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ABSTRACT

This is a dissertation that was submitted to the Graduate School of New
Mexico State University in partial fulfillment of the requirements for the
degree of doctor of philosophy. It reports that radiative transfer in
combined mode heat transfer problems was investigated with emphasis on the
analysis and characterization of a free-falling particle cloud, direct-
absorption solar central receiver. A model was developed to calculate the
relevant distributions in the curtain while a concentrated solar beam is
impinging on the front face of the medium. The discrete ordinates
approximation was applied to allow the spectral equation of transfer to be
modeled as a PDE. Model verification tests were conducted to determine the
accuracy of the model. One- and two-dimensional results showed that the
discrete ordinates model provides satisfactorey estimates of the radiant
intensity, the heat flux and the temperature distributions for ordinate
sets above S84 (12-flux approximation) for both the black and gray cases. An
experimental program was conducted to measure the unknown thermal and
radiative properties of a typical particle curtain and to obtain data on
receiver performance for comparison with the model. Indications are that
the model performs satisfactorily for the higher order sets and that, when
applied to a full-scale receiver, reasonably small exrrg can be expected.
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Abstract

Multi-Dimensional Discrete Ordinates Solutions
to Combined Mode Radiation Heat Transfer
Problems and Their Application to a Free-Falling

Particle, Direct Absorption Solar Receiver

By
Michael J. Rightley

Doctor of Philosophy in Mechanical Engineering
New Mexico State University
Las Cruces, New Mexiqo,‘ 1989
Dr. L. K. Matthews, Co-Chairman

Dr. G. P. Mulholland, Co-Chairman

Multi-dimensional radiative transfer in combined mode heat transfer prob-
lems was investigated with emphasis on the analysis and characterization of a
free-falling particle cloud, direct absorption solar central receiver. A model was
developed to calculate the relevant distributions in the curtain while a concen-
trated solar beam is impinging on the front face of the medium. The discrete
ordinates approximation was applied to allow the spectral equation of transfer
(EOT) to be modeled as a PDE.

Model verification tests were conducted to determine the accuracy of the

model. One- and two-dimensional results showed that the discrete ordinates

model provides satisfactory estimates of the radiant intensity, the heat flux and
the temperature distributions for ordinate sets above Sy (12-flux approxima-

tion) for both the black and gray cases.
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An experimental program was conducted to provide data on the perfor-
mance of the free-falling particle receiver and to compare the results with model
predictions. The extinction coefficient and the curtain porosities along with the
transmitted fluxes and the exit temperatures vvere’ measured.

The boundary condition for the front face of the curtain, which was de-
scribed in terms of a Fredholm integral problem, was determined through the
use of angular heat flux data and parameter estimation techniques. A check of
the accuracy of these calculations was performed by integrating the intensity
to determine the boundary fluxes. Results showed reasonable flux distributions
with a significant improvement from the 12- to the 24-flux model.

Comparisons of the exit temperature and the transmitted flux distributions
were made with the model. Results showed satisfactory agreement with errors
within 25% being observed at most points.

The results of the temperature predictions also showed reasonable agree-
ment with the measured data. Errors ranged from 8% to 52%. Small tem-
perature increases were thought to be the primary cause of the relatively large
errors. This indicates that a larger temperature increase through the receiver
would probably result in more accurate readings.

Indications are that the model performs satisfactorily for the higher order
sets and that, when applied to a full scale receiver, reasonably small errors can

be expected.
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Chapter 1: Introduction

1.1 Mathematical Background

The explosive growth of advanced technology systems utilizing newly de-
signed materials which often must withstand hostile environments (both me-
chanical and thermal) has created a situation that requires researchers to be
better able to predict the response of these systems to ekternal stimuli. In many
applications, the expense involved with producing a prototype and testing it
to determine it’s weaknesses is prohibitive. With the advent of the ultra-high
speed computer, it now becomes easier to accurately predict the system re-
sponse before actually producing working models.

The challenge now becomes to develop more generalized, yet highly ac-
curate, models that will take full advantage of the present and future compu-
tational capabilities. However, in the study of participating medium radiative
heat transfer, good models already exist that are significantly general and couple
easily with the governing equations of other physical processes. These models,
if applied to realistic contemporary physical situations, can very quickly utilize
the modern computer to it’s total capability and are often actually limited by
this machine.

The difficulty lies in the form of the general equation of radiative transfer
(EOT). The EOT, which describes the intensity field in an absorbing, scattering
and emitting medium, is an integro-differential equation. To determine the
temperature distribution in the medium for the general case of multi-mode heat
transfer, a formulation of energy conservation in the medium will be coupled
to the EOT, requiring a simultaneous solution to the entire equation system.
A further complication is that the relationship of the heat flux (which appears
in the energy equation) to the intensity distribution (which is the dependent
variable in the EQOT) is also integral in nature.

Further, for many problems in the study of radiation, solutions may be
functions of more than one spatial dimension and the wavelength of the radia-

tion itself. These effects can significantly increase the difficulty encountered in
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Chapter 1: Introduction

attempting to obtain a solution to the EQT.!

In the midst of these complexities, it becomes apparent that 1.) obtain-
ing exact solutions for realistic problems will be prohibitively difficult, 2.) an
approximating model of the intensity field in the medium is needed and 3.)
this model should be very general and should couple easily with the governing
equations of other physical processes to obtain all the pertinent heat transfer

quantities.

1.2 Solar Receiver Applications

One important physical situation that requires solution of an equation
system like that just described can be found in the field of large scale solar
energy utilization. Researchers in this field have applied the sun’s energy on
a large scale in an effort to produce large amounts of energy at low expense
and with little or no waste products. In order to obtain these large amounts
of solar energy, some type of concentrating system is required. There are three
main types of concentrators now being studied. A large mirrored dish, in the
shape of a parabola, has been used to concentrate the rays of the sun to a small
area. An energy conversion system is then placed at the focal plane which
converts thermal energy into some other mode (often electrical or mechanical).
This type of system can also be used in conjunction with a flat mirror (called a
“heliostat”) to simply produce a high flux, non-moving heat source at a stated
test area. This system is known as a “solar furnace.” The second type, known as
a trough receiver, concentrates the sun’s rays down to a line that runs along the
length of the trough. One very useful application of this type of solar receiver
1s to pump some type of liquid through a pipe that runs along this line to heat
the liquid.

1 Allowing for more than one spatial direction has the effect of transforming the ordinary
derivatives in the EOT into partial derivatives. Also, the addition of spectral dependency

requires another integration and more computer memory to obtain the total radiant heat flux.
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Chapter 1: Introduction

The third, and certainly the largest, of the receivers is known as the solar
tower concept. This type of system utilizes an array of flat mirrors arranged
around an elevated tower. Each mirror is oriented so that it’s unit normal
vector bisects the angle defined by a line coming from the sun, reflecting off the
mirror and striking the target on the tower. The device used at this point to
capture the incoming solar rays is called the receiver. In this way, the image of
the sun appears on the receiver after having been reflected from the heliostat.
As the number of heliostats increases, more and more solar concentration is
achieved and the receiver is now being irradiated by a large amount of solar
energy. Figure 1.1 shows the basic orientation of the heliostats and the tower
in order to produce very high heat flux levels on the receiver target. Obviously,
the design of the heliostats and the receiver and the layout and geographical
orientation of the field play a significant part in the overall efficiency of such a

system.

In an effort to increase the generation efficiency of alternative energy forms
from solar tower systems, researchers have begun to explore the concept of direct
absorption receivers (DAR). A direct absorption receiver, which eliminates the
fluid conduit normally used in liquid-in-tube receivers, will theoretically yield
greater efficiencies due to the fact that the energy that is lost due to tube
heating can now be absorbed by the working medium. Also, the medium itself
can serve as the energy storage material thus eliminating the need to use heat

exchangers.

One potential candidate for use as the active medium in a DAR is a small
solid particle that is a good absorber of solar radiation. The design of the
receiver to introduce these particles to the active area of the target bears obvious
importance. Several studies have been undertaken to investigate three primary
solid particle receiver designs: 1) the fluidized bed concept, 2) the entrained
flow receiver, and 3) the free-falling particle cloud. Both the fluidized bed and

the entrained flow concepts require a forced flow of gas to operate. The free-
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Chapter 1: Introduction

falling particle flow, however, does not require any forced gas flow and, hence,
a more simplistic design approach can be used. Also, due to other inherent
design characteristics, the free-falling flow should be able to achieve higher

overall efficiencies than the other designs.

Researchers at Sandia National Laboratories!”) have investigated the fea-
sibility of the free-falling direct absorption concept. Studies have been under-
taken to determine optimal design factors such as particle material selection
and receiver cavity configuration. However, to produce an optimum receiver
design with suitable particles, the complete heat transfer characteristics of the
particle cloud, including all losses and the effects of the receiver walls, must be
investigated.

The present study investigated the application of the discrete ordinates
approximation of the intensity field to the free-falling particle receiver design.
Due to the significant temperature increase of the particles in the receiver, the

" as it is called, is certainly multi-dimensional in

intensity field in the “curtain,’
nature. Also, since the driving mechanism for the energy transfer in the problem
is the solar beam, the spectral effects of the problem must be addressed. For
this study, a 2-dimensional spectral formulation of the EOT is solved using the
discrete ordinates approximation. The energy equation is formulated to allow
for convective heat loss from the particles as they fall through the receiver
cavity and solutions for the heat flux transmitted through the curtain and the

exit temperature of the particles are compared to experimental data that are

obtained at the NMSU Solar Furnace facility.

1.3 Scope

As has been stated previously, the active medium in a direct absorption
solar receiver will heat up significantly in the cavity. This large temperature
increase will cause the emission by the particles to become a significant part of

the overall intensity field in the curtain. For this reason, an accurate analysis of
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Chapter 1: Introduction

the heat transfer processes occurring in the medium must be multi-dimensional
in nature. Also, the highly directional nature of the incoming solar beam and
it’s lack of uniformity add to the departure from uni-dimensionality for the
curtain.

The present study attempts to model the intensity field in a free-falling
particle curtain as it passes through a concentrating solar beam. Also, since
any analysis of a DAR must include the most important variable, the exit
temperature of the active medium, a formulation of the energy equation is also

used to determine the exit temperature of the particles.

A 2-dimensional formulation of the EOT is an integro-partial differential
equation. To model the equation with sufficient ease, an approximation of the
intensity field is made that allows the integral in the equation of transfer to be
replaced with an expression that is easier to handle in a PDE. This allows the
application of standard PDE solution techniques to obtain the intensity field.
Also, as has been mentioned, sufficient generality is desired in the model to allow
for it’s application to several different problems and to allow for the relative
comparison of the magnitudes of each of the physical processes occurring (i.e.,

absorption, out-scattering, emission and in-scattering).

The discrete ordinates approximation, developed by Chandrasekhar(?® to
analyze stellar atmospheres, is a model that satisfies the criteria discussed above
and has the added benefit of algorithmic simplicity. The model is explained in
detail in Chapter 3 and various problem solutions are presented in Chapters 4,

5 and 7.

Since emission becomes important in the intensity field for hot particles,
a formulation of the EOT will require simultaneous solution of a formulation
of energy conservation in the medium to accurately model the system and to
obtain temperature predictions. The energy equation for this type of system
requires a specific form for the radiant heat flux vector; this vector represents

the amount of heat flux contributed to the total heat Aux due to the radiative
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intensity field. This quantity is calculated by integrating the intensity field over
direction (solid angle) and, for this case, over wavelength, making the solution
significantly more complex.

The relationship of the radiant heat flux to the intensity distribution (in-
tegral) also produces a difficulty in formulating the front surface boundary con-
dition for the curtain (i.e., the side of the curtain that faces the solar beam).
To come up with the front surface intensity distribution, measurements of the
heat flux are made (since measurements of the intensity are not possible). The
boundary condition then must relate the measured fluxes (which is the inte-
grated intensity) to the corresponding intensity (the integrand). The problem,
an “ill-posed” problem, is known as the Fredholm integral equation and must
be addressed to obtain a solution for a solar receiver.

Once the overall model has been developed, some model verification work
is presented in Chapters 4 (1-dimensional) and 5 (2-dimensional). Then, the
model is compared to some experimental data measured at a solar furnace
(since no solutions exist for this particular problem). The experimentation,
explained in Chapter 6, was broken down into secondary and primary phases.
The secondary phase involved measuring a radiative parameter, the extinction
coefficient, needed in the solution and the porosities of the air and the particles
in the curtain. The primary phase of the testing was to obtain back surface heat
flux values and average exit temperatures for the particle curtain for various
particle flow rates. Results of the experimentation are presented in Chapter 7.

It is anticipated that the results of this study can aid researchers in deter-
mining the optimal design configuration for a direct absorption solar receiver.
The development of appropriate (and accurate) multi-dimensional models for
this problem will allow greater efficiencies to be achieved and possibly help to

make solar receivers an integral part of our global energy supply.
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2.1 Scope

A review of the literature that is pertinent to this problem is presented.
Section 2.2 presents results from studies that investigated the overall system
design for the direct absorption solar receiver system. Three main designs have
been primarily considered for this type of application. A brief description of the
basic design is presented along with their inherent advantages and disadvantages
and the results of some research work that has been conducted in the area.

Since the solid particle direct absorption idea is still in a research phase
(particularly in the free-falling particle design, ) there are currently no particles
available that have been specifically designed for this type of system. Conse-
quently, some investigation has been conducted in order to assess the suitablil-
ity of certain types of commercially available particles to be used as the active
medium in the receiver. The results of some of these tests are presented in the
third Section.

The importance of a full understanding of the heat transfer processes oc-
curring in such a receiver is obvious. Consequently, extensive analytical work
has been performed to model the system. One of the crucial aspects to any
model of a direct absorption solar receiver is the treatment of the radiative
transport involved. As has been discussed, this requires a solution of the EOT
formulated for multi-dimensional analyses. Some work has been performed to
characterize the radiative transport in the DAR curtain and this work is dis-
cussed. However, a significant body of research exists for modelling the EOT
in both single and multiple dimensions. The fourth Section presents results of
research into suitable radiative modelling techniques for the prescribed receiver
geometry and reports on several promising intensity modelling theories.

The last Section discusses the scattering aspects of the particles involved.
Categorizations of the type of scattering occurring as well as some results of
investigations into determining the scattering behavior of particles in this ap-

plication are presented. Some applicable theoretical techniques as well as some

10



Chapter 2: Literature Review

experimental methods to determine the scattering phase function are reported.

2.2 Receiver Design Configurations

In the fluidized bed direct absorption receiver concept, a bed of small
diameter absorbing particles is “fluidized” by forcing gas flow upward through
a containment vessel. The gas flow causes random particle motion to occur with
a net particle velocity of zero. This motion is achieved when the particle weight
is equalized by the drag force induced on the particle by the gas flow. In solar
applications, the walls of the containment vessel are made of a solar-transparent
material to allow concentrated solar radiation to enter the Véssel., The heat flux
will be absorbed by the particles resulting in a temperature increase in the
particle/gas mixture. To achieve optimal performance, minimal attenuation
of the incident beam by the walls is desired as is maximum absorption of the
heat flux by the particles. Degradation of the efficiency from convective losses
and particle emission must also be minimized. As with all direct absorption,
solid particle designs, particle material selection is very important in obtaining
maximum system efficiency.

Fluidized bed research is being pursued at the Laboratiore d’Energétique
Solaire in France. Papers by Flamant"), Flamant and Olalde(®, and Flamant,
Olalde, and Gauthier(® have discussed the results of experimental tests and
some theoretical analysis on the subject. Their experiments involved expos-
ing refractory particles with diameters in the range 250 — 700 pm to fluxes of
2200 kW /m? through transparent quartz tubes. They discovered that a propor-
tional correlation existed between the gas flow rate and the receiver efficiency,
defined as the ratio of the increase of the gas internal energy to the incident
solar energy. Maximum efficiency, around 70%, was achieved using SiC par-
ticles. Lower efficiencies were obtained with lower gas flow rates using lighter
ZrQ, particles. Also, temperature measurements indicated that the fluidized

bed was nearly isothermal which is considered desirable to minimize particle
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emission losses. However, it should be noted that the maximum efficiency for
this receiver configuration was estimated to be 83% and the differences were
attributed to large thermal emission loss due to the open experimental design
that was used.

The theoretical results are presented in [1]. The model that was used is
an extension of theoretical work performed by Kubelka and Munk(®, Chen and
Churchill®®, and Hamaker(®). The author used a Schuster-Schwarzschild (2-

flux) approximation(”) for the radiant transport through the bed. Equations
for the forward and backward components of the radiative flux were written
as first-order ordinary differential equations. A second-order energy balance
was formulated to yield an ODE for the particle temperatures and a first order
balance, based on the bed porosity and the characteristic length of the particles,
was used for the gas temperature distributions. The set of ODE’s were solved
using a Runge-Kutta technique.

Satisfactory agreement between experimental data and the theoretical re-
sults for flux and temperature distributions as well as estimations of the mean
penetration distance was achieved for gas flow rates near the minimum fluidiza-
tion condition. Differences were attributed to a lack of ‘spectral considerations
in the development of the radiative model and to local variations in the bed
porosity near the surface.

Fluidized bed research has also been pursued at the Georgia Tech Research

Institute (GTRI)®)(M. The test bed, which was larger than the French facility,
used fused silica walls as the transmitting medium. Satisfactory fluidization
was not achieved due to a limitation on the available air velocities and to the
relatively large particles used in the study (1000 pm to 3000 um.) Consequently,
measured efficiencies were in the 30% to 40% range. It was noted in the course
of the experimentation that the fused silica bed walls were discolored when
the bed was operated with non-oxide particles such as S:C and copper. This

discoloration certainly degrades the optical performance of the silica walls but

12



Chapter 2: Literature Review

the actual amount of degradation on a spectral basis is unclear.

If the gas velocity is increased beyond the fluidization condition, the par-
ticles will now move upward in the same direction as the gas flow. This type
of system is known as an entrained flow receiver. GTRI has also investigated
this type of receiver design®)>(11), Inert particles in the size range 60 — 90 um
were used as well as 40 um carbon particles. Approximately 50% of the inert
particles were actually entrained which is contrary to some predictions made
using the Stoke’s theory.

Unsatisfactory efficiencies were attributed to low flow opacities due to the
small particle loadings which could be realistically entrained. Also, the same
wall discoloration was noted in these experiments. However, due to the rela-
tively large effect of convection on the heat transfer from the gas to the particles,
the wall discoloration was not observed to have significant effect on the overall
energy transfer to the particles.

Entrained flow receiver work also has been pursued at Lawrence Berkeley

Laboratory (LBL)*?)~(8) Carbon particles of 0.1 um diameter were generated
by pyrolysis of acetylene in Argon upstream of the receiver. The particles were
then mixed with air and exposed to radiant heating through quartz tubes.
Note that the carbon particles were completely consumed in the process and
that the amount of carbon necessary to produce an equivalent amount of heat
was small compared to direct carbon combustion. No efficiencies were measured
but theoretical calculations estimated values in the range 85—90% for the given
design.

The last of the direct absorption systems investigated is the free-falling
flow concept. In this design, particles are quickly heated as they fall under
the force of gravity through an area of concentrated solar flux. Some obvious
advantages to this design are; 1) the elimination of the need for a transparent
window through which the radiation must pass, 2) minimal hydrodynamically

imposed constraints on the particle size compared to the entrained flow and
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fluidized bed concepts, and 3) the overall design is less complicated and the

hardware needs will be relatively less severe.

A significant amount of investigation into the feasibility of a free-falling re-
ceiver has been carried out by Sandia National Laboratories. A feasibility study
by Hruby'") summarizes the major points involved with the Sandia research.
Investigations of the receiver design, which necessitates a full understanding
of the thermal and hydrodynamic behavior of the particle curtain, and the

selection of the particle material were reported in the paper.

Radiant heat tests were conducted by exposing S:C and silica sand par-
ticles to infrared lamps through a fused silica plate wall. The particle tem-
peratures and velocities were measured using thermocouples and laser doppler
velocimetry (LDV), respectively. SiC' particles exposed to 500 kW/m? of inci-
dent flux were heated to a maximum temperature of 1300 K. However, based
on particle heating, this represents a thermal efficiency of only 25%. It was
suggested that improvements in cavity design could increase the efficiency by
reducing emission losses.

The results of the velocity measurement indicated that thermal coupling
exists between the particle momentum and the thermal characteristics of the
flow. This was determined after a one-dimensional formulation of the momen-
tum equations for the gas and for the particles significantly underestimated
the terminal velocity of the particles measured using LDV for the case of no
incident flux. The reason for this underestimation is based on the air entrain-
ment that is occurring inside the curtain. This entrainment will cause a smaller
relative velocity between the air and the particles which will result in a lower
coefficient of drag. Also, horizontal particle velocities will occur near the bot-
tom of the flow where the entrainment is most severe and, because of this, the
curtain will “spread.” Consequently, a two-dimensional formulation of the mo-

mentum equations was solved using a model of dilute gas-particle flows (i.e., one

in which particle-particle interactions are negligible) developed by Crowe(!8),
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The model, known as PSI-Cell (for particle source in cell) utilized a two-fluid
or trajectory approach which tracks the particles through the fluid where they
act as sources of momentum and energy to the gas. The disadvantage of this
model is that excessive computational time is required if many particles are to
be tracked. However, when this model was compared to velocity measurements
taken with the particles exposed to the flux, the model consistently overesti-
mated the particle velocity. This error was associated with buoyancy effects
caused by increased gas temperatures. The gas, which is warmed primarily by
convection with the hot particles, will now move at a higher relative interstitial
velocity than with no incident flux and the corresponding drag coeflicient will
increase. Accurate estimations of the particle velocity were eventually achieved
by adjusting the drag coefficient used in the two-dimensional model upwards to
match the data. However, drag coefficient adjustment was not attempted on

the one-dimensional model.

The thermal analysis of the receiver system was accomplished by formu-
lating the energy equations for the gas phase and the particle phase separately.
These equations, which were coupled through convection to each other and
through the velocity terms to the momentum equations, were coupled to the
equation of radiative transfer by including a radiative source term in the par-

ticle energy expression. The equation of transfer (EOT) was formulated in

one-dimension for any given elevation in the flow(!?). Measurements of the
extinction coefficient, the single scattering albedo, and the scattering phase
function were made which ultimately yielded the absorption and scattering co-
efficients to use in the EQOT. The phase measurements were used to determine

the coefficients of a Legendre polynomial expansion of the phase function. The
EOT was solved using the method of discrete ordinates(?®) and parametric eval-

uations were conducted with the model*®). The evaluations indicated that, by
decreasing the particle cloud optical density or the particle bulk absorptivity,

a reduction in the overall absorption of the incident energy will be observed

15



Chapter 2: Literature Review

but the spatial distribution of the particle heating will be more uniform. Also,
increasing the back wall reflectivity will result in a more uniform curtain heat-
ing, increased overall energy absorption by the particles, and a higher thermal
efficiency. It should be noted that a uniform distribution of heat in the cloud

is not necessarily beneficial since considerable particle mixing will occur.

2.3 Particle Material Considerations

Of critical importance to the direct absorption concept is the material se-
lection for the active medium. Intuitively, the particle characteristics will have
a direct bearing on the efficiency of the receiver. Also, as was discussed above,
a poor particle selection can have adverse effects on the long term system per-
formance for the entrained flow and fluidized bed design configurations. This
was indicated in the discoloration of the transparent window reported in the
fluidized bed and the entrained flow research from GTRI®) -1, Anocther draw-
back of the forced gas flow receivers is the limitation placed on the particle size
in order to achieve fluidization or upward entrainment. The free-falling design,
however, eliminates these two fundamental constraints on the allowable particle
sizes and materials. A suitable particle type for the free-falling receiver must

display the following characteristics:

a.) a low propensity towards agglomeration in high temperature, high
heat flux environments,

b.) a large resistance to the inherent thermal and mechanical fatigue
associated with the receiver design,

c.) a large absorptivity in the solar spectral range,

d.) commercial availability, and

e.) low cost.

The results of material evaluations for the free-falling receiver design are
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presented in the feasibility study by Hruby?). Initially, Sandia considered the
traditional ceramic materials such as alumina, silica, silicon carbide, and zircon
as candidate materials.

To evaluate the suitability of any particular material, particles were tested
for agglomeration behavior(?!)| thermal and mechanical fracture characteristics,

bulk absorptivity, and optical properties such as the scattering phase function,

the extinction coefficient, and the single scattering albedo(22):(23) The optical
property measurements were conducted at Battelle Pacific Northwest Labora-
tories.

Of the standard ceramic materials tested, none displayed both high solar
absorptivity and good non-agglomeration characteristics in the high heat flux
environments and the use of a more robust new particle type was indicated.

A class of alumina-, silica-, or zircon-based particles called proppants were
discovered to have the desired characteristics for the free-falling receiver design.
The particles are used extensively in the oil drilling industry and the market
for these particles is competitive with several companies producing different
versions. This will have the beneficial effect of making the particles easily
obtainable and relatively inexpensive. Table 2.1 lists some of the particles and
their solar absorptivities. The table was taken from Hruby(?).

Out of the above list of candidate particles, two were chosen for further
investigation because of their favorable agglomeration characteristics and rela-
tively high solar absorptivities. The two particles and their respective compo-

sitions are shown below.

Norton Master Beads!™ -86% alumina
-2 — 4% silica
-6 — 8% iron oxide

-4 — 5% titania
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Table 2.1: Some Common Proppant Materials

Brand Name Description Solar
Absorptivity

National Refrac- Spherical sintered 0.519

tories KF95 bauxite

Grain 14x35

Dresser Industries Spherical nebulized 0.659

Proflow low density mullite

Norton/Alcoa Spherical sintered 0.896

Master Beads 1708 bauxite

Norton/Alcoa Spherical sintered 0.917

Master Beads 1711 mullite/bauxite

Norton Research Spherical fused 0.942

Master Beads bauxite

Coors Ceramics Spherical sintered 0.556

Micro Media mullite

Type M

Carborundum Spherical sintered 0.931

Corporation mullite

Carbo Prop

Carborundum Spherical sintered 0.931

Corporation bauxite

Sintered Bauxite

SEPR Zirprop Spherical fused 0.740
zirconia

SEPR Zirprop'™ -40% zircon

-46% silica
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7% alumina

-6% titania

Results, obtained with the same tests and property measurements as were
outlined for the traditional ceramic materials, indicated that the two proppant
particles were more suitable for the direct absorption receiver than the stan-
dard ceramics. The Master Beads'™ showed no signs of agglomeration up to
temperatures of 1100°C at ambient pressures(?%), Also, measurements of bulk
absortivity as a function of wavelength showed the Master Beads'™ to have a
fairly flat absorptivity curve over the solar spectrum with a minimum value of
about 87% at 2300 nm(25):(26) An investigation of the thermal fatigue charac-
teristics showed no reduction in compressive strength after more than 100 solar
cycles were applied. The Zirprop!™ particles, having an as-received value of the
solar absorptivity significantly less than the Master Beads®™, displayed more
satisfying agglomeration trends. No agglomeration was noticed up to 1200°C
with applied pressures. However, it was noticed that the Zirprop*™ particles
absorptivity decreased sharply to about 30% at 1000°C after being heat treated
in an oven. This suggests using some kind of doping material for future solar

applications.

2.4 Radiative Modelling Techniques

Since the particle curtain is an active absorbing, scattering, and emitting
medium, a thermal analysis of the system will necessarily involve a solution
of the equation of radiative transfer (EOT) which is given below in a general

vectorial form for energy passing in the direction 2.

(2o V) InN(r, ) = — (ax +0sx) In(r, Q) + ax Ii(r)
(2.1)

4 2 / I(r, 2)®(Q — Q)dQ’
4r Q=4r
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Extensive literature exists concerning the solution of the EOT. Most solutions
involve the application of a model for the radiative intensity field and, conse-
quently, there are many models used to obtain a solution. Some of the models
considered applicable to this particular problem are outlined below for both the

one- and two-dimensional cases.

2.4.1 One-Dimensional Methods

Possibly the simplest and one of the most common solution models being
used is the Two-Flux model which is also known as the Schuster-Schwarzchild
approximation(”). This model is based on the assumption that the intensity
field in the medium is semi-isotropic and has been developed for the cases of an
absorbing-emitting medium(®), an absorbing-emitting medium with isotropic
scattering(”)"(zg), and for anisotropic scattering(39(1),

Brewster and Tien®? attempted to assess the predictive capabilities of
the two-flux method when applied to a slab of anisotropically scattering par-
ticles exposed to diffuse incident radiation. The results were compared to a
discrete ordinates solution(?®) with no empirical or adjustable constants used in
the model approximation. Findings indicate that only acute anisotropy in the
scattering phase function is responsible for causing significant inaccuracies in
the two-flux model. Recent studies have indicated that both acute anisotropy
and large optical thicknesses caused the errors(33):(34),

Incropera and Houf(®®) solved the problem of radiative transfer through
an aqueous suspension using the three-flux method. The three-flux method
was chosen since it has been determined that the two-flux method is incapable
of accounting for the interface reflection and refraction effects(36)-(37) that are
significant at air/water interfaces and because of the strongly anisotropic scat-
tering characteristics of aqueous suspensions. The three-flux method assumes
a semi-isotropic intensity field with constant intensity values over three regions

instead of two as in the two-flux model. Figure 2.1 illustrates the intensity fields
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for the two methods mentioned.

Note that the angle separating the two regions in the lower hemisphere in

the Figure is the critical angle associated with the air/water interface refraction.

Results from the three-flux model were compared to the method of dis-
crete ordinates and to radiative flux measurements obtained from a dense algal
suspension. Good agreement was noticed. This agreement was considerably
better than that obtained by applying two-flux models to aqueous suspension
problems(33):(38):(39) " The three-flux method is generally considered more ac-
curate for problems where the scattering is predominantly forward which is
characteristic of the solid particles being considered for use in the central re-
ceiver designs.

The method of discrete ordinates was applied to the problem of radiative

transfer in a solar absorbing particle flow that was investigated by Houf and

Greif(!®). The results were used to assess the influence of the radiative pa-
rameters appearing in the EOT formulation and were not compared to any
experimental data. The model calculated the radiative heat flux and the vol-
umetric absorption within the particle curtain. It also predicted the fraction
of the incident solar radiation that was absorbed by the particle curtain, the
fraction absorbed by the rear wall of the receiver and the combined reflection
effects from the rear wall and the particles. The radiative parameters consid-
ered are the single scattering albedo, the rear wall reflectivity, the total optical
thickness, the angular scattering distribution, and the angular distribution of

the incident solar radiation.

The results showed that absorption uniformity can be increased by de-
creasing the optical thickness. However, this causes the overall absorption of
radiation by the particle curtain to decrease. The same effects occur if the
albedo is increased. Increasing the rear wall reflectivity had the desired effect,
that of increasing the uniformity of the absorption as well as increasing overall

absorption by the curtain. It was also shown that particles displaying dominant
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Figure 2.1: Intensity Fields for the Two- and Three-Flux Methods
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forward scattering characteristics, such as the Al; O3 particles used in the study,
exhibited an overall better total energy absorption than other less forward ori-
ented particles, a point which supports the choice of Master Beads'™ for the

direct absorption receivers.

2.4.2 Multi-Dimensional Methods

While there is a considerable amount of literature dedicated to the solution
of the EOT for the absorbing particle problem, all of these papers assumed
that the radiative field was one-dimensional in nature. For the free-falling
particle design already discussed, there will be a large temperature increase in
the vertical direction as the particles fall from the storage hopper through the
incident solar beam. This large temperature increase (on the order of several
hundred degrees K) implies that the radiative field may be better described by
a multi-dimensional formulation of the equation of transfer.

Many models have been developed to solve the multi-dimensional formu-
lation of the EOT. These models have been developed either to specifically
address a certain class of problems or in an effort to re-formulate the EQT for
all cases into an equation system that is more compatible with a numerical solu-
tion technique. The latter approach is the one applied in the present study due
to 1.) the lack of specialized models for the DAR, 2.) the need for algorithmic
simplicity and computational efficiency and 3.) a generality constraint set by
the need to easily couple the governing equation for the intensity field to other
equations (usually partial differential equations) describing important physical
processes in the DAR. Some of these will be presented below.

A two-dimensional formulation of the EQOT was developed by Breig and
Crosbie(*®) for a finite non-scattering medium subjected to cosine varying radia-
tion, by Crosbie and Linsenbardt{*!) for an isotropically scattering semi-infinite
medium, by Crosbie and Dougherty(4?) for isotropic scattering in a cylindrical

medium, and by Crosbie and Koewing(*®) for an anisotropically scattering finite
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planar medium. All of the above formulations involved calculating the source
function integral, the flux, and the intensity at the medium boundaries only.

A survey of some recent two-dimensional radiation literature can be found in

Crosbie and Linsenbardt(41).

In [41], the classical solution to the EOT for isotropic scattering in a homo-
geneous, non-emitting medium with an index of refration of unity was formu-
lated to calculate the radiative flux in a semi-infinite medium as a function of
two spatial directions. (A similar approach was taken in [40] — [43].) Four dif-
ferent types of incident radiation were considered: cosine varying, semi-infinite
strip, step at the origin, and a finite strip. Mathematical expressions for each of
these are presented in tabular form as well as the expressions that are developed
for the dimensionless source function and the radiative flux inside the medium
resulting from the given boundary conditions. Eventually, the intensity inside
the medium is expressed in terms of generalized transmission and reflection

functions and is likewise tabulated for the different boundary conditions.

Ambarzumian’s method*4) is then used to evaluate the source function at
the boundary without knowing it at every interior point in the medium. This
is accomplished by formulating the problem for the dimensionless collimated
source function as an integro-differential equation with an appropriate bound-

ary condition. The boundary condition then is shown to be analagous to the

one-dimensional H-function of Chandrasekhar(?®) which can be expressed in
exponential integral form. Laplace transforms are then taken and the result is
a solvable integral equation for the source function at the boundary which is

eventually used to determine the fluxes at the boundary.

A numerical procedure is outlined for evaluating the resulting equations.
The results are presented for each of the incident radiation cases in a parametric
sense for different values of albedo. Although no comparisons with experimental

work are presented, a comparison to an appproximation of the non-dimensional

source function at the boundary developed by Jefferies(*®) shows reasonable
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aggreement with differences attributed to “unrealistic discontinuities in some

of Jefferies results.”

Bellman, Kalaba, and Ueno(*®) consider a semi-infinite non-homogeneous,
anisotropically scattering, non-emitting medium and use the method of invari-

ant imbedding to solve the radiative transfer problem. A development of the

invariant imbedding technique can be found in Bellman and Kalaba(47):(48),
The method involves adding a flat layer of infinitely small thickness to the
boundary surface. This thin layer has a single scattering albedo different from
that of the medium of interest. This has the effect of changing the reflecting
power of the original medium. In considering the contributions of the new layer
to the change in the medium, the functional equations governing the radiative
processes in the medium are developed. In this way, the original radiative trans-
port problem is imbedded in a new problem that defines the transport through
the new medium. No results, along with any corresponding comparisons, are

presented.

A vertical two-stream approximation developed by Harshvardhan, Wein-

man, and Davies*) was used to solve the three dimensional equation of transfer
for radiation in cuboidal clouds. The two-stream approximation separates the

intensity in the medium into a forward and backward hemisphere where the
intensities, IT and I~, are identified with p = i\/g where u is the direction

cosine, cosf, with 6§ measured from the vertical axis in the cloud (z-axis). Note

that i\/g are the first order gaussian quadrature points. This choice allows

the 6 integral, rewritten in terms of u, to be evaluated using first order gaus-
sian quadrature. The equation of transfer is then recast in these terms and
the scattering phase function is expanded in a series consisting of zero and first
order Legendre functions. Next, the forward and backward intensities are also
expanded in a series of Legendre functions in terms of the z and y direction

intensity components as well as the forward and backward components of the
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z direction intensity. Several variable substitutions are made until, eventually,

the three dimensional EOT is expressed as a standard elliptical equation of the

form

V2T = X¥(I - By) (2.2)

where

A= +/3(1 -w)(1 —wg) (2.3)
I= %(I;* +1I7) e (2.4)

and By is the Planck blackbody distribution (assumed constant throughout the
cloud.) In Eq. (5) above, w is the single scattering albedo and g is an asymmetry
parameter introduced in the Legendre expansion of the phase function. The
fluxes on the cloud faces are then expressed as functions of I and gradients of
I and the net radiant flux vector becomes a simple expression in terms of the
albedo, I, and By.

An exact solution to the two-stream development was obtained using fi-
nite Fburier transforms. Results from the two-stream approximation were then
comp.ared to a direct Monte Carlo simulation that was developed for cloud
applications by Davies(3®) and Weinman and Davies(®"). The two-stream ap-
proximation was seen to predict the flux on the cloud faces to within about 5%
of the Monte Carlo results.

As was mentioned in the cuboidal cloud paper discussed above, Monte
Carlob methods have been used to confirm the validity of newly developed the-
ories. They have also been applied to simulate the transfer processes occurring
in direct absorption solar receivers. Yang, Howell, and Klein(®?) used a Monte
Carlo simulation to predict radiative transfer through a randomly packed bed
of spherical particles of uniform diameters. Emission was neglected and the
container was assumed evacuated. The two-flux approximation was used as the

theoretical basis for the Monte Carlo simulation that predicted the effective
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scattering and absorption coefficients. The random particle packing was mod-
eled by a numerical simulation of rigid spheres slowly settling into a packing
assemblage. Some comparisons with existing experimental data and with exact
solutions for the limiting case of cubic packing show reasonable aggreement.
However, the Monte Carlo method is not expected to be easily applied to free-
falling or entrained flow particle systems where the particle motion complicates
the simulation technique.

As was previously mentioned, the method of discrete ordinates has been
used to solve the equation of transfer for many different participating media.
A one-dimensional solution for a direct absorption, solid particle solar receiver

was presented in [19]. This method has been expanded to the multi-dimensional
case for rectangular enclosures by Fiveland(®®). The EOT was formulated for a
gray absorbing, emitting, and isotropically scattering medium. Derivations of
the discrete ordinates equations are given in Chandrasekhar(?9), Basically, the
method involves breaking up the radiative field into a discrete set of ordinate
directions where the intensity is assumed constant in each. Hence, the discrete
ordinate method is just an extension of the two-, three-, and six-flux methods
that are common in the literature. Figure 2.2 illustrates the concept. The EOT
can then be written for each direction with the in-scattering integrals evalu-
ated through the use of a quadrature technique and summed over each ordinate
direction. The two-dimensional transfer equation for ordinate direction m in
cartesian coordinates for a gray medium then becomes (the wavelength sub-
script has been dropped for convenience but the quantities are monochromatic)

Oy , O
0

- _ Gs o :
pm gt Em =~k +aly o+ i/_:wm Bt —n I (2.5)

where y and £ are the ordinates (i.e., the direction cosines) and « and « are the
extinction and absorption coefficients, respectively. The w,,s is the quadrature

weighting function which is determined by the choice of quadrature method
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used. The in-scattering term represents energy coming into the m direction
from each of the other ordinate directions. The above equation, written for
each ordinate direction represents m coupled partial differential equations for
the intensities, I,,. The radiant heat flux at a point, which is physically related
to the intensity field through an integral over all solid angles, then becomes a
weighted sum of the intensities from each ordinate direction multiplied by the

ordinate direction
q(x) = / I(r, 2240 = 3 wii I(r, 2,) (2.6)
Q=47 :

where ) represents the ordinate direction.

The solution to the discrete ordinate set of equations requires an itera-
tive numerical procedure characterized by initially assuming the boundaries
are black and the in-scattering source terms are zero (i.e., for the first iteration
through the expression to determine a “first guess” at the intensity field). Then,
after calculation of the initial iteration of the radiant intensity distribution in
the mediﬁm, the non-zero values of the source terms and the boundary emis-
sivity are used and the process is repeated until satisfactory convergence of the
nodal intensity values is observed.

The results of the method are compared with exact solutions, Hottel’s zone
results, P3 differential approximations(®*), and an approximation developed by
Modest®® in Fiveland’s study. In general, the discrete ordinates method pre-
dicts heat fluxes that are closer to the exact solution than the P3 approximation
and the zone method if the method is applied as a 12-flux approximation at
least. The author evaluated results for 4-, 12-; and 24-flux approximations
in his study. Other researchers have also verified the accuracy of the discrete
ordinates method (Truelove(®®)).

It is clear that the discrete ordinates method is a valuable tool in the

solution of the direct absorption solar receiver problem. It’s simple concept
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Figure 2.2: Discrete Ordinates Approximation of the Intensity
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translates into a generalized approximation of the EOT that is accurate (the
accuracy increases if higher order ordinate sets are used) and algorithmically
simple. Also, since the method approximates the general continuous equation of
transfer with a discrete set of partial differential equations (in multi-dimensional
cases) each with a simple numerical quadrature summation term, the coupling
between this equation system and other physical process equations is considered
straightforward.

A description of a method to derive the values for the ordinate sets and

an explanation of some of the inherent errors associated with the technique

are presented in Carlson and Lathrop(®%). The errors originate due to the
assumption of constant intensities over a defined solid angle. At the boundary
of one of these regions, there will essentially be a step change in the intensity
value. If the line between an emitting element in the medium and an absorbing
element lies along this boundary, then the absorbing element cannot “see” the
emitter. Consequently, the total energy that is absorbed by this element will
be in error for all emitters that lie along the boundaries of one of the ordinate
directions. This type of error has been called “ray effects” by the authors and

is discussed in their study.

2.5 Particle Scattering Characteristics

Some literature was reviewed in an effort to establish some of the scat-
tering characteristics involved with the free-falling direct absorption particles.
It is apparent, due to the anticipated particle curtain thickness and the dis-
tances between free-falling particles, that only single elastic scattering need be
considered.

The parameter of interest in scattering theory is the scattering phase func-
tion. The phase function, usually denoted by the symbol @, represents the
probability density with which energy is scattered into the direction of inter-

est from all of the other directions. The function appears in the in-scattering
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integral in the EOT and the entire term represents an increase in the inten-
sity field in the direction €2 due to scattering from all other directions. There
are basically two ways in which the scattering phase function is determined
for a certain medium. A theoretical approach may be employed. The general
scattering theory is known as the Mie scattering theory. In the limit as the scat-
tering cross-sections (basically the effective area of the particle that can scatter
energy) become either very large or very small, simpler theories known as the
geometric and Rayleigh theories (respectivley) may be applied. The second ap-
proach for determining of the phase function is to fit experimental data taken
from the medium to a function that is well suited to modelling spherically vary-
ing quantities, the Legendre polynomial. The data are generally obtained by
measuring the energy that is scattered into a given direction from a collimated
source entering the medium from a known direction.

A paper by Cartigny(®®) on dependent scattering of spherical particles dealt
with scattering categorizations with respect to three characteristic lengths; the
wavelength of the radiation, A, the particle diameter, d, and the clearance be-
tween particles, c. Recall that the range of particle diameters being considered
in this study is 100 — 1000 pm. As is described in Cartigny and in Seigel and
Howell(")| the type of scattering is determined by the magnitude of the size

parameter, X, where X = 1&4. The three types of scattering theory that were

mentioned above are defined by this size parameter; the respective ranges of

applicability, based on this parameter, are shown below.
X <<1 = Rayleigh
X ~1 = Mie
X >>1 == geometric

Note that Mie scattering theory is actually a general theory that is capable
of determing the scattering characteristics of a particle of any diameter. Be-

cause of this more wide ranging applicability, the theory is consequently much
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more complicated to apply than the Rayleigh and geometric theories which are
considered limiting cases for large or small particles. For the Norton Master
Beads!™, with a diameter of about 600 um exposed to solar radiation, the size
parameter ranges from 942 to 6280 which clearly indicates geometric scatter-
ing. However, in an attempt to insure accuracy, it is anticipated that both
the geometric and the Mie theories will be applied to predict the scattering
characteristics.

Brewster and Tien(®”) discuss the separation of particle scattering into
dependent and independent regimes based on the size parameter, the dimen-
sionless clearance, £, and the particle volume fraction. Their results, in the
form of a plot of the various scattering regimes as functions of the clearance
and size parameter, is reproduced in Figure 2.3. Their findings clearly indicate
that, regardless of the volume fraction or the clearance to wavelength ratio, the
scattering from particles with large size parameter values will be independent
in nature.

Researchers at Sandia(??) have made measurements of the phase function
and fit them to Legendre polynomials to obtain a usable form for the solution of
the EOT. The results displayed the expected behavior for absorbing particles in
the geometric regime, namely, linear anisotropic scattering. This type of particle
scatters strongly in the forward direction and is approximately isotropic in all
others. A sketch of the linear anisotropic scattering phase function is shown in

Figure 2.4.
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Chapter 3: Theory

3.1 Introduction

A derivation and explanation of the discrete ordinates approximation for
the equation of radiative transfer (EOT) is included in this Chapter. The EOT
and a formulation of the conservation of energy equation are presented in general
form for problems in Cartesian coordinates. Also, general forms of the pertinent
boundary conditions for the governing equation system are presented. Details
of the specific derivations of the method to one-, two- and three-dimensional
problems with media in both radiative equilibrium and combined mode situ-
ations will be presented separately in subsequent Chapters. This Chapter is
intended to introduce the reader to the multi-dimensional equation of transfer

and the discrete ordinates approximation.

3.2 General Formulation of the Equation of Radiative Transfer

The equation of transfer is developed by considering the net change in the
spectral radiant intensity in the direction € as it passes through a region of
an absorbing-emitting-scattering medium (Figure 3.1). If the local absorption
and scattering coefficients are written as ax(T,p) and osx(7T,p) and if local
thermodynamic equilibrium (LTE) is assumed, then the general form of the

EOT for energy passing through a distance dS at a point ris

%(r, Q) = [CYA(T, p) + UsA(Ts p)].[,\(r, Q) + a)‘(T’ p)I)\,b(r)

(3.1)

+ 9o / Ln(r, )80\, 2, )Y
4m Qi=4n

Physically, the above expression equates the spatial changes in the spectral
radiant intensity as it passes through the infinitesimal volume element to (1) the

decrease in the intensity due to absorption and out-scattering, (2) the increase
in intensity due to the volumetric emission from the medium (ax(T, p)I(r))

and (3) the increase in intensity due to in-scattering (the integral term in Eq.
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3.1). The scattering phase function, (X, 2, €;), is a normalized quantity rep-
resenting the ratio of the intensity that is scattered in a particular direction,
Q;, to the intensity that would be scattered into that direction if the scatter-
ing were isotropic (i.e directionally uniform). Since @ is actually a distribution

function, then it must be true that

1

4w Qi=4n

B(\, Q,0:)dY =1 (3.2)

The in-scattering integral represents the spectral radiant intensity that is scat-
tered into the €2 direction from all other directions.

Due to the complexity of the general form of the EOT, and to the physi-
cal conditions present for typical engineering applications of radiative transfer
problems, Eq. 3.1 can be simplified to a more reasonable form for comparison
to other known solutions of the radiation problem. This may be accomplished
by considering a gray medium (i.e independent of wavelength) in which the

radiative properties are independent of direction (i.e., diffuse). For this case
ax(T,p) =« (8.3)

osa(T,p) = o5 (3.4)

The general form of the equation of transfer becomes, for the gray, diffuse

properties case

%(r’ Q) = — [a+ 05)I(r, ) + aly(r)
(3.5)

+ 2 I(r, Q)3(S, 0;)d;
4r Qi=4n

Eq. 3.5 is often rewritten by defining the extinction coefficient (), the optical

thickness (7) and the single scattering albedo (wy) as

k=a+ o, (3.6)
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S
?:/‘dsmmﬂ:m+agr (3.7)
0
Og _ Tg
wo—*;w 0'3+Oé (38)

where the quantities in Eqs. 3.6, 3.7, and 3.8 are written for a gray medium
with uniform (i.e., invariant along the path), diffuse properties. Substituting

these quantities into the diffuse, gray form of the EOT (Eq. 3.5), we obtain

dI

—=(7.0) =~ I(7,9) + (1 — w0 ) Iy(7)

(3.9)
+§% I(7, Q) B(8, €;)dSY;

Q=4

Often, the expression is simplified further by defining the source function as

FE =0-eol(+ 2 [ IEee@adn @10

Q;=4x

which yields

%(;7 Q)+ I(7,02) = F(7, Q) (3.11)

The equation of transfer, in any of the forms above, can be written for Cartesian
coordinates in three dimensions by transforming the spatial derivative into it’s

three components

0dr ddy 0 dz

d
47 dzdr dydr oz dF (3.12)

The direction cosines between the 7 direction and the three coordinate axes
can be defined as g = dz/d7 = cosl, ¢ = dy/d7 = sinfcos$ and n = dz/d7 =
sinsing where 8, ¢ are defined in Figure 3.2. The EQT can then be written

for both the spectral, diffuse and the gray, diffuse cases, respectively, as

ol ol , ol _ o -
po (T 8) +¢ o (7,0) + 05 2(7,9) = ~I\(7, Q) + F(7, Q) (3.13)
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B ﬁ(l’ugm)

Figure 3.2 Direction Cosines of the Vector §} in Cartesian Coordinates
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and

oI

5;('?7 Q) = _I(F7 Q’) + f(’?’ Q) (3'14)

oI oI
—(7 —(7, 82
#ax(T’Q) + éay(Ta )+ 7
where the direction vector, {2, can be written as

Q=& n) (3.15)

This leads to the following general vectorial formulation of the equation of

radiative transfer

(V- I\, Q) = ~I\(7,92) + F(7,Q) (3.16)

The spectral heat flux in the z direction at a point, 7, in the medium is then
determined by integrating the radiant intensity over the direction cosines that

correspond to the z direction
qr, (T, A) = / IN7, Q)pdp (3.17)
p=4m
The spectral radiative heat flux vector then becomes

Qe(A) = gr, (F, )i + ¢r, (F, )] + @, (7, M (3.18)

And the total heat flux is obtained by integrating the spectral vector over all

wavelengths

qr = A qr(A)dA (3.19)

=0

3.3 The Method of Discrete Ordinates

As was discussed earlier, a solution of the general formulation of the EOT

is difficult for all but the simplest radiative situations in which the solutions
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are not physically realistic. The development of an approximate method of so-
lution for the governing equation and the associated boundary conditions has
been a critical aspect of the study of radiation heat transfer. In the past, re-
searchers have approached this problem from two general directions. In both
cases, approximations to the field variable distribution (i.e., the radiant in-
tensity field, Ix(7, ), in the EOT, or the neutron density field in the identical
neutron transport equation (NTE) used in the field of reactor physics) have pro-
duced meaningful results that exhibited satisfactory accuracy when compared
to exact solutions of limiting case problems. The first approach involves obtain-
ing a highly accurate approximation to the pertinent field variable distribution
through whatever methods exist. This type of solution has the advantage of
high accuracy but suffers from it’s lack of generality. It may only be applied to
the specific problem at hand and quickly loses accuracy and physical significance

when applied outside it’s intended domain.

A second approach to the problem involves the development of an all-
purpose technique that can be applied to any situation in which the pertinent
equation applies. This approach has the advantage that it represents a general
approximation of the governing equation system itself rather than describing
the behavior of the field variable in a specific situation. It’s disadvantage rests
in the fact that, since it was developed to be applicable to all problems, it pro-
duces estimates of the distributions that are less accurate than a specific, high
accuracy solution would yield. However, this second approach will have suffi-
cient generality to provide information about the relationships among different
classes of problems that are all governed by the same equation system (eg.,
scattering dominated versus absorption dominated media). This added benefit
illustrates this approach’s superior ability to describe the physical characteris-

tics of any applicable problem.

The development of the discrete ordinates method was carried out along

the lines of the second method described above. It is a general approximation
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of the pertinent physical quantities that is applicable to any situation that can
be described by the distribution of that variable.

The main underlying assumption upon which the discrete ordinates method
was constructed was first discussed by Schuster in 1905(°®) and Schwarzschild
in 1906(61) in a model of the intensity distribution that bears both of their
names. They broke the intensity field at any point in a participating medium
into constant, but not necessarily equal, streams; one value over the forward
hemisphere, I;f, and one over the back hemisphere, I .

The EOT can be written for the constant intensity in the forward and
backward directions and the resulting form then integrated over 6 for each

hemisphere to yield two, coupled partial differential equations of the form

¥(r
SBD B - AR+ O - Dal) (320)
and
e B Y ORI (ORI (o BV B EEY)

The first term on the right hand side of Eqs. 3.20 and 3.21 represents the
extinction, the second term represents the already integrated value of the in-
scattering and the last term is the emission from the medium.

The extension of the Schuster-Schwarzschild (2 flux) approximation to the

general discrete ordinates method was considered by Chandrasekhar(29. To ad-
equately describe the radiation transport in a medium that scatters anisotrop-
ically, the intensity field must be broken up into more than two discrete direc-
tions. Consequently, the discrete ordinates method breaks the intensity field
down into NN discrete streams. The directions for each stream are determined
by dividing the unit sphere into equal segments and are defined as the direc-
tion cosines of each direction projected onto the coordinate axes. The three

dimensional, spectral equation of transfer can then be written for the intensity
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in each of the discrete directions with the in-scattering integral now replaced
by a numerical quadrature technique where the quadrature points correspond

to the ordinates. The equation becomes

OIm,»

8Im,/\
Hm 5

Oy

oI
+ nm”é@;i = = Imx + (1 —wo)lm b

+&m
. (3.22)
wo
+ ar ;w,@;qu,)\

Equation 3.22 represents ﬂn—;ﬁ coupled, first-order ordinary differential equa-
tions, where n is the number of independent ordinate values chosen. Due to
symmetry over the unit sphere, only 2 ordinate values for each spatial direction
are required to provide a 4 flux approximation of the intensity field.

Applying the definition of the spectral radiative flux vector, Eq. 3.17, to
the discrete intensities in Eq. 3.22 yields

N
g (9,2, 0) = / QL2420 = S wiL,  (3.23)
Q

=4 i=1

The total integrated flux must be calculated using Eq. 3.19 before it’s diver-

gence is calculated for use in the conservation of energy expression.

3.3.1 Ordinate Points and Weights

Since the discrete ordinates method was developed to allow the solution
of the general transport equation, any and all physical conditions and symme-
tries that are exhibited by the particular distribution function (i.e., intensity
or neutron diffusion) must be preserved in the approximation. To ensure this
preservation, careful attention must be paid when selecting the angular quadra-
ture points and weights for the model.

The choice of the components of the direction vector, €2, (i.e., ui, &, n;)

is made by dividing the unit sphere into equal surface areas. The weights
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associated with these ordinate points are then determined such that they sum

to unity provided the surface area on the unit sphere is stated in units of 4=

steradians. Also, to be mathematically consistent (Carlson and Lathrop(®?),

the relationships between the weights and the ordinates must satisfy at least

one of the following relationships:*

N
Z piw; =0 (3.240)
i=1

N

> &wi=0 (3.24b)
=1

N .
D niwi =0 (3.24¢)
i=1

The choice of the ordinates and weights actually is a discretization of the
direction domain similar to the spatial discretization that will be performed
on the medium to allow the calculation of the intensity field. As such, the
direction “mesh” as defined by the ordinates (i, ¢, ) must be computationally
invariant regardless of the spatial mesh chosen and should preserve the physical
properties of the in-scattering term (i.e., equal probabilities that scattering will
take place from the direction r into the direction r' and vice-versa).

Likewise, symmetry considerations also impose conditions on the choice of
the weights. As is true with the ordinates, the weights must also be invariant
under geometric transformation. Because of this constraint, it can be shown
that there are ¥ — 1 independent point weights for values of n in the range

2 < n < 12. Negative weights occur for values on n greater than 22. However,

(62) that, in

1 For the present study, a set of ordinates was chosen from a paper by Lee
order to allow all of the weights to be positive, only satisfied the sum-to-zero relationship for

the (4 and & directions.
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since unrealistic results can be obtained when applying the discrete ordinates
method with negative weights and comparisons have shown that excessively
higher order ordinate sets (above Sg) do not significantly increase the model
accuracy while requiring excessive CPU time, ordinate sets above 24-fluxes are

not considered.
For the current project, the ordinates and weights that were used are given

in Tables 3.1, 3.2, and 3.3. As was previously mentioned, these values were

taken from Lee(62),

Table 3.1

Ordinates and Weights for the S» Approximation (taken from Lee(82))

Direction
Number Ordinates Weight*
() (&) () (w;)
1 -.57735026 -.57735026 0.57735026 1
2 0.57735026 -.57735026 0.57735026 1
3 -.57735026 0.57735026 0.57735026 1
4 0.57735026 0.57735026 0.57735026 1

* Weights should be multiplied by .

3.3.2 Scattering Phase Function

Knowledge of the scattering behavior of the medium is required to solve
the EOT using the discrete ordinates formulation. Since the discrete ordinates
method is a general approximation of the intensity or neutron distributions,
a general formulation for the scattering phase function that also satisfies the
physical constraints of the medium is needed. The phase function represents

the normalized probability density function that describes the scattering from
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Ordinates and Weights for the S4 Approximation (taken from Lee(¢?) )

Direction
Number Ordinates Weight*

(i) (&) (ni) (wi)
1 -.333333333 -.881981710 0.333333333 1/3
2 0.333333333 -.881981710 0.333333333 1/3
3 -.881981710 -.333333333 0.333333333 1/3
4 -.333333333 -.333333333 0.881981710 1/3
5 0.333333333 -.333333333 0.881981710 1/3
6 0.881981710 -.333333333 0.333333333 1/3
7 -.881981710 0.333333333 0.333333333 1/3
8 -.333333333 0.333333333 0.881981710 1/3
9 0.333333333 0.333333333 0.881981710 1/3
10 0.881981710 0.333333333 0.333333333 1/3
11 -.333333333 0.881981710 0.333333333 1/3
12 0.333333333 0.881981710 0.333333333 1/3

* Weights should be multiplied by .

one direction, Q' into the direction in which the equation of transfer is currently
being solved, §). The common means for describing the scattering phase func-
tion is in terms of an infinite series of Legendre polynomials written for each of

the directions as

@(Q', Q)=1+ i aij(Q')P]-(Q) (3.25)

Jj=1
where P;(Q)') and P;(Q2) are the Legendre polynomials of order j in the two
directions of interest.
For practical reasons, the series of Eq. 3.25 is truncated after a certain

number of terms has been calculated. Increased accuracy is obtained for se-

ries with more terms at the expense of computational efficiency and increased
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Ordinates and Weights for the Sq Approximation (taken from Lee(%2) )

Direction
Number Ordinates Weight*
(i) (&) (i) (wi)

1 -.25819889 -.93094934 0.25819889 0.16086125
2 0.25819889 -.93094934 0.25819889 0.16086125
3 -.68313005 -.68313005 0.25819889 0.17247209
4 -.25819889 -.68313005 0.68313005 0.17247209
5 0.25819889 --.68313005 0.68313005 0.17247209

6 0.68313005 -.68313005 0.25819889 0.17247209
7 -.93094934 -.25819889 0.25819889 0.16086125

8 -.68313005 -.25819889 0.68313005 0.17247204
9 -.25819889 -.25819889 0.93094934 0.16086125
10 25819889 -.25819889 0.93094934 0.16086125
11 0.68313005 -.25819889 0.68313005 0.17247204
12 0.93094934 -.25819889 0.25819889 0.16086125
13 -.93094934 0.25819889 0.25819889 0.16086125
14 -.68313005 0.25819889 0.68313005 0.17247204
15 -.25819889 0.25819889 0.93094934 0.16086125
16 0.25819889 0.25819889 0.93094934 0.16086125
17 0.68313005 0.25819889 0.68313005 0.17247204
18 0.93094934 0.25819889 0.25819889 0.16086125
19 -.68313005 0.68313005 0.25819889 0.17247204
20 -.25819889 0.68313005 0.68313005 0.17247204
21 0.25819889 0.68313005 0.68313005 0.17247204
22 0.68313005 0.68313005 0.25819889 0.17247204
23 0.25819889 0.93094934 0.25819889 0.16086125
24 -.25819889 0.93094934 0.25819889 0.16086125

* Weights should be multiplied by =.

difficulty for determining the coefficients, a;. Usually, lack of data on the dis-
tribution of scattered energy limits the number of terms allowed.

The coeflicients in Eq. 3.25 can be determined either by experimentation or

48



Chapter 8: Theory

through theoretical considerations. Measurements of the energy that a medium
scatters into certain directions can be made for many directions. The resulting
data can be curve fit using Eq. 3.25 as the model. The number of parameters in
the model (i.e., the a;’s) will then be determined through statistical constraints
regarding the accuracy of the model and the data. Physically, the number of
parameters must always be less than the number of data points which places

significant limitations on the series expansion.

Theoretically, the scattered energy in the medium can be determined using
Mie scattering theory which is based on the size parameter defined as z = 3—’)—\4
where d is the diameter of the scattering particle and A is the wavelength of the
incident energy. This method is usually prohibitively difficult for most practical
engineering applications (although easier approximations can be made for cases
when the size parameter is relatively large or small). While the final step will
still involve fitting the Legendre function to results of the scattering theory,

the series can usually be taken out to many more terms than the experimental

system will allow.

For isotropic scattering (i.e., directionally uniform), no terms from the

infinite series are used and the phase function becomes
(0, Q) =1 (3.26)

Many cases involving linear anisotropic scattering can be closely approx-
imated by considering the zeroth and first order Legendre functions. So, for

azimuthally symmetric media, the relationship can be written
P(6',6) =1+ cos(8')cos(6) (3.27)
In terms of the scattering phase function as given in Eq. 3.25, ® can be written
Q) =1+ ar(pp+EE+n'n) (3.28)

In this form, a; represents an asymmetry factor with a range of —1 < gy < 1

where values of -1, 0 and 1 denote backward, isotropic and forward scattering
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respectively. Equation 3.28, while being a one parameter model, has been

modified to a two parameter model of the form
B(Q,Q) = ao + a1 (p'p + €€ +1'n) (3.29)

to allow for calculation of a higher accuracy function for ®.
To be used in the discrete ordinates formulation, Eq. 3.28 (or 3.29) is
simply written in terms of the scattering from one ordinate direction to the

direction that is being considered in the given ODE (i.e., ®mrm).

3.4 Energy Conservation

A general statement of energy conservation in the medium allowing for

fluid motion, convective losses and internal energy generation can be written

DT
per 5y (20, 5,1) = =V - @(2, 4, %,8)] + 0" + Qeony (3.30)

where ¢'" is the volumetric internal generation term. For the free-falling particle
problem and any radiative situations that will be used for model verification in
this work, steady-state conditions may be assumed (i.e., the free-falling particle

problem is reduced to a “steady-state, steady flow” problem). Eq. 3.30 becomes

oT oT oT
PeiiCress (5“ Tovgy, T ‘a“> = =V qe(2,4,2) + ¢" + Qeono (3.31)

The radiative flux vector can be determined using Eq. 3.23 and it’s gradient
calculated numerically. However, a more accurate representation of the flux
vector gradient may be developed by determining the net radiative energy that
is supplied to a volume element of the medium. This is accomplished by al-
gebraically combining the absorbed, scattered and emitted energy in a volume

element of the medium. For the non-scattering case (65 = 0), the absorbed
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energy can be determined by considering the amount of the incident intensity,

I\(z,y,z,), that arrives within the solid angle df} as
d*Qu(z,y, 2, \) = axIx(z,y, 2, Q0)dVdQd) (3.32)

By integrating over solid angle and wavelength, the above expression can be

written in terms of the zeroth moment of intensity, [ , a8

O

d*Q, = 4ndv arx(z,y, 2) (3.33)
A=0
where the zeroth moment is defined as
. 1 47
D(z,y,2) = —/ In(z,y,2z,Q)dQ (3.34)
4m Q=0

Likewise, the energy that is emitted from the volume element can be written as

o

d’Q. = 4dv axexp(T)HdX (3.35)

A=0

Combining the emission and the absorption yields an expression for the flux

vector gradient for non-scattering media of

oo

Vealou ) =4 [ aes®) -rhpd (630

A=0

Similar arguments lead to the expression for V - q, for a general absorbing,

emitting and anisotropically scattering medium. The result is

oo

V-qe(z,y,2)] :4/

L {Cv)\[c’)\,b(T) — wl\(z,y, )]+

(3.37)
Is In(z,y, 2, Qi)é(Qi)in}d)\
4 Q;=4w
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where

1

() = o /Q . (R, Q;)d (3.38)

For the purposes of comparison, the energy equation will be written in three
forms (to allow for three different energy situations); 1) radiative equilibrium, 2)
uniform internal energy generation with no covective losses and 3) fluid motion
and convective losses with negligible internal generation. For the free-falling
particle problem, the curtain is considered the medium. So, the conduction
loss term, which would be driven by the temperature non-uniformity of the
particles and the intervening air, may be assumed negligible. Also, the particle
motion is primarily in the vertical direction (y-direction) with negligible curtain
“spreading” (i.e., relatively small velocities through the thickness, z-direction,
or width, z-direction, of the curtain) and, due to insulation and the fact that the
surface area of the z boundaries is usually much smaller than the other bounding
surfaces, the intensity distribution is assumed uniform in the z direction.

For an enclosure with a quiescent medium, the energy balance can be
written either as a situation of radiative equilibrium or with uniform internal
generation assuming that the conductive transfer through the medium is negli-
gible compared to the other energy transport mechanisms). The three resulting

forms of the energy conservation equation which will be considered are the

following:
V- qr(ma Y, Z) =0 (339)
V- ae(z,y,2) = ¢" (3.40)
orT
peffcpe.ff (’Uy a_y> = —[V : ql‘(l'7 Y, Z)] + Qconv (34:1)

for radiative equilibrium, internal generation and radiation with convection
and fluid motion, respectively. The formulation of the convective loss term is

discussed in Section 3.7 of this Chapter. The effective density and the effective
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specific heat are defined in terms of the porosities as
Peff = EaPa + EpPp (3.42)

and

Cpe.ff = €aCp, + 5Pcpp (3.43)

The values of the air porosity, €4, (i.e., the volume of air in a volume of curtain)

and the particle porosity, €, (1 — €,) will be determined experimentally.

3.5 Formulation of Boundary Conditions

The boundary conditions that are used to solve the equation system de-
fined by the coupling of the EOT and a formulation of energy conservation are
presented here in general form and then in discrete ordinates form. Boundary
conditions for both the free-falling particle flow and the benchmark cases of
rectangular walled enclosures are both developed.

The boundary conditions for the walled enclosure radiative problem can
be developed by balancing the intensities at each boundary. The boundary
intensity will be a function of the emission of energy from the wall (isotropic)
and the reflection of incoming energy from the wall to the medium if the walls
have ermissivities that are less than unity (non-black). Figure 3.3 illustrates the
intensity components at the boundary.

If the walls are assumed to reflect and emit diffusely, than the general form

of the radiative boundary condition can be stated as

I,\(I‘b, an.g>g) = ewIA,b(rb) —+ iﬂ / !n . Q'|I(rb, Q’)dQ’ (3.44)
T Jn-Q<0

where n is the unit normal vector of the bounding surface and ry, represents the
position vector along the boundary. Notice that the reflection term is written

with the integral over only the incoming solid angles. The integrated value
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—— Wall at Ty

'A,i (incoming intensity)

Figure 3.3 Intensity Balance at the Wall
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is actually the incoming heat flux, the intensity is determined by dividing the
quantity by the solid angle of a hemisphere (7).

Eq. 3.44 is written for every solid bounding surface. In the case of the free-
falling particle flow, the front face of the particle curtain has no solid boundary.
Rather, concentrated solar energy is directed into the curtain at that point. For
this case, the intensity at the boundary is only a function of the energy deliv-
ered to the curtain from the incident flux (doesn’t depend on the conditions
at a solid wall). The formulation of this boundary condition in a manner that
makes it conducive to easy solutions given experimental data presents certain
mathematical difficulties. The problem posed by the solar central receiver mer-
its special attention due to it’s uniqueness and is discussed in Section 3.6 of this
Chapter.

In order to demonstrate the validity of the model, comparisons with ex-
isting solutions are made. These comparisons were comprised of some exact
solutions of certain limiting case problems and some numerical solutions whose
accuracy has already been demonstrated. For all of these problems, the bound-
aries were formulated as solid walls. So, a general discrete ordinates formu-
lation of the wall boundary condition must be developed. The expression is
obtained by writing the continuous boundary expression (Eq. 3.44) for each
discrete direction that has ordinate values corresponding to a positive surface
(i.e,, n-Qu, &, n) > 0) and once again replacing the integral in the expression
by a numerical quadrature routine. For a general two-dimensional enclosure
with the walls numbered as shown in Figure 3.4, the boundary conditions in

discrete ordinates form are

N
In(0,y) = w1 (0, y) + E—;‘i wi|pi|1i(0,y) 5 pm >0 (3.45a)
ue£<0
P N
w3
Ln(Lz,y) = ewsly(La,y) + =2 > wilpilli(Le,y) 5 pm <0 (3.45b)
.ue'>0
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N

In(z,0) = ewals(z,0) + -’-’f‘- wiltilI(z,0) ;£m >0 (3.45¢)
E.‘i<°
N
Im(z, L) = w2 ly(z; L) + -”—;—’rf?- wiltilli(z,Ly) 1€m <0  (3.45d)
’ 6;;0

Wall #1
TVI: ev‘

Wali #4
TV4, £V4

L 4

) a
Figure 3.4 Two-Dimensional Walled Enclosure

The boundary conditions for the steady-state form of the energy equation
depend on which of the combined mode forms the model is being applied to.
For the ;adiative equilibrium and internal generation problems, the model will
be compared to existing solutions in which the temperature at each wall is
known (usually one wall is “hot”, T' > 0 and all of the others are “cold”, T = 0

for the equilibrium case and both walls cold for the generation case) and is
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assumed uniform. So, the energy boundary conditions for thisvcase are simply
stated uniform temperatures on each wall. For the free-falling particle flow
through the solar receiver, the energy equation requires only a statement of the
medium inlet temperature at the top of the receiver. Since this temperature is
known (usually ambient), the boundary condition for this case is also a simple

statement of a known, uniform temperature.

3.6 Front Face Boundary Condition Formulation

To develop a statement of the boundary condition at the front face of the
solar receiver (i.e., the z = 0,y face of the free-falling particle curtain), a dis-
cussion of the physical system is warranted. The boundary condition can then
only be formulated in terms of measurable quantities that accurately describe
this physical interpretation.

In modern solar central receivers, a field of sun-tracking mirrors (heliostats)
are mounted independently and aligned such that the direction of their unit
normal vectors subtends the angle defined by the sun and the receiver target
at the heliostat. Each heliostat, which is comprised of several slighty curved
facets, is also partially parabolized to more efficiently focus the solar energy
to the target. In this way, the reflection of the sun from each heliostat is
directed to the receiver target point in as small a focal “spot” as possible. High
flux concentrations are produced when many heliostats operate simultaneously.
More uniform flux distributions occur if each heliostat tracks the motion of the
sun independently of the others.

Because of the motion of the sun and the position of the heliostats in the
field, the incident flux on the target exhibits significant angular variations. To
determine the boundary intensity on a curtain of particles whose front face is the
receiver target point for a given heliostat field and time of day, measurements
(or computer estimations) of the fluz as a function of the solid angle at the

target point are made (i.e., ¢; z(z,y, z, Ag,AB)). The incremental components
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of the solid angle for each data point (¢ being the altitudinal angle and 8 being
the azimuthal angle) that define the field of view of the flux measuring device
are A¢ = ¢o — ¢y and A = 0 — 6;. With this flux data, the corresponding
intensity must be determined through the relationship between the flux and the

intensity which has the form
$2 b2
4iA(fb, A6, Ag) = / / In(rw, 8, ¢ )cost! sind' dd' dg (3.46)
1 Yo

Notice that the problem is a formulation of the classic Fredholm integral
equation of the first kind in which it is desired to determine the integrand
(In(rw, 2)) from knowledge of the integrated result (g;x(rp, A8, A¢)). This
problem is one of a class of problems known as “ill-posed” problems and is
treated in Tikhonov and Arsenin(®®).

The problem can be further characterized as an inverse problem as defined
by Markovsky(®¥) in which the output and the operator of a given equation are
considered known and it is desired to determine the input. In general form, the

Fredholm integral can be written
b
u(z) = / K(z,t)z(t)dt; c<a<d (3.47)

where K(z,t) is the kernel of the equation. The unknown function, z(t), is
determined through direct knowledge of the measured function, u(z), and the
kernel operator. The problem is ill-posed due to the fact that, for a given mea-
sured function, u(z), an infinite set of possible integrands, z(¢), can be devel-
oped that will reproduce the measurements (or estimations) accurately. This
non-uniqueness causes the problem to become unstable and warrants careful
attention.

Since the problem is not unique, Eq. 3.47 is typically solved by assuming

a functional form of the solution, z(t), with a corresponding set of unknown
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parameters, and then determining the parameter values that best “fit” the
measured function. Usually, the assumed form of the integrand is expanded with

the kernel in an infinite series with the coefficients representing the unknown

parameters in the form
N
U; == ZAjI{i,jzj (3.48)
J=1

where ¢ is the counter for the data points and A; are the unknown coefficients.
Although intuition would indicate that more accurate values of the parameters
will be obtained as more terms are used, this is not the case. As is shown by
Feddeev(®®, the determinacy of the problem is directly related to the ratio of
the maximum to the minimum eigenvalues of the kernel function (in matrix
form). Simply put, if this ratio becomes too large (i.e., a large set of terms is
used in the infinite series), then the stability of the solution is destroyed (this
is similar to the constraints on the size of the parameter vector that is used in
standard parameter estimation techniques).

For the solar receiver problem, the kernel of the equation is the direction
term (2) and the known values are fluxes that are measured at the front face of
the particle curtain. To develop the model, the computer program HELIQS(66)
was used to obtain numerical estimates of these flux values at the target point
of a receiver that is situated at the top of the CRTF Solar Tower at Sandia
Laboratories in Albuquerque, New Mexico. The field is composed of 222 he-
liostats that are located on the north side of the tower. A vector of fluxes as a

function of the solid angle is developed of the form

q1 (91 3 A911 ¢1> A¢1)

02, Ab0y; do, A
Q2( 2 2 b2 (152) (3.49)

Qsolar = :
Qn(9n7 Aby; ¢, A¢n)
The Fredholm problem is solved by assuming a functional form of the

intensity as a function of the components of the direction vector, (8, #). The
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integration is carried out either analytically, for simple models, or numerically.
The new model, with the corresponding parameters, is then used in a matrix
solver algorithm to determine the best fit in a statistical sense to the data. These
parameters are then placed into the expression for the intensity to provide a
continuous function over solid angle.

The accuracy of the fit can be calculated in the standard statistical way
(i.e., with the sum of the squared residuals and the pertinent variances). How-
ever, this goodness of fit calculation is based only on the flux data. It is con-
ceivable, due to the unstable nature of the problem, that a “good” fit to the
flux data would provide a poor estimation of the corresponding intensity dis-
tribution. For these reasons, and due to the complexity of a rigorous solution
of the ill-posed problem, simplified models will be applied and the results for
several different models of varying complexity will be analyzed to allow for an
intensity distribution that is reasonably accurate. The details of this analy-
sis are provided in Appendix A-1 and the results of the best models for each

particular situation are presented in the relevant Chapters.

3.7 Formulation of the Convective Loss Term

The convective loss term in Eq. 3.41 may be written in the standard way

as

Qconv = E-eff[T(:B, y) - TOO] (350)

The convection coefficient is stated as an effective value due to the type of
medium. Since the medium chosen for the model actually is composed of both
the air and the particles in the curtain, a global heat transfer coefficient for this
type of geometry is required. As is standard for convection calculations, an em-
pirical correlation is applied. A correlation by Bird, Stewart and Lightfoot(67)
for packed beds has the form

€ajt = 2.06 Rep,’*™ (3.51)
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where ¢, is the bed porosity (the subscript a denotes air in the present study)
and jg is the Colburn j-factor defined as
Nu

= 3.52
RepPrs ( )

5N

jm = StPr

The curtain velocity as a function of fall height (used in the calculation
of the Reynolds number) has been experimentally determined by researchers

at Sandia(®®. The porosity will be determined in the present study and will
be used not only to determine the convection coefficient but also to find the

effective specific heat and the effective density, as was mentioned previously.

3.8 Numerical Solution Techniques

Some of the general details of the numerical techniques that are incorpo-
rated in the model are presented here. There are several specific points that
will be mentioned as they become relevant in later Chapters.

To solve the EOT in the discrete ordinates formulation along with the par-
ticular form of the energy equation, an explicit finite difference technique is
used. Standard first and second order accurate backward difference approxima-
tions are applied to the EOT, Eq. 3.22, to calculate the intensity distributions.
For mixed heat transfer mode problems, the temperature distribution is also
governed by a partial differential equation. The solution to the energy equation,
for these cases, is obtained by differencing the derivatives in a manner similar
to the approximations used in the EOT. The solutions are obtained simulta-
neously due to the coupling of the two fields through the emission term in the
EOT. The radiative and thermal parameters, assumed constant for this model,
are discussed in more detail in the results Chapters. Appendix A-2 presents
the details of the differencing scheme and the resulting expressions for the EOT
and the energy equation in mixed heat transfer mode situations. For radiative

equilibrium, although the temperature distribution is no longer described by a
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PDE, it is still an implicit function in the equation of transfer. A simultaneous

solution technique will also be required for this case.

A more complicated problem must be addressed when the model is applied
to the solar receiver problem. For the free-falling particle curtain, the system
excitation is provided by the incident solér heat flux which is wavelength de-
pendent. The spectral form of the EOT is solved for this case for energy in
a wavelength band AX. The incident heat flux values that are provided by
measurements or from HELIOS are integrated valﬁes over wavelength and, as
such, need to be broken down into spectral components.

To accomplish this, a characteristic solar spectrum is needed. This spec-
trum could then be applied to the integrated flux values and the amount of
power in each band could be determined. For generality, the model should
be versatile with respect to the type of spectrum that is inputted. Several
mathematical models have been developed that calculate the total energy un-
der specified wavelength bands (i.e., integration under a curve from A; to A3).
Next, if measurements of the total integrated flux at a given location are avail-
able, the ratio of the area under each wavelength band to the total area (the
integrated flux) will give the fraction of the total power that corresponds to the
specified wavelength band.

To obtain a solution for this case, the spectral form of the EOT is solved
on a wavelength band basis for each wavelength band that is specified by the
user. The resulting intensity distribution, In(z,y, ), is used in Eq. 3.23 to
determine the spectral radiative flux vector. Eq. 3.19 is then used to integrate
the flux values. This is accomplished using a simple Rhomberg integration
routine (Wolford and Smith(®®). The total radiative flux vector may then be
used in the energy conservation expressions (Eq. 3.33, 3.34, 3.35) to obtain
the temperature distribution. The solution will proceed simultaneously due to
the coupled nature of the equation system. This is done by first assuming a

temperature distribution in the medium, then, the solution of the EOT will

62



Chapter 8: Theory

provide the intensity field that is used to calculate the flux vector. These fluxes
are then used in the energy equation to arrive at an updated value of the
temperature field and the process is iterated to convergence.

Finally, the directional nature of the discrete ordinates approximation re-
quires some attention during the development of the algorithm. One of the
advantages of the discrete ordinates method is that it allows the effects of each
boundary (i.e., two in each direction) to propagate into the solution of a partial
differential equation that is only first order with respect to all spatial directions.
It accomplishes this by forcing the directional nature of each boundary to effect
the ordinate directions that have the same signs (i.e., are in the same direction).
For example, for the boundary at (0, v, ) in the two-dimensional rectangular en-
closure, the radiative effects of the wall are propagated into the medium only in
ordinate directions that have positive values of y. The intensity field in these
directions is a function of the conditions at this boundary and the in-scattering
term (assuming negligible emission). The intensities corresponding to negative
p values are only affected by the boundary condition at (z = L;,y) (and the
in-scattering). The overall results are then properly recombined when quanti-
ties that require integration over solid angle are calculated (i.e., the flux or the
intensity moments).

For this reason, the numerical solution of the EOT proceeds forward (i.e.,
from z = 0 — L, and y = 0 — L,) when positive ordinates are being consid-
ered. For values of u less than zero and positive £, the solution proceeds from
z=DL; - 0andy =0— L,. Similar arguments hold for negative ordinates in

all directions.
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Chapter 4: 1-D Model Verification

4.1 Introduction

The results of the discrete ordinates method applied to absorption-emission
plane layer (1-D) problems are presented in this Chapter. The work of this
Chapter is basically a model verification analysis and as such compares the
discrete ordinates approximation to other numerical solutions believed to be
accurate and, in limiting cases, to exact solutions that exist in the literature.

The Chapter includes the formulation of the 1-D discrete ordinates model
and the pertinent forms of the energy equation. Boundary conditions are pre-
sented for the plane layer problem representing solid walls with constant ra-
diative properties. The walls are assumed gray (or black) and diffuse (i.e.,
€w = Gy = 1 — py). The coupling between the energy and the radiative trans-
port equation is addressed and the solution methods used to solve the problem
for the cases of radiative equilibrium and internal energy generation are pre-
sented.

Results for two energy situations are then presented in terms of non-
dimensional variables. Plots of temperature distributions and heat fluxes are
given for both the radiative equilibrium and internal energy generation cases

over a wide range of optical thicknesses.
4.2 Formulation of the One-Dimensional Model

The problem involves the calculation of the pertinent heat transfer quan-
tities between two infinite, parallel, isothermal plates. The plates are assumed
gray (or black) in nature and emit and reflect energy diffusely. To develop the
discrete ordinates approximation, the medium is assumed to be gray, have uni-
form radiative and thermal properties that are independent of temperature and
have a refractive index of unity. For the internal energy generation cases, the
medium is assumed to generate energy uniformly and the wall temperatures for
these cases are equal. Figure 4.1 illustrates the geometry of the situation in

terms of the wall normal and the angle that defines the pertinent ordinate.
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Figure 4.1: Planar Geometry
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4.2.1 Equation of Radiative Transfer

The equation of transfer for a one-dimensional, diffuse gray absorbing-

emitting (non-scattering) medium can be written as

dl(z, 2
3K )

= —al(z, Q) + aly(z) (41)

The above expression relates the change in the radiant intensity through the
layer to the emission and the absorption of the medium where o is the uni-
form, temperature independent absorption coefficient. To maintain the one-
dimensional nature of the problem, the angular dependence of the intensity can

only be a function of the elevation angle (6). So
Q = Q(9) (4.2)
The optical thickness and it’s differential are
T = oL (4.3a)
dr = adz (4.3b)
Using Egs. (4.3) in (4.1), wé obtain
dI (T 6)

+ I(7,8) = Iy(r) (4.4)

4.2.2 Energy Conservation

The temperature dependence of the intensity field is coupled to the EQT
through the emission term, (7). A formulation of energy conservation will
yield the governing equation for the temperature field. In this chapter, two
cases were considered: 1) radiative equilibrium and 2) uniform internal energy

generation.
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For the radiative equilibrium case, an energy balance in the medium yields
V-qe(z) =0 (4.5)

where q.(z) is the local radiative flux vector. Since emission is angularly uni-
form, the relationship between the intensity field and the temperature distri-
bution can be obtained for the gray radiative equilibrium case from Eq. 3.36.

The resulting expression is

oT4(r) = I(r) (4.6)

where ¢ is the Stefan-Boltzmann constant and the mean intensity at a point,

I(r), is defined as

()= / " I, 00 (4.7)

4 Q=0

For the case of uniform internal energy generation, the energy equation re-
lates the gradient of the radiative flux vector, q.(7) to the volumetric generation

rate, ¢""'. The resulting expression is
[V qe(r)} = ¢" (4.8)

Substitution of the expression for the flux vector gradient (Eq. 3.36) into Eq.

4.8 yields the expression for the temperature distribution in the medium

1 47
tafoT*(r)~ / I(r,2)d0)] = ¢" (4.9)
=0
The equation systems 4.4 and 4.6 (for radiative equilibrium) or 4.9 (for uniform
internal energy generation) define the governing equation systems that describe
the transport of radiative intensity and energy through the medium. They
will be solved, along with their respective boundary conditions for the mean

radiant intensity and the temperature distributions in the medium. The heat
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flux at a point is obtained by integrating the intensity over all solid angles. The
expression is

qr(7) = /4" I(7,2)Qd2 (4.10)

Q=0

4.2.3 Boundary Conditions

Even though the equation system represents a set of coupled equations,
only the EOT is a differential equation. Mathematically, this system requires
one boundary condition for the intensity at £ = 0. However, since the medium
may exist between two infinite walls that don’t necessarily have identical radia-
tive properties or participate, radiatively, in the same way, a general solution
for the EOT can only be obtained if the boundary conditions are written for
two dissimilar, participating walls. Classically, this has been accomplished by

partitioning the intensity into two sets of directions for a one-dimensional prob-

lem.!

The two directions may be described by defining the product of the normal
to the bounding surface and the particular direction in question, n- €. The
boundary effects of any given surface will be propagated into the medium only in
the directions for which this product is positive. In this way, the effects of each
surface are “felt” only in those directions which may be called the “forward”
directions of that surface. Figure 4.2 illustrates this situation.

The general expression for the boundary conditions (Eq. 3.40) can now be

expressed in one-dimensional form for diffuse, gray boundaries as

(2, Qnrso) = ewls(T) + L / In- Q|I(z, 2 )dQY (4.11)
47(' n-¥ <0

1 For each added dimensional dependence to the problem, another direction cosine is
defined. This has the effect of adding two more sets of directions to allow the effects of all

four (for a 2-D problem) or all 8 (for a 3-D problem) bounding surfaces to be taken into

consideration.
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=0

Figure 4.2: Directions of Propagation for Each Boundary
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Notice that the integral in the above expression ranges over values of the
inner product that are less than zero. This term represents the reflected compo-
nent of the incoming radiant intensity. The first term adds the emitted power
of the wall due to it’s temperature. For a black wall, the expression simplifies

to the expected result

I(z, Qn-0>0) = L(T) (4.12)

4.2.4 Discrete Ordinates Solutions

To obtain the solution to the main equation of transfer, Eq. 4.1, the
intensity field is broken down into a discrete set of constant values representing
the intensities in given directions or ordinates. The resulting one-dimensional
expression for an absorbing-emitting medium is

Ol
,um'“a—’r—-{'-Im ZIb(T) m = 1,2,...,N (413)

The solution of Eq. 4.13 will yield the set of intensities that result from
the given boundary and internal generation conditions over the set of directions
defined by p;, 7 =1,2,...,N where N is the number of directions involved.

Writing the general boundary condition, Eq. 4.11, in discrete ordinates
form for each of the two surfaces, 7 = 0 and 7 = 7p, yields one boundary
expression for each boundary that applies only over directions for which the
product n- {2 is positive (as was previously mentioned). The application of
the discrete ordinates formulation to the EOT allows the integral in the gen-
eral boundary expression (Eq. 4.11) to be expressed in terms of a numerical
quadrature technique in which the weights are simply the ordinate values used
in the EOQT. The expression for the 7 = 0 boundary is

In(7 =0) = €w1 Ty w1 (Tw1) + = ew1) > walpnlIn (4.14a)

s

n
bn <0
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where the summation extends only over the incoming directions (u, < 0).
Eq. 4.14a will calculate the boundary intensity for the outgoing directions
(tm > 0) as a function of the temperature of the boundary (I 41(Tw1)) and
the component of intensity that is reflected from the surface (1 — €41). The

expression for the boundary at 7 = 7p is

1 — ey
Im('r = TD) = €w2Ib,w2(Twz) + '(““""'—'2‘2 z wnl:unlIn (4145)

s
>0
where the summation extends only over the directions y, > 0 and the intensity
values calculated from Eq. 4.14b will be for the directions u, < 0 only.

Since, for the cases of this Chapter, the resulting energy equation for either
radiative equilibrium (Eq. 4.6) or uniform internal generation (Eq. 4.9) is not a
differential equation, the solution to the set of governing equations only requires
an approximation for the EOT, although the solution will still be iterative due
to the implicit nature of the temperature dependence.

The approximation of the derivative in the EOQT requires the imposition
of a nodal grid over the domain. A standard grid is used allowing for different
Az and Ay values (for multi-dimensional problems). A simple first order finite
backward difference is applied to the discrete ordinates derivative term. The
resulting expression for the intensity value at interior node 7 along one of the
ordinate directions, m, is

I = [%”-}_ +1] - (%m-;z,';l +1) (4.15)

The finite difference form of the relevant boundary conditions for the plane

layer problem are written for the first node and for the N** node using Eqs.

4.14a and 4.14b. The two expressions are

1~ €w1)
lzwI‘w w g_____lf}_.. nltn 1 .
I = ewrlpun (Tw1) + ~—— Z; Walpn| I, (4.16a)

rn <0
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and

1 — €y
In]\; = ewz.[b,wz(Twz) + '("—7;_‘“‘“?‘2 Z wn!/«LnlIrjlv (4.16b)

#n>0

Along with the intensity field, the temperature field is also discretized
over the domain. The expressions that are used to calculate the temperature

distribution in the medium are (from Eqgs. 4.6 and 4.9)

. it
Ii= ”W (4.17)

for the case of radiative equilibrium, and
it 1 i 4
oT" — 1 anfn = (4.18)

for the internal generation case.

The equation system defined by Eqs. 4.15, 4.16 and either 4.17 (radiative
equilibrium) or 4.18 (uniform internal generation) defines the 1-D problem to
be solved. Since the system is implicit in temperature, an iterative solution
algorithm is indicated. The solution is obtained by first assuming a temperature
distribution in the medium. The EOT and it’s boundary conditions (Egs. 4.15
and 4.16) are then solved to determine the resulting intensity field based on
these assumed temperatures. This intensity field is then numerically integrated
to calculate the mean intensity (Eq. 4.7) and the result is used in either Eq.
4.17 or 4.18 to update the temperature distribution. The process is repeated

until reasonable convergence is observed.

4.3 Results for the Radiative Equilibrium Case

Results for the solution of the governing equation system for the case of ra-

diative equilibrium are presented in this Section. The problem was solved with
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both black and diffuse gray walls as the boundaries. The results are compared to

the work of Heaslet and Warming("®, which is considered a benchmark effort in
the study of radiative transfer in participating media. The Heaslet and Warm-
ing study obtained a solution for an absorbing-emitting plane layer by solving
two independent integral equations for the temperature and the flux distribu-

tions through the use of tabulated functions taken from Chandrasekhar(?®) and

Ambarzumian(*¥. The solutions are considered to be highly accurate especially
in predicting the emissive power distributions near the walls and, as such, are
generally used as an “exact” solution for the non-scattering problem.

Figure 4.3 is a plot of the non-dimensional emissive power distribution as
a function of optical depth for the plane layer (no internal generation) with
black walls for various optical thicknesses. The plot compares the discrete
ordinates approximations with the results of the Heaslet and Warming study.
The walls are at temperatures 77 and T3 respectively. The non-dimensional
emissive power is defined by

o(r) —esan _ TH(r) = T(0)
ep,w2 —ebwi  14(rp) — T%(0)

&(r) = (4.19)

Since the curve is symmetrical, results are only shown from 7 = 0 to 7 = 2.

Results are presented for optical thicknesses of 0.1, 1.0, and 10.0 for the
4-flux (S2) and the 12-flux (S4) approximations. The 24-flux results are not pre-
sented because the curve is virtually indistinguishable from the 12-flux model.
The “exact” data are presented as points in the Figure. Although both the S;
and the Sy appear to provide reasonable predictions of the emissive power, the
12-flux model seems to indicate more accurate results near the wall in terms of
both the emissive power values and their slopes. However, owing to the almost
linear nature of the data near the wall, a realistic assessment of the ability of
the model to predict these slopes is not possible.

Fortunately, for the gray wall case, the non-linearity of the emissive power

distributions near the wall are much more pronounced. Figures 4.4 and 4.5
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Figure 4.3: Non-Dimensional Emissive Power vs. Optical Depth (Black
Walls, Twl = 1,Tw2 = 0)

present the solutions of the problem for several values of the total, hemispherical
emissivity of the second wall. The curves present the emissive powers at & = 1
(one of the walls) as a function of the optical thickness of the layer. For both
plots, the emissivity of the first wall is held at €,1; = 0.8. The plot of Figure
4.4 shows that, for moderate values of €2 (1.0,0.5), while both models again
provide reasonable predictions of the emissive power profiles, the 12-flux model
is clearly more accurate for both the data and the apparent slope of the data.

It should be noted that, classically, approximate methods for solving the
equation of transfer have tended to become significantly less accurate as the
emissivities are reduced. As is clear from the curves, the magnitudes of the
differences between the “exact” solutions and the model have increased from

their values for the black wall case. This situation becomes dramatically evident
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Figure 4.4: Non-Dimensional Emissive Power vs. Optical Thickness

(Gray Walls, €1 = 0.8, Tw1 =1, Tw2 =0)

as the emissivities are reduced still further. Figure 4.5 shows the results for €,
values of 0.3 and 0.1. In this Figure, the 4-flux model appears to provide a very
poor prediction of the emissive power profiles and, in the curve for €,2 = 0.1,
it seems to break down completely, predicting a positive slope where the data
is negative. However, in both curves, the 12-flux model predicts the data and

the slope of the data satisfactorily over all optical thicknesses.

Figures 4.6 and 4.7 are curves of the heat flux at the wall for the gray wall
cases as a function of the optical thickness. Heat flux calculations, generally
considered to be more important than emissive power or mean radiant inten-
sity calculations, are also known to be more difficult to obtain accurately with

radiation models.
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The vertical axis in the Figures is a non-dimensional heat flux defined by

A quwi

w2

(4.20)

and the emissivity of the first wall for the Figures is unity.

Both Figures indicate similar trends as compared to the emissive power
results. For higher back wall emissivity, greater model accuracy is exhibited
with the differences increasing as e, decreases. Also, it is again apparent that
the Sy approximation, while providing reasonable results for solutions near the
black wall case, predicts the radiative transport distributions poorly for the
more general gray wall case. However, it is also clear that the S, approxi-
mation predicts the flux distribution with good accuracy (£5%) for moderate

to high emissivities with relatively insignificant deviations down to €,5 = 0.3.
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Figure 4.6: Non-Dimensional Heat Flux vs. Optical Thickness (Gray
Walls, Ewl = 1, Tw1 = 1, Twz = 0)

The maximum error for the 24-flux approximation, 25%, was seen for highly

reflective surfaces when the rear wall emissivity was 0.1.

Another indicator of the effectiveness of any participating medium radia-
tive transfer solution is it’s ability to accurately estimate the magnitude of the

" which is a mathematical disconti-

“temperature slip” at the wall. The “slip;’
nuity in the temperature curve at the medium-wall interface, comes about as
the result of assuming negligible conduction in the medium. In reality, there
is no “slip” because the thermal effects of the wall will be propagated into the
medium in the immediate vicinity of the wall through conduction as well as
radiation. However, all radiation solutions that assume negligible conduction

must exhibit this temperature slip to be considered valid. Heaslet and Warm-

ing developed an expression for estimating this slip and the discrete ordinates
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model is compared to these results in Figure 4.8. The Figure is a plot of the
non-dimensional temperature distribution in the medium at the interface de-
fined by

oT*(rp) — oT2,

T —
4 1
ol;, —oT,,

(4.21)

versus optical thickness. As expected, when the optical thickness increases
and the medium absorbs more energy per unit volume, the magnitude of the
temperature slip decreases.

In Figure 4.8, the 4 flux and the 24 flux approximations are used (the
improvement from the Sy to the Sg ordinate sets is negligible). Once again,
it is apparent from the Figure that the 4 flux approximation, while providing

a reasonable estimate of the slip, has significantly less accuracy than do the
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Figure 4.8: Non-Dimensional Temperature Slip at the Wall vs. Optical

Thickness (Black and Gray Cases, Twi =1, Ty2 = 0)

highér order models and, even though the computational time requirements are

slightly more restictive for the higher order models, the increase in accuracy

warrants their use.

4.4 Results for the Uniform Internal Generation Case

In

this Section, results for the one-dimensional plane layer with uniform

internal energy generation and cold walls of equal temperature are presented.

Once again, the work of Heaslet and Warming is used as the standard. Results

for the

emissive power, the heat flux and the magnitude of the temperature

slip are presented for both the black and gray wall cases for several optical

thicknesses.

Figure 4.9 presents the non-dimensional emissive power in the plane layer
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for the case of Ty1 = T2 = 0 and ¢ = 1.0 as a function of the optical depth

of the medium. The emissive power is now defined in terms of the generation

term as

oT4(1) — oT2,

2 (1+a)

(4.22)

e =

1.4
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Figure 4.9: Non-Dimensional Emissive Power vs. Optical Depth (Black
Walls, q"' =1, Twi = Twz = 0)

In the Figure, curves for various optical thicknesses from 0.5 to 2 are pre-
sented. The relative accuracies of the discrete ordinates models are similar to
the case of radiative equilibrium although, for the case of internal generation,

the 4-flux model becomes less accurate as the optical thickness increases.
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The dimensionless heat flux, defined as

o Qui
g =G> (4.23)
™D

is plotted as a function of optical thickness for various values of the emissivity

of the second wall in Figure 4.10. The emissivity of the first wall is set to 0.8 for

all curves. Notice that, as observed previously, the accuracy of the 4 flux model

decreases with the back wall emissivity. The higher order model seems to again

provide a reasonable estimation of the heat flux for the generation problem.

1.2

1.0

0.8

0.6

0.4

NON-DIMEN. HEAT FLUX

0.2

0.0

llvllilllliillllllllillIll|1l|lillllll!Tlll1!lI1r

EW1=0.8

L1 LARRRRL
92]
o

vl

|l|ll lllllllllll|
[7,]
[ ]

|

(=]

gonen 080 0 o o o

- S2

3 ® - EW2=0.1

- POINTS - EXACT SOLUTION A - EW2=0.5
F CURVES - DISCRETE ORDINATES e - EW2=1.0
0o 1 .2 3 4 5

OPTICAL THICKNESS

Figure 4.10: Non-Dimensional Heat Flux vs. Optical Thickness (Gray

Walls, €w1 = 0.8, ¢ =1, Twi = Tw2 =0)

Lastly, the non-dimensional temperature slip for the uniform internal gen-

eration case is plotted in Figure 4.11 as a function of optical thickness for various
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rear wall emissivities. The slip is defined as

oT*(rp) — 0T,

T = T (4.24)
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Figure 4.11: Non-Dimensional Temperature Slip vs. Optical Thickness

(Black and Gray Cases, ew1 =1, ¢ =1, T3 = Tw2 = 0)

In the Figure, the front wall emissivity is held at unity and the results are

similar to the previous case (radiative equilibrium).

4.5 Summary

Results of a discrete-ordinates formulation of the one-dimensional equa-

tion of radiative transfer were compared to the work of Heaslet and Warming
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which is generally considered an “exact” solution to the non-scattering radiation
problem.

Solutions of the pertinent quantities (i.e., emissive power, heat flux and
temperature slip) for both radiative equilibrium and uniform internal energy
generation are obtained for a range of optical thicknesses and wall emissivities.
In all cases, an Sy approximation was used and compared to the exact solution
as well as a higher order ordinate set.

For all cases considered, the higher order discrete ordinates approximations
were found to be reasonable models of the problem providing predictions of the
quantities within 5% of the exact solutions (with the exception of the very
low Wali emissivity problem). The 4 flux approximation was observed to be
a poorer estimator than the higher order models and became less accurate
as the reflective component of the radiative field increased (i.e., lower wall
emissivities). It eventually broke down completely for a rear wall emissivity of
0.1. The large errors for the 4-flux model can be attributable to the ray effects
that were described in Carlson and Lathrop(®?).

Overall, it is apparent that the discrete ordinates approximation provides
a satisfactory estimation of the intensity field if a 12-flux (S4) or higher discrete

ordinate set is used.
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5.1 Introduction

Extension of the basic discrete ordinates algorithm to two spatial dimen-
sions and to include in-scattering is performed and the results are presented
here. The geometry is a square enclosure with four black walls. The problem
is set up such that one of the walls of the enclosure is hot (T} # 0) and the
others are maintained at 7, = 0.

The two-dimensional formulation of the EOT is presented as well as it’s
discrete ordinates equivalent. Due to the complexity of obtaining an accurate
closed form solution for the multi-dimensional problem and since the emphasis
of this Chapter is only to verify that the two-dimensional algorithm is correctly
approximating the pertinent quantities, the solutions here are only presented
for the black walled enclosure under radiative equilibrium conditions. Plots
of surface heat flux in the vicinity of the hot wall are presented for the non-
scattering case (0, = 0) and, for the non-absorbing case (a = 0). The results
are presented as plots of the mean radiant intensity at different locations in the
medium.

Lastly, some algorithmic improvements were implemented into the solu-

tions and the results of these activities are presented in the last Section of the

Chapter.

5.2 Formulation of the Two-Dimensional Model

For this problem, four black, diffuse walls of equal length enclose the ra-
diatively participating medium. Radiative transport is the only energy process
that is considered. As before, the medium is assumed to be gray with uniform
radiative properties and a refractive index of unity. A sketch of the geometry

is provided in Figure 5.1.
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Figure 5.1: Square Enclosure Geometry
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5.2.1 Equation of Radiative Transfer

The EOT for a diffuse gray medium can be written for the non-scattering

case in cartesian coordinates as
il oI
}L—“‘“(CL’, Y, Q) + é._(xa Y, Q) = *Oé[(:l:, Y, Q) + O‘Ib(wa y) (51)
Ox Oy
and for the case of @ = 0, as

oI oI s
— —_— = -0, , ’Q , Y, ¢ I, 4
uax(x,y,ﬂ)%ay(x,y,ﬂ) o, I(z,y,Q) + 47r/ I(z,y, )3, Q)dQ

Q'=4w
(5.2)
where o, is the scattering coefficient which has the same units as the absorption
coefficient, a, namely, 1/L.

The two equations above relate the spatial variation of the radiant intensity
(LHS) to the attenuation of the intensity due to absorption in the medium and
the increase in intensity due to emission by the medium (RHS) in the non-
scattering case. For the non-absorbing case, the RHS of the equation of transfer
represents the attenuation of the intensity due to out-scattering (i.e., energy
that the medium is scattering out of the direction §) and the increase due to
in-scattering (i.e., energy that is initially propagating in other directions but is
scattered into the  direction at the point z,y). Due to the multi-dimensional
nature of the problem, it is now necessary to introduce a second direction cosine
to adequately define the direction vector. For this study, the direction cosine
defined by p lies along the z-axis and ¢ lies along the y-axis. Consequently, the

direction vector must be written in terms of the direction cosines as

Q= Qu,n) (5.3)

Assuming that the intensity is constant over small solid angles defined by

the ordinates pum, €m, m =1,2,..., N where N is the number of incremental
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solid angles included in the sphere, the general two-dimensional EOT (Egs. 5.1

and 5.2) can be written in discrete ordinates formulation as

I Ol
#m%{(w,y)n%m_a?(w,y) = —aln(z,y)+aly(z,y), m=1,2,.,N (54)

for the non-scattering case and

L Om, .
#m?ﬁ(may) +€m 6y (:L',y) - GSIm(:C,y)

Og
+ Ez,wmlfml(bm/_;m, m=12.,N

(5.5)
for the non-absorbing case. In Eq. 5.5, wpy is the quadrature weighting fac-
tor. Note that, because of the discrete ordinates assumption, the in-scattering
integral has been replaced with an appropriate form of numerical quadrature.
Normally, Gaussian quadrature is used, requiring the ordinates to be the Gaus-
sian quadrature points. While this simplifies the solution of the EOQT, it still
requires that an iterative procedure be used. The EOT may now be solved with

ordinary PDE techniques applied iteratively.

In the case of the two dimensional analysis, the other solutions that are used
for comparative purposes (i.e., the exact solution for the non-scattering case and
the numerical zonal solution for the non-absorbing case) are presented only in
terms of the radiant heat flux and the mean radiant intensity. Consequently,
since few temperature results are available in the literature, it is not necessary

to formulate and solve an energy conservation expression.
5.2.2 Boundary Conditions

For black walls, the general form of the boundary condition for a walled
enclosure surrounding a diffuse gray enclosure (Eq. 3.44) reduces to the emission

term which is directionally independent. The expression is
I{z,y,2n- Q> 0) = I;,(Ty) (5.6)
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where T, is the temperature of the black wall.
In discrete ordinates formulation, Eq. 5.6 is simply written for each of the

ordinate directions at each of the bounding surfaces according to the notation

of Figure 5.1 as

Im(z,0) = Iy(Tyw1) m=1,2,...,N (5.7q)
Im(z,Ly) = Li(Tw2) m=1,2,..,N (5.7b)
In(0,y) = I1(Tws) m=1,2,...,N (5.7¢)
In(Le,y) = In(Tws) m=1,2,..,N (5.7d)

For the curves in this Chapter, the emissive power of walls 2, 3, and 4 are

maintained at zero while the emissive power of wall 1 is set to unity, so
1
Ii(Ty) = ——+ = p (5.8a)

and

Ib(TwZ) = Ib(TwS) = Ib(Tw4) =0 (586)

5.2.3 Discrete Ordinates Solutions

To solve the equation system defined by Eqs. 5.4 and 5.8 for the non-
scattering case and by Egs. 5.5 and 5.8 for the non-absorbing case, the enclosure
was discretized and a first order finite difference technique was applied to the
equations. Denoting the z-direction nodes with ¢ and the y-direction nodes with
7, the expression for the intensity at the interior nodes of the non-scattering

medium becomes

i 1 [ pm Em i
I = p 1,j t,j—1 2% —
M) Agim +A L= 4ol m=12,..,N (5.9)
where
_ HEm fm
Nm = Az + ——Ay +a (5.10)
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For the non-absorbing case, the emission term is dropped and the in-scattering

quadrature term is added, the expression is

N
iJ 1 [pm ic1j | &mogijo1 | Os 6j
[hf = | Empi=ly g ST phi=1 gy 2 Wit Pt s 1| m=1,2,.., N
™ ym | Az Ay ™ 4w m12=1 meem
(5.11)
where
Hoy (5.12)

= T
Tm Az Ay

For the case of equal node spacing in both directions (i.e., Az = Ay)
and defining M to be the number of nodes in each direction, the boundary

conditions for the black walled problem in finite difference form become

for the cold walls and
]
15 _ =
I - (5.14)

for the hot wall (which provides the excitation for the problem).

The solution of the non-scattering problem is straightforward. Since there
is no implicit nature in the interior node expression (Eq. 5.9), the solution
may start from any wall and proceed forward (i.e., no iteration is required). As
was previously mentioned, the implicit nature of the problem if in-scattering
is included will require an iterative solution method. For this case, the inten-
sity field is set to zero initially (except at the z,0 boundary) and the interior
expression is repeatedly solved until the intensity distribution converges to a
satisfactory value.

As was discussed in Chapter 3, the effects of any particular bounding sur-
face are only propagated in certain directions. The direction of solution is
defined by the sign of the ordinate corresponding to that direction. So, calcu-

lations for the intensity in all positive y-direction ordinates (positive &,,) will
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be affected by the hot wall at z,0. In this way, each bounding surface only
influences the intensities in all outgoing directions from that surface (i.e., the
dot product of the surface normal and the ordinate along that axis is posi-
tive). These directionally localized intensities are then combined to determine
the pertinent global non-dimensionalized quantities, either the heat flux or the

mean radiant intensity.

5.3 Results for the Non-Scattering Problem

Results for the non-scattering problem defined by Eqs. 5.9 and 5.10 are
presented in this Section. The problem was solved for the black walled case and
the results compared to a closed form solution developed by Shah(""). In that
study, the author developed and solved a spatial integral expression formulated
in terms of modified Bessel functions to calculate the heat flux along the hot
wall.

Figures 5.2, 5.3 and 5.4 are the results of these calculations (compared to
the discrete ordinates model predictions) for three different optical thicknesses.

The vertical axis in the plots is the non-dimensionlized heat flux at the hot wall

defined as

Gur = 21 (5.15)

€

wl

Like the in-scattering integral, the heat flux along a given direction (which
is the integral of the product of the intensity and the direction over solid an-
gle) can be calculated using the appropriate numerical quadrature. The finite
difference formulation for the heat flux in the y-direction from Eq. 5.15 above

becomes

N .
in,l — Zm:l memI:T,ll

wl
€hywil

i=1,2,..., M (5.16)

The horizontal axis is the non-dimensional optical position defined as

o= 5.17
C(Lx_TD ( )

=
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Figure 5.2: Non-Dimensional Surface Heat Flux vs. Optical
Position for a Square Black Enclosure (rp = 0.1,

Twlsz2=Tw3:Oy Tw4:1)

where 7p is the optical thickness.

Results are presented for optical thicknesses of 0.1, 1.0 and 10.0 for the 4-,
12- and 24-flux approximations (S2, S4, and Se respectively). The exact solution
is presented as points in the Figures. In all three Figures, what was noticed in
the one-dimensional solutions (Chapter 4) appears also to be true for the present
case, l.e., the Sy approximation is a relatively poor predictor of the surface heat
fluxes for this problem. However, the higher order approximations appear to
provide reasonable estimations of the flux. Maximum errors of 5.8% and 4.1%
for the S4 and Ss models respectively occur at the low optical thicknesses and
decrease as 7p is increased. Once again, these deviations are attributed to the

ray effects that are inherent in the discrete ordinates model.
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In all three cases, the Sg approximation provides a slightly more accurate
prediction of the exact solution and, as is more evident in Figures 5.2 and 5.3,
seems to more accurately match the shape of the curve (i.e., similar slopes along

the entire & axis).

5.4 Results for the Non-Absorbing Problem

The solution for the non-absorbing problem is presented in Figures 5.5, 5.6
and 5.7. For these plots, the scattering was assumed isotropic (i.e., 8(Q',Q) =
1). Note that the horizontal axis in the Figures is now the optical position in
the y-direction (not the z-direction as in the previous Figures). The curves

show the non-dimensional mean radiant intensity (also known as the “zeroth
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moment of intensity”) defined by

Jo I(2,0,Q)dQ

ebwl

G =

(5.18)

Replacing the integral with a quadrature technique and writing the results
in finite difference form, we obtain
N ’
A B I
G = Zem=1 mln (5.19)

€h

wl

where

il

Vi 0.1, 0.3 or 0.5 (5.20)
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Figure 5.5: Non-Dimensional Mean Radiant Intensity vs. Optical

Position for a Square Black Enclosure (x/Lx = 0.1)

The curves show the intensity from the hot wall at z,0 to the cold wall at
z, L, at locations of 10% (Figure 5.5), 30% (Figure 5.6) and 50% (Figure 5.7)
of the distance from the cold wall at 0,y. Results are compared with a zonal
model that is considered a standard solution to the scattering problem. The
values were taken from another study (Fiveland(*®)) that also performed these
comparisons.

For most general approximations to the radiation transport equation, the
types of problems that have the largest inherent errors associated with them are
situations in which the scattering albedo (defined as the ratio of the scattering
coefficient to the extinction coefficient) becomes large. For Figures 5.5, 5.6 and
5.7, the scattering albedo is unity (pure scattering) and, as the curves show,

the errors in the model become more pronounced. For all three curves, the S,
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Figure 5.6: Non-Dimensional Mean Radiant Intensity vs. Optical

Position for a Square Black Enclosure (x/Lx = 0.3 )

approximation is again observed to be unsatisfactory in predicting pertinent
radiative quantities. Also, the errors associated with the higher order models
now appear to be higher than for the pure absorption case although they are
still acceptable.

Notice from all three curves that the models over-estimate the radiant
intensity near the hot wall and become progressively more accurate away from
this boundary. Maximum errors of 13% at the hot wall occur for the higher
order approximations with little improvement from the S; to the Sg ordinate
sets. Notice that, after the model “corrects” itself at §j &~ 0.2, the errors decrease
significantly.

A comparison to the P — N differential approximation (another popular

multi-dimensional model) performed by Fiveland*?) shows that both approx-
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Figure 5.7: Non-Dimensional Mean Radiant Intensity vs. Optical
Position for a Square Black Enclosure (x/Ly = 0.5 )

imations predict the intensities with similar errors for the scattering problem
(actually, the 12-flux discrete ordinates model is shown to have slightly smaller

errors for this problem than the P — 3 approximation).

5.5 Examination of Standard Numerical Parameters on Accuracy

To ensure that the accuracy of the numerical solution was not being effected
by the noding density, the convergence criterion (for the pure scattering prob-
lem) and the order of the difference approximations, solutions of the model were
obtained for a variety of different numerical parameters. The problem solved
represented the most restrictive test of the model yet, i.e., the solution of the
pure scattering enclosure problem to determine the mean radiant intensity dis-

tribution along the ¢ axis for /L, = 0.5 (Figure 5.7). An S, approximation
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was used since it has been shown that the S; ordinate set is an unsatisfactory
estimator of the pertinent radiation quantities involved for both pure scattering
and pure absorption problems. The convergence factor was applied such that
the sum of the squared residuals (SSR) defined as the square of the difference
of the mean radiant intensities at each of the nodes from one iteration to the

next was smaller than a given epsilon.

2.50llllllllllllllllllllllllllllll!llllllrl
- EXACT SOLUTION

2.95 DX DY 0.111

) DX DY 0.034

DX
DX

DY
DY

0.020
0.010

IRl

2.00

1.75

1.50

1.25

NON-DIMEN. RADIANT INTENSITY

1.00 lLII]IIllIIIIIIl!lllIIIII!lIl'IllIlIil

0.1 0.2 0.3 0.4 0.5
NON-DIMEN. OPTICAL POSITION

Figure 5.8: Effect of Noding Density on Accuracy of the Mean

Radiant Intensity for the Pure Scattering Solution

Figure 5.8 shows the results of the model for various nodal densities from
100 nodes (10 in each direction) to 10,000 nodes (100 in each direction). The
results show what might be expected. A more dense nodal packing leads to a
slightly more accurate solution at the obvious expense of increased CPU times.

The maximum CPU time for the model verification tests was 395 seconds for
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the 24-flux pure scattering case for the 10,000 node execution. Obviously, for
higher order flux models and dense nodal packing, the necessary CPU times do
require consideration. (The maximum CPU time for the above tests was 395

seconds for the 10,000 node pure scattering problem.)

As far as varying the convergence criteria or applying a second or third
order accurate finite difference expression on the spatial partial derivatives for
solution of the pure scattering problem, the results showed imperceptible im-
provements when plotted in comparison to the zonal results. Plots, similar to
Figure 5.8, did not show any significant changes in the model predictions for the
12-flux approximation. Convergence factors of 1, 0.5, 0.1 and 0.05 all showed

practically no change in the accuracy of the model.

It should be noted that Carlson and Lathrop(®® have shown that the ma-
jority of the errors associated with the numerical application of the discrete
ordinates technique comes from the lack of continuity of the intensity func-
tion. These errors, termed “ray effects” by the authors, arise because, for a
certain emitting element in the medium located at at point z,y, there are sev-
eral surrounding regions of the medium that lie along the boundary of two of
the ordinate sets emanating from z,y. Along these boundaries, the intensity
is mathematically discontinuous, so these potential absorbing elements are not
able to “see” the emitted energy from the point z,y. These errors are most

pronounced near heated boundaries and for highly absorbing media.

Notice that the Figure supports these statements. The increase in nodal
packing, while slightly improving the accuracy of the approximation, does little
to improve the model near the hot boundary. The errors at this boundary are
overwhelmed by the so called “ray effects” which are inherent with the discrete

ordinates approximation.

Clearly, the goal of any standard technique designed to increase solution
accuracy by manipulating the numerical parameters (noding, convergence and

the order of the difference approximations applied to the partial derivatives)
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should be to force the “ray effects” to be the primary error at all points over
the range of radiative parameters being considered. It is apparent that, in this
case, only the noding density has any influence in reaching this goal. Varying
convergence factors and increasing the order of the difference approximations

has little or no effect (excluding unreasonable convergence criteria).
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6.1 Introduction

As was mentioned earlier in this report, obtaining an exact solution for
the appropriate equation system to describe the energy transport processes oc-
curring in a free-falling particle, direct absorption solar receiver is not feasable.
Consequently, in order to characterize the pertinent quantities for design op-
timization, assumptions must be made and numerical models constructed to
simulate the receiver cavity. Wherever possible, these models should be com-
pared to some experimental data of the receiver. Also, it is often desirable to
use experimentation to describe at least one of the major dependent variables
in the physical system. In this way, the complexity of the governing equation
system is reduced. Lastly, any model of a physical process will depend, in part,
on the physical properties of the materials involved. Often, as is the case with
the present study, the complexity of the situation warrants the choice of a com-
bination of materials as the “active medium” to simplify the solution. Although
much work may have been performed to determine the physical properties of
many of the materials that make up the “medium,” the relative weight of each
of the materials as they appear in the particular situation must be determined.
This determination is usually accomplished by measuring the critical parame-
ters as they exist in the actual physical situation at hand.

It is clear that, to demonstrate the capability of the model to simulate the
actual processes occurring (comparing the model to limiting case exact solutions
does not completely satisfy) and to determine some of the physical parameters
required to solve the model as it was developed, extensive experimentation must
be performed before the accuracy of the model can be stated.

In the present study, the parameters appearing in the chosen formulation of
the EOT and the energy conservation expression are the absorption coefficient,
a, the scattering coefficient, o,, the scattering phase function, ®(Q',Q), the
porosities of the medium, &, and ¢,, the densities and specific heats of the air

and the particles and the velocity of the curtain, vy. Each of these quantities
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must be determined before the model can be used. Also, the model will require
the input of the boundary conditions for each particular test in order to compare
the test data to the performance of the model. The procedures for determining

these quantities, as well as the primary measurements (back surface flux and

exit particle temperature), are discussed in this Chapter.

6.2 Radiative Properties

In the two-dimensional formulation of the equation of radiative transfer,
there are three radiative properties that must be known about the medium
to allow solution of the system; they are the absorption and scattering coef-
ficients and the scattering phase function. For the free-falling curtain of ab-
sorbing particles, the medium consists of the partides and the interstitial air.
This definition requires that these radiative parameters be determined for this
“bulk” medium. So, experimental data taken of the curtain must be obtained.
Research at Sandia into the compatibility of certain commercially available
particles has revealed some information about the radiative properties of the
proppants that are used in the present study. Part of the research on the prop-

pa,ntsv was an optical characterization of their radiative properties performed
by Stahl, Griffin, Matson and Pettit(?). The authors measured, among other
things, the single particle scattering phase function and the single scattering

albedo, defined as

LIy L (6.1)

Os +« K

Wy =

where x is known as the extinction coefficient.

Assuming that only single scattering events occur (i.e., multiple scattering
is negligible), the single particle scattering phase function will represent the
scattering behavior of the curtain. The single scattering assumption is justified
by noting that the average clearance between particles in the medium is much

larger than the clearance that would be required for multiple scattering to
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occur. Also, for absorbing particles that scatter in the geometrical regime (i.e.,
size parameter, ’—')—“i, much greater than unity), the scattering phase function

is thought to be linearly anisotropic (as was reported in Chapter 2). The
measurements made in the Stahl report corroborate this and provide a Legendre
polynomial approximation of the phase function that uses the first two terms of
the infinite series which is the usual way to characterize a linear anisotropically
scattering particle.

Since the scattering albedo has been measured (the results are reported
in the work by Stahl et al.(??)) and the phase function has been characterized,
measurements of the absorption coefficient (or the extinction coefficient) are
required. The extinction coefficient can be a function of temperature in the
medium and wavelength. The formulation of the EOT for the present model
assumes constant radiative and thermal properties. The measurements of the
albedo, although obtained over a number of particle flow rates, were not set-up
to address the spectral or temperature dependence. Without any knowledge of
the spectral or temperature dependence of the particle curtain, measurements
of the extinction coefficient would need to show that the constant property
assumption was justified.

To accomplish these measurements, a tuneable dye laser was used to pro-
vide energy to the curtain at wavelengths in the solar region. The curtain was
provided by a flow device designed to deliver a 6 inch wide curtain of varying
thickness to the test area. The flow device consisted of a particle storage hopper
out of which the particles were fed directly to the test section. Both the hop-
per and the capture tank were insulated to allow for solar testing and a wind
break was placed across the left and right sides of the test area to decrease the
spreading of the curtain. A schematic of the flow device is presented in Figures

6.1a and 6.1b. This device will be discussed further in Sections 6.4 and 6.6.

The test involved measuring the incident and transmitted energy from

the curtain. To determine the extinction coefficient from these measurements,
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Figure 6.1a: Schematic Diagram of Particle Flow Device (Front View)
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consider spectral radiation of intensity I )‘(:c) impinging on an absorbing and
scattering layer with thickness Az as shown in Figure 6.2. The intensity exiting

the layer has been changed by an amount dIx(z) to Ix(z + Axz).

NN
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emission
el e
e s
I(x) — — I (x+A%)
R 4 -
o) ey
out-scattering
R
" «— Curtain

VN

 Figure 6.2: Normally Incident Intensity on Curtain Layer

If the medium is cool (i.e. emission is negligible), then, as the radiation
passes through the layer, the intensity will be attenuated due to absorptibn
and scattering and it will be increased by the in-scattering effects. Ignoring
the in-scattering effects and defining a proportionality constant (the extinction

coefficient) as kx(z), the decrease in the intensity can be written as
dIA(a:) = —-fs,\(a:)b‘(x)dx (6.2)

Integration of Eq. 6.2 over the path length gives

Iz + Az) _ '/"7'*"'3‘z e
lnwb\(m) =0y k(2" )dz (6.3)
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or, in a more general form and considering the medium to start at x =0,

In(z) = Iy(0)el= Jo mr(="is’] (6.4)

Eq. 6.4 is known as Bouguer’s Law, Lambert’s Law or Beer’s Law and
shows that the attenuation of radiation along a path through a participating
medium with negligible in-scattering is exponential in nature.

To relate the extinction coefficient to the ratios of the laser energies, « is

assumed to have no spatial dependence. Eq. 6.3 is then simplified to

L = —gyT - (6.5)

(6.6)

Figure 6.3 illustrates the experimental concept of the tests. The laser beam
is created by pumping a dye laser and expanding and collimating the beam
before it is directed into the particle curtain. The pump laser is a Spectra-
Physics Model 2030 18W Argon lon being used at the 514 nm line. The pump
laser provides energy to a Spectra-Physics Model 375B Dye Laser that directs
the pump beam through a high velocity horizontal dye jet. The dye that was
used for these tests was Rhodamine 590 which has a center wavelength at 590
nm and ranges from 570 to 650 nm. To record the incident and transmitted
power levels, a Newport Corporation Model 818-SL, Photosensor head was used
with a Model 835 Optical Power Meter. The power meter allows for detection
of continuous wavelength variations in the laser light.

To allow satisfactory measurement accuracy, the laser beam is collimated
before it reaches the particle curtain. In this way, it is not necessary to move

the detector to read the incident and transmitted energies. After exiting the
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Figure 6.3: Schematic of Extinction Coefficient Measurements



Chapter 6: Ezperimentation

dye laser, the beam is first re-directed and elevated to the height of the test
section. Next, the beam is directed through a ten power microscope objective
to produce a spherical wavefront. A 2 inch positive lens is positioned such that
the distance between the objective and the lens is the focal length of the lens.
This has the effect of producing a collimated beam (approximately 1.5 inches
in diameter) through the test section of the flow device. To reduce any noise
or non-collimated light from reaching the detector, an aperture stop is placed
between the positive lens and the flow device. Figure 6.4 shows a photograph
of the collimation system. The detector is then positioned such that it’s entire

active area is illuminated by the collimated laser beam.

Figure 6.4: Collimation Optics for Extinction Measurements

It was desired to measure a constant value for x independent of curtain

thickness (flow rate) or wavelength. To address the spectral nature of the
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extinction, readings were taken at several different wavelengths over the range
of the dye laser. Flow rate dependence was considered by taking energy ratio
readings for different curtain thicknesses. However, as the ‘photograph in Figure
6.5 attests, very thin curtains will give erroneous readings. This is due to
the fact that the detector can “see” portions of the laser beam at particular
times (i.e., an instantaneous opening in the curtain allows the laser beam to
pass through unaffected). Because of this, the experimental set-up required
a certain minimum curtain thickness to eliminate any of this direct reading
noise. Initial tests confirmed that the detector LCD readout was practically
unreadable for these thin curtains. The reading fluctuated significantly until
the curtain thickness was increased beyond the point where the porosity of the

particle flow became independent of flow rate.

Figures 6.5 and 6.6 illustrate this point. Figure 6.5 is a photograph of a
thin curtain test (with the room lights on for photographic purposes, for actual
tests, the room lights were off). Notice that, in the Figure, both the point of
contact of the beam on the curtain and the detector face are visible from the
front face of the test device. It is clear that, for the curtain thickness in the
Figure, the reading would not represent the actual extinction of the medium.
However, as the thickness is increased as in Figure 6.6, the detector cannot be
seen from the front of the flow device. For this case, the reading on the detector

became fairly steady.

Another interesting point that was noticed during these initial tests was
that, as the supply of particles in the hopper began to dwindle, the reading
changed from a fairly constant value and began to increase. This increase
continued until the curtain “split” apart because the hopper was practically
empty at which point the detector reading was very close to the pre-flow reading.
The post flow reading was actually slightly less then the pre-flow reading due to
the dust that slowly settled back into the capture tank after the test. It was clear
that the height of the particles above the exit of the hopper, to some extent,
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Figure 6.5: Thin Curtain Extinction Test

affected the flow rate through the test area. This occurred only as the particle
height in the hopper became low, at which point, it is assumed, the flow rate
decreased due to a decrease in the gravity-induced pressure at the exit of the
hopper. It is anticipated that, for a DAR system using the free-falling particle
curtain, a constant flow rate is the desirable design situation. Consequently,
the constant (slightly fluctuating) readings taken during the constant flow rate
segments of the test were considered the correct readings for the transmitted
laser power.

As was mentioned, the actual testing took place in the laser lab of the
Optics and Material Sciences Laboratory at New Mexico State University. The
room was darkened completely to avoid any indirect energy reaching the de-
tector. Tests were performed for curtain thicknesses ranging from 7 to 18 mm

(the maximum the device could produce). A photograph of a dark room test is
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Figure 6.6: Thick Curtain Extinction Test

shown in Figure 6.7. The results of the tests are included in the next Chapter.

6.3 Particle Velocity Characterization

To adequately formulate a model to determine the exit temperature of the
particles, knowledge of the curtain velocity is necessary. A momentum conserva-
tion expression with the appropriate boundary conditions could be formulated
and solved simultaneously with the EOT formulation and the energy equation.
However, to reduce the number of governing equations, measurements of the
velocity can be made and these data can be used in the energy equation. Re-
searchers at Sandia(’!) have measured the velocity as a function of fall height
in the cavity for the Norton Masterbeads”™ using laser Doppler velocimetry
(LDV). Measurements were made for cold and hot particles and results showed

that some spreading of the curtain occurred during the hot particle tests. This
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Figure 6.7: Extinction Coeflicient Measurement Test

spreading was believed to be caused by the entrainment of air into the curtain
and buoyancy forces created when the air warms up along with the particles.
For the present study, however, the actual cavity fall height and the overall
increase in the curtain temperature were much smaller than those used in the
Sandia study. Consequently, the assumption of a one-dimensional velocity pro-
file is justified.

The formulation of the energy expression described in Chapter 3 includes
the velocity (assumed constant) and the spatial derivative of the temperature.
Since the functional relationship of the velocity can be considered known (a
curve fit of the LDV data will yield vy, = f(y)), the finite differenced form of
the energy equation is simply solved at any given vertical node, j, by calculating
the velocity at this height and using that value in the iterative process to solve

for the temperature distribution in the curtain.
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Using a standard ordinary least squares curve fitting techhique, a third

order polynomial was fit to the LDV data to obtain an expression of the from

PARTICLE VELOCITY (m/sec)

vy(y) = A + By + Cy? + Dy® {g?c-] (6.7)

The coefﬁcieﬁts of the curve fit were found to be

A = 0.844137
B = 5.034810
C = —1.875972
D = 0.260033
7 LR 2 BN A A S l'l llllll ITIIT‘IITIIl"lTll‘ll"l"l‘l(j'llllllll‘lT'I]Il"llll

Illllll|||llll||!l|i|l|ll|ll

E - DATA (SANDIA)

2 1 - CURVE FIT OF DATA
1 5
0 l!IVIlillJllJIUIlll'lllll|I|I‘IIJJIJLlllll!IIlllll}ll!llllL'lllllllIti
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 -

FALL HEIGHT (m)
Figure 6.8: Curve Fit of Velocity Data
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Figure 6.8 is a plot of the Sandia data (points on the curve) and the ap-

proximation of the data obtained through the curve fit.

6.4 Determination of the Curtain Porosity

As described in Chapter 3, to determine the values of the properties appear-
ing in the energy equation (i.e., the effective density and the effective specific
heat as well as the convection coefficient), the values of the porosities of both
the air and the particles in the curtain are required. Recall that the “medium,”
as defined by the formulation of the EOT and the energy equation, consists
of both the air and the particles in the curtain and, as such, the properties
appearing in the equations must be representative of the “bulk” effects of the
curtain. Since the extinction coefficient and the single scattering albedo were
measured through a falling curtain, these values are not the values of particles
alone but represent the combination of the two materials in the medium.

Likewise, to determine the density and the specific heat of the medium, a
combination, based on comparative volumes, was suggested in Chapter 3. The
expressions for these two properties can be written then in terms of the relative

volumes of the particles and the air to the total volume as

Peff = €aPa + EppPp (6.8)
and
cpeff = sacpa + SPch (6‘9)

where €, and €, are called the porosities and are defined on a volumetric basis

as

_ Ve 6.10
€a = (6.10q)

and

Y
Ep = \—VIE (6.106)
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Egs. 6.10a and 6.10b can be combined to yield the expected result of the

relationship between the porosities
€a + Ep = 1 (611)

It was necessary to determine the porosities of the curtain experimentally.
This was accomplished through knowledge of the mean diameter and density
of the particles. A description of the experimental process follows.

First, particle flow rates for various curtain thicknesses were determined.
Using the same flow device described in a previous Section, we conducted timed
tests in which the particle flow was allowed to continue for a set amount of time.
This amount of time was determined by observing several flow tests at each of
the two flow rates that were used. It was desired to only record flows in which
the flow rate was known to be fairly constant.!The flow was started and a
stop watch was engaged. At a given time, the flow and the stop watch were
both suddenly halted. The total number of particles that fell into the capture
tank during the time interval were then weighed. Since the density and mean
diameter of an individual particle were known (see Hruby(1")), the mean mass

of an individual particle can be calculated as

nd®
My = PpVp = Pr—g~ (6.12)

Given the mass flow rate of the particles from the test (this value is obtained
by dividing the weight of the particles from the test by the total time of the
test recorded by the stop watch), the number flow rate of the particles, Ny in
number of particles/sec, is determined as

m

Ny = — (6.13)

mp

1 As was discussed earlier, it was felt that the flow rate slowly decreased as the supply
of particles in the hopper dwindled. The flow rate tests were conducted before this variation

could occur while the level of particles in the hopper was substantial.
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The number flow rate of the particles can now be converted to the number
of particles per unit volume through knowledge of the velocity of the particles
as a function of fall height. The velocity at any point in the test section can
be determined by measuring the distance from the inlet to this point (defined
as y1) in the test section and calculating the velocity of the curtain based on
this fall height (Eq. 6.7). Dividing the number flow rate of the particles by this
velocity yields the number of particles in the curtain from the inlet at yo = 0
to the given point at y = y;. Since the width (Az) and the thickness (Az) can

also be measured, the number of particles per unit volume, Ny, is found from

Ny [number of particles
Ny

- v(y1)AzAz (6.14)

ecm3

The porosities are then calculated by determining the total volume of the
particles that exist in the total volume defined by (y1 —yo)AzAz by multiplying
the volume density of the particles, Ny, by the volume of a single particle
(based on the mean diameter). The expression is obtained by noting that the
volume density of the particles in the medium, Ny, actually represents the

number of particles that exists in a defined volume element of the medium, i.e.,

Ny = ol p\;,"mles). The result yields the ratio of the volume of particles to

the total volume through the expression

em®(particles)
e = Vp v [ em3(curtain) } (6.15)
From ¢, the porosity of the air is simply found from
€a=1—¢p (6.16)

It was anticipated that the value of Ny would be constant for curtain

thicknesses above the minimum value discussed in the Section on extinction

coefficient measurements. The results of the tests are presented in Chapter 7.
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6.5 Measurement of Angular Dependence of Incident Flux

Recall that, to determine the front face boundary condition, the solution
of an “ill-posed” Fredholm integral equation must be obtained. The boundary
condition is formulated to relate the intensity distribution at the front face of
the curtain to the incident heat flux impinging on the curtain as the result
of the solar concentrator system. The relationship between the flux and the
intensity provides the basis for the difficulty. The heat flux represents the

intensity distribution integrated over all solid angles as

b2 oo
gr (o, A, Ad) = / / In(ryp, 8', ¢')cosd' sing’'dg’ d6' (6.17)
61 J

where 1}, is the spatial location on the boundary.

As was previously discussed, the problem involves determining the local
front face intensity distribution from measurements of the heat flux taken at
the surface. Consequently, it is necessary to measure the angular dependence of
the incoming heat flux from the concentrator. This was accomplished through
the use of a flux gage with a limited field of view. Rather than constructing a
new device for this purpose, a normal incidence pyroheliometer (NIP) was used
(see Figure 6.9). This instrument is normally used for measuring the direct
solar flux and, as such, has a field of view limited to the solid angle that the
sun subtends at the surface of the earth. The aperture is circular with an
angular field of view along both the altitudinal and azimuthal axes of 5.7°.

The NIP was mounted at the test area of the solar furnace on a two angle,
altitude-azimuth mount with graduations for both angles. Figure 6.10a illus-
trates the positioning of the NIP on the test stand and Figure 6.10b illustrates
the definition of the two angles that are discussed in the report.

Tests were conducted with the NIP well insulated in order to protect it
from damage and to reduce erroneous readings due to emission from the NIP
material. Readings were taken across the face of the concentrator at zero eleva-
tion and across the top of the concentrator (elevation =~ 18°) at several points

for each “sweep.” The voltage readings from the NIP were converted to flux
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Figure 6.9: Normal Incidence Pyroheliometer
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Figure 6.10: Positioning of the NIP for Angular Flux Measure-

ments
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Figure 6.10b: Altitude (Elevation) and Azimuth Angles For the So-

lar Concentrator
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readings using the calibration factor determined for the particular NIP used.
Tests were only conducted when the concentrator was “full” (i.e., the position
of the sun was such that the heliostat could illuminate the entire concentrator).
The magnitude of the flux readings was not as important as was the variation
of the readings over the concentrator as a normalization procedure was used
for each specific flow test. In this way, it was only necessary to perform these
angular tests once. (However, this does require that the actual flux tests also
be conducted only when the concentrator is full.) With the flux readings from
the concentrator characterization, the boundary fluxes for a particular test of
the flow system would be determined by normalizing the angular data to the
average flux measured on the day of the actual test.

Several angular tests were performed and the results are detailed in Ap-
pendix A-3. Similar trends were observed on several different days with several
different solar conditions implying that, as long as the concentrator was full, the
comparative magnitudes of the fluxes at the test stand were only functions of
the angular position of the NIP. This helped determine that the NIP readings
were successfully characterizing the nature of the concentrator and were not
functions of solar position or environmental conditions.

A discussion of the normalization procedure and the development of the
boundary flux (and intensity) models which provides the solution of the Fred-

holm integral problem is provided in the next Chapter.

6.6 Primary Flux and Temperature Measurements

The results of the experimentation comprising the secondary phase of the
testing plan can now be put to use in the model of the transport processes to
predict the flux and temperature distributions in the curtain with the eventual
goal of comparing these results to the experimental data collected in the primary
phase of the testing. The extinction coeflicient, the porosities, the curtain
velocity, and the angular characterization of the concentrator now allow for
comparison of the model results to data comprised of measurements of the
back surface fluxes (transmitted) and the average exit temperatures. These

readings are performed using the variable area flow device mentioned previously.
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Also, as was discussed in an earlier Section, the front face fluxes need to be
measured in order to combine them with the results of the angular concentrator

measurements to determine the boundary intensity distribution.

Figure 6.11: NMSU Solar Furnace Facility

The particle flow device, used previously in the determination of the cur-
tain extinction coefficient and the porosities, is designed to provide an even
particle curtain of constant width and variable thickness to the test area. The
solar furnace, a photograph of which is shown in Figure 6.11, delivers a high
heat flux concentration to a spot that is roughly a 6 inch diameter circle. Con-
sequently, the flow device was designed to produce a curtain with a thickness
slightly greater than the solar beam. The height of the test section of the device
was determined by physical size limitations of the furnace (blocking and shad-
owing effects reduce the effectiveness of the concentrator). The hopper can hold
sufficient particles to allow approximately 10 seconds of flow at the maximum

curtain thickness, 13 mm. However, it was anticipated that most data runs
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would be performed at significantly lower thicknesses (i.e. < 8 mm) for which
flow could continue for well over 30 seconds. Photographs of the device (front

and top views) are shown in Figures 6.12a and 6.12b.

Figure 6.12a: Front View of Flow Device With Flux Gage Plate and

Thermocouple Funnel

The test section of the flow device was designed to allow access to the front
and back of the section (front defined as the side of the device facing the solar
concentrator). To prevent any curtain spreading due to wind and to help even
out the heat flux across the width of the curtain, pieces of insulating board
were attached to the sides of the device (seen in Figure 6.12a). The front of
the hopper as well as the entire capture tank were also insulated with the same
material (mostly to prevent thermal damage to the hopper and capture tank).

The measurements of the heat fluxes were performed using standard cir-
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Figure 6.12b: Top View of Flow Device Detailing the Hopper Design

cular foil heat flux gages mounted to a water cooled copper plate. Both front
and rear surface heat fluxes were measured. Figures 6.13a and 6.13b illustrate
the concept.

The copper plate, visible in Figure 6.12a and shown from the rear with
the flux gages installed in Figure 6.14, was designed to hold 25 threaded heat
flux gages. The front surface has been painted white to prevent emission from
the plate adding noise to the flux gage reading (the white coating reduces the
absorption of energy by the plate itself). For the present study, 9 heat flux
gages were installed on the plate in a cross pattern as is shown in Figure 6.14.

Only the readings from the vertical column of gages were used in the model
due to the assumption of a two-dimensional intensity field in the z and y direc-
tions. As is illustrated in Figure 6.15, the development of the numerical model

allowed for intensity variations along the height (y-direction) and through the
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Figure 6.14: Rear View of Copper Plate With Flux Gages Installed

thickness (z-direction) of the curtain. The leads from the heat flux gages were
connected to an HP-3054 data logger system (DAS). An HP-85 processor was
used to control an HP-3497A and to make the conversions from the voltage read-
ings into heat flux values given the calibration factors of each of the flux gages.
The flux gages were made available for the present tests by Sandia National
Laboratory’s Solar Furnace Facility. Calibration of the gages was performed at
Sandia in a well controlled manner. Consequently, the flux gage calibration is
assumed to be correct and the factors provided by Sandia were used directly in

the DAS without any check of their validity.

The flux gage plate was mounted on a plate which was attached to the
rear supporting columns of the device. Long linear cuts were made in this
support plate to allow movement of the gage plate forward or backward. This

allowed proper positioning of the flux gages to help increase the accuracy of the
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Figure 6.14: Geometry of the Free-Falling Particle Curtain

measurements.! These cuts can be seen in the lower part of the photograph in
Figure 6.14.

Measuring the exit temperature of the particles is a rather difficult process.
Obviously, recording the temperature of one of the particles is prohibitive (if
possible). It was felt that standard optical techniques to obtain accurate tem-
perature readings were unsatisfactory. A thermographic method would have
difficulty determining the actual bulk or average temperature of the curtain
because it would “see” only the particles and air near the face of the curtain
that it was directed towards. Consequently, since the curtain does not have a

solid boundary but is defined by the flowing particles and the interstitial air,

! The divergence of the solar beam in the Vicinity of the test area is significant. Conse-
quently, small movements along the axis of the concentrator normal can significantly alter
the flux readings. It is important to position the gage plate as close to the rear surface of the

curtain as possible.
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most standard optical techniques would fail. It would be necessary to find a
technique (such as two-color pyrometry) that could somehow differentiate be-

tween the particles near the “boundary” of the curtain and record an actual
bulk temperature.

Researchers at Sandia addressed this problem using standard thermocou-
ples specially mounted to record the temperature of the air immediately sur-
rounding the particles (with a small contribution from the particles themselves

whenever they actually contact the thermocouple junction). A report by Hruby,

Steeper, Evans, and Crowe("? details the measurements made of the temper-
ature of a curtain of particles by using a “sampling cup” which consisted of a
stainless steel foil cup fitted with a thermocouple. The cup was cylindrical in
shape with a short length and a hole drilled into the bottom to allow the parti-
cles to escape. In effect, the concept relies on slowing the particles down enough
to allow another body to come to thermal equilibrium with the particles. Then,
the temperature of the second body is recorded using standard thermocouple

techniques.

Accuracy would be high if the cup had enough time to reach equilibrium
with the particles in the curtain. However, if the particles are allowed to remain
in the cup for too long, they will begin to cool and the thermocouple readings

will become inaccurate.

For the present study, this concept was used with a slightly different design.
Instead of using a cup, a funnel device was constructed to force the curtain to
funnel through a thin area. (A sketch of the concept is provided in Figure 6.16.)
The funnel was designed with the same width as the curtain (slightly larger than
the solar beam at the test stand) but it had a much smaller thickness than

the curtain thicknesses used in the tests. At the base of the funnel, mounted

vertically, was a thin bar (approximately 6" x 1" x i%" in size). The material

of the bar was copper which was chosen due to it’s high thermal conductivity.

Holes for fine gage thermocouples were drilled into the thin side of the bar
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from the bottom approximately half the distance to the top (-;—"). Hypodermic
thermocouples ! were then placed into the holes to measure the temperature of
the copper bar.

It was anticipated that the particles in the curtain would be forced to slow
down as they passed through the funnel to very low velocities. As this happened,
the particles would cover or surround the copper bar. This would cause the
highly conductive copper bar to come to thermal equilibrium with the particles
and the embedded thermocouples could then record these temperatures. The
funnel was constructed out of the same insulating board that was used in the
particle flow device in order to preserve the temperature of the particles as they
passed through it and to eliminate any external energy effects from reaching the
copper bar. Eye hooks were mounted into the insulating board and thin rods
were used to hang the device under the test area of the curtain. Photographs
of the device from the top and from the side showing the positioning of the
hypodermic thermocouples are shown in Figures 6.17a and 6.17b. Figure 6.18
shows the orientation of the temperature measuring tool under the test area of
the flow device.

Preliminary tests showed that this “funnel thermocouple” was effective (in
terms of covering the bar with particles for a sufficient amount of fime) within a
range of curtain thicknesses from approximately 3 mm to approximately 8 mm.
Below this range, the particle flow was not sufficient to significantly “clog” the
funnel and, for these particles flow rates, most of the copper bar was not exposed
to the particles. Above this range, the large particle flow rates overwhelmed the
funnel and particles spilled over the top of the device. Obviously, the desired
situation is when the copper bar is well covered by particles but the overall flow
through the funnel is enough to ensure that the residence time of the particles

is small enough to not allow them to cool significantly.

1 The thermocouples were Omega brand Model HYP-2, type T hypodermic thermocou-
ples with an outside diameter of 0.032".
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Figure 6.15: Schematic of Temperature Measuring Device
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Figure 6.17a: Top View of Particle Temperature Measurement De-

vice

Actual testing of the system involved filling the hopper with particles and
initiating the flow by sliding the wooden plate at the bottom of the hopper open
to the desired curtain thickness. Initially, the required model inputs (i.e. the
front face fluxes and the inlet particle temperature) were recorded separately.
However, uneven tracking of the heliostat system to follow the “motion” of the
sun across the sky led to significant errors in the data. Between the time the
front fluxes were measured and the test was run, changes in the character of
the solar beam due to tracking adjustments sometimes caused the rear surface

fluxes to be measured greater than the front fluxes.

The test routine was amended to allow the recording of the front surface

fluxes immediately after the rear surface fluxes were measured. This was ac-
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Figure 6.17b: Front View of Particle Temperature Measurement De-

vice

complished by allowing the hopper to completely drain itself of the particles,
and the fluxes measured at that moment were used as the incident heat flux
on the curtain. Unfortunately, this test procedure did not allow the flux gage
plate to be moved to the plane that represents the front of the curtain since the
time required for this operation would cause the same tracking errors to occur.
However, since the maximum thickness of the curtain for the tests was 8 mm,
the error associated with the beam divergence over this distance was assumed
negligible (certainly much smaller than the tracking errors noticed initially).
Figures 6.19 and 6.20 show a test run in progress. Figure 6.19 shows the
particle curtain being illuminated by the solar beam and the next Figure shows

the flux gage plate as it looks immediately after the flow has ceased. Both
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Figure 6.18: Orientation of Temperature Measuring Tool in Parti-

cle Flow Device

photographs were taken through an opening in the center of the concentrator

that allows viewing of the test object with the attenuator in the open position.

136




Chapter 6: Ezperimentation

Figure 6.19: Test Run During Particle Flow

Figure 6.20: Test Run Showing Incident Flux Measurement Imme-

diately After Cessation of Flow
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7.1 Introduction

The results of both the secondary and primary phases of the experimen-
tation are presented in this Chapter. Each of the major measurements that
were performed are reported in separate Sections of the Chapter. The results
of tests to détermine a constant value for the extinction coefficient are presented
in tabular form in Section 7.2.

Section 7.3 presents the experimentally determined values of the curtain
porosities (air and particle). The calculation process used to determine the
porosities from measurements of the particle flow rates and knowledge of other
physical characteristics of the curtain (i.e., size and mass of the particles and
the curtain velocity) is described. The values for the effective density and the
effective specific heat of the curtain are presented after the porosities have been
determined.

After determination of the properties and the physical parameters of the
curtain and given the measurements of the angular fluxes from the concentrator,
the specific boundary fluxes for a given test were measured as described in the
previous Chapter. These fluxes were used to determine the incident intensity
distribution on the front face of the curtain through the solution of the Fredholm
integral problem. This process is described in detail in Section 7.4. The results
of the boundary intensity model development and it’s corresponding heat flux
model are presented in graphical form.

Using the inputs of the boundary intensity and the inlet particle tempera-
ture, the model is now able to predict the transmitted flux through the curtain
and the average exit temperature of the curtain.! Comparisons of these quanti-
ties as estimated by the model are made with the data recorded in the test runs.

Results for the transmitted flux for a range of curtain thicknesses are presented

1 Actually, the model can predict the heat flux and temperature distributions within the
curtain itself, however, since obtaining measurements of these values would significantly alter
the character of the curtain and due to feasablility constraints, comparisons were only made

of the transmitted flux and the average exit temperature of the particles.
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in Section 7.5 while the temperature results are presented in Section 7.6. The
details of the finite differencing scheme for the equation system formulated for
the present case (i.e., the solar receiver problem) are presented in Appendix 2
along with the final forms of the expressions as they are used in the body of
the computer code.

Section 7.7 presents the results of a calibration test performed on the ther-
mocouple device. The calibration was conducted to possibly explain the effects
of the transient response of the copper bar on the actual particle temperatures.

To determine the effects of measurement errors of the model inputs on the
model predictions of the transmitted flux and the average exit temperature, a
sensitivity analysis was performed and the results are presented in Section 7.8.
A plot of the modified sensitivity coefficients for the heat flux is included as

well as a table for the average exit temperature.

7.2 Extinction Coefficient Measurements

As given in Stahl et al.(??)| the single scattering albedo for the particle cur-
tain was measured to be 0.1 £ 0.01. The scattering albedo represents the ratio
of the scattering coefficient to the extinction coefficient, the latter being the
summation of the absorption and scattering coefficients. The measurements of
the extinction coefficient were performed as described in the previous Chapter.
Tests were conducted for several different curtain thicknesses from 5 to 13 mm
with the majority of data taken at the maximum thickness, 13 mm.

As was discussed previously, the extinction coefficient for the model de-
veloped for the present study was assumed independent of wavelength. Conse-
quently, the dye laser was used to validate this assumption. Results indicated
that very little, if any, spectral dependence exists. There was no change in
the measurements (performed at a thickness of 13 mm) as the laser was swept
from approximately 570 nm to 630 nm. Consequently, the assumption of spec-

tral independence was felt to hold over the entire solar spectrum (even those
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Table 7.1: Extinction Coefficient Results

Approx. Curtain Extinction
Wavelength Thickness Coefficient
(nm) (mm) (1/mm)
570‘ 13 0.293
570 13 0.303
580 13 0.322
590 13 0.296
590 13 0.299
630 13 0.305
630 13 0.230
630 13 0.194
580 8.5 0.379
580 7 0.358
580 ) 0.494
630 5 0.343

wavelengths that lie outside the range of the dye laser).

Table 7.1 presents the results of the experiments. The data in the Table
constitute the tests in which it was felt the reading had become fairly stabilized
and, as such, are the most representative of the actual extinction behavior of
the curtain. Also, by using Bouguer’s Law in the calculation of the extinction

coefficient, in-scattering has been neglected. Realistically, the power detector
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would read the amount of energy that is transmitted through the curtain and
the amount that is scattered into the direction of the laser beam propagation.
As was discussed in Chapter 6, in-scattering has been assumed negligible and,
since the single scattering albedo has been measured to be 0.1, the uncertainty
associated with this assumption is well within the experimental error associated
with reading the power meter.

The mean value of the above tests is

% = 0.318 % 0.075 {-—1—} (7.1)

mm

7.3 Curtain Porosity Measurements

The test procedure to measure the porosities of the air and the particles
in the curtain was detailed in Chapter 6. The results of the tests are presented
here. Data were taken for two curtain thicknesses (i.e., two particle flow rates)
and, with knowledge of the particle velocity as a function of the fall height
and the volume and density of a single particle, the curtain porosities were
calculated. |

The data and the subsequent calculations made of the data to obtain the

porosities are presented in Appendix A-4. The results of the tests are

&, = 0.590 % 0.053 (7.2)

€a=1—¢, =0.410 £ 0.053 (7.3)

As was anticipated, the porosities calculated for the two different curtain
thicknesses were found to be independent of the particle flow rate.
If the measured values for the porosities are used in the expressions for the

effective curtain density and the effective curtain specific heat, Eqs. 3.42 and
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3.43, the thermal properties for the curtain are found to be

k
Peff = EaPa +€ppp = 2342.78 [Hgg'} (74:)
and
J
Cruss = Eatp, + Eptp, = 864.22 | (7.5)

7.4 Front Surface Boundary Intensity Distribution

As was discussed in Chapter 3, the determination of the front face intensity
distribution involves the solution of a Fredholm integral equation. The solution
is obtained by assuming a functional form for the intensity and determining
the parameters that appear in the integrated form of the functional relation-
ship which is a model of the boundary heat flux distribution. These fluxes,
measured in terms of their dependence on altitudinal and azimuthal angles,
are determined by measuring the angular variation of the heat flux at the test
stand. The solution process involves several steps, each of which is discussed in

the order they are performed.
7.4.1 Flux Data

As was discussed in Section 6.5, the angular dependence of the incident
heat flux ‘coming from the concentrator was measured. The data, taken on
clear days and only when the position of the sun is such that the illumination
from the heliostat completely covers the concentrator area, are assumed to be
representative of the true angular dependence of the concentrator. The variation
of the solar conditions is removed from these data by normalizing it with respect
to the insolation measured at the front face for each particular test.

The total heat flux data taken immediately after a flow test were used to

produce a function for the flux in terms of the vertical position on the plate.
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Since the heat flux distribution at the focal area of many solar concentrator
systems is generally believed to be Gaussian in nature, the flux gage data were
first curve fit using a Gaussian formulation. This step was taken to make the
“test” of the model less extreme (i.e., if only the data were used, the model
would “see” several step changes in the flux level for each flux gage data point)
by determining a smooth continuous function for the incident flux. The curve
fitting technique was a standard ordinary least squares method. To obtain the
fits, the flux at the edge of the copper plate was assumed to be zero. Since the
diameter of the “spot” at the solar furnace is slightly less than the length of one
side of the copper plate, this assumption was considered valid. Also, it was felt
that any error associated with this assumption would be insignificant except in
the regions very near the edges of the plate.

Figure 7.1 is a plot of the flux data and the Gaussian curve fit for one of
the test runs. The functional formulation for the curve fit is defined in terms

of the distance along the vertical of the plate, y, as

* "'f!l—yﬂéz
q*(y) =Ae” B (7.6)

where A, yo, and B are the parameters that the curve fitting routine determines.

Physically, A represents the maximum magnitude of the data. This max-
imum is measured at the peak (the center of the solar “spot”) which is deter-
mined to exist at the vertical location yg. The parameter B is a measure of the
“spread” of the Gaussian function defined by the variation of the flux from the

maximum at yo to zero at y =0, L,.
7.4.2 Normalized Angular Flux Data

To eliminate the differences in solar conditions from the time the angular
tests were performed to the conditions that exist on the day of the particular
flow test, the angular flux data were normalized by dividing by the average of

the total fluxes recorded at each of the flux gage locations measured on the day
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Figure 7.1: Front Face Total Heat Flux vs. Height (Data and
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of the flow test. This resulted in a set of flux values as a function of the two
angles (the elevation and the azimuth, see Figure 6.10b) that were assumed to
be the fractions of the total energy measured at the copper plate coming from
that direction on that particular day. These values now contained the effects of
the local solar conditions and the specific concentrator characteristics that the
solar furnace demonstrated.

Unfortunately, difficulties were encountered in attempting to measure the
flux at non-zero elevation angles. Since the cone angle defined by the concen-
trator at the test section is relatively large, small errors in the placement of
the NIP (most especially the location of the flux gage in the NIP) produced
large discrepencies in the readings. Several tests were taken on several different

days of clear skies with the concentrator completely illuminated by the helio-
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stat. Readings taken only minutes apart varied significantly for elevation angles
other than zero. However, due to the position of the attenuator in the full open
position (see Figure 6.10), it was difficult to align the NIP with confidence that
the attenuator was not interfering with the readings. Also, since the center of
rotation of the device that the NIP was mounted on was not precisely at the
position of the heat flux gage near the base of the NIP cylinder housing, when
the device was adjusted to a different angle, the position of the heat flux gage

would not now be at the focus of the concentrator.

Plots of the normalized heat flux data for test run Q7 are presented in
Figures 7.2a and 7.2b illustrating the significant differences between the zero
and non-zero elevation data. Figure 7.2a is the data for an elevation angle of
zero while Figure 7.2b is at an elevation angle of 15.2°. Clearly, the variation
of the heat flux coming from the concentrator is significant. Since the concen-
trator is composed of many small flat mirrors aligned towards the focal point,
misalignment of a set of these mirrors in any one particular area of the concen-
trator would significantly reduce the flux reading being measured by a limited
field of view device such as the NIP. Note that, due to the problems initially
observed in measuring the fluxes at non-zero elevations, confidence was less for

these readings than for the zero elevation readings.

The readings taken at zero elevation warrant discussion. The maximum
heat flux was consistently observed near the left side of the concentrator (if
viewing from the focal point towards the concentrator) which corresponds to
positive values for the azimuthal angle. The plot shows the fairly smooth yet
unexpected variation of the flux for the zero elevation case. Once again, it
was believed that this behavior was caused by the alignment of the individual
mirrors. Although repeatability was difficult for any of these flux readings, the

zero elevation readings showed the same variation for all tests conducted.

Due to the difficulties that were observed for the non-zero elevation data,

it was felt that, in order to minimize the potential for inclusion of large sources
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of measurement error, only the zero elevation data would be used to estimate
the angular flux and intensity functions. Also, as will be discussed later in this
Section, the solution of the Fredholm integral problem was more accurate if only
the zero elevation fluxes were used (since the differences in the behavior of the
zero and non-zero elevation readings were significant). The front face intensity
distribution was developed by assuming that the concentrator was symmetric
in both the altitudinal (¢) and azimuthal (§) directions. The zero elevation
flux readings were used alone to determine the parameters in the intensity and

corresponding heat flux models.
7.4.3 Boundary Intensity and Heat Flux Models

Once the normalized angular heat fluxes have been determined for the
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specific test under consideration, the solution to the Fredholm integral prob-
lem is obtained. This is accomplished by assuming a functional form for the
boundary intensity and determining which parameter values best fit the heat
flux data after the function has been integrated. As was mentioned previously,
the concentrator is assumed symmetric about both the vertical and horizontal
directions, so the data points from the zero elevation sweep of the NIP are used
for the problem.

The choice for the intensity function was made based on the apparent
behavior of the concentrator. The expression relating the heat flux to the

intensity is

b2 b2
67, 80,88) = [ [ B(ru, 0, ¢ cost'sing'dg'ag (1)
1 01
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where § is the angle defined by the angular flux data due to the assumption of
azimuthal symmetry described earlier.

Notice that, if sin or cos behavior is observed for the heat flux, assuming a
sin or cos function for the intensity will not yield the same function for the flux
after integration through Eq. 7.7 above. Initial models attempted to describe
the intensity in standard trigonometric forms. These models yielded difficult
and physically unrealistic flux functions that were incapable of accurately de-
scribing the heat flux. Appendix A-1 lists some of the models that were tried
for the intensity and their corresponding fluxes.

Eventually, it was decided to choose a simple trigonometric form for the
heat fluz. This was accomplished by choosing a function for the intensity that
would deliver the desired heat flux expression after the solid angle integration
was performed. The “best” model was observed to be a combination of sin
and cos functions with separate parameters for each term. The model for the

intensity was defined as

B1 + B2 B3

cosf  sinf  cosfsinb

I\(rp,0) = (7.8)

which, as observations of the form of Eq. 7.7 indicate, will yield trigonometric
forms for the heat flux distribution.

The resulting integrated form of Eq. 7.8 which is the heat flux model is
i, \(b, 0, DG, ¢, AP) = By (cosb; — cosbit1) + By(sinbit1 — sinb;) + By (7.9)

where the new parameters are defined in terms of the non-primed parameters

B = B1(Ag) (7.10a)

Bz = B2(A¢) (7.108)
and

B3 = B3(A9) (7.10¢c)
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where A¢ = ¢iy1 — ¢i. Since azimuthal symmetry was assumed, A¢ (as well
as Af) represents the field of view of the NIP and is therefore a constant.

Once the model for the intensity distribution has been chosen and it’s
corresponding heat flux function determined, the parameters are now estimated
through a typical OLS (ordinary least squares) parameter estimation routine.
As described above, the output of the parameter estimation method will be the
primed values of the parameters as defined in Eqgs. 7.10. The assumption that
these parameter estimates are valid in the intensity function forms the basis of
the solution to the Fredholm integral problem.

The routine that was used is part of the IMSL software package and
is designed to solve the typical non-square OLS problem. The routine, LS-
BRR and DLSBRR for double precision programs, solves a linear least squares

problem with iterative refinement. The refinement algorithm is developed in
Bjork(7):("9) LSBRR calculates the QR decomposition with pivoting of the
coefficient matrix. The diagonal elements of the coefficient matrix are tested
against a tolerance value to force satisfactory conditioning of the matrix before
the iterative refinement process is applied.

‘Given the data over the angle 8 and the functional formulation for the heat
flux, the IMSL routine was able to determine values for f;, #5 and £} that fit
the flux data reasonably well. Figure 7.3 is a plot of the results for the test

“run. The plot shows the flux as a function of the angle §. The results of the
parameter estimation routine are plotted (curve) along with the actual data
(points). The average error magnitude, defined in terms of the total number of
data points used, N, as

N R
Y ie1 19date — 4l
N

(7.11)

eqz

for all of the test runs! was 9%.

1 Recall that the data for these tests are the angular concentrator flux values normalized
by the average total flux reading for a given test run. Consequently, the error associated with
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Figure 7.3: Comparison of Front Face Data to Estimated Flux
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It was necessary to determine the parameters that best fit the data for all
flow tests conducted. The determination of the parameters for the boundary
intensity distribution is performed in a separate program than the main program
which is the EOT /energy conservation solver. The parameter set is fed into the
main program and the model for the intensity is used to determine the intensity
in the ordinate directions. Since the intensity model is couched in terms of the
angles involved with the NIP experiments, the angles that correspond to the
discrete ordinate direction cosines are calculated by projecting the ordinates
down onto the same set of axes that was used for the NIP experiments.

It should be noted that, even though one half of the ordinates of each

the estimation routine will always be the same, regardless of the value of the average total

flux.
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set correspond to forward directions (i.e., into the curtain at the front face),
only a few of these will represent angular directions that fall within the to-
tal solid angle subtended by the solar furnace concentrator at the test stand.
Consequently, for the Sy approximation (12-flux), only 3 ordinates correspond
to allowable directions for the geometry of the system. The S¢ (24-flux) ap-
proximation contains 6 acceptable directions while the 2-flux model contains no
allowable directions. Intensities along forward directions that do not fall within
the concentrator solid angle are set to zero. In this way, the 2-flux discrete ordi-
nates approximation cannot be applied. Once all the ordinate direction cosines
have been broken down into their respective angles, the model calculates the
intensities for those angles within the prescribed concentrator cone angle. The
result is an intensity distribution that is zero for most directions (i.e., those
that are “backward” facing and those that lie outside the proper field of view)

and positive for all of the others.
7.4.4 Numerical Check of the Boundary Intensity Model

In an effort to illustrate some measure of accuracy of the boundary in-
tensity model, after the intensity distribution was calculated for the front face
boundary, the total heat flux along the boundary was “re-calculated” by numer-
ically integrating the intensity values (not by using the analytically integrated
intensity function). The expression relating the intensity to the heat flux is

written in Gaussian quadrature formulation as

N
ga(re) = > wili xQ (7.12)
i=1

The results of this calculation should reproduce the total heat fluxes mea-
sured at the front face for a particular flow test. The plots for these calculations
are presented in the next Section along with the model’s estimation of the mea-

sured transmitted fluxes for each of the flow tests that produced “good” data
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(i.e., data that displayed fairly constant flux readings both during the flow and

after cessation of the flow).

7.5 Transmitted Flux Comparisons (Model and Data)

The measurements of the transmitted flux at each of the vertical flux gage
locations on the copper plate are compared with the flux predictions by the
model. The results are presented in this Section.

Tests were conducted for a range of curtain thicknesses that fall within the
allowable values as dictated by the effectiveness of the temperature measuring
device. Results are presented graphically in two separate plots for each test
run. The first plot illustrates the incident flux measurements and the numerical
“re-calculation” of the front surface flux obtained by integrating the boundary
intensity distribution over solid angle as described above. The transmitted flux
through the particle curtain, both the data and the numerical predictions, are
presented in the second plot. The plots are presented in order of increasing
curtain thickness with both plots for a given test presented together.

Experimental error bounds are presented in each of the plots for the flux
data points that are included. The measurement errors in the flux data are
primarily caused by two major factors: 1.) the inherent error associated with
the circular foil heat flux gage (usually this error is biased above the actual flux
value due to lack of precise information concerning the absorption qualities of
the black coating) and 2.) errors that were observed due to imperfect orientation
of the solar beam on the copper plate.

The second of these error terms, which is difficult to quantify, is mostly
caused by changes in the heliostat alignment due to tracking adjustments.
These changes often have the result that the flux distribution on the plate
before the change is slightly different than the distribution that is recorded af-
ter the adjustment has occurred. For the data presented in this Section, the

heliostat was both manually adjusted (in an effort to reduce this orientation er-
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ror) and automatically adjusted with the tracker. In both cases, the orientation
error was observed.

Quantitatively, the inherent flux gage error is usually approximated as
+5% of the maximum rated capability of the flux gage. The orientation error,
for purposes of necessity, was also assumed to be £5% of the rated maximum.

These errors were combined in a root sum squares (RSS) sense (i.e., w, =

2 2 . o -
\/c:) 2 ge T Worientations Where w represents the uncertainty value of the indicated

quantity) to yield the overall measurement error for any given flux gage reading.
The actual determination of the error bounds that are shown in the plots is

discussed in the next Section.
7.5.1 Thin Curtain Results

Two sets of data were used for comparisons that had curtain thicknesses
less than 3.5 mm. Data from two test runs, @7 and @8, are compared with the
predictions determined by the model. The results are presented in Figures 7.4
and 7.5 for Q7 and 7.6 and 7.7 for 8. All the plots in this section have the

vertical axis defined as a non-dimensional heat flux

~ — qr
1= o7t

inlet

(7.13)

where q, is the total radiative heat flux at that particular vertical location and
Tintet is the uniform inlet curtain temperature obtained through measurements
taken with the temperature measuring device before the attenuator of the solar

furnace had been opened.

The horizontal axis is the non-dimensional vertical distance defined as
- __y__ ‘
7= I, (7.14)

As was discussed earlier, after obtaining a front face intensity distribu-

tion by estimating the parameters that appeared in the integrated heat flux
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form of the assumed intensity distribution, the front face heat flux was “re-
calculated” (i.e., the integral performed using Gaussian quadrature as defined
by the discrete ordinates approximation) to provide some information regard-
ing the accuracy of the intensity distribution. Since the forcing function for the
initial parameter estimation of the heat flux was obtained by curve fitting a
Gaussian type function to the measured data, the “re-calculated” fluxes exhibit
this Gaussian shape also.

The error bounds that are shown in the plots are determined by considering
the flux reading uncertainty, w, (discussed in the previous Section) along with
the uncertainty in the measurement of the inlet particle temperature. The
final error value is determined through a standard Kline-McLintock("®) analysis

according to the following expression

2 2
a{anltt} 2 a{an‘[lt} 2 715
w(aT‘* ) - aq wq + 81-’inlet wTinlet ( ) )
inlet

Since the particles and the thermocouple funnel were given sufficient time
to réach ambient temperature before a flow test, and since the particles were
flowing for several seconds before the attenuator was opened, the measurement
errors associated with the inlet particle temperatures were assumed to be only
a factor of the inherent errors in the hypodermic thermocouples, £1°C. Given
the values for the temperature errors and the flux errors described above, Eq.
7.15 is used for every data point to determine the upper and lower bounds on
the flux readings presented in the plots to follow.

Figures 7.4 and 7.6 are the plots of the front face heat fluxes as a function
of the vertical height along the copper flux gage plate for test runs Q7 and Q8
respectively. In both Figures, it is apparent that the numerical prediction of
the local heat flux overestimates the measured values at all locations on the

plate. A clear increase in accuracy is shown with the higher order (Ss) discrete
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ordinates model.?

The deviations for Figures 7.4 and 7.6 range from a minimum of 17.8% to a
maximum of 27.6% for the S¢ (24-flux) approximation. Even though it appears
in the Figures that the maximum deviation occurs at or near the center of the
flux gage plate, the actual error magnitude is similar for all of the flux gage
readings. It should be noted that, in the discussion to follow for the rest of this
Section, all deviations are those between the 24-flux (S¢) approximation and
the data. Since the higher order approximation is clearly more accurate and
the computational requirements associated with running the Sg approximation

are not significantly more costly, the 24-flux model is used for all comparisons.

1 Recall that, for the 24-flux approximation, only 8 directions fall within the sclid angle

defined by the field of view of the concentrator at the test section.
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(Test Run Q7, L, = 3.175mm, Thin Curtain)

“re-calculation” of the front face flux

It is clear from the Figures that the
through the integration of the intensity distribution values overestimates the
actual flux measurements. In all of the subsequent Figures (the even numbered
Figures are the front face fluxes, odd numbered Figures indicate transmitted
flux), the model overestimates the measured heat flux. Recall that, in the dis-
cussion of the concentrator characterization experiments, one “sweep” of the
concentrator consisted of approximately 50°. The intensity model parameters
(obtained through estimation from the flux data) are determined over this an-
gular range. However, the discrete ordinates model, for both the 12- and 24-flux
approximations will only have a few angles that will fall within the limited field

of view of the solar furnace system. Typically, estimations of data through the

use of some known function with a set of parameters will, over the range of the
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indei)endent variable used, have regions of both overestimation and underesti-
mation. It is conceivable that, for the small set of angles used in the discrete
ordinates model (3 for the Sy and 6 for the Ss sets), the intensity distribution
is in a region of overestimation of the data by the function. This would have
the effect ofk causing the model to always overestimate the front face flux data
as it seems to do in all of the even numbered Figures.

Also, recall that the inaccuracies involved with the determination of the
front face flux from a numerical integration of the intensity field are additive
through the calculations that were performed to reach these values. Initially,
the front face flux data were curve fit using a Gaussian function. Then, the
parameters that appear in the analytical integration of the intensity field were

determined using this Gaussian representation of the data along with the re-

158




Chapter 7: Ezperimental Results and Comparisons

b
D 200 £ S B ] L] LEE R R A LA A R B B L | LI L 2L 1] | 3 4 IYI'I I BB ] € b 8 | 2 L] V¥ FF 8§ 8§ |-
2 fw- DATA (Q8) ' :
B ¢ - UNCER. LMTS. ]
B - 1 - 12 FLUX . ;
é T 2 - 24 FLUX ]
150 - -
= - .
< - ]
d C .
9 u :
»n 100 3
Z - :
& - ;
= - ;
- - o
R - :
d 50 -
@] o
d ]
1 1 lll|lllllllIlllll|l|||lll1l||lllllll|l|lll|ll[:
0.0 0.2 0.4 0.6 0.8 1.0

NON-DIMENSIONAL HEIGHT
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(Test Run 8, L, = 3.175mm, Thin Curtain)

sults‘ from the concentrator characterization tests. Next, the intensity field
was determined by projecting the ordinates down onto the coordinate axes and
evaluating the intensity function, with the parameters found previously, at the
resulting angles. Finally, to obtain the re-calculated fluxes, these numerical
intensity values were integrated using Gaussian quadrature. Clearly, the nu-
merical errors involved with this set of computational steps could cause the
final solution (the curves in the plots of the front face fluxes) to be inaccurate.

However, for all of the front face plots presented in this Section, the largest
deviation of the model from the data is the 27.6% observed at the position of
the first data point in Figure 7.6 (test run @8). This would seem to indicate
that the intensity model chosen and the predicted parameters determined from

the flux data produced results that were acceptable.
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For the thin curtain trials (@7 and @8), the results of the model in predict-
ing the transmitted flux distribution are also reasonable. The deviations ranged
from a low of —0.5% at the peak reading in Figure 7.5 to a high of 24.8% near
the top of the plate (§ ~ 0.2) in Figure 7.7.

The deviations in these two Figures are maximum near the plate edges
for both trials and become small near the center. Notice that, although the
front face boundary flux calculations consistently overestimated the data, the
transmitted flux predictions do not. In Figure 7.5, the model initially under-
predicts the transmitted flux. It eventually passes through a point where, if the
Gaussian curve fit of the data was shown, it would cross this curve (7 = 0.3).
For the rest of the flux readings from § &~ 0.3 to the bottom of the plate at
7 = 1, the model over-predicts the data.

In Figures 7.6 and 7.7, the shape of the flux data deviates slightly from
what was noticed in the previous two plots. The peak reading for this test, as is
clear from an observation of the front face flux in Figure 7.6, is offset with the
maximum reading occurring at § = 0.6. Obviously, the test stand and the flow
device were not correctly aligned vertically. From the Figures, the model seems
to do a reasonable job of reproducing this offset flux profile and predicts the
fluxes with small error (< 10%) over most of the flux gage plate from § ~ 0.3 —
1. The ability of the model to accurately predict the flux shapes comes from
the use of the front face flux data to obtain a Gaussian curve fit. Recall that,
in these curve fits, the location of the peak was one of the parameters that was
determined. This information resulted in the determination of the boundary
intensity profile. Consequently, the model is capable of predicting reasonable

flux shapes even when the solar “spot” has been incorrectly aligned.
7.5.2 Intermediate Curtain Thickness Results

The front face flux plots for the intermediate curtain thickness tests, as ex-

pected, show that the model also provides reasonable predictions of the bound-
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ary intensity distribution. The intermediate curtain tests are designated Q4,
Q5 and Q16. The deviations between the 24-flux approximation and the mea-
sured data range from 3.8% to 9.4% for the three plots. Once again, the errors
were slightly larger near the edges of the plate than in the center and, at all
points, the model overestimated the data for both the 12- and 24-flux approx-
imations. In all of the front face flux plots (for all thicknesses), the model not
only predicts the flux data values but it also seems to match the slope of the
curve with reasonable accuracy.

The transmitted flux plots (Figures 7.9, 7.11 and 7.13) show results similar
to the thin curtain plots. However, the maximum deviations exhibited on this
plot are significantly higher than those for the thin curtain cases. Once again,

the maximum errors occur near the plate boundaries. Edge errors for the three
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plots' shown are 38.6% (Q4), 59.9% (@5) and 76.1% (Q16). As is clear from
the plots, the errors near the data point at § ~ 0.2 are the largest. Near
the peak reading, errors ranged from —23% to 5.4%. Notice that, in all three
plots, the peak reading seems to have moved from somewhere between the
second and third readings (§ =~ 0.5) to the location of the third flux gage at
7 = 0.6. This apparent propagation of the peak reading can be attributed to
changes in the position of the heliostat. The solar tracking system can slightly
alter the position of the heliostat such that the peak flux is not kept exactly
at the center of the plate. This adjustment can occur after the transmitted
readings have been recorded but before the hopper is emptied of particles. The
front face fluxes are recorded at this time. This behavior is noticed in all of

the transmitted flux plots except Figures 7.5 and 7.7 which are the results of
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Curtain)

the thin curtain tests although, in other preliminary tests with thin curtains,
tracking adjustment error was observed. Consequently, the indications are that
curtain thickness plays no role in terms of these tracking adjustment errors.
The movement of the peak certainly plays a significant part in explaining
the large errors near the top of the plate. As the Figures indicate, the peak read-
ing moves to a location lower on the flux gage plate (i.e., Up,runs > Upincident )-
This has the effect of producing a flux reading at the topmost location (§ = 0.2)
that is low. As stated above, the model overestimates the data consistently
(which occurs for all of the plots in which the peak reading moves between the
recording of the transmitted and incident fluxes). It is thought that these devi-
ation values are not indicative of the ability of the model to estimate the edge

fluxes but rather are caused by the adjustment of the heliostat in between flux

163



¥
B 350 |||||| LI S l lllllllll ' llllllll l LI 30 3 l llllll L2 I
[
: 300
<l 1 9 ¢
m 250 B
w
5 ®
) 200 B
= 2
&
% 150
E m - DATA (Q5)
2 100 ‘ ¢ - UNCER. LMTS.
Z 1 - 12 FLUX
Q 2 - 24 FLUX
Z 50!
IllI||IIIIILIIIIllllllllﬂllll'llllll!l!'lllllllll
0.0 0.2 0.4 0.6 0.8 1.0

NON-DIMENSIONAL HEIGHT
Figure 7.11: Non-Dimensional Transmitted Flux Comparison
(Test Run @5, L, = 4.366mm, Intermediate Cur-

tain)

readings. As was illustrated in the thin curtain plots (Figures 7.5 and 7.7) in
which this peak reading movement is not observed, the errors associated with
the model predictions are much lower.

The errors near the peak for the three intermediate plots are much more
reasonable. However, this is also slightly misleading since the model peak value
and the data peak value don’t coincide. If the errors near the center of the
plate are “re-calculated” as the percentage difference from the peak value of
the model to the peak value of the data, the errors are reduced significantly
for the plots of test runs Q4 (from —23% to —10.4%) and @5 (from —12.4% to
—1.4%). The error in Figure 7.13 (test run Q16) increased slightly from 5.4%
to 7.6%. This suggests that, if the data were somehow recorded simultaneously

such that adjustments to the heliostat made by the tracking system did not
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Curtain)

effect the readings, the model predictions would be more reasonable.
7.5.3 Thick Curtain Results

As was noticed before, the model provides a reasonable prediction of the
front face heat fluxes for the test runs for the thick curtains. Figures 7.14, 7.16
and 7.18 are the results for the incident flux profiles for test runs Q12, Q17
and @15 that correspond to curtain thicknesses of 5.95 mm, 6.747 mm and
7.54 mm, respectively. Maximum and minimum errors for the model predictions
of the incident flux in each of the Figures are 14.4%, 10.1% for Figure 7.14,
11%, —2.2% for Figure 7.16 and 14.7%, 13.8% for Figure 7.18. Notice that,
in all three Figures, the peak of the curves (both for the data and the model)

appears to lie between the second and third flux gage locations in the vicinity
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of § =~ 0.5. As the transmitted flux Figures show, the movement of the peak
due to tracking adjustments seems to have occurred in these three tests also.

| Figures 7.15, 7.17 and 7.19 are the plots of the transmitted flux data and
the model predictions of the flux for test runs @12, @17 and @15, respectively.
These tests are the results of curtain thicknesses that were close to the maxi-
mum particle flow rate that the temperature device could handle. Also, at the
increased particle flow rates for these thicker curtains, the particle supply in the
hopper would be exhausted so quickly that obtaining reasonable transmitted

flux data became difficult.

Test run 15 represented the upper limit on curtain thickness with a thick-
ness of 7.54 mm. At this thickness, it was only possible to obtain three complete

sets of transmitted flux data that displayed the necessary leveling off in order
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to be considered steady-state. Recall that, due to the slow response of the flux
gages, the transmitted readings for each test slowly increased from the mo-
ment the attenuator was completely opened and eventually leveled off. In some
cases, the flux readings did not level off before the flow ceased when the hop-
per emptied. The readings at this leveling off point were considered the actual
transmitted fluxes. Then, as the hopper supply was exhausted, the readings
once more ramped up until they leveled off at the incident flux readings. Some
readings were taken at curtain thicknesses greater than 7.54 mm (i.e., 9.128
and 9.92 mm), but the data from these readings did not level off before the
hopper emptied.

Errors for these runs are maximum at the first flux gage location (as is

true of all of the plots in which the peak reading appears to have propagated
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Figure 7.15: Non-Dimensional Transmitted Flux Comparison

(Test Run Q12, L; = 5.95mm, Thick Curtain)

dowhward). The error values at these locations are 41.9%, 69.9% and 22.1%
for Figures 7.15, 7.17 and 7.19, respectively. Errors at the apparent location
of the peak for each of the Figures are —7.6%, —43.6% and 1.9%, respectively.
As was noticed for the intermediate curtain results, if the errors are calculated
between model peak and data peak, the errors are changed to —2.1%, —27.4%
and —4.7%, respectively. Notice that significant improvements are noticed for
two of the three plots while the error in Figure 7.19 is reasonable for both
calculations.

As is clear in Figure 7.17, the data readings at flux gage locations 4 and
5 (the peak reading and the next lower one), appear to be inconsistent with
the first three readings. This may be attributable to the tracking adjustments

mentioned earlier. Clearly, the errors between the model and the data for
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son (Test Run Q17, L, = 6.747mm, Thick Curtain)

these two locations are not representative of the performance of the model as
is indicated in the other plots. It may be deduced that the experimental error
associated with the data presented in Figure 7.17 is comparitively larger than

for the other test runs presented in this Section.

7.6 Average Exit Temperature Comparisons (Model and Data)

The results of the solution of the conservation of energy expression are
presented in this Section. The temperature distribution is calculated by the
model simultaneously with the EOT and, as was described in previous Chapters,
the process is repeated until the intensity and temperature fields converge to a
prescribed tolerance from one iteration to the next. The measurements of the

average exit temperature of the particles, as was also described previously, were
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Figure 7.17: Non-Dimensional Transmitted Flux Comparison

(Test Run Q17, L, = 6.747mm, Thick Curtain)

diﬁ‘icﬁlt and it was anticipated that the experimental error would be significant.

The results for the average exit temperature are presented in Table 7.2 for
all of the test runs that were discussed above. The table shows the test run
designation along with the curtain thickness for that run and the measured
inlet particle temperature. The inlet temperature is the value that is used as
the input for the model for the intial temperature distribution in the curtain.
Although the model is capable of predicting the temperature distribution in the
medium, the experimental program only produced what must be considered the
average exit values. Consequently, to calculate the same values in the model,
the temperature distribution along the z-direction ‘(direction into the curtain)

at the vertical location § = 1 was averaged in the usual way.

The last column of the Table presents the deviations between the data read-
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ings and the model (for the S5 approximation only) in the form of a percentage
difference defined in terms of the differences between the exit temperature of

the data (and the model) and the measured inlet temperature as

Tdatawu - Tdatas’nlet] - [Tmodelem — Tdatainlet]

. [
% dif ference =
0 ff [Tdataexit - Tdatainlet]

(7.16)

As is indicated in the Table, the magnitude of the deviations ranged from
a low of 8.4% to a high above 45% for the 24-flux approximation. Clearly, the
predictions of the model and the measured values are significantly different.
For the cases in which the model underestimated the exit temperature, the
12-flux model predicted the exit temperature more accurately than did the 24-

flux model. This was only considered coincidental, however, due to the fact
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Figure 7.19: Non-Dimensional Transmitted Flux Comparison

(Test Run Q15, L, = 7.54mm, Thick Curtain)

that the 12-flux model consistantly overpredicted the incident flux distribution
which certainly led to an overestimation of both the transmitted heat flux and
the exit temperature. The significant differences between the model and the
data suggest that some consideration of the measurement error associated with
the temperature measuring device is in order.

Due to the complexity of the measurement process and to the uncertainty
of the measurements of the curtain porosities (used to determine the thermal
properties), the specific reason for the large deviation is unknown. Certainly it
may be stated with reasonable confidence that the measurements have a signif-
icant amount of experimental error. The thermocouples embedded in the thin
copper bar are actually measuring the temperature of the bar. The contact

area of the particles on the bar is very small for a given particle. Consequently,
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Table 7.2: Temperature Results

Test I T — Th, %, T,  Diff
Run (mm) (data) (S4) (Ss) (%)
Q7 3.175 87.13 90.59 91.31 91.20 -17.6
Q8 3.175 88.05 91.14 92.35 92.23 -35.3
Q4 4.366 80.62 84.65 85.90 85.49 -20.8
Q5 4.366 83.95 92.87 88.52 88.24 51.9
Q16 5.556 79.76 85.52 84.01 83.66 32.2
Q12 5.950 77.35 84.28 82.2 81.77 36.2
Q17 6.747 83.12 86.38 88.41 87.92 -47.2
Q15 7.540 77.78 82.32 83.27 82.70 -8.4

(x - all temperature results in °F)

the copper bar is actually in contact with both the air in the curtain and the
particles as they pass through the device. Also, there will be a characteristic
time lag (and a spatial temperature gradient) between the actual temperatures
of the medium and the recorded temperatures of the copper bar. This effect was
neglected in the model by assuming the copper bar to be a lumped system (i.e.,
the high conductivity and relatively small thickness of the copper would cause
any temperature gradients from the outer wall to the thermocouple junctions to
be suffuciently small to be ignored). The actual effects of spatial temperature
gradients and temperature time lags could be determined by solving the con-
duction problem associated with the copper bar. A first approximation analysis
of the problem (i.e., transient conduction in a copper bar with simplistic bound-

ary conditions) would show that the value recorded by the thermocouples was
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actually less than the true temperature of the particles. This could have the
effect of decreasing the deviations for the cases in which the model overesti-
mated the temperatures (cases Q7, @8, @4, Q17 and Q15), while making the

deviation values for the other cases larger.

A calibration procedure was consequently conducted for the temperature
measuring device to determine the effects of the time lag on the thermocouple

readings. The results of these tests are presented in Section 7.7.

Due to the low absorption of the air in the solar spectrum, it is anticipated
that the funnelling process, caused by the shape of the temperature measuring
device, forces the air near the copper bar to be warmed to the temperature of
the particles. This will allow the copper bar to come to thermal equilibrium at
the actual temperature of the particles in the curtain. However, it is clear that
the hypodermic thermocouples will actually measure a temperature that is less
than the temperature of the particles. Temperature gradients from the out-
side surface of the copper bar to the location of the thermocouples along with
cooling of the bar caused by the inefficient transfer of heat from the particles
to the air that is in contact with the bar indicate that the thermocouples will
be underestimating the actual exit temperature. To determine the magnitude
of this underestimation, an energy balance may be performed on the copper
bar. However, it is anticipated that the calibration procedure will justify the
assumption of lumped capacitance in the copper (i.e., the actual spatial tem-
perature gradient from the surface to the thermocouple location inside the bar
is negligible).

Another source of error is caused by assuming that the thermocouples
will be reading the average exit temperature. Even if the device was properly
positioned under the hopper exit area, the particles would still not contact the
copper bar uniformly. Particles near the leading and trailing edges of the curtain
would not contact the bar as easily as those closer to the central plane. This

would cause the copper bar to not experience the effects of the cooler particles
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at the trailing edge and the hottest particles along the front face. Also, any
slight misalignment of the funnel device below the hopper exit could cause the
particle curtain to contact the bar unevenly (i.e., in such a way that one part of
the curtain would “weight” the readings away from the true average reading)
causing the thermocouple readings not to be indicative of the average of the
curtain as a whole.

Recall that the model was developed assuming no transient energy storage
effects. Also, the thermal properties of the medium were assumed constant and
were written as a weighted sum of the properties for the air and the particles
with the weighting function defined volumetrically in terms of the porosities
of each material in the curtain. Certainly, any errors in either the physical
representation of the thermal properties (in terms of the volumetrically based
porosities) or in the measurement of the porosity would add to the inaccuracies
of the model. The sensitivity of the model to measurement errors in the porosity
is discussed in the next Section.

Lastly, the convection loss term was modeled using a correlation developed
for a fluidized bed system.?

Certainly, the numerical uncertainty associated with these assumptions
should be considered when judging the effectiveness of the model to predict the
temperature field. It is clear that a more sophisticated model of the thermal
properties and of the exchange of energy in general is needed to more accurately
estimate the temperaure distribution. In all probability, the thermal (and ra-
diative) properties of the system are not constant and the development of an
energy model should consider this.

One important capability of the model is it’s ability to describe the tem-

1 While convection correlations are generally considered to only be accurate to within
+20%, the errors associated with the present convection calculations are not thought to

be extensive due to the relatively low temperatures acheived by the particles as they pass

through the solar beam.
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perature distribution in the interior of the particle curtain. Ultimately, the
factors that will effect the decisions concerning the design of any direct ab-
sorption receiver will include the temperature drop that will be observed for
the given medium and solar concentration system. In this way, the effects of
walls and other boundaries that may participate in the energy transfer can be
determined. Although it was not feasable to experimentally describe the inte-
rior temperature distribution, the model does provide some indication of the
magnitudes of the temperature gradients from the front of the curtain to the
rear. A table of the interior temeprature distribution for one of the test runsis

included in Appendix 6.

7.7 Calibration of the Thermocouple Funnel Device

In an effort to determine if the transient effects of the thermocouple funnel
device were causing the errors observed in the comparisons of the model to
the temperature data, a calibration procedure was conducted. The copper
bar, which is a highly conductive material, was as thin as was practical to
allow implantation of the hypodermic thermocouples. This non-zero thickness
certainly would cause the temperature readings taken by the thermocouples to
lag the actual temperature of the outside surface of the bar. Both spatial and
temporal temperature gradients would exist that would add to the experimental
error of the thermocouple/copper bar system. The transient effects can be
observed by forcing a known boundary condition on the outer surface of the
bar and observing the temperature readings of the thermocouples.

This calibration procedure was simple and only involved preheating the
particles to a known initial temperature. This was accomplished in an indus-
trial oven and the preheat temperature was monitored not only by the built in
temperature probe in the oven but also by a separate thermocouple that was
placed into the center of the particles as they sat in a metallic canister.

After the particles had achieved the desired uniform initial temperature
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(the thermocouple probe in the particles was placed at several different heights
to ensure that no stratification was occurring), the canister was removed from
the oven and the particles were quickly poured through the particle flow device.
As the particles flowed through the thermocouple funnel, the temperature was

recorded in the same way as during the flow tests at the solar furnace.
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Figure 7.20: Transient Response of the Copper Bar Thermo-

couple System

A plot of the results is presented in Figure 7.20 with the initial temperature
shown as a horizontal line. Also included in the Figure is a typical temperature
curve from one of the actual solar furnace tests. An observation of the curves
in the Plot indicates that the response of the thermocouple funnel device has a
characteristic time constant on the order of 10 to 15 seconds.

The temperature that was used as the average exit temperature for the
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experimental data was the peak value that is clearly observable on the curve.
At this point, the hopper emptied and the particle flow stopped. Since a typical
test displayed a gradual positive slope throughout the duration of the particle
flow (which ceased when the flow ended), it was assumed that, as long as the
time period that elapsed from the opening of the attenuator was significantly
greater than the time constant of the system, the time lag in the thermocouple
readings would be negligible.

As is clear from the plot, at the point that the hopper emptied, the elapsed
time for the flow test was sufficiently longer than the time constant observed
in the calibration procedure and this temperature reading was considered the
constant value for that particular test. Accordingly, the assumption that the
thermocouples readings were fairly accurate at this moment seems to be vali-
dated.

It is also clear, however, that more accurate thermocouple readings could
be obtained by considering not only the transient storage of energy in the cur-
tain (through a re-formulation of the energy conservation equation) but also the
transient variation of the temperature readings. Through the use of a calibra-
tion -curve similar to the one in Figure 7.20, it would be possible to correct for
temporal (and spatial) temperature gradients, although this would require tak-
ing the thermocouple measurements as function of time. Even greater accuracy
might be achieved by solving a multi-dimensional, transient energy balance on
the copper bar itself. Unfortunately, an accurate representation of the boundary

conditions for the particle flows would be difficult.

7.8 Sensitivity of the Model to Measurement Error

In order to determine the relative importance of the different quantities
that were measured during the course of this project on the performance of the
model, a sensitivity analysis was conducted. Values of the measured quantities

that were used as inputs to the model (i.e., absorption coefficient, curtain poros-
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ity, incident heat flux, and inlet temperature) were perturbed a small amount
and the model was re-executed to determine the difference that this perturba-
tion had on the outputted values (i.e., the average exit temperature and the
transmitted heat flux.) This analysis was performed by calculating the sensitiv-
ity coefficients that related the outputted values of the model to the inputted
measurements.

The sensitivity coefficient is the ratio of the change in the desired output
quantity to the change in the inputted measurement value. Mathematically, it
can be expressed as the partial derivative of the outputted term with respect
to the inputted measurement. Defining the sensitivity coefficient as I', where
p is the specific parameter that is being considered, the expression that would

be used for the heat flux data becomes

Jq

L=

(7.17)

point n

where n represents the independent variable that pertains to the particular
output distribution.

Normally the above expression is used to construct the sensitivity matrix
which is eventually used to solve a parameter estimation problem to determine
the corresponding parameter values (I'p, p = 1,2, ..., Np, where N, is the num-
ber of parameters in the model). However, in order to provide a comparitive
basis for determination of relative importance of certain measured quantities, a
set of modified sensitivity coeflicients is calculated by multiplying the coefficient
defined above by the measured value of the particular quantity. This has the
effect of removing the dimensionality of the perturbed measurement from the
calculated value (i.e., the final values have the units of the outputted data quan-
tity that is being investigated). The expression is written for the realistic case
where it is impossible to calculate the partial derivatives analytically because

the model is actually the solution to a set of partial differential equations by
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perturbing the measured data value and observing the effects on the outputted

data point.

For the present project, the modified sensitivity coefficients were calculated

for the two outputted quantities, the transmitted flux and the exit temperature

as
Ag
Faaé = aAa (7-18&)
ATcmi
Fa,Tea}it =« Aa - (7.18b)
Ag
Pep,é = &IPZ-E; (7.19a)
ATezi
Te, Toi: = Ep Ae : (7.19%)
Ag
I‘ﬂj;q "' ,6] A,B] (720(1,)
ATexi
Pﬂ] 7Tamit = ﬂ] A,Bj : (7-20b)

for j = 1,2,3 for the three parameters in the boundary intensity (and heat flux)
function (see Eq. 7.8), and

Ad

PT.-,,,E,,q = Tinletm{‘q‘l_t' (721(7,)
ATe i

TTintee, Tewie = Tinter o xltt (7.21b)

for the absorption coefficient, the curtain porosity, the front face heat flux and
the inlet particle temperature measurements respectively.

The above calculations were applied to the model results of test run Q8
using a 10% perturbation on each of the above described quantities (there are

six in all). The results for the transmitted heat flux predictions, which provide

180




Chapter 7: Experimental Results and Comparisons

“F1 . ABSORP. COEFF. ‘ IR
- 2 - Betal 1
250 £ 3 - T iplet
4 - Beta3
5 - Betaz
6 - POROSITY

200

150

100

50

MODIFIED SENSITIVITY COEFFS.

Y
1Jlll|l||||||ll|llllllll||ll < Lol

0.2 0.4 0.6 0.8 1.0
NON-DIMENSIONAL HEIGHT

i
i
|
|

o
[ TlllIllIT]IIllll‘]l‘llllll!Il‘lrITll(l!‘!llllll!f"

o]

Figure 7.21: Effect of Measurement Error of Input Quantities

on Predictions of Transmitted Heat Flux

a direct comparison of the relative importance of each of the measured inputs,
are presented in Figure 7.21.

It is clear from the plot that the top three curves, the absorption coefficient
(1), the first parameter in the boundary function, B2, (2), and the inlet particle
temperature (3), are of significantly greater importance than the lower three
curves due to their higher sensitivities in the computer model estimations of the
transmitted heat flux. The plot clearly indicates that experimental accuracy
in the determination of these three parameters is more critical in obtaining
model predictions of the heat flux that are of satisfactory accuracy although
the magnitude of the difference is not enough to justify ignoring any of the
reported measured values.

Notice that, while a 10% perturbation was applied to the measured values,
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the propagation of that difference is not linear. The resulting percentage differ-
ences in the model predictions for the peak transmitted heat flux (at § = 0.5263)
for the six parameters discussed are 1) 9.5% for the absorption coefficient, 2)
8.4% for By, 3) 6.8% for Tinter, 4) 2.1% for f3, 5) 1.7% for B2, and 6) 0.42% for
€p. Fortunately, the resulting difference in the readings is not more thén 10%
for any of the t-erms discussed.

The results of the sensitivity analysis in terms of the effects of the six
measured inputs to the outputted exit temperature are presented in Table 7.3.
The first column in the Table indicates the particular parameter that is being
considered, the second and third columns show the model predictions of the
temperature increase for the unperturbed and perturbed models, respectively.

The fourth column is the percent difference in the two predictions defined as

(AT)unperturbed . (AT)perturbed
(AT)unperturbed

%error = (7.22)

and the fifth column is the value of the modified sensitivity coefficients defined
by Eqgs. 7.18b, 7.19b, 7.20b and 7.21b.

-Clearly, all of the reported measurements with the exception of the ab-
sorption coefficient play a crucial role in the ability of the model to predict the
average exit temperature. The results tﬂat are shown in the Table may help
explain the reasons for the significant discrepancies that were observed between
the model’s prediction of the temperature and the recorded values. Obviously,
the significant amount of experimental error (most of it qué,litative in nature)
and the high sensitivity of the model to any measurement error suggests that
more accurate data be obtained not only for the measurement of the exit tem-

perature but also for the measured input values.

7.9 Summary

The results of the experimental tests that were conducted to allow the

182




Chapter 7: Ezperimental Kesults and Comparisons

Table 7.3: Exit Temperature Sensitivity on Erroneous Inputs

Perturbed (AT )unpert (AT )pert Error Modified
Input Sensitivity
Measurement (°F) (°F) (%) Coefficient (°F)
o 4.8 2.71 43.5 27.1
& 48 4.81 0.2 48.1
51 4.8 4.19 12.7 41.9
B2 4.8 4.43 7.7 44.3
B3 4.8 4.34 9.6 43.4
Tintet 4.8 4.13 12.9 41.3

model that was developed to be compared with actual results from a solar
receiver application were presented and discussed.

The secondary phase consisted of experimentation to determine some of
the radiative and thermal properties needed for the model. The extinction co-
efficient was measured using a tuneable dye laser and the absorption coefficient
was determined from this value and previous work performed to determine the
single scattering albedo.

" The curtain porosities were measured to allow calculation of the density
and specific heats of the curtain. The results showed that the porosities were
constant for different flow rates which was expected.

The intensity field along the front face of the curtain was obtained through
measurements of the angular variation of the heat flux arriving at the test stand
from the concentrator. This data, taken with a limited field of view device (a
NIP), characterized the behavior of certain sections of the concentrator. When

the total heat flux at the front face was measured, the data obtained were used
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along with the NIP characterization to determine the intensity distribution
along the front face. The accuracy of these calculations was illustrated by re-
calculating the front face flux from the intensity values and comparing them
back to the measured values. Reasonable errors were observed (within 28%) for
these calculations.

The transmitted flux distribution and the average exit temperatures were
obtained as the sélution to the model and compared to the data taken during
the primary phase of the testing. The results illustrated that the 24-flux ap-
proximation was a reasonable predictor of the flux values measured. Significant
edge deviations were observed in tests in which the heliostat tracking system
was thought to have altered the position of the peak flux on the flux gage plate.
(Although the differences became acceptable when “peak-to-peak” deviations
were calculated.) However, in test in which little or no tracking adjustment
was noticed between the recording of the transmitted and the incident fluxes,
deviations within +25% were observed.

A sensitivity analysis was conducted that illustrated that care should be
taken in trying to reproduce any of the measurements of the inputted values. In
terms of the transmitted heat flux, measurement errors in the inputted values
will be slightly reduced as they propagate through the model and are manifested
in the predictions of the flux. However, the sensitivity of the model in terms
of it’s ability to predict the temperature field to the measured input values is
much greater. It is clear that more accurate temperature measurements should
be obtained and improvements in the energy conservation part of the model
should be performed to reduce the sensitivity of the model to the measurement

€rrors.
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8.1 Summary

The investigation of advanced solar central receiver designs was furthered
in this study by considering a solar absorbing, free-falling particle curtain as
the active medium in a direct absorption system. The study consisted of the
development of a general, algorithmically simple numerical model to address
the problem of the multi-dimensional radiative field that will exist if the parti-
cles in the curtain are heated enough to make emission significant. The model
was developed so as to allow easy coupling with other process governing equa-
tions (namely, conservation of energy) to allow comparison to experimental data
recorded at the NMSU Solar Furnace Facility. Some secondary phase data were
taken to aid in the determination of some of the properties defined in the sys-
tem of equations governing the intensity and temperature fields in the particle
curtain.

The discrete ordinates approximation, wherein the intensity field is as-
sumed to be composed of discrete constant values defined over several incre-
mental solid angles, was formulated for the problem. Some solutions of the
problem for one- and two-dimensional cases in conditions of radiative equilib-
rium and uniform internal energy generation were obtained and compared to
other solutions generally considered to be highly accurate (i.e., exact solutions

and other proven numerical models). One-dimensional results were compared

to an exact formulation developed by Heaslet and Warming(®®) in Chapter 4.
Errors within 10% were observed for both the Sy (12-flux) and the Sg (24-flux)
approximations for all cases in which the wall emissivities were both above 0.3.
As stated in Carlson and Lathrop(sg), it is apparent that continuity discrepan-
cies, called “ray effects,” cause these errors. Slightly larger errors occurred for
€wl OF €2 values of 0.1. The 4-flux (S;) approximation, while observed to be
a fair predictor of the radiative field for large wall emissivities, quickly became

unsatisfactory as the reflective component at the boundary became large.
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Two-dimensional results were compared to a zonal solution that is a compu-
tational model developed to solve multi-dimensional problems. Results within
13% were observed for all 12- and 24-flux cases in the black walls, pure scattering
situation. Maximum deviations were observed near the hot wall for all scat-
tering results with the differences quickly diminishing away from this surface.
Results for the pure absorption problem displayed deviations within 6% at all
optical thicknesses for the 12- and 24-flux models. Once again, the 4-flux model
was observed to be inaccurate for most realistic situations in multi-dimensional
problems while the higher order approximations provided accurate predictions

of the pertinent quantities.

Experimental measurements of the extinction coeflicient and the curtain
porosity (the ratio of the volume of solid particle material in an elemental
volume of the curtain to the total volume) were used along with data determined
from previous studies to determine the thermal and radiative properties needed
for the solution. The velocity of the particles as they fall through the active
area of the receiver cavity was measured by researchers at Sandial™ and this
information was used to remove the need to solve the conservation of momentum

problem as well as the energy and radiation problems.

The front face boundary condition, defined as a Fredholm integral prob-
lem, was determined using measurements of the angular variation of the heat
flux reaching the test area from the solar furnace concentrator along with the
measurements of the total heat flux at the front face for each test run. The
Fredholm problem was solved by assuming a functional form for the boundary
intensity distribution as a function of the polar angles associated with a spheri-
cal coordinates system and analytically integrating this expression to determine
the corresponding expression for the heat flux. The unknown parameters ap-
pearing in this heat flux expression are then estimated to best fit (in a least
squares sense) the concentrator data. When these parameter values are used

in the intensity function, the boundary intensity values for each of the appro-
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priate discrete ordinates directions are obtained. A check of the accuracy of
these calculations was performed by “re-calculating” the boundary heat flux by
numerically integrating the intensity values. Plots of these calculations revealed
reasonable deviations between the data and the model.

Total solutions for the intensity and temperature distributions were then
obtained and were compared to the primary phase of the experimentation. Tests
were conducted that recorded the transmitted heat flux and the average exit
temperature of the curtain. Comparisons to the data revealed that the model
was a reasonable estimator of the transmitted heat flux especially in cases when
the front face and transmitted fluxes were recorded without any adjustment
of the heliostat in between. Results of the temperature comparisons indicated
slightly more significant errors between the model and the data. While this may
be attributable, in part, to unreasonable definitions of the thermal properties
(p and ¢p), it was felt that the experimental error associated with the data,
caused by the practical difficulties involved with attempting to measure the

temperature of a 357 um particle, was large.

8.2 Conclusions

A multi-dimensional discrete ordinates radiation model has been developed
to characterize the flux and temperature distributions in a free-falling particle
curtain used as the medium in a solar receiver. It is clear that reasonably accu-
rate distributions of the pertinent heat transfer quantities were predicted by the
model. Comparsons to one- and two-dimensional exact solutions and other well
accepted numerical solutions showed that, for absorption dominated problems,
the model accurately predicts the emissive power, heat flux and temperature
distributions.

For the solar receiver case, the model solved a Fredholm integral problem to
determine the front face intensity distribution given heat flux data at the front

surface. Results of these calculations showed satisfactory agreement when the
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set of “re-calculated” front face fluxes from the assumed intensity distribution
was compared with the measured flux values.

An experimental program to measure the transmitted flux and the exit
temperature also produced estimations of the extinction coefficient and the
porosities of the materials in the curtain. Comparisons of the model to the
transmitted flux and average exit temperature data showed good agreement
between the two. For cases in which the heliostat tracking system did not
adjust between the recording of the transmitted flux and the incident flux,
reasonable errors were observed at all points along the diameter of the solar

spot at the test area.

8.3 Recommendations

It is clear that the development of a general multi-dimensional radiative
transfer model of sufficient accuracy has received a significant amount of atten-
tion in the literature. While there are several models that can address specific
problems, there are only a few that have the generality needed to develop an
algorithmically efficient model that can easily be incorporated into a computer
code that obtains solutions for realistic physical systems that are charaterized
by strong coupling between the respective physical quantities.

While there has been some investigation into the applicability of utilizing
the discrete ordinates model for multi-dimensional problems, little has been
done to verify that the model provides reasonable predictions of measured ex-
perimental data for these physically coupled systems. Certainly more research
should be performed in terms of obtaining accurate heat flux, temperature and
even velocity experimental data to satisfactorily test the discrete ordinates ap-
proximations.

In the present study, it was assumed that the temporal storage term in
the energy conservation equation was negligible. While it was thought that

this term would only contribute a small amount to the overall temperature
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distribution, the temperature data showed a gradual positive slope with time
for the flow tests. Calibration tests confirmed that the transient response of the
thermocouple system did not cause this to occur which would indicate that there
were transient effects being observed. Consequently, any and all improvements
of the energy equation formulation for the model are recommended. Also, more
sophisticated temperature recording techniques should be implemented to more

accurately determine the temperature of the particles in the curtain.

Lastly, more accurate information concerning the thermal and radiative
properties should be obtained. The present study assumed all properties to be
constant (independent of wavelength, temperature, spatial location, etc.). Cer-
tainly, more accurate solutions can be obtained by determining the behavior
of all properties in terms of the independent variables in the governing equa-
tions. Unfortunately, this addition would require a re-formulation of the basic
equations and would certainly increase the computational demands to obtain
a solution. Consequently, research into the area of algorithmic optimization of
the model for the computer should be considered if attempting to expand the
solution to account for varying properties. Also, because the characterization
of the solar concentrator, which everitually yielded the data used to solve the
Fredholm problem, proved difficult, it is recommended that more accurate and
repeatable data of the angular variation of the flux be recorded with emphasis

on the data points that lie at non-zero elevation angles.

Lastly, the definition of the density and the specific heat for the curtain
required obtaining values for the particle and air porosities in the curtain. This
occurred because of the definition of the medium as both the particles and the
entrained air in the curtain. It is possible that a re-formulation of the basic
equations could be developed by separating the particles and the air in the cur-
tain. While this would simplify the determination of the thermal and radiative
properties for the problem, it would significantly increase the overall complexity

due to the increased number of equatioﬁs that would have to be solved simul-
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taneously. Consequently, it is anticipated that slightly higher accuracy could
be obtained if some research is performed concerning the actual physical rela-
tionship that exists between the two materials in the curtain. The thermal and
radiative properties could then be defined in terms of this studied behavior and

the assumption of the two material curtain could remain intact.
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As was discussed in previous Chapters, the determination of the intensity
at the front face of the receiver, the area at which the solar beam is directed,
involves the solution of an ill-posed Fredholm integral problem. The reason for
this is the inability to actually measure the intensity. The related measureable
quantity is the heat flux and the expression that relates the two quantities
is integral in nature. The heat flux represents a weighted integration of the
intensity over solid angle where the weighting function is the direction vector.r

The expression, which is Eq. 3.46, is
62 rb2
gi(rb, A8, Ag) = / / In(rn, 8, ¢')cost sind'df' d¢’ (4.3.)
$1 Vo

It is desired to obtain the intensity distribution along the boundary ry, from
measurements of the angular variation of the heat flux being delivered to the
test section by the concentrator. This type of problem is solved be assuming
the functional form for the 5ntensity and integrating this function to obtain
the flux. In the present study, the integration of the intensity function was
performed analytically due to the sufficiently simple models chosen.

rI.‘he parameters appearing in the intensity model and their corresponding
counterparts in the flux function may then be estimated in a least squares sense
to best fit the flux data.

Several models were attempted before the decision was made to use the
model that was presented in Chapter 7 (Eq. 7.7). The steps taken to fully
develop a model will be illustrated below with an example of a very simple
intensity model. Then a partial list of some of the models chosen will be pre-
sented along with the average errors associated with the “fitting” process for
that model. These errors were used, along with observations of the shapes of
the models in relationship to the apparent shape of the data, to choose the best
model for use in the main program to solve the energy and radiation problems

for the direct absorption receiver.




Appendiz 1, Page 203

As was mentioned, models that were dependent on only one angle variable
seemed to give much better results than if both the altitude and azimuth angles
were included. Because of this, the flux dependence on angle was assumed
symmetric about both the vertical and horizontal axes. Consequently, only
models in terms of 8 will be discussed here although it should be stated that
the decision to use only one angular variable was made after developing several
two angle models and comparing them to the results of single angle ones.

To explain the model development process, consider the simple case of a

one parameter model for the intensity of
I\(8) = B, cosb (A.3.2)

where B;, is the parameter. Notice that the wavelength dependence is included
in the parameter. This dependence will be determined by breaking the intensity
values in the solar bandwidths into respective components that are determined
by calculating the percentage of energy that lies under the specified bandwidth.

If we define the direction cosine as
p = cosb (A.3.3)
then Eq. A.3.2 can be written as

IN(p) = Biap (A.3.4)

The heat flux function can be determined by integration of the form

¢2 "2
ain(u, 8) = / / By 12 dpds (4.3.5)
1 “

1

Integrating eventually gives

3_,3
gi (4, @) = B, [“2 3 “1} ($2 — ¢1) (A.3.6)
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Notice that the ¢ dependence in the above expression actually represents
the field of view of the data (i.e. the A¢ defined by the measurement technique).
This value is a known constant since the NIP has a well defined field of view.

Consequently, the expression can be re-written as

aia(p) = By, (13 — ui] (A.3.7)
where
A
Biy = ﬂlx’?{b‘ (A.3.8)

The least squares solution will yield the value for 8], which is then related

to the parameter that appears in the intensity function through the above
expression. For the least squares system, the sensitivity coefficients are defined

as

0q; .
A = () §=1,2,3,.,N (A.3.9)
6ﬁlk j

where N is the number of data points. The solution for the unknown parameter
is determined using an IMSL routine that solves the non-square system without
taking inverses to avoid any ill-conditioning that might arise. For this model,
the average error (defined as the arithmetic mean of the magnitudes of the
deviations at each data point) was > 20%. Clearly, this simplified model is

unsatisfactory in describing the intensity field at the front face.
Partial Listing of Models Considered
(1) Linear, One Parameter

I,\(G) = ﬂl)\ 6

i1
gix = P1, (A¢) fcosbsinbdé
9
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In this case, the integral was performed numerically using Gaussian quadra-
ture. The results, as expected, were poor.

(2) Linear, Two Parameter

IX(G) = ﬁlxe + ﬂZA

i1

6 Oig1
g\ = ﬂlA(Aqﬁ)/ Ocosfsinfdd +/ cosfsinfdo
9; 0;

A slight improvement is noticed over the previous model, however, at this
point it was becoming apparent that a polynomial function was not satisfactory
as a model for the intensity. To check a higher order model was tried.

(3) Quadratic, Three Parameter
I)\(G) = ﬁl)\gz + 16239 -+ ﬁ3,\
841
gi x =/31A(A¢)/ 6% cosfsinddé
8;

Oit1 Gig1
+ / fcosbsinbdl + / cosBsinbdb
9; 4;

The assumption that a polynomial formulation for the intensity is an un-
acceptable model is validated with this particular model. Average errors of
> 20% were observed for all of the above models with no improvement occur-
ring from a first order to this second order model. A slight improvement was
noticed when a third order polynomial was applied. However, the large values
for the errors and the fact that the plots of the flux and intensity functions did
not appear to resemble the data satisfactorily led the author to eliminate any
type of polynomial curves for the intensity function.

(4) Trigonometric, Two Parameter

I(8) = By, cosb + B,
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Gig1
c0s20sinbdl + / cos9sinbdo
T

Oit1

gix = ﬂn(Afﬁ)/‘;

§

For this model, the resulting heat flux function is a term with a cubic
cosine dependence and a term that is second order in cosine or sine which was
not expected to deliver accurate results when fit to the data. Consequently,
the errors were again large (> 20% for the average error), and the model was
discarded.

(5) Trigonometric-Linear Combination, Two Parameter

I,(0) = B1,co88 + 33,6

k 9it1
c05%0sinbdo + / 8cosbsinbdb
0‘

841

gi,n = B1,(A¢) 5

(1

Again, this combination resulted in an unsatisfactory function for the flux,
a cubic cosine term and a fairly complex term involving 8 and cosf, sinf depen-
dence. Although this model was significantly more accurate than the previous
model, the errors were still large and the curve shape was unacceptable. A
third parameter was added on the above intensity expression to add a constant
to the intensity model. However, this addition only added another trignometric
term in the flux function and was still considered inappropriate. At this point
(after trying several variations on the trigonometric and linear models) it was
decided that a simple trigonnometric formulation for the heat fluz would be
more appropriate for the data.

To accomplish this, it would be necessary to divide out the trigonometric
dependence on the assumed intensiﬁy function. The first simplistic model is
explained below.

(6) Reciprocal Trigonometric, One Parameter

I\8) = __._@_1_;\..__

cosbsinb
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841
Gir = Bu(ad) [ do =i, 8000

Since the resulting infegra.ted flux function is dependent only on A¢ and
Ad, and since the field of view of the NIP is constant, this model actually
represents a constant valued flux function. Clearly this is not the optimal
model but it does show that 1t is possible to actually choose the model for the

fluz.

(7) Reciprocal Trigonometric, One Parameter

By

cosf

In(6) =

i1

é
gix = ﬂlA(Atb)/e df = B, Aé(cost; — cosbit1)

It became clear with the application of this model that choosing a trigono-
metric formulation for the heat flux was a satisfactory model for the problem.
Average errors of < 15% were observed for this model and it was anticipated
that even better results could be obtained by formulating slightly more sophis-

ticated models.

(8) Reciprocal Trigonometric, Two Parameter

ﬂlx + ﬂZA

cosf ' cosHsind

I>\(9) =

gix = B1, Ad(cosh; — cos0;11) + B2, (AB)(A8)

Notice that this model actually represents a cosine term plus a constant

for the flux function. Significantly better results were obtained with this model

(an average error of < 13).
It should be noted that even though the concentrator data was assumed

symmetric (i.e. all of the data at non-zero elevation angles was not used in this

devlopment), several of the above models were tried by incorporating a second
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angle dependence and using the non-zero elevation data. However, the inclusion
of the “extra” data into the model increased the average errors of the model in
all cases and it was still thought that the symmetric assumption was justified.

(9) Final Model, Reciprocal Trigonometric, Three Parameter

. ﬂlx + :B2A + ﬂ3>‘

cosf = sin@  cosBsinf

I,(6)

gix = B, (A¢)(cosb; — cosbiy1) + P2, (Ad)(sinbit1 — sinb;)

As discussed in the body of the report, this is the model that was finally
used to fit to the flux data. This is the first model that had an average error
of < 10% for the symmetric data and seemed to exhibit reasonable agreement

with the apparent shape of the data.
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The finite difference scheme that was employed to obtain the numerical
solution to the two equation system is discussed in this Appendix. Due to the
relative complexity of the governing equation system, first order differences were
applied to both of the spatial derivatives that appear in the interior equations.
This discussion is only presented for the two-dimensional case.

The final form of the EOT and the energy equation for the solar particle

problem are

aIm,A aIm,A . Os

and

ar
PeffCpersVy E&(m’ y) = —-[V . qr(x, y)] + heff[T(x’ y) - TOO] (A.2.2)

As has been discussed, the radiative flux vector divergence is found from
performing an intensity balance on an element of the medium. The resulting

expression is

co

V- au(e,)] =4 [ {ax[ex,bm — nhy(@ )1+

(A.2.3)
Ze I(z,v, Qi)é(gi)dﬂi}d)\
4 Q;=4n
where
a 1
B() = — / B(Q, )40 (4.2.4)
4w Q=4r

The formulation of the governing equations for this problem require two
boundary conditions for the intensity problem (one at the top of the curtain and
one for the front face) and one for the temperature problem (at the top). The

boundary temperature is simple the input of the data point that is measured
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for each test. The intensity at the top of the curtain is simply the emission
of the particles at the inlet temperature of the curtain. Although this term
could be neglected for room temperature range tests, it was inéluded to allow
for pre-heating of the particles in possible later designs. As has been discussed,
the front face intensity distribution is determined through a solution of the
Fredholm integral problem that relates the measured fron face heat flux to
the front face intensity distribution. The discussion of this process is handled

elsewhere.

To obtain a numerical solution to the equation system described above, the
domain is discretized simply allowing for different but uniform node spacings
in each of the two coordinate directions, (x,y). Due to the limited memory
capabilities of the machine because the intensity array was 4-dimensional (two
spatial and one angular coordinates and the wavelength dependence), the nodal
spacing for the curtain was limited to 20 nodes in the vertical (y) direction and

10 nodes in the thickness (z) direction.

Simple backward first order differences were applied to the first order spa-
tial derivatives in the two expressions with the out-scattering, emission and

in-scattering terms on the RHS of the EOT (Eq. A.2.1) evaluated at the for-

ward node. The resulting EOT expression is

i,j)\ _ Ii—-}\,j Iz',j/\ - Iz',j;l . .
fim (L_A_JC_@._ +€m (L&/_L) =—rl)\ +alll)

Tg .
ml
(A4.2.5)

Recall that the scattering phase function is written in terms of the direction

cosines and some parameters that are defined in Chapter 3.
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Collecting the explicit terms of I > i A from the above expression gives

6 T £
£, m J '"19.7 m ‘1.7 1,J
mA = [A Ayt ] {Aa: + Aglea ok

(A.2.6)

E wm'q’m’—ﬂn o }

Notice that the in-scattering source term must be written in terms of the
intensity at the present node, 7,7, to be correct. This necessitates the use of
an iterative procedure at each node to determine the overall intensity field.

Also, notice that the coupling between the two equations comes about in the
emission term, "J Although this isn’t another implicit intensity term (since

it is directionally independent), it is dependent on the local temperature of the
medium at that node and, as such, is a term that causes the algorithm to be
iterative in nature in order to obtain a solution.

The quantity in square brackets can be written by defining the finite dif-

ference “parameter” as

€m
Nm = A = 4 Ay TF (A.2.7)

The final expression for the intensity distribution at the interior nodes beceomes

s 1 K i —1, 6 ,——1 1,
i = o BT + B ol

(A2.8)

(o ]
* Z;Zwm"l’m'—»m%’,x}
ml

Recall that the boundary condition for the intensity distribution is obtained
by assuming a fuctional form for the intensity field and then determining the
unknown parameters through an estimation routine that best fits the front face

fluz data. The model has the form

% G2 B3

cosf sind + cosbsinb

I(rp,0) = (A.2.9)
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The angular flux data taken as a characterization of the solar furnace con-
centrator is normalized by the average of the front face flux readings for the
particular test. Consequently, once the parameters have been estimated, the

intensity field at the boundary, in finite difference form, can be written

L =gy b, P Bs (A.2.10)

Gaussian | 1400 * sinf  cosfsind

where qgfl wssian 18 & curve fit of the front face fluxes. Recall that the front face
fluxes were used in a Gaussian curve fit routine to determine a more realistic
variation of the flux from one node to the next. If the data is used directly,
the flux distribution will appear as a series of step changes and, as such, will

represent an unusually difficult “test” of the model.

The energy equation is similarly differenced with the final result written as

T3 = TH7 foyesp [~V o) + hes s (T — Too)] (A.2.11)
where
Ay
’Yeff T e A.2.12
PeffCpessVy ( )

The flux vector divergence is determined by applying a Gaussian quadra-
ture analysis to Eq. A.2.3. The resulting expression is a triple summation
expression in terms of the mean radiant intensity, the emission, and an in-
scattering term that is characterized by the integral of the phase function which
is the probability function corresponding to @ (a probability density).

A solution is obtained by first setting the entire temperature field to the
inlet value. Next, the EOT is solved (for the first iteration, the in-scattering
term is set to zero) for the intensity distribution. This step usually requires
no more than 4 iterations once the in-scattering term is included in the cal-
culations. The flux vector divergence is calculated and the results are used in

the energy expression to determine a new prediction for the temperatures. The
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process is repeated until the average exit temperature and the transmitted flux
distribution converge to a preselected tolerance (for the test runs in Chapter 7,

this value was 0.01 for both quantities).
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As described in Chapters 6 and 7, the variation of the heat flux with angle
at the test stand of the solar furnace was measured. The tests were conducted
using a normal incidence pyroheliometer (NIP) placed on an altitude-azimuth
angularly graduated mount. The description of the data that was used in the
development of the boundary intensity distribution is provided in the body of
this study, this Appéndix simply presents the data that was obtained from the
tests in order to allow future researchers to have this information available.

The tests were performed between April 4 and April 11, 1989 within two

“hours of solar noon. As has been discussed, it was necessary to only take this
data when the sun position was such that the heliostat completely filled the
concentrator. Data was taken at elevations of 0° and 18° (along the horizontal
centerline and along a horizontal line near the top of the concentrator). Sweeps
along the Bottom of the concentrator proved impossible due to the position of
the open attenuator. k

The NIP was well insulated and was positioned such that the heat flux gage
near the base of the device was at the focal point of the system. The data from
the tests is presented below in tabular form along with some comments concern-
ing the solar conditions present during the run. The DAS (a Hewlett-Packard
system) converted the data from voltages to fluxes using the conversion factor

determined for the particular NIP thrdugh standard calibration techniques.
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Elevation = 0°

Table A.3.1: Concentrator Data

Azimuth Test #1 Test #2 Test #3
Angle c:zV2 cZ‘nf2 cg/?
25.5° 6320.53 5859.20 6502.38
18.5° 6265.53 5050.20 6200.04
11.5° 3369.10 3700.1 3553.07
4.5° 3131.22 3943.70 4276.46
-3.5° 3775.91 3220.45 3066.75
-10.5° 3985.49 4315.24 3376.67
-17.5° 4075.91 5135.12 4164.52
-25.0° 4899.13 5347.65 5157.62

Elevation = 18.2°

Azimuth Test #1 Test #2 Test #3
Angle Cfnvz c‘,’,‘fz crnv2
22.5° 4106.95 * 4880.00

15° 3936.03 * 4155.69
7.5° 5623.00 * 3384.93
1.5° 5921.44 * 5895.64
-5.5° 5575.18 * 5208.83
-12.5° 4043.40 * 4493.7
-20.5° 3974.01 * 3699.66




Appendiz 4
Determination of

the Curtain Porosity

218



Appendiz 4, Page 219

As was discussed in the main body of this report, the specific heat, the
density and the heat transfer coefficient were all defined in terms of the porosi-
ties of the air and the particles in the curtain. This comes about due to the
assumption that the “medium” is the air and the particles together. In order
to consider the two components separately, the number of governing equations
would effectively double and obtaining information into some of the relevant
quantities (most especially the velocity of the air) would be difficult.

The porosity is simply defined as the ratio of the volume taken up by the
particles or the air in a given volume of the “medium.” The definitions can be

expressed as

Peff = €aPa t EpPp (A4.1)
Cpess = €aCp, + EpCp, (A.4.2)

and, for the convection loss term,

g ———1 = 2.06Re" (4.4.3)

The measurements that eventually led to the calculation of the porosity
are explained in this Appendix.

Initially, timed flow tests were conducted to determine the mass flow rate
of the particles for two different curtain thicknesses. Table A.4.1 illustrates the
results of these tests. The tests were conducted by suddenly opeing the flow
device to the proper thickness. This was actually accomplished by pre-setting
the opening before the particles were poured into the hopper. While the orifice
was manually blocked by a hand held obstruction, the particles were added to
the hopper. The test was initiated by suddenly removing the obstruction and,
at the same instant, starting a timer. Before the hopper emptied (the flow
rate gradually changes as the particle supply dwindles), the obstruction was

suddenly replaced and the timer stopped simultaneously. The particles that
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Table A.4.1: Mass Flow Rate Tests

Curtain Total Time
Thickness Weight Interval

(mm) (1bs) (sec)
13 19.75 6.51

13 17.75 6.08

13 20.0 5.96

13 21.0 5.97

7.5 12.0 6.34
7.5 13.0 6.08
7.5 11.0 6.37

7.5 12.25 5.87

flowed through the orifice during that time interval were the ones that were
weighed.

Since the density of the particle is known (measured by Sandia) and optical
measurements of the mean diameter have been performed, the mean mass of a
single particle can be calculated simply as

nd®
My = pp¥p = Pr—— (A.4.4)

Substituting in the measured values gives

- kg/m® | = —6\3[,,.3] _ ~s|_kg

(A.4.5a)
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Converting to English units yields

lbs
_ —8
mp = 4.29 x 10 {partide} (A.4.5b)

If the total weight of the particles that ended up in the capture tank is
divided by the mass/particle values just calculated, the result will be the total
number of particles that took part in the test. The number flow rate of the
particles (defined as the number of particles flowing through the orifice per unit
time) is the easily calculated by dividing the total number of particles that were
weighed by the time interval of the test. The results of these calculations are

presented in Table A.4.2.

Table A.4.2: Number Flow Rate Calculations

Curtain Total Time Number
Thickness Particles Interval Flowrate
(mm) (millions) (sec) (millions/sec)

13 460.366 6.51 70.718

13 413.747 6.08 68.050

13 466.193 5.96 78.220

13 489.503 5.97 81.994

7.5 279.716 6.34 44.119

7.5 303.026 6.08 49.840

7.5 256.406 6.37 40.252

7.5 285.543 5.87 48.644
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Next, the number flow rate of the particles is divided by the velocity of
the particles in the curtain at any pre-chosen vertiéal location. This is possible
since the velocity data as a function of fall height is known and has been curve
fit. The choice of the vertical location is arbitrary because the final result of
these calculations, the porosities, is a ratio of volumes. Choosing the vertical
location just defines the volume that will be considered. The results of these
calculations are divided by the two fixed spatial dimensions of the curtain, the
thickness and the width. This yields the number of particles per unit volume.

Table A.4.3 illustrates the final calculations to determine this value.

Table A.4.3;: Number Density of Particles

Curtain Number Particles per Number
Thickness Flowrate Meter Vert. Density
(mm) (millions/sec) (millions/m) (thousands/cm?®)
13 70.718 45.077 22.752
13 68.050 43.377 21.894
13 78.220 49.860 25.167
13 81.994 52.266 26.381
7.5 44.119 28.123 24.605
7.5 49.840 31.770 27.795
7.5 40.252 25.658 22.448
7.5 48.644 31.007 27.128

Notice that, as expected, the number density of the particles does not

appear to be a dependent on the curtain thickness. It was felt that, above a
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certain critical thickness at which the weight of the particles in the hopper no
longer effects the flow rate, the number density of the particles in the curtain
would be constant.

Finally, the actual volume of the particles in the elemental volume of the
medium is determined by multiplying the number of particles per unit volume
by the mean volume of a given particle. This yields the ratio of the volume
of particles in a given elemental volume of the medium, which is the particle
porosity, €. The air porosity is simply determined by noting that, in formulat-
ing the theoretical model, it was assumed that only air and the particles exist
in the medium. Consequently, the porosities of the two materials must sum to

unity. The results are presented in the final table, Table A.4.4.

Table A.4.4: Calculation of Porosities

Curtain Number Porosity of Porosity of
Thickness Density Particles Air

(mm)  (thousands/em®)  (cmdyaenfom®)  (emd, [em?)

13 22.752 0.542 0.458

13 21.894 0.522 0.478

13 25.167 0.600 0.400

13 26.381 0.628 0.372

7.5 24.605 0.586 0.414

7.5 27.795 0.662 0.338

7.5 22.448 0.535 0.465

7.5 27.128 0.646 0.354
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The average values of the above porosities are calculated and the final

result is

€p = 0.590 & 0.053 (A.4.6)

and
£q =0.410+0.053 (A.4.7)
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Program Intensity Estimation

a
Qa5

PROGRAM: INTENSITY ESTIMATION

THIS PROGRAM DETERMINES THE PARAMETER SET THAT BEST FITS THE
NORMALIZED ANGULAR FLUX DATA. THE CONCENTRATOR DATA IS HOR-
MALIZED BY DIVIDING IT BY THE AVERAGE READING OF THE

TOTAL FRONT SURFACE FLUX MEASURMENTS. THEN, AN OLS ESTIMATOR
1S USED TO DETERMINE THE PARAMETER SET FOR THE FLUX

AND INTENSITY FUNCTIONS

QOO OO0

C)QOQ QG QQ

IMPLICIT REAL*8 (A-H,0-2)

REAL#*8 INTEGRAL, INT1i, INT2, INT3, INT4

PARAMETER (IDIM.DATA = 22, IDIM.PAR = B)

DIMENSION X(IDIMDATA, IDIM.PAR), BETA(IDIM.PAR)

DIMENSION THETA 1(IDIM.DATA), THETA 2(IDIM.DATA), RES(IDIM.DATA)
DIMENSION PHI_1(IDIM.DATA), PHI.2(IDIM.DATA), FLUX(IDIM.DATA)
DIMENSION DTHETA(IDIM.DATA), DPHI(IDIMDATA), TAVG(IDIM.DATA)
DIMENSION PAVG(IDIMDATA), DBETA(IDIM.PAR), RHS(IDIM.DATA)
DIMENSION CDEF(20,IDIM.PAR), FXT(IDIM.PAR), FXNORM(IDIMDATA)
OPEN. (UNIT=2, STATUS=’NEW’, FILE=’COEFF’)

OPEN (UNIT=3, STATUS=’NEW’, FILE=’FLUXDAT’)

G INPUT SECTICN

FMAX = 6502.3825
TOL =.0

N_COEFF =
I_TERMS =
N DATA = 8
N.READS =

G INITIALIZATION
PI = 4.0 % ATAN(1.0)
Crommm READING IN THE FLUX AND ANGLE DATA

OPEN (UNIT=8, STATUS=’UNKNOWN’, FILE= ’RIP.DAT’)
DO I.DATA = 1, N.DATA
READ(8, =) I.PT, PX, TX, FXX, FXX, P, T, FX

TO = - B0,

DT = 5.7 /. 2.0

DP = 5.7 /2.0

THETA 1(I.DATA) = (TO + (T - DT)) * PI / 180.
THETA2(I-DATA) = (TO + (T .+ DT)) * PI / 180.

PHI.1(I.DATA) = (P + 90.+ DP) % PI / 180.0
PHI.2(I.DATA) = (P + 90. =~ DP) % PI / 180.0
TAVG(I.DATA) = (THETA-1(I.DATA)+THETA.2(I.DATA)) / 2.0
PAVG(I.DATA) = (PHI.1(I.DATA)+PHI 2(I.DATA))/2.0
FLUX(IDATA) = FX * FHAX

DTHETA(I DATA) =
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DPHI(I.DATA) = DP
T1 = THETA_1(IDAT&) * 180.0 / PI

T2 = THETA2(I.DATA) # 180.0 / PI
P1 = PHI_1(I.DATA) * 180.0 / PI
P2 = PHI2(I.DATA) * 180.0 / PI
END DO

CLOSE (UNIT=8)
70 FORHAT(ZX,FS.3,3X,F8.3,3X, F8.3, 3X, F8.3, 5X,F9.3)

C————- READING IN THE FLUX GAGE INCIDENT READINGS

SUMFX = 0.0
DO I_NODES = 1, N.READS

WRITE(6,200)I NODES
READ(6,*)FXT(INODES)

SUMFX = SUMFX + FXT(I.NODES)
END DO

Comm- DETERMINING THE AVERAGE VALUE OF THE READINGS

FXINPUT = SUMFX / N_READS
WRITE(6,*) *FXINPUT= ,FXINPUT
200 FORMAT(///,4%,’ENTER FLUX READING #’,I1,’ ...’,%)

————— STARTING THE LOCP OVER THE HODES, TO DETERMINE A PARAMETER
————— SET FOR EACH FLUX GAGE READING

DO I_NODES = 1, N_READS
WRITE(6,210)I_NODES
210  FORMAT(//,’FOR FLUX GAGE READING NUMBER ...’,I2,//)

———e—— NORMALIZING THE NIP READINGS

OPEN (UNIT=11, STATUS=’NEW’, FILE=’FLUXES’)
PO I = 1, N.DATA
FXHORM(I) = FLUX(I) / FXIKPUT

————— PRINTING THE NORMALIZED VECTOR WITH THE ANGLES

TT1 = TAVG(I) * 180. / PI - TO
PP1 = PAVG(I) * 180. / PI - 90.
WRITE(11,#%) TTi1, PP1, FXNORM(I)
END DO

CLOSE (UNIT=11)

————— DETERMINING THE SENSITIVITY COEFFICIENTS AND THE
————— RIGHT HAND SIDE

1 DO IX = 1, NDATA
X(IX,1) = c0S (THETA-1(IX)) - COS (THETA2(I.X))
X(Ix, 2) = 1.0
X(IX,3) = SIN (THETA.2(I X)) ~ SIN (THETA_1(I.X))
RHS(IX) = FXNORM(IX)
END DO
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100

SOLVIEG THE OLS PROBLEM USING IMSL ROUTINE "DLSBRR"

CALL DLSBRR(E DATA, N_COEFF, X, IDIM.DATA, RHS, TOL,
BETA, RES, KBASIS)

CALCULATING THE SSR AND PRINTING THE RESULTS

SUMP = 0.0
SSR = 0.0
DO I =1, H.DATA
SSR = SSR + RES(I)##*2
PERC: = RES(I)/FXNORM(I) * 100.0
SUMP .= SUMP. + ABS{PERC)
END DD
SUMP = SUMP / (HN-DATA)
WRITE(6,60)SSR,SUMP

i

CHECKING THE RESULTS BY CALCULATING THE FLUX DISTRIBUTION

DO I =1, N.DATA
Q = BETA(1) = X(I,1) + BETA(2) #* X(I,2) + BETA(3) * X(I,3)
Q = Q * FXINPUT
WRITE(S,*)’Q=",0Q, T1=?, THETA.1(I),THETA.2(I)

EXD DO

1]

SETTING THE PARAMETER SETS INTO THE PROPER NODAL POSITIONS

IF (I.NODES .EQ. 1) THEN
D0I=1,35
DO J = 1, N_COEFF
COEF( I, J) = BETA(J)
END DO
END DO
ELSE IF (I.NODES .EQ. 2) THEN
D0OI=6,8
DO J = 1, N_COEFF
COEF( I, J) = BETA(J)
END DO
END DO
ELSE IF (I.NODES .EQ. 3) THEN
DO I =9, 11
DO J = 1, N.COEFF
COEF( I, J) = BETA(J)
END DO
END DO
ELSE IF (I.NODES .EQR. 4) THEN
DO I = 12, 14
DO J = 1, N_COEFF
COEF( I, J) = BETA(J)
END DO
END DO
ELSE IF (I.NODES .EQ. B) THEN
DO I = 15,20
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DO J = i, N.COEFF
COEF{ I, J) = BETA(J)
END DO

END DO
END IF

————— RESETTING THE PARAMETER SET FOR ONE READING TO ZERO
————— SINCE THE PROUBLEM MUST BE SOLVED FOR EVERY FLUX GAGE READING

DB J = 1, N_COEFF
BETA(J) = 0.0
END DO

————— ENDING TEE NODAL LOOP AND PRINTING THE RESULTS

END DO

poI=1, 20
WRITE(6,120)I,(COEF(1,J), J = 1, K_COEFF)
WRITE(2,120)I,(COEF(I,J), J = 1, N.COEFF)

END DO -

————— FORMAT STATEMENTS

10  FORMAT(//,BX,’INPUT N_COEFF...’,$)

i1 FORMAT(//,5X,’INPUT KMAX, NDATA, L AND N.COEFF...’,$)

12  FORMAT(//,5X,’INPUT L...’,%)

20  FORMAT(I2,1X,I3,2X,F8.5,2X,F8.5,2X,F5.1,2X,F5.1)

30 FORMAT(I2,1X,I3,2X,F5.3)

49  FORMAT(iX, ’I’,BX, ’DTHETA’,5X, ’DPHI’,8X, ’DATA’, 9X, ’RES’,
! 5X, ’PERCENT’,/,72(°~’)) '

50  FORMAT( 1X, I2, 2X, F7.3, 2X, F7.3, 3%, F10.7, 3X, F10.7,3X, F8.3)

60  FORMAT(15X,’THE SSR IS...’,F12.8,/,15X,
! THE AVERAGE PERCENT ERROR IS...’,F5.2)

110 FORMAT(5X,F20.16,5X,F20.16)

120 FORMAT(3X,I3,3X,Fi5.5, 3X, Fi5.5, 3%, E15.7, 3X, E15.7)

999 CLOSE (UNIT=2)
 STOP
END
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Program SPECTRA

<

c

PROGRAM: SPECTRA

Solid
Particle curtain
Enexrgy

Characterization utilizing a

Two-Dimensional
Radiative
Analysis

WRITTER BY:

MICHAEL RIGHTLEY

THIS PROGRAM. CALCULATES THE INTENSITY AND TEMPERATURE
DISTRIBUTIONS IN A FREE-FALLING SOLID PARTICLE SOLAR CENTRAL
RECEIVER. IT UTILIZES & DISCRETE ORDINATES APPROXIMATION TO
MODEL: THE INTENSITY FIELD. THE BOUNDARY INTENSITY DISTRIBUTION
IS DETERMINED THROUGH THE ASSUMED INTENSITY FUNCTION AND THE
PREVIOUSLY CALCULATED PARAMETER VALUES. FIRST ORDER FINITE
DIFFERENCES ARE APPLIED TO BOTH THE DISCRETE ORDINATES
FORMULATION OF THE EOT AND TO THE ENERGY EXPRESSION AND AN
ITERATIVE LOOP IS SET UP TO ALLOW THE USER TD CHOOSE THE DESIRED
RUMBER OF ITERATIONS (CORVERGENCE FOR ALL CASES HAS BEEN OBSERVED

AFTER 10 TO 15 ITERATIONS).

QOO OGO ONCOOC OO0 O GO0 a
C’OQOOGOOQGOOOOQOOOOOO QOO QOGO aGR

REAL L, KAPPA, L.X, L.Y, INTENSITY.LAM, LAMBDA1, INTENSITY

REAL LAMBDA2, LAMBDAAVG, MU, I.LAMFLUX, I.BLACK.YO

PARAMETER (IDIM X=30, IDIM.-Y=60, IDIM.LAM=7, IDIM M=24)

DIMERSION INTENSITY.LAM(IDIM.X, IDIM.Y, IDIM:-M, IDIM.LAM)
DIMENSION INTENSITY(IDIM X, IDIM.Y, IDIM:M), FX.INPUT(IDIM.Y)
DIMENSION I.LAMFLUX(IDIM.Y, IDIM.M, IDIM.LAM), BFLUX(IDIM.Y)
DIMENSION T(IDIM.X,IDIM.Y), MU(IDIMM), XI(IDIM.M), WEIGHT(IDIHM)
DIMENSION ETA(IDIM:M), I:BLACK.-YO(IDIM.LAM), DELQ(IDIM.X, IDIM.Y) |
DIMENSION FLUX.LAM(IDIM.X, IDIM.Y, IDIM.LAM), FLUX{IDIM X, IDIM.Y)
DIMENSION FX_CAL{IDIM.Y), FXDATA(IDIM.Y)

c
e SUBROUTINE INPUT IS CALLED TO DETERMINE THE NEEDED
G INPUTS FROM THE USER
¢
CALL INPUT(L.X, L.Y, NODES.X, NODES.Y, N.LAM1, N.LAM2, ALPHA,
* SIGMA.S, PHI, N.ORDS, T_INLET, DX, DY,
* FX_INPUT, IDIM.Y, FXDATA)
C
L SUBROUTINE YOROUND IS CALLED TO DETERMINE THE BOUNDARY
Crmmmm INTENSITIES AT THE TOP OF THE CURTAIN.
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CALL YOBOUND(T_INLET, N.LAM1,NLAM2, INTENSITY_LAM,
* WODES X, IDIM X, IDIM.Y,
* IDIM.LAM, IDIM.M, N_ORDS, I.BLACK._YO)

————— SUBROUTINE ORDINATES DEFINES THE ORDINATES AND THE WEIGHTS
————— FOR THE DISCRETE ORDINATES METHOD

CALL ORDINATES(N.ORDS, MU, XI, ETA, WEIGHT, IDIMM)

----- SUBROUTINE XOBOUND IS CALLED TO DETERMINE THE BOUNDARY
————— INTENSITIES ON THE FRONT OF THE CURTAIN WHERE THE
————— INCIDENT SOLAR ENERGY IS IMPINGING.

CALL XOBOUND(NODES.Y, INTENSITY, N.ORDS, MU, XI, ETA, IDIMX,
% IDIM.Y, IDIM.M, FX INPUT, WEIGHT, FX _CAL,

FX_CALMAX, DY)

————— SUBROUTINE SPECTRUM IS CALLED TO BREAK THE INCIDENT FLUX
Cr——— DOWN IRTO ITS SPECTRAL COMPONENTS.

CALL SPECTRUM(INTENSITY, I_LAM.FLUX, IDIM X, IDIM.Y, IDIM.LAN,
* IDIM.M, N LAM1, N ORDS, NODES.Y)

————— SUBROUTINE EOT WILL SOLVE THE EQUATION OF TRANSFER,
Cmmmmm SPECTRALLY, AT EACH NODE FOR THE ORDINATE DIRECTIONS.

CALL EOT(INTENSITY.LAM, N_LAM1, N_LAM2, WODES X, WODES.Y,

* LX, LY, IDIMX, IDIM.Y, IDIM.M, IDIM LAM, MU, XI,

* WEIGHT, N.ORDS, INTENSITY, FLUX, T, FLUX_LAM,

* PHI, DX, DY, SIGMA.S, T.INLET, I_LAM_FLUX, I BLACK_YO,
* ALPHA, DELQ, E_POWER, BFLUX, FX_INPUT, FX.CAL, FXDATA,
*

FX_CALMAX)

STOP
END

THIS SUBROQUTINE PROMPTS THE USER FOR THE NECESSARY INPUT
INFORMATIOR.

[eNeNeNeNeoNe!
OOOQQ(1

SUBROUTINE INPUT(L.X, L.Y, NODES X, NODES.Y, N_LAM1, N_LAM2,

* ALPHA, SIGMAS, PHI, N.ORDS, T_INLET, DX, DY,
* FX_INPUT, IDIM.Y, FXDATA)

DIMENSION FX_INPUT(IDIM.Y), FXDATA(IDIMY)

REAL KAPPA, L.X, L.Y

----- INPUTTING THE CURTAIN THICKNESS

WRITE(S,10)
WRITE(6,20)
READ(*,*) LX
LX =LX / 10.

LY = 13.97
NPQINTS = 5
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c
Cr—mmm FIXING THE HODAL GRID
c

HODES.X = 10

NODES.Y = 20

DX = L.X / NODESX

DY = LY / (HODESY - 1)
¢
G . ‘READING IN THE FRONT FACE FLUX DATA FOR LATER
G CONVERSION TO THE BOUNDARY INTENSITIES (5 IS THE
G NUMBER OF READINGS)
¢

WRITE(6,90)

READ(5,*)I.DEF

IF (I.DEF .EQ. 0) THEN

WRITE(6,80)

DO I =1, NPOINTS
WRITE(6,70)1
READ(5,*)FX
IF (I .EQ. 1) THEN

FX_INPUT(1) = FX
FX.INPUT(2) = FX
FX.INPUT(3) = FX
FX.INPUT(4) = FX
FX_INPUT(5) = FX
ELSE IF: (I .EQ. 2) THEN
FX_INPUT(8) = FX
FX_INPUT(7) = FX
FX_INPUT(8) = FX
ELSE IF (I .EQ. 3) THEN
FX_INPUT(9) = FX
FX.INPUT(10) = FX
FX_INPUT(i1) = FX
ELSE IF (I .EQ. 4) THEN
FX.INPUT(12) = FX
FX.INPUT(13) = FX
FX_INPUT(14) = FX
ELSE
FX_INPUT(15) = FX
FX_.INPUT(16) = FX
FX_INPUT(17) = FX
FXIRPUT(18) = FX
FX_INPUT(19) = FX
FX.INPUT(20) = FX
END IF
END DO
ELSE
¢
G TO MAKE INPUTTING EASIER, THE DATA FROM THE TESTS THAT
G WERE USED ARE INPUT HERE AS PERMANENT DATA
c

WRITE(S,100)
READ(5,*)NFILE
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IF (NFILE .EQ. 7) THEN
FX.INPUT(1) = 57920.33
FX_INPUT(2) = 57920.33
FX_INPUT(3) = 57920.33
FX_INPUT(4) = 57920.33
FX_INPUT(5) = 57920.33
FX_INPUT(6) = 92419.63
FY_INPUT(7) = 92419.63
FX_INPUT(8) = 92419.63
FX_INPUT(9) = 116991.01
FX.INPUT(10) = 116991.01
FX_INPUT(11) = 116991.01
FX_INPUT(12) = 80426.93
FX_INPUT(13) = 80426.93
FX.INPUT(14) = 80426.93
FX_INPUT(15) = 30785.48
FX_INPUT(16) = 30785.48
FX_INPUT(17) = 30785.48
FX_INPUT(18) = 30785.48
FX_INPUT(19) = 30785.48
FX_INPUT(20) = 30785.48

ELSE IF (NFILE .EQ. 8)THEN

FX_INPUT(1) = 15940.73
FX_INPUT(2) = 15940.73
FX.INPUT(3) = 15840.73
FX_INPUT(4) = 15940.73
FX_INPUT(5) = 15940.73
FX_INPUT(8) = 54692.433
FX_INPUT(7) = 54682.433
FX_INPUT(8) = E54692.433
FX_INPUT(9) = 92010.503

FX.IKPUT(10) = 92010.503
FX_INPUT(11) = 92010.503
FX_INPUT(12) = 110487.887
FX_INPUT(13) = 110487.887
FX_INPUT(14) = 110487.887
FX_INPUT(15) = 80853.553
FX_INPUT(16) = 80853.553
FX_INPUT(17) = 80853.553
FX_INPUT(18) = 80853.553
FX_INPUT(19) = 80853.553
FX.INPUT(20) = 80853.553
ELSE IF (NFILE .EQ. 12)THEN
FX.INPUT(1) = 174000.49

FX_INPUT(2) = 174000.49
FX_INPUT(3) = 174000.49
FX_INPUT(4) = 174000.49
FX_INPUT(5) = 174000.49
FX_INPUT(6) = 412441.23

FX_INPUT(7) = 412441.23
FX_INPUT(8) = 412441.23



FX_INPUT(9) = 557202.39
FX_INPUT(10) = B57202.39
FX-INPUT(41) = B57202.3%
FY-INPUT(12) ='564179.57
FX.INPUT(13) = 564179.57
FX_INPUT(14) = 564179.57
FX_INPUT(15) = 344742,27
FX.INPUT(16) = 344742.27
FX_INPUT(17) = 344742.27
FX.INPUT(18) = 344742.27
FX.INPUT(19) = 344742.27
FX.INPUT(20) = 344742.27
ELSE IF (NFILE .EQ. 15)THEN
FX_INPUT(1) = 345778.33
FX_INPUT(2) = 345778.33
FX_INPUT(3) = 345778.33
FX_INPUT(4) = 345778.33
FX_INPUT(5) = 34B5778.33
FX.INPUT(8) = 437564.87
FX_INPUT(7) = 437564.67
FX_INPUT(8) = 437564.67
FX_INPUT(9) = 468617.67
FX_INPUT(10) = 46861T.67
FX_IBPUT(11) = 468617.67
FX_INPUT(12) = 314740.33
FX_INPUT(13). = 314740.33
FX_INPUT(14) = 314740.33
FX_INPUT(15) = 126025.67
FX_INPUT(16) = 126025.67
FX_INPUT(17) = 126025.67 "
FX_IRPUT(18) = 126025.67
FX_INPUT(19) = 126025.67
FX_INPUT(20) = 126025.87
ELSE IF (NFILE .EQ. 4)THEN
FX_INPUT(1) = 196713.57
FX_IRPUT(2) = 196713.57
FX_INPUT(3) = 196713.57
FX.IKPUT(4) = 196713.57
FX_INPUT(B) = 196713.57
FX.INPUT(6) = 418726.44
FX_INPUT(7) = 418726.44
FX_INPUT(8) = 418726.44
FX_INPUT(9) = B45615.42
FX_INPUT(10) = 545615,42
FX.INPUT(11) = B45615.42
FX_INPUT(12) = 545868.72
FX_INPUT(13) = 545868.72
FX INPUT(14) = 545868.72
FX_INPUT(15) = 329435.71
FX_INPUT(16) = 329435.71
FX_INPUT(17) = 329435.71
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FX_INPUT(18)
FX_INPUT(19)
FX_INPUT(20)

ELSE IF (NFILE .EQ. 5)THEN

FX_INPUT(1)
FX_INPUT(2)
FX_INPUT(3)
FX_INPUT(4)
" FX_INPUT(5)
FX_INPUT(6)
FX_INPUT(T)
FX_INPUT(8)
FX_INPUT(9)
FX_INPUT(10)
FX.INPUT(11)
FX_INPUT(12)
FX_INPUT(13)
FX_INPUT(14)
FX_INPUT(15)
FX_INPUT(18)
FX_INPUT(17)
FX.INPUT(18)
FX_INPUT(19)
FX.INPUT(20)

ELSE IF (NFILE

FL_INPUT(1)
FX_INPUT(2)
FX_IRPUT(3)
FX_INPUT(4)
FX_IKEPUT(5)
FX_INPUT(8)
FX_IRPUT(7)
FX_INPUT(8)
FX_INPUT(9)

3294356
329435
329435

182981.
182981.
182981,
182981.
182981.
429956.
429956
429956

563836.
563836.
5638386.
B72774.
572774.
B72774.
345879.
345879.
345879.
345879.
345879.
345879.
.EQ. 6)THEN
.47
47

il

118834
118834
118834.
118834
118834.
381789.
381789.
381789.

565425

FX_INPUT(10) = 565425

FX_INPUT(11)
FX_INPUT(12)
FX_INPUT(13)
FX_INPUT(14)
FX_INPUT(15)
FX_INPUT(16)
FX_INPUT(17)
FX_INPUT(18)
FX_IKPUT(19)
FX_INPUT(20)

ELSE IF (NFILE

FX_INPUT(1)
FX_INPUT(2)
FX_INPUT(3)
FX_INPUT(4)
FX_INPUT(5)

i

585425,
= 636021.
= 836021.
= 636021.

.71
.71
.71

94
94
94
94
94
24

.24
.24

87
87
87
45
45
45
92
92
92
92
92
92

47

.47

47
96
96
96
.4
-4
4
61
61
61

= 446337.81
= 446337.81
= 446337.81
= 446337.81

= 446337,
= 446337.
.EQ. 16)THEN

156356.
156356,
156356.
156356.
156356.

81
81

95
95
95
95
95
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FIXING THE SPECTRAL BANDS AND OTHER RADIATIVE PROPERTIES

FX_INPUT(6) = 348157.41
FX.INPUT(7) = 348157.41
FX_INPUT(8) = 348157.41
FX_INPUT(9) = 463759.09
FX_INPUT(10) = 463759.09
FX_INPUT(11) = 463759.09
FX_INPUT(12) = 463937.03
FX.INPUT(13) = 463937.03
FX.INPUT(14) = 463937.03
FX_INPUT(15) = 283033.40
FX_INPUT(16) = 283033.40
FX.INPUT(17) = 283033.40
FX_INPUT(18) = 283033.40
FX_INPUT(19) = 283033.40
FX_INPUT(20) = 283033.40
ELSE IF (WFILE .EQ. 1T7)THEN
FX_INPUT(1) = 118954 .23
FX_INPUT(2) = 118954.23
FX_INPUT(3) = 118954.23
FX.INPUT(4) = 118954.23
FX_INPUT(5) = 118954.23
FX_INPUT(6) = 291606.29
FX_INPUT(7) = 291606.29
FX_INPUT(8) = 291606.29
FX_THPUT(S) = 407880.0
FX_INPUT(10) = 407880.0
FX_INPUT{11) = 407880.0
FX.INPUT(12) = 439180.02
FX-INPUT(13) = 439180.02
FX.INPUT(14) = 439180.02
FX_INPUT(15) = 319162.39
FX_INPUT(16) = 319162.39
FX_INPUT(17) = 319162.39
FX_INPUT(18) = 319162.39
FX_INPUT(19) = 319162.39
FX_INPUT(20) = 319162.39
END IF
END IF
C——mm- CONVERTING THE FLUXES TO W/m2
DO I = 1, NODES.Y
FX_INPUT(I) = FX.INPUT(I) / 100.0%%2
END DO
N.LAM1 = &
N.LAM2 = 2
ALPHA = 3.0
SIGMA.S = 0.1 * ALPHA / 0.9

INPUTTING THE NUMBER OF ORDINATE DIRECTIONS DESIRED



Appendiz 5, Page 237

aagaoaaaoaoaaan

WRITE(6,63)
READ(*,%) N_ORDS

WRITE(6,64)
————— INLET PARTICLE TEMPERATURE

READ(#,#%) T_INLET
T_INLET = ((T_INLET - 32.) * 5. / 9.) + 273,
WRITE(6,65)

_____ FORMAT STATEMENTS

10  FORMAT(////,5X,’INPUT SECTICN FOR THE CURTAIN GEOMETRY’,///)
20 FORMAT(10X,’CURTAIN DEPTH ALONG INCOMING FLUX °,
* JYECTOR (LX) IN MILLIMETERS? ’,$)
21  FORMAT(//,10X,’CURTAIN HEIGHT (L.Y) IN METERS? °,$)
22  FORMAT(//,10X,’NUMBER OF NODES IN X DIRECTION? ’,$)
23  FORMAT(//,10X,’NUMBER OF NODES IN Y DIRECTION? ’,$)
30 FORMAT(////,B%,’INPUT SECTION FOR WAVELENGTH BANDS’,///)
40  FORMAT(10X,’NUMBER OF BANDS DESIRED IN THE SCLAR ’,

* ’SPECTRAL RANGE’,/,10X,’(0.3 TO 1.1 MICROMETERS) °,
70.7,8)
41  FORMAT(//,10X,’THE NUMBER OF BANDS DESIRED IN THE IR RANGE’,/,
* 10X,’(1.1 TO 10 MICROMETERS)... ’,$)

50 FORMAT(////,5%,’INPUT SECTION FOR RADIATIVE PROPERTIES’,///)

60 FORMAT(10X,’CONSTANT ABSORPTION COEFFICIENT (1/m)? °*,$)

61  FORMAT(//,10X,’CONSTANT SCATTERING COEFFICIENT (i/m)? ’,$)

62 FORMAT(//,10X,’CONSTANT PHASE FUNCTION (EITHER A 0 OR A4 1)?7 7,$%)

63 FORMAT(//,10X, 'KUMBER OF ORDINATE DIRECTIONS DESIRED (4,12,24)7 °’
* .8

64 FORMAT(//,10X,’AVERAGE INLET PARTICLE TEMPERATURE (FAHRENHEIT)? °
* .8

65 FORMAT(////)

70  FORMAT(20X, ’READING OF FLUX GAGE #°,I1,’ (W/m2)...’,$)

80  FORMAT{(///,10X,’INPUT SECTION FOR THE FLUX GAGE READINGS’,//)

90 FORMAT(//,10X,’ ENTER A ZERO FOR INPUTTTED VALUES...’,$)

100 FORMAT(//,10X,’ENTER THE NUMBER OF THE DATA FILE... Q’,$)

RETURN
END

-C
C
THIS SUBROUTINE DETERMINES THE INTENSITY ALONG THE Y=0 c
BOUNDARY (I.E. THE PARTICLE INLET POINT). IT CALCULATES THE C
EMISSIVE POWER OF THE PARTICLES THROUGH PLANCKS DISTRIBUTION C
AND DIVIDES BY PI TO DETERMINE THE INTENSITY SINCE THIS c
EMISSION IS DIFFUSE. C
C
- ---C

SUBROUTINE YOBOUND(T.INLET, N_LAM1, N_LAM2, INTENSITY.LAM,
* NODES.X, IDIMX,
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* IDIM.Y, IDIM LAM, IDIM.M, N.ORDS, I_BLACK.YO)
REAL INTENSITY.LAM, LAMBDA1L, LAMBDA2, LAMBDA.AVG

REAL I_BLACK.YO
DIMENSION INTENSITY LAM (IDIM.X, IDIM.Y, IDIM.M, IDIK.LAY)

DIMENSION I:BLACK.-YO(IDIM_LAM)
PI = 4.0 % ATAN(1.0)

C2 = 14388.0

SIGHA = 5.729E-08

————— DETERMINING THE SPECTRAL RANGE AND THE BANDWIDTHS

(1.1~ 0.3) / FLOAT(N.LAM1)
D.LAM2 = (10.0 - 1.1} / FLOAT(N.LAM2)
N.LAMT = H.LAW1 + N.LAM2

LAMBDA1 =:0.3

D.LAM1

————— CALCULATING THE F(O TO LAMBDA) FACTORS TO INTEGRATE PLANCKS
Crmmem— DISTRIBUTION FOR LAMBDA1

TLAM1 = LAMBDA1 * T_INLET
Vi =.C2/ TLAMI
IF(V1.GE.2.0)THEN
SUM = 0.0
DO I = 1,40
SUM = SUM + (EXP(=I*V1)/FLOAT(I)%%4)
* * (((I#Vi + 3)%I*V1 + 6)*I*V1 + 6)
END DO
FOLL = (15.0/PIL#%4) * SUM
ELSE
FOL1 = 1 = (15./PI*%4) * Vi#+3 * (1./3. - Vi/8. + Vi%%2/60.

* - Vi#%4/5040. + Vi%*%6/272160. - Vi*%8/13305600.)
END IF

————— FOR LAMBDA2

D.LAM = D.LAM1

DO INLAM = 1,N_LAMT
LAMBDA2 = LAMBDAL + D LAM
TLAM2 ‘= LAMBDA2 * T_INLET
V2 = C2./ TLAM2
IF(V2.GE.2.0)THEN

SUM = 0.0
DO I = 1,40
SUM = SUM + (EXP(-I*V2)/FLOAT(I)*%4)
* # (((I*V2 + 3)+I%V2 + 6)*I*V2 + 8)
END DO
FOL2 = (15.0/PI*%4) * SUM
ELSE
FOL2 = 1 — (15./PI#+*4) % V2%%3 % (1./3. ~ V2/8. +
* V2%%2/60. ~ V2%%4/5040. + V2+*6/272160,
* - V2%#8/13305600.)
END IF

————— THE EMISSIVE POWER IS JUST THE DIFFERENCE IN THE F FACTORS
————— MULTIPLIED BY THE INLET TEMPERATURE TO THE FIFTH POWER, THE
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Cmmm== STEPHAN BOLTZMANN CONSTANT, AND THE EMITTANCE WHICH
= IS EQUAL TO THE ABSORPTANCE
c
E.POWER = (FOL2 -~ FOL1) * T_INLET#%5 % SIGMA
¢
G DETERMINING THE INTEKSITY BY DIVIDING BY PI DUE TO
G THE DIFFUSE NATURE OF THE PARTICLE EMISSION
c
I_BLACK_YO(I.NLAM) = E.POWER / PI / 100.0%%2
DO I = 1,HODESX
DO IDIR = 1, N_ORDS
INTENSITY.LAM(I, 1, I.DIR, I_NLAM) = I _BLACK.YO(I NLAM)
END DO
END DO
c
LAMBDA1 = LAMBDA2
FOL1 = FOL2
TLAM1 = TLAM2
IF(LAMBDA2 .GE. 1.1)THEN
D_LAM = D_LAM2
END IF
END DO
RETURN
EKD
C c
¢ C
C THIS SUBROUTINE SETS THE INTENSITIES AT THE X=0 BOUNDARY. c
C THE VALUES HAVE BEEN DETERMINED THROUGH THE PARAMETER ESTIMATION C
C METHOD THAT MODELS THE INTENSITIES FROM EXPERIMENTAL DATA. C
¢ ¢
c ¢
SUBROUTINE XOBOUND(NODES.Y, INTENSITY, N_ORDS, MU, XI, ETA,
! IDIM X, IDIM.Y, IDIM M, FX_INPUT, WEIGHT,
! FX_CAL, FX_CALMAX, DY)
REAL INTEGRAL, MU, INTENSITY
DIMENSION INTENSITY(IDIMX, IDIM.Y, IDIMM), WEIGHT(IDIMM)
DIMENSION MU(IDIM M), XI(IDIMM), ETA(IDIM.M)
DIMENSION BETA(20,4), FX_INPUT(IDIM.Y), FX_CAL(IDIM.Y)
DIMENSION FLUX_C(20)
c
Crmmm—m INITIALIZATION
c
PI = 4.0 * ATAN(1.0)
N_COEFF = 3
DP = 5.7 * PI / 180.
DHE = DP / 2.
TO = 50. * PI /180.
c
C—-——- A AND B ARE THE GAUSSIAN CURVE FIT PARAMETERS FOR
G- THE INPUTTED FRONT FLUX TERM
C
A = 458006.648588
B = - 17.421543
X0 = 7.442046
¢

Cmmmm TC1 AND TC2 ARE THE ANGULAR LIMITS DEFINING THE CORE
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G OF RAYS FROM THE CONCENTRATOR. ANY ORDINATE DIRECTIONS
Cmmmmme OUTSIDE THIS CONE WILL REPRESENT A BOUNDARY INTENSITY OF
Cmmmmm ZERO.
c
TC1 = -85. * PI / 180.
TC2 = -35. * PI / 180.
¢
Qe CALCULATING THE AVERAGE INCIDENT FLUX WHICH IS THE VALUE USED
G _ IN THE NORMALIZATION OF THE NIP DATA
c
SUMFX = 0.0
DO J=1,5
SUMFX = SUMFX + FX_INPUT(J)
END DO
¢
G READING IN THE COEFFICIENTS TO BE USED
¢
OPER (UNIT=3, STATUS=’UNKNOWN’, FILE=’COEFF.DAT’)
DO I = 1, NODES.Y |
READ(3,*) IX, BETA(I,1), BETA(I,2), BETA(I,3)
END DO
DO I = 1, NODES.Y
DO J = 1, N._COEFF
BETA(I,J) = BETA(I,J) / DP
END DO
WRITE(6,10) (BETA(I,J)*DP, J = 1, N_COEFF)
END DO
CLOSE (UNIT=3)
10  FORMAT(1X, 3(F12.8,5X))
c
G DETERMINING THE SENSITIVITY COEFFICIENTS
c
_ DO IDIR = 1, N.ORDS
¢
Cmmmme DETERMINING THE ANGLES OF THE ORDINATES
¢

THETA.QUAD = ATAN (XI(IDIR)/SQRT(ETA(IDIR)*%2 + MU(IDIR)#*2)})
PHI.QUAD = ATAN(ETACI.DIR) / MU(I.DIR))
IF (MU(I.DIR) .GE. O) THENW
THETA.TOT = THETA.QUAD
PHI.TOT = PHI.QUAD
ELSE
IF (XI(IDIR) .GE. 0) THEN
THETA.TOT = PI / 2. + ABS(THETA.QUAD)
ELSE
THETA_TOT = PI + ABS(THETAQUAD)
END IF
IF (ETA(IDIR) .GE. 0) THEN
PHI.TOT = (PI / 2. + ABS(PHI_QUAD))
ELSE
PHI_TOT = (PI + ABS(PHI.QUAD))
END IF
END IF
PHI.TOT = 90. * PI / 180.
THETA.TOT = THETA_TOT = TO



Appendiz 5, Page 241

IF (MU(IDIR) .GE. 0) THENW
TT = THETA.TOT * 180. / PI
PT = PHI_TOT * 180, / PI

END IF
C
= DETERMINING THE INTENSITIES AND THE FLUXES
C
SUM = 0.0
D0.J = 1, NODES.Y
C
Cmmmmmr CALCULATION OF THE INPUT FLUX THROUGH THE GAUSSIAN CURVE FIT
C
Y = (J-1) % DY
FXFIT = & * EXP ( (Y-X0)*x2 / B) / 100.#%%2
¢
G DETERMINING THE INTENSITY FIELD AT THE FRONT FACE FOR THE
G DISCRETE ORDINATE DIRECTIONS.
c
IF (MU(IDIR) .LT. O .OR. THETA_TOT .LT. TCi .OR.
! THETA.TOT .GT. TC2) THEN
INTENSITY (1, J, IDIR) = 0.0
ELSE
INTENSITY (1, J, IDIR) = BETA(J,1) / €0S (THETA.TOT)
! + BETA(J,2) / ¢0S (THETA_TOT) / SIN(THETA_TOT)
] + BETA(J,3) / SIN(THETA.TOT)
INTENSITY(1, J, I.DIR) = FXFIT * INTENSITY(i, J, IDIR)
INTENSITY(4, J, IDIR) = INTENSITY(i, J, I.DIR)
END IF
END DO
L PRINTING OUT THE BOUNDARY VALUES
¢
IF (MU(IDIR) .GE. 0) THEN
DO J = 1, HODES.Y
WRITE(S,100)IDIR, MU(IDIR), XI(IDIR), ETA(IDIR), TT,
¢ INTENSITY(1,J,IDIR)
100 FORMAT(1X,I12,2X,F10.8,2X,710.8,2X,F10.8, 3X,F6.1,3%, Fi15.3)
END DO
END IF
25 END DO
G e RECALCULATING THE FRONT SURFACE FLUXES FOR COMPARISON
Qoo TO THE DATA USING GAUSSIAN QUADRATURE
DO J = 1, NODESY
SUM = 0.0

DO IDIR = 1, N.ORDS
SUM = SUM + WEIGHT(IDIR)
t # ( MU(IDIR) ) * INTENSITY(1,J,IDIR)
END DO
FX_CAL{J) = SUM
END DO

————— CALCULATION OF THE MAXIMUM ESTIMATED FRONT SURFACE FLUX
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c
FX_CALMAX = FX.CAL(1) l
DO J = 2, NODES.Y

IF (FX_INPUT(J) .GT. FX_CALMAX) FX.CALMAX = FX_INPUT(J)

END DO

c

Comrmm PRINTING OUT THE FLUX VALUES

C

WRITE(6,120) (FX_INPUT(J), FX.CAL(J), FLUX.C(J), J = 1, HODES.Y)
120 FORMAT(1( 5X, F13.4, 5%, Fi15.4, BX, Fi5.4))

QOO

c
RETURN
END
¢
THIS SUBROUTINE DETERMINES THE SPECTRAL COMPONENTS OF THE ¢
INCIDENT INTENSITIES THAT WERE “READ IN“ IN XOBOUND. ~THIS IS c
ACCOMPLISHED BY INTEGRATING AN EXPERIMENTALLY MEASURED SPECTRUM c
OVER THE WAVELENGTH BANDS DEFINED BY THE USER. THE INTEGRATION c
IS CARRIED OUT USING THE TRAPEZOIDAL RULE DUE TO THE LARGE NUMBER C
OF DATA POINTS. c
¢
SUBROUTINE SPECTRUM(INTENSITY, I.LAM.FLUX, IDIM.X, IDIM.Y,
* IDIM.LAM, IDIM.M, W.LAM1, W.ORDS, NODES.Y)
REAL LAMBDASPEC, LAMBDA, INTENSITY, I.LAM.FLUX
DIMENSION Q1(500), LAMBDASPEC(500), LAMBDA(50), PERCENTINT(100)
DIMENSION I.LAMFLUX(IDIM.Y, IDIM.M, IDIM.LAM)
DIMENSION INTENSITY(IDIM.X, IDIM.Y, IDIM.M)
c
= READING IN THE SOLAR SPECTRUM FROM THE LYCOR DATA
¢
OPEN. (UNIT=9, STATUS=’UNKNOWN’, FILE=’LYCOR.DAT’)
DO I =1, 401
READ(9,*)LAMBDASPEC(I), Qi(I), Q2, Q3, G4, Q5, @6, Q7
ERD DO
CLOSE (UNIT=9)
¢
G SETTING UP. THE SPECTRAL BANDS
C
D.LAMBDABIG = (1.1 - 0.3) / FLOAT(N.LAM1)
D.LAMBDASPEC = 0.002
LAMBDA(1) = 0.3
XMIN = LAMBDASPEC(1)
XMAX = XMIN
JBANDi = 1 i
C
Commmm THE I LOOP WILL BE OVER ¥.LAM BANDS TO DETERMINE THE VALUE
G e OF THE INTEGRAL OVER EACH
¢
DO.I = 1, NLAMi
LAMBDA(TI+1) = LAMBDA(I) + D.LAMBDABIG
c
Commmm THIS SECTION DETERMINES THE WAVELENGTHS OF THE DATA POINTS
G THAT LIE NEAREST THE BAND BOUNDARIES. THESE POINTS WILL BE

Comr—r USED AS THE LIMITS ON THE INTEGRATION. THE CONTRIBUTION OF
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THE AREA BETWEEN THE LIMIT DATA POINT AND THE BARD BOUNDARY
IS ASSUMED NEGLIGIBLE.

DO J = JBANDi, 401
¥MAX = XMAX + D_LAMBDASPEC
IF(XMAX.GT.LAMBDA(I+1))THEN

XMAX = XMAX - D.LAMBDASPEC
JBAND2 = J -~ 1
60 TO 10
END IF
IF(XMAX.EQ.LAMBDA(I+1))THEN
JBAND2 = J
GD TD 10
END IF
EXD DO

PERFORMING THE INTEGRATION USING THE TRAPEZOIDAL RULE

SUM = 0.0
DO J = JBAND1, JBAND2-1

SUK = SUM + Q1(J)
END DO
PERCENTINT(I)

PERCENTINT(I)

(D_LAMBDASPEC / 2.)
PERCENTINT(I) * (Q1(JBAND1)+2.*SUM+Q1(JBAND2))

RESETTING THE INTERVALS FOR THE NEW BAND

= JBAND2 + 1
LAMBDASPEC(JBAND1)
XMIN

JBARD1
IMIN =
XMAX =

END DO

————— CALCULATING THE TOTAL FLUX (OR INTENSITY) UNDER THE SPECTRUM

SUMI = 0.0
DO I = 1, HIAM1

SUMI = SUMI + PERCENTINT(I)
END DO
WRITE(*,100)SUMI
WRITE(*,105)

Cmmmmm CALCULATING TBE PERCENTAGE OF THE TOTAL FLUX (OR INTENSITY)
————— THAT LIES IN EACH WAVELENGTH BAND AND MULTIPL YING
Commmm THE INCIDENT INTENSITY BY THOSE VALUES TO DETERMINE

THE SPECTRAL DISTRIBUTION OF THE INCIDENT ENERGY.

DO I = 1, NLAM1
PERCENTINT{(I) = (PERCENTINT(I) / SUMI) * 100.0
WRITE(*,110)LAMBDA(I), LAMBDA(I+1), PERCENT(I)
DO J = 1,NODES.Y

DO J.DIR = 1, N_ORDS
I_LAMFLUX(J,JDIR,I) = INTENSITY(1,J,JDIR) #*
PERCENTINT(I) / 100.0
END DO

END DO
END DO
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Cromm= FORMAT STATEMENTS
C ,
100 FORMAT(//,5%,’THE TOTAL INTEGRATED FLUX UNDER THE CURVE IS...?,

* F9.6," W/ Mx%22,//)
105 FORMAT(5X,’LAMBDA(I)®,BX,’LAMBDA(I+1)’,6X,’PERCENTAGE IN BAND',//)
110 FORMAT(7X,F5.3,10X,F5.3,17X,F7.3)

RETURN
END

THIS SUBROUTINE ITERATES THE EQUATION OF TRANSFER ACCORDING
TO THE DISCRETE ORDINATES FORMULATION.

QOO OO
nno OC'}()

SUBROUTINE EOT(INTENSITY.LAM, N.LAM1, N.LAM2, NODES.X, NODES.Y,
‘ L.X, LY, IDIM.X, IDIM.Y, IDIM.M, IDIM.LAM,
MU, XI, WEIGHT, ¥.ORDS, INTENSITY,
FLUX, T, FLUX.LAM, PHI, DX, DY, SIGMA.S, T.INLET,
I.LAM.FLUX, I.BLACK.YO, ALPHA, DELGQ,
E.POWER, BFLUX, FX.INPUT, FX.CAL, FXDATA,
FX_CALMAX)
REAL INTENSITY.LAM, INTENSITY, MU, TI.BLACK, LAMBDA1, LAMBDA2
REAL kappa, I_INNSCAT, I_LAM.FLUX, I_BLACK.YO
DIMENSION INTENSITY.LAM(IDIM.X, IDIM.Y, IDIMM, IDIM.LAM)
DIMENSION INTENSITY(IDIMX, IDIM.Y, IDIM.M), I BLACK. YO(IDIM_LAM)
DIMENSION T.LAM FLUX(IDIM.Y, IDIM.M, IDIM.LAM) ,
DIMENSION T(IDIM:X,IDIM.Y), MU(IDIMM), XI(IDIM.M), WEIGHT(IDIMM)
DIMENSION DELQ(IDIM.X, IDIM.Y), BFLUX(IDIM.Y)
DIMENSION FLUX(IDIM.X, IDIM.Y), E_POWER(IDIM.LAM)
DIMENSION FX.INPUT(IDIM.Y), T.PR(10,20), FX.CAL(IDIM.Y)
DIMENSION FXDATA(IDIMY)

ks I SN RN SRR

G INITIALIZATION ARD BANDWIDTH SPECIFICATION

D.LAK2 = (10.0 - 1.1) / FLOAT(N.LAM2)
D.LAMi = (1.1 - 0.3) / FLOAT(N.LAM1)
K. LAMT = N.LAM1 + N.LAM2

LAMBDAL = 0.3

¢2 =14388.0

SIGMA = 5.729E-08

PI =:4.0 % ATAN(1.0)

RX = 1.

0
o
G SETTING THE TEMP FIELD TO 300 JUST TO GET THE CODE RUNNING

G AND ADDING ON TEE INLET EMISSION TERM TO THE FLUX TERM AT THE
Commeoom CORNER (X=0, Y=0)

KAPPA = ALPHA + SIGMA.S
DO 1 I= 1, NODESX
DO 1.3 = 1, NODES.Y
T(I,3) = TIANLET
1 CONTINUE
DD 2 IDIR = i, N.ORDS
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DO 2 ILAM = 1, N_LAMT
DO 2 J = 1, NODES.Y
INTENSITY.LAM(1, J, I.DIR, ILAM) = I_LAM_FLUX(J, I.DIR, ILAM) +
% I.BLACK.YO(TILAM)
2 CONTINUE

IITER = 1

————— STARTING THE LOOP OVER THE WAVELENGTH BANDS CHOSEN
10 DO ILAM = 1,N_LAMT

IF (ILAM .LE. N_LAM1) THEN

LAMBDA2 = LAMBDA1 + D.LAM1
ELSE

LAMBDA2 = LAMBDA1 + D.LAM2
END IF

C-mmme STARTING THE LOOPS OVER THE DIRECTIONS AND THE NODAL POINTS

DO I = 2,NODESX
DG J = 2,NODES.Y
DO IDIR = 1,N.ORDS

————— CALCULATING THE EMISSION TERM USING THE F-FACTOR METHOD TO
Comm—= INTEGRATE PLANCK’S EQUATION OVER WAVELENGTH

Vi = €2 / LAMBDAL / T(I, J)
IF(V1.GE.2.0)THEN

SUM = 0.0
DO I_PLAN = 1,40

SUM = SUM + (EXP(-I PLAN*V1)/FLOAT(I PLAN)*%4)

* * (({I_PLAN#Vi + 3)*I PLAN*V1i + 6)*I PLAN*V1 + 6)
END DO
FOL1 = (15.0/PI%%4) % SUM
ELSE
FOL1 = 1 — (15./PI#*4) * Vi*%3 % (1./3. - V1/8. + Vi**2/60.
* ~ Vi**4/5040. + Vi**%8/272160. - V1*%8/133058600.)
END IF

————— FOR LAMBDA2

V2 = €2 / LAMBDA2 / T(I, J)
IF(V2.GE.2.0)THEN

SUM = 0.0
DO I_PLAN = 1,40

SUM = SUM + (EXP(-I_PLAN*V2)/FLOAT(I_PLAN)*%4)

* # (((I_PLAN*V2 + 3)*I_PLAN*V2 + 6)*I _PLAN*V2 + 6)
END DO
FOL2 = (15.0/PI*%4) * SUM
ELSE
FOL2 = 1 - (15./PI#*%4) * V2**3 * (1./3. - V2/8. +
* V2#%2/60. — V2%*4/85040. + V2**6/272160.

- V2##%8/13305600.)
END IF
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c
L THE EMISSIVE POWER IS JUST THE DIFFERENCE IN THE F FACTORS
L MULTIPLIED BY THE LOCAL TEMPERATURE TO THE FIFTH POWER, THE
Cmmmmm STEPHAN BOLTZMANN CONSTANT, AND THE EMITTANCE WHICH
e IS ‘EQUAL TO THE ABSORPTANCE
¢
E_POWER(ILAM) = (FOL2 ~ FOL1) * T(I, J)#*5 * SIGMA/100.%%2
c
C-——== - DETERMINING THE BLACK-BODY INTENSITY BY DIVIDING BY PI DUE
Commmm TO THE DIFFUSE NATURE OF THE. PARTICLE EMISSION
c
I.BLACK = E.POWER(ILAM) / PI
c
Cmmmm CALCULATING THE IN-SCATTERING TERM USING GAUSS QUADRATURE
Cmmmmem TO DETERMINE THE INTEGRAL
c
DO I_-IT.SCAT =1, 3
SUM_INNSCAT = 0.0
DO I.SCAT =1, N.ORDS
PHI = 1. + MU({I.SCAT) * MU(IDIR) + XI(I_SCAT)*XI(IDIR)
SUM_INNSCAT = SUM_INNSCAT + WEIGHT(I.SCAT) * PHI
* * TNTENSITY.LAM (I, J, I.SCAT, ILAM)
END DO
I.INNSCAT = (SIGMA-S / 4.0 / PI) % SUM_INRNSCAT
c
Cmmmem DETERMINING THE SPECTRAL INTENSITY AT NODE (I,J)
=== ACCORDING TO THE FINITE DIFFERENCE FORM OF THE
C——mmm EQUATION OF TRANSFER
c
100 BETAM =ABS(MU(IDIR))/DX+ABS(XI(I.DIR)) / DY + KAPPA
INTENSITY LAM(I, J, I.DIR, ILAM) = (1.0 / BETA.M) *
* ( ABS(MU(IDIR)) * INTENSITY.L&M(I-1,J,IDIR,ILAM) / DX
* + ABS(XI(I.DIR)) * INTENSITY.LAM(I,J-1,IDIR,ILAM) / DY
* + ALPHA * I.BLACK + I_INNSCAT )
END DO
c
C-——- SETTING ANY NEGATIVE INTENSITIES TO ZERD REMOVES
L NON-REALISTIC VALUES THAT LARGE SCATTERING
C———-- CRUSS-SECTIONS AND INADEQUATE SPATIAL RESOLUTION PRODUCE
c
IF (INTENSITY.LAM(I,J,IDIR,ILAM) .LT. 0.0) THEN
INTENSITY.LAM(Y,J,I.DIR,ILAM) = 0.0
END IF
c
Cm—=—- ENDING THE LOOPS ON X, Y, WAVELENGTH, AND DIRECTION
¢
IITER = I_ITER + 1
END DO
END DO
LAMBDA1 = LAMBDA2
END DO
¢
Commmnm CALCULATING THE DIVERGENCE OF THE RADIATIVE FLUX VECTOR
Cmrmemme FROM THE SPECTRAL EMISSIVE POWER, THE MEAN

SPECTRAL INTENSITY AND THE SPECTRAL IN-SCATTERING
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————— SOURCE TERM AT THE POINT (I,J)

DO I =1, NODESX
DO J = 2, NODES.Y

SUMLAM = 0.0
DO ILAM = 1, N.LAMT
SUMINTEN = 0.0

SUMSCAT = 0.0
DO IDIR = 1, N_ORDS

————— CALCULATION OF THE INTEGRATED PHASE FUNCTION ACCORDING TO
————— THE EQUATION BELOW EQ. 14.35 IN SEIGEL AND HOWELL

SUMPHASE = 0.0
DO I_PDIR = 1, N.ORDS

PHI = 1.0 + (MU(I_PDIR) * MU(IDIR) + XI(IPDIR) * XI(IDIR))
SUMPHASE = SUMPHASE + WEIGHT(IPDIR) * PHI

END DO

SUMPHASE = SUMPHASE / 4. / PI

————— CALCULATION OF THE MEAN INTENSITY AND THE SOLID
————— ANGLE INTEGRAL ON THE RHS OF EQ. 14-37 IN SEIGEL AND HOWELL

SUMINTEN = SUMINTEN + WEIGHT(IDIR) =*

* INTENSITY LAM(I,J,IDIR,ILAM)
SUMSCAT = SUMSCAT + WEIGHT(I.DIR) # SUMPHASE *
* INTENSITY.LAM( I, J, I.DIR, ILAM)
END DO

————— CALCULATION OF THE INTEGRAL OVER WAVELENGTH OF EQ. 14-37

IF (ILAM .LE. K_LAM1) THEN
SUMLAM = SUMLAM + (ALPHA * (E_POWER(ILAM)-KAPPA*SUMINTEN/4.) +

* SIGMAS * SUMSCAT / 4.) * D_LAMi
ELSE
SUMLAM = SUMLAM + (ALPHA * (E_POWER(ILAM)-KAPPA*SUMINTEN/4.) +
* SIGMA.S * SUMSCAT / 4.) * D.LAM2
END IF
END DO

————— CALCULATION OF THE DIVERGENCE OF THE RADIATIVE FLUX VECTOR

DELQ(I,J) = 4. * SUMLAM
END DO
END DO

————— CALCULATING THE TEMPERATURE DISTRIBUTION FROM THE DIVERGENCE
~~~~~ OF THE RADIATIVE FLUX VECTOR, ’'DELQ.’ THE THERMOPHYSICAL
————— PROPERTIES THAT ARE REQUIRED FOR THE ENERGY EQUATION

----- WERE DETERMIKNED BY WEIGHTING THE RESPECTIVE

————— PROPERTY VALUES FOR THE AIR AND THE PARTICLES USIKG

----- THE POROSITY AS THE WEIGHTING FACTOR. THE VELOCITY

————— COMES FROM A CURVE FIT OF MEASURED DATA FOR THIS TYPE OF FLOW

RHO_EFF = 2342.776 / 100.0%%3
CP EFF = 864.220
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REO_AIR = 1.16 / 100.0%%3
CP.AIR = 1007.

PR.AIR = 0.709

POR-AIR = 0.410

————— THE CURVE FIT COEFFICIENTS

VA = 0.844137
VB = 5.034810
V¢ = -1.875972
VD = 0.260033

DO I =1, NODES.X
TPR(I,1) = (T-INLET - 273.) = 9. / B, + 32,
DD J = 2, NODES.Y

————— CALCULATIOR OF THE VELOCITY

(J-1) = DY
VA + VB * Y + VC % Y#x2 4+ VD * Y3
V %-100.

- e

(]

————— CALCULATION OF THE CONVECTIVE LOSS TERM

RED = .23242 % V

H.EFF = 2.06 * RED#*%(~0.575) # PRAIR#*(~2./3.)
H_EFF = H.EFF * RHO_AIR * CP_AIR * V
H.EFF = BEFF / PORAIR

QCONV = H.EFF * (T(I,J-1) - T.INLET)
————— CALCULATION OF THE TEMPERATURE FIELD

T(1,3) = T(I,3-1) + (DY/RHOEFF/CP.EFF/V) * (~DELQ(I,J) - QCONV)
T-PR(Z,J) = (T(X,J) - 273.) * 9. / 5. + 32.

EKD DO
END DO
————— CALCULATION OF THE AVERAGE EXIT TEMPERATURE
SUMT = 0.0
DO I = 1, KODESX
SUMT = SUMT + T(I, NODES.Y)
END DO
TAVG = ((SUMT / NODES.X) - 273.) = 9. / 5. + 32.
————— PRINTING OUT THE TEMPERATURE FIELD

WRITE(6,155)
DO J = 1, NODES.Y
WRITE(6,160) (TPR(I,J), I =1, HODES.X,2)
END DO
WRITE(6,170) TAVG
WRITE(6,171)
READ(E,*)



Appendiz 5, Page 249

————— CALCULATIOR AND PRINTING OF THE BACK SURFACE FLUX

OPEN (UNIT = 1, STATUS=’NEW’, FILE=’QMODEL.DAT’)
DO J = 1, NODESY

SUMFLUXLAM = 0.0
DO ILAM = 1, N_LANMT

SUMBFLUX = 0.0
DO IDIR = 1, N_ORDS
SUMBFLUX = SUMBFLUX + WEIGHT(IDIR) *
* INTENSITY.LAM(NODES.X, J, IDIR, ILAM) * (MU(I.DIR))
END DO

IF (ILAM .LE. N.LAM1) THEN
SUMFLUXLAM = SUMFLUXLAM + SUMBFLUX * D_LAM{i

ELSE
SUMFLUXLAM = SUMFLUXLAM + SUMBFLUX * D_LAM2
END IF
END DO
FX_CALMAX = SIGMA * T_INLET ** 4. / 100.%%2

BFLUX(J) = SUMFLUXLAMW / FX_CALMAX

Y = DY % (3-1) / 13.97

WRITE(6,180) Y, BFLUX(J), FX.CAL(J)/ FX_CALMAX
WRITE(1,180) Y, BFLUX(J), FX_CAL(J)/ FX.CALMAX
END DO

CLOSE (UNIT=1)

————— ALLOWING FOR REITERATION

WRITE(B,%)°

WRITE(6,*) ’ENTER A ZERO TQO PERFORM ANOTHER ITERATICH®
READ(5,*)I_ITERATION

IF (I_ITERATION .EQ. 0) THEN

GO TO 10
END IF

————— THIS SECTION ALLOWS INTERACTIVE SCREEN PRINTING OF
————— THE INTENSITY DISTRIBUTIONS AS FUNCTIONS OF

————— BOTH WAVELENGTH AND VERTICAL HEIGHT. THE PRINTING
————— IS DONE FOR ALL X NODES AND ALL ORDINATE DIRECTIONS.

99  WRITE(6,+)’INPUT A 1 FOR I(X,LAMBDA), & 2 FOR I(X,Y) OR °’
WRITE(6,%)’4 O TO QUIT’
READ(6,*)IPRT
IF (I_PRT .EQ. 0) GO TO 1000
IF (I_PRT .EQ. 1) THEN
101 WRITE(6,*)’INPUT j°’
READ(5,#)J
IF(J.EQ.100) GO TO 999
DO ILAM = 1, N_LAMT
WRITE(6,104)I LAM
DO IDIR = 1, N.ORDS
WRITE(S, 102) (INTENSITYLAM (I, J, IDIR, I_LAM),
| I=1, HODES.X, 2)
END DO
ERD DO



111

GO TO 101
ELSE
WRITE(6,*) ' INPUT I 1AW’
READ(5,*)I_LAM
IF(I.LAM .EQ. 100) GO TD 999
DO J =1, NODES.Y
WRITE(6,108)J
DO IDIR = 1, N.ORDS
WRITE(6, 102) (INTERSITY.LAM (I, J, IDIR, ILA&MW),
: I=1, NODES.X, 2)
END DO
END DO
GO TO 111
END 'IF
G0 TO 99

Cr—momme FORMAT STATEMENTS

SO QOQ0O0

103
102
104
105
156

160
170

171
180

FORMAT( 8X, ’INTENSITY.LAM',/)

FORMAT(1X, 5(F9.1,1X))

FORMAT(/,4X, ’FOR I.LAM = °,I2,/,4X%," %)
FORMAT(/,4X,’FOR J = 2,1I2,/,4%,) —————mmmm /)
FORMAT(//,20%X, THE TEMP. DIST IS ...’,/,20X%,

*? 210

FORMAT(1X,5(F15.1,1X))

FORMAT(//,10%, THE AVERAGE EXIT TEMPERATURE IS ...’,
® F6.2,? DEG. F,//)

FORMAT(//,3%X,?HIT <RETURN> TO CONTINUE’,//)
FORMAT(10X,F7.4, BX, F13.4, 5X, F13.4)

1000 RETURN

END
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THIS SUBROUTINE DEFINES THE ORDINATES AND WEIGHTS FOR THE
DISCRETE ORDINATES FORMULATICN OF THE EOT. THE VALUES WERE
TAKEN FROM LEE.

C>OOOOOC’

SUBROUTINE ORDINATES(N.ORDS, MU, XI, ETA, WEIGHT, IDIM.M)
REAL MU
DIMENSION MU(IDIM M), XI(IDIM.M), WEIGHT(IDIMM), ETA(IDIM.M)

PI = ATAN(1.0) *# 4.0
IF (N:ORDS.EQ.4)THEN

MU(4) = -0.57735026
MU(2) = 0.57735026
MU(3) = -0.57735026
MU(4) = 0.57735026

¥I(4) = -0.57735026
XI1(2) = -0.57735026
XI(3) = 0.57735026
XI1(4) = 0.57735026
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DO I =1,
ETA(I) =
END DO

WEIGHT(1)
WEIGHT(2)
WEIGHT(3)
WEIGHT(4)

ELSE IF (N.ORDS.EQ.12)THEN

MU(1) = -0.33333333
MU(2) = 0.33333333
MU(3) = -0.88191710
MU(4) = -0.33333333
MU(5) = 0.33333333
MU(6) = 0.88191710
MU(7) = ~0.88191710
MU(8) = ~0.33333333
MU(8) = 0.33333333
MU(10) = 0.88191710
MU(11) = ~0.33333333
MU(12) = 0.33333333
XI{1) = -0.88191710
X1(2) = -0.88191710
XI(3) = -0.33333333
X1(4) = -0.33333333
XI{5) = -0.33333333
XI(8) = -0.33333333
XI(7) = 0.33333333
XI(8) = 0.33333333
XI(9) = 0.33333333
XI(10) = 0.33333333
XI(11) = 0.88191710
XI(i2) = 0.88191710
ETA(1) = 0.33333333
ETA(2) = 0.33333333
ETA(3) = 0.33333333
ETA(4) = 0.88191710
ETA(B) = 0.88191710
ETA(6) = 0.33333333
ETA(7) = 0.33333333
ETA(8) = 0.88191710
ETA(8) = 0.88191710
ETA(10) = 0.33333333
ETA(11) = 0.33333333
ETA(12) = 0.33333333
WEIGHT(1) = 1./3.
WEIGHT(2) = 1./3.

4
0

o
[ SO O
O O OO

.57735026



Appendiz 5, Page 252

WEIGHT(3) = 1./3.
WEIGHT(4) = 1./3.
WEIGHT(5) = 1./3.
WEIGHT(6) = 1./3.
WEIGHT(7) = 1./3.
WEIGHT(8) = 1./3.
WEIGHT(9) = 1./3,
WEIGHT(10) = 1./3.
WEIGHT(11) = 1./3.
WEIGHT(12) = 1./3.
ELSE

MU(1) = -0.25819889
MU(2) = 0.25819889
MU(3) = ~-0.88313005
MU(4) = -0.25819889
MU(B) = 0.25819889
MU(6) = 0.68313006
MU(7) = -0.93094934
MU(8) = -0.68313005
MU(9) = -0.25819889
MU(10) = 0.25819889
MU(11) = 0.68313005
MU(12) = 0.93094934
MU(43) = -0.93094934
MU(14) = -0.68313005
MU(15) ‘= ~0.25819889
MU(18) = 0.25819889
MU(17) = 0.68313005
MU(18) = 0.93094934
MU(19) = -0.68313005
MU(20) = -0.25819889
MU(21) = 0.25819889
MU(22) = 0.68313005
MU(23) = -0.25819889
MU(24) = 0.25819889
XI(1) = -0.93094934
XI(2) = -0.93094934
XI(3) = -0.68313008
XI(4) = -0.68313005
XI(5) = ~0.68313005
X1(6) = -0.68313005
X1(7) = -0.25819889
XI1(8) = -0.25819889
XI(9) = -0.25819889
X1(10) = -0.25819889
X1(11) = -0.25819889
X1(12) = -0.25819889
XI(13) = 0.25819889
XI(14) = 0.25819889
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OO0 OO OO OO0

XI1(15)
XI(16) =
XI(17) =
XI(18) =
X1(19) =
XI(20) =
XI1(21) =
XI1(22) =
XI(23) =
X1(24) =

ETA(1) =
ETA(2)
ETA(3)
ETA(4) =
ETA(B)
ETA(8)
ETA(T)
ETA(8)
ET4(9) =
ETA(10)

ETA(11) =
ETA(12)
ETA(13) =
ETA(14)
ETA(15)
ETA(18) =
ETA(17) =
ETA(18) =
ETA(19) =
ETA(20) =
ETA(21) =
ETA(22) =
ETA(23) =
ETA(24) =

n
OOOOOOOOOOOOOOO-O?-O?-OP-O.O-O

WEIGHT(1)
WEIGHT(2)

WEIGHT(3) =

WEIGHT(4)
WEIGHT(5)
WEIGHT(6)
WEIGHT(7)
WEIGHT(8)
WEIGHT(9)
WEIGHT(10)
WEIGHT(11)
WEIGHT(12)

WEIGHT(13) =

WEIGHT(14)
WEIGHT(15)
WEIGHT(16)

.25819889
.25819889
.25819889
.25819889
.68313005
.68313005
.68313005
.68313005
.93094934
.93094934

25819889
25819889
25819889
68313005
68313005
25819889
25819889
68313005
93094934
.93094934
.68313005
.25819889
.25819889
.68313005
.93094534
.93094934
.68313005
.25819889
.25819889
.68313005
.68313005
.25819889
.25819889
.25819889

.16086125
.16086125
.17247209
.17247209
.17247208
.17247209
.16086125
.17247204
.168086125
.16086125
.17247204
.16086128
.16086125
. 17247204
.16086125
.160861256

C OO OO OO o0 OO

W ouou non
(=l e ol ol ele Ne)
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WEIGHT(17)
WEIGHT(18)
WEIGHT(19) =
WEIGHT(20)
WEIGHT(21)
WEIGHT(22)
W¥EIGHT(23)
WEIGHT(24)

LI | I 1

]
OO0 OO0 0000

END IF. -
DO-I = 1,N.0RDS

WEIGHT(I) = WEIGHT(I) * PI

END DO

RETURN
END

.17247204
.16086125
.17247204
.17247204
. 17247204
-17247204
.160861256
.16086125

&
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The design of a direct absorption solar receiver is based on which type of
receiver and heliostat field configuration optimizes the conversion efficiency of
the system. To this end, any model of a certain receiver type should be able to
predict the temperature distribution in the medium. If the medium is highly
absorbing in nature, than a relatively small thickness for the receiver may be
sufficient to completely attenuate the incident solar energy.

The spatial gradient of the temperature along the critical axis of the re-
ceiver (i.e. the direction into the medium along the path of the incident flux)
will play an important role in the receiver design. The model discussed in this
report is capable of providing information on this gradient.

Table A.6.1 illustrates the final temperature distribution for Test Run Q4
(obtained after total convergence is observed for the radiation problem) for the
Masterbeads™™ according to the energy expression that was formulated for this
problem. The inlet particle temperature was held at the constant value that -

was measured on the day of the particular test.

Notice that the spatial temperature gradient is fairly severe (i.e. the in-
cident solar energy does not significantly change the temperatures at the rear
of the curt;in, & = 1.0. This is expected due to the fact the MasterbeadsT™
are highly absorbing with a low scattering albedo. For this reason, any receiver
that utilizes these particles as the actively absorbing medium will either need to
address the problem of significant temperature and flux non-uniformity within
in the curtain, possibly by using a highly reflective rear wall, or accepting the
situation as it stands.

Previous studies have shown(1®) that significant non-uniformities in the
absorbing medium can reduce the conversion efficiency of the receiver. However,
since most direct absorption media that might be considered for this barticula,r
purpose are low scattering-high absorption materials, the problem of medium
non-uniformity must eventually be addressed.

It should be stated, however, that a highly absorbing thermal media will
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Table A.6.1: Interior Temperature Disrtibution

Horizontal
Position
0.0 0.25 0.50 0.75 1.0
Vertical Temperature (deg. F)
Position

0.0 80.6 80.6 80.6 80.6 80.6
0.053 82.6 81.8 81.4 81.2 81.0
0.105 84.3 82.7 81.9 81.5 81.3
0.158 86.1 83.8 82.6 81.9 81.5
0.211 88.0 84.9 83.2 82.3 81.8
0.263 89.9 85.9 83.9 82.7 82.1
0.316 91.5 86.9 84.4 83.1 82.3
0.368 92.7 87.6 84.9 83.4 82.5
0.421 93.5 88.0 85.2 83.6 82.6
0.474 94.0 88.4 85.3 83.7 82.7
0.526 94.4 88.5 85.5 83.7 82.7
0.579 94.6 88.7 85.5 83.8 82.8
0.632 94.7 88.7 85.6 83.8 82.8
0.634 94.8 88.8 85.6 83.8 82.8
0.737 94.8 88.8 85.6 83.9 82.8
0.789 94.9 88.8 85.6 83.9 82.8
0.842 94.9 88.8 85.6 83.9 82.8
0.895 94.9 88.8 85.6 83.9 82.8
0.947 94.9 88.8 85.6 83.9 82.8
1.0 94.9 88.8 85.6 83.9 82.8

require relatively smaller curtain thicknesses to completely absorb the incident
energy, thus reducing the total volume of material that needs to be delivered

to the active area of the receiver.
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To run the main program for this project involves determining the parame-
ter values for the angular flux model in a separate program and reading in these
values into this program through a data file. The main program is constructed
with the specific form of the boundary intensity model built in. It does, how-
ever, allow for different sets of total flux data by reading in the parameter set
for each run. The flux data, both the transmitted and the front face, may be
separately inputted even though, for the plots in this report, the data from the
NMSU Solar Furnace are already in the program.

The steps used in inputting the needed quantities and some explanation of

the quantities that are not user defined follows.

Program SPECTRA is composed of seven segments including the main
program. The main program simply calls the required subroutines and does
not perform any clculations. Subroutine INPUT is initially called for obvious
reasons. When the program is executed, INPUT will ask the user for the needed
quantities.

Initially the code prompts the user for the curtain thickness in mm. The
next prompt concerns the method of inputting the front face and transmitted
flux data. If any number other than a zero is entered, the program will next
prompt the user for the number of the data file that is requested. (Note that
only those data files for which plots have been included in the body of this

report are available.) The statement for this input is:
Enter the number of the data file... @

and the cursor will stay at the end of this statement to read the
desired file (i.e. @4, etc.). If a zero is entered at the flag statement, the code
will prompt the user for 5 values for the incident flux and 5 values for the
transmitted flux. The “5” is because there were 5 flux gage locations used in
the development of the data for this project. If there are more data points than
5, simply edit the code and change the value of NPOINTS to the appropriate

value.
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Next the input will prompt the user for the number of ordinate directions

desired for the execution (the choices are 4, 12 or 24).

The last prompt is for the inlet particle temperature in °F. Note that the
subfoutine defines the wavelength bands from statements that set the number
of bands allowed. There are 5 bands in the solar region (i.e. 0.3 to 1.1 um)
and 2 bands in the IR (1.1 to 10. pm). Also, there are 20 nodes in the vertical
direction for the curtain and 10 nodes in the thickness direction. These values
were chosen because they represented the maximum active memory for the
type of computer that was used. If the user wishes a finer grid for any of these
three array dimensions, one need only change the values of N.LAM1, N_.LAM?2,
NODES_X and NODES.Y.

After all of the desired information is inputted, the machine will move on
to the next subroutine, YOBOUND. This subroutine determines the intensity
distribution at the top of the curtain, the particle inlet point. It accomplishes
this task by assuming the particles are all at the inlet particle temperature and
determines the emissive power in each wavelength band defined. The energy in
each band is determined by integrating Planck’s expression over each particular
band. The logic in the subroutine is fairly straightforward and is simply based

on the inlet temperature and the wavelength bands.

After YOBOUND has set the intensity distribution along the top of the
receiver, subroutine ORDINATES reads in the chosen ordinate values and their

repsective weights.

Next, X0BOUND determines the intensity distribution along the front face
of the curtain for the given incident flux values. The intensity distribution
determined at this point is not spectral. The spectral values will be determined
in the next routine. The critical section of this subroutine is the use of the
boundary intensity model and the corresponding parameters. The model that
was described in the main body of this report is used to determine the intensity

field along each of the ordinate directions by breaking the ordinates down into
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their respective angle values. These angular values are then translated to the
required origin of the boundary model and used in the function to determine
the intensity as a function of direction at the front face.

Notice that, if a different boundary model is used, this subroutine must be
modified to allow for it. This should be done by changing the logic defining the
1) main intensity function, 2) the origin of the angular coordinate system, 3)
the maximum cone angle for the concentrating system and 4) the reading in of
the parameter vector for the given flux data.

The results of these calculations are printed to the screen in terms of each
of the ordinate directions (all three ordinates are printed). The last visible
column on the screen will be the total intensity for the given angles. There will
be zeros for every ordinate direction that does not fall within the required cone
angle of the concentrator.

Subroutine SPECTRUM is then called to determine, from the LYCOR
solar spectrum data, the percent of the total soalr energy that exists inside
each of the defined wavelength bands. This is accomplished by integrating
the high resolution LYCOR data (AX = 0.002um) over the chosen wavelength
band. .Then, the total energy under the entire spectrum is determined (through
integration) and the ratio, for each band, represents the percent of the total
energy that is present in that particular band. This percentage value is then
multiplied by the total intensity determined above to yield the spectral front
face intensity distribution.

Lastly, subroutine EQT is called to iterate the equation of transfer and
the energy expression. For each iteration, the inn-scattering term is calculated
three times and the total temperature distribution is printed to the screen. At
this point, the machine allows the user to decide if another iteration is desired
with a flag type prompt. If no new iteration is requested, the machine will
print out the transmitted fluxes and the temperature distribution along with

the average exit temperature. Note, any of these print statements may be
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“commented” out or routed to a data file for plotting and hardcopy output if
desired. Also, the code allows the user to actively inspect the intensity field for
any wavelength, direction or node desired. This part of the output is the final
section of this subroutine and ends when the user inputs the correct flag value

to stop execution.
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