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Abstract

The dislocation free zone (DFZ) model of fracture was
developed by Chang and Ohr (1,2) after a series of
experimental observations on the crack tip dislocation
structures that invariably showed the existence of the
dislocation free region (3,4). The DFZ model is a modified
BCS crack model that is supplemented with the Rice-
Thomson crack tip dislocation emission mechanism. This
dislocation emission mechanism imposes a finite energy
barrier to the crack tip for emitting dislocations into the plastic
zone, in contrast to a zero energy barrier for the BCS model.
This finite energy barrier results in the formation of the DFZ
and a stress-singular crack tip region. This resistance was
expressed in terms of a dislocation emission toughness K, as
amaterial constant, Because of the emission toughness K., the
crack tip has the choice either to emit dislocation or to fracture
in brittle mode. The model, therefore, was first used by them
to explain the fundamental phenomenon of brittle versus
ductile fracture. Brittle fracture occurs if K;, <K,, that is, the
crack tip breaks before the dislocation can be emitted. Ductile
fracture is possible if K, > K so that dislocation will be
generated before brittle fracture toughness K, is reached.

The distribution function for the dislocations was solved from
the dislocation pile-up equation. It was expressed in terms of
the complete elliptic integrals. Although the analytical nature
of the model is clear and precise, but the numerical values of
the model may not always be obtained readily. It was
attempted to simplify and approximately represent the model
by elementary mathematical functions (Louat, Second
International Conference on the Fundamentals of Fracture at
ORNL, 1985). In this paper the distribution function is
written in terms of a symbolic programming language
MAPLE., The analytical and numerical manipulations can be
made easily. An earlier version of this paper was presented in
Micromechanics of Advanced Materials, Symposium for

'Bascd on work performed at Oak Ridge National Laboratory,
managed by Lockheed Martin Encrgy Systems. Inc., for the U.S.
Department of Energy under contract DE-AC05-840R21400.
Accordingly, the U.S, government retains a nonexclusive, royal-free
license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. government purposes.

J.CM. Li 70th Birthday, edited by Peter K. Liaw, TMS 1995.
An improvement of the program that accounts for the
technique of calculating the elliptic integral of the third kind
in different regions of the model is presented here. It is seen
that the distribution function shown in this paper is a new form
and it has a unique expression representing the distribution of
dislocations in different sectors of the crack plane.

The model has been extended to the inclined dislocation free
zone cracks (5-7). The inclined DFZ model was then applied
to model the threshold region of the fatigue crack growth
curve (8). An extensive review on the subject was made by
Thomson (9). Lin and Thomson (10)made important progress
on the physical implications of the crack tip dislocation
emission mechanisms. Li, Dai, Chu and Lee made significant
contribution in formulating the discrete dislocation free zone
model and the dynamic dislocation free zone model (11-15).
Recently, Hirsch, Roberts and Samuels have established the
physical basis for the brittle-ductile transition (BDT)
temperature of fracture by using the dynamic dislocation free
zone model (16). The point of maximum dislocation density,
defined as the trigger point, was regarded as a point to initiate
ductile fracture by A.T. Yokobori, Jr (17). They made use of
the dislocation free zone model to discuss the initiation of
ductile fracture. This concept was also mentioned at the end of
reference (2) where the significance of the point of maximum
dislocation density had been suggested as a point of ductile
fracture.

Distribution Function for the Dislocations

The dislocation pile-up integral equation for the model and the
condition for the existence of the solution to the integral
equation are shown in this section. The distribution function
that is the solution to the integral equation is also shown. The
existence of the dislocation free zone gives a non-zero stress
intensity factor. This stress intensity factor is expressed in
terms of the complete elliptic integral of the first kind. The
dislocation emission toughness K, is determined by the Rice-
Thomson theory that provides the energy barrier required for
a dislocation to be emitted from the crack tip. These equations
and the solutions give a complete mathematical description of

the dislocation free zone model of fracture. M A S T E B
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To describe the model, the crack is located along the x-axis in
the region -¢ < x < c. The plastic zones are -a < x < -e and e
< X £ a and the dislocation free zones are -e < x < ~cand ¢ <
X < e. For a uniformly applied stress o at infinity, the pile-up
integral equation is

Gx) =a for -c<x<e¢

Gx) = ¢ -0, for -a<x<-eade<x<a

In the above equation, a,is the friction stress and 4 = ub2xx,
The symbol x is equal to 1- v for Mode I and Mode I, where
v is the Poisson's ratio, and x is equal to 1 for Mode IIL
Furthermore, b is the Burger's vector and 1 is the shear
modulus,

The distribution was solved from the integral equation in
terms of the complete elliptic integrals. In this paper, the
earlier distribution function is rewritten and the discontinuous
sectors are patched together and expressed everywhere along
the x-axis between -a and a by a single distribution function
with the following form

g 2 _ 2
fx) = _fﬂ[(l -
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where F and II are complete elliptic integrals of the first kind
and the third kind, respectively. The above solution was under

the condition of finite stress in the plastic zone, defined as the
DFZ condition, of the form
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The stress intensity factor at the crack tip was also obtained as

K = 2\/(!2 - kz‘p(kZ)
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In the above equations,
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The complete elliptic integral of the first kind is defined as

2

F(kz) - dt
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and the complete elliptic integral of the third kind is defined as
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Dislocation Free Zone Model By MAPLE

By using the symbolic programming language MAPLE, it is
not difficult to- analytically and numericaily manipulate the
above solution and conditions. The numerical values need to
be evaluated from the model may be obtained once the elliptic
integrals are evaluated. By using MAPLE, the calculation is
straight forward. Also, simple integration and differentiation
may be carried out rather easily by MAPLE commands INT
and DIFF. The distribution function shown above can be
integrated by MAPLE integration conmand INT to verify
numerically that the distribution function is indeed the solution
of the pile-up integral equation. The point of maximum
dislocation density, the triger point for ductile fracture, can be
obtained by DIFF command that is applied to the distribution
function to locate the maximum value of the distribution
function. The value of the crack openning displacement
(COD) can be obtained by using INT command to the
distribution fimction. The integration gives the total number of
dislocations and, after multiplied by the Burgers vector, the
value of the COD. The MAPLE procedure for the dislocation
free zone model is shown in the following.

To execute the program use the command “read maplefile;”.
It will generate plot as shown in the following figure. In the
figure, the distribution function is expressed in terms of
An’ f(x/c) / o, with a/c=1.6 and e/c=1.06.




Fig. 1. Dislocation density function.
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#

# by Shih-Jung Chang

# January 20, 1997
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#

# definition of y-array

#

Z:.=array( 1..40):
# fi(kk) = elliptic integral - 1st kind
# .

# kk is assumed to be less than one

#

ff :=proc(kk) int(1/( 1-kk*(sin(t))*2)"(1/2),t=0..Pi/2) end:
#

# function ppf will be integrated in procedure pp and either

#yy or kk is assumed to be less than one.

#

ppf:=proc(x.yy,kk)
W((1-yy*(sin(x))"2)*(1-kk*(sin(x))"2)"(1/2))
end:

#

# pp(yy.kk) = elliptic integral - 3rd kind -

#

# case 1. O<yy<kk<l

#

# use this procedure and find pp(yy,kk).
#

# case 2. 0<kk<l<yy

#
#use an identity that can be derived from Byrd and Friedman,

#Equs.(414.01) and (415.01), i.e.,
#

z PPOY.KK)=-pp(kkiyy,kk)+HT(KkK)

# where O<kk<l<yy.

# In the above equation, calculate ppkkfyy kK),
# where kkfyy<I, by using this procedure,
#

# case 3. O<kk<yy<l
#

# use this procedure and find pp@Y.KK).

# this case is used for dfz condition.

# also possible, use Byrd and friedman (117.02) identity
#

i;*9:Pp(yy,kk)f-pp(lddyy)+ﬂ:’(1d<)"Pi/2*sqrt(vy/((1-yy)*(yy-kk)))
gp =proc(yy,kk) int(ppfityy,kk),t=0..Pi/2) end:

# DFZ condition

#

dfz==proc(a,e)

local kk,alfa,ac,ec;

ac:=a¥a; ec:=e¥e;

alfa:=(ac-ec)/(ac-1); # O<kk<alfa<l

kk:=alfa/ec;
2/Pi*((1-1/ec)*(1-alfa)y"\(1/2)*pp(alfa,kk)
# for DFZ cond: above expression = sig/sigf
end:

#

# stress intensity factor

#

sif:=proc(a,e)

local kk,ac,ec;

ac:=a*a; ec:=e¥e;

kk:=(ac-ec)/((ac-1)*ec); # O<kk<l

2/Pi*(1-1/ec)\(1/2)*Rkk)

#for stress intensity: above expression = K/(sigf*(Pi*c)™(1/2))

end: .

#

# f{xp) = distribution function at Xp

# with DFZ = e and PZ (plastic zone)=a

#

f:= proc(xp,a,e)

local xxyy kk,alfa,ac,ec,xc,gg;

ac:=a*a; ec:=e¥e; XC:=Xp*xp;

yy:==(ac-xc)/((ac-1)*xc);

alfa:=(ac-ec)/(ac-1);

kk:=alfa/ec;

xx:=kkfyy;

#

88:=-2*(kk-yy)(1/2)*xp/(((ac-xc)/(ac-1))
U213y 1L2));

#

if yy<I then

p3:=pp(yy.kk):
elifyy>1 then

t?3:=pp(xx,kk)+ﬁ(kk):
1.



# for e<xp<a that implies O<yy<kk<I use
88*((1-yy)*p3-fi(kk))

# for O<xp<c that implies yy>1>kk>0 use

# -gg*((1-yy)*pp(oc k) Hyy*fi(kk))

# that has the same expression

end:

#

# differentiating the function f with respect to xx, use
#

Z diff(f(xox,,€),5%%):

# evaluating the value of f, use
#a:=1.6: e:=1.06:

#orifrom 1 to 10 do
#ho:=0.1+(-5)%0.2;
#hoe=0.4;

i’fl#'twalf(f(xx,a,e),3) od,

# integrating the fimction f from e to a to obtain the total
# number of dislocations from e to a, use

#

# int(f(xcx,a,€) x0¢=€..8);

#

g:=proc(x)

local a,e;

a:=1.6; e:==1.06;

f(x,a,e)

end:

#

#plot(g,1.0..1.6);
#intetfacc(plotdevichs,plotoutpm-—disb(ps);

#plotting the distribution function of a complete range of x,
ffuse

plot(g,-l.7..1.7,-5..5,labcls=[’crack _plane','distribution'],
title=’dislocation_density_distribution’);

#
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