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Diffuse scattering measurements of static atomic displacements
in crystalline binary solid solutions

G.E. Ice, C.J. Sparks, X. Jiang and L. Robertson
Oak Ridge National Laboratory, Oak Ridge TN 37831-6118

Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical
order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and
bond distances break the long-range symmetry of the crystal within a local region and
contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to
change the x-ray scattering contrast between elements has greatly advanced the
measurement of bond distances between the three kinds of atom pairs found in crystalline
binary alloys. The estimated standard deviation on these recovered static displacements
approaches 0.001 A (0.0001 nm) which is an order of magnitude more precise than
obtained with EXAFS. In addition, both the radial and tangential displacements can be
recovered to five near neighbors and beyond. These static displacement measurements
provide new information which challenges the most advanced theoretical models of binary
crystalline alloys. '

1. Introduction

Although atomic size differences have long been recognized as critical to alloy design,
experimental measurements of atomic size in crystalline alloys have been indirect or
marginally precise. The recent availability of tunable x rays from synchrotron sources now
allows diffuse scattering measurements where the x-ray scattering contrast between the
different elements in the sample can be enhanced or reduced. This has led to meaningful
recovery of individual pair displacements to typically = 0.001A (0.0001 nm)."™ In a binary
alloy of A and B atoms, the AA, AB. and BB average pair separation can be determined out
to five or more atom shells (near neighbors). This new information presents a challenge to
the theoretical community; theoretical models must allow for relaxation of the atoms away
from the sites of the average lattice.

The long-range effect of substitutional alloying on the alloy lattice parameter is well
characterized. The addition of large A atoms, to an alloy with small B atoms expands the
lattice constant from the pure B value. This is observed to be the case with a nearly linear
response of the lattice constant to concentration throughout the solubility range and is often
referred to as Vegard’s law.” Many models have been proposed to explain this linear
relationship between the lattice parameter and elemental concentration.>” Though these
models reproduce the nearly linear change in lattice parameter with concentration, actual
measurements of the individual pair distances to test both models and theories have been
almost non-existent or of questionable accuracy.
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The local effect of atomic size plays an important but still poorly understood role in alloy
behavior. Atomic size disparity between solvent and solute is well-known to affect
solubility and the physical/chemical properties of alloys. In a discussion of atomic size in
alloys, Laves® shows that the ratio of the atomic radii of the components affects their crystal
symmetry. Solid solution strengthening or hardening increases with atomic size
difference.’ Though Hume-Rothery'® recognized the role of atomic size differences on the
structure and phase stability of alloys, the role and definition of atom size in metals with
free electrons has remained elusive. Recent theoretical considerations stress the need to
include static displacements in calculations of total energy."

The most often quoted chemical displacements from an average lattice are obtained from
extended x-ray absorption fine structure, EXAFS, measurements. EXAFS measurements
are usually made in dilute alloys with the assumption that all nearest neighbor, nn, pairs to
a solute atom are solvent atoms.'? EXAFS precision is typically 0.02 A (0.002 nm) and at
best 0.01 A (0.001 nm) which for most alloys is marginal for measurement of the
deviations of the atom pair spacings from the average long-range spacing. See reference 12
and those contained therein for a general discussion of EXAFS measurements and results.

Though diffuse scattering with x rays (neutrons and electrons) has been used since 1951 to
provide information on the displacement of the atoms from the sites of the average
lattice’™, the practice of separating the individual pair displacements with selected x-ray
energies has only been developed recently.'™ Details of the x-ray measurements and data
analysis to recover bond distances in alloys are found in references 4 and 15. Here we
focus on the reliability and implication of the average bond distances recovered from
crystalline binary alloys with the so called “'three x-ray energy” or "3-A” technique.

We present the information recovered with an emphasis on the static displacements of the
atoms from the sites of the average lattice. Sufficient description is given so that the
physical meaning of the displacements recovered from diffuse scattering data can be
understood by the non-specialist. The discussion is confined to x-ray diffuse scattering
measurements made on crystalline binary solid solution alloys where the average lattice is
well defined by sharp (unbroadened) Bragg reflections. Defects such as stacking faults,
high dislocation densities as from cold working, displacive transformations, incoherent
precipitates and others defects which can broaden, split or produce new Bragg reflections
are precluded as leaving an ill-defined average lattice. Such defects are treated elsewhere.'®

For crystalline solid solutions the regular “d” spacing between crystallographic planes is
maintained for hundreds, even thousands of planes as shown in Fig. 1; atoms are displaced
out of these average planes in such a way as to maintain a regular “d” spacing. In order to
define the static displacements to + 0.001 A (0.0001 nm) from this average lattice, the
average planer spacing should vary by less than + 0.001 A (0.0001 nm). On
differentiating Bragg’s law, we obtain,

Adc_i_ = ABcot 6. (D

Here 0 is the half angle between the incident and scattered x ray. For a scattering angle of
26=40°, an average “d” spacing of 2A and an error in Ad of £ 0.001 A (0.0001 nm), then
AB=0.01° and the Bragg reflection would be broadened by A26=0.02°. Substitutional

crystalline solid solutions typically have sharper Bragg reflections than this 0.02° FWHM.
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Figure 1. Displacement about the average lattice preserve the regular spacing between atomic
. planes such that d=d;=d,=d.... The average lattice is obtained from (b) the positions of the
sharp Bragg reflections. Information about short-range correlations among the atoms is
contained in the diffusely distributed intensity between the Bragg peaks.

II. Pair correlations from diffuse scattering

A. Diffraction theory of static displacement terms

We give a brief overview of the kinematic diffraction theory in which the weak diffuse
scattering can be approximated without extinction effects (first Born approximation). The
purpose of this overview is to define the pair correlation parameters recovered from diffuse
scattering measurements. Definitions of the atomic displacements are illustrated in Fig. 2
below.

The elastically scattered x-ray (neutron) intensity in electron units, eu, per atom from an
ensemble of atoms is given by

i2rthe{r,—
10 = 55 g e 074 @
P4

where f_and f_denote the complex x-ray atomic scattering factor (or neutron scattering
lengthsf; P and q designate the lattice sites, r, and r_ are the position vectors for those sites,

and h is the momentum transfer or reciprocal lattice vector |h| = (2sin 6)/ A. For crystalline
solid solutions in which the Bragg reflections are sharp and the average lattice is well-

defined, the atom positions can be represented by r=R+ 0 where R is determined from the

lattice constant and & is the displacement of the atom from that average lattice. The
exponential term is written
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Figure 2. Schematic of a crystalline solid solution with atom pairs displaced by O ,, from the
average lattice vector R-R, The + symbols represent the atom centers. The displacements are
given in terms of their /mn components designated AX,,,, AY,,., AZ,,, where [=2x, m=2y, and
n=2z from an earlier convention for the designation of atom shells as integers.

This series expansion converges rapidly when he S is sufficiently small. Upon substitution

of Eqg. (3b) into Eq. (2), the total intensity for a crystalline binary alloy can be written as
follows:

IT =Irynp +IsSro + 1isD + 12 4
IynpHsro represent the first term of the series expansion, I, the second term (ix), and L,

the remainder. We follow the treatment of Warren and co-workers'® and write these terms
for a cubic crystalline substitutional binary allow as
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Here c, is the A atom fraction of N atoms of a binary alloy, cg is the B atom fraction, f

and fB are the respective complex atomic scattering factors and Re denotes the real part of a
complex number. The lattice parameter of the cubic system is a, £mn are the coordinates of
the atom positions relative to the origin of the average lattice as shown in Fig. 2, and hl’

h,, and hy are the Cartesian coordinates of the momentum transfer vector h in reciprocal

lattice units (r.l.u.). The Warren-Cowley short-range order coefficient o, =1-pj2 /cp,
where pji2 is the conditional probability that after finding an A atom at fmn there is a B

atom at the origin. 16 The displacements 3p - Sq = Sjmn = AX imn + AYppp + ALy, are
illustrated in Fig. 2.

The average over all possible pairs that can be formed of the X components of the pair
_ displacements for AA pairs with relative coordinates émn are given by <AX > and
similarly for Y and Z in the same units as the lattice constant. The average displacements
for AB pairs < AX;2 > or their Y and Z components can be derived from the AA and BB

displacements. By definition, the displacements are deviations from the average lattice; the

weighted average of the displacements <8 ¢mn> for all AA, AB, BA, and BB pairs for any
coordination shell is zero. Hence, we have that

AA [3AA BA [3BA AB [5AB BB [3BB\ _
CAplmn<51mn> * CAplmn<61mn> +CBPlinn <Slmn> +tCBPimn <81mn> =0. (8a)
S4B\ _ (<B4
When rewritten in terms of o's with ¢, p® =c,p*?, and with \9mn ) =\0mn ) we have

that

2~ D AXE ) = [22 + a,mnkAX,’f,;‘}J [zj + amn}<AX!,nn> . (8b)

Eq. 8b insures that the interatomic vector averaged over all pairs in the crystal for each lmn

coordination shell is consistent with the average lattice long-range lattice parameter.13 For
example r _summed for all AA. AB, and BB <200> pairs and divided by the number of

200 . . . . .
pairs must equal the crystal lattice constant (the average unit cell size, @). No assumption is
made as to how the displacements are distributed about the average. This information is




contained in the higher moments. Thus there are only two independent pair displacements
for each shell of a cubic crystalline binary alloy. Equation (7) can be written in terms of any
two of the three individual pair displacements according to Eq. (8b). We note that for
widely separated atoms the first moment of the displacements goes to zero as they are
equally likely to be displaced in a positive or negative direction relative to the atom at the

origin. To evaluate the contribution from the term L, , we make the assumption that either
the quadratic and high-order terms in this series expansion of the thermal and static
displacements are the same for AA, AB and BB atom palrs or that the different elements
have nearly the same x-ray atomic scattering factors.'™ This approximation is good for
alloys with elements nearby in the periodic table as is the case of Fe-Ni, Cr-Fe and Cr-Ni
alloys which have been studied to date. These alloys have similar masses (similar thermal
motions), similar sizes (small static displacements) and similar number of electrons (similar
x-ray scattering factors). With this approximation, these remaining terms of the series
expansion can be written as
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The first term of Eq. (9) weakens the fundamental Bragg reflections and distributes this
intensity as temperature and static diffuse scattering. The second term of E«:. (9) weakens
the superlattice reflections associated with long-range order or as is the case niere weakens
the short-range order SRO diffuse maxima when there is only local order.

The second term of Eq. (9) which contains o, has been treated by Walker and Keating"’

and is included as a thermal like factor e—?Mwlm" in Eq. (6). The effect of including this

term on recovered o’s is not more than 2% at room temperature.>* The first term of Eq. (9)
includes quadratic and higher order thermal scattering and a smaller static diffuse scattering
contribution. Typically the quadratic static scattering is less than the quadratic thermal
scattering by a factor of three or more at room temperature even for alloys with large atomic
size differences (e.g. AuCu,)."® Since this first term of Eq. (9) depends on (c,f+cyfy), its
separation from I, and I, (which depend on f,-f;) can be accomplished by choosmg an
x-ray energy such that f,-f;~0. Thus the first term of Eq (9) can be measured separately
from Ipo+],g, at one energy and scaled by (c,f,+c4fg)" to other energies. Measurements at

three different x-ray energies and the recovery of the a‘s and &°s are described in
references 1-4. A non-linear least-square fit to all three data sets is reﬁned simultaneously
with a program which includes the statistical errors on the input data.’

The precision with which the displacements can be recovered depends in part on how
significant the term Eq. (7) is relative to the term Eq. (6), and on how large a contrast
change can be effected in f,(f,-f;)* and f;(f, §B *; with x rays the scattering contrast varies
with energy near the atomic absorpnon edges For atoms nearby in the periodic table the
contrast can actually be reversed. and since If ,-f;l is small, the dlsplacement term containing
f,(f,-f3) is large compared to the short-range order term containing (f,-f;).
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Figure 3. The variation in the Laue scattering term | ifel” With X-ray energy in the vicinity
of the Fe and Ni K absorption edges permits selection of x-ray energies to change the
contrast for recovery of the local “chemical order and displacements among the individual
atom pairs.

For Fe and Ni alloys, (f,-f;)* can be made to approach zero by proper choice of x-ray
energy (near 8500 eV) as shown in Fig. 3. The quadratic, higher order thermal and static
displacement scattering along with the smearing functions of the experimental arrangement
and possible multiple-scattering processes are approximately removed by subtracting the
scaled null Laue data. Though the assumption is made here that the A and B atoms have
similar quadratic and higher order displacements, possible errors introduced by this
assumption are minimized by the choice of alloys with atoms of similar masses. The
previous practice of calculating the thermal diffuse scattering (TDS) from force constants
also assumes that constituent atoms have the same quadratic and higher order
displacements. However, the use of force constants makes the harmonic approximation,
and ignores both the high frequency acoustical and optical modes and the short-range
correlations important to the scattering at the zone boundaries. All this is included in the
measured null Laue scattering.

An example of the raw data measured for three different x-ray energies from an Fe, ;Nig;
alloy is shown in Fig. 4.* The solid line in Fig. 4 is the near null Laue measurement of the
quadratic and hlgher order displacement terms which is removed from the other data sets to
recover the o’s and the d8’s. Comparison of x- ray results with neutron diffuse scattering
measurements Wthh energy discriminate against thermal contributions give very similar
o's for Fe,Ni.*




200 i :

293K
Fe46.5 Nis3 5

150 — o 7092ev

- = 8313 eV
f,’ — 8000 eV
>
= 100
[//]
[ =
[+}]
sl
£
50
0

2.0 25 30 3.5
h0o

Figure 4. Total elastically scattered x-ray intensity along the <h00> measured at 293 K for
the three x-ray energies listed. Note the shift in contrast for intensities measured with energies
20 eV below the Fe K edge at 7092 eV and the Ni K edge at 8313 eV which changes the sign
of Re(fy-fr.). The outlying data point at the {100} position is from harmonic energy
contamination of the incident radiation and such points are removed before processing.

III. Statistical and systematic errors

The statistical uncertainties of the recovered parameters are estimated by propagating the

standard deviation ++/n of the total number of counts n for each data point through the
non-linear least squares processing of the data. Systematic errors were determined by
changing the values of input variables such as the x-ray atomic scattering factors and
reprocessing the data.

As input parameters were varied, the intensities were rescaled so that the I, values are
everywhere positive and match values at the origin of reciprocal space measured by small-
angle scattering. The integrated Laue scattering over a repeat volume in reciprocal space is

also constrained to have an average value of ¢, c4(f,-f5)” ; 0y,=1. These two constraints
eliminate most of the systematic errors associated with converting the raw intensities into
absolute units." The intensities measured at two different energies are adjusted to within
~1% on a relative scale and the intensity at the origin is matched to measured values. For

these reasons, the standard deviations for oy, are estimated at ~ 1%.

Errors on the recovered o’s and AX's arising from statistical and various possible

systematic errors in the measurement and analysis of diffuse scattering data are given in
Tables I and II for the Fe, (Ni., ; alloy.*'**' Details of parameters used in the conversion
to absolute intensity units are given in references 2 and 16. A previous assessment of the




systematic errors without the constraint of forcing 0=1 and without keeping the intensity
at the origin and fundamentals a positive match to known values resulted in estimated errors
being two to five times larger than those reported here.”® Parameters necessary to the
analysis of the data (other than well known physical constants) with our best estimate of
their standard deviations and their contributing standard deviations to the o‘s and AX’s are
listed in Tables I and II. From a comparison of theoretical and measured values , we
estimate a 0.2 eu error on the real part of the x-ray atomic scattering factors, a 1% error in
the P, calibration for converting the raw intensities to absolute unites (eu’s), a 1 eu error in
separating the inelastic resonant-Raman scattering, a 0-1 eu h dependent Compton
scattering error= and an error of £0.3 at. % in composition.** Systematic errors are larger
than the statistical errors in this data.

Table 1. Standard deviation of 1 for the uncertainties in the Warren-Cowley short-range

order parameter o of Fe, ;Ni,, ; for statistical and possible systematic errors described in
the text. Total error is shown in parenthesis. 0 indicates uncertainties less than 0.00005.

mn Vot O | OB | () o(py) | SRRS) | Ocomen | O
+0.2 en +1% +1 eun +0.3 at.%

000 1.0000(100) | 0.0024 0 0 0 0 0

110 -0.0766 (54) | 0.0018 0.0010 0.0048 0 0.0006 0.0011

200 0.0646 (28) | 0.0017 0.0003 0.0016 0.0008 0.0013 0.0003

211 -0.0022 (15) [ 0.0014 0 0.0004 0.0001 0.0002 0.0001

220 0.0037 (14) | 0.0013 0.0002 0.0003 0.0003 0.0003 0.0001

310 -0.0100 (11) }0.0011 0.0001 0.0002 0.0001 0.0001 0.0001

222 0.0037 (12) {0.0011 0 0.0002 0.0002 0.0003 0
321 -0.0032 (19) | 0.0009 0 0.0001 0.0001 0.0001 0.0001
400 0.0071 (12) ] 0.0011 0.0002 0.0001 0.0003 0.0004 0
330 -0.0021 (9) |0.0008 0.0001 0 0.0003 0.0001 0
411 0.0007 (7) | 0.0007 0 0 0 0.0002 0
420 0.0012 (8) | 0.0007 0.0002 0 0.0004 0.0001 0
332 -0.0007 (7) {0.0007 0 0 0 0.0001 0

The asymmetric contribution of the first moment of the static displacements, I1SD Eq. (7),t0
the diffuse intensity Lo+1,g, for an Feg, ,Niy, ¢ alloy is displayed in Fig. 5. Without
static displacements the I, maxima would occur at the 100 and 300 superlattice positions.
The static atomic displacements for the alloy are similar to those given in table II. Such
large distortions of the short-range order diffuse scattering caused by displacements of
<0.02A (0.002 nm) emphasizes the sensitivity of this technique. On changing x-ray energy
from 7.092 to 8.313 keV, f; becomes smaller than f.. Figure 5 displays a reversal in the
shift of the position of the diffuse scattering maxima. Our choice of these two x-ray

energies for the 3A method are to emphasize this contrast and then to choose a third nearest
the null Laue energy for removal of the TDS. The total estimated standard deviation on the

values of the s and in particular the AX’s give unprecedented precision for the
displacements with errors £0.003 A and less.




Table II. Standard deviation of 16 of x.y and z components of the pair Fe-Fe

displacements Oy, g, for the various atom pairs of Fe,, Ni;, ; for statistical and possible
systematic errors described in the text. Total error is shown in parenthesis. O indicates
uncertainties less than 0.00005 A.

bn 1AX (O | 06 | @) | oy | ORRS) | Gepmen | O(Cy)
(A) +02eu | +1% +leu +0.3 at.%

110 0.0211 (25) | 0.0002 0.0023 0.0007 0.0002 | 0.0004 0.0004

200 -0.0228 (14) 10.0004 0.0010 0.0007 0.0002 | 0.0004 0.0002

211 0.0005 (2) 0.0002 0 0.0001 0.0001 0 0
121 0.0014 (4) 0.0001 0.0003 0.0001 0.0002 0 0
220 0.0030 (7) 0.0002 0.0006 0.0001 0.0003 0.0001 . 0
310 0.0022 (3) 0.0002 0.0001 0.0001 0.0002 0.0001 0
130 0.0009 (2) 0.0002 0.0001 0 0.0001 0 0
222 0.0003 (3) 0.0002 0.0002 0 0.0001 0 0
321 0.0011 (2) 0.0001 0.0001 0 0.0002 0 0
231 0.0001 (1) 0.0001 0 0 0.0001 0 0
123 0.0008 (4) 0.0001 0.0001 0 0 0 0
400 -0.0019 (6) 0.0004 0.0002 0.0001 0.0003 0.0001 0
330 0.0011 4) 0.0002 0.0001 0 0.0003 0 0
411 -0.0008 (3) | 0.0002 0.0002 0 0.0002 0 0
141 -0.0001 (2) 0.0001 0.0001 0 0.0001 0 0
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Figure 5. Diffusely scattered x-ray intensity from an Fe;,Ni,; Invar alloy associated with the
chemical order Iz, and the first moment of the static displacements I, along the [h,00]
direction. A major intensity change is affected by the choice of two different x-ray energies.
- The solid lines calculated from the s and d’srecovered from the 3A data sets closely fit the
observed data given by o and +. The dashed lines are calculated intensity through the
fundamental reflections. (From reference 24).




IV. Static Atomic Displacements

A. Meaning of recovered static displacements

Since the x-ray beam is about a millimeter in diameter and penetrates a few microns into the
sample, ~10'7 atoms contribute to the diffraction pattern with ~10'® first neighbor pairs.
From Eq. (3a)

rp -1, =(R, =Ry )+(3p ~ 3y) (10)
and as we can move the frame of reference so that its origin always resides on one of the
atoms of the pair such that r =r;=0, R,=R,=0 and SPEBOEO, then

Ty =Ty =10 =T =10~y = Ty *. (11)

and with the atom pair identified by ij

m Imn

P L
Sn = Rin + S (12)

where R,__ is independent of the kinds of atom pairs since it is defined by the average
lattice, i.e., Bragg reflection positions. The average value of the measured r, , for all the N
pairs contributing to the measured intensity is

j o\ ] ~ij =ij
<r[lr]nn> = ;;ij_';<le” * lmn> = Rimn +<5;mn> (13)
ij A
Here <5;{n n> is the variable recovered from the diffuse scattering. As shown in Eq. (7),“

we can recover the rectangular coordinates of the average displacement vector,

=i\ _ [ axdi ij ij
<5;mn> - <Alen> + <AYlmn> * <AZlmn> (14)
For cubic systems when the atom has less than 24 neighboring atoms in a coordination

shell (permutations and combinations of =/, tun.tn), <3-Zn n> must be parallel to the

interatomic vector R, . This maintains the statistically observed long range cubic
symmetry even though on a local scale this symmetry is broken. For /mn multiplicities
224, the displacements on the average need not be parallel to the average interatomic vector
R, to preserve cubic symmetry™.

Measurements of diffuse scattering from single crystals provides the vector

components of the atomic displacements <AX>, <AY>, and <AZ>; whereas, the spherical
average obtained from EXAFS and x-ray measurements on amorphous materials and
crystalline powders gives only the magnitude of the radial displacements. Thus, diffuse x-
ray scattering provides new information about the vector displacements associated with
near neighbor chemistry.




B. Discussion of measured displacements

Measured displacements such as presented in Table II provide unique insight into
how atoms move off their lattice sites when local symmetry is broken. Local symmetry is
broken when a multicomponent crystalline material is above the ordering temperature (with
less than perfect long-range order) and/or off stoichiometry. With perfect long-range order
the atoms are constrained to lie precisely on the sites of the average lattice by balanced
forces. In alloys where the local symmetry is broken, we gain new insights into the
chemically distinct bonding, including the interatomic bond distances and whether the
displacements have both radial and tangential components. With reference to Fig. 2, the
displacement for the [110] nearest neighbor atoms is on average radial with a magnitude

given by I< _5”0>l= \[ilAXllOI.
We note that the Fe-Fe first neighbor pair distances given in Table II are 0.021(3) A

X ﬁ=0.030(4) A further apart then the average lattice and that second neighbor pairs are
closer by (-) 0.023(1) A. Average bond distances along the interatomic vector between

nearest neighbor pairs for this fcc lattice are obtained by adding the ~21AX, | to the
average interatomic vector R, as defined in Fig. 2. IRl is just the cubic lattice constant a

times 1/~/2. From the construction shown in Fig. 6, it follows that the vector distance

between a pair of atoms, r;,Jnn, has radial and tangential displacement components with
magnitudes given by,

lmn * Rymn 15
lmn {R l a
Imn
and
l lmn ‘ Imn l lmn 15b

The radial (ll) and tangential (L) components of the displacements recovered from diffuse
scattering measurements on single crystals are shown in Fig. 6.




Fig. 6 Construction of the vectors recovered from diffuse scattering measurements on
single crystals. R, is obtained from the lattice parameter a , and the average components

of the displacement S;Jmn are recovered from measurements of the diffuse scattering.

Fig. 7 Radial displacements (parallel to the interatomic vector R,,,) between the atom pairs
require that the relative magnitudes of the displacement components be in the same
proportion as the average lattice vector: AX:AY:AZ = [: m: n. As shown for lmn =211, a
radial displacement requires IAX]=2|AY] and 1AX|=2|AZ]. For Imn=121, IAX|=JAY}/2 and
IAXI=IAZI. .For a cubic lattice we can interchange /, m, and n and similarly AX;AY; and
AZ. Thus there is only one value AX for /mn multiplicities <24, i.e., 110, 200, 222,
etc., two values for AX when /mn has multiplicities equal to 24 (/#m and /=m,n) and three
values for AX with multiplicities equal to 48.




As the Fe ¢ ;Ni, 5 alloy is cubic (face centered), the AY and AZ dispiacements are
derived from the AX’s given in Table II by permutation of the indices. (Henceforth, we
drop the <> on the displacements for simplicity.) For example, AX,,, has the identical
value as AY,;, and as AZ,,;, and AX,,, = AX,, = AY,;, =AY,;, =AZ,,, =AZ,,. In
addition AX,, =-AXj,, and similarly for the other combinations as illustrated in Fig. 72
The nearest atom pairs which could exhibit non-radial components are those in the third
neighboring shell, /mn = 211.

If the displacements between atom pairs is on the average along their interatomic vector,
then AX,,, = 2 AX,,,. For the Fe-Fe pair displacements given in Table II, AX,,, =

0.0005(2)A and 2 AX,, = 0.0028(8)A, thus the (211) Fe-Fe pair displacements have a
significant tangential component. From Egs. (15a) and (15b), the magnitude of the

sfertel is 00016
I

tangential is 0.0013(7)A. Thus the (211) Fe-Fe neighbors have a

displacement between (211) Fe-Fe pairs along the radial direction
EF e—Fe
211
L

similar radial and tangential component to their displacements. For the (310) Fe-Fe pair

displacements, AX,,, ~ 3 AX,,, within the total estimated error, and on the average (310)
displacements are predominantly radial. These measured displacements provide new
information not obtained in other ways about the local atomic arrangements in crystalline

solid solutions.
Only a few crystalline binary alloys have had their individual pair displacements

measured with this 3 technique. They include Fe,, {Ni,, s, Fe, ;Nig, ', Cr,,Feg” and
Cr,,Nig,’. These results are summarized in Fig. 8 where the AX static displacements are

. o 1 3 2 2 :
plotted as a function of the radial distance 5 [ +m~ +n~ . When there is more than one

(7)A and

value for AX, the plots show the various values. Most striking is the observation that for
the three ordering alloys the near neighbor Fe-Ni and Cr-Ni bond distances are the smallest
of the three possible pairs (Fig. 8A, 8B, and 8C). However, for the clustering Cr ,Fe.,
alloy the Cr-Cr nn bond distances are closest and the Cr-Fe furthest apart. More details

including the short-range order parameters o and numerical values of the displacements for
each shell are given in the original papers. These pair displacement observations provide a
more rigid test of theoretical predictions than variations of the average lattice parameter with
concentration™.
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Fig. 8 Displacement from the average lattice sites for chemically specific pairs. Shell radius
divided by the lattice parameter a, becomes 1 for second neighbors (separated by the cube
edge). Data from references 2, 3, and 4.

Chakraborty™” has proposed a compressible Ising model which can qualitatively reproduce
the observed shortened nn bond distance for Fe-Ni pairs and the expanded Cr-Fe pairs. In
this model there is a “size effect” term which reflects the different size of the atoms and an
“Ising” term which is sensitive to the distance dependent Ising interaction. For systems
such as the Fe/NV/Cr binary alloys where the “size” of the atoms is similar, the unlike pair
displacements do not necessarily lie between the observed like-atom displacements. Small
cluster calculations appear to be another useful tool for studying the mechanisms behind the
observed displacements. Of great interest is the relationship between local strains and
overall lattice spacing. Recent calculations on small 12-18 atom clusters reproduce some of
the observed displacement trends in Fe-Ni alloys, but the results are complicated by large
surface and concentration effects”. An imbedded cluster calculation could eliminate
surface effects and lead to a more complete understanding of the forces driving the
observed static displacements. For a recent review of the information recovered from
diffuse scattering measurements and its role in testing theoretical concepts see reference .




V. Conclusions

The displacements of the atoms from the sites of the average lattice can be recovered from
diffuse x-ray scattering measurements on single crystals. These measured displacements
include information on the dynamic and static displacements and on the chemically-
sensitive local bond lengths. The expectations of the vector displacements are recovered,
including the radial and unique to these measurements the tangential displacement
components. Analysis of the statistical and systematic errors show that the value of these
static displacements are statistically significant. Such measurements provide new
information on the real structure of crystalline solid solutions for comparison with
theoretical modeling.
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