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ABSTRACT

This report describes electric utility capacity expansion and energy production models developed for
energy policy analysis. The models use the same principles (life cycle cost minimization, least operating
cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity
planning tools, but are faster and simpler. The models were not designed for detailed utility capacity
planning, but they can be used to accurately project trends on a regional level. Because they use the same
principles as comprehensive utility capacity expansion planning tools, the models are more realistic than
utility modules used in present policy analysis tools. They can be used to help forecast the effects energy
policy options will have on future utility power generation capacity expansion trends and to help
formulate a sound national energy strategy. The models make renewable energy source competition
realistic by giving proper value to intermittent renewable and energy storage technologies, and by
. competing renewable technologies against each other as well as against conventional technologies.
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INTRODUCTION

In 1990 and 1991, the U.S. Department of Energy formulated the first National Energy Strategy
(U.S. Department of Energy, 1991). National energy strategies will become increasingly
important as the world's fossil energy resources are depleted and as emerging nations increase
their demand for these diminishing resources to fuel economic growth. The strategies will also
be key elements in addressing environmental and economic competitiveness issues associated
with developing and using energy sources. Formulating sound strategies will require using
sound tools to project the likely effects energy strategy policies will have on energy production
and consumption.

This report describes the electric utility capacity expansion and energy production models,
collectively referred to as CEEP (Capacity Expansion and Energy Production), developed at
Sandia National Laboratories. The models were developed as part of a project sponsored by the
Department of Energy's Office of Utility Technologies and Office of Planning and Assessment.
The CEEP models are designed to help forecast the effects energy strategy policies will have on
future electric utility capacity expansion trends. A primary objective of our modeling task was to
make renewable energy source competition realistic by giving proper value to intermittent
renewable and energy storage technologies, and by modeling their competition against each other
as well as against conventional technologies.

The CEEP models use the same principles as comprehensive utility capacity planning tools:
1. Power from intermittent sources is dispatched when it is available.
2. Storage units are dispatched using a strategy which minimizes system operating cost.

3. Power from dispatchable sources is dispatched based on merit order; that is, loads are
met using the lowest operating cost sources.

4. Existing capacity, forced outages, scheduled outages, and required reserve margin are
an integral part of capacity expansion decisions.

5. Capacity expansion is determined by finding the minimum total future life cycle cost
system which satisfies the load.

The CEEP models are faster and simpler than comprehensive utility capacity planning tools.

Speed and simplicity are important because the models will be used in parametric studies where
multiple runs in short periods of time are required. The models are not designed for detailed
utility capacity planning. They are designed to accurately forecast trends on a regional level.




Several comprehensive electric utility capacity expansion planning models have been developed,
and some give proper value to intermittent sources. One of these is EGEAS (Electric Generation
Expansion Analysis System) developed by EPRI (Electric Power Research Institute, 1982).
EGEAS is used extensively by many of the largest U.S. utilities and is an excellent tool for
planning capacity expansion for an individual utility, but it is not suitable for policy analysis on a
regional level because of the computation time and detailed input required. Also, it does not
account for cost diversity, a spread in cost or perceived cost among utilities. Cost diversity
allows a technology to receive some market share even though its most likely cost is higher than
those of competitors. CEEP allows for cost diversity. Although not practical for parametric
studies, comprehensive models like EGEAS will be important for policy analysis because they
can be used to check the accuracy of less comprehensive models.

Because they use the same principles as comprehensive utility capacity expansion planning tools,
the CEEP models are more realistic than utility modules used in present policy analysis tools,
such as the electric sector in FOSSIL2 (Now named IDEAS). Previous national energy strategy
projections have been based on FOSSIL2 (AES, 1991; Aronson, 1991), but FOSSIL2's electric
utility module does not follow utility capacity expansion principles and may not make reliable
capacity expansion projections. A few of FOSSIL2's shortcomings are listed below:

1. FOSSIL2 does not adequately consider the difference between dispatchable and
intermittent sources. An intermittent source does not have the same value to a utility
as a dispatchable source, even though they have equal busbar energy costs, because
intermittent sources may not be available when power is needed.

2. FOSSIL2 artificially divides a load duration curve into two areas: peak and a
combination of base and intermediate. A logit apportionment is used to determine the
market share of competing sources within each area. Competing sources compete at
different capacity factors. Since sources do not compete at the same capacity factor,
they do not provide the same service. For the logit apportionment to be valid, all
competitors must provide the same service; thus, the competition is not valid and may
not give rational results.

3. FOSSIL2 assumes a uniform 20% reserve margin. Using a fixed reserve margin does
not accurately account for changes in a load duration curve's shape and consequent
changes in reserve margin requirement caused by the introduction of intermittent
sources, demand management, or storage.

4. FOSSIL2 does not treat intermittent sources as negative loads. The negative load
methodology is generally used for utility capacity planning and is an analytically
sound way to alter a load duration curve in response to the addition of intermittent
energy sources.

The CEEP capacity expansion and energy production models were developed to be used as
modules in more general utility models. Two utility models developed at Sandia incorporate the
CEEP models as modules. One, REPAM, is a detailed regional model parameterized for




California, and the other TFRM is a much less detailed but geographically more general model
for the ten federal regions comprising the United States. These models use what we call a utility
driver module which steps through time; provides load, asset, and economic data; calls upon the
capacity expansion model at each time step to provide capacity expansion projections; and calls
upon the energy production model to estimate the energy generated by each generation
technology. The energy production model is called upon by both the utility module driver and
the capacity expansion model. The capacity expansion model calls upon the energy production
model to generate operating cost information.

In summary, CEEP is simpler and faster than comprehensive utility capacity expansion planning
tools like EGEAS, and it is more realistic than existing utility modules currently used for policy
analysis like the utility sector in FOSSIL2. It accurately projects capacity expansion trends (as
will be seen in the validation section of this report) and will be a valuable tool for energy policy
analysis and for helping to develop sound National Energy Strategy policies. An overview
description of the models is given in the following sections, and a detailed mathematical
description is given in Appendix A.




ENERGY PRODUCTION MODEL DESCRIPTION

The energy production model operates in three steps. First it dispatches intermittent source
power by treating intermittent sources as negative loads; second, it optimizes the use of storage
to minimize system operating cost and dispatches storage power by treating discharge power as a
negative load and charge power as a positive load; and third, it dispatches dispatchable source
power using merit order. A utility driver module supplies the energy production model with an
hourly load profile. The driver module also supplies normalized hourly power generation
profiles for each intermittent technology. Note that the model treats intermittent sources,
dispatchable sources, and energy storage separately. It does not presently incorporate sources
with dedicated storage such as solar central receiver with salt storage systems.

Intermittent Source Energy Production

The hourly power generated by an intermittent source is equal to its rated capacity multiplied by
its normalized generation profile. A "net" load profile is generated by subtracting the hour-by-
hour power production of each intermittent source from the given load profile; thus, an
intermittent source is treated as a negative load. Since intermittent source generation profiles are
controlled by meteorological conditions and not by utilities, they are dispatched when available,
and treating them as negative loads is appropriate. Criticisms of the negative load method are
generally rooted in valid arguments concerning statistical variation. Hourly values of
intermittent source power are not instantaneous. They are averages over the hour. Furthermore,
monthly or weekly averages of hourly averages are often used for analysis to avoid using a full
year's worth of hourly data. Averaging may destroy statistical variation, and statistical variation
is needed to give proper capacity value to an intermittent source. Averaging tends to over-value
intermittent source capacity. While simple averaging introduces systematic errors, the number of
intermittent source power generation data points can be reduced and intermittent sources can be
treated as negative loads, without introducing significant errors, if adequate statistical variation is
maintained. This subject is discussed further in Appendix B.

Storage Energy Production

The use of storage is optimized to minimize the utility's operating cost. The general rule is that
the operating cost of the source displaced must be greater than the operating cost, divided by
storage efficiency, of the source used for recharge. To optimize storage use, the model arranges
the net loads for a single day from largest to smallest. The largest load is paired with the
smallest. The second largest load is paired with the second smallest and so on until all 24 loads
have been paired. Starting with the highest-lowest pair, storage power is subtracted from the
high member of the load pair (discharge), and power divided by efficiency is added to the low




member of the pair (recharge). The marginal value of energy displaced (which depends on the
lowest operating cost technology displaced) is compared to the marginal value of energy used for
recharge (which depends on the highest operating cost technology used for recharge). If the net
marginal value is positive, we move to the next load pair. If the net marginal value is negative,
we reduce the power supplied by storage until we reach a net marginal value which is positive.
This process avoids displacing an energy source and later recharging at'an efficiency loss with
the same source. It also avoids displacing one source and recharging with a higher operating cost
source. We step down the load pairs until energy storage capacity is reached or until storage use
is no longer cost effective.

This process is nearly but not entirely optimum. It is not entirely optimum because we have
restricted discharge and recharge decisions to hour pairs and do not optimize over multiple hours.

The above process is repeated for each day to generate a net load profile. At this point, the net
load profile accounts for the gross load, intermittent source generation, and storage discharge and
charge.

Dispatchable Sources

The energy production model calculates the energy generated by each dispatchable source. The
energy generated by each source is determined by minimizing the system's total operating cost.

We start with a net load profile and develop a net load duration curve from it by arranging the
individual loads in decreasing order, resulting in a curve similar to that in Figure 1. The vertical
axis values are power, or load. The horizontal axis values have been transformed from hours into
that fraction of the year in which power exceeds the associated vertical axis value. The area
under the net load duration curve is the total energy, in kW-Yr, which must be supplied by the
dispatchable technologies. Technologies (or sources) are arranged in merit order. That is, the
ones with the lowest operating cost are dispatched to operate at the highest capacity factor and to
provide the most energy. This scheme minimizes the utility's operating cost. The merit order for
a hypothetical system is illustrated in Figure 1 which shows a net load duration curve with the
utility's capacity arranged in merit order beneath it. For this example, nuclear plants have the
lowest operating cost and are dispatched first. The point where the nuclear line intersects the
vertical axis is equal to nuclear rated capacity multiplied by its availability (1 - forced outage
rate). Capacity has been derated by availability because the nuclear plants' average power over
time will be equal to their rated capacity multiplied by availability. Coal 1 has the second lowest
operating cost and is dispatched second. In this example, nuclear power is used at all times.

Coal 1 and Coal 2 are next in the merit order and are used most of the time, but there are times
when their full capacity is not needed to meet the utility's load. Gas combined cycle plants are
next in the merit order followed by gas combustion turbines. Combustion turbines are used only
when the combined efforts of the other plants are not sufficient to meet the utility's load. They
generate the least energy because their operating costs are highest. Keep in mind that this is a
hypothetical example and that other technologies may be included in the merit order and their
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Figure 1. Load Duration Curve and Merit Order

relative positions in the merit order may be different than illustrated here. The energy generated
by each technology is the area shown in its band under the load duration curve; however, it may
be necessary to subtract energy to account for scheduled maintenance outages. The algorithms
used to compute energy generation, including the effects of maintenance outages, are given
below.

The maximum energy a technology (technology i) can generate, E, , is given by Equation 1. E
is the maximum energy that can be generated by technology i since it is the product of
technology capacity P, and the fraction of time the technology is available to operate
(1 -a)(1 - B). Since E,, is in kW-yr, we have not multiplied by operating time.

E,=P(1-a)1-8) , (1

The energy a technology is called upon to generate, E, is given by Equation 2 and is equal to the
area of the load duration curve below its derated capacity value minus the energy generated by
preceding technologies.

U i-1

E,= | udmy- ) E,
0

n=1
1
U= Z P.(1-B,) iflessthan A,
n=]

= A otherwise ,




the energy actually gener'ated, E,, is the smaller of these two values.

E, = the smaller of E,, and E, V 4)

1g

where: E; is energy generated by the i technology in kW-Yr,

is the rated capacity of the i technology in kW,

is the fraction of time lost for scheduled maintenance,
B, 1s the fraction of time lost to forced outages,

U, is total derated capacity up through technology i in kW,
u(2) is the inverse of the load duration curve function,

A is the peak system load (kW).

The average maximum power that technology 1 can generate is P,(1 - B,) since, on the average,
fraction B, of its units are not available due to forced outages. Notice that this availability does
not include scheduled maintenance because we assume that scheduled maintenance is performed
when the unit is not needed to meet the load. Technology 1 is called upon to produce energy
equal to E,,, the area under the inverse load duration curve between power level 0 and P(1 - B,).
Scheduled maintenance may prevent it from producing that much energy if there is not enough
time to service its units when demand is low.

The inverse load duration curve, u(A), has power level as the independent variable and time
(fraction of the year) as the dependent variable. E, is the lesser of E,,, and E,, and is the energy
generated by technology 1. Technology 2 is called upon to generate the energy under the load
duration curve between power levels 0 and P, (1 - B,) + P,(1 - B,) minus the energy generated by
technology 1. Like technology 1, it is limited by its combination of scheduled and unscheduled
outages. We can repeat this process with subsequent technologies until the load has been
satisfied. Some units may not produce energy regularly but must still exist to satisfy the system's
reserve margin.

This dispatching model which derates capacity and integrates under the load duration curve is an
approximation to reality. A probabilistic method such as the Baleriaux method used in EGEAS
is more rigorous. We compared the two methods (Appendix B) and concluded that while our
integration method underestimates the energy generated by peaking plants, it is sufficiently
accurate for policy analysis.




CAPACITY EXPANSION MODEL DESCRIPTION

The capacity expansion model receives utility generation asset, load, and technology cost
information from the utility driver module and selects the combination of new dispatchable,
intermittent, and storage capacity which will minimize the sum of levelized annual capital cost
for new plants plus total levelized annual future operating costs for all plants. This minimization
will result in the lowest electrical generation cost for the utility system. A flow diagram of the
model is shown in Figure 2.

Bivapoi i Subtract IRET Optimize Storage
and Storage ', > Profiles From and Adjust Net
Capacity Load Profile Lead Profile

Additions —/,;———-\

Load Frofife
IRET Profilfes

Existing
Assels

Optimize
Dispatchable
—>t Capacity

Capital Costs — Additions

Operating Cosis

\ |

Update Set System .
ofplas’r and At Minimum Yes Capacity
Storage Capacity Life Cycle Additions
Additions Cost
7

Figure 2. Capacity Expansion Module

Capacity expansion starts with a trial set of intermittent and storage capacity additions.
Intermittent source generation is subtracted from the utility's load profile. Storage operation is
optimized with generation subtracted from and recharge added to the utility's load profile. The
model organizes the resulting net load profile into a load duration curve. Next, the model selects
the mix of dispatchable technology capacity additions which minimizes the sum of levelized
annual capital cost for new assets plus levelized annual operating cost for all (new and existing)
assets accounting for cost diversity (cost uncertainty). '

The model selects another trial set of intermittent and storage additions and repeats the above
process. Trial sets of intermittent and storage additions are selected using a pattern (Haskell,
1978) search procedure. The search is repeated until the set of intermittent, storage, and




dispatchable technology additions which minimizes total system cost is located. The resulting
set of new capacity additions is returned to the utility driver module.

Minimum Levelized Annual Cost

The object of the capacity expansion mode] is to find the set of new capacity additions which
minimizes the sum of levelized annual capital costs for new capacity additions plus levelized
annual operating cost for all (new and existing) capacity. Capital cost is expressed as levelized
annual cost per unit of capacity ($/kW-Yr). Operating cost is expressed as levelized annual cost
per unit of electrical energy generation ($/kW-Yr). Annualized capital cost and annualized
operating cost for each technology are supplied by the utility driver module. The dispatching
model, described above, supplies the annual electrical energy generation for each technology.

Total system future life cycle cost is given by Equation 5 and can be minimized rigorously by
optimizing the technology mix for new capacity.

C= ) [CB,+C.E® +F), ®)
i

where: C is the total future system levelized annual cost ($/Y1),
C,; is the levelized annual capital cost of technology i ($/kW-YT),
B, is the new capacity of technology 1 (kW),
C,; is the levelized operating cost of technology i ($/kW-Y1),
E, is the energy generated by technology i (kW-Yr/kW-Yr), and

F, is the existing capacity (including capacity under construction)
of technology 1 (kW).

Conceptually, the problem is to find the set of B; values which minimizes C and, at the same
time, satisfies the utility's load.

Net Load, Load Duration Curve, and Reserve Margin

The model starts with an hourly load profile provided by the utility driver module. A trial set of
new assets for intermittent sources and storage is selected and intermittent power generation for
both existing and trial new assets is subtracted from the load profile. Storage discharge is




subtracted from and recl{arge is added to the profile as described in the dispatching section for
both existing and trial new storage. The resulting net profile is organized into a net load duration
curve.

We define a modified "reserve margin," r, in Equation 6.

r= Y (1-B)P/A , (6)
i

where f; is forced outage rate for dispatchable technology i,
P, is rated capacity (kW) for dispatchable technology i, and
A is peak load in kW.

It is a modified reserve margin because standard definitions of reserve margin do not include
forced outage rates. :

We derived an expression, Equation 7, for the required value of modified reserve margin.
r=1+ 25(A/A)Y , @)

where A, is the utility's average load. Finding accurate values of reserve margin requires finding
the total generation capacity which satisfies the utility's loss of load probability or unserved
energy requirement. Our algorithm approximates a loss of load probability analysis. We derived
it by computing the generation capacity (and thus reserve margin) needed by a hypothetical
utility to satisfy a 0.0002 loss of load probability. The utility was composed of a conventional
generation capacity mix representative of the United States mix. Modified reserve margin was
computed for a variety of exponential load profiles and a PG&E profile, and correlated to the
ratio of average to peak load. Equation 7 is the result of fitting this data. The correlation was
adequate. For all of the load curve shapes we tried, when A, approached A, modified reserve
margin, r, always approached 1.25 which we used as an upper bound.

To account for reserve margin, we simply multiply the net peak load, A, by r, the modified
reserve margin. This forces our expansion algorithm to satisfy the reserve requirement by setting
Z(1 - B)P; equal to rA, and it allows the algorithm to optimize new capacity taking the reserve
requirement into account. Negligible energy is added by increasing the peak load, so the method
does not significantly affect dispatching. The simplified treatment of reserve margin was done to
avoid the time consuming task of computing loss of load probability or unserved energy for
every set of capacity additions tested. It saves significant computing time.




Dispatchable Techn;)logy Expansion Optimization

The model's next step is to find the set of dispatchable sources (including dispatchable renewable
sources such as geothermal and biomass) which minimizes levelized annual system cost for the
given trial set of new intermittent sources and storage. We have developed a dispatchable
technology expansion optimization algorithm which is unique to the CEEP model. To perform
the optiinization, the area under the net load duration curve is divided among the existing
technologies arranged in merit order with the lowest operating cost technologies at the bottom
and the highest at the top. The new capacity required, called the capacity "gap," is equal to the
difference between the peak net load (adjusted for reserve margin) and the total existing derated
dispatchable capacity. New capacity can be added at the interface between any two existing
technologies. Figures 3 and 4 illustrate this for a hypothetical three technology utility. New
capacity can also be divided equally among the interfaces of existing technologies. This option
is illustrated in Figure 5. The model inserts new capacity between each pair of existing
technologies in turn and determines the mix and cost of new capacity for each gap location. The
new capacity mix for a particular gap location is determined by a logit apportionment based on
each technology's derated levelized annual cost at the capacity factor for the particular gap
location. The logit apportionment is defined by Equation 8.

(Cad; + Co)!
B,=G (8)

Y, (Cudi+Cof)

where B, is the new capacity for technology i in kW,
d; is the technology's derating factor which is a function of capacity
factor and is defined in Appendix A,
G is the total capacity in kW needed,
C,; is the levelized annual capital cost of technology i in $/kW-Yr,
C,; is the operating cost in $/kW-YT of technology i,
f is the capacity factor for the gap, and

y is the logit parameter that defines cost variance (we use -10).
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Figure 5. Capacity Expansion Gap Distributed Equally

The logit gives the largest capacity expansion share to the technology with the lowest capital plus
operating cost at that capacity factor. The logit accounts for cost diversity by giving all
competing technologies a share of the expansion. Technologies which are close in cost to the
lowest cost technology will receive relatively large shares while significantly more expensive
technologies will receive much smaller shares. Notice that, in this application, the logit
apportionment competes all technologies at the same capacity factor; thus, each competing
technolegy provides the same service. This is a consistent application of the logit in contrast to
the FOSSIL2 application discussed earlier.

Once new assets for a particular gap location are found, total levelized annual cost for each gap
location is calculated using Equation 5 where the energy for each technology is calculated using
the dispatching model. Total system levelized annual cost is calculated for each gap location and
the gap location with the lowest total cost is selected. If the utility system is short on base
capacity, the algorithm will tend to select a "gap" with a high capacity factor. If peak capacity is
needed, a low capacity factor "gap" will be selected. If the utility system is balanced, the
distributed "gap" will tend to be selected. This algorithm does not minimize system cost at each
individual time step, but it does tend to minimize system cost over several time steps. It is fast




and simple, but it tracks a true optimization algorithm developed by Sherali (1985). A
comparison of this method with the Sherali method (modified to account for cost diversity using
a Monte Carlo method) is presented in Appendix C.

Intermittent Technology and Storage Expansion Optimization

The above dispatchable capacity optimization gives a minimum cost set of new dispatchable
technology capacity additions for the specific trial set of intermittent technology and storage
capacity values used. The total system is optimized using a pattern search procedure to identify
new trial sets of intermittent technology and storage capacity additions. The optimum set of
dispatchable technology additions is found for each intermittent trial set and the process is
repeated until the minimum levelized annual cost for the whole system is found. When the
optimum system is identified, intermittent and storage capacity values are adjusted to account for
price diversity. This adjustment is described in Appendix A.

14



MODEL VALIDATION ACTIVITIES

Capacity expansion model validation activities to date have consisted of critiques by personnel at
the U.S. Department of Energy's Office of Utility Technologies, the National Renewable Energy
Laboratory, and the Electric Power Research Institute; comparison of individual algorithms with
more rigorous algorithms as noted above and described in Appendix C; and comparison to a test
case run on EGEAS. EGEAS (Electric Generation Expansion Analysis System) is a utility
capacity planning tool developed by the Electric Power Research Institute and used by many of
the U.S.'s largest utilities. EGEAS is a very comprehensive model, and the two models are very
different in the level of detail required for operation. CEEP is designed for regional analysis and
aggregates similar generation units while EGEAS operates on individual units. CEEP uses cost
diversity, EGEAS does not. There are many other differences, but the comparison demonstrated
that projected trends for the two models agree very well. We saw differences in timing for the
addition of particular technologies, but, over a thirty year period, both models added roughly the
same capacity for each type of source. A more detailed discussion of the comparison is given in
Appendix D.

In November, 1993, DOE/OUT sponsored a critical review of the TFRM which uses CEEP as its
core. The review panel included five experts on electric utilities and utility modeling. Their
summary (DOE 1994) of findings is included as Appendix F.




CONCLUSIONS

We have developed electric utility capacity expansion and energy production models,
collectively referred to as CEEP, for energy policy analysis. The CEEP models fill a gap
between current very general energy models which do not adhere to basic utility capacity
expansion principles (such as the electric sector of IDEAS) and detailed, high fidelity models for
utility capacity expansion planning (such as EGEAS) which are data intensive and time
consuming. CEEP offers both fidelity to the basic principles used in utility capacity planning
tools and sufficient speed and parsimony to allow its use in general energy models. The CEEP
models are not designed for detailed utility capacity planning, but they can be used to project
trends on a regional level. The models give proper value to renewable sources and compete them
against each other as well as against conventional sources.

Projections from CEEP for a standard EGEAS test case have been compared to projections from
EGEAS with very good agreement between the trends. Other validation activities include
obtaining critiques from NREL, DOE, and EPRI personnel; a critical review by a panel of utility
experts; and comparing individual algorithms from CEEP with more rigorous algorithms. From
these activities, we conclude that the CEEP models accurately project trends and should be a
valuable tool for energy policy analysis.
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APPENDIX A. Mathematical Description of the Energy
Production and Capacity Expansion Modules

Introduction

In this appendix we describe in detail the mathematical algorithms of the energy production and
capacity expansion modules. The modules are coded in FORTRAN. The FORTRAN symbols
associated with the mathematical variables are given in a table at the end of the appendix. Every
technology analyzed in the modules falls into one of two classes: intermittent, renewable, non-
dispatchable technologies, called IRETSs, and dispatchable technologies, called DTs. Renewable
technologies such as biomass and geothermal are in the dispatchable class, as are fossil burning
technologies. Other renewable technologies with large associated storage should also be
considered dispatchable. Non-dispatchable technologies are photovoltaics, solar thermal, and
wind (all without storage), and energy storage, ES. Hydro may be placed in either class,
depending on the particular application, however, care must be taken to define its properties
properly in either assignment. The modules can treat any number of IRETs and DTs, with
running time and computer size being the only valid limitation, but at least one IRET and three
DTs must be used. In addition, only one of the IRETs may be energy storage.

Any self-consistent set of units may be used. In the discussions we will assume that power is in
kw, all costs in $/kWy, and energy in kWy. Another consistent set of units would be GW,
$M/GWy, and Gwy. All energy units are on a per year basis.

A call to the energy production module yields the least-cost energy production of the simulated
system for the current one-year period; given the current demand, and the properties and current
on-line capacities of the various technologies. By “current year” we mean the current simulation
problem time. A call to the capacity expansion module yields the new capacity additions whose
construction should be completed in the future year in order to satisfy the anticipated demand in
that future year. By “future year” we mean some year in the future from the current year. The
construction times for the technologies are not considered by the capacity expansion module.
Management of how much of the new capacity additions suggested by the module are actually
constructed and when their construction is initiated are functions of the utility module which
calls the capacity expansion module. The capacity expansion module uses the estimated future
load demand and technology costs are properties in the future year, as well as the estimated
capacities and properties of the various technologies that will be on-line at the future year, and
returns new capacity additions that will satisfy the future demand in a least-cost fashion.
Because the algorithms for both modules are necessarily simple and heuristic, they are sub-
optimal. However, they are very near optimal under the constraints of the model.
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We assume that we are considering I > 2 DTs and J> O IRETs. The subscriptI=1, 2, ..., Iis
used to identify the DTs and j = 1, 2, ..., J to index the IRETs. For convenience, we use the
special notation 2§ to denote the sum on the index &.

Energy Production Algorithm

This module computes the amount of energy produced by each technology to satisfy the current
yearly demand; that is, it computes the total energy that will be dispatched by each technology
over the current year. We first explain energy production without energy storage, which is
discussed later.

Input:

L, Load demand table, in kW, as a function of time-of-year t,t =1, ..., T. This table, of
T > 0 entries, gives the current average load power demand for each 1/T part of the year.
The table may be in any time-of-year order, but the order must be consistent with the
same time-of-year order as the IRET production supply tables. In the special case of
energy storage, the order is somewhat more restrictive, see section A.2a.

P, Maximum rated power capacity of the existing, on-line, j-th IRET (kW).
S The current production supply function of the j-th existing, on-line, IRET over time the

t-th time interval (nondimensional). Over the t-th time interval the j-th IRET produces
PjSjtl kW of power, and PjSjt/T kWy of energy. These functions apply to non-ES

IRETS only.
Cyi Operating cost of the i-th DT is ($/kWy).
P, Maximum power capacity of the existing, on-line, i-th DT (kW).
f Forced availability rate of the i-th DT (one minus the forced outage rate).
S Scheduled availability rate of the i-th DT (one minus the scheduled outage rate).
€ps Energy storage efficiency, 0 <e <1.

Fraction of a day that ES is able to operate at full power output, 0 <r, <0.5.
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Output:

E. Total energy produced by the j-th IRET in the current year (kWy).

J

E

1

Total energy produced by the i-th DT in the current year (kWy).

The first operation of the module is to sort the DT’s in merit order: that is, in increasing
operating cost order. At the completion of the year’s dispatching the technologies are put back in
the original order, along with the energy results, so the sort is transparent to the calling module.
We therefore assume that i = 1 is the index of the lowest operating cost technology, i = 2 is the
index of the next-to-lowest operating cost technology, etc. The DTs are dispatched in increasing
index 1 order.

The IRETs are dispatched before the Dts, on the assumption that the IRETs always have lower
operating costs that the DTs. The IRET energy is subtracted from the load, and the remaining
“net” load is dispatched by the DTs. The total energy produced for each IRET technology is:

E;=2, PS,/T.
The remaining net load function is:
A,=max (0, L, - 3 P;S;)).

The net load function, A, is sorted into decreasing order, generating a monotonically non-
increasing pievewise-step load demand table denoted by A, We wish to create a continuous load
demand curve, A(u), as a function of capacity utilization ratio, 0 < u < 1, so that the load demand
curve may be easily inverted, interpolated, and integrated. The function A(u) is continuous and is
piecewise linear between the arguments:

u=(t-1)/Tand vT.

The values of A at the T+1 equi-spaced values of u where the linear pieces are joined are:

M0) = (3Ag - A2,
MUT) =(Ag + As)/2,t=1,2, .., T-1,
M1) = BAgr - Ag )2

The generation of A(u) is shown in Figure A-1 for a simple example with T = 5. We denote the
inverse of A(u) as u(A). The A and u function have the constraints that :
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A=0foru<0andu>1,
u=1for 0 <A <A(1),

u=0for A <0 and A > A(0).
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Figure A-1. Load Functions

The DTs are now dispatched, in merit order, to satisfy the net load A. The basic idea in the DT
is that the average, reliable power generated by each technology, called “effective” capacity (or
effective power) is P,f; and the maximum energy generated is Pfs,, We assume that scheduled
outage for maintenance is done when the technology is not needed to satisfy demand, so that if
the capacity utilization factor of the technology is less than the scheduled availability, scheduled

outages is not a factor in its energy production.

The energy production is computed in a recursive manner. Let X be the total energy produced
and p the total effective power associated with the dispatched energy. Initially, set x=0,p =0,
and i = 1. The recursion steps are:
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1. Setpequaltop+pf.
)Y
2. E,=max{0, min[pfs, | u(r)dr-x]}.
] 0
3. Set x equal to x = E,.

4. Setiequaltoi+ 1. Ifi>]I, quit, else go to step 1.

Energy Production with Energy Storage

Computation of ES energy production is complicated by the fact that it is quasi-dispatchable.
We assume that ES is dispatched in an “optimal” manner on a diurnal basis. The basic concept
is that when demand is low during a day the ES can be charged by base technologies which have
relatively low operating costs; and when demand is high during the same day, the ES can be
discharged to replace relatively high operating cost technologies. For each day only enough
energy is dispatched so that the marginal cost of the energy necessary to charge storage is less
than the marginal cost of the discharged energy that would have to be provided by a DT. We
assume that each day’s energy production is independent of all other days’. Of course, there is
an energy efficiency loss in the process.

Assume that one (and only one) of the IRETs is ES. Given the initial load table, we remove all
non-ES IRET production to produce a “quasi-net” load table. We then “optimally” dispatch the
ES energy based on this quasi-net load. Here “optimally” means in an heuristic, least-cost,
manner. The ES energy is removed from the quasi-net load, and the remaining net load is sorted,
the linearized load demand curve is generated, and the DT energy dispatched as described in
section A.2.

If ES is a candidate technology, the initial load demand table, L, must be contiguous diurnally;
that is if a day is defined to be H > 0 “hours,” the first H values of L, are considered to be data for
a common day. The next H values are common to some other day, etc. Therefore T must be a
multiple of H. Typically, H=24. If the data set consists of A days, then we must have T=H A.

For convenience, assume that ES is the J-th IRET, then the maximum power capacity of the ES
is P, Let Qt be the quasi-net load table with the energy produced by the first J-1 IRET
technologies removed from the load L,
J-1
Qt=max(0, L,- X P.S;).
&=1

Forday 8,8 =1, ..., A, let T (8) be the set of load values associated with day 3, i.e.,

7(8) = {t| H(S - 1) <t <HS}.
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The load values for each day, Qt, t € T (), are processed in pairs. We first process the largest Qt
in the set. We next process the second largest paired with the next-to-the-smallest, etc. There
are H/2 pairs processed each day. The computed ES power output is subtracted from the larger
load of the pair, and added (after division by the efficiency, ¢,,) to the smaller load of the pair.

Let IT denote the cumulative average effective DT capacity, and define the I+1 abscissa points
I, =1, + P, I,=0,i=1,2, .., L.

The marginal operating cost as a function of I'l, k(I1), is a piecewise step function with range

k(ID) =c, I, < II<II;

where c; is the operating cost of the i-th DT. That is, the marginal operating cost for each power
level is equal to the operating cost of the last technology added or removed by the storage. Let
the subscript h, h = 1, ..., H/2, denote the ordered load pairs within the day 8. Let the A, () be
the high Q, value of the h-th pair and let B;(d) be the low value. From the definition of the
pairing, there is a well-defined pair of mappings of h onto 7, t,(h,8) and tg (h,8), so for each h in
each day a value of h and & is associated with a unique pair of t values. Let x,(d) be the ES
power output for the h-th pair - to be subtracted from A, () - and Y,(8) be the power added to the
system for the h-th pair - to be added to B,(5). We have

Y,(8) = X,(0)/e,..

The algorithm proceeds as follows:
For each day initialize the total available daily ES energy output to W = r, HP,. This is the
maximum output the ES is allowed per day. Initialize h= 1.
1. Find the maximum value of X,(8) such that
a) 0 < X,(8) £ min(P;, W) and
b) k[A,(3) - X,(3) > x[B,(8) + Y,(d)/e,
If no such X, (8) cn be found, X, (8) = 0. This step implies that the storage

discharge power cannot exceed its rated power and that the total daily energy
output cannot exceed the rated storage energy.

2. SetL,=Q,-X,8), t=t,(n,8) and L,= Q, + Y,(8), t = to(h,).
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3. Set W=W-X,d).
4. Seth=h+ 1. Ifh>H/2, quit: else go to step 1.

This algorithm optimally dispatches ES energy and produces the net load table, A, which is
dispatched by the DTs as described in section A.2. The total energy output of the ES is

E; =Y x,(8)/T.

Capacity Expansion Algorithm

This module computes the IRET and DT new capacity additions that satisfy future demand with
least-cost. By “new capacity additions” we mean those capacity additions that the capacity
expansion module returns as results, which are suggested new capacity in addition to whatever
capacity is already committed to be on-line at the future time. The algorithm is heuristic. The
cost that is minimized is the total capital cost of the new capacity additions plus the total
operating cost of the augmented configuration of technologies. As above, we assume that there
are | > 2 DTs and J > 0 IRETs. This module also internally sorts the DTs in increasing
operating cost order, and unsorts the expansion results. The sorting is transparent to the calling
module. We therefore assume, as before, that i = 1 is the index of the lowest operating cost DT,
etc. The operating costs of the IRETS are considered negligible with respect to the DT operating
costs, the IRETs are not reordered, and they produce as much energy as they can (with the
exception of ES, see sections A.2a and A.3b). Since the ES operating cost does not include the
energy cost to charge it, the ES operating cost is also considered negligible to the DT operating
costs.

Input: As before, j refers to IRETs and i to DTs.

L, Future load demand table (kW). These data have the same properties as previously
defined, but the values are for future load.

F; Maximum power capacity of the j-th IRET that is already committed to be on-line at the
future time, before the suggested new capacity (kW). This quantity includes all on-line
capacity plus all capacity already under construction that will be on-line at the future
time, less retirements.

Sy Production supply tables associated with Fj.

S,  Production supply tables associated with j-th new capacity addition. The new capacity
additions are allowed to have different supply tables than the existing capacity, Fj.

C.; Levelized, annualized capital cost of the j-th IRET ($/kWy).

Cy; Levelized, annualized operating cost of the j-th IRET ($/kWy).

Y; Cost diversity parameter for the j-th IRET. Typically, v; = -10.

M. Maximum allowed new capacity additions for the j-th IRET (kW). If expansion of the j-
th technology is not allowed, M; = 0.
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F, Maximum power capacity of the i-th DT that will be on-line at the future time, before
new capacity additions are added (kW).

Cyi Levelized, annualized capital cost of the i-th DT ($/kWy).

Cyi Levelized, annualized operating cost of the j-th DT ($/kWy).

f Forced availability of the i-th DT.

/2]

Scheduled availability of the i-th DT.

A binary variable. Ifk;= 0, the i-th technology may not be expanded. Ifk; = 1, the i-th
technology may be expanded, without bound. The k; may change as time changes. At
every time step, at least one technology must be expandable!

Y Cost diversity parameter for all DTs. Typically, y = -10.

T, A parameter associated with the system reserve margin. Typically, r, = 0.25. Note: 1,
is not the reserve margin of the system!

Output:

B.

J

B.

1

Optimum IRET suggested new capacity additions, 0 < Bj < M; (kW).
Optimum DT suggested new capacity additions, 0 < B, (kW). Note: ifk; =0,
then B, =0.

Since all IRETS are assumed to generate all the energy they can, their capital cost and operating
cost, per unit capacity, is combined into a single cost for each IRET. Let ¢; be the combined
capital and operating cost of the j-th IRET candidate new capacity addition. We call ¢; the
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“nominai” cost (per unit maximum capacity) and define it as
i = Cy + €y 2 S0/ T, for no-ES IRETS, and

C; = €y T C,f,/2 if the j-th technology is ES.
This latter relationship is based on the assumption that the best estimate of ES production is that
it will produce half the energy of the maximum allowed. The c; are fixed for each capacity
expansion call and have the units $/kWy.

Define:

b, A “candidate” new capacity addition for the j-th IRET, 0 <b;<M; (kW).

B The set of candidate IRET new capacity additions, p = {b;,j =1, ..., J}.

K The minimum total system cost of the candidate configuration, which satisfies the future
energy demand, ignoring any capital costs associated with the IRET new capacity
additions (3).

b, The candidate new capacity addition for the i-th DT, 0 < b,, which produces the minimum
system cost ignoring IRET costs, K, given a candidate set of IRET new capacity
additions (kW).
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c Total system cost of the candidate configuration, consisting of the total minimum system
cost, K, plus all capital costs associated with the IRET candidate additions (3).
B, A set of candidate DT new capacity additions, ;= {b,,i=1, ..., [}.

0 The function relating B; to B, ;=0 (B).
IfM;=0,b,=0; and ifk; =0, b; = 0.
The basic operation of the algorithm is as follows:

1. An initial candidate set of IRET new capacity additions, B = {b;}, is chosen. The code
uses zero new capacity additions for all technologies, B ={0}, as the initial set. Note: for
all IRET candidate sets, 0 <b; < M,.

2. Given a candidate IRET new capacity additions set B, the algorithm finds the DT set [, _
{b.} = 6(B), which produce K; that is, the least-cost system given the IRETS, as though
the IRETSs had no associated costs. Since the IRET operating costs are subsumed into
the ¢j, K is not a function of the cj, but of B only (and \, of course, the net load and costs
and properties of the DTs, etc.). Therefore, K = K(B).

3. The total system cost ¢ = K(B) + 2 ¢;b;, is computed.

4. Using a pattern search method [Haskell and Jones, 1977] a new B set is chosen and ¢, K,
and f3, are recomputed. The search continues until the minimum c is found.

5. Let the B set which minimizes ¢ be B* = {b*}. An IRET price diversity algorithm is
then invoked which adjusts 3* to the price-diversified, optimal solution values B;.

6. The optimal system cost is ¢* = ¢(B;), the final DT new capacity additions are
Bi = 6(B;), and the final IRET new capacity additions are B;.

Dispatchable Technology Capacity Expansion

Given a trial set of by, we first remove the existing and candidate IRET production from the
(future) net load table. The (future) net load table is

A =max[0, L, - 2(F;S;; + bS]

If one of the IRETs is ES, a somewhat different procedure is used, see section A.3b. The A,
sorted, and the continuous, piecewise linear net load demand curve A(u) is created in the same
manner as described in the current energy production algorithm section A.2, with one difference.
To account for reserve margin, the value of A(0), the peak net load, is augmented. Let A’ be the
unaugmented value of the peak. As in section A.2,
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}\/' = (3ASI = Asz)/z,

where Ay, is the largest value of A, and Ag, is the next largest value of A, The peak net load
demand, augmented by the reserve margin, is

AMO0) = A" + A 1 [ZASTA.

This relationship has been empirically derived by computing loss-of-load-probabilities for
various load shapes (average value to maximum value ratio) and “typical” forced outage rates for
fossil technologies.

The total DT effective new capacity needed to satisfy the future net demand is
g =max(0, A(0) - X; Ff).

We refer to g as the “gap”. If the gap is zero, b, = 0. If g # 0, we must compute the optimal
expansion of the DTs This is accomplished by offering sets of candidate values of the b, and
choosing that set which minimizes the total capital cost of the (DT) expansion plus the cost of
producing all the energy required by the net load. For I DTs we use I candidate sets. the first I-1
candidate sets are generated by placing the total gap at load levels which are at the interfaces
between the i-th and i+1-th effective capacity. The I-th candidate set is computed by distributing
the gap evenly between all DT interfaces. Figure A-2 gives a graphical example of the gap
placements for I = 3. Let the index n, n =1, ..., I denote the n-th candidate set, and let b, be the
n-th candidate of the i-th technology.
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Figure A-2. Graphic Example of Graph Placements

Before computing the b,, each DT is assigned a weight which depends on its position in the
merit order and whether its immediately adjacent neighbors in the merit order are expandable or
not. Recall that the variable k; is zero if the technology is not expandable, and unity if it is
expandable. This variable is fixed at each simulation time, but may vary from time to time. This -
situation may occur, for example, when some technology may not exist early in a simulation, but
comes into existence as time progresses. The situation may also occur if a technology has on-
line capacity which is used for energy production but cannot be expanded for non-economic
reasons--environmental, political, etc. All (DT) expandable technologies compete with all others
at every gap position. Therefore, the “inner” technologies, not the first nor the last in merit
order, have, have potentially more favorable opportunities to compete than the “outer”
technologies. Also, if a technology is expandable and one or both of its neighbors is not
expandable, the expandable one has an advantage over its competitors who may have to compete
with its neighbors. The weighting scheme is intended to create an even competition among
expandable technologies. The weights, W, are:

la. Ifi=1andk,=1, W, = 2k,
Ifi= Iand k=1, W,;= 2k,
1b. Ifi= 1andk,=0, W, =k,

Ifi=Iandk, +0, W,=k,.
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2a. Ifl1<i<l,and k;,=0andk;,, =0, W;=k/2.

2b. Ifl<i<l,and k,,=1andk,, =0, W,=2k/3.
If1<i<l,and k,,=0andk,,=1, W,=2k/3.

2c. Ifl<i<landk,=1landk, =1, W,=k,.

The various situations above are:

la. Outer technology, competing neighbor.

1b. Outer technology, non-competing neighbor.

2a. Inner technology, neither neighbor competing.

2b. Inner technology, one competing neighbor.

2c. Inner technology, both neighbors competing.

Note that if the i-th technology is not expandable, W, = 0.

Let A, be the load at the middle of the n-th gap for the first I-1 gap positions, and A,,, m =1, ..., I
1, be the mid-gap load for each of the distributed gaps, then

n
An=g2+XFf,n=1,.,11,
i=1
m
Ay = (m-5)g/I-1) +ZFf,m=1,..., I-1.
i=1

Associated with each gap position is a capacity utilization factor. Let u, denote the capacity
utilization factor associated with the first I-1 gap positions, and u;, be the factors associated with
the distributed gap. All factors are computed by inverting the net load curve in the middie of
each gap position. The capacity utilization factors are

u,=u (A and u,, =u (Ay,).

Each new capacity addition candidate value is “derated,” depending its forced availability and
the relationship between its scheduled availability and the capacity utilization factor where it
may operate. Technologies must be derated because, in order to guarantee some level of
dependable power and energy, more capacity than the guaranteed level must be available. The
derating function used in the DT expansion algorithm is

d(i,u) + /[f max(l, 1 -u+s)].

In this formulation, if the capacity utilization factor is less than the scheduled availability,
scheduling is not considered.

Apportionment of the b,, is accomplished by a logit function, see [Ben-Akiva, 1985], [Reister,
1982], and Appendix E. The logit assumes that each technology exhibits price diversity, and that
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in the aggregate there is a nonzero probability that any technology can outbid all others for
market expansion. If two technologies’ nominal prices are widely apart, the less expensive one
will capture most of the market, but if their nominal prices are quite close, they will tend to have
nearly equal market shares. The logit formulation avoids “knife-edge” decisions, where, if one
price is infinitesimally less than another, the former get all the market share. In addition to
addressing the reality of price diversity itself, the logit also implies uncertainty in assumed
prices.

The logit formulation assumes that the cost (or price) of all competing technologies are
independent random variables whose probability density function is Weibull. The Weibull
distribution is defined by two parameters: a location parameter and a shape parameter. If the
nominal cost of a technology (location parameter) is ¢, and its shape parameter is y (y < 0), then
the cost distribution has mean and variance '

Weibull mean = [I'(1 - 1/y)c,

Weibull variance = [I(1 - 2/y) - T %1 - 1/y)] &,

where I is the gamma function. For y = -10, the mean is 0.95c and the standard deviation is
0.1145c.

The candidate capacity expansion values are

b, = gQ,dG,u ) Q. , forn<I, and

mn>

bin =g Zmglimd(iaulm)/ Eizmg2’ n= I,

m?>

where the Q, and Q) are the logit weights
Qin = Wi[d(iaun)cci + U, Coi ]Y: = 1» sers I'la
Q,, = Wild@,up,)eq + upcqly, m =1, .., I-1.

The energy production required to satisfy the future net load is calculated for each candidate set
of new capacity additions. The production algorithm is the same as current energy production
described in section A.2 with the future net load as the net load, and the future existing capacity
plus the candidate capacity as capacity. Let E;, be the energy production of the i-th technology
and n-th candidate set. For each n we initially set X =0, p=0, and I = 1. The algorithm is

1. Setp=p+(F;+by) L.
P

2. E,=max {0, min[(F; + b, )fs, [ u(r)dr-X]}.
0
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3. SetXequaltoX+ Em.
4, Seti=i+1. Ifi>1I, quit, else go to step 1.
Let K, be the capital cost plus energy cost associated with the n-th DT candidate set,

K, =Zi ¢iby + & ¢, E;i.

The “best” set is that set which yields the minimum value of K ; i. €.,
b,=b,., if K. <K, K,, ... K,i e, K=K...

In summation, given a candidate set of IRET new capacity additions, B, the algorithm computes
the set of DT new capacity additions, BI = 6(j3), which minimizes the total expanded system cost
as though the IRET new capacity additions were free. That minimum cost is k = k(p).

Capacity Expansion with Energy Storage

Energy production with energy storage for the future system is essentially the same as for the
current system, section A.2a, but the definition of the existing DT effective capacities used to
optimally dispatch the ES energy is more complicated. Ideally, the total future capacity of each
DT is its existing (future) capacity plus its (candidate) new capacity addition, see section A.2a.
If b, is a candidate set of DT new capacity additions, then the definition of cumulative average
available capacity for the future candidate system is

IL=1I1, + (F; + b )L.

However, since the DT new additions depend on the candidate ES energy production, and the ES
energy production depends on the DT new capacity additions, we are faced with a circular
computation. It would be possible to resolve the computation by an iterative procedure, but this
would be too computationally expensive.

We use a simple heuristic to estimate the DT new capacity additions with respect to each IRET
candidate set which uses ES. When the capacity expansion module is called, the first IRET
candidate set is always the zero valued set p ={0}. Let the optimal (minimum k) DT set
associated with this IRET candidate set be b,, = 6 ({0}), and define the relative new capacity
expansion ratios by

pi = by/ Z; by

For all other candidate IRET capacity expansion sets, 3, at the same future time, we define the
cumulative capacity as




IL=1L, + (F; + gp)i,

where the gap width g depends, of course, on B. The ES energy is then dispatched as in section
A.2a with I; defined as above.

IRET Search Space Constraint and Price Diversity

As described above, for each candidate IRET new capacity addition set, fi =6 (B), a (minimum)
cost associated with the DT new capacity expansion capital costs and future energy production
costs, K = K(pB), and a total system cost

c=K(B) + I ¢b;.

Using a pattern search [Haskell, 1978], we find the set * = {b;*} which minimizes ¢ subject to
the constraints, 0 < b* < M;. The search space consists only of those IRETS which are
competitive, i.e., where M, > 0.

In order to possibly reduce the search space and thereby save computer running time, we
estimate whether or not each IRET (with M; > 0) has a reasonable potential for market
penetration before beginning the pattern search. To this end we estimate at what cost each
technology would just begin to add new capacity. Let this “initial penetration” cost be x,;. We
assume that, in the absence of cost diversity, if ¢; > ,;, there would be no new capacity added,
and if ¢; <x,;, some new capacity would be added.

The IRET cost diversity is modeled as a normal (guassian) probability distribution with mean c;
and standard deviation

o;=[T(1-2/k)-T*(1 - 1/4)] "¢,

We define the probability density function of the j-th cost to be py(c). This cost probability
allows negative pricing, but with extremely small and negligible probability. For y; = -10, the
cost standard deviation is 0.1145¢; or about 11% of the nominal cost. If the nominal cost is 2.5
standard deviations or more greater than the initial penetration cost, we assume that the
technology has no potential for competition (at the particular simulation time, not for all time)
even with cost diversity; that is if ¢, - 2.56; > «;, then the j-th IRET is removed from the search
space and classified as noncompetitive. Setting this cutoff limit at 2.5 standard deviation ignores
at most 6.62% of the potential penetration.

The values of the «, are estimated by a numerical gradient. In order to succinctly and clearly

explain how the gradient is computed we define the following special notation. Let the set o
(x-X) = {&;} consist of all J values of the set y except the j-th one, and let the value of the j-th one
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be x. For example, supi)ose J =4, and we have the values y = B = {b,,b,,b,,b,}. The set a,
would have &, =b,,&,=b,, & = x,and §,=D,. :

We repeat a previous result. The total system cost for candidate set B is

c=K(B)+Zcb,
where B = {b;} for 0 <b; <M. For any fixed value of ¢;, the minimum value of ¢ is obtained
where its partial derivatives with respect to the b; are zero; i.e., the necessary condition that the b,
be optimum (minimize c) is where

dc/db; =0 =¢; +0K/db;, or
CJ = "'KJ Py

where x;=0K/0b;. Note that the equation above is valid for any nominal cost. Define a “small”
step in the b, dimension as §;. In the code we use 8,=0.02M;. The initial penetration for the j”
technology is estimated by computing

Ky = -[K(a({0},5) - K({0}))/5;.

The first term on the right side of the equation above is K evaluated with all new capacity
candidates set to zero except the j-th one, which is set equal to §;, and the next term is k evaluated
with all the b; set to zero.

The pattern search now finds the optimal new capacity addition values, $* = {bj*}, without cost
diversity considered, of the technologies in the competitive search space. For each competitive
technology one of three results are possible:

b*=0,0<b* <M, orb* =M,

If the technologies are not competitive (not in the search space), then the optimal, cost diversified
solution is B;=b;* = 0, and they are not considered further in this simulation time.

An estimate of the effect of cost diversity on IRET new capacity additions is computed by
defining a new capacity penetration function as a function of technology cost. The procedure is
graphically described in Figure A.3. For each j this penetration function is evaluated with all
new capacities except the j-th one set to their optimal solution, b*. Call this function ®(c). We
assume that @ is continuous, piecewise linear, with the derivative discontinuities at the values ¢
> Cp; > €. Let 0 <b,; <M, be the value of ® at ¢ = c,;. We have

D(c) =M, c < ¢y,

@,(c) = (€ - )by - M/(Cyy - Cp) + M, s <C S €y




., and

(Dj(c) = -(C - ij)bmj/(coj - cmj): ij <c= CO_]

®(c)=0,c,<c.

Figure A-3. Iret Price Diversity

If b, = 0 or b, = M, then we set b,; = My/2; otherwise we set b,; = b;*. The cost points of the ®,
function are estimated by a numerical gradient. We get

Co; = -[K(oy(B*.8) - K(oy(B*.0)¥/3;,
Oy = -[Koy(B*My) - K(oy(B*, M; - 3)))/8;,
Cj = & if by = by
Cs = -[K(e4(B*, by + 8)) - K(oy(B*, by )I/5;, if by; # b*

The j-th IRET optimal new capacity addition adjusted for cost diversity is the convolution of @;
and the probability density function of the j-th cost,

0

B, = [ @j(c)pyc)de,

-

see Figure A.3. This integral is easily evaluated in closed form [Gradshteyn and Ryzhik, 1965].
The Bj are the new capacity additions for the IRETs and the associated DT new capacity
additions are computed from B; = 6 ({B;}) as described in section A.3a.

FORTRAN COMMON Arrays and Symbol Table

Communications between the utility module and the energy production and capacity expansion
modules is through FORTRAN labeled COMMON arrays. The convention is maintained
throughout that symbols beginning with I through N (inclusive) are INTEGER *4, and all other
variables are REAL *4. There are some REAL *8 variables, but they are internal to the module.

There are two kinds of technologies represented in the code. Symbols starting with or containing
the letters “RE” are associated with IRET technologies. Storage is in the RE class. All other
energy technologies are considered to be “conventional” in that they are essentially dispatchable.
This second group, DT technologies, contains all fossil energy sources as well as renewable
sources such as hydro, biomass, and geothermal. These technologies contain the letters “CV” in
their symbols. In any particular year some of the competing DTs may or may not be available
for purchase for various reasons.
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Subroutine calls

The routine which computes energy production at the current problem time is called by
CALL CUDISP (X),

where X is an array of dimension at least NLDC and contains the NLDC values of the current
demand table, )NLDC is the number of points in the load demand table, see below). The routine
returns the IRET energy produced in array REEN, and the DT energy produced in array CVEN.

The capacity expansion routines are called by
CALL CAPEXP (X, CSTSYS),

where X is an array of dimension at least NLDC and contains the NLDC values of future
estimated demand table. The routine’s output is the amount of IRET and DT to purchase, in
arrays RETP and CVTP, respectively, and the amount of energy dispatched for the total future
system, assuming all purchased assets will have come on-line, is in arrays REEN and CVEN.
The system cost, CSTSYS, is the sum of capital costs of all new purchases plus the cost of
operation for the total future system. By “purchase” of capacity we mean begin construction of
new capacity.

PARAMETER Statements

Labeled COMMON maximum array sizes are determined by three PARAMETERS. If any of
the array sizes are to be changed, all pertinent PARAMETER values must be modified and the
module re-compiled. The PARAMETERS are:

MXNRE = Maximum number of IRET technologies.

MXNCV =  Maximum number of DT technologies.

MSNLDC = The maximum number of values (less one) in the energy demand tables (current
and predicted). Although these table entries may be in any time-of-year order, we
will refer to them as the LDC. )

LDC COMMON Arrays

COMMON /COMLDC/ NLDC, NLDC1, DELLDC, WKLDC(MXNLDC),
PINLDC(MXNLDC), ADJLDC(MXNLDC)

Tabular values of the current and predicted demand for each time step are passed through
subroutine arguments. Once initiated, the number of entries must remain the same for all time
steps. The entries may be in any time-of-year order (exception for storage, see below), but the
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order must be consistent with the time-of-year order of the IRET supply tables (RESUP). If
there are NLDC entries, then it is assumed that each entry specifies demand for 1/NLDC part of

the year.

NLDC =

NLDC1 =

DELLDC =

Number of entries in the current and future energy demand tables, 6 <NLDC <
MXNLDC. The value of NLDC must be preset before the first call to the module
and may not be changed. If storage is used, NLDC must be a multiple of
NHSTOD, see below.

NLDC + 1. This value must be preset before the first call to the module and may
not be changed.

I/NLDC. This value must be preset before the first call to the module and may
not be changed.

WKLDC, ADJLDC, and PINLDC are work arrays used by the module.

RE COMMON Data Arrays

COMMON

NRE =

RECC =
REOC =
REMP =

REPA =
REFPA =

RETP =
REAVS =

REEN =
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/COMREN/ NRE, RECC(MXNRE), REOC(MXNRE), REMP(MXNRE),
REPA(MXNRE), REFPA (MXNRE), REAVS (MXNRE), RETP(MXNRE),
REEN(MXNRE), RESUP(MXNLDC,MXNRE,2) RECST(MXNRE),
REPLOG(MXNRE), ISWSTO, STOEFF, STOMER, NHSTOD

The number of competing IRETs, 0 <NRE < MXNRE.
Levelized annualized capital cost of IRET, $/kWy.

Levelized annualized operating cost of IRET, $/kWy.

Maximum annual amount of the IRET that can be purchased, kW.
If REMP (j) is zero at any time, then the j-th IRET is not a
candidate for capacity expansion at that time.

Amount of existing, on-line IRET physical assets, kW.

Amount of IRET that will be on-line at the future time horizon of
the capacity expansion, excluding new capacity additions
suggested by the expansion routine, kW.

IRET new capacity additions, kW.

Average capacity utilization factor of the future IRET. This quantity
is given by

REAVS (j) = < max [0, RESUP (i,j,2)/NLDC,

where the sum is over i.

Energy produced by the IRET, kWy. For current dispatching REEN is the
energy currently produced by REPA. For capacity expansion, REEN is the
energy produced at the time horizon by the IRET, where it is assumed that




the future total on-line capacity of the IRET is REFPA + RETP.

RESUP = RE supply tables, nondim. RESUP(t.j,k) is the supply value for the j-th IRET
at the t-th time, where the time order of RESUP for all IRETs must correspond
to the time order in the given LDC tables. The k subscript refers to the time at
which the supply is available. When calling CUDISP, k =1 is the supply for the
current problem time, and applies to REPA (k = 2 is not used). When calling
CAPEXP, k =1 is the supply is made since the best solar and wind sites tend
to be used up as these technologies penetrate the market. If the j-th IRET has
current on-line capacity REPA (j), then its energy output is

REEN (j) = REPA()*X RESUP(t,j,1)/NLDC,

summed over t. The energy output of the j-th RE at future time (assuming that
all new capacity additions have come on-line) is

REEN (j) = [REFPA (j)*= RESUP (t,j,1) + RETP (j) *S RESUP (t,j,2)/NLDC
sum over t.

For storage, RESUP is computed internally, and need not be inputted. Also,
REEN is negative.
RECST = An internal work array.
REPLOG = Logit parameter for RE cost diversity, set to -10.
ISWSTO = Storage indicator. Only one IRET may be storage. If there is no storage, set
SWSTO to zero, otherwise it is the index of the storage technology in the RE
data set.

STOEFF =  Storage efficiency, 0 < STOEFF < 1.

STOMER = Storage maximum energy ratio, 0 < STOMER < 0.5. This quantity specifies
the maximum positive energy produced by storage. The upper bound of .5 is
due to the fact that if storage is to provide energy to the system for some period
of time, it must spend at least that much time recharging itself from the system.
Storage is assumed to cycle diurnally.

NHSTOD = The number of “hours” in a storage “day.” It is assumed that storage charges
and discharges energy on a diurnal cycle. If the input LDC is hourly, then
NHSTOD should be set to 24. It is required that NHSTOD be even and at
least 2. If storage is used, it is necessary that the LDC input be ordered in daily
groups; that is, the first 24, say, data points refer to some day, and the next 24
to another day, etc. The order of days is not important. Also, NLDC must be a
multiple of NHSTOD.

If there is no storage, ISWSTO = 0, and STOEFF, STOMER, and NHSTOD are not used.
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The quantities REAVS, RETP, and REEN are output from the module, all other quantities are
input or work arrays.

CV COMMON Data Arrays

COMMON

NCV =
PLOGIT =

SYSLOL =

CVCC=
CVOC =

CVFOR =
CVPA =
CVFPA =
CVMCF =
KCVP =

CVTP =
CVEN =

CVNS =

/COMCVT/NCV, PLOGIT, SYSLOL, CVCC(MXNCV), CVOC(MXNCV),
CVFOR(MXMCYV), CVPA(MXNCYV), CVFPA(MXNCV), CVMCF(MXNCV),
KCVP(MXNCV), CVTP(MXNCV), CVEN(MXNCV), CVNS(MXNCV),
CVWT(MXNCV), GITNOR, IBEST

Number of DT technologies, 0 <NCV < MXNCV.

Parameter for the logit market penetration of the DTs. In accordance with

the FOSSIL2 convention, set PLOGIT to -10.

A factor concerning reserve margins for satisfying loss of load. SYSLOL
should be preset to 0.25 by the user.

Levelized annualized capital cost for the DT, $/kWy.

Levelized annualized operating cost for the DT, when input to CAPEXP.

When input to CUDISP, CVOC is the current operating cost, $/kWy.
Complement of the forced outage rate of the DT; that is, it the forced outage
rate for the j-th DT is 10%, CVFOR() = .90.

Current DT on-line capacity, kW.

Future on-line capacity, excluding new capacity additions, kW.

Maximum DT capacity utilization factor, ignoring forced outages, also

referred to as the scheduled availability.

Indicator of DT status. If KCVP(j) = 1, the j-th DT may be currently
purchased; if KCVP(j) = 0, the j-th DT may not be currently purchased. At least
one DT must be capable of being purchased at every time.

DT new capacity additions, kW.

Energy produced by the DT, kWy. For current dispatching CVEN is the energy
dispatched by the CVPA. For capacity expansion, CVEN is the energy produced
at the time horizon by the DT, where it is assumed that the future total on-line
capacity of the DT is CVFPA + CVTP.

The nominal maximum power generating size of each individual unit of the j-th
CVC technology. This array is used only under the Booth-Baleriaux cumulate
option (INBC = 1), and may be ignored if the “integration” method (INBC = 0)
is used.

CVWT, GITNOR, IBEST are work arrays used internally by the module.

The quantities CVTP and CVEN are output from the module, all other quantities are input or
internal work arrays.

OPTIONS COMMON
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COMMON  /COMOPT/ TIME, PTIME, IPR, IPCT, IOM, INBC, INDD, GADER

The only element in this common thath need be set by the casual user is TIME, which is the
current problem time in years. The other quantities have to do with various internal options in
the code.

TIME = Current problem time in years.

PTIME = A switch used in code checkout. Set to zero.

IPR= Another checkout switch. Set to zero.

IPCT = Another checkout switch. Set to zero.

IOM = CV expansion option. Set to zero.

INBC = Option to use the “integration” method (INBC = 0) or the Booth-Baleriaux
method with cumulants (INBC = 1). Set to zero.

INDD = Option to use RE price diversity (INDD= 0) or not to use RE price diversity

(INDD =1). Set to zero.
GADER = A parameter having to do with RE search space smoothness. Set to 0.03.

Initialization

Once the value of NLDC is established, but before CUDISP or CAPEXP are called, the user
should initialize the following variables. The quantities with an asterisk are suggested, but not
required, values.

NLDC1=NLDC +1 DELLDC = 1/REAL(NLDC) PLOGIT =-10.*
SYSLOL = 0.25* REPLOG(...)=-10.* PGTIME =0
IPR=0 IPCT =0 IOM=0
INBC=0 INDD =0. GADER = 0.03*

These quantities, plus NRE, NVC, ISWSTO and NHSTOD, should not be changed once a
simulation is started!

FORTRAN/Math Symbol Table

This table correlates the FORTRAN symbols with the mathematical symbols used in the
exposition of the algorithms.

FORTRAN Symbol Math Symbol
NLDC T

X(6) L,

NRE J

RECC() Cy

REOC() C,;

REMP()) M,
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REPA()
REFPA()
RETP()
REENG)
RESUP(t,j,1)
RESUP(tj.2)
REPLOG()
STOEFF
STOMER
MHSTOD
NCV
PLOGIT
SYSLOL
CVCC()
CVOC()
CVFOR()
CVPA()
CVFPA()
CVMCF(@)
KCVP(@)
CVTP(@)
CVEN()
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APPENDIX B. Investightion of Utility Capacity Expansion Model Concerns

Date: March 16, 1992
To: Joe Galdo, DOE/CE/OUT
Froni: Mike Edenburn and Gene Aronson, Sandia/6601

Subject: Investigation of Utility Capacity Expansion Model Concerns

Summary

At our January 30 quarterly review, Jack Cadogan expressed several concerns related to the
efficacy of our model. We felt that they were legitimate concerns which will be shared by many
future model reviewers, and we have spent some time addressing them. We addressed the
concerns in the context of our objective which is to construct a simplified model for studying the
effects of alternative policy strategies on renewable energy technology penetration into the utility
market. The model is not intended for use in detailed utility capacity expansion planning.

The first main concern was related to treating averaged intermittent source production as a
negative load. This concern was shared by Narayan Rau at an earlier meeting with NREL. Jack
stated that using a deterministic profile will over-estimate an intermittent source's capacity value,
and he suggested reading several documents including some by Grubb, Fegan, and Percival. The
documents cautioned that treating averaged intermittent production as a negative load will over-
value intermittent capacity. Grubb suggested that if intermittent source production is averaged
and treated as a negative load, capacity valuation will be accurate for small penetrations but not
for large penetrations. We performed analyses which verified Jack's concern and concluded that
capacity valuation is accurate up to about 5% penetration but can be roughly 20% high for 10%
penetration and even higher for 20% penetration when one average production day is used to
represent an entire month. Although over-valuation is significant for large penetration, results
are more accurate than assuming no or full capacity credit, and they may be acceptable,
particularly if penetration does not exceed 10%. Errors arise because averaging intermittent
production does not adequately capture its probabilistic nature. Errors can be reduced by using
more data or by using a probabilistic analysis. We are examining ways to capture the
probabilistic nature of intermittent production without significantly increasing computational
burden, but we expect that there will be a tradeoff between accuracy and computational burden.
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The second main concern was related to production costing (dispatching). This concern was also
shared by Narayan Rau. It was addressed in an earlier memo (Comparison of Sandia's Utility
Capacity expansion and Dispatching Model to More Detailed Methods, dated November 26,
1991, from Mike Edenburn to Distribution). We revisited the issue, but this time we included
scheduled outages. We compared three analyses: 1) a probabilistic analysis with seasonal,
scheduled outages; 2) a probabilistic analysis with a scheduled outage approximation suggested
by Peter Lilienthal from NREL; and 3) a load duration curve integration method with a
scheduled outage approximation (the method our model uses). Method #1 is the more rigorous
of the three and is used as a standard. Both of the approximate methods are in good agreement
with method #1 (the values of displaced energy agree within 5%).

The third main concern was directed at our method for optimizing dispatchable capacity
expansion. This is the method where we assume that all new dispatchable capacity is added at a
capacity factor represented by the gap between two existing technologies. (Existing technologies
are arranged in merit order on a load duration plot.) The allocation of new capacity is
determined by a logit apportionment and the capacity gap location which results in the lowest
cost is selected. Part of the concern with this method derives from our failure to provide a clear
explanation, and we have included further explanation in this memo. The rest of the concern is
that the method gives "noisy" results. A particular technology may make a relatively large
penetration in one year followed by very small penetrations in subsequent years. While our
method does not give a true optimum expansion in any single year, it tracks the optimum from a
more detailed method very well over several years. We have modified the method, and the
modification tends to smooth results. In addition to adding new assets all in one place between
existing adjacent technologies, we also divide new capacity equally between all pairs of existing
adjacent technologies. New capacity share for each location is determined by a logit
apportionment applied for the capacity factor at each location. The total cost for the equally
distributed addition is competed with costs for the "all in one place" additions, and the minimum
cost option it is selected. As before, the method does not provide a true optimum expansion in
any single year, but with the new addition, it tracks the more detailed method closer and more
smoothly than before.

Each of the three concerns will be discussed in more detail.

Objective Function

To begin a discussion of the concerns, we will try to put them into perspective by describing the
model's quantitative objective:

Find the mix of competing technologies, both intermittent and dispatchable, which must
be added to a utility system to satisfy a projected electrical load at minimum levelized
annual cost.
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Levelized annual cost is described mathematically by Equation 1.
T=XZ[CB; + C4E(B; + F))] (B-1)

T is total future (after planning horizon) levelized annual cost,

C,; is levelized annual capital cost ($/kW-Yr) of the ith technology,

C,; is levelized annual operating cost ($/kWh) of the ith technology,

E; is annual energy generated (kWh/kW-YT) by the ith technology,

B; is the new capacity increment (kW) of the ith technology, and

F, is the existing and under construction capacity (kW) of technology i
tiiat will be on line at the planning horizon time.

This is the model's objective function which we want to minimize while satisfying the utility
system's load requirements. The total future system cost is the sum of levelized capital cost for
new capacity and levelized operating cost for all capacity. The model's objective is to select the
values of B, which minimize T. To select correct values of B, we require accurate values for
capital and operating cost, accurate values for E;, and a process which identifies the optimum
B/s.

Our model uses a simplified production costing (dispatching) algorithm to compute values for E,.
The dispatching algorithm's accuracy is the subject of the second concern expressed above.
Also, treating intermittent production as a negative load (the first concern expressed above) is
important to production costing accuracy because negative loads partially determine the system's
load duration curve, and an accurate load duration curve is required for accurate production
costing.

Finding the optimum set of B,'s is conceptually simple but not computationally simple. We have
sophisticated algorithms which can find the B/s, but they are too cumbersome and time
consuming for the simplified model we are trying to develop. The algorithm we use is "near-
optimal" and follows optimal results with acceptable agreement. The accuracy of our "near-
optimal" algorithm is the central issue in the third concern expressed above.

Equation 1 is subject to a constraint as defined by Equation 2.
Y (By+Fyp=P (B-2)

B,4 and F;, refer to new and existing dispatchable capacity. This equation requires that the sum of
dispatchable capacities must be equal to total dispatchable capacity P* which is the peak net load
plus a reserve margin. The required reserve margin value depends on meeting a prescribed loss
of load probability or on meeting a prescribed unserved energy. Reserve margin plays an
important role relative to treating intermittent production as a negative load because the
treatment of negative loads affects the system's net peak load and the shape of its load duration
curve.
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Understanding the importance of the dispatching algorithm and the optimization algorithm will
help keep the following discussion in perspective.

Treating Intermittent Production as Negative Loads

In our model, we have been representing intermittent production by one "average" day per
month. To get production for each hour of the "average" day, we average production for each
hour over the month. The hourly data used to find the monthly average are themselves an
average of ten minute or smaller intervals over the hour. Thus, our monthly average for each
hour is an average of an average. Intermittent production is treated as a negative load; that is,
production is subtracted from load to get a net load. By treating intermittent production as a
negative load we are, in effect, assuming that the intermittent source has a firm capacity equal to
its average production during each hour. Production values below the average will give firm
capacity values below average, and production values above the average will give firm capacity
values above average. Below average values are weighted more heavily than above average
values in a loss of load probability or unserved energy analysis; thus, using the average over-
predicts firm capacity value. One might conclude that, since we are using averages of averages,
the error is being compounded and that we can never achieve accuracy until we use instantaneous
data over an infinite number of years. Fortunately, this is not true. If, for each load value, the
statistical distribution of production data is representative of the distribution of all production
data corresponding to that load value, our results will be accurate. In general, there are many
hours during a year which have the same or nearly the same load and these loads will have a
range of associated intermittent production values. If the range of production values matches the
"true" distribution, then results will be accurate. How much data do we need for reasonable
accuracy? We assume that a year's worth of hourly data gives a sufficient range of production
values for each load value to give reasonably accurate results. We believe that this is a good
assumption, but we do not have the resources available at present to validate it. We will use this
assumption in the analyses that follow.

To quantify the effect of averaging intermittent production data, we considered a PG&E hourly
annual load profile and an hourly wind production profile based on Fresno TMY data. The
magnitudes of both profiles were altered to fit our analyses, but time dependence was not altered.
We considered a utility composed of the following generation units.

Type Number Capacity Availability
Nuclear 1 850 MW 908
Coal 8 250 MW 963
Combined Cycle 8 150 MW 945
Gas Turbine 9 50 MW 965

44




These units represent the US proportion of thermal units (EIA's Electric Power Annual, 1989)
with availabilities (due to forced outages) taken from EPRI's Technical Assessment Guide.

Using a probabilistic production model, we computed the firm capacity which results in the same
unserved energy as a rated wind capacity. We did this for two cases. The first case used hourly
load and hourly wind data for a year. The second case used hourly load data and monthly
average day wind data. Results are shown in the following table.

Peak Rated Wind Equivalent Firm Equivalent Firm
Load Capacity Capacity MW Capacity MW
MW MW Hourly Annual Ave. Day per Month
3900 100 55.4 54.3

500 208 254

1000 287 457
4500 1000 331 474

Using average day-per-month wind data results in roughly the same capacity value as using
hourly annual wind data for a 100 MW (roughly 2% of total capacity) wind penetration. At 500
MW penetration (10% of total capacity) the error is 22% and at 1000 MW (18% of total
capacity) the error is 59%. Increasing the peak load (from 3900 to 4500 MW) reduces the error,
but it does not eliminate it. This analysis verifies that using monthly average intermittent
production values as negative loads overestimates capacity value for large penetrations.

The best way to visualize the statistical accuracy of using average intermittent production values
is through the net load duration curve (the load duration curve formed after intermittent
production values have been subtracted from loads). If two load duration curves are the same,
loss of load probability, unserved energy, and production costing analyses will give the same
results. Using average intermittent production values will tend to flatten the curve while using a
distribution of production values will tend to make it steeper at the beginning and end. Figure 1
shows a load duration curve for a peak load of 3900 MW and a rated wind capacity of 1000 MW
for hourly annual load and wind data and for hourly annual load and monthly average day wind
data. The differences in shape between the two curves account for the differences in capacity
value shown in the above table.
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Figure B-1. Load Duration Curve Comparison

We do not want to use hourly data in our model because of the computer time required, so we
have examined an alternative way to treat intermittent production. Instead of using an average
day per month, we tried three days per month. The first day uses the average wind production
for the highest third of the month's data at each hour. The second day uses the average of the
middle third, and the third day uses the average of the lower third. This introduces a intermittent
production distribution (albeit a crude one) into the model. It captures low, medium, and high
values of intermittent production for each hour. We also formed three load days for each month.
One represents a peak load day; another represents a minimum load day; and the third represents
an intermediate load day. The three load days and three wind production days are used in all
combinations to give nine days per month of net load data. The resulting annual load duration
curve is compared to the one derived using hourly annual data in Figure 2. The match is quite
good.
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Figure B-2. Load Duration Curve Comparison

Using the three day per month data in the equivalent firm capacity analysis gives the following

results.
Peak Rated Wind Equivalent Firm  Equivalent Firm Equivalent Firm
Load Capacity Capacity MW Capacity MW Capacity MW
MW MW Hourly Annual  Ave. Day per Month  Three Day Per Month
3900 100 554 54.3 58.5
500 208 254 233

- 1000 287 457 330

4500 1000 331 474 393

The three day per month data results in much more accurate capacity value estimates than the
one day per month data. The error for 10% penetration is 12% instead of 20%, and the error for
20% penetration is in the 15-20% range instead of 40-60%. We are evaluating using the three

day per month instead of the one day per month data in our model.

more computation time.

Using more data will require
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Production Costing (Dispatching)

The production costing (dispatching) algorithm is used to compute the energy generated (values
of E, in Equation 1) by each type of generation technology during a year. The algorithm
inherently accounts for displaced energy generation when an intermittent source is added to the
system and is important in determining the value of an intermittent source. Our simplified
dispatching algorithm simply integrates the net load duration curve to find the annual energy
generated by each type of unit. It does an approximate accounting of scheduled outages. We
also modeled a probabilistic production method (Booth-Baleriaux). The probabilistic method
does not inherently consider scheduled outages because they are not random. Scheduled outages
were incorporated by dividing the year into time blocks and scheduling outages for maintenance
within each block. The probabilistic method is applied to each time block individually.

To quantify the differences between our simple load duration curve integration method and the
probabilistic method using time blocks for scheduled outages, we applied the two methods to a
test case. The test case consisted of the dispatchable generation system described in the table
below, a 3900 MW peak load with PG&E's 1989 profile, and adjusted Fresno TMY data.

Availability Scheduled

Type Number Capacity (Random) Qutage
Nuclear 1 850 MW 908 252
Coal 8 250 MW 963 .062
Combined Cycle 8 150 MW .945 .062
Gas Turbine 9 50 MW 965 055

This generation system's scheduled outages were chosen so that units could be serviced in exact
quarterly time blocks. They are not real scheduled outages.

The probabilistic method with scheduled outage time blocks assumed the following maintenance
schedule:

nuclear plant down in the fall,

one coal plant at a time down in winter and spring,

one combined cycle plant at a time down in fall and winter, and

one gas turbine plant at a time down in winter and spring.

This schedule balanced the loss of load probability among the seasons and minimized annual loss
of load probability. Our load duration curve integration method accounted for scheduled outages
by comparing the energy computed by integration with the maximum possible energy from each
type of plant (the product of rated power, forced outage availability, and scheduled outage
availability). If the integrated energy exceeds maximum energy, the plant is derated to make the
two energy values balance. We also considered a third dispatching method based on one
suggested by Peter Lilienthal at NREL. It uses the probabilistic method but incorporates the
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same scheduled outage accounting method as our integration method. That is, it derates a plant if
necessary to ensure that its energy generation limit is not exceeded. Derating is equivalent to
assuming that scheduled outages are random, like forced outages. To compare the three
methods, we computed the energy displaced from each dispatchable plant when 500 MW of
wind or photovoltaic capacity was added to the system. Energy displacement is found by
exercising the dispatching algorithm with and without the intermittent source. Results from the
two runs are subtracted to find energy displacement.

Displaced Energy in TWh
Nuclear Coal CombCyc GasTurb  Value M$
500 MW Wind System
Probabil/Seasonal 0. 1.09 75 .035 54.7
Integration/Derating 0. 1.17 71 .006 52.7
Probabil/Derating 0. 1.21 .64 035 52.6
500 MW PV System
Probabil/Seasonal 0. 37 57 026 31.7
Integration/Derating 0. .39 .58 .006 31.0
Probabil/Derating 0. 49 45 .032 29.8

The value of displaced energy was found using .021 $/kWh for coal operating cost, .039 $/kWh
for combined cycle, and .072 $/kWh for gas turbine (derived from EPRI's TAG economic
parameters). Our integration method underestimates energy displacement from gas turbines, but
its value computation is fairly accurate. The probabilistic method with derating for scheduled
outages is also fairly accurate and it makes a better estimate of gas turbine energy displacement,
but it requires greater computing time.

The object of the dispatching algorithm is to accurately estimate the value of energy displaced by
intermittent sources. Our simple integration method does an adequate job, but we must keep in
mind that it underestimates energy displacement from peaking turbines.

Capacity Expansion Optimization

Optimization requires finding the technology mix for new capacity which minimizes levelized
annual cost subject to a reserve margin constraint. The optimization our model employs is an
approximation from three perspectives: 1) as discussed above, the operating costs our model
calculates are approximate; 2) our reserve margin estimate is approximate; and 3) the
optimization process itself seeks a near optimum, not a true optimum. The following describes
our near optimization process.

We search to find the combination of intermittent renewable energy technology (IRET), storage,
and dispatchable new capacity which minimizes cost. To start the process, we select an IRET-
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storage set. That is, we select a new capacity value for wind, a value for PV, a value for solar
thermal, and a value for storage (storage may require two values: one for energy and one for
power). Using this IRET-storage new capacity set, we compute a net load duration curve. Next,
we find a near optimum set of new dispatchable technology capacities which satisfies (provides
the required energy and power) the net load duration curve at near minimum cost. We repeat
this process for different IRET-storage sets in a patterned search until we locate the IRET-storage
set which minimizes levelized annual cost for the entire system. Since each IRET-storage set has
an "attached" minimum cost dispatchable set, finding the minimum cost IRET-storage set
minimizes cost for the entire system.

The method we use to find a near optimum (near minimum cost) new dispatchable capacity set is
the subject of the third main concern expressed above. In Figure 3 we show a net load duration
curve with existing dispatchable technologies applied in merit order. Merit order means that the
lowest operating cost technology is applied at the bottom where the most energy is produced
followed by the next least expensive operating cost technology and so on until the last
technology applied has the highest operating cost and provides the least energy. Peak load
exceeds total existing capacity, and we call the difference a capacity gap which must be filled by
new capacity. A true optimization will distribute the capacity gap among the different
technologies in a way that minimizes system levelized annual cost. Sherali of VPI has a method
for optimizing new capacity. His method will find the true optimum given that production
costing (dispatching) is approximated using the load duration curve integration method. In other
words, it is an exact optimization to an approximate problem. We do not use Sherali's method
because it has a high computational burden and it does not consider cost diversity. Our method
follows the following procedure. First, we assume that the entire capacity gap is inserted
between each pair of adjacent existing technologies which are arranged in merit order. Each
insertion location has a capacity factor associated with it. We compute the levelized annual cost
for each competing technology at this capacity factor. (L.evelized operating cost is a linear
function of capacity factor.) Then, we use the computed costs in a logit apportionment to
determine the capacity share of each competing technology. If the capacity gap is inserted
between base and intermediate technologies, then the capacity factor will be high and base and
intermediate plants will be favored in the logit apportionment because their levelized annualized
costs will be relatively low, but every competing technology will receive a share of the capacity
gap. If the gap is inserted between intermediate and peaking technologies, the capacity factor
will be low, and intermediate and peaking technologies will be favored.
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The number of insertion options is equal to the number of existing technologies minus one
because there are that many pairs of adjacent existing technologies between which the capacity
gap can be inserted. For each option, we compute the share each technology will get of new
capacity. We have added a new option to the model since our meeting. We divide the capacity
gap up equally between each pair of existing technologies and use a logit apportionment to
determine the share of new capacity each technology gets.

We merit order new and existing technologies for each option and use our dispatching algorithm
to compute total levelized operating cost and add levelized capital cost to compute the total cost
for each option. The option with the lowest cost is selected. Keep in mind that we always add at
least some of each technology. If the system is short of base capacity, then the option which
inserts the capacity gap between existing base and intermediate will probably be selected. If the
system 1is pretty well balanced, then the equally distributed capacity gap will probably be
selected. This method does not select an optimum expansion in any given year, but over time the
expansion is near optimum. To illustrate this, we have compared our expansion method to
Sherali's method. Our method includes price diversity through the logit apportionment. We
incorporate price diversity into Sherali's method by using a cost distribution for each technology
and a Monte Carlo assignment of cost. The final result is the average of all the Monte Carlo
results at each time. Figures 4, 5, and 6 compare results for the two methods for a system where
load grows by 2% each year.
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Our capacity gap expansion method tracks Sherali's true optimization method (with Monte
Carlo) very well. Both of these methods use our load duration curve integration method to
compute levelized operating cost which is an approximation to true operating cost. Because of
this, neither method gives a true optimization, but we have shown that our load duration curve
integration method makes a reasonably accurate estimate of operating cost. From this, we
conclude that our optimization method combined with our dispatching method will make
reasonable expansion estimates. We have neglected an important element in this logic. We have
not discussed reserve margin. An approximate method for estimating reserve margin is planned,
but we have not yet evaluated its impact on proper valuation of IRET's.

Conclusion

We have addressed the main concerns raised at our quarterly review meeting. In addressing
them we have identified areas where improvements can be made. In some cases the
improvements have been made. We conclude that our approximations are reasonable for the type
of model we are constructing. It is not a utility tool for planning capacity expansion. Itis a
model for projecting the effects various policy strategies will have on IRET penetration trends.
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We are planning to have the model reviewed by people familiar with utility capacity expansion
planning. The first review scheduled is with Neal Balu, EPRI's AGEAS project manager, in
early April. We are in the process of getting an AGEAS test case from Leslie Buttorff at Stone
and Webster and will use it to compare our model's results with those from AGEAS.

If you have any qilestions or suggestions about the work covered in this memo, please call us:
Mike Edenburn 845-8297 or Gene Aronson 844-4348.
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APPENDIX C. Comparison of the Dispatchable Capacity
Expansion Method with the Exact Sherali Method

For a given anticipated load demand curve, a given set of dispatchable technologies with
associated annual levelized capital and operating costs, and set of exising, on-line capacities for
each technology, the exact solution of the optimal expanded despatchable technology
configuration is found by a method devised by Sherali [Sherali, 1985], under the assumption that
energy production is computed by the “integration” method, described in the main body of this
report, and in Appendix A . By the optimal configuration we mean that configuration which
. minimizes the system life-cycle cost. The integration method of energy production and a
comparison between it and the Booth-Baleriaux probabilistic method is found in the body of this
report and in Appendix B. If there are no existing capacities, the solution is very simple, and
given by the well-known “screening curve” method [Steiner, 1957].

Let the subscript i refer to the i-th technology in a system consisting of N technologies. Total
system future life-cycle cost is given by

(C-1) C=2CB; + C,E(B; +F)
where the sumisoni=1,2, ..., N, and

C is the total future annualized cost, $/yr).

Cy is the levelized annual capital cost (of the i-th technology), $kW-yr.
B; is the new capacity addition, kW.
C,  isthe levelized annual operating cost, $/kWy.

E, is the energy produced, kWy.

F, is the future (derated) existing capacity, including capacity under
construction that will be on-line at the future time, less retirements
that will be in effect at that time, kW.

The Sherali method assumes that all capacities have been derated to account for forced and
scheduled outages. The energy production is computed by “merit ordering” of the technologies,

with the lowest operating cost technology dispatched first, the next-lowest second, etc., thus
guaranteeing the minimal operating cost for the system. Therefore, we order the subscripts i by

(C-2) Cy<Cp<... </Cyp
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Let the load demand curve be A(u), where A is in kW and u is that part of the year in which the
expected load will exceed A(u). The quantity u is also the capacity factor associated with the
load A(u). The load is a monotonically non-increasing, positive function of u defined over the
domain 0 < u < 1, see Figure C-1. Since the capacities are already derated, the energy produced
is .

U,
Ei=] u())dA,
Uiy
(C-3)
1
Ui=3 BE+FE
£=1

Figure C-1. Load Demand and Merit Ordering

The function u(}) is the inverse load demand defined over the domain [0, A(0)]. A constraint on
the problem is that all demand must be satisfied, i.e.,

(C-4) Uy 2 M0).

The exact solution, which finds the B; so that C, equation (C-1), is minimized, given conditions
in equations (C-2) through (C-4) was found by Sherali to involve a somewhat complicated
mathematical programming problem described in the 1985 reference.

We coded the Sherali method and tested it against various configurations. In spite of having
coded the method, we decided it was not appropriate for use in our capacity expansion module
for three reasons:

1. It was quite complicated, although it did not generally use excessive
computer time.
2. The preset derating requirements clouded the interplay between forced

and scheduled outages.
3. It did not allow cost diversity among the technologies.

The third reason was the most compelling, since we feel cost diversity is an important feature of
the module.

In lieu of using the Sherali method for capacity expansion, we attempted to devise a method
which tended to emulate Sherali’s solutions for similar conditions, resulting in the heurisitic
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method described in Appendix A. Our heuristic method was compared against Sherali’s method
for a test case, whose results are shown in Figure C-2, C-3, and C-4. We used the “typical”
initial load curve shown in figure C-1, and assumed a system of three technologies: “base,”
intermediate, and peak, with appropriate capital and accounting costs. We chose a set of initial
capacities and a load growth of 2% per year. A simulation was run with each system, our
heuristic solution and Sherali’s exact solution, expanding over a 40 year period.

Since the Sherali method does not allow cost diversity, we simulated it by running the Sherali
simulation as a 400-pass Monte Carlo, with capital and operating cost as independent random
variables at each time step in each pass. The plotted results are the average capacities over all
passes at each time step; that is, if Y,(t,j) is the total capacity of the i-th technology at the t-th
time step of the j-th Monte Carlo run, the resultant capacity at the t-th time is

Y1) = = Yi(tj)/400

where the sum is on j from 1 to 400.
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Figure C-2. Base Capacity
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In the heuristic solution, cost diversity is accomplished by a logit function which assumes that
the nominal cost per unit new capacity of a given technology operating at a specified capacity
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Figure C-4. Peak Capacity

utilization factor f, is

and that the various values of k; are independent random variables generated by an underlying
Weibull distribution with location parameter k; and shape parameter y (the same value of vy, -10,
is used for all random variables) - see Appendix E for a discussion of the logit function. For the
Weibull distribution, y = -10, the mean and variance of the random variables k;, associated with

k;, are
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where I" is the gamma function. Thus the standard deviation is approximately 11.5% of the
nominal cost for Yy = -10 (the square root 0.01311 is 0.1145).

Modeling the random cost structures in the Sherali method to exactly copy the logit structure is
not possible since the Sherali method does not explicitly use the capacity utilization factor and
there does not appear to be a known pair of independent distributions whose sum is Weibuil.

However, we feel quite strongly that the results of the Monte Carlo simulations are not sensitive
to the exact underlying cost probability distributions. For the Monte Carlo simulations, let x; and
o; be the random variables associated with the capital and operating cost, respectively, for the i-
th technology. We chose these random variables to be independent gaussian (normal) with mean
and variance

E{x;} =0.95C_, E{w;=0.95C,
o*{x;} =0.01311C *(C, + C)/(C,; + C.D,
o*{w;} = 0.0131 ICOiZ(_Cci +C ) NCE+CD,
resulting in the statistical properties
E{x; + o;} = 0.95(C; + C,),
co*{x; + @;} =0.01311(C, + C,)%,
that is, as though all technologies were operating at the value u = 1 for purposes of defining the
underlying cost probability density functions. This formulation implies a somewhat larger
variance for the Monte Carlo random variables than in the neuristic model, but should not affect

the final results appreciably. As the absolute value of y increases, the Weibull distribution tends
to resemble the gaussian distribution. The resemblance is quite close at y = -10.

As shown in Figure C-2, C-3, and C-4, the results of the capacity expansion methodology
described in Appendix A, and used in the Sandia capacity expansion and energy production
module, compare very favorably with the Sherali Monte Carlo results. In all these simulations,
the look-ahead time and all construction times were set to five years.
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APPENDIX D. Comparison of Electric Utility Capacity Expansion
Projections Between Sandia's Capacity Expansion

Model and EGEAS using an EGEAS Test Case

Date: July 28, 1992
To: Distribution

From: Mike Edenburn and Gene Aronson, Strategic Technologies Dept. (6904),
Sandia National Laboratories

Subject: Comparison of Electric Utility Capacity Expansion Projections Between
Sandia's Capacity Expansion Model and EGEAS using an EGEAS Test Case

Sandia's electric utility capacity expansion model has been developed to provide DOE/CE's
Office of Utility Technologies with a sound analytical tool to assist in energy policy analysis.
The model, which can be used as a module in more general energy analysis models, projects long
term renewable energy technology (RET) expansion trends into regional electric utility markets.
It explores the effects of energy policy options on utility capacity expansion trends. The model
uses less detailed algorithms than models used by utilities for capacity expansion planning, but it
follows their basic principles. Validation is an important part of our model development project.
One validation exercise has been to compare our model's projections with those from a more
comprehensive and generally accepted model. We have selected EPRI's (Electric Power
Research Institute) EGEAS (Electric Generation Expansion Analysis System) for the
comparison.

EGEAS was developed by EPRI and is used by several large U.S. electric utilities for capacity
expansicn planning. The EGEAS model is described in EPRI report EPRI EL-2561 published in
August, 1982, Stone and Webster Management Consultants manage and distribute the model
and coordinate an active users' group. Data for the test case was selected and supplied by Joel
Halvorson of Stone and Webster, and he ran the test case using EGEAS to get results for
comparison.

Previous validation exercises have addressed elements of the Sandia model: aggregated
generation units, averaged intermittent source production data, a simplified production costing
algorithm, and a simplified optimization process. The conclusion drawn from these exercises
was that each of our simplified model elements is sufficiently accurate to be appropriate for use
in a regional, policy analysis model, but it is possible that the inaccuracies in several "sufficiently
accurate” elements working together can combine to make unrealistic projections. To explore
this possibility, we have compared our model's results to those for a test case run using EGEAS.
The test case was derived from standard test case R6112. Input for the test case is discussed
below.
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Existing, Under Construction, and New Generation Capacity

The EGEAS test case starts in 1987 with the existing and under construction capacity shown in
Table 1. A more detailed listing is shown in Attachment A.

Table 1. Existing and Under Construction EGEAS Capacity (1987)

Type Units Total Capacity MW
Existing

Nuclear 2 2400
Coal 12 3612
Oil-Steam 9 2596
0Oil Combined Cycle 1 286
Oil Combustion Turbine 30 1594
Hydro 2 100
Pumped Hydro Storage 4 425
Photovoltaic 2 15
Under Construction

Nuclear (on line 1990) 1 1200
0Oil Combined Cycle 2 571

(on line 1989 & 1992)

The EGEAS test case selected from the technologies listed in Table 2 for new capacity additions.
For more details, see Attachment A.

Table 2. New Capacity Options for EGEAS

Nuclear-LWR

Coal-Advanced pulverized with FGD

Oil steam

Oil combustion turbine

Gas combined cycle, standard and advanced
Gas advanced combustion turbine

Pumped hydro storage

Photovoltaic
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The Sandia model uses aggregated capacity values and does not consider individual units. It
accounts for existing capacity and capacity under construction separately, but, for simplicity, we
added capacity under construction to existing capacity for this test case. Detailed input data for
the Sandia model is included in Attachment B.

Table 3. Sandia Model Existing Capacity (1987)

Type Capacity (MW)
Nuclear 3600

Coal 3612

Qil Steam 2600

Oil Combined Cycle 860

Oil Combustion Turbine 1590

Hydro 100
Pumped Hydro Storage 394
Photovoltaic 15

To simplify our model's input, we assumed that new and existing units within a technology are
identical and have the same parameter values except for coal. Old and new coal were treated as
separate technologies. We restricted the new technology capacity expansion options for the
Sandia model to those which we expected to be the most competitive. These capacity expansion
options are shown in Table 4.

Table 4. Capacity Expansion Options for the Sandia Model

Type Corresponding EGEAS Technology
Nuclear Advanced LWR

Coal Advanced Pulverized Coal with FGD
Oil Combined Cycle Oil Combined Cycle

Oil Combustion Turbine Oil Combustion Turbine

Gas Combined Cycle Standard Gas Combined Cycle

Gas Combustion Turbine Advanced Gas Combustion Turbine
Pumped Hydro Storage Pumped Hydro Storage

Photovoltaic Photovoltaic #2

We used the same parameter values for the Sandia model capacity expansion options that
EGEAS used for its corresponding options to the extent possible. (These values are shown in the
appendix.) There were some differences. The Sandia model does not consider a unit's reserve
capacity or loading blocks. We treat interest during construction just like construction cost,
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although, in reality, it is treated differently for tax purposes. We do not consider spinning
reserve or startup costs. EGEAS's forced outage rates change with time while the Sandia model
uses constant values. To account for changing forced outage rates, the Sandia model uses
average values. There is a slight difference in how the two models compute depreciation for tax
purposes. We used parameter values which most closely duplicated EGEAS depreciation
schedules. In EGEAS, each generation unit has a service date when it first came on line and a
plant life, and these two parameters determine when the plant will be retired. Since the Sandia
model aggregates, it does not retire individual units. We were not able to accurately match
EGEAS retirement schedules with simple retirement rates, so we altered the Sandia model to
include EGEAS retirement schedules. To summarize, we attempted to duplicate parameter
values used in EGEAS, but there are small differences.

Load and Intermittent Source Generation Data

Both models used a peak 1988 load of 9400 MW, a load growth rate of 1% per year, and a load
profile defined by EGEAS's data file HOURLOAD.SYB. This load profile consists of 8736
hourly data points covering 364 days. The Sandia model will not generally use this large a data
set. We used a "complete" year for the test case to avoid differences associated with data
quantity so that we can concentrate on differences caused by model algorithms.

Photovoltaic generation was defined by EGEAS's data file HOURGENR.PV2. While not
intermittent, hydro power generation is treated like intermittent generation because it is
subtracted from the load to get a net load. There are a variety of hydro power types. Run-of-the-
river hydro is intermittent with power generated when river flow is available, and this usually
follows a seasonal pattern. At the other extreme, hydro power can be completely dispatchable
and used at any time during the year. We assumed that hydro is dispatchable and we subtracted
its power from the year's peak generation hours with the appropriate energy restriction.

Our model did not previously include energy storage, which is an important option in EGEAS.
After testing several simple models for storage which did not work well, we designed one which
"optimizes" storage use. Storage must be dispatched with an optimum schedule to obtain its full
value. Simple models tended to displace the same generation technology during high load hours
used for recharge during low load hours. Displacing and recharging with the same technology
gives storage a net economic loss due to storage inefficiency. To get its full benefit, storage
should only be used to displace a generation technology if the recharging technology's operating
cost divided by storage efficiency is lower than the displaced technology's operating cost.

Our present storage model arranges daily loads in order of size. The highest load is paired with
the lowest, the second highest with the second lowest, and etc. Displaced energy for the high
load hour must be recharged during the low load hour in the pair. Storage power is adjusted, if
necessary, to insure that the last unit of displaced energy is more valuable than the last unit of

65




recharge energy. The appropriate daily storage energy limit is applied. This scheme is not
exactly optimum because it only allows discharge and recharge within hour pairs. Making
discharge and recharge decisions across multiple hours is required to obtain a true optimum.
Because it is not a true optimum, our storage algorithm may tend to slightly undervalue and thus
underuse energy storage. :

Comparison of Projections from the Two Models

It is unrealistic to expect identical results from Sandia's model and EGEAS. On the other hand,

to be useful, results from the Sandia model should follow the same capacity expansion trends as
those from EGEAS.

There are several reasons why identical results cannot be obtained:

1. Units are aggregated by technology in Sandia's model. EGEAS buys integral size
units while the Sandia model can buy any size. EGEAS uses a retirement date for
each unit while Sandia's model uses a retirement rate. These Sandia model
simplifications are appropriate for a regional model but not for an individual utility.

2. The Sandia model uses a simplified production costing algorithm (instead of a
probabilistic algorithm) which underestimates the energy generated by peaking
plants. This will slightly bias the value of new capacity additions.

3. The Sandia model's optimization scheme is sub-optimal and will give slightly
different results than a true optimization.

4. EGEAS optimizes over a 30 year time block and finds the optimum, integrated
expansion plan. Selecting a particular plant depends on future as well as past
capacity additions. Sandia's model optimizes one year at a time using levelized
capital and operating cost over each plant's life. It's optimization accounts for
existing but not for future capacity additions.

5. EGEAS uses much more detailed input data: escalating capital and operating cost
schedules, reserve capacity, capacity blocks, changing forced outage rate schedules,
special treatment of interest during construction, spinning reserve and startup costs
(spinning reserve and startup cost were not used by EGEAS in the test case), and etc.

6. Sandia's model assumes cost diversity. The cost of a technology is not a single
value and a technology will be selected for some capacity even though its most
probable cost is slightly higher than a competitor's most probable cost. EGEAS does
not use cost diversity. Cost diversity is not appropriate for a single utility model, but
it is appropriate for a regional model.
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The EGEAS model's dynamic programming option projects the capacity additions shown in
Table S.

~Table 5. New Capacity Additions Projected by EGEAS

Type Size MW Year
Coal-Advanced Pulverized with FGD 750 1995
Coal-" 750 1997
Coal-" 750 1999
Coal-" 750 2001
Gas-Combined Cycle 220 2004
Gas- " 440 2005
Gas-" 440 2006
Gas- " 220 2007
Coal-Advanced Pulverized with FGD 750 2008
Storage-Pumped Hydro 350 2008
Storage- " 350 2010
Storage- " 350 2011
Gas-Combined Cycle 220 2011
Coal-Advanced Pulverized with FGD 750 2012
Coal-" 750 2013
Oil-Combustion Turbine 75 2015
Coal-Advanced Pulverized with FGD 750 2016
Gas-Advanced Combustion Turbine 130 2016
Oi1l-Combustion Turbine 75 2016
Qil-" 150 2017
Gas-Advanced Combustion Turbine 130 2017

Total capacity asset projections from EGEAS are plotted in Figure 1. Figure 2 shows the
capacity assets projected by Sandia’s model. At the end of the 30 year expansion period, the two
models are in very close agreement. The main difference between the two models is in the
timing of coal and gas combined cycle asset additions. EGEAS installs 3000 MW of coal
between 1995 and 2001 followed by no new coal installations between 2002 and 2008. The
Sandia model installs only 800 MW of coal between 1995 and 2001 but continues steady coal
installation and catches up with EGEAS in 2008. The Sandia model lags EGEAS in coal
installations, but it compensates by leading EGEAS in gas combined cycle installations. The
difference in timing is probably due to EGEAS's ability to optimize over a 30 year time block in
combination with its restraint to use specific unit sizes. A less significant difference is that the
Sandia model installs more gas combustion turbines than EGEAS, in part because it uses a
higher reserve margin than EGEAS and in part to help compensate for the time lag in coal
expansion. In spite of these differences, agreement in trends between the two models is very
good. While both models considered only one true intermittent renewable source--photovoltaics
which neither model elected to install--the models agree closely on pumped hydro energy storage
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which is treated like an intermittent source in the Sandia model's optimization process
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Figure D-1. EGEAS Test Case Assets (EGEAS)
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Figure D-2. EGEAS Test Case Assets (Sandia Model)

Nuclear—-EGEAS projects that no new nuclear capacity will be added beyond that under
construction in 1987. The Sandia model projects a very small nuclear addition due to cost
diversity.

Coal--Coal capacity assets for the two models are compared in Figure 3. EGEAS builds 3000
MW of new coal plants in the six years between 1995 and 2001. Then, it builds no new coal
plants until 2008. The Sandia model builds 800 MW of new coal plants between 1995 and 2001
but continues to build 2400 MW through 2008. In 2008, the coal assets for the two models are
roughly equal. From 2008 to 2017 the two models agree very closely, and coal assets for the two
models are nearly equal in 2017, the final year. As expected, the expansion details are different
but the trends agree very well. Part of the detail difference is due to cost diversity. Reducing
cost diversity increases coal expansion between 1995 and 2001 in Sandia's model, but not nearly
enough to match EGEAS expansion for those years. We believe that most of the difference is
due to EGEAS optimizing over a 30 year time block using specified unit sizes in contrast to
Sandia's model optimizing one year at a time without unit size restrictions.

69




8G00

> 6000 | 7~
o7
-7
= A
7
>
4000 K
1a] / 7
%
172] / —}
(7} EGEAS / J
< —~
2000 ; .’ Sandia Model
.’f rd
.;--- "_/
/ L
.f'i__' Lo )
0 1 -"‘!1 4—”- [ 1 ] [l

1985 1980 1995 2000 2005 2010 2015 2020

Year

Figure D-3. EGEAS Test Case Comparison--New Coal

Oil-Steam--Neither model adds oil-steam capacity. Both models follow the same retirement
trend because that was imposed upon them. Sandia's model might have added a little oil-steam
capacity due to cost diversity, but oil-steam was not allowed to compete.

Oil Combined Cycle--Oil combined cycle is not a competitor in EGEAS. The Sandia model
allows it to compete but only adds a very small amount because of cost diversity.

Gas Combined Cycle--Over the 30 year expansion period, EGEAS adds 1540 MW of gas
combined cycle. Sandia's model adds 1750 MW. Trends for the two models are in good
agreement, although installation timing is different. Sandia's model leads EGEAS in gas
combined cycle expansion as can be seen in Figure 4. This lead compensates for its lag in coal
expansion as discussed above. In Figure 5, we plot coal assets and the sum of coal and gas
combined cycle assets for both models. The sums agree very well between the two models.

Sandia's model projects that the sum of coal and gas combined cycle expansion will be slightly
less than that projected by EGEAS between 1995 and 2001. This small difference is made up
with gas combustion turbines in Sandia's model, explaining why gas turbines are introduced
earlier by Sandia's model than by EGEAS. Why does EGEAS make a big coal expansion
between 1995 and 2001 followed by a big gas combined cycle expansion between 2001 and 2008
while Sandia's model tends to project the reverse order? Gas combined cycle operating costs are
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escalating faster than coal costs because of fuel cost escalation. This argues in favor of installing
gas combined cycle plants earlier when they are less expensive is the trend projected by Sandia’s
model. We believe that EGEAS installs coal plants first because its optimization over a 30 year

time block sees an advantage to installing coal plants between 1995 and 2001. The advantage is
probably due to interfaces with other technologies scheduled for installation in the future.
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Figure D-4. EGEAS Test Case Asset Comparison--Gas Combined Cycle
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Figure D-5. Egeas Test Case Asset Comparison--New Coal
+ Gas Combined Cycle

Oil Combustion Turbines--EGEAS adds 300 MW of new oil combustion turbines at the end of
the design period. Sandia's model adds almost no oil combustion turbines. What it does add is
due to cost diversity. EGEAS adds oil combustion turbines because a limit was imposed on gas
combustion turbines. Without the limit, gas combustion turbines would have been selected
instead.

Gas Combustion Turbines--EGEAS adds 260 MW of gas combustion turbines at the end of the
design period. The Sandia model adds 800 MW split between the 1994 to 2001 time period and
the end of the design period. Part of the difference is due to our approximation for reserve
margin which is higher than that used by EGEAS. Part of the difference is due to compensation
for the Sandia model's lag in coal expansion between 1995 and 2001. Part of the difference is
due to the Sandia model's cost diversity. Reducing diversity reduces gas turbine expansion. If
oil and gas combustion turbines are combined, EGEAS adds a total of 560 MW compared to the
Sandia model's 800. Results for both oil and gas combustion turbines are shown in Figure 6.
Differences between the two models have several explanations, but the important observation is
that the trends agree fairly well. ’
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Pumped Hydro Energy Storage--The two models agree very well for pumped hydro energy

storage. This is particularly noteworthy because energy storage is not easy to model and because
the Sandia model treats energy storage like an intermittent in its optimization process. Storage

results are shown in Figure 7.
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Figure D-7. EGEAS Test Case Asset Comparison--Pumped Hydro Storage

Our overall conclusion is that trends projected by Sandia's model agree very well with those
projected by EGEAS. We believe that this is an important conclusion because it supports using a
relatively simple but conceptually sound, regional, electric utility capacity expansion model for
evaluating energy policy options.
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APPENDIX E. The Logit Function

The material in this appendix is extracted, in modified form, from [Resiter, 1982]. Suppose a
decision maker has several options to supply a certain need. In our case, he may choose among
different technologies to build physical assets to satisfy (electrical) energy demand. In a very
natural way, he would choose the technology with the least marginal cost. Suppose there are N
choices, and their associated marginal costs are ¢, n = 1, ..., N. Of course, any decision maker
would exclusively choose the least-cost technology. All other decision makers would also
choose this least-cost option, and all other options would be excluded from any market share.
However, in reality, all (or almost all) technologies will have some partial share of the market,
and these shares will change with time as the various costs change.

Consider a state or region with-many energy suppliers, each facing a unique set of costs. Each
supplier chooses the technology which is least cost to him in some sense. Implied here is that
cost itself, while an important consideration, may not be the only variable which determines
choice for any particular supplier. Also, a supplier may have some singular situation where the
actual cost of a technology to him is not the same as the cost to other suppliers. In the aggregate
set of costs to all suppliers, each technology has a distribution of costs instead of one fixed cost.
If these distributions are broad enough to overlap, it is possible that all technologies will be
chosen to some degree.

Let a, be the market share of the n-th technology. The sum of the shares must be unity; that is
Za,=1,
where the sum is from 1 to N. Since each supplier will choose the least cost (to him) option, the

market share, a,, for each option is the probability that the option has a lower cost than any of the
competing options. The market share for the first option is

0 [s¢] o0
a,=J du | du, eee [ du,f(u),
0 u u,

where u, is the distributed cost of the n-th technology, f{u)du is the joint probability that the cost
is in the region du about u, and du = du,du, ® e e du,. Since the order of technologies is
arbitrary, solution for al is equivalent to solution for all shares.

Theoretically, we can create a joint probability density function for the technologies and perform
the multiple integration above. In practice, however, this is a difficult task for an arbitrary joint

probability density function. To simplify the integrations, a joint Weibull distribution is used;
that is,

f(w) = I1 (v/C,) (u/c,) "exp[-(u,/c,)'], (c, > 0).
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The product (IT) is over the N choices. The parameter y determines (inversely) the broadness of
the distribution, and c, is related to the average cost of the n-th technology. For a single variable,
the Weibull density function translated to the positive domain. As y increases, the width of the
density narrows and becomes more gaussian in shape.

Let 8, be the average cost of the n-th technology. We get
0
8, =1 du, w, (y/e)(w/c,) expl-(u/c,).
0
The integration yields

8,=c, I (1+1/),

where I is the Gamma function. As y becomes large, the distribution become more peaked and
the average cost, 8,, approaches c_, since I'(1) = 1. The variance of the cost is given by

v, = [[(1+2H)-TX1 +1/)].
For y = 10, the standard deviation is
d,(y=10)=0.114457 ¢,

that is, the one standard deviation band is +11.4% about c,.

We define the intermediate result

[e.]

h, = | du, (v/e)(u/c,) "expl-(u,/c,)] = exp[-(w/c,)'].
Y,

Expressing the joint probability density function of technology costs as a Weibull distribution,
interchanging integration order, and using the intermediate result in the evaluation of the market
share gives

©
a = I du,(y/c,) (w/e)'h, = ¢, Z(c,").
0

This is the logit function for market share of the “first” technology. The market share for the
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m-th technology is obtained by replacing c, with ¢, above. We repeat that ¢, approaches the
average value of the n-th technology’s cost as y approaches infinity. The approach is quite rapid.
For example, I" (1+1/10) = 0.951. Also, the standard deviation approaches zero as y goes to
infinity.

The logit formulation described here is a special form of a more general logit describes in [Ben-
Akiva, 1985]. The more general formulation assumes that the costs are drawn from a Gumbel
distribution. The special formulation assumes that the random costs obey the Gumbel
distribution, with a utility function which is the logarithm of the cost, yielding the Weibull
distribution.
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APPENDIX F. Slimmary from Evaluation of Tools for Renewable Energy
Policy Analysis: The Ten Federal Region Model, April 1994

Summary of Findings

The TFRM is an appropriate and valuable tool for conducting energy policy analyses of
renewable energy scenarios. In its current form, the model requires a user who has invested
considerable time in learning about model operation. The panel feels that with moderate effort,
the model could be made substantially more user-friendly. This effort includes both streamlining
and developing menus of the input procedures, as well as providing more comprehensive
displays and post-processor interpretation of the outputs.

Intended Applications

TFRM was build to provide relatively quick turnaround results for an analyst who wants to
conduct a somewhat detailed study of the impacts of renewables on a specific set of federal
regions.

The evaluation panel feels that the TRFM provides a new kind of model that is intended to deal
with rencwable energy technologies in the context of regional electric systems. Some of the
renewable energy issues that can be investigated include the effects of capital cost and operating
cost improvements, renewable tax incentives, fossil tax disincentives, efficiency improvements,
regional variations in performances and site availability, competition between renewables, and
other policies and issues.

The panel feels that the greatest value for this model is in the mid-to-far term. It will require
some costs to develop, refine, test, maintain and make it into a user-friendly tool that will be
accessible to a wide community of analysts. The TFRM is dependent upon the quality of input
data, support analysis from overview models (such as the PERI REP model), and the familiarity
of the user with the constraints and requirements of the model. The panel feels the limitations of
TFRM will lessen in time, if additional work is conducted to improve the elements and usability
of the model.

Structure

The structure of the TFRM was somewhat dictated by the initial assumption that a relatively
quick turnaround regional model was needed to investigate the impacts of renewable energy
technologies on the electric supply sectors. Feedbacks of cost energy to change the level of
demand, and other feedback relations, must be accomplished by the user in out-of-model
feasibility checks, output-to-input calculations, and additional scenarios. Occasionally, some
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model results are dictated by constraints and ratios, such as with renewable growth rates of 20
percent per year for attractive technologies. For the most part, however, the non-linear optimal
search of the TFRM leaves most variables in the active basis and is much less directed by
constraints than linear programming or other dynamically solved methods.

Several features of the model (e.g., the capacity expansion, dispatching, and especially the
renewables areas) employ methods that differ from previous modeling approaches and are very
creative and innovative in nature. The major advantage to having a different methodology is that
it may offer new insights. The disadvantage is a public relations problem in educating analysts
about the uses and applicability of the new methodology.

One major concern of the panel was the way in which the renewable space was searched to find
an optimum allocation of available renewables. The concern is that the whole economic and
policy space be searched. Although it is a little hard to determine from the documentation, it
appears as if the search is beginning at the origin, or the zero use of renewables point. If the
model then settles in any local optimum, it will probably be in the vicinity of the start of the
search, and this would bias against the use of renewables.

Demand

Demand modeling requires close attention from the user; it is entirely exogenous. Conservation,
independent producers, and demand-side management effects must all be backed out of the load
seen by the electric system. Without this attention, the model will obviously bias in favor of
supply-side solutions, including renewables. A helpful addition here might be to use a post-
processor to generate the demands that would be consistent with costs of electricity in various
years. The user could then immediately see if changes in demand inputs were necessary. There
is also some concern about the accuracy with which demand seasonality is modeled and the way
that correlations are missed with seasonal fuel cost variations and seasonal renewable
performance variations.

Capacity Expansion

The capacity expansion offers a very creative, alternative approach to other methodologies. It
incorporates renewable resource depletion. It is well documented and has been validated against
the Electric Generation Expansion Analysis Systems (EGEAS), a widely used electric industry
expansion tool.”

Regional models are, however, difficult to validate against reality. The gap method, in
particular, needs additional documentation, especially with regard to its problems: occasionally
choosing uneconomic technologies, periods if disequilibrium, and biases. Repowering,
especially repowering with combined cycles, also needs to be offered as an alternative to
retirement.




Reliability

The conceptual approach to reliability in TFRM is an important improvement over the full-
capacity/no capacity credit approaches that some other models use for intermittent renewable
energy technologies. There are, however, some issues and weaknesses that require investigation.
The use of intermittent renewables as negative loads makes some reliability and reserve issues
more difficult to study. This treatment also does not account for forced outages as a function of
unit size or correlation of renewable energy productions.

The biases are difficult to sort out. Not accounting for some renewable technology reliability
problems would tend to overestimate the use of renewables. However, biases toward lower
reserve margins and lack of unit-size outage considerations would bias against renewables.

Dispatch

The dispatch logic of the TFRM is a traditional, deterministic, merit order dispatch. It seems to
fit the renewables’ needs impressively, and reacts properly to many different sensitivity tests.

It seems clear that with the national screening objective, the TFRM has to operate on regions (10
versus 13 regions is a debatable issue). And with regional modeling, it seems appropriate to use
a deterministic technique, rather than a laborious probabilistic method.

The modelers are to commended for testing their dispatching model against a Booth-Baleriaux
probabilistic method and against a Lilienthal probabilistic method.® The method used in the
TFRM consistently underestimates energy displacement from gas turbines.” Based upon a
November 15, 993, briefing by Sandia staff, the TFRM method underestimates these peaking
energies displaced by wind and photovoltaics by a factor of 4 to 6. The approximation used
probably is a little crude at the peak upswings. The quantities and costs are small (about 2
percent), but still worth concern if storage or peaking renewables are being modeled, or if there is
a significant quantity of renewables. The bias here is toward the used of more gas turbines, and
less attractive renewables.

It is clear that with a substantial amount of intermittent renewable capacity, such as wind and
solar, that a system or region might need more than th usual 7 percent spinning reserve. The
right value may even be as high as 15 to 20 percent. In order that the spinning reserve be tied to
the renewable capacity decision, it might be necessary to construct renewable turbine hybrids or
renewable storage hybrids.

The TFRM results are often tightly constrained by operating and capacity assumptions. The

operator must be aware of pressures and strains within the model. For this reason, it seems very
important that the model output routinely print capacity factors (or percentage operating levels),
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cost of electricity, and other outputs that will make it easier for the user to make exogenous
feedbacks.

Storage

In the comparison of the TFRM with EGEAS, the TRFM builds about 80 percent more pumped
storage in the year 2006, but is about 10 percent lower by the 2012. This should be considered to
be a bias in favor of building storage in the near term.

Storage may not be an important issue to correct if the questions revolve around renewables.
However, there are two indications from the storage model run that storage may not be handled
properly in the model. With the used of storage, the decrease in the use of baseload coal is
counterintuitive, as is the increase, especially of the parking gas turbines. The modelers have
looked at this and determined that this behavior is appropriate since, given the numbers in the
trial run, coal is competitive with combined cycle at capacity factors as low as 25 percent.
Hydro- storage is added in the storage scenario that was run, but the cumulative capital costs and
the cumulative operating costs are higher, leading to some question about why it was built. The
explanation for this problem seems to come from the fact that, although not optimal in the
current year, storage is economic in the long-term average. It is impressive that the model can
capture such subtle concepts.

Transmission

TFRM has no real transmission modeling capability. It is recommended that this model
incorporate a technique similar to that used by the REP model. Its simulations look reasonable
and appear to be consistent with areas where there are good data, such as California.

Finances

The model incorporates technological and financial risks in a rudimentary way. Models that do
not include these risks at all are likely to miss the main issue involved in the selection of
renewables. Risk-less models will overestimate the use of renewables, and so TFRM has much
greater accuracy in this area.

However, the model does not take into account the varying cost of capital by utility type, private
or public. Some of the financial risks of new technologies are not accounted for, as they are in
the REP model. A better study of the value of gamma (the cost diversity parameter y) would be
helpful. It appears that the TFRM results are in nominal dollars, but this requires further check-
ing into the dollars and the accounting.
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Environmental Concerns

The TRFM does an excellent job in modeling the effects of the various carbon tax possibilities.
On other environmental issues, however, the model may have some difficulties. One such area is
that the total sulfur ceilings of the Clean Air Act can be exceeded in the model. These would
probably have to be modeled with surrogate sulfur taxes, which would have to be adjusted until
the sulfur caps were met.

Another untreated issue is the total life-cycle carbon implicit in the construction of facilities,
although the carbon implicit in the production of fuels was accounted for in the trial runs.
National carbon-limiting scenarios would have to take account of these implicit carbon
emissions. The costs of materials and fuels would also go up with carbon taxes. This is a data
problem rather than a methodological problem.

Additional untreated issues include land use, aesthetics, habitat destruction, and many other
issues which are not amenable to a national modeling methodology. Values or proxy values
must be generated before such externalities could be analyzed.

It is difficult to approximate the bias involved in not treating these environmental issues. Not
including regional or nation sulfur caps would bias against renewables. Life-cycle carbon
accounting would probably bias slightly in favor of existing units. Land use, aesthetics, and
habitat concerns might bias against renewables.

Usability

The temptation seems to be to make the TFRM act like an exact utility planning model, such as
EGEAS. There are several reasons why this would not be the ideal model. First, EGEAS, and
other more detailed utility capacity planning models, were developed to suggest the next optimal
unit to add to a system. Putting together a whole string of such next optimal units and adding the
other utilities in a region would not provide a good predictor of the future of that region. It
would be knife-edge in its selection of generation types, that is, all of one kind. It would not
capture the risks, financial or technical, or the fuel diversity which is another important risk
hedge used by utility planners. In short, a more statistical approach will do a far better job of
forecasting regional capacity planning. TFRM incorporates those more statistical techniques.
Not only would the addition of individual utilities and individual units be the wrong direction for
FTRM to take, but it would make the model unusable for simulations of regions or the United
States.
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