

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REPORT ON DESIGN, CONSTRUCTION AND TESTING OF CO₂ BREAKOUT SYSTEM FOR GEOTHERMAL BRINES

PNL--5042

R. J. Robertus
D. W. Shannon
R. G. Sullivan

DE84 010241

March 1984

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory
Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SUMMARY

A skid mounted test facility has been built for determining conditions at which CO_2 flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed.

The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180°C and 300-500 psig). It has heat exchangers which can cool the brine to less than 70°C . (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70°C and wellhead temperature.

An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye.

Results from one test show a smooth curve over the temperature range 75°C to 165°C . Agreement between the experimental values and calculated ones is discussed.

TABLE OF CONTENTS

INTRODUCTION	1
EQUIPMENT DESCRIPTION AND OPERATION	2
EXPERIMENTAL RESULTS	4
APPENDIX	A.1

INTRODUCTION

Commercial development of producing electricity from geothermal energy depends on solving scaling and corrosion problems. One important scaling species is calcium carbonate (calcite). It forms when carbon dioxide is released from the brine and the brine becomes supersaturated in carbonate. Keeping CO_2 in solution requires pump energy and ultimately increases the cost of geothermal power. Knowing conditions (temperature and pressure) for gas breakout will define pressures which must be maintained to prevent flashing.

Although the thermodynamics of calcite formation is fairly well understood, no reliable methods exist for predicting when flashing and resulting precipitation will occur in geothermal brines. Pumping costs to keep all the CO_2 in solution are not trivial. Generally pressures are kept some "safe limit" above what is thought necessary to prevent breakout. If actual breakout conditions were known, pumping costs could be held to a minimum and still provide a non-scaling plant.

EQUIPMENT DESCRIPTION AND OPERATION

The equipment is mounted on three skids. One contains the actual breakout equipment. A second contains recording instrumentation. The third supports an air-cooled heat exchanger for cooling circulating cooling water. The entire system is designed to be easily transportable and operable at remote locations. The only additional item required is a power supply to run the cooler and instrumentation. Portable generators are to be used at actual well sites.

A flow diagram for the equipment is shown in Figure 1. Detailed test procedures are included in the appendix.

During operation brine flows through an inlet heat exchanger (and/or by-pass) into an adjustable orifice/sight glass assembly, to a gas collection chamber, then on to an exit heat exchanger. Brine flow is controlled using valve V-4 at the exit of the gas collection chamber. Brine temperature at the sight glass is varied by changing the by-pass rate of hot inlet brine around the first heat exchanger. Valves V-2 and V-6 are used. The adjustable orifice, sight glass assembly is the producer and detector of CO_2 breakout from the brine. For any given temperature of the brine, pressure is dropped across the needle valve until bubbles of CO_2 are detected in the sight glass. The bubbles are detected by eye and also by a light source with a photoelectric cell.

Temperatures are measured at points shown using certified type K thermocouples. Pressures are measured with calibrated pressure transducers. All temperature and pressure readings are sent to a data logging system. The data logger paper tape output serves as the permanent record.

The recorder trace from the photoelectric cell is used as an operational guide to be sure the same bubbling conditions are selected at each temperature/pressure point. Other strip chart recorders monitor

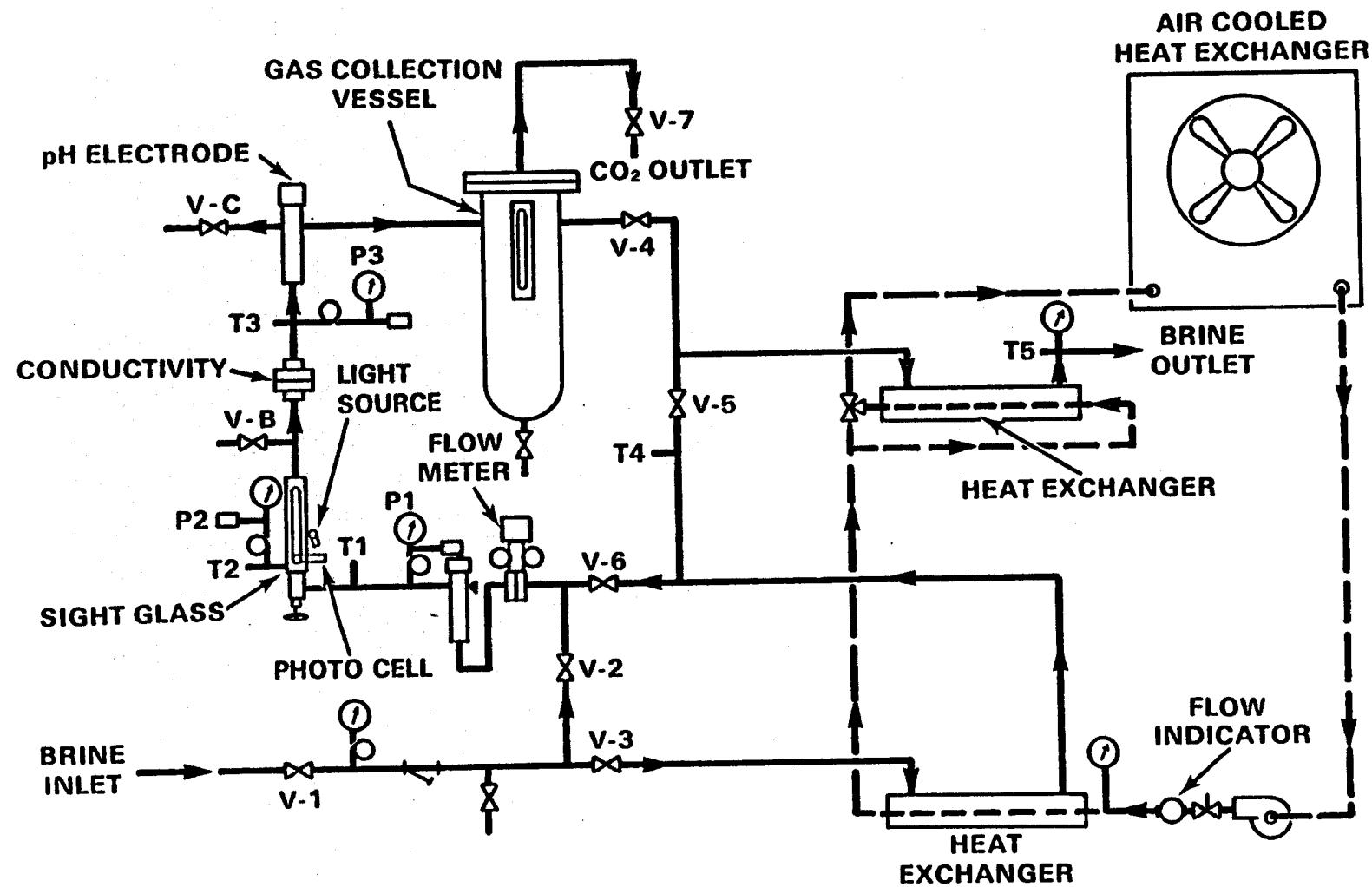


Figure 1. CO₂ Breakout Test System.

temperature and pressure just before and just after flashing. These recorders serve as operational guides only. One additional recorder monitors pressure drop across an orifice. This is the flow indicator and provides the operator visual indication of his desired control point.

EXPERIMENTAL RESULTS

Meaningful results can be achieved only when the brine to this test stand is unflashed. Henced any wells being tested must be pumped.

Two tests have been completed on the system. The purpose of the first test was to verify that all the equipment and instrumentation was operational. Pressure transducers were calibrated against a Hiese guage which was checked in a standards laboratory just before the tests. Thermocouples were accompanied by calibration certificates from the vendor. A certified turbine flow meter was used to calibrate the orifice.

Actual attempts to get breakout information were only partially successful. The point of incipient breakout was determined by eye and thus became somewhat subjective. Data was a bit scattered and discrepancies were not resolved immediately.

A second test was run later after a photoelectric cell was installed on the sight glass. This light detection set-up proved more reliable than the eye. After one break-out point was established visually, it was simple to come back to exactly the same condition at other temperatures and pressures.

The tests were done at the inlet to a geothermal power plant rather than a single well. The sampled stream was a composite of four different wells. This location was chosen only because power and tools were convenient.

Results from the second test are shown in Figure 2. The smooth curve indicates the pressure temperature data are probably consistent. The same curve shows pressure temperature data for water as a reference point. Also shown are calculated curves. One calculation uses Henry's law constants for CO_2 solubility in pure water. It simply treats all of the CO_2 in solution as H_2CO_3 . Disassociation reactions are ignored. So are effects of ion strength.

The second calculated curve is from a sophisticated chemical equilibrium computer code which was developed specifically for complex solubility calculations. The code's acronym is CHMTP, and it was developed internally at Schlumberger. This code considers several disassociation reactions for CO_2 in solution. It also accounts for mineral precipitates which could consume CO_2 . The data base for the code includes 8 gases, 187 minerals, and 200 aqueous species. It uses a Gibbs free energy minimization to calculate concentrations at equilibrium. The data base was current in 1981 so it's predictions are considered accurate as present data and calculational techniques will allow. One limitation for geothermal applications is that no hydrocarbon gases are considered. They are known to exist in geothermal brines.

Comparison of theoretical and calculated values shows there is still a need to run experiments. The agreement between CHMTP and experiment at 77°C is artificial. The code used this as a reference point to set the chemistry of the brine. Deviations between the code and experiment at higher temperatures cannot be completely explained. Experimentally we had to get to higher pressures than the code predicted. Part of the explanation might be kinetic effects which might not allow immediate bubble formation at equilibrium conditions.

Figure 3 provides more information on the experimental vs. computed data. The CHMTP TOT P line is the total equilibrium pressure in the system including water's vapor pressure. The CO_2 P line is partial

pressure of CO_2 only. The implication here is that gas bubbles which do form at high temperatures contain significant amounts of water vapor. They are not pure carbon dioxide.

CO₂ BREAKOUT CONDITIONS

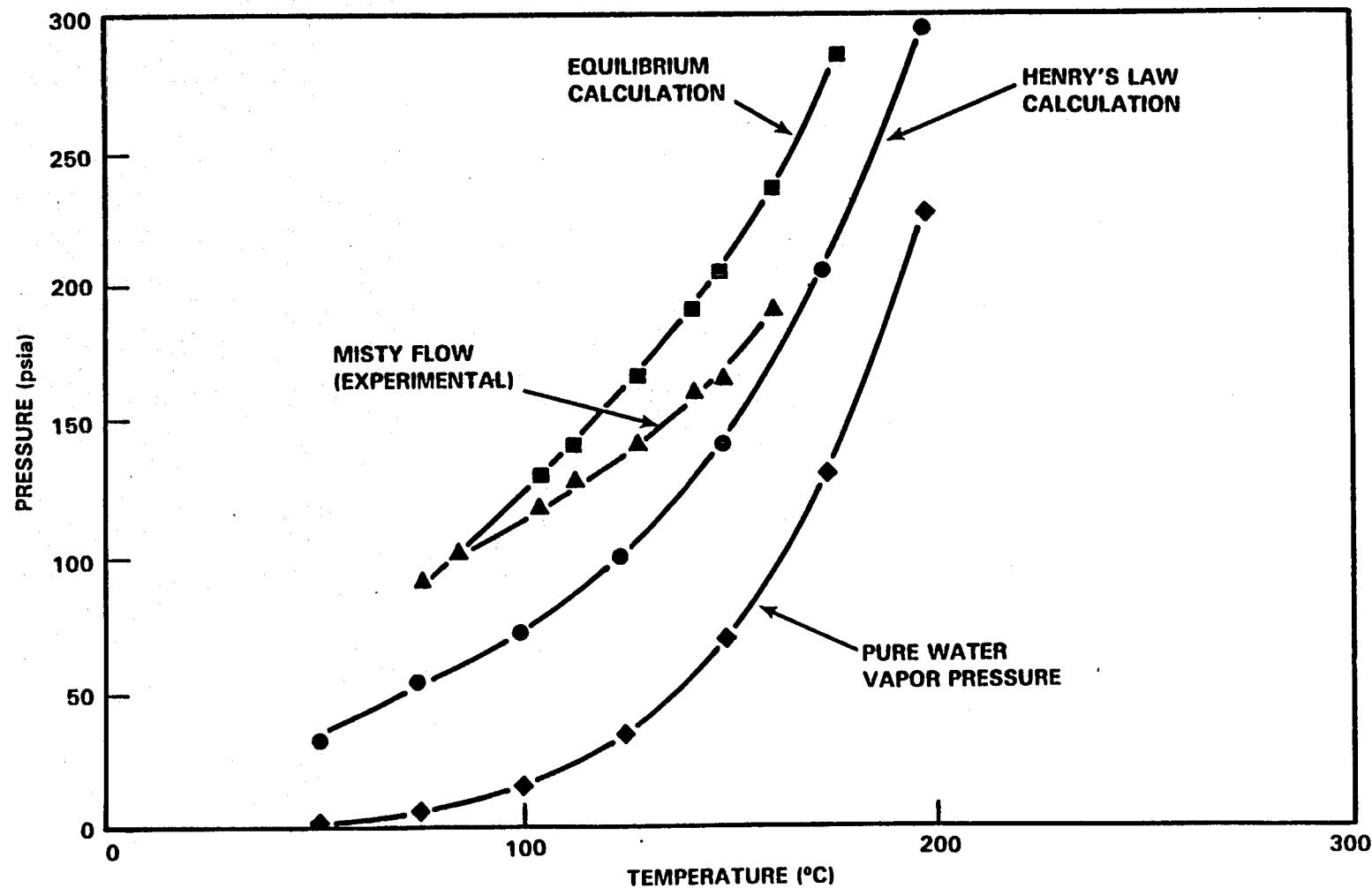


Figure 2. Experimental vs. Calculated Breakout.

EXPERIMENTAL vs CALCULATED CO₂ BREAKOUT

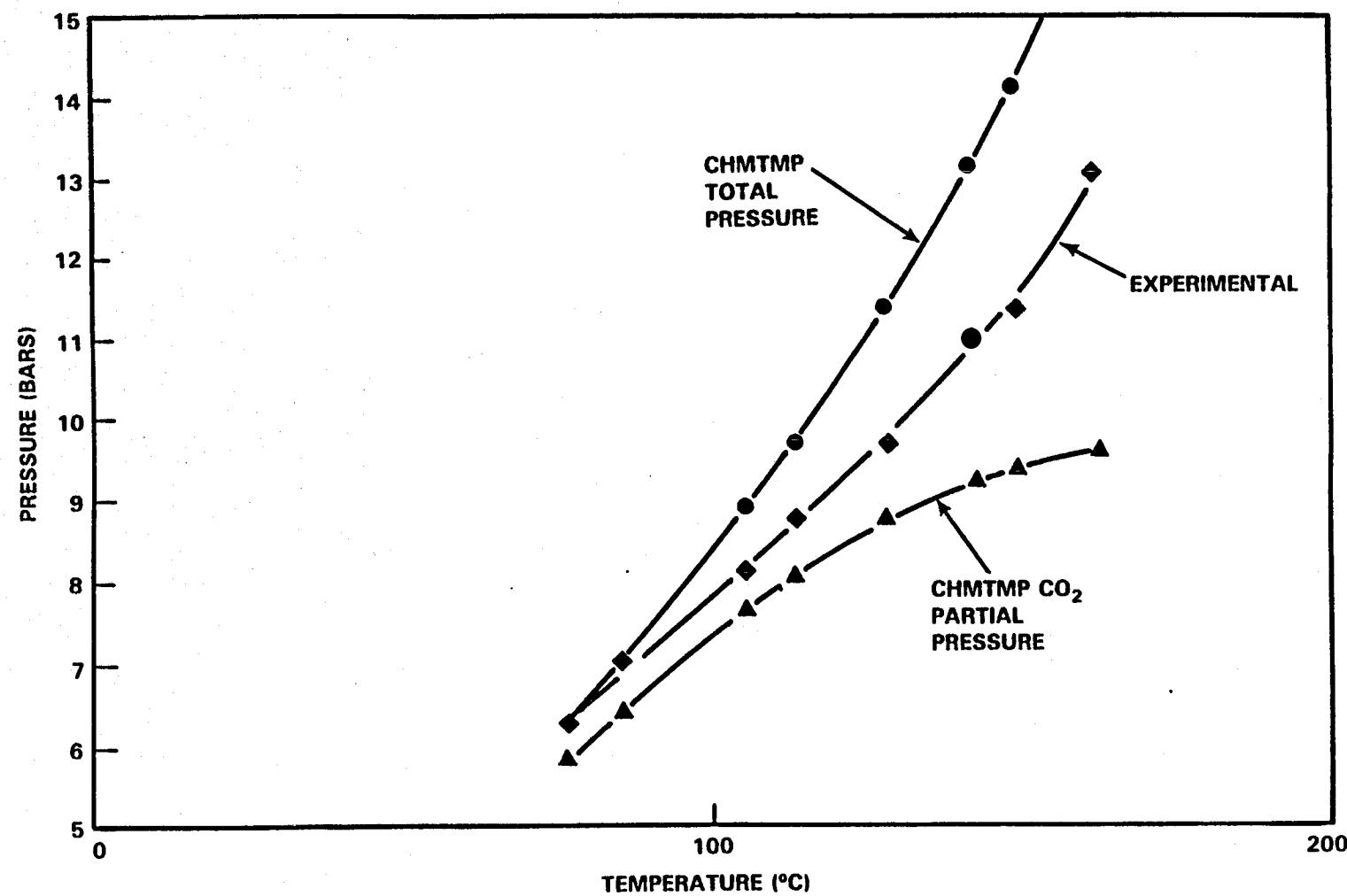


Figure 3. Equilibrium vs. Experimental Values.

APPENDIX

A. Test Procedure For Determining CO₂ Breakout Conditions in Geothermal Brines.

TEST PROCEDURE FOR DETERMINING CO₂
BREAKOUT CONDITIONS IN GEOTHERMAL
BRINES

R.J. Robertus
R.G. Sullivan
D.W. Shannon

January 1984

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory
Richland, Washington 99352

REF. TITLE: CO₂ Breakout Procedure

APPROVED: _____
DATE: _____

OBJECTIVE

The objective of this test procedure is to determine conditions for carbon dioxide breakout in geothermal brines. A pressure-temperature curve is developed which is characteristic of the particular well being tested. The information generated identifies operating conditions which must be maintained to prevent carbon dioxide breakout in a geothermal plant using the tested brine.

Secondary information which may be determined is the change in pH associated with gas breakout. Also the gas phase can be sampled when CO_2 does break out. The sample can be analyzed later for gas composition. (Specifically CO_2 partial pressure is an important piece of information). Ultimately the data generated from these tests could serve as valuable input to models for predicting temperatures and pressures for gas breakout knowing only the brine chemistry.

TITLE: CO_2 Breakout Procedure

Page 1 of 11

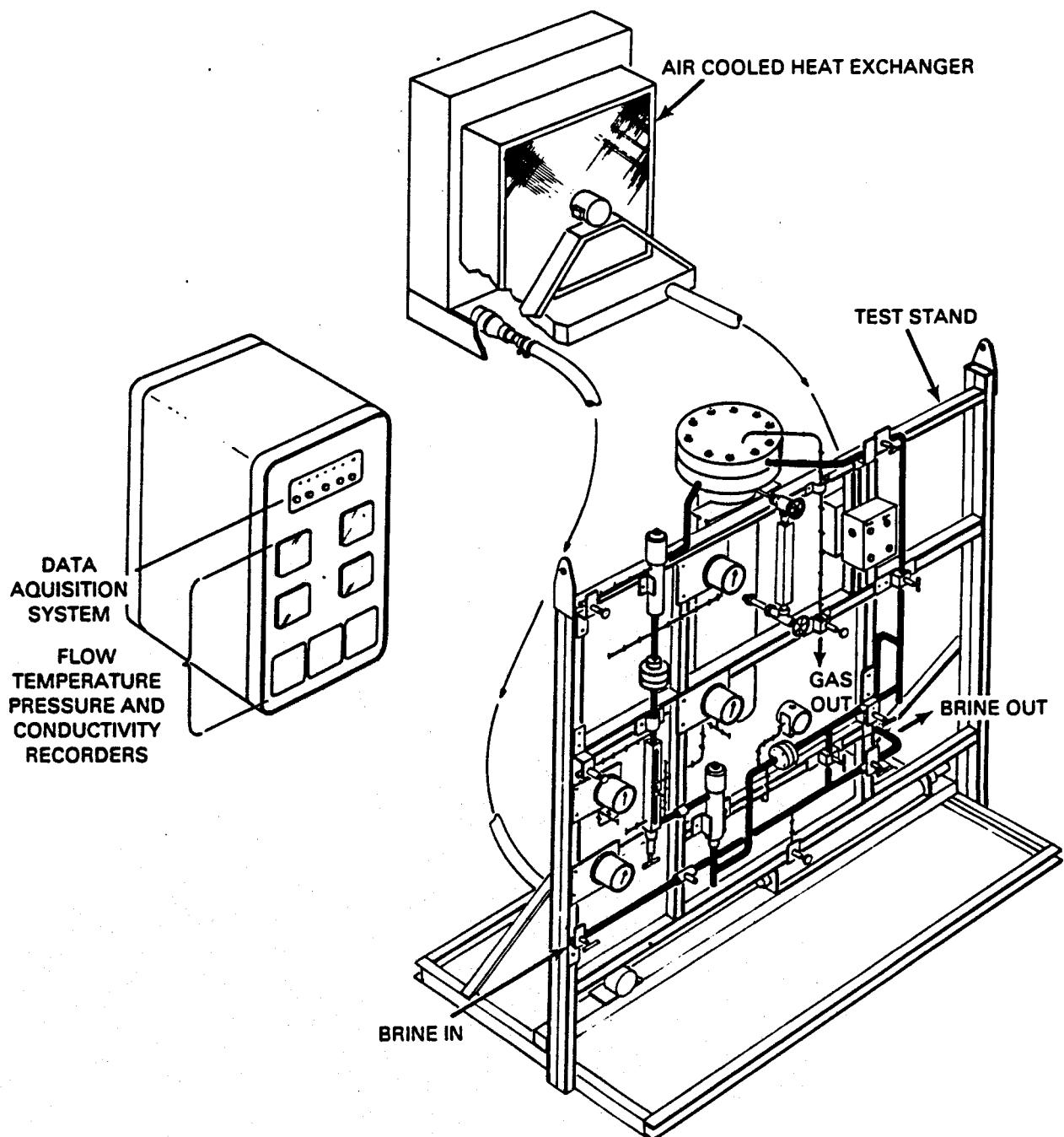
DATE: _____

EQUIPMENT DESCRIPTION

The equipment is shown isometrically in Figure 1 and schematically in Figure 2. Brine from a flowing well normally passes through a heat exchanger before flowing through an adjustable orifice. The adjustable orifice is located just below the inlet to the sight glass. The sight glass provides visual verification of the presence of bubbles any time CO_2 is breaking out from the brine. The brine then passes to an expansion chamber where any gas which is released can be separated from the brine. The gas flow can be measured using a totalizing meter. Samples can be taken to determine composition of the gas phase. Brine is cooled to about 130°F in a second heat exchanger before leaving the test stand.

The equipment is designed to operate without a source of cooling water although cool water could be used if available. The heat exchanger system will cool a nominal 3 gpm of brine from 360°F down to 160°F. Temperature, pressure and flow measurements are tied to a data logger for continuous recording of those variables. Also, slots are available in the data logger for instruments which might measure pH before and after the orifice, and conductivity just after the sight glass. The conductivity meter is sensitive to gas bubbles and can provide continuous record of the brine condition with respect to gas evolution provided bubbling is vigorous enough to be detected. The continuous strip chart temperature and pressure recorders are secondary devices to aid operators in adjusting and controlling the system.

A part not shown is a photoelectric cell at the adjustable orifice. A light beam passing through the sight glass is focused on this cell. Output from the cell is continuously recorded on a strip chart recorder. This visual trace provides an accurate reference for the CO_2 breakout point as temperature and pressure are changed.


TITLE: CO_2 Breakout Procedure

Page 2 of 11

DATE: _____

Figure 1. Equipment Modules.

CO₂ BREAKOUT TEST SYSTEM

TITLE: CO₂ Breakout Procedure
DATE: _____

A.5

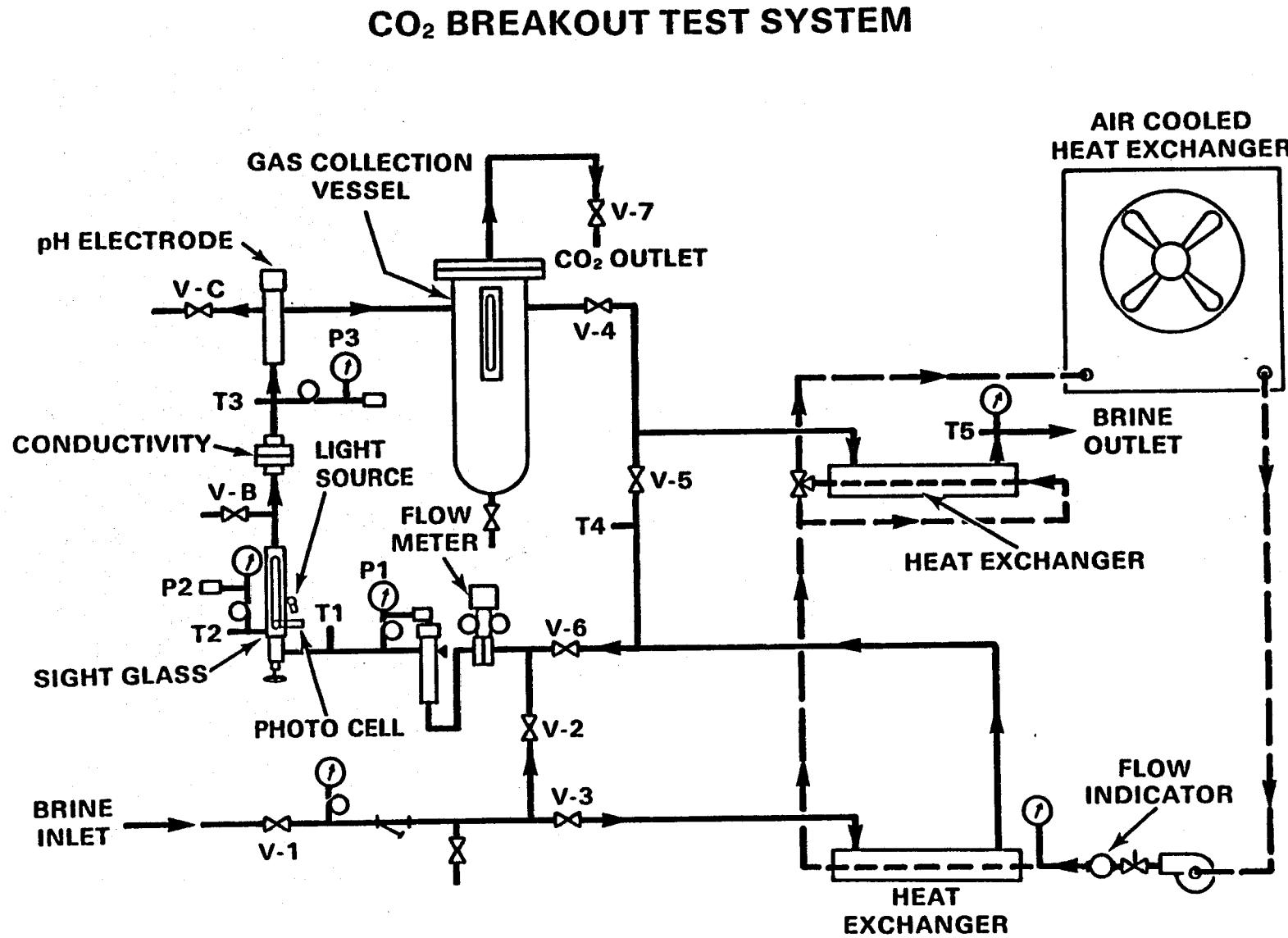


Figure 2. Equipment Flow Diagram.

OPERATION

PHILOSOPHY

Several ways exist to change temperature pressure relationships of brine in an operating geothermal power plant. The test equipment can simulate three of them.

1. Change in downhole or booster pump pressure but with negligible change in temperature.
2. Change in hydrocarbon flow under constant brine flow conditions.
3. Gradually plugging heat exchangers.

Regardless of the cause of a change in temperature and/or pressure of the brine, there should be a unique temperature for any given pressure at which the brine will flash. Theoretically how one reaches that temperature should not matter. The mode of operation is chosen to be the procedure which gives the most accurate results in a reasonable amount of time.

The final product of the tests at any well is a curve similar to Figure 3 showing the pressure/temperature relationship for that well. Deviations from pure water will be of interest on both ends of the curve. Uncertainties can be determined by identifying specific points using two different methods.

TITLE: CO₂ Breakout Procedure
DATE: _____

Page 5 of 11

TITLE: CO₂ Breakout Procedure
DATE: _____

A.7

Page 6 of 11

BRINE CO₂ BREAKOUT CONDITIONS

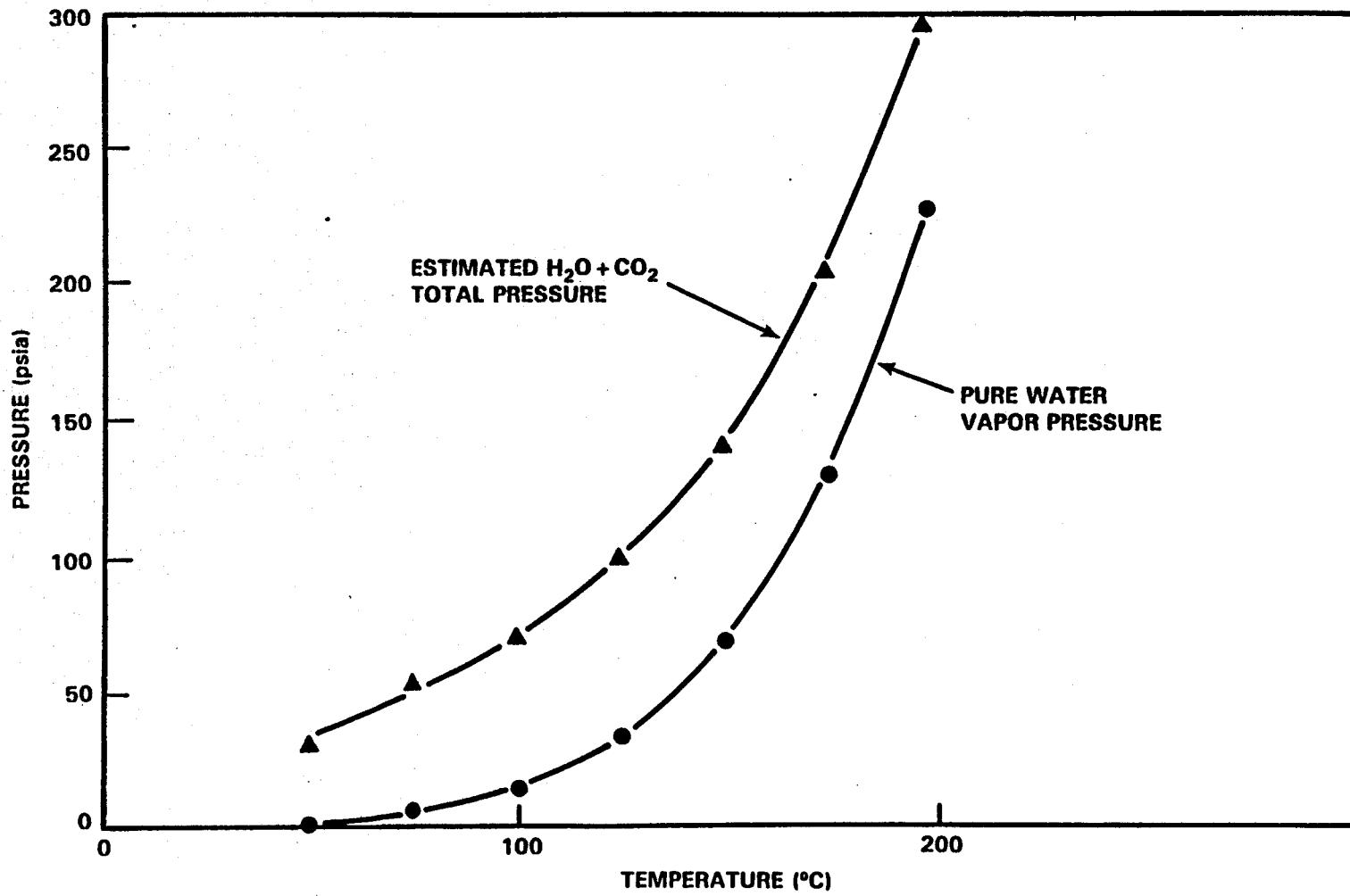


Figure 3. CO₂ Breakout Curve "Typical".

PROCEDURE

The procedure is solely for determining temperature and pressure conditions at which CO₂ releases from a brine. No detailed steps for gas collection and sampling have been tested using this equipment.

General

The actual point of incipient CO₂ breakout is determined visually by watching for bubbles in the sight glass. The photoelectric cell complements visual determinations. In some cases the cell is more reliable than the eye.

Equipment Set-up

Generally the hardware, cooling fan, and electronics arrive on site in three separate crates. They must be uncrated and connected together for testing. A source of 110 VAC power must be available. Electrical connections between the test stand and the hardware are all through a side port and then to a terminal strip in the rear of the instrument panel. All connections are well labeled. The fan requires single phase 220 VAC power. It should be located away from and blowing perpendicular to the instrument panel. This is recommended to keep dust and dirt out of the electronics. Flexible hoses are supplied to connect the cooling fan to the test stand for cooling water circulation.

The test stand is connected to the brine supply using carbon steel tubing. The inlet is at valve V-1. The brine discharge is to an atmospheric sump through heat exchanger 2. The discharge brine should be no hotter than 160°F.

Start-up

Check and fill the radiator loop with clean water. If empty the system will hold 15 gallons of water. Adding an anti-rust agent is recommended. Turn on the recirculation pump to be sure the system is full.

TITLE: CO₂ Breakout Procedure
DATE: _____

Page 7 of 11

Verify that all the electronics is working. The data logger and recorder for the photocell are critical.

Start the fan. Relocation may be necessary if dust is a problem.

Close valves V-2, V-5, and V-7. Open valves V-3, V-6, and V-4. This assures that when brine flow is started, it will be cooled as much as possible, as soon as possible, in case there are leaks somewhere in the system.

Flow Characteristics at Breakout

At any given temperature, a unique pressure exists where CO_2 comes out of solution in a given brine. This CO_2 evolution is detected visually. Three regimes are noticed as the breakout pressure is approached and then passed beyond.

1. Wavy Flow: At the base of the needle valve on the adjustable orifice, waves similar to heat waves in the air will form. No distinct bubbles can be seen with the naked eye.
2. Misty Flow: The pressure here is still very close to that seen in wavy flow. The difference is that fine bubbles are noticed in the bottom of the sight glass. They almost all re-dissolve before reaching the top of the sight glass. This regime is taken as the point of incipient CO_2 breakout.
3. Bubbly Flow: Gas bubbles are generated at high frequency. They tend to agglomerate before reaching the top of the sight glass. This flow regime must be reached if sufficient gas is to be evolved for sampling and analysis.

TITLE: CO_2 Breakout Procedure
DATE: _____

Page 8 of 11

Finding Low Temperature Points

In this region a small change in temperature does not change vapor pressure significantly. Consequently it is more accurate to fix a temperature, then adjust pressure until breakout occurs.

The procedure below assumes proper valve settings from the start-up procedure given previously.

- a). Start brine flow slowly then adjust to about 3 gpm. The value selected should be maintained as closely as possibly throughout the test.
- b). Select the desired temperature by varying the ratio of hot brine to cool brine (out of heat exchanger 1). The split is achieved using valves V-2 and V-6.
- c). Approach the expected breakout pressure (using pure steam values if nothing better is available) by throttling on the brine discharge valve V-4.
- d). Adjust to the misty flow regime using the needle valve orifice. The output from the photoelectric cell is the best indicator from one point to the next as to where this flow regime occurs. The eye has to determine the first point. This becomes the reference for the photo cell.

Finding High Temperature Points

In this region a small change in temperature results in a large pressure change. Hence it is best to select a pressure then vary the temperature until breakout occurs.

- a). Adjust brine flow to 3 gpm and control as closely as possible to this value as temperature and pressure change.

- b). Set the desired pressure by adjusting V-4 and the needle valve orifice.
- c). Approach the expected breakout temperature by varying the ratio of hot brine to cool brine mixing in front of the sight glass. The ratio is adjusted using valves V-2 and V-6.
- d). Adjust to the misty flow regime using the same procedure as in c) but pay particular attention to the total flow.

HELPFUL HINTS:

1. The "best" curve will require getting points about 25°F apart on the low temperature end and 15-20°F apart on the high end. In the middle a 20°F increment is small enough.
2. Each point should be identified by hand on the data logger tape and the recorder for the photocell. This simplifies resolving discrepancies later on.
3. All points should be plotted as soon as possible after the test so any discrepancies can be spotted early. Points can then be repeated as necessary.
4. For short duration tests, a turbine meter is useful for checking the brine flow rates.

Shut-Down Procedure

If the equipment is to be idle for more than 1-2 days, ALL water and ALL brine should be drained from the system. Several fittings must be loosened to be sure the system drains completely. Blowing compressed air through the system is recommended. After the water is drained, flushing the system with WD-40 is also good practice.

TITLE: CO₂ Breakout Procedure
DATE: _____

Page 10 of 11

Over long idle periods, the equipment should be disassembled and re-packaged in its original crates. Prior to crating, all open pipes, tubes and hoses should be capped or plugged to keep the lines clean during storage.

TITLE: CO₂ Breakout Procedure
DATE: _____

Page 11 of 11

DISTRIBUTION

No. of
Copies

OFFSITE

20	David Allen Division of Geothermal Energy U.S. Department of Energy Washington, D.C. 20545	G. A. Kolstadt U.S. Department of Energy Division of Basic Energy Services Washington, D.C. 20545
5	A. J. Aducci U.S. Department of Energy San Francisco Operations Office 1333 Broadway Oakland, CA 94612	L. Kukacka Brookhaven National Laboratory Upton, NY 11973
27	DOE Technical Information H. K. Bishop San Diego Gas & Electric Company P.O. Box 1831 San Diego, CA 92112	Raymond LaSala U.S. Department of Energy Technology Development Branch 1000 Independence Avenue, SE Washington, D.C. 20585
	A. M. Cooper Chevron Geothermal Company 595 Market Street P.O. Box 7147 San Francisco, CA 94120-7147	Paul Lienau Oregon Institute of Technology Klamath Falls, OR 97601
	Geo-Heat Utilization Center Oregon Institute of Technology Klamath Falls, OR 93003	Gil Lombard San Diego Gas and Electric Company P.O. Box 1831 San Diego, CA 92112
	Geothermal Resources Council P.O. Box 1033 Davis, CA 95616	D. E. Michels Republic Geothermal Inc. 11823 E. Slauson Avenue, Suite 1 P.O. Box 3388 Sante Fe Springs, CA 90670
2	T. C. Hinrichs Imperial Magma P.O. Box 2082 Escondido, CA 92025	2 Tiff Nelson San Diego Gas and Electric Company P.O. Box 1831 San Diego, CA 92112
	Gladys Hooper U.S. Department of Energy Program Integration Branch 1000 Independence Avenue, SW Washington, D.C. 20585	Lew Pratsch U.S. Department of Energy Advanced Energy Systems Branch 1000 Independence Avenue, SW Washington, D.C. 20585
2		2 C. Otte Union Oil Co. of California P.O. Box 7600 Los Angeles, CA 90017

No. of
Copies

Phillip Randolph
Institute of Gas Technology
3424 S. State Street
Chicago, IL 60616

J. Lynn Rasband
Utah Power and Light Company
P.O. Box 899
Salt Lake, UT 84110

V. Roberts
Electric Power Research Institute
P.O. Box 10412
Palo Alto, CA 94304

Leo Rogers
Gas Research Institute
8600 West Bryn Mawr Avenue
Chicago, IL 60631

Mort Smith
Los Alamos National Laboratory
Mailstop J981
P.O. Box 1663
Los Alamos, NM 87545

Ron Toms
U.S. Department of Energy
Technology Development Branch
1000 Independence Avenue, SW
Washington, D.C. 20585

Thomas Turner
Phillips Petroleum Company
655 East 4500 S.
Salt Lake City, UT 84107

J. H. Weare
University of California/San Diego
La Jolla, CA 92093

ONSITE

DOE Richland Operations Office

H. E. Ransom

No. of
Copies

29 Pacific Northwest Laboratory

R. A. Clark
R. L. Dillion
C. R. Hann
C. H. Kindle
D. D. Pierce
K. H. Pool
R. J. Robertus (10)
D. W. Shannon (5)
R. G. Sullivan
Technical Information (5)
Publishing Coordination (2)