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ABSTRACT

The axisymmetric, linearized gas dynamic equations for flow in a cent­

rifuge are rederived from Perturbation Theory viewpoint using limit
r. gAOTLy

processes. A commonly accepted boundary c6»g4ta.|\s carefully recon­

sidered .
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SUMMARY

The mathematical relationship between Onsager's pancake equation and 

the Ekman boundary layer equations is derived by methods of perturba­

tion theory. The so-called "internal flow region" is shown to be 

simply the first term in an asymptotic series for the outer expansion. 

The complementary inner expansion is shown to be the Ekman layer. Some 

of the more subtle approximations and assumptions on boundary conditions 

are given attention herein.
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NOMENCLATURE

a = Bowl radius

A1 = ft2 2/ 2RT a o
B

Vo ,= R S 2/4A6 e

ci, C2, C3 = Integration constants

F(x,y) = Non homogeneity

h = 0 + 2 (S - 1) a)

k = Thermal conductivity

l
c = Length scale of corner region

M = Coordinate perturbation parameter

P = Axial mass flow

P = Perturbation pressure

Pr = Prandtl number

Q = Dimensionless parameter

r = Local radius

R
e = Reynolds number

S = 1 + ~ 1 p A2
2y r

T
o

= Reference temperature

= Perturbation velocity components
0

U
V2 0= e u

XrV
%
X

= Cartesian coordinates

= Transformed coordinate

Y = Inner variable

^2
. //2 

= (V£)

Y = Specific heat ratio
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NOMENCLATURE
(Continued)

A( )

A' ( ) 

6X

<$1

e

n

e

K

Y

Po

<J>

X

n

= 4A4( ) + ( )
xx yy

= First order variation in x 

= Gauge function 
= (4A4)-1 

= r/a

= Perturbation temperature 

= Streamfunction 

= eY

= Wheel flow density, e 

= 0 - 2to

= Master potential 

= Rotor spin speed

A ( )

A' ( ) 

6X

<$1

e

n

0

K

Y

Po

<J>

X

n

SUPERSCRIPTS

0
1

1 = Order (e/R ) 
e

o = Outer expansion

r Inner expansion

SUBSCRIPTS

x,y Partial derivatives



11

INTRODUCTION

Basic theoretical elements of modern linear centrifuge fluid modeling 

are primarily due to Onsager, Carrier and Maslen and have been imple­

mented and extended by others, e.g.. Wood and Morton [1]. These models 

were developed separately and provide a complete description of the 

flow field which determines the isotope separation when matched 

together.

Onsager's pancake equation for centrifuge gas dynamics

(eX(eXx ) ) + s2X + F(x,y)= 0 (i:
xx xx xx yy v ^

was originally derived from a functional for the energy dissipation 

associated with the flow. In that derivation it was assumed that diffu­

sive transport of heat and momentum in the axial direction is negligible 

resulting in an expression like (1) in n. The further assumption of 

negligible curvature led to equation (1). It is a sixth order, aniso­

tropic linear elliptic partial differential equation in two dimensions 

and for cases of interest here B2 >> 1.

In reference [1] Onsager's equation was derived directly from the line­

arized Navier-Stokes equations in cylindrical coordinates based on a 

classical boundary layer analysis (regular order of magnitude considera­

tions) . Methodologically this treatment is similar to the way Prandtl's 

boundary layer equations were originally derived [2]. The procedure 

is summarily described as away from the ends retaining among the vis­

cous terms only those most highly differentiated in the radial 

direction and setting n = 1 where it appears algebraically [1]. The 

region away from the ends is termed the internal flow region.
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Likewise, the Ekman layer equations were derived by order of magnitude 

procedures keeping only the largest terms. Because curvature effects 

were fully retained there is some interest in rederiving these equa­

tions without curvature and thus provide a clear and consistent 

picture. This is important because one would probably not want to 

keep curvature in one region and leave it out of the other.

Approximate equations for the entire flow field are described briefly 

in [1]. The present work is intended to describe lucidly a unified 

theory through a somewhat "rigorous" analysis of the basic equations. 

For example, we will address

(1) the mathematical relationship between the internal flow 

region and the Ekman layers (matching)

(2) the auxiliary equation for h

(3) corner boundary regions.

The approach taken here (adopted from Singular Perturbation Theory) is 

to develop asymptotic expansion of the field variables in a manner like 

the formal derivation of Prandtl's equations [3], This is a formal 

mathematical derivation of the approximate equations and a statement 

of the approximation. Furthermore, it provides a uniform view of the 

internal flow region and the Ekman boundary layer and their relation.

An approach such as this might also prove useful in the derivation 

of approximate three-dimensional flow equations when axisymmetry is

inappropriate.
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The continuum assumption is implicit in this study and Figure 1 

schematically illustrates the problem geometry.

"Ekman
Layer

FEED

OUTER
REGION

SCOOP

BOUNDARY
LAYER y ,w

Figure 1
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BASIC EQUATIONS

For small perturbations about rigid body rotation the Navier-Stokes 

equations for the rotating gas can be linearized thus eliminating con­

vection. The simplified equation system in cylindrical coordinates 

for continuity, momentum and energy is developed in [1] and is in­

cluded below for reference. In the absence of internal sources and 

sinks one simply imposes axisymmetry and the linearized ideal gas 

law to obtain (2) - (6) as the continuity, radial, tangential and 

axial momentum and energy equations.

(np u) + np w = 0 or) o y (2)

np (0 - 2m) o + np i
2^2

1
R Au - u

n2
2A‘ (n = 0 (3)

- 2p0u + j- [A(nm) ~^\ = 0 (4)

"py + o (5)

4Re(S-l)np0u + A0 = 0 (6)

This normalized system is characterized by the three-dimensionless 

parameters A, Re and S. Because S is order 1 it does not play a 
major role in what follows. Both Re » 1 and A*4 >> 1 in the parameter 

range of interest, hence this analysis will entail multiple limits. 

Assume Re >> A1*.

We will immediately neglect curvature and subsequently deal with first 

order boundary layer equations. The Laplacian in cylindrical two-space 

is
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Let us define x as

A( ) = - (n( ) ) + ( )n n n yy

a/(1 - n2)

Then the Laplacian becomes

A ( ) = 4A4

Neglecting curvature or unfolding

+ ( ) yy

and

A ( ) A' ( ) = 4A4 ( ) + ( )
xx yy

A (nw) A 'a) + oj

where y ->• 1 or 1- 1* Then the unfolded equations are:

2A2(pu) +pw = 0 o x o y

P+ Px + (A'U " U - f

A1 (j) = 4Sp u o

2A~ /., ^ ? \P = “t— (A'w-—) y Re \ 3 y/

(7)

(8)

(9)

(10a)

(10b)

(11)

(12)

(13)

(14)

A'h = 0 (15)

In what follows we will tacitly retain the continuity equation and 

the pressure terms as they appear because a streamfunction will be 

introduced later that does away with (11) and pressure will be elimi­

nated by cross differentiation.
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Defining the small parameter e as

1
4A^ (16)

then (11) - (15) become

y2
- (PDU) x + e P„w.. = 0

° y
(17)

ep <}) = e(p + p') + rr” (u +eu - eu - — u ) V V xj \ xx yy 3 x / (18)

— / <j) + £<J)
Re V xx yy ) =

- 4Sp ue o (19)

2A‘
ZP = TT-y w + zw , xx yy

1 '/2
3 £ u ) 

y / (20)

h + eh =0 xx yy (21)

There are numerous boundary layers present in both x and y that inter-
1/ 1/ y \ 1 /play here, e.g., 1/-Re 2f e/2 and ye/ReJ 2. One may view this as a 

system of linear perturbation equations in the very small parameter 
(e/.Re) and achieve great simplifications. Specifically, they are of 

the boundary layer type. Free shear layers that might develop in the 

neighborhood of an internal source or sink do not occur here.
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AN e/Re OUTER EXPANSION

Make a regular asymptotic expansion [3] of the dependent variables 

w,$,h,p in terms of £/Rer e.g.,

w = w^(x,y) + 6 j(e/Re)w^(x,y) + h.o.t.

where Lim 6^(e/Re) = 0 and the gauge functions for w,$,h,p being 

e/Re + 0 

different.

From the continuity equation (17) it is reasonable to suppose

V f 0u = c /2 u (x,y) + Sj(e/Re)u1(x,y) + h.o.t.

as an expansion for the radial velocity component. Throw out the 

higher order terms (h.o.t.) for convenience and replace u,w,h,p by 

their respective expansions and collect terms of like order.

0(1) :

, 0, 0 „ 
(pu) +pw = 0 ox o y

0 0 0 P0* " p + p.

Re ’yy - 4Spo

72 0 1 0c p = — w ^y Re xx

u° u°h + zh xx yy

(22a)

(22b)

(23)

(24)

(25)

(26)

0 (27)
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y2Notice that equation (24) is a result of premultiplying (12) with e 

and then taking the limit.

Higher order equations like o{z/R ) are neglected here. Letting

0 _ lA 0 
U = e u (28)

the far field is governed by

/j / O \ oe z(p U ) +pw =0 o x o y
(29)

. o o oPo4> = p +px (30)

<p° = - 4Sp eU° (31)
R xx oe

e 1 otr- w Re xx (32)

h° + eh° =0 (33)
xx yy

Here we have dropped designation of the order of the expansion (0) for 

identification as an outer expansion (o). The order is assumed under­

stood. This produces the equations of the internal flow field [1] 

without sources as an asymptotic expansion.

In this approach it is clear that the auxiliary equation (33) appropri­

ately retains axial diffusion h in the e/R„ limit. That term onlyyy e
vanishes in the e limit l4]. However, in Onsager's original deriva­

tion, axial diffusion of heat was neglected but this does not affect 

the equation for the potential x since x is independent of h. Neglec­

tion of axial heat diffusion is exactly the e limit and is associated
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with a speed boundary layer. That is how the solution of (31) also 

can be simplified [4]. The propriety of this treatment can be seen 

from reference [2].

The remaining steps leading to (1) involve elimination of pressure, 

definition of a streamfunction and a potential x- These details were 

glossed over here because the point considered crucial was the limit 

process.

Summarizing, in the internal flow region 0(1) terms are retained in 

the partial differential equation system and terms of 0{e/Re) and 

higher order are thrown out resulting in the usual singular perturba­

tion problem. These higher order derivatives play an all important 

role of boundary layer corrections. The end boundary layers are 

captured by an inner expansion and a complete solution of the problem 

is achieved by matching the basic solution to the end boundary layers.

Retention of curvature [5] or sources and sinks [1] is handled in

more or less the same manner as presented here.
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EKMAN LAYER

The end boundary layer equations, named after Ekman, can be formally 

derived using ideas from Perturbation Theory as predilected by Carrier 

and Maslen [6]. However, it involves just a little more than a 

straightforward inner limit. Difficulty arises in the inner expansion 

process due to the previously mentioned multiple scales in this equa­

tion system. It is expected that the relation between Onsager's 

equation and the Ekman layers can be more clearly understood from a 

unified view as offered by formal asymptotic approximations.

Neglect curvature effects to ensure consistency with equation (1) and 

recall that the unfolded, two-dimensional linearized fluid flow equa­

tions are (16) - (21). To eliminate pressure differentiate (20) with 

respect to x,

ep 2Al (w + ew 1 Vz \— e u Jyx Re xxx yyx 3 yx (34)

and differentiate (18) with respect to y,

ep 4> = e(p + p)+7r-(u +eu - eu - — u )o y y xy Re xxy yyy y 3 xy (35)

Combine equations (34) and (35) above to get

ep <j> = — •( 2A2 [(l + ) (w + ew - q- e ^zu )1
o^y R \ Lv 3x xx yy 3 y'J

+ (u + euxxy yyy
:u - T u ) } ■ 
y 3 xy j (36)

Define a streamfunction E that identically satisfies the linearized
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continuity equation (17) ,

(37a)

2a2(H - 5) (37b)

and substitute into (36),

!2*2<1 + 4> 2A2(H - E ) + 2A2e(E - E ) - ^ e/zE
xxx xx xyy yy 3 yy

+ (E + eE - eS - — E ) 
xxyy yyyy yy 3 xyy (38)

Substitution for u in (19) gives

— (<j> + £<|) )Re x^xx yyyy - 4Sp eS o y (39)

Equations (21), (38) and (39) constitute a complete closed set of equa­

tions equivalent to (17) - (21) . It is interesting to observe that

Vo
y = y^e /e (40a)

and

= y(«e/e) V2 (40b)

are "natural" local coordinates for E and 4> respectively in the z/R 

limit and Y » Y .

Assume the following inner expansion for the Ekman layer near the

bottom end (y = 0) :
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(x,y) = Re ^2E°(x,Y) + h.o.t. (41a)

<t>(x,y) = <p (x,Y) + h.o.t. (41b)

h(x,y) = h (x,Y) + h.o.t. (41c)

Making these changes and dropping the higher order terms gives

.0
72 \ XXX

0
'xx 1/2c2e

.0
xFF

,0 1 _3R ‘/;E2 
e

0 R
l/z

R 1/2 £ 2 ~xxYY 
e

.0
'YYYY

ZR V2
,0
'yy

e
_
2 “xyy (42)

-i-*0
e e Yyy - 4Sp 5 o y

(43)

h° + h° = a
xx e yy

(44)

Rewriting one obtains

.0 3PoV =

(1 + He j ( “xxx “xx) (“xyy “yyj 3 rq “yy

/ e „0 _0 s2 ^0 1 £
(r “xxyy + “yyyy r “yy 3 r “xyy
\ e e e

(45)
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e
Re

0 ±0 + d> 
xx

= - 4Sp eH 
o

0
Y (46)

— hC + h° = 0. 
R xx YY e

(47)

Taking the inner limit —-- * 0 with Y fixed, the consistent equations
e

are

j.-1 3pcAe = "YYYY (48)

^ ' 4Spoe5y (49)

h
j.

YY
0

where order 0 is not designated.

(50)

Clearly enormous simplification occurs in this limit. Most notable is 

the loss of all x-wise derivatives which is tantamount to omission of 

the corner region where x is small and x and y variations are of the 

same order of magnitude. Therefore, it is valid for x >> where 

is the length scale associated with the corner boundary region. This 

formulation for the compressible rotating flow [1] agrees with Carrier's 

simplified analysis for the incompressible flow [7]. The corner region 

was given attention in the original analysis [6] but later discarded 

as a negligibly small boundary layer type correction.

Equations (48) - (50) may be thought of as representing yet another 

set of perturbation equations in the small parameter e and are not yet
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uniformly ordered. The outer limit e -* 0 gives entirely homogeneous 

equations,

„2
"yyyy 0 (51a)

<tVy = 0 (51b)

hyy = 0 (510

For the inner expansion let

C f ey . (52)

Since e << 1 this is a shrinking transformation rather than the usual 

stretching kind. Making this coordinate change.

(53a)

<)> (53b)

h 0 . (53c)

These inner equations are exactly the equations for the Ekman layer 

given by Carrier and Maslen [1] with curvature neglected, i.e., n = l-

One can get similar results by defining an asymptotic expansion in

1/R and £ and taking the limit -y—>■ 0, however, then the inner and G Re
outer expansions involve disparate limits. At the present time perhaps 

the most satisfying way to look at this is to consider equations (53a) - 

(53c)as the formal compressible Ekman layer equations under the e/R^ 

limit and equation (52) as a coordinate transformation that reduces 

them to a normalized form with terms of 0(1). One may want to go
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deeper into the theory of perturbations for a clearer view of the 

inner expansion.

It follows directly that equation set (53a) -(53c) is equally valid at

the other end near y = y .o
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BOUNDARY CONDITIONS ON OUTER EXPANSION

Strictly proper continuum boundary conditions on x are the machine 

centerline and rotor wall,

x = A2 at n = 0 (54)

x = 0 at n = 1 (55)

and at the ends

y = 0 (56)

y = yQ • (57)

In reference [1] the distant x boundary was approximated by letting xa-co. 

Define x to include x. In addition, consider that x lives everywhere
helse in the upper half plane, i.e., x defines the semi-infinite domain

0 1 x < » . (58)

This is a commonplace mathematical trick used when the modified problem 

is simpler to solve than the original.

Alternately this process can be thought of as a coordinate perturbation. 

Allow the boundary x = A2 to go to

x = A2 + M . (59)

Here the perturbed coordinate is designated by an overhead tilde. This 

gives us a regular perturbation problem. Letting M ^ is quite 

obviously not a small coordinate perturbation but nonetheless its 

effect may be small depending on the sensitivity of the "true" solution.

By this we mean
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x(*,y) = xU/y) + 6x (6°)

where the correction 6x may be small if x is insensitive to x 'x.

This is quite reasonable since x has boundary layer character in x as 

well as y. Because this approximation cannot be rigorously ordered 

as depending on a small parameter to some power one may justifiably 

feel uneasy. Fortunately, it is possible to precisely evaluate the 

error in the hydrodynamic solution for the axial velocity in the special 

case of one-dimensional rod flow.

The governing equation for rod flow is [8]:

R
o e ~XAw + w - - 2 ■ r e d>xxx xx 8Ad y (61)

subject to the boundary conditions

w = 0 at x = 0

w = 0 at x = A1

(62)

(63)

and the integral equation

PA*
■na2 Qapw

J- Q - I s w dx. (64)

Equation (61) has the general solution

“"X — x
2\xe + Cj(x - 1) + c2 + c^e (65)

Application of (62) to (65) yields

- ci + c2 + c3 = 0 (66)

and application of (63) to (65) yields
, 9. -A 2 _, 2ci = 2A(l-A^)e +C3e (67)
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Use of the integral equation for net flow (64) gives

Q = -2^ (l+ 2A2) o -A* c^e - c2e 3 -2A2— e “ >2 ‘ C2 " (68)

Now equations (66), (67) and (68) constitute a set of three equations in 

the three unknown constants of integration which can be readily solved.

c 1 2A(l - A1) -A2 -A2e + e c3 (69)

= 2A(l - A2) -Ai / -A2 x (e -l)c, (70)

c 3

- 1 - 2A2X (l-A2)e"2A2 + 2A(l - A2)e~A2(l -

, -2A2 / -A2 x, -A2\ 1 /,A e + (e - l) (l - e ) + ^- (l -2A" (71)

Some notable differences appear when the mathematically correct

boundary condition is used. Specifically f 0 but is ordered 
1/2

0(e ); likewise the same order terms are retained in c^ and c

These are transcendentally small terms in e not z/R^. Hence for 

uniformity in e/^e in the outer expansion, equation (54) describes 

to the correct order where the boundary condition should be applied. 

Use of (59) introduces errors transcendentally small in e into the 

solution for the hydrodynamic field variables.

In the limit of the coordinate perturbation (59) one obtains

C1= 0 (72)

C2 = 2Q + \ (73)

C3 = - 2Q - X (74)



29

which reproduces the approximate solution given in [8] associated with 

the approximate boundary condition. Evidently, doing this particular 

boundary condition exactly would simply change the integration con­

stants of (1) and require calculation of the three eigenfunctions which 

are unbounded as x-*-00 [1].





31

REFERENCES

1. Wood III, H. G. and Morton, J. B., Onsager's Pancake Approximation 
for the Fluid Dynamics of a Gas Centrifuge, UCC-ND, ORGDP, Oak 
Ridge, TN, January 1980 (K/OA-4420, R-2). Presented at the Third 
Workshop on Gases in Strong Rotation, Rome, Italy, March 27-29, 
1979.

2. Schlichting, H., Boundary Layer Theory, McGraw-Hill, Sixth Edition 
(1968).

3. Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic 
Press (1964).

4. Berger, M. H., Solution of the Equation 4Al*hxx + hyy + f(x,y) =0 
to Uncouple Temperature and Angular Velocity in Onsager's Pancake 
Approximation, UCC-ND, ORGDP, Oak Ridge, TN, December 1979 (K/OA- 
4683).

5. Maslen, S. H., The Basic Steady-State Flow Models for Computing 
Countercurrent Motions, (U), Document No. UVA-ER-540-80U (GCTCG-3), 
December 7, 1979.

6. Carrier, G. and Maslen, S., Flow Phenomena in Rapidly Rotating 
Systems, USAEC Report, TID-18065, 1962.

7. Carrier, G. C., Perturbation Methods, Handbook of Applied Mathe­
matics, McGraw-Hill.

8. Von Halle, E., The Countercurrent Gas Centrifuge for the Enrich­
ment of U235, UCC-ND, ORGDP, Oak Ridge, TN, November 1977 (K/OA- 
4058). Presented at the 70th Annual Meeting of AIChE, November 
13-17, 1977, New York.





33

DISTRIBUTION

AiResearch Manufacturing 
Company 

LaGraff, J.

California Institute of 
Technology 

Liepmann, H. W.

Computer Sciences Division
Kirkpatrick, J. R.
Park, J. E.

Harvard University 
Carrier, G. F.
Emmons, H. W.

K-25 Technical Services 
Division

Napolitan, D. S.*

Lawrence Livermore 
Laboratory 

Viecelli, J. A.

Los Alamos Scientific 
Laboratory 

Gentry, R. A.

Martin Marietta 
Laboratories 
Maslen, S. H.

Massachusetts Institute 
of Technology 

DenHartog, J. P. 
Greenspan, H. P.

Operations Analysis and 
Planning Division 

Andermann, Jr., R. J. 
Berger, M. H.
Bradbury, J. T.
Campbell, R. L.
Goode, W. D.
Hanig, M.
Levin, S. A.
Phillips, R. E.
Sanders, G.
Von Halle, E.

ORGDP Library

ORGDP Plant Records (RC)

Separation Systems Division 
Evans, E. C.
Keyes, J. J.
Magnan, J. D.
Roberts, W. L.
Storto, E.
Waters, D. A.
Wood III, H. G.

DOE:PRO
Kiser, E. (5)

University of California at 
Los Angeles 

Cole, J. D.

University of California at 
San Diego 

Miles, J. W.

University of Northern Arizona 
Hepworth, K.

University of Virginia 
Lowry, R. A.
Morton, J. B.
Scott, Jr., J. E.

*Two copies for the Technical Information Center




