

LOFT TECHNICAL REPORT LTR 1310-17

OCTOBER 27, 1977

MASTER

IMPEDANCE CALCULATIONS FOR POWER CABLES TO
PRIMARY COOLANT PUMP MOTORS

K. B. Hegerhorst

EG&G Idaho, Inc.

IDAHO NATIONAL ENGINEERING LABORATORY

DEPARTMENT OF ENERGY

IDAHO OPERATIONS OFFICE UNDER CONTRACT EY-76-C-07-1570

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Idaho, Inc.

LOFT TECHNICAL REPORT
LOFT PROGRAM

FORM EG&G-229
(Rev. 12-76)

TITLE		REPORT NO.
IMPEDANCE CALCULATIONS FOR POWER CABLES TO PRIMARY COOLANT PUMP MOTORS		LTR 1310-17
AUTHOR	K. B. Hegerhorst <i>KB Hegerhorst</i> 8/21/77	GWA NO.
PERFORMING ORGANIZATION	DATE	
LOFT APPROVAL	October 27, 1977 <i>S</i>	

ABSTRACT

The Primary System Motor Generator Sets are located in Room B-239 and are connected to the primary coolant pumps by means of a power cable. The calculated average impedance of this cable is 0.005323 ohms per unit resistance and 0.006025 ohms per unit reactance based on 369.6 kVA and 480 volts.

This LTR was written to show the development of power cable parameters that are to be used in the SICLOPS (Simulation of Loss of Fluid Test (LOFT) Reactor Coolant Loop Pumping System) digital computer program as written in LTR 1142-16 and also used in the pump coastdowns for the FSAR Analysis.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

TABLE OF CONTENTS

ABSTRACT	i
1.0 Introduction	1
2.0 Cable Specifications	1
2.1 Type	1
2.2 Resistance	1
2.3 Length	1
3.0 Impedance Values	1
4.0 References	2
APPENDIX A - Resistance and Reactance Calculation for PSMG Set Number 1	A-i
APPENDIX B - Resistance and Reactance Calculation for PSMG Set Number 2	B-i
APPENDIX C - Base Conversions, Per Unit Values of Impedance, Average Impedance Value	C-i
FIGURES	
1. PSMG to PCP, Cables	4

1.0 INTRODUCTION

The primary coolant pump motors on the MTA (Mobile Test Assembly) are supplied from a generator several hundred feet away in Room B-239. With the long length the cable resistance and reactance may effect operation. To calculate the resistance and reactance it is necessary to know the length of each cable run, the size of the cable, the resistance per 1000 feet and that the cable is in steel conduit for its entire run. Also it is necessary to assume that the average temperature of the cable is approximately 25°C.

There are four separate cable runs from the generators to the primary coolant pump motors (see figure 1), two cable runs per motor-generator combination, and two generator motor pairs. Each separate run has a different overall length due to minor routing variances. To calculate the total values of resistance and reactance average values were found for each pair of cables.

2.0 CABLE SPECIFICATIONS

2.1 Type

1000 volt, 500 MCM, 37 strands of copper with 7/64 inches of insulation⁽¹⁾

2.2 Resistance

DC Value - 0.0216 ohm/1000 ft.*
 AC Value - 0.244 ohm/1000 ft.+
 Reactance - 0.0271 ohm/1000 ft. # (2)

2.3 Length

<u>Run #</u>	<u>Cable to Penetrator (feet)</u>	<u>Pen to Motor (feet)</u>	<u>Total (feet)</u>
1	171	53	224
2	174	53	227
3	214	20	234
4	212	20	232 (3)

3.0 IMPEDANCE VALUES

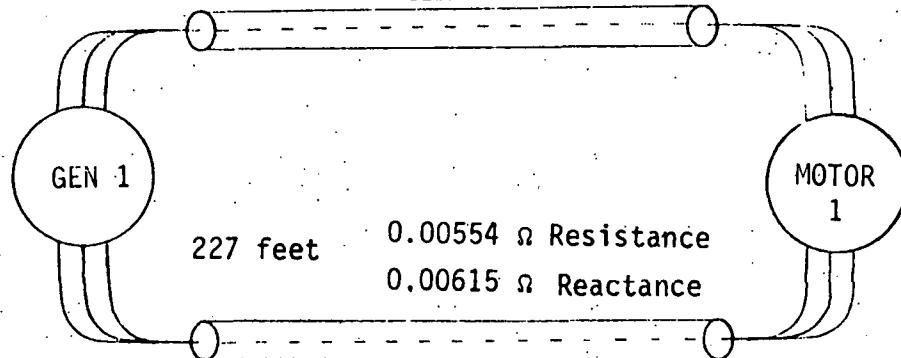
The long length of power cable produces both resistance and inductive reactance. The resistance is found by knowing the length of the cable and multiplying it by the ohm/1000 feet. The reactance is calculated in a similar manner. These two values are then combined into an impedance. An equivalent value of impedance is found by combining both cables in parallel. This calculation results in 0.00264 ohm resistance and

* Assuming cable temperature is averaged at 25°C.

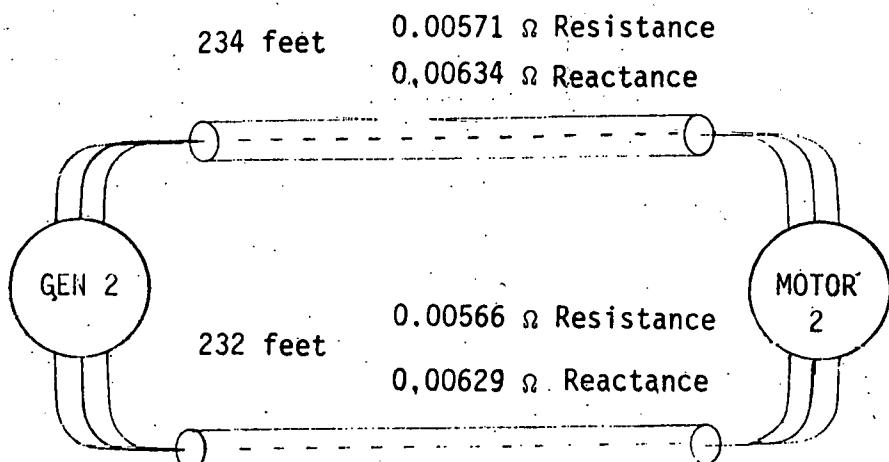
+ AC value found by multiplying DC value by 1.13

Entire length in conduit

0.00315 ohms reactance for generator-motor set number 1, and 0.00284 ohms resistance and 0.00316 ohms reactance for generator-motor set number 2.


The average value of resistance for the generator motor sets is 0.00274 ohms. Similarly the average value of reactance is 0.003155 ohms. Using 369.6 KVA as base KVA and 480 volts as base KV the per unit value of resistance and reactance for generator-motor number 1 is 0.00523 OHMS p.u. and 0.00602 ohms p.u. respectively. Also the same values for generator motor number 2 are 0.00542 ohms p.u. and 0.00603 ohms p.u. respectively.

The overall average value of impedance for both generator-motor sets is 0.005325 ohms p.u. resistance and 0.006025 ohms p.u. reactance.


4.0 REFERENCES

1. Purchase Requisition #L500096, Aerojet Nuclear Company, dated 7-6-72.
2. National Fire Protection Association National Electric Code 1975 pp 70-567-8
3. Design Engineers Notes on Cable Length.

224 feet 0.00547 Ω Resistance
 0.00607 Ω Reactance

227 feet 0.00554 Ω Resistance
 0.00615 Ω Reactance

PSMG to PCP Cables
Fig. 1

APPENDIX A
RESISTANCE AND REACTANCE
FOR PSMG SET NUMBER ONE

IDAHO NATIONAL ENGINEERING LABORATORY

CALCULATION WORK SHEET

SUBJECT

LTR 1310-17

PAGE All OF III PAGES

PREPARED BY

KB HEGERHORST

CHECKED

DATE 12 JULY 1977

WORK REQUEST

RESISTANCE AND REACTANCE CALCULATION FOR PSMG
SET NUMBER 1.

LENGTH: 224 feet, 227 feet.

Run 1A;

$$R_{IA} = \left(\frac{0.0244 \text{ ohms}}{1000 \text{ feet}} \right) 224 \text{ feet} = \underline{0.00547 \text{ OHMS RESISTANCE.}}$$

$$X_{IA} = \left(\frac{0.0271 \text{ ohms}}{1000 \text{ feet}} \right) 224 \text{ feet} = \underline{0.00607 \text{ OHMS REACTANCE.}}$$

Run 1B;

$$R_{IB} = \left(\frac{0.0244 \text{ ohms}}{1000 \text{ feet}} \right) 227 \text{ feet} = \underline{0.00554 \text{ OHMS RESISTANCE.}}$$

$$X_{IB} = \left(\frac{0.0271 \text{ ohms}}{1000 \text{ feet}} \right) 227 \text{ feet} = \underline{0.00615 \text{ OHMS REACTANCE.}}$$

COMBINE TO AN IMPEDANCE

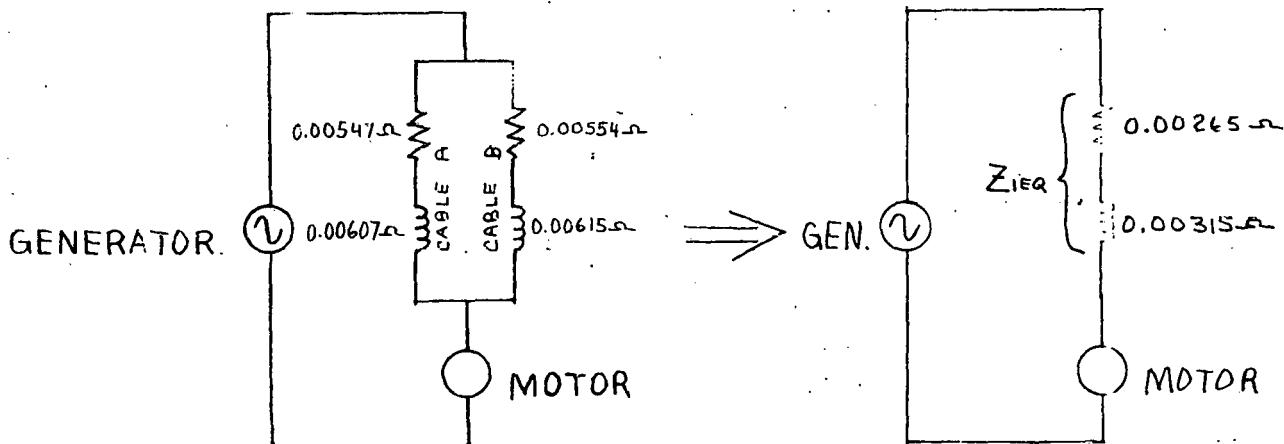
$$Z_{IA} = R_{IA} + j X_{IA} = 0.00547 + j 0.00607 = \underline{0.00817 \angle 49.97^\circ}$$

$$Z_{IB} = R_{IB} + j X_{IB} = 0.00554 + j 0.00615 = \underline{0.00828 \angle 47.98^\circ}$$

IDAHO NATIONAL ENGINEERING LABORATORY

CALCULATION WORK SHEET

SUBJECT LTR 1310-17 PAGE All of iii PAGES
PREPARED BY KB HEGERHORST CHECKED _____ DATE 12 JULY 1977
WORK REQUEST _____


IMPEDANCE CALCULATION

$$\begin{aligned} Z_{IEQ} &= \frac{(Z_{IA})(Z_{IB})}{(Z_{IA} + Z_{IB})} \\ &= \frac{(0.00817/49.97^\circ)(0.00828/47.98^\circ)}{(0.00547 + 0.00554) + j(0.00607 + 0.00615)} \end{aligned}$$

$$= \frac{6.76 \times 10^{-5} / 97.95^\circ}{0.01101 + j 0.01222}$$

$$= 0.00411 / 49.97^\circ$$

$$Z_{IEQ} = 0.00265 + j 0.00315$$

APPENDIX B
RESISTANCE AND REACTANCE
CALCULATION FOR PSMG
SET NUMBER TWO

CALCULATION WORK SHEET

SUBJECT

LTR 1310-17

PAGE Bii OF iii PAGES

PREPARED BY

KB HEGERHORST

CHECKED

DATE 12 July 1977

WORK REQUEST

RESISTANCE AND REACTANCE CALCULATIONS FOR PSMG
SET NUMBER 2.

LENGTH : 234 feet, 232 feet.

RUN 2A;

$$R_{2A} = \left(\frac{0.0244 \text{ ohms}}{1000 \text{ feet}} \right) 234 \text{ feet} = \underline{0.00571 \text{ ohms}} \text{ RESISTANCE}$$

$$X_{2A} = \left(\frac{0.0271 \text{ ohms}}{1000 \text{ feet}} \right) 234 \text{ feet} = \underline{0.00634 \text{ ohms}} \text{ REACTANCE,}$$

RUN 2B;

$$R_{2B} = \left(\frac{0.0244 \text{ ohms}}{1000 \text{ feet}} \right) 232 \text{ feet} = \underline{0.00566 \text{ ohms}} \text{ RESISTANCE,}$$

$$X_{2B} = \left(\frac{0.0271 \text{ ohms}}{1000 \text{ feet}} \right) 232 \text{ feet} = \underline{0.00629 \text{ ohms}} \text{ REACTANCE,}$$

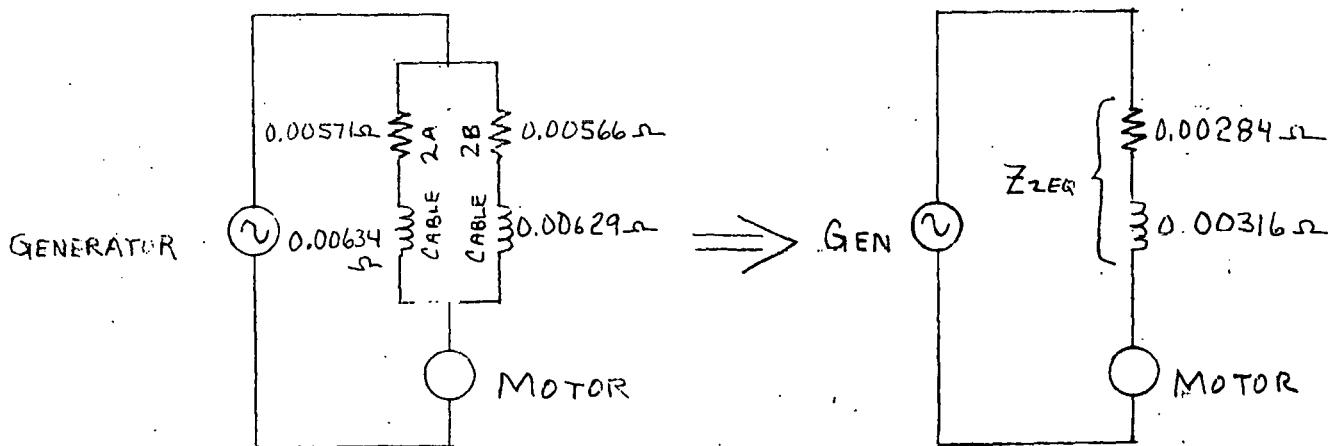
COMBINE TO AN IMPEDANCE

$$Z_{2A} = R_{2A} + j X_{2A} = \underline{0.00571 + j 0.00634} = \underline{0.00853 / 47.99^\circ}$$

$$Z_{2B} = R_{2B} + j X_{2B} = \underline{0.00566 + j 0.00629} = \underline{0.00846 / 48.02^\circ}$$

IDAHO NATIONAL ENGINEERING LABORATORY

CALCULATION WORK SHEET


SUBJECT LTR 1310-17PAGE Bill OF 111 PAGESPREPARED BY KB HEGERHORST CHECKED _____DATE 12 JULY 1977

WORK REQUEST _____

IMPEDANCE CALCULATION

$$\begin{aligned}
 Z_{2EQ} &= \frac{(Z_{2A})(Z_{2B})}{(Z_{2A} + Z_{2B})} \\
 &= \frac{(0.00853 / 47.99^\circ)(0.00846 / 48.02^\circ)}{(0.00571 + 0.00566) + j(0.00634 + 0.00629)} \\
 &= \frac{7.22 \times 10^{-5} / 96.01^\circ}{0.01137 + j0.01263} \\
 &= 0.00425 / 48^\circ
 \end{aligned}$$

$$= 0.00284 + j 0.00316$$

APPENDIX C
BASE CONVERSIONS
PER UNIT VALUES OF IMPEDANCE
AVERAGE IMPEDANCE VALUES

IDAHO NATIONAL ENGINEERING LABORATORY

FORM INEL-1592
(Rev. 4-76)

CALCULATION WORK SHEET

SUBJECT

LTR 1310-17

PAGE Ci OF III PAGES

PREPARED BY

KB HEGERHORST

CHECKED

DATE 12 JULY 1977

WORK REQUEST

BASE CONVERSIONS

$$\text{BASE OHMS} = \frac{(\text{BASE VOLTS})^2}{\text{BASE KVA} \times 1000}$$

$$= \frac{(440)^2}{(369.6)(1000)}$$

$$= 0.52381$$

PER UNIT VALUES OF IMPEDANCE

$$Z_{1EQ} \text{ p.u.} = \frac{0.00265}{0.52381} + j \frac{0.00315}{0.52381}$$

$$= 0.00505 + j 0.00601$$

$$Z_{2EQ} \text{ p.u.} = \frac{0.00284}{0.52381} + j \frac{0.00316}{0.52381}$$

$$= 0.00542 + j 0.00603$$

IDAHO NATIONAL ENGINEERING LABORATORY

FORM INEL-1592
(Rev. 4-76)

CALCULATION WORK SHEET

SUBJECT

LTR 1310-17

PAGE Cii OF iii PAGES
DATE 12 JULY 1977PREPARED BY KB HEGERHORST

CHECKED _____

WORK REQUEST _____

THE AVERAGE PER UNIT VALUE OF BOTH PSMG SETS

IS

0.00523 OHM RESISTANCE PER UNIT0.006025 OHM REACTANCE PER UNIT