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Abstract

We have implemented a parailel computer architec-
ture based entirely upon commodity personal computer
components. Using 16 Intel Pentium Pro microproces-
sors and switched fast ethernet as a communication fab-
ric, we have obtained sustained performance on sci-
entific applications in excess of one Gigaflop. Dur-
ing one production astrophysics treecode simulation,
we performed 1.2 x 10'° floating point operations (1.2
Petafiops) over a three -week period, with one phase
of that simulation running continuously for two weeks
without interruption. We report on a variety of disk,
memory and network benchmarks. We also present
results from the NAS parallel benchmark suite, which
indicate that this architecture is competitive with cur-
rent commercial architectures. In addition, we describe
some software written to support efficient message pass-
ing, as well as a Linux device driver interface to the
Pentium hardware performance monitoring registers.

Keywords: Beowulf, treecode, benchmarks

1 Introduction

Moore’s Law contends that the performance of a
commodity microprocessor of a given price dou-
bles every 18 months. Anyone involved with com-

puter technology is well aware of the implications
of this law. Current efforts in high-performance
computing have been forced to rely on micropro-
cessors and commodity DRAM to remain com-
petitive, while adding value in areas such as net-
work interconnects and proprietary operating sys-
tem software and development tools.

The tremendous profit opportunity in hardware
at the consumer level has driven the develop-
ment of increasingly fast hardware accompanied
by extreme price deflation. We have entered a
phase where the different brands of CPU, disk
storage, and network hardware have very little
to distinguish them, apart from price. Building
upon the foundation of the BEOWULF project
[1], it has become possible to construct high-
performance computers entirely out of commod-
ity components and free software, thus obtaining a
significant price/performance advantage over ma-
chines which require an expensive design and de-
velopment phase. The development of powerful,
free operating systems (Linux, FreeBSD), mes-
sage passing standards (MPI), and support for a
hardware independent peripheral interconnect bus
(PCI), has finally allowed us to take advantage of




the opportunity provided by low-cost commodity
computer hardware.

The extreme disadvantage that all supercom-
puter vendors face is that they must be all things
to all people, and yet ship a very limited volume
. of their high-priced product. If a customer requires
a parallel debugger with a graphical user interface
and an HPF compiler, it is a large and real expense
to develop such software, which must be added to
the cost of the hardware if the company intends
to survive. In many cases, not enough of these
costs were added, as is made clear by the list of
bankruptcies and buy-outs in the supercomputer
industry. Ideally, a self-sufficient user who does
not require anything more than reliable hardware
and an efficient send/receive message passing call
should not be expected to pay for software which
they will never use. This is, however, exactly the
case with current parallel machines.

It is our view that many of the applications
which require supercomputer performance will
perform well on commodity parallel architectures.
As one example, in 1992 two authors of this report
were awarded a Gordon Bell Performance Prize
[2] for “Astrophysical N-body Simulations Using
Hierarchical Tree Data Structures” running on the
512 processor Intel Delta machine. It is now five
years later, and it is possible to run that same
simulation on a machine constructed out of mail-
order parts and free software for a cost of less than
$50,000. Not only that, we have found the com-
modity system to be as user-friendly and reliable
as the current generation of parallel supercomput-
ers. '
Over the past three years, several important
events have enabled commodity supercomputing:

o The dramatic increase in microprocessor per-
formance has continued and accelerated. The
Intel Pentium (P5) and Pentium Pro (P6) have
improved floating point performance by more
than a factor of ten over the i486. This has
narrowed the performance gap between the
high-volume Intel processors and the top-of-
the-line workstation microprocessors signifi-
cantly. The difference in raw floating point
performance (on typical scientific workloads)
between a 200 MHz Pentium Pro and the best

DEC, SGI/Cray, HP/Convex, Sun or IBM has
to offer is between a factor of three and five.

o A free Unix operating system (Linux [3]) has
been written and is being used by hundreds
of thousands of people. Originally designed
for Intel family machines, releases are now
running on Alpha, PowerPC and Sparc archi-
tectures. The freely distributable system has
promoted development of high-quality device
drivers for nearly every possible peripheral
device (notably SCSI and Networking cards).

e Intel designed the Peripheral Component In-
terconnect (PCI) local bus [4] which offers
greater than 100 Mbyte/second communica-
tion from the processor subsystem to the out-
side world, in a processor-independent man-
ner. The PCI bus has become a de-facto stan-
dard, and allows peripheral cards (such as
Fast Ethernet interfaces) to be plugged into
any machine, regardless of CPU architecture.

o Fast Ethernet has leapfrogged other
technologies such as ATM in terms of
price/performance. 100 Mbit ethernet is ca-
pable of a bandwidth of over 10 Mbytes/sec
between two points, with interface cards
which cost less than $100 each. Commodity
switches are now available which allow up to
16 machines to communicate with each other
at the full 100 Mbit bandwidth, at a costof a
few hundred dollars per port.

e The MPI standard has enabled the develop-
ment of a reasonable amount of portable par-
allel software. Groups working on machines
such as the CM-5, Intel Paragon, IBM SP-2,
and Cray T3D have spent considerable effort
over the past several years to develop such
software, and can take immediate advantage
of new machines which support the MPI mes-
sage passing standard and a suitable UNIX
software environment.

2 Architecture

We have constructed two distinct 16 processor Pen-
tium Pro machines, each having 2 Gbytes of RAM,




and either 50 or 80 Gbytes of disk space. The ma-
chines differ primarily in their network topology.
The cost of the machines in the fall of 1996 was
roughly $50,000—$60,000. The price to construct
an equivalent system as we go to press in May 1997
is less than $40,000.

2.1 Loki and Hyglac

At the Theoretical Division of Los Alamos Na-
tional Laboratory, Loki [5] was constructed from
16 nodes as described in Table 1. The whole ma-
chine contains 2 Gbytes of memory and 50 Gbytes
of disk. The four-port full-duplex ethernet cards
allowed us to experiment with a variety of network
topologies, such as a hypercube. The fifth ether-
net port was connected to one of two 3Com Super-
Stack II Switch 3000 TX 8-port full-duplex Fast
Ethernet switches, which provide connectivity to
a front-end server, as well as bypassing the multi-
hop hypercube routes. An early lesson we learned
is that the memory bandwidth of the Pentium Pro
Natoma chipset is not sufficient to support more
than about 20 Mbytes/sec of message traffic per
node when using TCP or UDP protocols (due to
copies of data from the kernel to user space), thus
for the results quoted in this paper, Loki was con-
nected in a split-switch topology, using only two
ethernet ports per node. The video card in each
node is not strictly necessary, but is required to ac-
cess the initial BIOS setup screen, and to see cer-
tain hardware error messages.

At Caltech/JPL, Hyglac [6] was constructed
from 16 nodes which were almost identical to those
of Loki. The primary differences were the use of
D-Link DFE-500TX 100 Mb Fast Ethernet Cards
($85 each), a Bay Networks 28115 16-way Fast
Ethernet Switch, two Western Digital 2.52 Gbyte
drives per node, and the use of EDO DRAM. The
total price of Hyglac (including 8.75% sales tax)
was $50,498.

2.2 Advantages of a Commodity Architec-
ture

Commodity hardware can be upgraded with little
difficulty. The machines described here could be
upgraded to a different brand of microprocessor,

such as a 500 Mhz DEC Alpha CPU, by replacing
only the motherboard and processor. The memory,
disk, and network systems can be re-used. Also,
since the Linux operating system supports both
the Pentium and Alpha, the software environment
would remain the same through such an upgrade.
Maintenance contracts for current workstations
and supercomputers are expensive. One can ex-

‘pect to pay 5-10% of the price of the machine per

year in hardware support costs. Hardware sup-
port is much less demanding for commodity paral-
lel architectures, which consist of many replicated
parts. It is a simple matter to keep spare parts (or
a spare node) on hand. This converts the usual or-
deal of emergency phone calis to the vendor into a
ten minute swap-out of the offending part. Many
parts (memory and network cards) are traditionally
covered by a lifetime warranty, and no singls it
of the machines described here costs more w:an
$700 to replace (apart from the ethernet switch).
Even more significantly, the software maintenance
of these systems is significantly less complex than
other machines of equivalent performance, which
is a significant advantage for many small groups
which would not be able to afford the additional
system management expense of a typical parallel
supercomputer.

The technology described here is not complex.
In fact, both machines described in this paper were
sent in shipping crates to Supercomputing *96 in
Pittsburgh in November 1996, where they were
connected with some additional ethernet hardware
to form a single 32 processor machine which was

- demonstrated during the conference.

3 Performance Results

3.1 Low-level benchmarks

We present measures of disk and memory band-
width in Table 2 using the STREAM [7] and Im-
bench [8] performance analysis tools. We note that
the memory bandwidth improvement coming from
EDO DRAM is clearly discernible, with EDO im-
proving memory read bandwidth using the Intel
VS440FX board by 40%, and write and copy band-
width to a somewhat lesser degree. Although we
do not have space to present the detailed data, we




Table 1: Loki architecture and price (September, 1996).

[ Qty. | Price | Ext. | Description
16 | 595 9520 | Intel Pentium Pro 200 Mhz CPU/256k cache
16 15 240 | Heat Sink and Fan
16 | 295 | 4720 | Intel VS440FX (Venus) motherboard
64 | 235 | 15040 | 8x36 60ns parity FPM SIMMS (128 Mb per node)
16 | 359 | 5744 | Quantum Fireball 3240 Mbyte IDE Hard Drive
16 | 657 | 10512 | Cogent EM400 TX PCI Quartet Fast Ethernet
16 | 129 | 2064 | SMC EtherPower 10/100 Fast Ethernet PCI Card
16 59 944 | S3 Trio-64 1Mb PCI Video Card
16 | 119} 1904 | ATX Case
2| 4794 | 9588 | 3Com SuperStack II Switch 3000, 8-port Fast Ethernet
255 | Ethernet cables
Total $60,531

Table 2: Memory and Disk micro benchmarks.
Bandwidth - is reported in Mbytes/sec. - Identi-
cal Loki nodes were used to compare Fast Page
Mode (FPM) Dynamic Random Access Memory
(DRAM), and Extended Data Out (EDO) DRAM.

Benchmark BW (FPM) | BW (EDO)
Stream Copy 80 100
Stream Scale 80 100
Stream Add 88 109
Stream Triad 88 107
Imbench Mem Read 164 231
Imbench Mem Write 65 83
Imbench Mem Copy 46 53
Disk R/'W 42

have found that EDO DRAM typically improves
performance on the NAS benchmarks (which are
representative of many Fortran codes) by about
20%. On the SPEC95 benchmark suite, EDO im-
proves performance to a lesser degree (about 8%
on average, but three of the components show in-
creases of 15%). _

In Table 3 we present network bandwidth
and latency numbers for a variety of protocols.
The Salmon-Warren Message Passing Interface
(SWAMPI) is a small and fast implementation of

Table 3: Comparison of various message passing
protocols. SWAMPI, MPICH 1.0.13, TCP, UDP
and U-Net numbers are with Linux 2.1.29, others
with 2.0.29. Bandwidth is reported in Mbytes/sec.
Latencies are round-trip time in microseconds.
The last column includes the latency added by the
fast ethernet switch (as opposed to a direct connec-

tion with a crossed RX/TX cable).
| Version BW | Lat. | Lat. w/sw |
SWAMPI 11.7 | 208 238
MPICH 1.0.13 | 3.2 503
MPICH1.1.0 | 88 390
LAM 6.1 7.3 2690
LAMG6.1 c2¢ | 11.6 322
TCP socket | 11.7 | 158 182
UDPsocket | 11.7 | 131 153
U-Net 123 55

a minimal set of Message Passing Interface (MPI)
functions based on TCP sockets, and is described
later in this paper. MPICH [9] is the portable MPI
implementation from Argonne National Labora-
tory and Mississippi State University. LAM [10] is
the portable MPI implementation from Ohio State
University. U-Net [11] is a User-Space message
library, which avoids the UDP or TCP socket over-
head that the other protocols incur.



3.2 Application Benchmarks and Results
3.2.1 The Hashed Oct-tree code

Two of the authors of this paper (Warren &
Salmon) have developed a considerable software
infrastructure to support large N-body simulations
[12, 13]. Needing little more than a function to
send and receive messages, this code has been
tuned and refined over several generations of par-
allel architectures since being awarded a Gordon
Bell Prize in the performance category in 1992 [2].
It offers one reasonable way to compare the com-
modity parallel architecture with other parallel su-
percomputers, since we have made a concerted ef-
fort to optimize the code for all of these architec-
tures.

The basic algorithm may be divided into several

stages. Our discussion here is necessarily brief.
For a more detailed discussion of the intricacies of
this code, please consult the references or our Web
page (http://gso.lanl.gov). First, parti-
cles are domain decomposed into spatial groups.
Second, a distributed wee data structure is con-
structed. In the main stage of the algorithm, this
tree is traversed independently in each processor,
with requests for non-local data being generated
as needed. In our implementation, we assign a
Key to each particle, which is based on a self-
similar space-filling curve (Morton ordering). This
maps the points in 3-dimensional space to a 1-
dimensional list, which maintains as much spatial
locality as possible. The domain decomposition
is obtained by splitting this list into NV, (number
of processors) pieces. The implementation of the
domain decomposition is practically identical to

a parallel sorting algorithm, with the modification.

that the amount of data that ends up in each proces-
sor is weighted by the work associated with each
item.

The Morton ordered key labeling scheme im-
plicitly defines the topology of the tree, and makes
it possible to easily compute the key of a parent,
daughter, or boundary cell for a given key. A
hash table is used in order to translate the key into
a pointer to the location where the cell data are
stored. This level of indirection through a hash ta-
ble can also be used to catch accesses to non-local

data, and allows us to request and receive data from
other processors using the global key name space.
An efficient mechanism for latency hiding in the
tree traversal phase of the algorithm is critical.

All of this data structure manipulation is to sup-
port the fundamental approximation employed by
treecodes:
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where J;,cm = T; — Tem is the vector from 7; to
the center-of-mass of the particles that appear un-
der the summation on the left-hand side, and the
ellipsis indicates quadrupole, octopole, and further
terms in the multipole expansion.

For the treecode benchmark that follows, all ma-
chines were running the same C code, with the
exception of the machine-specific optimizations to
the inner loop. The Intel i860 machines and the
CM-5 have the inner loop coded in assembly lan-
guage. Several of the machines (SP-2, T3D and
Loki) decompose the reciprocal square root func-
tion required for a gravitational interaction into
a table lookup, Chebychev polynomial interpola-
tion, and Newton-Raphson iteration, using the al-
gorithm of Karp [14]. This algorithm uses only
adds and multiplies, and requires 38 floating point
operations per interaction, while we count 28 float-
ing point operations per interaction for the ma-
chines which use a hardware square root function.
Since this skews comparison of the actual appli-
cation performance, we also quote Mnewtons,
which are the number of gravitational interactions
performed per second. '

3.2.2 A 1.2 Petaflop simulation

Between April 18 and May 8 1997, we ran a sim-
ulation with 9.7 million particles on the 16 proces-
sors of Loki for 1047 timesteps. The simulation
was interrupted due to a scheduled power outage
in our machine room on April 25. Between April
25 and May 8, the code ran continuously for 13.5
days, with no restarts. For those of us in the habit
of staying up all night watching our job run on the
latest hardware at the supercomputer center (so we
can restart it when it crashes, because our allocated




Table 4: Treecode performance results. We calculate the forces on 10 million particles to an accuracy of
0.1% (except for the first line, where we use 322 million particles). The times reported are wall-clock time in
seconds, and they includes all message passing and load imbalance overheads. The 10 Mparticle benchmark
requires the computation of 70.668 billion gravitational interactions. Some new inner loop optimizations
were applied to the final result in the table (Loki), so attempting to extrapolate the scaling efficiency for
Loki+Hyglac is not possible.

| Site Machine | Procs | N x10° | Time | Mnewtons | Gflops | Mflops/proc
Sandia ASCI Red 6800 322 98.4 12180 | 4649 68.4
Sandia ASCI Red 4096 10 16.4 4322 1 1643 40.1
LANL T™™C CM-5 512 140.7 502 | 14.06 27.5
Caltech Intel Paragon 512 144.4 489 | 13.70 26.8
NRL TMC CM-5E 256 171.0 413 | 11.57 452
Caltech Intel Delta 512 199.3 355 10.02 19.6
NAS | IBM SP-2 (66/WN) 128 2819 251 9.52 74.4
JPL Cray T3D 256 338.0 2091  7.94 31.0
LANL SGI Origin 2000 24 394.2 179 5.02 209.0
LANL CM-5 novu 256 754.6 94 2.62 5.1
SC 96 Loki+Hyglac 32 1218 58 2.19 68.4
LANL Loki 16 2102 34 1.28 80.0

time is too valuable to lose) running a job that size
without an interruption is nearly miraculous.

The simulation was of a spherical region of
space 100 Mpc (Megaparsec) in diameter; a region
large enough to contain a few hundred thousand
typical galaxies. The region inside a sphere of di-
ameter 100 Mpc was calculated at high mass res-
olution, while a buffer region of 50 Mpc with a
particle mass 8 times higher was used around the
outside to provide boundary conditions. The initial
conditions were extracted from a 134 million point
initial dataset, calculated using a a 5123 point 3-
d FFT on Loki, from a Cold Dark Matter power
spectrum of density fluctuations. Overall, the sim-
ulation carried out 1.2 x 10! floating point op-
erations (1.2 Petaflops). We created 40 data files
totaling over 13 Gbytes. A single data file from
this simulation is 312 Mbytes is size, and they were
written striped over the 16 disks in the system, ob-
taining an aggregate I/O bandwidth of well over
50 Mbytes/sec. The entire simulation required the
computation of 3.16 x 10'3 interactions during a
wall clock time of 1,474,000 seconds (410 hours,
justover seventeen days), for an overall throughput

of 815 x 108 floating point operations per second
(815 Mflops). This simulation on Loki consisted
of as many operations as any single simulation we

 had performed on any parallel supercomputer prior

to April 1997 (when we performed a simulation on
the ASCI Intel Teraflops system with 32 times as
many particles, and 8 times as many floating point
operations). ’

A better performance result was obtained during
the initial 30 timesteps of the same simulation. We
computed 1.15 x 10'2 interactions in 36973 sec-
onds of wall-clock time, for an overall throughput
of 1.186 x 10° floating point operations per second
(1.19 Gflops). This result is better than the 815
Mflops quoted above since the initial stages of the
calculation require less time spent in tree traver-
sal overhead. It is important to note that much of
the useful work accomplished by the treecode al-
gorithm has nothing to do with floating point oper-
ations, and is notreflected in the number of Mflops
which we report. The only purpose of using a
treecode is to avoid doing as many floating point
operations as possible.




3.2.3 The NAS Parallel benchmarks

The results shown in Table 5 use the NAS Paral-
lel benchmarks version 2 [15], and results for the
SGI were obtained from the NPB Web page [16].
On the Pentium Pro, one must take great care to
assure that the compiler flags and operating sys-
tem provide 8-byte alignment for all double pre-
cision floating point variables, since performance
can suffer greatly if proper alignment is not main-
tained. This is especially true with g77, where
the ~-malign—-double flag can improve perfor-
mance by a factor of two or more. One must also be
sure to use Linux 11ibc version 5.4.23 or greater to
assure that the stack is properly aligned.

Table 5: Sixteen processor performance (Mops) for
Class B NPB 2.2 benchmarks. Data from Loki
with the Portland Group (PGI) pgf77 Rel 1.3-3
Fortran 77 compiler, the GNU 2.7.2.f.1 compilers,
and the ASCI Intel Teraflops system with PGI Rel
1.3-4a, and an SGI Origin 2000 are presented.

Loki ASCI | SGI
PGI GNU | Red | Origin

BT | 354.6 | 3314 | 4455 | 9255
SP | 2555|2245 | 3348 | 9570
LU | 428.6 | 403.7 | 490.2 | 1317.4
MG | 296.8 | 267.1 | 363.7 | 1039.6
FT | 177.8 648.2
EP 89| 127 7.1 68.7
IS 148 | 146 380 33.9

4 Tools in support of Parallel
Computation

4.1 Timing and Performance Monitoring

The Pentium architecture supports a 64-bit counter
which is incremented every clock tick, and requires
only a few assembly instructions to access [17].
On a 200 MHz Pentium Pro this supplies a real-
time clock with a 5 nanosecond tick size, which
is invaluable for performance tuning and providing
messages with accurate timestamps.

Table 6: Data for the NPB 2.2 Class A benchmarks
on Loki. The first column denotes the number of
processors, and the data are Mflops/sec (Mops/sec
for IS). This data is plotted in Figure 1.

INC|BT [ SP |LU| FT [ MG | IS

19 31 25
59 32
94| 71| 118 73} 78| 57
222 1134|161 ] 93

202 | 122
358 | 242 | 453 | 250 | 281 | 15.0

—
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Pentium and Pentium Pro processors also sup-
port an advanced set of hardware diagnostic timing
and countingroutines. These allow direct measure-
ment of very small time intervals, as well as count-
ing cache misses and other profiling support. Users
access these capabilities through per £mon, a pro-
gram we designed which allows access to the per- -
formance monitoring features of the Pentium and
Pentium Pro. Both of these processors allow mon-
itoring of two performance events simultaneously.
On the Pentium Pro there are 68 events which can
be monitored, including floating point operations,
floating point divides or multiplies, memory refer-
ences, L2 cache loads or stores and outstanding bus
requests.

To facilitate monitoring of more than two events
over the life of a process, we developed a comple-
ment to perfmon. mperfmon multiplexes over
all performance monitoring events (or some sub-
set therein) to produce an ensemble approximation
of processor utilization. For codes which run for
longer than about 5 sec (on the Pentium Pro), the
user receives an accurate estimate for all of the per-
formance monitoring events.

perfmon and mperfmon allow a glimpse into
the internal workings of the Pentium and Pentium
Pro that has not previously been possible under
most operating systems. These tools can be used
on production code or code fragments to provide
insight into code performance. For the astute pro-
grammer these performance monitoring tools often
provide sufficient information to determine if cer-
tain optimizations are warranted, and exactly how
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Figure 1: Scaling of the NAS Class A benchmarks
on Loki. :

they might increase performance.

4.2 | Message Passing Interface (MPI)

There are several publicly available implementa-
tions of the Message Passing Interface (MPI) li-
brary. While it is possible to perform computa-
tions using these libraries, their performance is not
optimal. This is certainly not the fault of the im-
plementation; it is simply impossible to support
maximally efficient communication using a max-
imally portable library. After close inspection of
the available MPI codes, we decided to write our
own minimal implementation from scratch, rather
than wade through the layers upon layers in the
MPICH and LAM codes. Rather than spend ex-
tensive effort implementing over 120 MPI func-
tions, we concentrated on efficient implementa-
tions of the basic functions: isend, irecv,
test, wait and the important collective func-
tions: reduce, bcast, and gather. Af-
ter roughly one week of effort, we had a minimal
MPI library capable of running our treecode, as
well as all of the version 2 MPI implementation
of the NAS parallel benchmarks.

This minimal library implements the most im-
portant MPI functions for both C and Fortran
in a few thousand lines of source and header files

(including comments). This may be compared to
about 100,000 lines of code in the Ohio State LAM
implementation, and 250,000 in the MPICH dis-
tribution (of which 40k lines are examples, and
100k lines are device specific). Needless to say,
it is considerably easier to understand what is hap-
pening in 2000 lines of our own code vs 100,000
of somebody else’s. Currently, the performance
of our own MPI (which we have provisionally
named SWAMPI, for the Salmon-Warren Message
Passing Interface) has been measured to improve
message bandwidth significantly over the general
purpose implementations. Also, while the perfor-
mance of LAM with the —c2c flag (which forces
the use of a more efficient protocol at the expense
of other features) is quite close to that of SWAMPI,
we found that LAM with —c2c was unable to run
many programs thatran fine without the —c2c flag.

5 Discussion

It is clear that commodity parallel processing
(CPP) architectures such as Loki and Hyglac can
perform in the role of “departmental supercom-
puter.”” The most convincing evidence we put forth
is the fact that we can (and have) performed sim-
ulations requiring 2 Gbytes of memory and 10°
operations. The overall flop rates we measure on
the NPB version 2 Class B benchmarks (240-360
Mflops) are about a factor of two less than a single
CPU Cray C90 running the NPB version 1 bench-
marks. (The version 1 NPB benchmarks have no
restrictions on how one optimizes the algorithms,
which are defined in “pencil and paper” fashion,
so if someone were willing to spend the time to
optimize the version 1 benchmarks for Loki, the
advantage of the C90 would be even less.) The
main advantage of CPP architectures may be that
they are affordable enough to be used as dedi-
cated computing resources, achieving an overall
throughput equivalent to larger machines which
must be shared with many other users.

§.1 Limitations

As presented here, the CPP architecture is unlikely
to scale up very well. Although Loki has been




configured with 5 fast ethernet interfaces, which
should be capable of an aggregate 60 Mbytes/sec,
we have found in practice that one can drive no
more than two fast ethernet interfaces to their full
potential. It seems the memory bandwidth on a
Pentium Pro motherboard with the Natoma chipset
is not capable of keeping up with more than two
fast ethernet ports at a time (when conventional
TCP or UDP message protocols are used). This
limits overall performance into or out of a node to
roughly 20 Mbytes/second, while we have shown
that the PCI bus on this platform is capable of
supporting rates of at least 40 Mbytes/sec. Using
faster network hardware would not help. In order
to obtain better performance, one needs greatly in-
creased memory copy bandwidth, or else an imple-
mentation of active messages or U-Net to avoid all
buffer copies between kernel space and user space.

5.2 Comparing machines

While all the benchmarks reported in this paper
were run on Loki, a similar suite of benchmarks
were run on Hyglac, and the results were simi-
lar within the limitations that the two machines
. were never running quite the same versions of the
operating system software or compilers, and that
Hyglac used higher-bandwidth EDO memory in-
stead of FPM memory. We can also compare
Loki to the results obtained on 16 nodes of the
ASCI Red system (Janus, which incidentally is bi-
nary compatible with Loki at the object file level).
Janus has exactly the same Pentium Pro processor,
amount of memory, and compiler as Loki. The
differences were the network on Janus is about
15 times faster (160 Mbytes/sec), the latency is
less (60 microseconds round-trip), and the mem-
ory bandwidth is higher. Overall Janus has an ad-
vantage at the 16 processor level that ranges from
10%-30% (Table 5). We estimate that roughly
half of this improvement comes from the better
memory bandwidth of the Janus nodes. Thus,
we conclude (surprisingly!) that using switched
fast ethernet instead of an exotic networking tech-
nology appears to have a fairly small effect on
performance for a 16 processor machine on the
NAS benchmarks (with the exception of the mes-
sage bandwidth hungry IS benchmark). The ef-

fect of improved memory bandwidth from the in-
terleaved memory on Janus is pratically the same
as its network advantage. Unfortunately, Intel has
discontinued the Orion chipset which supports in-
terleaved memory, and we must wait patiently to
see what the new generation of Intel chipsets with
SDRAM have to offer. We have seen that memory
bandwidth is critical to both floating point perfor-
mance, as well as network performance. It is for
this reason that using multiple processors within
each node (SMP) is unlikely to be a good idea for
many applications. It simply makes the shortage of
memory bandwidth even worse.

In terms of price/performance, one might note
that at the present time (May 1997), just buying -
2 Gbytes of memory for an SGI Origin 2000 ma-
chine costs roughly twice as much as the whole
of Loki or Hyglac. While one would be in the
neighborhood of the price and floating point per-
formance of Loki with a no-frills 4-CPU Origin
200, the amount of memory and disk space in
such an entry-level machine is certainly not capa-
ble of supporting large computations. One of the
most striking features of Loki and Hyglac is how
their excellent machine balance has fallen natu-
rally out of spending roughly equivalent amounts
on the processor, memory, disk and network sub-
systems. One should be careful not to fall into the
trap of buying a machine loaded with horsepower,
but lacking the memory and I/O subsystems which
are absolutely required to accomplish any useful
work.

Taking a look at the vendor reported prices in
Nov. 1996 for NPB Class B capable machines as
reported in [18] ($960,000 for a 24 processor Ori-
gin 2000, $3,520,000 for a 64 processor IBM SP-
2 P2SC, and $580,000 for a DEC AlphaServer
8400 5/440), we find that the price/performance
of our CPP machines on the NPB 2.2 MPI/Fortran
77 benchmarks are better by a factor of three or
more. For example, the time for a 64 processor
SP-2 P2SC-120 machine to run the NPB version
2 Class B BT benchmark is 118 seconds, beating
Loki in speed by a factor of 17, at a cost about 60
times higher. The SGI runs the benchmark in 471
seconds, 4.2 times faster, at a cost 16 times higher.




6 Conclusion

Commodity components offer an alternative route
to follow in search of supercomputer performance.
Beyond the mere cost advantage (which can be
nearly an order of magnitude in some cases) there
are many intangible benefits such as flexibility,
upgradability, and the ability to have control of
your own computing resources. We have shown
that off-the-shelf technology can now compete suc-
cessfully with the best commercial offerings for
some problems. At present, it may be arguable
whether commodity supercomputing is genuinely
superior, but the advantages inherent in mass-
market technology will only continue to grow.
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