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Abstract

This paper presents a segmentation algorithm for gray-level images and addresses issues

related to its performance on noisy images. It formulates an image segmentation problem as a

partition of an image into (arbitrarily-shaped) connected regions to minimize the sum of gray-

level variations over all partitioned regions, under the constraints that (1) each partitioned region

has at least a specified number of pixels, and (2) two adjacent regions have significantly different

“average” gray-levels. To overcome the computational difficulty of directly solving this problem,

a minimum spanning tree representation of a gray-level image has been developed. With this

tree representation, an image segmentation problem is effectively reduced to a tree partitioning

problem, which can be solved efficiently. To evaluate the algorithm, we have studied how noise

r—«—:x;—-::::::—:A:;aﬁ'ects;ther,-p,erformanceioﬁih&algorithmﬁlﬂojtyp,esiqi_np_isg,Jgangmigiggingge;@g('i_aluggi‘an

= addltlve»-nmse, are- cons1dered,-andé thelr-e eC qnﬂlm, cgp_s@;uchon

“of a tree representatlon and partitionof a- tree, are studied. Evaluation results have s shown that~ - e
the algorithm is stable and robust in the presence of these types of noise. ' '

1 Introduction

--—-— - - - Image segmentation is one of the most fundamental problems in-low-level image processing. The_—
——————-problem-is- to-partition (segment) an"image-into= connectedjeglonsgof_amﬂar fextures-or similar=
colors/gray—levels with adjacent reglonshavmg sigﬂlﬁgéﬁ{ dissimilarity. Many algorithms have been R
proposed to solve this problem (see surveys [1, 2]). Most of these algorithms fit into two categories:
(1) boundary detection-based approaches, which partition an image by discovering closed boundary
contours, and (2) region clustering-based approaches, which group “similar” neighboring pixels
into clusters. Rigorous mathematical solutions to the image segmentation problems are generally
difficult to achieve due to their (intrinsic) computational complexity. Hence many researchers
have exploited either probabilistic/stochastic methods, which guarantee only asymptotic results,
or heuristic methods while sacrificing the mathematical rigor.

In this paper, we present an efficient region-based segmentation algorithm. We formulate an
image segmentation problem as a partition of an image into a number (not predetermined) of
arbitrarily-shaped connected regions to minimize the sum of gray-level variations over all par-
titioned regions under the constraints that (1) each partitioned region has at least a specified-
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number of pixels, and (2) two adjacent regions have significantly different “average” gray-levels.
To oyercome the computational difficulty of directly solving this problem, we have developed a

minimum spanning tree representation of an image. The minimum spanning tree representation,
though simple, captures the essential information of an image for the purpose of segmentation, and -

it facilitates a fast segmentation algorithm. The technical contribution of our approach includes
(1) a new spanning tree representation of an image that captures all the key information for the
purpose of segmentation, and (2) a fast and mathematically rigorous tree partitioning algorithm.

To evaluate the algorithm, we have studied how two types of noise, transmission noise and
Gaussian additive noise, affect the performance of the algorithm. We have shown, both analytically
and experimentally, that (1) both types of noise have very little effect on the minimum spanning
tree construction algorithm, i.e., the property that an originally homogeneous region corresponds
to one subtree of the spanning tree will generally not be affected by noise; (2) transmission noise,
in general, has less effect on the performance of our tree-partitioning algorithm than -Gaussian
additive noise does.

2 Image Segmentation: the problem formulation =~~~ - ~

Consider a gray-level image I. Each pixel = of Thasa gray level G(z) € [0’ K). An image segmen-

tation problem can be naturally formulated as follows: find a partition {13, ..., It} of I with each I;
being a connected region of I, such that

minimize E?:l P el; (average(I;) — g(-"";!'))2

subject to: (1) [l5]| > L, for each I,
(2) laverage(I;) — average(Iy)| > D, for all adjacent I; and I;.

where || - || denotes the cardinality of a set, average(l;) denotes the average gray-level of region I;,
and L and D are two (application-dependent) parameters.
Though this formulation captures the intuition of segmenting an image it is computationally

difficult to solve due to two reasons: (1) segmenting a 2-D object to optimize some non-trivial -

function is always difficult, and (2) explicit calculation of averages implicitly requires to consider
all the possible partitions. Two strategies have been developed to overcome these difficulties: a tree
representation of an image, and an approximation scheme to avoid explicit calculation of averages.

2.1 Spanning tree representation of an image

For a given image I, we define a weighted (undirected) planar graph G(I) = (V, E) as follows: The
vertex set V = { all pixels of I } and the edge set E = {(u,v)|u,v € V and distance(u,v) < V2 },
with distance(u,v) representing the Euclidean distance in terms of the coordinates of the image
array; Bach edge (u,v) € E has a weight w(u, ) = |G(v) — G(v)|.

A spanning tree T of a connected graph G(I) (note that G(I) is connected) is a connected
subgraph of G(I) such that (1) T contains every vertex of G(I), and (2) T’ does not contain cycles.
A minimum spanning tree is a spanning tree with a minimum total weight.

A minimum spanning tree of a weighted graph can be found using greedy methods, like in
the classical Kruskal’s algorithm [3]: the initial solution is a singleton set containing an edge with



the smallest weight, and then the current partial solution is repeatedly expanded by adding the
next smallest weighted edge (from the unconsidered edges) under the constraint that no cycles are
formed until no more edges can be added. For the above defined planar graph G(I), a minimum
spanning tree can be constructed in O(||V||log(||V]])) time and in O(|}V]|) space.

A key property of a minimum spanning tree representation obtained by Kruskal’s algorithm is

that pizels of a homogeneous region are connected in the tree structure only through pizels of this

region, i.e., pixels of a homogeneous region form a (connected) subtree of the minimum spanning
tree. The following theorem formalizes this statement.

Consider an object A in a given image I. Let G(I) be the planar graph representation of I
and T be its minimum spanning tree obtained by Kruskal’s algorithm. A is called T-connected if
every pair of pixels of A are connected in T only through pixels of A. We use G(A) to denote the
subgraph of G(I) induced by the pixels of A. A set of edges C of G(A) is called a cutset if deleting
C divides G(A) into two unconnected parts.

<

Theorem 1 A is not T-connected if and only if there exists a cutset C of G(A) and a path P in
G(I) that has its two end vertices on two sides of the cut of G(A) and has its remaining vertices
outside of G(A) such that every edge of P has smaller! weight than every edge of C. O

2.2 An approximation scheme

To formulate the image segmentation problem in a natural and intuitive wa,y,‘ we have explicitly
used the average gray-levels of a region in the problem formulation, which makes the computation
difficult. This subsection presents an approximation scheme to avoid the explicit calculation of
averages.

Consider the following formulation of an image segmentation problem. Given an image I and
two parameters D and I, find a partition {I1, ..., I} of I with each I; being a connected region of
I, and a g; € R (real value) for each I;, such that

minimize i Zzie I (9i - g(a:f:))2

snb JeCI_tQ,__,___(l)___"I I >lz ior_e@ch_Iz.

S 1‘“”(2) """ lgz = gul >-D; for_all adJacentI and T

The relationship between this formula.tion, which does not involve exphc1t calculation of aver-
ages, and the original one can be intuitively described as follows: if a solution to this formulation is
stable around the given parameter D, then the two formulations are equivalent. This can be stated

~-- _more ngorously as in the followmg theorem Let O e ——————

STl LTl — TILT Il i -l L LT LT I ke

F(k I,g) Z 2 (gtf g(w’))2

i=1 :I:JEI,

R(D, L) = {(k, I, g)| which satisfies constraints (1) and (2)},

1We ignore the case of equality for the simplicity of discussion.




where I = Uf=1 I; and g = (g1, ..., gk)- Hence the above formulation can be rewritten as
min{F(k, I, 9)|(k, I,9) € R(D, L)}.
1 Yg

Theorem 2 For the given parameters D and L, if there is an € > 0 such that

g}}g{F(k,I Ik, I,9) € R(d, L)} = Fo (1)

for some constant Fy, for all d € [D,D + €|, then any minimum solution I* = {I3, ..., I} and
9" = {91, -, g5} toming,1o{F(k, I, 9)I(k,I,9) € R(D+e, L)} has gi = average(I), for alli € [1, ).
a

Note that g;’s, as defined above, are real values € [0,K]. To facilitate a fast algorithm, we
restrict g;’s to integer values € [0, K]. Now we can give the tree-based image segmentation problem
as follows. Given a minimum spanning tree representation IT' of an image and two parameters D
and L, find a partition {T7,...,Tx} of T with each T; being a connected subtree of T, and an integer
gi € [0,K] for each T}, such that

minimize Lk Ticr,(9i — 6(=)))
(P)
subject to: (1) |73l > L, for each T,
(2) |gi = gi#| > D, for all adjacent T; and Ty.

To estimate how close the approximation problem is to the original problem, we have the
following result:

E(Z?:l ”Ti”(average(ri) - gi)Z_) < k/N (2)
E(Th ¥ per(average(a]) - G(=))) ~

which indicates the minimum value of the approximation problem is fairly close to the minimum
value of the original optimization problem, where E() represents the mathematical expectation.

3 A Tree-based Image Segmentation Algorithm

A dynamic programming algorithm is developed to solve the optimization problem (P). The algo-
rithm first converts the given tree into a rooted tree by selecting an arbitrary vertex as the root.
Hence the parent-children relation is defined. We assume that the vertices of T are labeled consec-
utively from 1 to ||T|| with the tree root labeled as 1. We use 7" to denote the subtree rooted at
vertex ¢. For each tree vertex ¢, the dynamic programming algorithm solves a.number of constraint
version of the problem (P) on T* by combining solutions to the “corresponding” problems on T77,
with j’s being ¢’s children. It does this repeatedly in such a bottom-up fashion and stops when it
reaches the tree root.

Let score(i, k,g) denote the minimum value of (P) on T%, under the additional constraint that
the partitioned subtree of T* containing i has at least k vertices and is mapped to a fixed value
g, for k € [0,L] and g € [0,K]. These quantities can be efficiently calculated using the following
lemma and can be used to construct an optimum partition of T'.



Lemma 1 (a) If i1,2,...,in are the children of vertez i, n <8 and 1 < k < L, we have

score(i, k, g) = min }7_, score(ij, kj g) + (9 - G(i))?,
fork=37"_1kj,k; >0, when|T*|>1L

. E O)\g - G(p 27 Til=k
scores(i, k,g) = { +£D( )( (»)) HT‘“ 21
?
when ||T%|| < L

where D(3) is the set of all i’s descendants, i is defined to be € D(2) and score(i},0,g) is defined to
be .
min score(i;, L, g').
o p seorelisn 1»9)

(b) min, score(1, L, g) is a minimum solution of (P), where 1 represents the iree root. O

Based on Lemma 1, we can solve the optimization problem (P) by calculating score() for each
tree vertex in a bottom-up fashion using the recurrence from Lemma 1(a), and stopping at the tree
root.

Theorem 3 min, score(1, L, g) can be correctly calculated by the above algorithm in O(max{(||T||
—L),1}K(log(K) + L?)) time and in O(||T[|LK) space. O

4 Algorithm Evaluation on Noisy Images

Potentially noise affects the algorithm’s performance in both stages of the algorithm: spanning tree
construction and tree partitioning. We will show that noise has greater effects on the performance
in the tree partitioning stage than in the spanning tree construction stage. In this study, we consider
two types of noise: transmission noise and Gaussian additive noise.

The model for generating transmission noise is defined as follows: each pixel of the image
has a probability P to keep its original gray level during transmission and the probability 1 —
P to randomly change to arbitrary gray level € [0,K]. Gaussian additive noise adds to each
pixel independently a random normal value (using the floor function for real-to-integer conversion)
according to a normal distribution N(0,02) censored to [-K/2,K/2].

4.1 Effect of noise on tree representation

One basic premise for our image segmentation algorithm to be effective is that each object, given as
a homogeneous region in an image, is represented as one subtree of the spanning tree representation.
In the following, we show how noise affects this property. Theorem 1 provides the basic framework
for such a study.

To estimate how probable the if-and-only-if condition in Theorem 1 is we have conducted the
following computer simulation. The experiment is done on a 256-gray-level image I having one
object A in the center of the image. I is a 256 X 256 image and A is a 30 X 30 square. The
background has a uniform gray level 100 and A has a uniform gray level 150. We add transmission
noise and Gaussian additive noise, respectively, to I as follows. When adding transmissior noise,
each pixel of I has a probability 0.3 to keep its original gray level and the probability 0.7 to



randomly and uniformly change to arbitrary gray level € [0,255]. When adding Gaussian additive
noise, each pixel of I is added by a value [ + 1/2] (modulo 256), where é is random number
generated according to the normal distribution N(0,02) censored to [-128, 128] with & = 50.

For each type of noise, we estimated the probability that there exist a path P connecting two
pixels a and b, and a cutset C of A separating a and b such that every edge of P has smaller weight
than every edge of C, where a and b are two randomly chosen pixels both of which are 5-pixels
from the left boundary of A and are at least 5 pixels from the lower and upper boundaries of 4,
and P has at least 20 edges.

We have observed, for this particular experiment, that the probability that there exist such a
P and a cutset C is very small (< 1073), for both types of noise. This experiment suggested that
both types of noise have very little effect on the property that a homogeneous region corresponds
to one subtree of the minimum spanning tree constructed by Kruskal’s algorithm.

4.2 Effect of noise on tree partitioning

Though both types of noise have little effect on the property that a homogeneous region corresponds
to one subtree of the spanning tree representation they could affect the tree partitioning result in
a form we call corrosions. Consider an object A in a given image and its representing subtree T4.
With noise, T4 may contain a subtree (or subtrees) that has a (significantly) different average gray
level than the rest of T4, and contains more than enough vertices (> L) to be partitioned into a
separate region. This subsection presents a comparative study on how the two types of noise affect
the formation of corrosions.

Let g(A) be the (uniform) gray level of A before noise is added. We compare the probabilities, P
and P,, that a connected region A’ of A will have its gray level changed to the same value g(4)+ k&,
for any k£ # 0, when transmission noise and Gaussian additive noise are added, respectively. Let

pi denote the probability that one pixel of A’ changes its gray level from g(4) to g(A) + k£ when

- QGaussian. additive noise is added; For the simplicity of discussion;we-assume that-¢(4).=-0;-hence- = ——

k—e—[~1=/C{—Recall-='P—denetes-th&pmba.blhi;y-t,ha,tea,-pxxelakeeps-zts-ongma,l-gpa,yievel-m«the—presence

—of transrmssmn noise. It can be shown by a 51mple calculatlon tha,u,, e ————

(1= P\ ey R
P1—=—(——1'> (K=1), —and P”—}% k>

where n = ||A’ || (note that Py = Zk—l pk is true for any ‘type of independent noise). Theorem 4
shows the rela,txonshlp between P; and Pg, which can be proved using Jensen s inequality [5] (page

B,

~Theorem 4 For any N'e [2 IC] and n> 0 when Zk—o Pk = 1 and Do = 'P*’

e }:ia,::(l 7’) (N"*l)“’*“‘“ -

k=1




4.3 'Tests on noisy images

This subsection presents a case-study on an aerial image of 202x503 pixels and with 256 gray

— - levels, and on how noise of different types affects the performance of the segmentation algorithm.- - -
Throughout this study, the same set of parameters D and L are used. Segmentation on each image
takes less than 1 CPU minute on a SPARC-20 workstation. Figure 1 gives the test exampleson

th&xmagewﬁh noise- added. For. each. figure,. theJmageon the left i is. theongmal 1mage with-added

noise and the one on the nght represents the segmentation results:- -~ —
~"Table 1 $aminarizes the performance of algorithm and the effect of the averaging operation-on- - —
—————-—— thetwo types-of noise:~Each entry of the first row represents the correlational -coefficient-between—
~ the original image and the image with noise, and each entry of the second row represents the
correlational coefficient between the segmentation result of the original image and the segmentation -

of the noisy image.

--— Table-1:-Performance-summary-of segmentations-——————

Transmission noise Gaussian additive noise
e - P=01{P=03{P=05|P=0T7|0c=40}oc=60|0c=80}|0c=100|
noisy image 0.86 0.62 0.41 0.24 0.82 0.69 0.57 0.47
segmentation | 0.95 0.89 08 | 070 | 087 | 084 | 081 | 076 | _
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