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SCATTERING OF ELASTIC WAVES BY SMAIL SURFACE-BREAKIMN/ OR SUBSURFACE CRACKS

IN THREE DIMENSIONS

William M. VisscherT

Theoretical Division, MS5-B262
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

The long-wavelength limit of elastic wave scattering by surface
cracks in 3d is considered. It is shown that, if the crack is rormal to
the surface, the scattering can be described by two real parameters, one
vf which may be taken to be the crack size. The other therefore depends
on shape, orientation, and burial depth. Maay computed illustrations are
given. It is concluded that the amount of information about cracks
obtainable by low frequency elastic wave scattering is very limited.

INTRODUCTION

Dangerous cracks (those which cause failures) usually start on sur-
faces, and are initially small. Thus ultrasonic detection in eariy utages
of crack growth is always in the regime where wavelength is large compared
to the crack dimensions. It is therefore of special interest to consider
what can bu learned about the size and shape of small cracks on or near
surfaces by scattering elastic waves from them.

It may be that even at long wavelengths, where scattering is bound to
be simple as far as angular distribution is concerned, some cracks will
exhibit a signature which identifies them as dangerous fast-growiang cracks
while others can be ignorcd as henign.

This paper addresses the question of exactly what features of crack
geometry can be identitied by long-wavelenpgth elastic wave scattering.

In order to simplify the analysis the cracks are assumed (this assump-
tion can be cheched from scattering data) to be flat and to be oriented
perpendicular to the free surface, which is assumed to be infinite and
planar.

There are, of course, no practical situations in which these condi-
tions are fully realized, but our results may give some insight into the
potential utility and limitations of such methods.
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The plan of this paper is first to review the situation for cracks in
bulk for long wavelength scattering, and then .o consider the case of
cracks on or near free plane surfaces.

THE SCATTERED AMPLITUDE

A. An isolated crack

It has been shown many times that the amplitude for scattering from
an isolated crack is a linear functional of the crack-opening-displacement
(cor) Au(r) [1,2,3};

£, 7,10,3) = Fw) J dst (3,0-Ru(®) (1)

C

where n,y, no,yo are polarxzat:ons (nm = SH,SV,P) and dlrectlons (y°y=1)

of incident plane waves (n ,Y.) and of observation (m,Yy). 1 (y £) is the
traction at the crack surface (in the absence of the crack) associated
with a plane wave in the direction Y with polarization nm and frequency w.

- ‘ " " - A —_ +.'LO},'|
The integral is on the '"top' surface of the crack, where Au = u

+"bottom"
u .

If the crack is assumed to include the origin, and we restrict our-
selves to the limit where kL « 1 (L is a characteristic dimension of the
crack, and k is the shear wavenumber), then Eq. (2) becomes

» 1 -
£(n,5,1°,5,) = FAr" ()-au (2)

where A is the crack area, ;"(9) = ;n(Q.O), and Au is the COD averaged
over the crack surface C.

It is intuitively reasonable, and it can be shown quite easily, that
the COD, too, is a linear functional of the asymptotic stresses; in parti-
cular, it is a linear functional of the tractions at the crack surface,
which would be present it the crack weren't, associated with the incident
displacement field. In the Rayleigh limit the algebraic expression of
this statement is

~

_oulmn .
Au = Xt (yo) (3)

where X is a 3 X 3 matrix, independent of n? and 90'

It can be shown |2} (with some eflort one can, from the symmetries of
the situation, convince oneself that it is true) that, if the crack 15,
say, in the yz plane,

r)( 0 0
XX
X=(0 ¥ X (4)
Yy yz
0 X X
zy zz

Using Eqa. (2), (3) and (4), and the reciprocity requiremeni (4]



f(ananovio) = f(ﬂo,'io,ﬂ,‘?) (5)

a little simple :.lgebra leads to the conclusion that Eq. (5) is satisfied
if xyz = xzy' Detailed calculation verifies that this is the case.

The scattering frowm a small crack is therefore completely 3specified

by 6 real numbers, X , X | X | X , and two angles which specify the
xx' Tyy' “zz' ‘yz

angle of the crack plane relative to the yz plane. One of the four X..'s
specifies the rotation of the crack in its plane, so that 3 real para1
meters remain to describe the size and shape ol the crack. Calculations,
using a particular parameterization of cross-sections, have been per-
formed [2], leading to th=> conclusion that long-wavelength scattering
measurements, even if performed with exceptional accuracy, will yield
little information about crack shape; i.e. there is always a circular crack
whose long-~wavelength scattering is nearly the same as a crack of
complicated shape.

B. The Surface Crack

The foregoing is the situation for the isolated crack. One may hope
that the paucity of information available there might be improved by the
presence of a free surface nearby which could amplify the effects of crack
shape by multiple scattering.

The formulas for the surface crack are to a large extent identical to
those for the bulk crack. Just some reinterpretation is necessary. For
example, Eq. (1) still holds, with the possible values of m extended to
inclugﬁ Rayleigh surface waves; viz. n = SH,SV,P, and R. The basic trac-
tion U (Yy,r) for m = SH, SV, and P is a linear combination of up -and
downgoing waves which satisfies the traction-free boundary condition at
2 = 0 (the fiee surface, with vacuum above it, is the xy plane); for n = R
it is a8 linear combination of evanescent P and SV waves which is traction-
free on the xy planr. (Explicit expressions can be found in Ref. 3).

Fquations (2), (3), and (4) still hold for the surftace crack, and so
does Eq. (5) with the proviso that Yy, is upward-going and Yy is downward-
going for SH, SV, and P; they are bo?h evanescent for n = R.

Scattering by small surface cracks is simplified compared to isolated
cracks by the fact that now

r:(Q,O) C () =0 (6)

>
by construction; i.c. although 1 is a traction on the crack surface, tz is
the x-component of the traction on the free surface (xy plane), becausé
the crack (in the yz plane) is perpendicular to the {ree surtace.

This means that the scattered amplitude from the surface crack is
simpler than that for the bulk crack; using Fas. (2), (3), (4), and (6),
we get, dropping some superfluous (at present) normal!izations

t 0 1 0
~ 0 - n - n ~ n ~ n ~
= +
Py, ne,¥g) = 6 (X1 () 4 vy (DX T () (7)
Scattering from a nmall surface-breaking (o near surface) crack is com-
pletely described, after its orientation is knovn, by just 2 parameters
dependent on the size and shape of the crack.

The reduction in the number of determinable parameters xii from 4 in

the rase of the bulk crack to 2 in the case of tue surfa:e crack can be



blamed on the presence of the free surface, which reduces the number of
traction components with which we can probe from 3 to 2. Thus we should
expect less information about the crack to be obtainable when there is a
surface ne:.rby than otherwise.

COMPUTED EXAMPLES

Equation (7), for m = n° = R, is

f(n,?,no,ﬁo) = u[(c052¢ + %)(c052¢0 + %) + B sin2¢ sin2¢0] . (8)

where ¢_, ¢ are the incident and scattered azumuthal angles (¢, = 0 is
normal incidence) and Rayleigh surface waves are incident and scattered.
This expression is obtained by substituting the expression for T in Ref.02
into Eq. (7); corresponding expressions can be written down tor all m, nm ;
always involving the same 2 parameters depending on crack geometry, which

for convenience we have called u, B. The l's wvhich appear in £q. (8)
depend on the elastic material: we have taken Poisson's ratio to be 1/3.

if one measures the backscattering amplitude f(¢ +n, ¢0), then
EqQq. (8) says there is a maxiwum at ¢ . = O, (normal incidence), as one
would expect, and a minimum at ¢, = 9/2 (edge-on incidence), also as one
might expect. The ratio of the Qwo ampli tudes

ELOL <9 (9)

is fixed for all flat cracks normal to the flat surface; it it is much
different from 9 then either the crack is not flat or not normal to the
surface.

So experimentally one can find the ¢, = 0 direction by seeking the
maximum in backscattering, then one can verify flatness and normality by
measuring f(n/2,-n/2). 1f Eq. (9) is satisfied, then one can proceed to
determine B by measuring one or more ot a number of amplitudes with eithe:
or both ¢ and ¢, equal to % 45° or % 135°. For example, the 45° back-
scattering amplitude is

£(-3n/4,n/4) = 1+ (10)
f(n,0) 9/4 ’

and the 45" specular amplitude is

_ t3n/h,nja) - 1-f

T op(oan/h,n/h) T O14p (1)
or
ol

B is the only parameter depending on the shape and orientation of the
crack which can be obtained from long-wavelength acattering. a scales
with the rize of the crack and the incident wavenumber k

o « l.3k5/2

(1)



(L is any dimension of the crack); thus if one increases all the dimen-
sions of the crack (including its burial3depth, if it is subsurface) by a
factor g, then « increases by a factor g°. (But if one simultaneously
increases the wavelength by the same factor g, then a increases only by a
factor g.)

The figures which follow illustrate the dependence of a and B on the
crack shape and situation relative to the free surface. The cross-
sections have been computed using the CODE [3] (crack-opening-displacement-
expansion) method, in which the COD is expanded in a set of gaussians
centered on a square array of points on the crack surface. Most of the
computation time is consumed calculating elements of a 3N X 3N matrix,
where N is the number of localized gaussians. Once the matrix is computed,
scattering from any crack which can be simulated by a subset of the points
can be obtained, for any incident and scattered polarization and direction,
without much further numerica. work. We take N = 56, representing an
array 8 deep (z-direction) and 7 wide (y-direction). The latiice spacing,
a, merely supplies a scale factor. It has been established (5] that a
surface-breaking crack is simulated if the top row of localized function
has centers 0.65a beiow the free surface, and that the effective crack
edge (for simple shapes) is 0.94a beyond the last row or column of lattice
points. See Fig. 1.

{ Fig. 1 A linear combination of
KB 0650 gaussians centered on points in a
o X X X X X T square array is used to simulate the
T X X X X X COD. It has been found [3] that
X X surface-breaking cracks are simulated
_i. il the topmost centers are 0.65a
¥ X below the free surface. The crack
0940 edge is about 0.94a beyond the last
T centers [2}. 0.69
0.3
0.65
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Fig. 2 A family of surface ciacks.
At the left ir. a 7 X B array of locaiized
0.25+ functions simulating a rectangular surface-
) breaking crack. The horizontal line repre-
sents the free surface. Successively
deeper subsurface cracks are simulated by
simply amotting more and more rows of
localized functions. The height of the
surface l.ne is the value of B according

0.49 to the scale at the left; the size of each
TYIRERY . drawing is adjusted so that all cracks on

this and the following figures give the
same normal backscatter. The numbers above
the free surface lines are the crack areas
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Figures 2-8 give results of computing o and B for several familic: of
surface-breaking and near-surface cracks. The cracks are scaled in the
drawing so that the normal Rayleigh-Rayleigh backscatter from each is the
same, and the vertical position of the line representing the position of
the free surface is the value of P accordiug to the scales at the left.
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Fig. 3 A family of 7 % 4 surface-breaking
and subsurface rectangular cracks. It is
generally true that small surface-breaking
cracks will produce the same normal back-
scatter as considerably larger buried
0.41 cracks, but the latter give relatively
_iij larger 45° backscatter (see Eg. 10).
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Fig 4. A set of square cracks. Experi-
m=ntally these are probably indistinguish-
atle from thie rectangular cracks or the
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Figure 5 Rectangular cracks with differert aspect ratios:
0.2 + 7x3,7x5,7Tx7,5x7,3x7.

0.3 «
0.69
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0.59 xx
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o X
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% X X X X X XX
ll!lllb
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G. 25 + 0.48
X X X X
0. 42 ::::1,’:11‘
L2 2 2.2 8. 0.1
XXX XX
xxxxxxxl
Fig. 6 A sequence of cracks which are truncated triangles.
This supplies a continuous transition from surface-breaking to
subsurface cracks.
0.2 ¢
DISCUSSION

The data contained in Figs. 5 and 7 and similar calculations can
be analyzed to show that, to a good approximiatinn, the scattered amplitude
from rectangular surface-breaking cracks (and probably any surface-
breaking crack whose paximum width is at the surface) is nearly propor-
tional to £S, where £ is the width of the crack at the surface, and S is
its area (S = £d, where d is the depth, for a rectangular crack). The
relation is, for cracks with aspect ratio greater than 0.3,

A= 2(S - 0.15 2%) '
where A is the normsl Rayleigh-Rayleigh (RR) backscattering amplitude in

arbitrary units. Eg.ation (14) is consistent with measurements reported
by Resch et al. [6]. 5o 25 may be obtained from RR backscattering



Fig. 7 Our approximation to a circular 0.62
(penny-shaped) crack is a 7 X 7 square
array with 3 localized functions omitted
from each corner.

0.53

0.25+
0.46
0.3 I
0.42 afelotell

1 8 0.8 & 8 81
) O & § & 4
X X X SRR
0.2 +

The angular distribution of RR backscatter (Eq. 13, with ¢ = ¢,.) will
yield B. Our calculations yield the result that B is essentially 2-valued,
being 0.23 %+ 0.01 for surface-breaking cracks and about 0.29 * 0.01 for
subsurface cracks, if Poissen's ration is /3. This agrees with the
resvlts of Auld [7], who wrote an expression for long-wavelength RR back-
scatter from a halfpenny surface-breaking crack assuming that the static
COD was the same as the isolated penny-shaped crack.

0.89
Fig. 8 a 7 x 8 surface-breaking crack,
. . LR 8.0 8 0 8.4
partially closed from the top. Partial —
0.3+ closure is simulated by omitting odd- alladolel
numbered rows of localized functions; alalalololole
first row (7), then (5,7), then (3,5,7), XXX XX

finally (1,3,5,7). The last simulates
a partly-closed buried square crack,
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More than routine accuracy may be needed to distinguish surface-
breaking from subsurface cracks in this way. The ratio r = (45° RR spec-
ular)/(45° RR backscatter) is 0.63 for surface-breaking cracks, 0.55 for
subsurface ones.

Another fact which can be gleaned from our calculations is that the
scattering amplitude of a surface-breaking cracl. decreases by 40 or 50% if
the crack is buried by an amount equal to its mutual depth. Most of the
decrease occurs as soon as the burial starts, and the largest decrease is
for high aspect-ratio cracks. Thus the only way to distinguish a small
surface-breaking crack from a somewhat larger subsurface crack is by
measuring PB.
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