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ABSTRACT

The axisymmetric, linearized gas dynamic equations for flow in a cent-

rifuge are rederived from Perturbation Theory viewpoint using limit
r gAOTILYy
processes. A commonly accepted boundary cé6»g4d4ta.|\s carefully recon-

sidered.

DISCLAIME

This book was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED






SUMMARY

The mathematical relationship between Onsager's pancake equation and
the Ekman boundary layer equations is derived by methods of perturba-
tion theory. The so-called "internal flow region" is shown to be
simply the first term in an asymptotic series for the outer expansion.
The complementary inner expansion is shown to be the Ekman layer. Some

of the more subtle approximations and assumptions on boundary conditions

are given attention herein.
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INTRODUCTION

Basic theoretical elements of modern linear centrifuge fluid modeling
are primarily due to Onsager, Carrier and Maslen and have been imple-
mented and extended by others, e.g.. Wood and Morton [1]. These models
were developed separately and provide a complete description of the
flow field which determines the isotope separation when matched

together

Onsager's pancake equation for centrifuge gas dynamics

(eX (eXx ) ) + s2X + F(x,y)= 0 (i:
XX XX XX vy v A

was originally derived from a functional for the energy dissipation
associated with the flow. In that derivation it was assumed that diffu-
sive transport of heat and momentum in the axial direction is negligible
resulting in an expression 1like (1) in n. The further assumption of
negligible curvature led to equation (1). It is a sixth order, aniso-

tropic linear elliptic partial differential equation in two dimensions

and for cases of interest here B2 >> 1.

In reference |[l1] Onsager's equation was derived directly from the 1line-
arized Navier-Stokes equations in cylindrical coordinates based on a
classical boundary layer analysis (regular order of magnitude considera-
tions) . Methodologically this treatment is similar to the way Prandtl's
boundary layer equations were originally derived [2]. The procedure

is summarily described as away from the ends retaining among the vis-
cous terms only those most highly differentiated in the radial

direction and setting n=1 where it appears algebraically [1]. The

region away from the ends is termed the internal flow region.
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Likewise, the Ekman layer equations were derived by order of magnitude
procedures keeping only the largest terms. Because curvature effects
were fully retained there is some interest in rederiving these equa-
tions without curvature and thus provide a clear and consistent
picture. This is important because one would probably not want to

keep curvature in one region and leave it out of the other.

Approximate equations for the entire flow field are described briefly
in [1]. The present work is intended to describe 1lucidly a unified
theory through a somewhat "rigorous" analysis of the basic equations.
For example, we will address
(1) the mathematical relationship between the internal flow
region and the Ekman layers (matching)
(2) the auxiliary equation for h

(3) corner boundary regions.

The approach taken here (adopted from Singular Perturbation Theory) is
to develop asymptotic expansion of the field variables in a manner like
the formal derivation of Prandtl's equations [3], This is a formal
mathematical derivation of the approximate equations and a statement

of the approximation. Furthermore, it provides a uniform view of the
internal flow region and the Ekman boundary layer and their relation.
An approach such as this might also prove useful in the derivation

of approximate three-dimensional flow equations when axisymmetry is

inappropriate
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The continuum assumption is implicit in this study and Figure 1

schematically illustrates the problem geometry.

FEED

OUTER
REGION

SCOOP

"Ekman
Layer

BOUNDARY
LAYER vy

Figure 1



14

BASIC EQUATIONS

For small perturbations about rigid body rotation the Navier-Stokes
equations for the rotating gas can be linearized thus eliminating con-
vection. The simplified equation system in cylindrical coordinates
for continuity, momentum and energy is developed in [1] and is in-
cluded below for reference. In the absence of internal sources and
sinks one simply imposes axisymmetry and the linearized ideal gas

law to obtain (2) - (6) as the continuity, radial, tangential and

axial momentum and energy equations

(pp uy  + np w =0
or) oy
i 1 u 2a)
np (0 - 2m) + np 24 R Au - o (n =0
- 2pOu + j— [A(nm) ~~\ =0
Ty + o

4Re (S-1)npOu + A0
This normalized system is characterized by the three-dimensionless
parameters A, Re and S. Because S is order 1 it does not play a

major role in what follows. Both Re > 1 and AY >> 1 in the parameter

range of interest, hence this analysis will entail multiple limits.

Assume Re >> Al*,

We will immediately neglect curvature and subsequently deal with first
order boundary layer equations. The Laplacian in cylindrical two-space

is

I
o
o
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A( ) == () ) + (] (7
n nn vy

Let us define x as
a/(l - n2 (8]

Then the Laplacian becomes
Al ] = 4M + () (9)

Neglecting curvature or unfolding

Al ) A ) = 4A4( ) + () (10a)
XX Yy
and
A (nw) A'a) + & (10b)
where y » 1 or 1- 1* Then the unfolded equations are:
2A2 (pu) +pw =0 (11)
o x oy ‘
P+ Px + (A'U U - £ 12,
Alf) = 4Sp°u (13)
24~ /. A
p o= B A il (14)
y Re |\ 3 v/
A'h =0 (15)

In what follows we will tacitly retain the continuity equation and

the pressure terms as they appear because a streamfunction will be

introduced later that does away with (11) and pressure will be elimi-

nated by cross differentiation.
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Defining the small parameter e as

1
4A*
then (11) - (15) become
y2
- (PDU) x + e P,w. = 0
y
| = e(p+ p') + " (u +eu - eu - —u )
P v \ pxj \ xx yy 3 x/
— /4  + ) - 4s
Re V xx yy| - Poue
24 Loy
Zp = TT- W + zZw 3 £
. XX Yy y/
h + eh =0
XX vy

There are numerous boundary layers present in both x and y that inter-

1/ 1/ y \1/
play here, e.g., 1l/-Re 2f e/2 and ye/ReJ 2 One may view this as a

system of linear perturbation equations in the very small parameter

(e/.Re) and achieve great simplifications. Specifically, they are of

the boundary layer type. Free shear layers that might develop in the

neighborhood of an internal source or sink do not occur here.

(16)

(17)

(18)

(19)

(20

(21
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AN e/Re OUTER EXPANSION

Make a regular asymptotic expansion [3] of the dependent wvariables

w,$,h,p in terms of £/Rer e.g.,

w= wt(x,y) + 6j(e/Re)w*(x,y] + h.o.t.

(22a)
where Lim 6" (e/Re) = 0 and the gauge functions for w,$,h,p being
e/Re + 0
different.
From the continuity equation (17) it is reasonable to suppose
u = c\/z fuO (x,y) + Sj(e/Re)ul(x,y) + h.o.t. (22b)
as an expansion for the radial velocity component. Throw out the
higher order terms (h.o.t.) for convenience and replace u,w,h,p by
their respective expansions and collect terms of like order.
Oo(1) .
/ 0, 0
Cria> s = 0 (23)
> oy
0 0 0
PO* " p + p. (24)
- 4 25
Re 'yy Spo (25)
1
72 0 = 1 0 (26)
'y Re Xxx
o o
B+ zR 0 (27)
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y?2
Notice that equation (24) is a result of premultiplying (12) with e
and then taking the limit.
Higher order equations like o{z/R ) are neglected here. Letting
0o _ lAao
U = e u (28)
the far field is governed by
e /lz/(p Uo) +pw° =0 (29)
o x oy
e o o
Pob = p +px (30)
<p° = - 4Sp eU° (31)
R XX o
e
1 o
- 32
€ e Wxx (32)
h° + eh°® =O (33)
XX vy

Here we have dropped designation of the order of the expansion (0) for
identification as an outer expansion (o). The order is assumed under-

stood. This produces the equations of the internal flow field [1]

without sources as an asymptotic expansion.

In this approach it is clear that the auxiliary equation (33) appropri-

ately retains axial diffusion hyy in the e/Rg limit. That term only
vanishes in the e limit 14]. However, in Onsager's original deriva-

tion, axial diffusion of heat was neglected but this does not affect
the equation for the potential x since x is independent of h. Neglec-

tion of axial heat diffusion is exactly the e limit and is associated
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with a speed boundary layer. That is how the solution of (31) also

can be simplified [4]. The propriety of this treatment can be seen

from reference [2].

The remaining steps leading to (1) involve elimination of pressure,
definition of a streamfunction and a potential x- These details were
glossed over here because the point considered crucial was the limit

process.

Summarizing, in the internal flow region 0(l) terms are retained in
the partial differential equation system and terms of Ofe/Re] and
higher order are thrown out resulting in the usual singular perturba-
tion problem. These higher order derivatives play an all important
role of boundary layer corrections. The end boundary layers are
captured by an inner expansion and a complete solution of the problem

is achieved by matching the basic solution to the end boundary layers.

Retention of curvature [5] or sources and sinks [l] is handled in

more or less the same manner as presented here.
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EKMAN LAYER

The end boundary layer equations, named after Ekman, can be formally
derived using ideas from Perturbation Theory as predilected by Carrier
and Maslen [6]. However, it involves just a little more than a
straightforward inner 1limit. Difficulty arises in the inner expansion
process due to the previously mentioned multiple scales in this equa-
tion system. It is expected that the relation between Onsager's
equation and the Ekman layers can be more clearly understood from a

unified view as offered by formal asymptotic approximations.

Neglect curvature effects to ensure consistency with equation (1) and
recall that the unfolded, two-dimensional linearized fluid flow equa-

tions are (16) - (21). To eliminate pressure differentiate (20) with

respect to x,

2Al Il 1z
+ = 34
epyx Re (wxxx v YYX 3 © uyx 34
and differentiate (18) with respect to vy,
ep b = e + ) +7r-(u +eu - eu - —u ) (35)
pO y py E§Y Re XXy YYY y 3 xy
Combine equations (34) and (35) above to get
ep O = — (2a2 [(l + | (w + ew - g e ‘zu )l
oy R\ Ly 3x XX vy 3 y'Jd
b+ eu - Tu ) (36)
XXY yyy y 3 xy

Define a streamfunction E that identically satisfies the linearized



continuity equation (17) ,

and substitute into (36),

12%2<1 + 4»

+ (E + eE

XXyy YYYY

Substitution for u in (19)

7o P * E‘ny}

Equations (21), (38) and

tions equivalent to (17) -

and

are "natural"

limit and ¥ > Y

(39)

21

gives

(37a)
2a2(H - 5) (37b)
2A2 (H - E ) + 2AZ2e(E - E )- ~ e/zE
XXX XX Xyy yy 3 yy
es - —E J (38)
yy 3 =xyy
- 4s S 39
P oS, (39)
constitute a complete closed set of equa-
(21) . It is interesting to observe that
Vo
y = yte /e (40a)
= y(«e/e) v (40b)

local coordinates for E and ) respectively in the z/R

Assume the following inner expansion for the Ekman layer near the

bottom end (y = 0)
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- A -]
(x,y) = Re "2E°(x,Y) + h.o.t. (41a)
<t>(x,y) = % (x,Y) + h.o.t. (41b)
h(x,y) = h (x,Y) + h.o.t. (41c)
Making these changes and dropping the higher order terms gives
.0 0 .0 ,0 1
72\ XXX XX 1262 XFF 3R '/;E2
e e
l/z
R
0 0 0 42)
R 1/2£2 ~xxYY 'YYYY 7R V2 'yy 2 “xyy
e e
—i—%0
4sp 5 43
e Yyy Ps y (43)
e
o o -
h + h = a (44)
XX e yy
Rewriting one obtains
.03
PoVv =
(1 + He j [ “xxx “XX) (“xyy “yyij 3 RO “yy
/e ,0 _0 s2 ~0 1 ¢
(R  “xxyy+ “yyyy R “yy 3 R “xyy (45)

\ e e e
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e 0 +0 0
+ 0 = - 4Sp eH (46)
R XX o Y
e
R °o
hC + h 0. (47)
R XX YY
e
Taking the inner limit ——* 0 with Y fixed, the consistent equations
e
are
Jal 3
- 48
pcAe = ryyyy (48)
- ! 4Spoe5y (49)
n 0 50
vy (50)

where order (0 is not designated.

Clearly enormous simplification occurs in this limit. Most notable is
the loss of all x-wise derivatives which is tantamount to omission of
the corner region where x is small and x and y variations are of the
same order of magnitude. Therefore, it is wvalid for x >> where

is the length scale associated with the corner boundary region. This
formulation for the compressible rotating flow [l1] agrees with Carrier's
simplified analysis for the incompressible flow [7]. The corner region
was given attention in the original analysis [6] but later discarded

as a negligibly small boundary layer type correction.

Equations (48) - (50) may be thought of as representing yet another

set of perturbation equations in the small parameter e and are not yet
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uniformly ordered. The outer limit e -* 0 gives entirely homogeneous
equations,
!!2
"YYYY 0 (51a)
<tvy = 0 (51b)
hyy = 0 (510
For the inner expansion let
C F ey . (52)
Since e << 1 this is a shrinking transformation rather than the usual
stretching kind. Making this coordinate change.
(53a)
0 (53b)
h (N (53c)

These inner equations are exactly the equations for the Ekman layer

given by Carrier and Maslen [l1] with curvature neglected, i.e., n=1-

One can get similar results by defining an asymptotic expansion in

1/RG and £ and taking the 1limit ]—{y—>l 0, however, then the inner and
e

outer expansions involve disparate limits. At the present time perhaps
the most satisfying way to look at this is to consider equations (53a) -
(53c)as the formal compressible Ekman layer equations under the e/R*
limit and equation (52) as a coordinate transformation that reduces

them to a normalized form with terms of 0(1). One may want to go
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deeper into the theory of perturbations for a clearer view of the
inner expansion.
It follows directly that equation set (53a) -(53c) is equally wvalid at

the other end near y = yo.
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BOUNDARY CONDITIONS ON OUTER EXPANSION

Strictly proper continuum boundary conditions on x are the machine

centerline and rotor wall,

x = A2 at n =0 (54)
x= 0 at n =1 (55)
and at the ends
y =0 (56)
y = yQ ' (57)

In reference [l1] the distant x boundary was approximated by letting xa-co.

Define x to include x. In addition, consider that x lives everywhere
h
else in the upper half plane, i.e., x defines the semi-infinite domain
001 x < » . (58)

This is a commonplace mathematical trick used when the modified problem

is simpler to solve than the original.

Alternately this process can be thought of as a coordinate perturbation.

Allow the boundary x = A2 to go to

x = A2 + M . (59)
Here the perturbed coordinate is designated by an overhead tilde. This
gives us a regular perturbation problem. Letting M A is quite

obviously not a small coordinate perturbation but nonetheless its

effect may be small depending on the sensitivity of the "true" solution.

By this we mean
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x(*,y) = xU/y) + 6x (6°)

where the correction 6x may be small if x is insensitive to x 'x.

This is quite reasonable since x has boundary layer character in x as
well as y. Because this approximation cannot be rigorously ordered

as depending on a small parameter to some power one may Jjustifiably

feel uneasy. Fortunately, it is possible to precisely evaluate the
error in the hydrodynamic solution for the axial velocity in the special

case of one-dimensional rod flow.

The governing equation for rod flow is [8]:

R
w + w - -2 18 &% (61)
XXX Xx 8AD y
subject to the boundary conditions
w=0 at x=0 (62)
w =0 at x = Al (63)
and the integral equation
*
kA -0 -9 s wadx. (64)
HEna? Qap
w
Equation (61) has the general solution
wn —-x
2\xe + Cj(x-1) + c2 + cre (65)
Application of (62) to (65) yields
-ci + c2 + 3 =0 (66

and application of (63) to (65) yields

, 9 -A2 ,2
ci = 2A(1-A%)e +C3e (67)
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Use of the integral equation for net flow (64) gives

oA o -A* 3 -2A2
Q - (l+ 2A2) cte - c2e — e S22 V2o (68)

Now equations (66), (67) and (68) constitute a set of three equations in

the three unknown constants of integration which can be readily solved.

-A2 -A2
¢, 2A(1 - A1) ¢ + e c3 (69)

—_Aj | -A2

= 2a(1 - A2) e l1)e, (70)

- 2A2X (1-A2)e"2A2 + 2A(1 - A2)e~A2(1 -

/ -2A2 / -A2 x, —A2\ -2A"
A e + (e -1) (1 -e ) o+ A-

1 (711)

>

—_—

Some notable differences appear when the mathematically correct

boundary condition is wused. Specifically f 0 but is ordered
1/2

O (e ); likewise the same order terms are retained in c¢? and c

These are transcendentally small terms in e not 2z/R”. Hence for

uniformity in e/”“e in the outer expansion, equation (54) describes
to the correct order where the boundary condition should be applied.

Use of (59) introduces errors transcendentally small in e into the
solution for the hydrodynamic field variables.
In the limit of the coordinate perturbation (59) one obtains

ci=0 (72)

c2 = 20 + |\ (73)

c3 = - 20-X (74)
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which reproduces the approximate solution given in [8] associated with
the approximate boundary condition. Evidently, doing this particular
boundary condition exactly would simply change the integration con-

stants of (1) and require calculation of the three eigenfunctions which

are unbounded as x-*-00 [1].
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