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A standing-wave free-electron laser (SWFEL) has been proposed for use in a two-

beam accelerator (TBA). Unlike a conventionM microwave free-electron laser, the

SWFEL has a wiggler that is divided by irises into a series of standing-wave cavities,

and the beam is reaccelerated by induction cells between cavities. We introduce a

one-dimensional discrete-cavity model of the SWFEL. In contrast to the continuum

model that has been extensively used to study the device, the new model takes into

account time-of-flight effects within the cavity and applies the reacceleration field only

between cavities, where the ponderomotive force is absent. As in previous SWFEL

models, only a single signal frequency is considered. Using this model, effects of finite

cavity length are investigated. For moderately long cavities, it is shown that there

are no adverse effects on the phase stability of the device.



I. INTRODUCTION

A _!anding-wave free-electron laser (SWFEL) has been proposed[1, 2] as a power

source for a high gradient structure in a configuration known as the "two beam acceler-

ator" (TBA)[3]. In this device, irises are placed along the FEL wiggler to form a series

of microwave cavities, and induction cells are placed between cavities to reaccelerate the

beam (see Figure 1). The standing-wave signal that builds up in the cavities as the beam

passes through is coupled to a parallel high-gradient radio-frequency accelerator.

Previously, a continuum model had been used to study the device[i, 2, 4]. In this

model, an infinitesimal cavity length was assumed and the particles were reacclerated

continuously. In this paper, we study the effects of finite cavity length on phase fluctua-

tions and output power. Moreover, we reaccelerate the particles only between the cavities.

In Section II, we describe our model in some detail. In Section III, we summarize the

results obtained using this model. Section IV contains our conclusions.

II. DISCRETE CAVITY MODEL

In this section, we develop a one-dimensional discrete cavity model of the SWFEL.

First, we obtain particle and field equations within a single cavity. We assume that the

one-dimensional beam couples only to the TE01 waveguide mode[li. For a waveguide

with height h and width w, the signal wavenumber k8 is given as follows

_:_= (w_l _- _21h2)'/2. (1)

The wiggler field is generated using an idealized linear wiggler with a vector potential

A-_- 7n_C2a,_,cos(k,_z)_. (2)

Vector potential for the signal field is given as follows

A_- m_C_a_sin(_,j/h)cos(k_z-w_t + ¢)_. (3)
C
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W(: ,_ssume that the energy 7m_c 2 of ali beam electrons is sufficiently high that

a_,/7 << 1. The signal amplitude as is taken to be small compared with a_,. Both as and

field phase ¢ are assumed to be slowly varying compared with k,z and cost.

With these approximations, the wiggle-averaged particle equations are identical to

those in a conventional single-mode microwave FEL (due to this wiggle-averaging, the

cavity needs to be at least as long as a wiggler wavelength for the equations to apply

rigorously within the cavity). Denoting the particle phase (ks + kw)z -wst by Oj and

taking z to be the independent variable, the equations are given as follows

dOj_k_+k _ u.,8 ws [ a_, 2D_aw(&,.cosOj-gqsinOj)] (4)d-'7- c 2c7_ l+_-

dTj ws aw
- D_:----(fi_sinOj +&icosOj) (5)

dz c 7j

where f_ and fii are the real and imaginary parts of the complex field amplitude & _=

fi_ + ifii = as exp(i¢). The coupling coefficient D_ for a TEm mode is given by

D_ = [Jo(_)- Ja(_)]/2, (6)

2 "_C" 2where _ = cos%,/(8 k_yj). The complex field amplitude satisfies the following equation

(again given by conventional FEL theory)

dh exp(-iOj)), (7)

where the coeflqciellt 7] is given by

8rr ei_ D_a_

'1= h.w m_ca ks (8)

Tlm novel features of a SWFEL come into play when we consider the interaction of

an electron beam with a series of cavities. The electron beam is divided into beam slices.
m

Each beam slice is a uniform distribution of particles with initial spreads A00 and AT0

in 0 and ? respectively. As in previous S\VIPEI, simulations[l, 2,4], the average 0 and 3'

for a given beam slice are prescribed as follows:

3



(0o>= - 1), (%>k= (9)

where k is the beam slice index, 3'_ -- ws(1 4-a_/2)/2c(kw 4- ks- ws/c)is the resonant

energy and c_,/3 are constants. Typically, we take c_ equal to zero and

/_ = -Tr/(K - 1). (10)

Here, K is the total number of beam slices and is related to the total beam length Lb by

the relation

Lb = As(K + 1/2), (11)

where A, is the signal wavelength. The spacing between the centers of beam slices ALb

is no longer As in this case but is slightly larger:

ALb=As l+9-_b . (12)

Now, consider the first beam slice as it propogates through the SWFEL structure.

The particles within this slice are distributed according to Eq. (9) with k = 1. There

is a small input field a0 within each cavity. As the beam slice propogates throught the

first cavity, it evolves according to Eqs. (4) and (5) and generates radiation field through

Eq. (7). When it exits the cavity, the average energy lost in this cavity is restored to

all particles within the beam slice. However, ,_oth'ng is done to the particle phases. The

beam slice now enters the second cavity which is also given the same input field a0 as

the first cavity. As the beam exits this cavity, we add the average energy lost in the first

cavity to all particles in the beam slice rather than the average energy lost in the second

cavity[1]. This process is continued for ali subsequc,_t cavities. Hence, the recceleration

field is independent of the c_vity number.

Next, consider the second l)ealn slice. As it enters the first cavity, it still sees only

the initial iIlput field &0_nd z_ot.the additional field generated by the passage of the first
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beam slice. This can be seen as follows. Electrons in the beam slice can interact only

with a forward traveling wave. But the field generated by the first slice takes a finite

amount of time Tc. to make a round trip within the first cavity since the cavity has a

finite length Lc. This time is given as

Tc_2L_/c. (13)

Within this time period, K _ beam slices have already passed through the cavity where

[cf. Eqs. (12)and (13)]

I(' _ 2L_/ALb. (14)

The above situation applies to all the cavities. Hence the first K _ be.,_m slices all see the

same input signal field amplitude. However, there could be differences in their evolution

due to differences in other initial conditions like 0o and beam current.

Next, we consider the (K t + 1)th beam slice. By the time this enter_ a cavity, the

signal field generated by the first beam slice has already made a round trip within the

cavity, and the electrons therefore see an enhanced input signal field amplitude. For the

sake of simplicity, in our present model we neglect losses due to reflections and due to

leakage through the iris. To solve the FEL equations within the cavity, we also require

the initial field phase, which is determined as follows. Since we want the field to set up a

standing wave within each cavity after a few reflections, we take the cavity length Lc to

be an integer multiple of tile signal wavelength A_. We also assume that the field phase ¢

changes by _r radians during each reflection. With these assumptions, q_at the beginning

of the cavity after one round trip is the same as 4) at the end of the cavity after the

passage of the first t)eam slice. Now that we have determined all initial conditions, we
o

can solve the FEL equatiolls for the (I( _+ 1)th beam slice within each cavity. As usual,

we add the average energy lost by the beam slice in the first cavity to ali the particles

before they enter a new cavity.
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We can repeat the above arguments for subsequent beam slices. In general, the input

signal field for the kth beam slice at the beginning of the lth cavity is given by the

output signal field for the (k- K_)th beam slice at the end of the lth cavity. The full

interaction of the electron beam with the SWFEL structure can therefore be represented

symbolically by the following recursion relations:

O_,t=Ok,__l + F(Ok3-1, "tk,t-1 + A'Yk,ak-K,,t) (15)

%,t ='/k,t-1 + G(Ok,t-l,%3-1 + A'lk,G-K',I) (16)

&k,t=hk-_r,:,3 + H(Ok,t-l,Tk,l-1 + ATk,ak-K'3) (17)

Here, 0 and 7 are n-vectors where n is tile number of particles within a beam slice. The

quantity ATk is the everage energy lost in the first cavity by the kth beam slice. For k

equal to 1, we take hk-K',t = ft0 for ali l.

III. NUMERICAL RESULTS

We have numerically studied the discrete cavity model explained in the previous

section. This section contains a brief summary of our results.

The parameters used for the simulation, listed in Table I, are the optimized values

obtained previously[4] using the continuum model of the SWFEL. In our model, we have

an additional parameter that we can vary - the cavity length. First, we set the cavity

length equal to a signal wavclength. In this limit, our model should go over into the

continuum model. The output microwave energy and field phase ¢ are shown in Figures

2 and 3. The results are from a multi-particle simulation. We have assumed an initial

spread of 10% in 0 and 1% in 7. We have also employed a linearly increasing current.

The results are seen to agree with those given in Ref. [4] for the continuum model. "

Similar agreement was found for single-particle simulations and for different parameter

sets. These calculations thus served as a benchmark for our numerical code.
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Next. we set the cavity length to a realistic value of 14.7 cm. Other parameter values

remain unchanged from the short cavity case. The results are again shown in Figures 2

and 3 so as to facilitate an easy comparision with the short cavity results. The ripple

- seen in these figures is at the synchrotron frequency and can be explained analytically[4].

We see that the magnitude of field phase fluctuations is still not significantly larger than

in the continuum case. This shows that the SWFEL concept still holds promise as a

stable microwave power source.

At present, we are studying in detail the variation of various physical quantities as a

function of cavity length. Sensitivity of the device to errors in input energy and current

is also being investigated.

IV. SUMMARY

We have developed a discrete cavity model of a standing-wave free-electron laser. A

numerical code has been built to study this model. This code has been benchmarked

against the code for the continuum model by taking the cavity length to be small. We

found that a cavity length of 14.7 cm has no deleterious effect on the magnitude of

fluctuations in tile field phase.
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TABLES

TABLE I. Optimized simulation parameters for the standing-wave FEL

average beam current Ib 3.5 kA

beam length Lb 180.0 cm

resonant energy "}'r 16.4

wiggler strength a_ 1.4

wiggler wavelength ,_w 37 cm

wiggler length Lw 40 m

waveguide height h 3 cm

waveguide width w 10 cm

signal frequency ws/2_" 17.1 GHz

cavity Q Q 104

input power Pin 80 kW/m

output energy I'Vout 10 J/m



FIGURES

FIG. 1. Conceptual layout of one section of a standing-wave TBA

FIG. 2. Output microwave energy as a function of distance z along the wiggler. Results

from both the short and long cavity cases are shown.

FIG. 3. Field phase ¢ as a function of distance z along the wiggler. Results from both

the short and long cavity cases are shown.
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