFWCG( I1)=040 )
IF(PHFWSL(I)eEGe3600) PHFESL(I)=0.9
IF(PHDAMP( 1) eEQ+3€0.0) PHDAMP(I)=0.0
900 . CONTINUE
PRINT 910
910 FORMAT(8Xs3(*ABSOLUTE*47Xs *PHASE LAG®*,8X))
PRINT 920° -
920 FORMAT(8Xs *FWCGDISP® 3SXs?* (DEG)® 410X s*DANPDISP® 39X 4* DEG® 39X *FWS S
*LOPE® 4y9IXs * (CEG) s 11Xs *RPM*,//) ’
DO $40 I[=1.IN
PRINT 960 +AWFWCG( 1) 4PHFWCG(]) AWDAMP(I) s PHDAMP (1) ASLFSE(I),
*PHFWSL (1) s RPMARY (1)
IF(AWFWCGII)eGToSTP1) AWF®CG{1)=STP1
IF(AWDAMP({ 1) eGT«STP2) ANDAMP(I )=STP2
IF(ASLFSE(I)eGTeSTP3) ASLFSE(I)=STP3
940 CONTINUE
960 FORMAT(6X+6(ELl1e4+4X)sFTal136Xs/) _
CALL SETMSG(45 +'PLEASE SET THE STEPSIZE TO <005 INCHESeTHANKS®)
CALL PLOT(0e0+=80.0,—-3)
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PLOT( 40094004~ 3)
FACTOR{(1 +3)

RPMARY(502)=2000.,0
RPMARY{503)=1000.0
ANFWCG(502)=0.0
AWFWCG(503)=0.5
ASLFSE(S502)=0.0
ASLFSE(503)=0.25
AWCAMP( S02)=04e0
AWDAMP(503)=0 .5
PHFWCG(502)=0.,0
PHFWCG{S503)=180,0
PHFWSL{502)=0.0
PHFWSL{5D03)=180.0
PHDAMP(502 )=0.0
PHDAMP({503)=180.0

CALL
CALL
*))
CALL
*3))
CALL
CALL
CALL

PLOT{O0«05100,—3)
AXIS{ DD 30.C+s*RF (INCHES)*51122e0+sS50e0sAWFWCG(S02)sANFRCG(SO3

AXIS( 009000+ *OMEGA (RPM) *3=11510e0+0.09 RFNARY(502) sRPNMARY (SC
LINE(RPMARY s AWFRCG 9501 91 +0+0)

DL INE {RPMARY sPHFWCG+501+1+5)
AXIS(10e5+0e0+*PHASE LAG (DEGe)? y=1652e¢09S50e04 PHFWCG(S02) 4P KF

*WCG(503))

CALL
CALL
CALL
CALL
CALL
CALL

CALL

CALL
CALL
CALL
CALL
*)
CALL
*3))
CALL
CALL
CALL

PFLOT(1003+040»3)

PLOT(1040+240+2)

PLOT(020+260,2)
SYMBOL{(0412551e75+0e08+*PHIZRO =*50+0+8)
NUMBER{( 9992031675506 08,PHIZRO 0605 4)
SYMBCL (0 ¢125+1.4€0+0e08,*ECCEN =%404047)
NUMBER{ 9994041 ¢60:0.08+ECCEN100,+3)

SY MBOL (0 e125,1 .45,("08' *BETA =930.006)
NUMBER(99950131¢45+0e08+sBETA0.0+4)
PLOT(0+04~3e5¢~3)

AXIS{0 0300 +*PHIF (RAD)* 510520990 :0,ASLFSE(502)+ASLFSE({503)

AXIS(0e0+0.05*OMEGA (RPM)*3-11+10e0+0+00RFVARY(S02) ,RPNARY (5¢C
LINE{RPMARY s ASLFSE +501 31+04+0)

DL INE(RPMARY yPHFWNSL +5019155)
AXIS{10654+0+0,"PHASE LAG (DEG.,.’-16020009000 PHFWSL(‘OZ)'PHF

*¥WSL{(503))

CALL
CALL
CALL
CALL
‘CALL
*))
CALL
*3))
CALL
CALL

CALL

PLGT(l0'00000'3)

PLOT(10.092601,2)

pLCT(OoOoZooyz)

PLOT(D0e09s=40:+-3)

AXIS(0e0+0e0¢*RD (INCHES) *5119240950. 0+ANDAMP(502) sAWDAMP(S03

AXIS{ 004000 :"OMEGA (RPM)®* 3=11510+030:0sFRFNARY (502) +RPMARY (50
LINE(RPMARY s AWDAMP 3501 9120+0)

DL INE (RPMARY sPHOAMP 3 5015 1+5)
AXIS(10e530e03+°*PHASE LAG (DEGe)® 9y=16452+0,50+0 PHDAMP(502) »PHD

*AMP(503))

£
-
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CALL
CALL
CALL
CALL
STOP
END

PLOT(1040+040,3)
PLOT(1004260,2)
PLOT (0 e s200+2)
PLOT (009000999

173
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APPENDIX D - EFFECTS OF FLYWHEEL DEAD WEIGHT AND TORQUE'ON'THE LOWEST FIRST-
ORDER FORWARD CRITICAL SPEED OF A PENDULOUSLY SUPPORTED FLYWHEEL

D.1 Effect of Flywheel Dead Weight

For a pendulously supported f1ywheé1, i.e., one supported from above by
a vertiéa] cantilever shaft, the dead weight of the flywheel can have an
effect on the critical speeds. The reason for this effect is that the dead
weight acts through a moment arm equal to the horizontal distance of the fly-
wheel center of gravity from any arbitrary point on the flywheel shaft. Thus,
a moment, varying along the length of the shaft, is produced. In the case of
a pendulously supported flywheel, this moment acts in such a sense that it is
a restoring moment and thus stiffens the flywheel shaft (so-called tie-bar
action). If the flywheel were supported from below, this moment would be the
opposite of a restoring moment and thus would unstiffen the nywhee] shaft
(oolumn action). |

In modes of whirling higher than the lowest one, the flywheel does not
deflect significantly from its original position, as can be‘seen in Fig. 4.5.
Hence, the dead-weight effect is significant only in the lowest mode. bnly
a very few papers in the literature even mention the dead-weight effect. For
example, Ref. 11 mentioned it and stated that Ref. 47 showed that it affects
the displacements less than 3 percent for the small-scale, research-type fly- 4

wheel system investigated in [11,47]. Actually, Ref. 47 gave a linear analysis

@

and the effect was 2.6% on the dispalcements (and thus on the flexibility);
therefore, it affected the critical speeds only 1.3% approximately, due to the
~ square-root relationship of flexibility and natural frequency (v1.026 = 1.013).

Table D.1 presents the lowest first-order forward critical speeds for

the three Systems A, B, and C, with and without the effect of flywheel dead
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Table D.1. Lowest First-Order Forward Critical Speeds
With and Without the Flywheel Dead-Weight
Effect, for the Three Systems A,B, and C, as
Computed Using the Combined-Model Analysis

Flywheel System

A B C
Qg (with dead weight), rpm 1,038 1,907 14,230
2, (without dead weight), rpm 1,030 1,903 14,228
Ratio Qg/ﬂo 1.0078 1.0021 1.0001

weight. The critical speeds were obtained using the combined model. Here,
Qg denotes a critical speed calculated with the flywheel dead weight included
and 90 stands for a critical speed when the pendulum effect of the flywheel
weight is not used.

This pendulum effect, for a simple cantilevered flywheel system,
was studied quantitatively by Greenhill many years ago and more recently by
Kung [48]. Kung showed that the ratio Qg/Qo satisfies the following relation,

in the absence of applied torque:

(ag/a)® =1 + (P/p.,) (0-1)

where P = weight of flywheel and Pcr = absolute value of the critical buckling
load for the system. The system for which Pcr has to be calculated in the
present case is shown in Fig. D1{(a). This system is equivalent to thét shown
in Fig. D1(b). By the principle of virtual work, the following equation,
which equates the bending strain energy in the beam to the sum of the external

work done by the force 5 and the moment ﬁ, is obtained:
L ' L

[ (e172 @ ax= (i) (G0 ax + (hv2) G (2) (0-2)
0
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(b)

Fig. D1. (a) Actual system for which P., is desired; (b) equivalent
system for which Pcp is determined. For convenience, the
systems are shown upside down from the orientation in the
actual spin-test setup.

where w = lateral deflection of the beam and EI = flexural rigidity of the

beam.

Assuming that, at the instant of instability, the deflection curve

can be approximated by
X
w = A(1 - cos %E (D-3)

where A is the deflection as shown in Fig. D1(b), we obtain the following

approximate expression for P..

=

P = P = (n2/8)(E1/2)(2+2t,) " ~(D-4)

In Sections 4 and 5, it was shown that in the first mode for Systems A and

B, the damper was essentially stationary. Hence, these two systems can be
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modeled as a flywheel cantilevered at the damper. Thus, & = 0.7455 in.
is used in equation (D-4). For System C a more active participation of
the damper was predicted in the first mode. However, in the absence of
a suitable equivalent length, the same 2 used for Systems A and B is also
used for System C. The results are tabulated in Table D.2. Comparison of

Tables D1 and D2 show reasonably close values for Systems A and B. However,

Table D.2. Simplified Calculation of the Pendulum Effect
Using Equation (D-1) (EI =13,806 1b-in2)

Flywheel System
A B C
Weight P, 1b 36.7 22.2 13.0
tf, in. 7.05 3.45 3.15
Ratio Qg/ﬂo 1.0059 1.0019 1.0010

for System C, the agreement is rather poor. This discrepancy can be
explained by noting the significant damper displacement associated with the
lowest first-order forward mode shape for this system. In other words,
Kung's analysis, which assumes a shaft with all of fhe mass action lumped
at the lower end, is not applicable when there is significant motion of
another mass at some other location (1ike at the damper, in this case).

In summary, it was shown that the effect of including the flywheel dead
weight (;s was- done in obtaining all of the numerical results presented in
the other parts of this report) is very small. In fact, it was calculated
to be less than 1% even in the most significant case (System A). It was

shown further that the relative values obtained from the accurate combined
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model analysis could be predicted reasonably accurately, at least for

Systems A and B, by a simplified analysis due to Kung.

D.2 Effect of Load Torque

In spin testing of flywheels, the torque'during normal, steady running

is small (only 7.5 to 8.0 1b-in. for the Oak Ridge spin-test facility), since .

it has to overcome only the ba]]?bearing, damper, and windage losses
(exceedingly small due to high vacuum). However, to accelerate rotationally,

i.e., to increase the rotational speed, some additional torque capacity is

required. For the Oak Ridge facility, the maximum torque capacity (avai]ab]e‘

in the lower speed range) is on the order of 17 1b-in.
The question arises as to the effect of the aforementioned torques on
the critical speeds. This can be estimated for a simple uniform-diameter

shaft by Kung's version [48] of Greenhill's formula:

2 _ 2
(QT/QOT) =1 - (T/Tcr) (D-5)
Here, T = applied torque, Tcr = critical buckling torque, and QT and QoT are
the critical speeds respectively with and without torque. The general
expression for Tcr is
T..= nkEl/2 (D-6)

cr

where k = dimensionless buckling coefficient which depends upon the way in
which the torque is applied, as well as the boundary conditions, as was

discussed by Ziegler [49]. Here, we conservatively assume that the torque
js applied semitangentially in Ziegler's terminology and that the support

conditions are those of a cantilever. Then k = 1, according to [49].

»
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For the Oak Ridge system, £ = 29.5 x 108 psi, I = (5/16)“/64
= 0.000468 1n?, £ = 0.745 in. Thus, the critical speed is lowered only
43 parts in 109, even when the maximum available torque of 17 1b-in. is

used. Obviously, this is certainly a negligible effect from an engineering

standpoint.
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APPENDIX E-- LIST OF SYMBOLS

cross-sectional area of the shaft sections (i=1,2,3)

cross-sectional areas at various stepped sections of the turbine

shaft (j=1,2,3) (see Appendix A.2) 4
cross-sectional area of the uniform shaft equivalent to the

stepped turbine shaft |

amplitude of w in the first of equations (B-23)

cross-sectional area of shaft (Appendix B.2)

cross-sectional area of the modified quill-shaft sections inside
the turbine shaft (Fig. B1)

coefficient appearing in the first of equations (B-25), (j=1,...,4)
coefficients appearing in the first of equations (B-27)

and Appendix B (i=1,2,3), (j=1,...,4)

(£3/K3A56) + (L3/3E1,)

length parameters appearing in equations (A-1), (i=1,...,4)
amplitude of y in the second of equations (B-23)

coefficient appearing in the second of equations (8-25), (j=1,...,4)
coefficient appearing in the second of equations (B-27), (p=1,2,3),
(3=1,...

matrices defined in equations (2.11)

»4)

matrices appearing in equation (2.19)

damping coefficient of external damper

-

damping matrix defined in equation (2.15)
coefficient matrix appearing in equation (B-55)
diameters defined in Fig. Al

outer diameter of the equivalent uniform turbine shaft

Young's modulus of shaft material



-n

gl

{F}

[1]

181

complex Young's modulus of shaft material

base of the natural logarithms

lateral forces acting in lumped model (j=d,f,i,t)

arbitrary lateral force acting through the turbine center of
mass (see Appendix A.2) |
elastic restoring force in a whirling shaft (section 4)

side force due to hysteretic damping

total force acting on a whirling shaft element (section 4)
generalized-force excitation vector defined in equation (2.21)
shear modulus of shaft material

complex shear modulus of shaft material

gravitational acceleration

gyroscopic matrix defined in equation (2.4)

area moment of inertia of shaft cross section about a diametral
axis

diametral and polar mass moments of inertia of a shaft element
of length dz

respective diametral and polar mass moments of inertia of
components (j=f,i,t)

area moments of inertia about a diameter of the various stepped
portions of the turbine shaft (i=1,2,3) (see Appendix A.2)

area moment of inertia about a diameter of the ith shaft
section (i=1,2,3) |

area moment of inertia about a diameter of the equivalent
turbine shaft

jdentity matrix (main diagonal elements are all unity, remaining

elements are all zero)
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area moment of inertia of the modified flywheel shaft, inside
the turbine shaft, about a diameter

area moment of inertia of the actual flywheel shaft, inside
the turbine shaft, about a diameter

/T

transverse shear correction coefficient of the modified quill
shaft within the turbine shaft

transverse shear correction coefficients, (i=1,2,3)
transverse shear correction coefficient of the equivalent
turbine shaft

spring rate of neoprene-rubber washer in external damper

spring rates of the lower and upper bearings, respectively

transverse shear correction coefficients of the various stepped

cross sections of the turbine shaft (i=1,2,3) (see Appendix A.2)

stiffness matrix appearing in equation (2.1)

[a]

complex stiffness matrix appearing in equation (2.14)
dimensionless buckling coefficient (see Appendix D.2)
length defined in Fig. Bl

Tengths appearing in Appendix B (see Fig. 3.1) (i=1,2,3)
length of flexible shaft (shown in Fig. D1)

lengths (see Fig. 2.1)
lengths defined in Fig. Al

total bending moment and its components about the x and y axes

moment used in Appendix D.1

o

X
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an arbitrary moment acting on the turbine wheel (see Appendix A.2)

bending moments at components (j=d,f,i,t) of lumped model
total bending moment and its components about the x and y axes
acting on the ends of shaft i (i=1,2,3) (Appendix B.3)
mass matrix defined in equation (2.3)

ratios of inside diameter to outside diameter

masses of components (j=d,f,i,t) in the lumped model

w/Q

zero matrix (all elements are zero)

zero column matrix

axial force in shaft

weight of flywheel

axial force used in Appendix D.1

absolute value of the critical buckling Toad for a flywheel system

w{q}

generalized displacement vector defined in equation (2.2)
generalized displacement amplitude vector

turbine-bearing reactions (see Fig. 2.2)’

inner and outer radii of a shaft element

mass eccentricity

translational displacements of components (j=d,f,i,t) in the
Tumped model

deflection of turbine center of mass when subjected to a force
F0 and moment M (see Appendix A.2)

time

applied torque on the turbine wheel
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critical buckling torque (see Appendix D.2)
thickness parameters defined in Fig. 2.1

total strain energy in the system
strain energy in the turbine shaft; equation (A-9)
total shear force and its components in the x and y directions .

total shear force and its components in the x and y directions

acting on the ends of shaft i (i=1,2,3) (Appendix B.3)

lateral displacement of a shaft element and its components in

the x and y directions |

lateral displacement and its compénents in the x and y directions
of specific locations on the ith shaft (i=1,2,3) as defined in
Appendix B.3

deflection distribution of shaft section p (p=1,2,3); see equation
(B-27)

lateral displacement of flywheel center of mass and its components
in the x and y directions

lateral displacement of intermediate mass center and its components
in the x and y directions

displacement of the lower spring attachment point and its components

&

in the x and y directions

displacement of turbine center of mass and its components in the

,Q)

x and y directions
displacement of the flywheel center of mass when ro = 0
Cartesian coordinates in a reference frame attached to the

deflected shaft, tilting, but not rotating, with it
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Cartesian coordinates in an inertial reference frame

an arbitrary point in any of the three shaft sections

position coordinate z in shaft p (p=1,2,3)

compliance coefficients defined in equations (A-7), (i,j=1,...,8)
coefficient appearing in equations (B-23)

coefficients appearing in equations (B-25), (i=1,...,4)
coefficients appearing in equations (B-27) and Appendix B,
(p=1,2,3), (j=1,...,4)

compliances for the equivalent uniform turbine shaft (see
Appendix A.2)

compliance matrix appearing in equation (2.5) and Appendix A
compliances defined in Appendix A.2 for the actual stepped turbine
shaft

phase lag of flywheel initial tilt relative to the mass eccentricity
total shear strain and its components in the yz and xz planes
loss tangent (= Ed/Fr)

deflection of flywheel shaft end (see Appendix D.1)

increments in Q@ to plot whirl diagrams -

angle between the deflected flywheel center line and the axis of
rotation (see Fig. B9)

Poisson's ratio of shaft material

density of shaft material

tilting angles of components (j=d,f,i,t) in the lumped model
rotation of turbine wheel when subjected to a force of F0 and a

moment of M0 (see Appendix A.2)
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initial tilt of flywheel with respect to axis of rotation
initial tilt of flywheel defined as a vector

bending slope and its components in the x and y directions
bending slope and its components in the x and y directions at
specified locations as defined in Appendix B.2

bending-slope distribution of shaft section p (p=1,2,3); see
equation (B-27)

a factor defined in equation (A-12) for the actual stepped turbine
shaft

a factor equal to 6 for the equivalent uniform furbine shaft
rotational speed

an arbitrary rotational speed within the range of operation
lowest first-order critical speed

second lowest first-ofder critical speed

lowest first-order critical speed with the effect of flywheel
deadweight included

Towest first-order critical speed without the éffect of
flywheel deadweight

lowest first-order critical speed without the effect of
applied torque being considered

Towest first-order critical speed with the effect of appliéd torque
natural frequency of vibration

imaginary and real parts of o

derivative with respect to time

=

Sy

B
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APPENDIX F - SUGGESTIONS FOR FURTHER RESEARCH ON
ANALYSIS OF FLYWHEEL ROTOR DYNAMICS

The following are some areas in which further research could be conducted
to extend usefulness of the present state of the art of knowledge on flywheel
rotor dynamics:

1. The effect of power take-off or power feed-in, as a steady torque,
on the system dynamics. In the present work, the applied torque at the
turbine wheel was neglected, based on the analysis of Appendix D.2. However,
in some vehicular applications, this could become a more significant factor.

2. The effect of.acce1erating through the critical speeds, for which
the torque available at the turbine is the limiting factor. In the present
work, transients [50] have not been considered.

3. The use of magnetic bearings and the corresponding use of active
control to prevent whirl instability [51]. In the present work, whirl
instability is controlled only by the external viscous damper, which is a
passive one.

4. The use of a nonlinear model of the squeeze-film damper action, in
which the damping coefficient Cd increases when the damper disk approaches
the housing wall [19], rather than the present equivalent viscous damper.
However, recent research [52] has shown that even the currently accepted non-
linear hydrodynamic theory for finite-length squeeze-film bearings is inade-
quate to predict. quantitative response.

5. Study of excitation and response of nonsynchronous whirling.

6. Effect of Coulomb damping due to relative motion between flywheel
components as a function of rotational speed. This may be important in only

certain flywheel systems.
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7. Effect of the increase in flywheel moment of inertia due to the ’

radial growth due to centrifugal action. This is believed to be a negligible

effect on all current flywheels known to the present authors.
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