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Solving Nonlinear Heat Conduction Problems with
Multigrid Preconditioned Newton-Krylov Methods *

William J. Rider! Dana A. Knollt
July 22, 1997

Abstract

Our objective is to investigate the utility of employing multigrid preconditioned
Newton-Krylov methods for solving initial value problems. Multigrid based method
promise better performance from the linear scaling associated with them. Our model
problem is nonlinear heat conduction which can model idealized Marshak waves. Here
we will investigate the efficiency of using a linear multigrid method to precondition a
Krylov subspace method. In effect we will show that a fixed point nonlinear iterative
method provides an effective preconditioner for the nonlinear problem.

1 Overview and Motivation

Nonlinear probiems are ubiquitous in physics and their efficient solution is of great practical
interest. In particular nonlinear initial value problems present a unique set of challenges
especially with respect to the efficiency of the solution. It is our intention to investigate
Newton-Krylov methods which have shown great promise in solving a wide class of nonlinear
problems [2].

It is well known that the efficiency of the Newton-Krylov methods is critically dependent
on the effectiveness of the preconditioner. Traditional preconditioning (typically ILU(n))
shows less than optimal scalability practically limiting time step size and mesh size [?].
Storage becomes an increasing issue with ILU(n) as the degree of fill-in increases. Our
intention is to investigate the potential of multigrid preconditioning to alleviating this short-
coming. Furthermore, the basis of a simple nonlinear iteration such as a Picard iteration
(based on a multigrid solver) can serve to precondition Newton’s method implemented with
a matrix-free Newton-Krylov algorithm.

*This work performed under the auspices of the U.S. Department of Energy by Los Alamos National
Laboratory under Contract W-7405-ENG-36. Presented at the 3rd IMACS International Symposium on

Iterative Methods in Scientific Computation, July 9-12, 1997, Jackson Hole, Wyoming.
tLos Alamos National Laboratory, Applied Theoretical and Computational Physics Division, Hydrody-
namics Methods Group wjr@lanl.gov

tLos Alamos National Laboratory, Theoretical Division, Plasma Theory Group, no1@lanl .gov
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It has been shown that GMRES (8] has advantageous properties for Newton-Krylov [5].
The Krylov vectors are well behaved and the convergence is monotone. When GMRES is used
with as the Krylov method, the issues regarding the scaling of work and storage are especially
critical. This is due to the required storage of the Krylov vectors and the increase in work
per iteration associated with the orthogonalization process in the Arnoldi algorithm. The
multigrid algorithm in addition to its scalability is also more effective per iteration than other
typical preconditioners and should reduce the raw number of linear iterations significantly
(reducing storage needs greatly for large problems). We are interested in combining multigrid
with Newton-Krylov in order to give better performance.

Below we will introduce the physics of our model problem the Marshak wave as well
as the definition of the problem. We then will describe its discrete solution in terms of
spatial and temporal differencing. Our multigrid method is then discussed and applied to
the Marshak wave. Its performance is accessed in a several respects. We then introduce
coupling the multigrid method to Newton Krylov. An effective strategy to implement this
approach involves the use of a simple nonlinear iterative method such as the Picard iteration
to precondition the inexact Newton’s method. Finally the results and performance of the
combined multigrid matrix-free Newton-Krylov method is shown. In particular a direct
comparison is made of the Picard and inexact Newton-Krylov methods is provided.

2 The Marshak Wave Problem

The Marshak wave results from solving the IVP for nonlinear heat conduction (an approxi-
mation to radiation transport),

or

=
where D (T, Z) = CT"/Z® and n = 0 to 3. T is the temperature, D is the thermal diffusivity
(opacity) and Z is the mass number of the material. This equation is a valid approximation
in an optically thick region that in nonrelativistic where the thermal energy dominates the
radiation energy (Eg,q < T'*)

The solution of this equation presents us with two basic problems: the nonlinearity asso-
ciated with 7" and the jump discontinuities associated with changes of material. Furthermore
the jumps can be quite large and in the problems used here approach ratios in effective dif-
fusion coefficients of 107 to 10'°. This makes the associated linear algebra problem quite
difficult necessitating an emphasis on the robustness of the methodology.

V- (D(T,2)vT*) (1)

2.1 Problem Statement

The specific problem that is studied here is shown in Figure 1. The problem consists of a
low atomic mass number (Z = 10) path embedded in a high atomic mass number material
(Z = 200). A high temperature is applied to one boundary and a Marshak wave will

1In a real sense this equation represents a drastic simplification of radiation transport. More complicated
models include multiple temperatures, frequencies and are transported rather than diffused. The physics is
discussed in more detail by Zeldovich and Raizer [?] and Mihalas and Mihalas [?].
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Figure 1: Problem geometry, initial and boundary conditions for the examples given in this
paper.

progress quickly through the low Z material. For D « T3, the boundary conditions and the
material given, the jump in the diffusion coefficient can be as large as 10!° across a material
interface (107 for D o T°). Figure 2 shows two example solutions for different forms of the
opacity’s dependence on temperature. As the nonlinearity increases, the sharpness of the
wave increases and as we will see later, the difficulty of obtaining the nonlinear solution.
Next, the discretization of this problem is given.

2.2 Discrete Representation

For the nonlinear diffusion operator the discrete form chosen is a five point Laplacian,

N(T)~ V- D(z,y) VI =~ ' (2)
1 T — T T — T
Az lD”;*”' Ae  DedT Ag
1 Tii — T P
oy [P Dy TR,
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(a) Solution at £ = 1.0, D o< T° 1282 grid. (b?dSolut1on att=15x10"%, Do T% 128
grid.

Figure 2: Two example solutions showing the general characteristics of the solution to the
problem given in Figure 1

For use with multigrid a fully linearized form must be used,

L(T)=V-D(z,y) VT = (3)
1 (2 Tip;—-T; = Tij— T'i—l,j]
Az [DH%J Az B Di_%’j Az
1 - T o — T _ P
= |D,,  h ki p ., ThiT Thitl

The effective diffusion coefficient is split into three parts: a material dependent term.
D, =C/|Z3,
which uses a harmonic mean, D = 2D, D,/ (D; + D). A temperature dependent term
Dy =T"

which is developed assuming a linear variation in temperature between grid points and de-
termining an integral average D (T},T;) = (T;H - Tl"'"l) /((n + 1) (T2 — T1)). The overall
diffusion coefficient is D = D,, Dr. A radiation term for the fully linearized equation

Dy (Ty, Ty) = (Ty + T3) (T2 + T3)

thus
Dy(T1,To) (T - Th) = T24 - T14
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The overall linearized diffusion coefficient is D = DD,.

The form of the operator and the diffusion coefficient can have a profound impact on
the linear algebra. Irrespective of the form of the diffusion coefficient, the form of L is
symmetric positive definite. On the other hand, the Jacobian of N is nonsymmetric and as
the temperature front becomes sharper, can become indefinite. It should be obvious that
working with L is advantageous.

An explicit scheme can be defined by the forward Euler’s method

T™ = T™ 4+ AtN (T™),

or improved Euler’s method
1
T™E = T 4 5AtN (™),

T™1 =T + AtN (T™3),

with 1 or 2 function evaluations per grid point per time step. The integration method is

stable if
DAt

: 4h2
Unfortunately this is extremely restrictive for this problem making an explicit integration
impractical.

The standard approach is a semi-implicit method. The semi-implicit method is defined
by an analytical linearization of (1) and a backward Euler’s method,

<1

8T — AtL(5T) = AtN (T™), (4a)

T™ = T™ 4 §T. (4b)

This method is unconditionally stable (linearly). While it is stable, it is nonlinearly inac-
curate for large time steps, At > Atexp]icit‘ Amount of work proportional to the “work
units” used in solving the multigrid problem. Roughly speaking the solution must be at least
20 times greater than the explicit stability limit if the implicit solution takes 5 iterations/V-
cycles with the MGCG algorithm. At time steps of this size or larger the accuracy of the
solution is an issue especially when one considers the effect of the lack of convergence in the
nonlinear sense.

Picard (fixed-point) iteration uses the semi-implicit method in a iterative sense. The

time step advancement now becomes an iteration,
ST AL(ET) = Tem T 4 Auk (7).

Tn+1,m+1 — Tn+1,m + JT

The convergence of the linear problem is tied to 10~2 times that of the nonlinear problem in
our work here. This limits the amount of work that used to produce solutions that poorly
approximate the nonlinear solution.
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Newton’s method uses the multigrid preconditioned Krylov (GMRES) for the solution.
The sequence is identical to that used in the Picard iteration, except that the operator on
the LHS of the equation is an approximation to the true Jacobian (in a matrix-free sense).

ST — AtN (8T) = T™'™ — T™ + AtN (T™™),

Tn+1,m+1 — Tn.+1,m + 5T

This method is used as an inexact Newton’s iteration with the same relationship between
the nonlinear and linear convergence as the Picard iteration.

3 Newton-Krylov Methods

Our goal is to compute an inexact Newton iteration using a preconditioned Krylov method
to calculate the updates to the dependent variables by approximately solving,

J(x™)dx = —F(x™), (5)
and
x™H = x™ + adx (6)

to solve F (x) = 0. The under-relaxation factor a is defined by a@ = min (1,1/ ||87/T}|). We
can do this in a matrix-free manner without forming the full Jacobian via a finite difference
approximation,

F(x+ev)— F(x)

€

Jv

(7)

where € = p (1 + ||v]|) and p = 10~7 here.

The properties of GMRES make it advantageous for use as the Krylov method here
(conversely the properties of other methods such as CGS, BiCGStab, and other similar
methods are problematic). Additionally, GMRES has the property of finite termination and
is more robust as a consequence. This is offset to some degree by the increased storage and
work requirements imposed by GMRES. As noted before preconditioning the linear problem
is essential for efficiency. Standard ILU(n) preconditioning lose efficiency as the problem size
grows and the corresponding growth in the number of GMRES iterations creates storage (and
work) needs that limit problem size. We will employ a multigrid algorithm developed below
to overcome this difficulty.

4 A Multigrid Algorithm

Previously [7, 6] a multigrid algorithm was developed for solving the pressure equation in
a variable density incompressible flow integrator. This multigrid method uses standard
smoothers (weighted Jacobi, Gauss-Seidel) and piecewise constant restriction and prolonga-
tion (for dealing with discontinuous coefficients). It was found to work well for Dhjgh [Diow <
104,

Occasionally it failed to effectively converge (less than 10 V-cycles for 2 pre- and post-
smooths). Often these failures were characterized by two things: large discontinuities in
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effective diffusion coefficient and fine scale structure in the effective diffusion coefficients
form.

Typically, the answer to such problems is to resort to writing the multigrid algorithm in
a more rigorous form by employing Galerkin coarse grid operators which are in turn operator
dependent [3, 4]. A simpler course of action was taken here that has proven to be extremely
effective. In the vast majority of cases using the above algorithm to precondition a conjugate
gradient algorithm returns the method to high efficiency and linear scaling characteristic of
multigrid [9, 1].

Based on the results of using this multigrid algorithm to precondition the conjugate
gradient algorithm, a study of preconditioning the Krylov iteration in a Newton-Krylov
iteration was undertaken. Previously, we have discussed the improvement this approach
provided in solving boundary value problem such as Burgers’ equation [?].

For Newton-Krylov the linearized operator (like that used in the semi-implicit method)
is used to precondition the nonlinear problem. This is approach in effect uses a Picard
iteration to precondition the inexact Newton’s method. The Krylov method is implemented
in a matrix-free fashion. While the linearized operator is SPD, the Jacobian is nonsymmetric
and can be indefinite.

We anticipate scaling similar to that observed with the conjugate gradient method pre-
conditioned by the multigrid. Next, we will show some results demonstrating the efficacy of
our approach.

5 Results

Here we will show results for several of the issues presented above: the multigrid algorithm
stand alone, the Newton-Krylov method and a comparison of the Newton Krylov and Picard
iteration.

5.1 Stand Alone Multigrid Performance

The performance of the multigrid algorithm is critical to the overall solution strategy pursued
here. Earlier uses of this multigrid method have shown that the multigrid’s performance
could degrade significantly with increases in the ratio of diffusion coefficients and material
topology of a problem. Here we show that a similar phenomena occurs with the Marshak
wave problem solved here.

The solution of a single linearized system is shown in Figure 3. While the first V-cycle
reduces the residual by over an order of magnitude, the next order of magnitude reduction
in residual norm requires more than 15 V-cycles. Table 1 shows these results for a wider
variety of conditions and grid sizes. It should be noted that each of these problems uses
a fairly small time step and when the time step size is increased the multigrid algorithm
will fail to converge. This problem bounds the simpler end of the spectrum of problem
difficulty thus indicating that something else must be considered for this problem. At lower
resolution, the 322 grid, the effects of under-resolving the material boundary are indicated
by the poor multigrid performance (which will not effect the combined multigrid conjugate
gradient method).
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Figure 3: Standalone multigrid performance for a Marshak wave problem (D o T®) and a

322 grid.
Table 1: Average number of multigrid cycles as a function of grid size and diffusion coefficient
nonlinearity.

Grid | DxT° | DxT' | DxT? | D x T?

322 5.2 7.7 12.6 38.9

642 4.9 7.7 12.7 22.6

1282 5.0 74 12.3 16.9

2562 5.2 7.6 11.9 16.4

Next, we consider the performance of using this multigrid to precondition a conjugate

gradient algorithm.

5.2 Multigrid Preconditioning Conjugate Gradient

If this multigrid is instead used to precondition a conjugate gradient algorithm the story
changes. In Figure 4a the same problem that was shown in Figure 3 is given. The combi-
nation of multigrid with a conjugate gradient method converges in 5 iterations (5 V-cycles).
The rate of convergence is relatively uniform iteration-to-iteration with each being roughly
as effective as the first stand alone multigrid V-cycle. If the difficulty of the problem is
increased by increasing the time step size to the extent that the problem is effectively a
steady-state problem, the method still converges efficiently as shown in Figure 4b. Table 2
shows that for smaller time step sizes the order of the nonlinearity play nearly no role. If
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(b) Multigrid Preconditioned Conjugate Gradient

(a) Multigrid Preconditioned Conjugate Gradient
Convergence for D o« T and large time step.

Convergence for D o< T2 and small time step.

Figure 4: The convergence of the multigrid preconditioned conjugate gradient algorithm on
two Marshak wave problems.

Table 2: Average number of iterations of the multigrid preconditioned conjugate gradient

algorithm for Marshak wave problems where the time step is small.

Grid | DxT° | DxT! | DxT?| D oxT?
322 4.2 4.3 4.3 4.4
642 44 4.5 4.5 4.5
1282 4.2 4.4 4.5 4.5
2562 44 4.6 4.6 4.7

the time step size is increased to the extent of making an effective steady-state problem,
the method no longer scales independent of problem size, but retains its relatively small
dependence on nonlinearity as shown in Table 3 scaling at about N*-%6.

Now we consider the efficiency of the full nonlinear time dependent solution algorithm.

5.3 Performance of the Nonlinear Implicit Solution

The full nonlinear solution will employ two methods: a Picard iteration and a inexact New-
ton’s method. The linear algebra for each inexact Newton iteration is a Krylov method
(GMRES) preconditioned with a multigrid method. This preconditioner is exactly the lin-
ear solution from the Picard iteration.
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algorithm for Marshak wave problems where the time step is very large.

Grid | DxT° | DxT' | DxT? | D xT?
322 8.4 8.3 7.8 7.6
642 9.5 8.8 8.5 8.3
1282 9.8 9.4 8.9 8.5
2562 11.0 10.2 9.9 9.7

Table 4: The Picard Iteration, D o« T°, for the full nonlinear problem with counts of the
nonlinear/linear iterations used to converge the solution to a specified residual tolerance.

Nonlinear € At=1 At=10.1 | At=0.01
10~4 22.2/100.3 18.2/63.2 16.7/37.8
108 43.8/208.3 32.2/116.5 29.5/67.8

Table 5: The inexact Newton-Krylov Iteration, D o T°, for the full nonlinear problem with
counts of the nonlinear/linear iterations used to converge the solution to a specified residual

tolerance.

Nonlinear e | At=1 [ At=0.1 | At =0.01
10~ 6.0/21.2 | 7.3/27.0 | 6.6/23.5
108 7.9/29.3 | 8.9/33.6 | 8.3/30.7

First, we compare the two methods on the simple problem where D o 7 at two con-
vergence tolerances. While the differences are most acute at large time steps (At = 1), the
differences persist for all time steps and grow substantially at tighter tolerances. This growth
is indicative that the Newton iteration enters into the quadratic region of convergence for

the problem. A summary of the results are given in Tables 4 and 5.

The situation becomes more favorable for the inexact-Newton-Krylov algorithm as the
nonlinearity of the problem increases. This is seen in the compilation of results shown in
Tables 6 and 7. The convergence of two cases given here are shown in Figure 5. In Figure 5a
the Picard iteration is shown and it is clear that the linear iteration is quite wasteful in
terms of its work because of the slow convergence of the nonlinear iteration. The opposite is

10
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Table 6: The Picard iteration for D o T3.

Nonlinear ¢ | At = 0.001 | At = 0.0001 | At = 0.00001
10—* 54.3/174.9 | 29.5/63.9 14.5/25.9
10-# 97.4/326.2 | 52.9/114.6 | 26.2/49.0

Table 7: The Newton-Krylov iteration for D o T3

Nonlinear € | At = 0.001 | At = 0.0001 | At = 0.00001
10~* 15.3/85.6 8.4/35.5 5.7/15.1
108 16.8/94.2 10.2/44.1 7.1/20.2
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(a) Mulitgrid Picard Iteration (b) Multigrid Newton-Krylov

Figure 5: The convergence of the multigrid preconditioned Picard and Newton-Krylov algo-
rithms for € = 1078, At = 107% and D o« T3.

true with Newton’s method (Figure 5b) where the convergence of the linear and nonlinear
problem are aligned. In that case the convergence is nearly monotone with respect to the
work done. The conclusion that can be drawn from this study is that the Newton-Krylov
combination should be more robust than the Picard iteration.
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5.4 Closing Remarks

In summary, multigrid Newton-Krylov methods appear to be attractive for nonlinear initial
value problems. The multigrid algorithm is critical to the efficient solution and using some
sort of Krylov acceleration improves the robustness of the multigrid so that it can be used for
this type of problem. Newton’s method is significantly more efficient than a Picard iteration
in providing accurate nonlinear solutions for this problem. The Picard iteration is effective
in providing a preconditioning strategy for nonlinear problems.
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