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A standing-wave free-electron laser (SWFEL) has been proposed for use in a two-
beam accelerator (TBA). Unlike a conventional microwave free-electron laser, the
SWEFEL has a wiggler that is divided by irises into a series of standing-wave cavities,
and the beam is reaccelerated by induction cells between cavities. We introduce a
one-dimensional discrete-cavity model of the SWFEL. In contrast to the continuum
model that has been extensively used to study the device, the new model takes into
account time-of-flight effects within the cavity and applies the reacceleration field only
between cavities, where the ponderomotive force is absent. As in previous SWFEL
models, only a single signal {requency is considered. Using this model, effects of finite
cavity length are investigated. For mmoderately long cavities, it is shown that there

are no adverse effects on the phase stability of the device.




I. INTRODUCTION

A :tanding-wave free-electron laser (SWFEL) has been proposed[l, 2] as a power
source for a high gradient structure in a configuration known as the “two beam acceler-
ator” (TBA)[3]. In this device, irises are placed along the FEL wiggler to form a series
of microwave cavities, and induction cells are placed between cavities to reaccelerate the
beam (see Figure 1). The standing-wave signal that builds up in the cavities as the beam
passes through is coupled to a parallel high-gradient radio-frequency accelerator.

Previously, a continuum model had been used to study the device[l, 2,4]. In this
model, an infinitesimal cavity length was assumed and the particles were reacclerated
continuously. In this paper, we study the effects of finite cavity length on phase fluctua-
tions and output power. Moreover, we reaccelerate the particles only between the cavities.
In Section 1I, we describe our model in some detail. In Section III, we summarize the

results obtained using this model. Section IV contains our conclusions.

I1. DISCRETE CAVITY MODEL
In this section, we develop a one-dimensional discrete cavity model of the SWFEL.
First, we obtain particle and field equations within a single cavity. We assume that the
one-dimensional beam couples only to the TEq waveguide mode[l]. For a waveguide

with height h and width w, the signal wavenumber £k, is given as follows
ky = (w?/c? — n?/h2)1/2, | (1)

The wiggler field is generated using an idealized linear wiggler with a vector potential

2
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w = y cos(ky,2)Z. (2)
e

Vector potential for the signal field is given as follows

- nec?

As = agsin(mwy/h) cos(kgz — w,t + @)z, (3)
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We assume that the energy 4m.c? of all beam electrons is sufficiently high that
a, /v < 1. The signal amplitude a, is taken to be small compared with a,. Both a, and
field phase ¢ are assumed to be slowly varying compared with k,z and w,t.

With these approximations, the wiggle-averaged particle equations are identical to
those in a conventional single-mode microwave FEL (due to this wiggle-averaging, the
cavity needs to be at least as long as a wiggler wavelength for the equations to apply
rigorously within the cavity). Denoting the particle phase (ks + ky)z — wst by 6; and

taking z to be the independent variable, the equations are given as follows

do; W, W, al . L

o= ky + ks — - - 2ey? 1+ 5 = 2Dga,(Gy cosf; — a;sinf;)| , (4)
d ] s N . ~

%:—DI%%(GT sin 0; + a; cos 0;) (5)

where @, and &; are the real and imaginary parts of the complex field amplitude & =

a, + 1a; = a,exp(i¢). The coupling coefficient D, for a TEq; mode is given by

Dy = [Jo(€) = J1(€)]/2, (6)

where € = w,a? /(8ck,~}). The complex field amplitude satisfies the following equation
(again given by conventional FEL theory)

da exp(—10;)
il S AN 7
- = o ) (7)

where the coeflicient 75 is given by

n = 8w en,_Draw. (8)

hwm.3 ks

The novel features of a SWIF'EL come into play when we consider the interaction of
an electron beam with a series of cavities. The electron beam is divided into beam slices.
Each beam slice is a uniform distribution of particles with initial spreads Afp and A~vg
in 0 and 5 rvespectively. As in previous SWFEL simulations[1, 2, 4], the average 0 and ~

for a given beam slice are prescribed as follows:
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(Oo)x = a + B(k —1), (Yo k = Vrs 9)

where k is the beam slice index, v? = w,(1 + @2 /2)/2c(ky + k, — w,/c) is the resonant

energy and «, [ are constants. Typically, we take a equal to zero and

B =-r/(K-1). (10)

Here, K is the total number of beam slices and is related to the total beam length L; by

the relation
Ly = A (K +1/2), (11)

where ), is the signal wavelength. The spacing between the centers of beam slices AL,

is no longer A, in this case but is slightly larger:

A
ALy = A (1 + ?.Z") . (12)
2Ly

Now, consider the first beam slice as it propogates through the SWFEL structure.
The particles within this slice are distributed according to Eq. (9) with & = 1. There
is a small input field @, within each cavity. As the beam slice propogates throught the
first cavity, it evolves according to Eqgs. (4) and (5) and generates radiation field through
Eq. (7). When it exits the cavity, the average energy lost in this cavity is restored to
all particles within the beam slice. However, noth'ng is done to the particle phases. The
beam slice now enters the second cavity which is also given the same input field a, as
the first cavity. As the beam exits this cavity, we add the average energy lost in the first
cavity to all particles in the beam slice rather than the average energy lost in the second
cavity[l]. This process is continued for all subsequent cavities. Hence, the recceleration
field is independent of the cavity number.

Next, consider the seccond beam slice. As it enters the first cavity, it still sees only

the initial input field ag and not the additional field generated by the passage of the first




beam slice. This can be seen as follows. Electrons in the beam slice can interact only
with a forward traveling wave. But the field generated by the first slice takes a finite
amount of time T, to make a round trip within the first cavity since the cavity has a

finite length L.. This time 1s given as
T.~2L./ec. (13)

Within this time period, K’ beam slices have already passed through the cavity where

[cf. Egs. (12) and (13)]
K' % 2L./AL. (14)

The above situation applies to all the cavities. Hence the first K’ beam slices all see the
same input signal field amplitude. However, there could be differences in their evolution
due to differences in other initial conditions like 0y and beam current.

Next, we consider the (K’ + 1)th beam slice. By the time this enters a cavity, the
signal field generated by the first beam slice has already made a round trip within the
cavity, and the electrons therefore see an enhanced input signal field amplitude. For the
sake of simplicity, in our present model we neglect losses due to reflections and due to
leakage through the iris. To solve the FEL equations within the cavity, we also require
the initial field phase, which is determined as follows. Since we want the field to set up a
standing wave within each cavity after a few reflections, we take the cavity length L. to
be an integer multiple of the signal wavelength A,. We also assume that the field phase ¢
changes by 7 radians during each reflection. With these assumptions, ¢ at the beginning
of the cavity after one round trip is the same as ¢ at the end of the cavity after the
passage of the first beam slice. Now that we have determined all initial conditions, we
can solve the FEL equations for the (K’ + 1)th beamn slice within each cavity. As usual,
we add the average energy lost by the beam slice in the first cavity to all the particles

before they enter a new cavity.
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We can repeat the above arguments for subsequent beam slices. In general, the input
signal field for the kth beam slice at the beginning of the lth cavity is given by the
output signal field for the (k — K’)th beam slice at the end of the {th cavity. The full
interaction of the electron beam with the SWFEL structure can therefore be represented

symbolically by the following recursion relations:

Ok =0k1-1 + F(Ori_1, vk 1-1 + DYk, Gk ) (15)
Yo = Yeg—1 + GOri—1, Yeg-1 + Ok, kK1) (16)
app =0 ;g + HOp i1y Yei-1 + DYk Qg1 1) (17)

Here, 0 and ~ are n-vectors where n is the number of particles within a beam slice. The
quantity A~y is the everage energy lost in the first cavity by the kth beam slice. For &

equal to 1, we take ag_p+y = @p for all (.

I1I. NUMERICAL RESULTS

We have numerically studied the discrete cavity model explained in the previous
section. This section contains a brief summary of our results.

The parameters used for the simulation, listed in Table I, are the optimized values
obtained previously[4] using the continuum model of the SWFEL. In our model, we have
an additional parameter that we can vary — the cavity length. First, we set the cavity
length equal to a signal wavelength. In this limit, our model should go over into the
continuum model. The output microwave energy and field phase ¢ are shown in Figures
2 and 3. The results are from a multi-particle simulation. We have assumed an initial
spread of 10% in 0 and 1% in v. We have also employed a linearly increasing current.
The results are seen to agree with those given in Ref. [4] for the continuum model.
Similar agreeinent was found for single-particle simulations and for different parameter

sets. These calculations thus served as a benchmark for our numerical code.
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Next. we set the cavity length to a realistic value of 14.7 cm. Other parameter values
remain unchanged from the short cavity case. The results are again shown in Figures 2
and 3 so as to facilitate an easy comparision with the short cavity results. The ripple
seen in these figures is at the synchrotron frequency and can be explained analytically[4].
We see that the magnitude of field phase fluctuations is still not significantly larger than
in the continuum case. This shows that the SWFEL concept still holds promise as a
stable microwave power source.

At present, we are studying in detail the variation of various physical quantities as a
function of cavity length. Sensitivity of the device to errors in input energy and current

is also being investigated.

IV. SUMMARY
We have developed a discrete cavity model of a standing-wave free-electron laser. A
numerical code has been built to study this model. This code has been benchmarked
against the code for the continuum model by taking the cavity length to be small. We
found that a cavity length of 14.7 cm has no deleterious effect on the magnitude of

fluctuations in the field phase.
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TABLE L

TABLES

Optimized simulation parameters for the standing-wave FEL

average beam current
beam length
resonant energy
wiggler strength
wiggler wavelength
wiggler length
waveguide height
waveguide width
signal frequency
cavity @

input power

output energy

I

Ly

3.5 kA
180.0 cm
16.4

14

37 cm

40 m

3 cm

10 cm
17.1 GHz
104

80 kW /m

10 J/m
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FIGURES

FIG. 1. Conceptual layout of one section of a standing-wave TBA

FIG. 2. Output microwave energy as a function of distance z along the wiggler. Results

from both the short and long cavity cases are shown.

FIG. 3. Field phase ¢ as a function of distance 2 along the wiggler. Results from both

the short and long cavity cases are shown.
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