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ABSTRACT 

This paper describes a relatively simple axial flow gas expansion 

turbine mass model, which we developed for use in our space power 

system studies. The model uses basic engineering principles and 

realistic physical properties, including gas conditions, power level, 

and material stresses, to provide reasonable and consistent estimates 

of turbine mass and size. Turbine design modifications caused by 

boundary layer interactions, stress concentrations, stage leakage, or 

bending and thermal stresses are not accounted for. The program runs 

on an IBM PC, uses little computer time and has been incorporated 

into our system-level space power platform analysis computer codes. 

Parametric design studies of hydrogen turbines using this model are 

presented for both nickel superalloy and carbon/carbon composite 

turbines. The effects of speed, pressure ratio, and power level on 

hydrogen turbine mass are shown and compared to a baseline case 

100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed 

hydrogen turbine designs indicates that our simplified model provides 

mass estimates that are within 25% of the ones provided by more 

complex calculations. 

DiSTRIBUTIflSi OF Ti^lS m:MW:i iS yfiLlMITED 



DISCLAIMER 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government.  Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights.  Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof.  The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 
 
Portions of this document may be illegible in 
electronic image products.  Images are produced 
from the best available original document. 
 



< I 

HYDROGEN TURBINES FOR SPACE POWER SYSTEMS: 

A SIMPLIFIED AXIAL FLOW GAS TURBINE MODEL 

Steven L. Hudson 

Advanced Power Systems Division 

Sandia National Laboratories 

P.O. Box 5800 

Albuquerque, NM 87185 

505-846-3070 

INTRODUCTION 

The analysis of hydrogen-cooled, turbine-generator powered 

space weapon systems has resulted in the need for a relatively 

simple, but reasonably accurate hydrogen gas expansion turbine 

model. Such a simplified turbine model would require little 

computational time, provide reasonably accurate volume and mass 

estimates, and allow incorporation into system level computer 

programs. This model would then allow optimization studies to be 

performed on multiparameter space power systems for various 

operating conditions (Edenburn 1987) and provide improved turbine 

mass and size estimates when compared to empirical correlations 

or power law approaches. For these reasons we have developed an 

axial flow gas expansion turbine model that runs on an IBM PC and 

have used it during the past year as a comparative model in space 

power system studies at Sandia. 
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Using concepts from fluid dynamics, thermodynamics, and 

strength of materials, the turbine model determines: (1) the 

force on the rotating turbine blades caused by the momentum 

change of the turbine working fluid; (2) the energy transfer from 

the turbine working fluid to the rotating blades; (3) the flow 

area required by the working fluid as it passes through a turbine 

stage; and (4) the limiting stage blade speed due to centrifugal 

forces. This provides a realistic basis for the turbine model 

and allows a consistent comparison between turbines for most 

system design effects. The turbine model computes the maximum 

rotational speed, working fluid flow rate, outlet pressure, 

number of stages, individual turbine stage disk and blade sizes, 

and overall turbine mass. As such, the turbine model requires 

realistic input data. These input items include turbine power 

level, working fluid inlet conditions, required exit temperature, 

turbine material strength and density, and turbine internal 

design values (nozzle angle, aspect ratio, and work coefficient 

that are defined later). Optionally, speed and/or stage 

efficiency values may also be specified. Despite this required 

input data, the turbine model is considered simplified because it 

does not account for more detailed design considerations such as 

boundary layer effects, shock waves, stress concentrations, seal 

and tip leakage, three-dimensional flow effects, and bending and 

thermal stresses. These later limitations, although very real in 

determining the efficiency or capability of a given turbine 

design, generally only modify a basic turbine design and have 

minimal mass impact. 
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The principles of this turbine model apply to any gas or 

noncondensing vapor axial flow turbine. However, hydrogen 

turbines are discussed in this paper due to their importance to 

space burst power platforms and their meager design data 

available to date. The turbine model description, limitations, 

and results of typical parametric studies are presented in the 

following sections of this report. 

TURBINE MODEL DEVELOPMENT AND EOUATIONS 

The turbine model defines the turbine stage size in terms of 

stage blade length, disk radius, and turbine speed. Blade length 

and disk radius are considered because they are the primary size 

limiting dimensions of the turbine stage. The model calculates a 

stage mass based on these size criteria and sums the individual 

stage masses to give the complete turbine size and mass. 

However, the stage blade lengths, disk radii, and turbine speed 

are dependent on the stage work, stage outlet gas flow 

conditions, number of stages, and blade and disk material 

strengths and cannot be solved for explicitly. Thus, the 

equations must be iteratively solved. This section develops the 

equations that relate the basic turbine design variables to the 

above stage size criteria, while the following section indicates 

their sequence of solution. 

Energy transfer occurs at each stage of an axial flow 

turbine when high velocity gas impacts the rotating blades. This 

fluid interaction imparts a force to the moving blades, thereby 

transmitting power to the turbine shaft and lowering the enthalpy 

of the gas. This two-dimensional flow condition (axial and 

tangential) is represented by the vector velocity diagram of 
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Figure 1 for a typical turbine stage with nozzle (stator) and 

blade (rotor). The gas flow enters the stage at absolute 

velocity c^ and is accelerated through the nozzles to absolute 

velocity C2. This higher velocity gas flow then impinges on 

the rotor blades, does work, and leaves the stage at absolute 

velocity C3. The force on the turbine blades, caused by the 

change in absolute tangential velocity (C22 ~ c:3z) °^ ̂ ^® 5^^ 

flow, moves the blades at a mean stage blade speed of Ug. 

Application of the fluid impulse-momentum principle allows 

calculation of the stage work per unit mass of working fluid, 

Wg, as: 

^s = (C2Z " «=3z) (Ug) • Eq. 1 

Note from Figure 1 that the outlet tangential velocity, C32, is 

typically opposite in direction and therefore negative relative 

to C22- Thus, the stage work, Wg, is always a positive 

quantity. A stage work coefficient, V', can be defined as 

(Wilson, 1984): 

^ = (C2Z - C3z)/Us- Eq. 2 

Equation 2 reveals that the stage work coefficient is simply the 

ratio of change in gas tangential velocity to the mean stage 

blade speed. A work coefficient of one occurs when the 

tangential velocity C22 nearly equals Ug and results in the 

stage leaving gas velocity, C3, being nearly axial. This 

condition generally provides maximum stage efficiency because of 

low relative (to the blade) velocities. Higher tangential 

velocities result in higher work coefficients and generally lower 

stage efficiencies. However, the higher velocities are limited 
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to the sonic gas velocity unless the turbine stage is designed to 

accommodate these supersonic flows. 

From Equations 1 and 2 it can be seen that the turbine stage 

work is: 

Wg = (i//)(Ug2). Eq. 3 

Although the stage work coefficient is an input parameter 

selected by the turbine designer, the stage work can be 

determined only after the stage blade speed is known. This blade 

speed, Ug, is the speed of the blade at the stage mean radius, 

Rjjj, and is related to the turbine angular speed in radians/sec, 

N, by: 

Ug = RjjjN. Eq. 4 

Rjjj varies with the stage blade length, Lg, and disk radius, 

R(j, since Rĵ  = R̂ j + Lg/2, and is not known a priori for 

each stage of a turbine design. Stage blade speed must be 

obtained from a knowledge of the working fluid mass flow, the 

required stage outlet flow area, and the blade and disk specific 

strengths. 

The mass flow rate through the turbine, m, is calculated 

from the specified (1) turbine design power, W^; (2) turbine 

inlet temperature, Tĵ ; (3) turbine outlet temperature, T^; 

and (4) working fluid average specific heat, Cp^^g, by: 

m = Wt/[Cpa^g(Ti - TQ)]. Eq. 5 

Since specific heat is a function of temperature, Cpĝ ĝ is the 

average working fluid specific heat between Tĵ  and TQ. Cp 

for hydrogen has little variation with pressure for temperatures 

greater than 300 K, so pressure effects on Cp are not included. 
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stage outlet flow area is calculated by application of the 

conservation of mass (continuity) through the turbine stage and 

by realizing that the mass flow, m, is constant. Since velocity 

equals volume flow rate divided by flow area, two-dimensional 

flow through the turbine stage results in: 

^3x ~ ™ V3/(2 7rRjj,Lg) Eq. 6 

where 035̂  is the stage outlet axial velocity, V3 is the 

specific volume of the outlet gas, and the quantity 2 7rRjj,Lg 

is the outlet flow annulus area. The assumption of ideal gas 

behavior for gas flow through each stage of the turbine allows a 

simple determination of the outlet gas specific volume from stage 

outlet static pressure, P3, and static temperature, T3. 

However, quantifying 035̂  requires imposing two restrictions on 

the turbine stage design in order to limit the required stage 

input design data. First, restriction to a 50% reaction stage 

provides for equal enthalpy drop across rotor and stator and 

requires that the blade inlet absolute velocity, C2, equals the 

blade outlet relative velocity, W3 (see Figure 1). Second, 

restriction to constant axial velocity throughout the turbine 

stage requires that 02^ equals C3JJ. These restrictions, 

which are common design practice in the gas turbine industry, do 

not limit or bias our turbine model. However, they result in 

geometric similarity for Figure 1 and require angles a2 and 

b3 to be equal and angles b2 and a3 to be equal. Thus: 

°2z = Ug - C32 Eq. 7 

and; 

»// = (2C2Z - Us)/Us Eq. 8 
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Also, C22 = C2sin(a2) and C2 = C2x/cos(a2) so: 

C2X = C3x = Ĉ /'Ug + Ug)/(2tan[a2]) Eq. 9 

Equation 9 expresses the stage outlet axial velocity as a 

function of only two turbine input design parameters, ip and the 

nozzle-to-blade angle, 33. Finally, Equations 4, 6, and 9 are 

combined to yield the final form of the stage continuity 

equation: 

m R T3 tan(a2)= TT P3 {^+1) R^^ N Lg Eq. 10 

which specifies the relationship between turbine speed, stage 

blade length, mean stage radius, stage outlet gas conditions, and 

input turbine design parameters. R is the gas constant for the 

particular turbine working fluid. 

The turbine stage outlet temperature for use in equation 10 

is determined by applying the first law of thermodynamics 

(conservation of energy) between the inlet and outlet of each 

turbine stage. For adiabatic steady flow and no change in 

potential energy, the first law for a unit mass of gas results 

in: 
c 2 - c 2 

h3 = h-L - Wg +—1 L Eq. 11 

where h3 is the outlet gas static enthalpy and ĥ ^ is the 

stage inlet gas static enthalpy. For an ideal gas enthalpy is a 

function of temperature only so equation 11 becomes: 
c 2 - c 2 

T3 = Tĵ  - Wg/Cp +—^ L_ Eq. 12 
2Cp 

The stage inlet static temperature, T-|̂, and inlet velocity, 

Cĵ , are known from the previous stage. However, C3 must be 

determined from the geometry of the similar velocity triangles of 
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Figure 1. From the previous restrictions of 50% reaction stages 

and constant axial velocity, it can be shown from the blade inlet 

and exit velocity triangle geometry that: 

C3=Ug[{((//-l)/2}2+{((//+l)/(2tan[a2])}2]V2. Eq. 13 

Thus, the stage outlet velocity depends only on stage blade 

speed, work coefficient, and nozzle-to-blade angle. 

The stage outlet static pressure for use in Equation 10, 

P3, is related to the stage efficiency and stage inlet and 

outlet temperatures. From Figure 2, the turbine stage 

efficiency, ng, is (Horlock 1966): 

"s = Ĉ ti - Tt3)/(Tti - Tt3g) Eq. 14 

for a constant specific heat across the stage. Equation 14 

defines the total-to-total stage efficiency and uses total rather 

than static thermodynamic properties. The subscript "t" 

represents total temperatures and for an ideal gas is: 

T^ = T + c2/(2Cp). Eq. 15 

The turbine stage efficiency is based on an isentropic expansion 

from the stage inlet total pressure, P-̂ i/ to the stage outlet 

total pressure, Pt3« '̂ t3s ̂ ^ Equation 14 is the stage outlet 

total temperature for this isentropic process. With constant 

specific heats for the temperature range of the turbine stage, 

the total inlet and outlet temperatures and pressures are related 

for this isentropic process by: 

Tt3s/Ttl = (Pt3/Ptl)^"^^^ Eq. 16 

where k is the ratio of gas specific heats (Cp/c^). Further, 

the stage outlet total temperature, T^3, is the temperature 

that results from the reversible adiabatic deceleration of the 
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outlet flowing gas to zero velocity (Jones and Hawkins 1960). 

Thus: 

Tt3/T3 = (Pt3/P3)'^-Vk^ Eg. 17 

and similarly 

Tti/Ti = (P^i/Pi)^-^/^. Eq. 18 

Static pressures are represented in Figure 2 by the dotted 

constant pressure lines. Combining the above equations and 

solving for the stage outlet static pressure yields: 

P3 = P-L [ '̂ '̂̂ It - ^s '̂^ ]V(k-l)^ Eq. 19 
'̂ l'̂ 3t p̂"s'̂ l'̂ 3t 

The turbine stage efficiency is specified by the program 

user or is determined within the program as a default value. We 

developed the turbine stage efficiency default values from 

empirical data available for large noncondensing steam turbine 

designs (Lapina 1983, Budenholzer 1970, Baumeister 1967, and 

Sorensen 1951). These stage efficiencies are represented in 

Figure 3 as functions of work coefficient and nozzle-to-blade 

angle. We based our default efficiency values on large reaction 

staged steam turbines because they have minimal performance 

losses when compared to their throughput with correspondingly 

high stage efficiencies. We consider these stage efficiencies to 

be nearly the highest stage efficiencies possible for any turbine 

design. The stage efficiencies in Figure 3 are total-to-total 

stage efficiencies and are intended to account for wall friction, 

eddy current, turbulence, and leakage losses. These efficiencies 

are only used as default values in the turbine design computer 

program and may be superseded by a user input value that accounts 

for lower performance or unique gas conditions. We 
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treat the stage efficiency as a constant throughout the turbine. 

Equation 10 relates fluid conditions and turbine design 

criteria to the turbine size parameters of stage blade length, 

mean stage radius, and rotational speed. However, the stage 

blade length and radius are also limited in size by material 

stresses caused by speed induced centrifugal forces. Thus, the 

blade stress is (Horlock 1966): 

bgg = (Tf)(N2)(R^)(Lg) Eq. 20 

where bgg is the blade specific stress or ratio of material 

stress to density and T^ is a blade taper factor that relates 

the maximum tensile blade stress due to centrifugal loading of a 

straight blade to the blade stress associated with a tapered 

(reduced cross-sectional area from root to tip) blade. Equation 

20 relates the blade stress to only pure tension centrifugal 

loadings and is maximum at the blade root. Aerodynamic or other 

induced bending stresses are not accounted for. T^ is kept at 

0.7 in the computer calculations (Horlock 1966 and Sorensen 

1951). 

The corresponding disk stress, also caused by centrifugal 

forces, can be simplified to (Roark and Young 1975): 

dgg = 0.9(N2)(RJ^ - Lg/2)2 Eq. 21 

where dgg is the disk material specific stress. This relation 

is based on center-bored rotating disks of uniform thickness, no 

radial loading, and isotropic materials with Poisson's ratio of 

0.33. Equation 21 calculates the maximum (tangential) stress 

existing within the disk, which occurs at the inner circumference 

of the bored disk. Although tapered disks may reduce this stress 
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level by 10 to 20 percent, circumferential loading due to the 

attachment of blades to the disk perimeter, would tend to negate 

this stress reduction. We therefore did not adjust the turbine 

design disk stress for these effects in our model. The material 

stresses calculated from Equations 20 and 21 are limited within 

the program so as not to exceed the user's input design material 

strengths. These input material strengths are based on creep 

strength properties and are dependent on the turbine operating 

time and temperature. 

MODEL DESCRIPTION AND METHODOLOGY 

The input design data for the turbine program can be 

separated into required inputs, optional inputs, and turbine 

internal design parameters. Required data inputs are inlet 

pressure, inlet temperature, turbine power output, outlet 

temperature (which may be an estimate based on expected turbine 

efficiency and pressure ratio), blade specific strength, disk 

specific strength, and material density. Optional data inputs 

include maximum turbine speed and stage efficiency. Normally, 

the calculated turbine speed within the program is the maximum 

speed possible that satisfies the input design criteria. If a 

lower turbine speed is specified by the user, then that speed is 

used for the subsequent turbine design. If stage efficiency is 

not specified, the program calculates a default value based on 

Figure 3. Finally, turbine internal design parameters include 

blade aspect ratio (used here as the ratio of blade length to 

blade axial thickness), nozzle-to-blade angle (angle a2 in 

Figure 1), and work coefficient (Equation 2). If any of these 
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design parameters are not specified by the program user, default 

design values based on standard turbine design practice of 3, 70 

degrees, and 2 are used by the program, respectively. Lower 

values of aspect ratio should be used for more brittle materials, 

higher blade loadings (because of high work coefficients or high 

gas density), or lower blade strength. Somewhat higher aspect 

ratios (4 to 5) should be expected for very long blades. Gases 

with high specific heats and sonic velocities, such as hydrogen 

and helium, should use turbine work coefficients greater than 2 

(typically 4 or more). 

From the input data. Equations 10, 20, and 21 are solved 

simultaneously within the program for the three unknowns of mean 

stage radius, stage blade length, and turbine speed. However, 

the values of stage outlet temperature and pressure for use in 

equation 10 are not directly known and must be determined 

iteratively. Thus, the computer program uses an iterative 

solution method, as shown by the flow chart in Figure 4, to 

determine the maximum speed turbine that meets the turbine input 

design criteria. If a lower speed is specified by the program 

user, then the program determines the minimum possible number of 

stages at this specified speed that does not exceed the allowable 

disk stress. Once the overall turbine outlet design conditions 

are satisfied, the individual stage dimensions are calculated. 

Additional program steps in the iteration process are shown in 

Figure 4. 

In our model each stage of an axial flow turbine is 

separated into three distinct volumes with different average 
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densities. The overall turbine mass is then simply the sum of 

the masses of these identified volumes. The three stage volumes 

are (1) the turbine blade swept volume and associated nozzles; 

(2) the turbine disk volume; and (3) the void space between the 

stage disks. The turbine blade swept volume is the annular flow 

area multiplied by the stage length. The stage axial length, 

identified in Figure 5, is twice the stage blade length (to 

account for both blade and nozzle axial length) divided by the 

user-specified aspect ratio. The blade and nozzle volume are 

estimated to have a density of 30% of the user-specified input 

density in order to account for the blade and nozzle material. 

The turbine disk volume is treated as a solid uniform thickness 

disk with 100% of the density of the input value. Lastly, we 

treat the density of the interdisk volume as only 20% of the 

input density value in order to approximate the associated stage 

shaft and seal mass. Figure 5 is a cross section of a typical 

multistage axial flow turbine with these major components 

identified. 

A casing mass is also determined for each stage of the 

turbine and included in the total turbine mass. This mass is 

calculated from the user-input material density and the wall 

thickness derived from hoop stress calculations and stage 

pressure. 

Although there is no specific mass or volume allotted for 

some turbine mechanical components (such as bearings, shaft, 

inlet/outlet ducting, seals, or cooling passages), the gross 

density estimates of the various separate turbine volumes are 

intended to account for these items. 
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The turbine design program is valid for all working fluids 

that can be approximated as ideal gases. Further, a blade and 

disk cooling algorithm has been developed to study the effects on 

turbine size of increased material strengths due to lower 

component temperatures and the quantity of cooling gas required 

to maintain these lower component temperatures (Edenburn 1988). 

MODEL LIMITATIONS 

Although our gas turbine model provides reasonable size and 

mass constraints for many design options and gas conditions, we 

have found that a combination of certain design parameters may 

produce unrealistic results or conclusions. These potentially 

erroneous results include some combination of (1) a large number 

of stages; (2) very short blade lengths; or (3) low hub-to-tip 

radius ratios (the ratio of the flow annulus inner radius to the 

flow annulus outer radius). 

A large number of stages generally result from using a 

hydrogen or helium working fluid with low stage work coefficients 

or low material strengths. For example, with work coefficients 

of about 2, a superalloy hydrogen turbine requires over 25 

stages. This number of stages may cause shaft vibration or 

design problems that are not identified in our computer model. 

Presently, we size only each stage of a turbine and do not pass 

judgment within the program on the relative number of stages. 

Very short blade lengths are considered to be less than 0.01 

meter, although this is not a rigid criteria. These blade 

lengths are caused by a combination of low specified rotational 

speed, high disk material strength, and low power output. Thus, 
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for a given working fluid mass flow, only a small annulus flow 

area is required with a corresponding small blade length. The 

main concern with these shorter blade lengths is that the default 

stage efficiency values within the program are too high. Reduced 

efficiency will be caused by boundary-layer interactions and an 

increased fraction of gas leakage across the stage. Appropriate 

reductions in the stage efficiency by the user can account for 

this effect and provide reasonably accurate turbine designs. 

Low hub-to-tip radius ratios are caused by excessively high 

expansions or pressure ratios through the turbine. Thus, the 

latter stages require a large flow area for a constant axial 

velocity design. This results in long stage blade lengths and 

low hub-to-tip radius ratios. Problems occur because the radial 

variation in blade speed differs significantly from the blade 

speed at the mean radius. For example, to obtain equal enthalpy 

drops of the gas passing through a turbine stage, the degree of 

reaction must decrease as you approach the hub or blade root from 

the mean radius. When the degree of reaction reaches zero, the 

stage acts as an impulse turbine at that radial location. 

Further reductions in reaction are then not possible and 

locations at lower radii than this point cause the gas to be 

recompressed or cause other design criteria in the model to be 

voided. The limiting hub-to-tip radius ratio in our model is 

determined from our requirement of 50% reaction at the mean blade 

radius. This results in a minimum hub-to-tip ratio of 0.547. 

Erroneous turbine designs result if lower hub-to-tip ratios occur 

for any stage. 
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Our turbine model approximates the final turbine mass from 

gross estimates of density for various regions of the turbine 

volume. These density estimates may not be appropriate for the 

various turbine materials that may actually be used. For 

example, carbon-carbon composite disks and blades may be attached 

to a superalloy shaft. Our model does not account for different 

material densities within the turbine. Also, we do not identify 

specifc components (other than blades, disks, and casing) within 

the turbine and do not provide specific mass estimates for these 

unidentified components. Thus, relatively massive items, such as 

bearings or shaft couplings, may not be adequately accounted for. 

Finally, the thickness and corresponding mass of each 

turbine stage in our turbine model increases linearly with the 

user-specified aspect ratio, which is constant throughout the 

turbine. However, in reality shorter blades generally have lower 

aspect ratios, while longer blades have higher aspect ratios. 

Thus, in our model an average aspect ratio must be specified for 

reasonable mass results. This approximation may result in stages 

with short blade lengths having relatively thin disk 

thicknesses. This effect, coupled with a turbine design with 

many stages, may significantly underestimate the actual turbine 

volume and mass so we limit the minimum disk thickness for any 

stage to 0.01 meter. 

It should be noted that the program user has an obvious 

effect on the program's calculated turbine mass by his selection 

of input parameters (as demonstrated by the Sandia turbine 

designs in Table 1). Thus, it is important that the user 
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understand the effect of the input parameters and adjust all 

parameters on a comparative and consistent basis. For example, 

shorter blades should be accompained by lower aspect ratios and 

lower stage efficiencies, while turbines with fewer stages should 

have their input material density increased to better account for 

bearings and casing inlet/outlet connections. 

DESIGN COMPARISON 

Table 1 compares results from Sandia's turbine model to a recent 

Garrett turbine design (Boyle and Riple 1987). This comparison 

is for carbon/carbon composite construction material, hydrogen 

gas, and 2000 K turbine inlet temperature. Other input 

parameters are as indicated in Table 1. Note that two sets of 

Sandia results are presented with differing aspect ratios, work 

coefficients, and nozzle-to-blade angles (a2). The first 

calculation is for a more conventional nozzle angle of 70 degrees 

which results in an axial last stage gas velocity of 313 m/s. 

This nozzle angle requires longer blade lengths than for the 

Garrett design and has a correspondingly greater turbine volume 

and mass. The second Sandia calculation uses a nozzle-to-blade 

angle of only 51.6 degrees. This result approaches the Garrett 

stage blade lengths and flow area, but results in a last stage 

axial gas velocity of 676 m/s or more than twice that using 

Sandia's first set of input data. Although Sandia's second 

calculation results in significantly reduced mass, increased gas 

velocities and shorter blade lengths would require more careful 

manufacture to achieve the same stage efficiency as for Sandia's 

first calculation. This effect is also shown in Figure 3, where 
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Sandia's first and second sets of input data would have default 

stage efficiency values of nearly 92% and 83% respectively. 

However, the Garrett design and Sandia results show an overall 

turbine efficiency of 76% for the indicated gas temperatures and 

pressures, which requires a stage efficiency of only 72%. 

The Sandia models result in the same number of stages and 

nearly the same first stage disk diameter as the Garrett design 

for the same limiting turbine speed and material stress. 

Further, Sandia's turbine masses, although somewhat different 

from each other, differ by only 25 per cent from Garrett's 

turbine mass. 

PARAMETRIC STUDY RESULTS 

We have used our turbine model to investigate the effects of 

rotational speed, pressure ratio, and power level on hydrogen 

turbine mass. As indicated in Figure 6, a nickel superalloy 

(material density of 8500 kg/m"̂ ) turbine with 425-MPa disk 

material strength has a large variation in turbine mass due to 

changes in turbine design speed. For example, as design speed 

increases from 1000 rpm to 14,600 rpm for the 100-MWe turbine of 

Figure 6, turbine mass decreases by nearly two orders of 

magnitude. The increase in mass at lower rotational speeds is 

due to the increased disk radius at these lower speeds, which is 

caused by keeping the design disk stress at a constant value 

(since radius is inversely proportional to speed as shown by 

Equation 21). In addition, larger disk radii require shorter 

blades for a constant flow annulus with a resulting decrease in 

mean stage blade speed. Thus, lower turbine speeds also require 
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more stages (with a further mass increase). Turbine speed cannot 

be increased indefinitely, however, because blade strength 

finally limits the last stage blade lengths. For the superalloy 

turbine in Figure 6, this limit, which cannot be extrapolated, 

occurs at 14,600 rpm for blades with 425 MPa strength. The 

superalloy turbines in Figure 6 have an aspect ratio of 3, work 

coefficient of 4, and outlet temperature of about 800 K. The 

number of stages vary from 26 (high speed) up to 38 (1000 rpm) 

and the resulting turbine efficiencies are about 78%. 

Figure 7 shows the further variation in hydrogen turbine 

mass with pressure ratio. For the same superalloy turbine design 

conditions as in Figure 6, turbine mass increases from about 430 

kg at a pressure ratio of 1.5 to over 2000 kg at a pressure ratio 

of about 50. For the constant power output of 100 MWe, this 

equates to a specific mass of 0.0043 kg/kW to over 0.02 kg/kW. 

Turbine efficiency varies with pressure ratio (and number of 

stages) from about 70% at low pressure ratios to 78% at increased 

pressure ratios. The curves of Figure 7 also cannot be 

extrapolated since greater pressure ratios require longer last 

stage blades that soon reach their maximum allowable strength (at 

the stated turbine speed). This strength limit occurs even 

though the required gas flow to provide a given constant power 

decreases with increasing pressure ratios. 

The effect of power level and inlet pressure for a hydrogen 

superalloy turbine is shown in Figure 8. Although higher 

pressures reduce turbine mass (by increasing the gas density), 

this effect is significant only at higher power levels. In fact, 
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the turbine mass at lower power levels is set by the disk 

diameter, which is dependent only on turbine speed. Thus, at 

lower power levels, turbine mass is nearly independent of gas 

pressure (the turbine casing thickness depends on gas pressure 

but is a small contribution to the overall turbine mass). Figure 

8 again cannot be extrapolated since material strength limits 

still define the maximum possible turbine power output for the 

stated design conditions. For example, a 500-MWe nickel 

superalloy turbine operating at 6-MPa inlet pressure would have a 

maximum stress limited speed of only 7000 rpm with a resulting 

mass of over 6000 kg. The hydrogen turbine results of Figure 8 

are based on a last stage blade allowable stress of 850 MPa and a 

stage work coefficient of 6. This results in less massive 

turbines than for the previous figures. The resulting turbine 

efficiencies are about 66%. 

Figures 6 and 7 also show the effects of turbine rotational 

speed and pressure ratio on potential carbon-carbon composite 

hydrogen gas turbines. These curves are based on a mean material 

density of 3000 "kq/xa?, blade aspect ratios of 2, and disk and 

blade stress limits of 450 MPa. The carbon-carbon turbine mass 

data of Figure 6 is based on a work coefficient of 3, while the 

curve in Figure 7 is for work coefficients ranging from 2 to 3. 

The lower work coefficients are used at pressure ratios less than 

about 40 with increasing work coefficients used at higher 

pressure ratios. This results in the carbon-carbon composite 

turbine from Figure 7 at a pressure ratio of 15 having a greater 

mass than the corresponding 10000 rpm turbine in Figure 6. At 
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pressure ratios less than 1.5 in Figure 7, turbine mass becomes 

nearly constant because of the increasing stage blade lengths due 

to the increased hydrogen flow rate. 

CONCLUSIONS 

A simplified gas expansion turbine computer model is 

available that runs on a portable computer yet requires very 

little computer time and can therefore be used in larger system 

codes. This model provides reasonable agreement with more 

detailed designs and allows parametric studies of turbine powered 

systems in a realistic and consistent manner. The model provides 

turbine size and mass based on material strengths, rotational 

speed, pressure ratio, power output, and gas properties. 
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Table 1. 200 MWe Carbon/Carbon Composite 

Hydrogen Turbine Comparison 

Garrett Design 

Input Parameters 

Turbine Inlet Temp. (K) 

Turbine Exhaust Temp. (K) 

Turbine Inlet Press. (MPa) 

Design Stress (MPa) 

Turbine Speed (rpm) 

Blade Aspect Ratio 

Work Coefficient 

Nozzle Angle (degrees) 

Stage Efficiency (%) 

Output Parameters 

Turbine Pressure Ratio 

Turbine Efficiency (%) 

Number of Stages 

Disk Diameter (M) 

Blade Length (M) 

First Stage: 

Last Stage: 

First Stage: 

Last Stage: 

Turbine Mass (kg) 

Hydrogen Mass Flow (kg/sec) 

2000 

1500 

3.446 

690 

10,000 

N/A^ 

N/A' 

N/A= 

0 . 9 7 3 

0 . 5 8 

0 . 0 2 7 

0 . 1 2 3 

Turbine Length excluding bearings (M) 0.93 

2300 

25.7 

5.0 

76 

14 

Sandia Model 

2.0 

1.84 

70 

72 

0.965 

0.965 

0.069 

0.192 

1.73 

2900 

24.1 

1.5 

2.06 

51.6 

72 

0.965 

0.965 

0.032 

0.099 

1.15 

1680 

24.1 

a Not Available 
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