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Introduction

It is important fog any research and development program that
calculational tools be available to complemeni experimental efforts. In
neutron dosimetry, calculations enable one to predict the response of a
proposed dosimeter before effort is expended to design and fabricate the
neutron instrument or dosimeier. Also, since the neutron spectrum is so
important in determining how a particular dosimeter will respond, having the
ability to calculate the neutron spectrum for a wide variety of source,
moderator, and shield configurations is extremely valuable. The nature of
these calculations requires the use of computer programs that implement
mathematical models representing the transport of radiation through
attenuating media. Numerical, and in some cases analytical, solutions of

these models can be obtained by one of several calculational techniques.

Calculational methods include spherical harmonics, discrete ordinates,
moments, Monté Carlo, diffusion theory, {nvariant imbedding, and kernels, plus
a method which coﬁbines a removal kernel with diffusion theory. Except for
the invariant bedding method, all of these techniques are either approximate .
solutions to the well-known Boltzmann equation or are based on kernels
obtained from solutions to the equation. The Boltzmann equation is a precise
mathematical descriptioﬁ of neutron behavior in terms of position, energy,

direction, and time,




The Boltzmann transport-eguation describes the general behavior of

uncharged particles or quanta of electromagnetic radiation in terms of the

seven-dimensional phase space (r, E, 2, t). This space consists of three
spatial coordinates, t@o direction-defining angles, the particle energy, and
time. Knowledge of the radiation particle density over all phase space for
same prescribed physical situation s in fact the complete solution to the
transport equation. However, experience has shown that the particle flux
density, which is simply fe]ated to the particle density, is a more convenient
variabie for amalysis. Accordingly, particle flux density, rather than

current, is used as the dependent variable in the Boltzmann egquation.

The flux density quantity used is the angular flux, denoted by o(F, E,
i, t) and defined as the number of particles that cross a unit area normal
to the g direction per unit time with energies in dE about E and in a
direction that 1ies in &7 about &. This function is more properly calied
the differential energy and angle spectrum of the number flux density, but the
simple expression anqular flux density has become standard terminology. -
Integrating the angular flux density over all directions yields the scalar

flux density, given by

4(F,E,t)=[ $ (v, E,0,t)d
0

1

2 sec'1 Mey™ .

and having the units neutron cm™ This scalar flux density
is sometimes referred to as a total flux, although it is differential with
respect to energy. A second integration over some specified energy range will

produce o (r), which is truly a total flux density.




Derivation of the Boltzmann equation can be regarded as a bookkeeping

process that sets particle losses equal to particle gains within a

differential element of phase space (dr dE dr). One of the more familiar

forms for the time-dependent problem is given by

v e (r, E,ﬁ)+;t (r, Yo (r, E,2) =S {r, E, 0)

+j[2 (r B +E, 2" +2)o (r E',q*)dE" do*
S

where

v-a (r,E,2)dEd =

It (rs E) e {r, E, 0) dEck =

S (F, E, &) dEd? =

net convective loss at r of particles with
energies in dE about E and with directions
which Tie in do about @ per unit

volume per unit time,

collision loss at ¥ of particles with
energies in dE about E and directions
which lie in da about n per unit

volume per unit time,

source particles emitted at r with
energies in dE about E and directions
which lie in do about @ per unit

volume per unit volume per unit time,
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.[];s s (¥, E',8') dE'@l = inscattering gain at r of particles with
dE &t energies in dE about E and directions

which 1ie in dr about @ per unit

volume per unit time,

It (r, E) = total macroscopic cross section at r

evaluated at the energy of the

incident particle,

I dEd? = differential scattering cross section
which describes the probability that a

particle with initial energy E' and an
initial direction o' undergoes a
scattering collision at r which places it
into a direction that lies in da about

2 with a new energy in dE about E.

The solution of the transport equation represents the average value of the
particle flux density. Solutions of the transport equation are inherently
complex due to its integradifferential forms, and exact solutions are limited
to a few highly specialized problems, The most practical techniques are
approximate and essentially numerical in nature, the more familiar ones being
the sphereical harmonic method, the discrete ordinates (Sn) technique, and
the moments methods. It is interesting to note that diffusion theory actually
corresponds to 2 low-order approximation of the transport equation. Also,

integral forms of the transport equation are generally regarded as the formal
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basis for the Monte Carlo method, the results of which can in principle be
made to approach the exact solution. For the remainder of this paper the

focus will be on the Monte Carlo technique.

The Monte Carlo Method

The Monte carlo method is 2 mathematical technique used to approximate a
desired quantity by randem sampling from the probabilities describing the true
stochastic processés that affect the magnitude of the guantity. With
sufficient sampling it is assumed that the average value obtained is an
accurate estimate of the quantity. For example, a game of chance may be
played in which the probability of success P is a number whose value is
desired. If the game is played N times with r wins, then r/N is an estimate

of P.

Many types of problems in physics and mathematics can be solved
successtully by random sampling or stochastic techniques. For simple
problems, such as the evaluation of single or double integrals, the usual
numerical integration schemes will give accurate results with less effort, but

for four- or five-fold integrals, Monte Carlo becomes 2 practical tool.
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The method can be demonstrated by considering the Monte Carlo evaluation

of a single integral, for example the integral

b
J =J/T g{x} f(x) dx
a

which generates the average of the function g [x) weighted by the function
f(x). Let the values of the random variable x be sampled from f(x), a

normalized probability density function (pdf}; the normalization condition is

b
—/’ f(x) dx = 1

a

with this sampling procedure the integral can be rewritten as

b
a=[ glx) ¢ (x),
a
F{x) = J/’ F(x') dx' . i
a ' ) %

The function F(x) is the cumulative distribution function (cdf)

with

corresponding to f(x). With this transformation a selection of values of F(x)
with uniform probability over the interval (0,1) is equivalent to the
selection of values of x according to f(x) over the interval (a,b). Then for
the ith selection there is a value g(xj), and an estimation for the value of

J is given by

=

] N
=T ZI g(xi)




Where I is the Monte Carla estimate of J and N is the arbitrary number of

samples.

When generalized to multidimensional integrals Q, the above procedure gives
Q = [g(™f(P)dp,
Where P denotes the multidimensional phase space. The Monte Carlo

estimate of Q is given by

1
N

[

N

Z o(P;)

i=]

Where the P;s are selected according to a complicated set of

probabilities giving rise to the probability density function f(P).

In solving for the basic quantities mentioned above or for others
determined. by these quantities, the sampling in phase space is accomplished by
following particle case histories from birth to death by absorption or
leakage. This analogy to real particles has led some to call Monte Carlo a

theoretical experiment.

When generating the sequence of events in the Tife of a case history,
certain quantities of interest are selected or computed at each step of the

random walk. Each step may be regarded as a collision or as a flight.

Termination of a history generally takes place when the particle is

absorbed, reaches a portion of phase space not allowed, or is killed accarding



to some prescription such as Russian Roulette. The most common areas of phase
space not allowed are spatial regions exterior to the system or energy regions

below an arbitrary cutoff.

Selecting a sample from a distribution usually requires first the
selection of one or more random numbers. Once a random number haS been
selected, there are a number of possible ways to select from a distribution.

Consider the follawing examples:

1. Select a nuctide from N nuclides in a mixture. Each nuclide has a total
macrascopic crass sectign Zn and the total macrascopic cress section

for the medium, ], is given by

Nuclide 1 is selected if a random number R is less than []/{, and
the its nuclide is selected if
]i] i i%l < ae g 2%1
" "
Once the nuclide has been selected, a choice is made between an absorption
or a écattering reaction. If a random number is Tess than {S/Z,
where Zs is the scattering cross section, a scattering reaction will

occur; otherwise, it will be an absorption.
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2. Select a value of x from the pdf f(x), where

[m f(x) dx = 1,

and define the cdf F(x):

F (x) =fx f(x') dx'.

A value of x is selected by setting R = F(x} and solving for x:
x=F1(R)

As an example, pick the distance from one collision site to the next. The
pdf is given by

.Xx
flx) =Je
and the cdf by
X Jx! 4x
F(x) =] e dx' =1 -e
Jo
Let
.):x
R=1-e
then

%= - —-;—— Tn (1-R)

The quantity (1-R) is a random number and consequently can be replaced by the

random number R', giving

x=-T‘—‘.nR-
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Often it is difficult or impossible to solve for x explicitly, as was done
in this example. A table can be constructed with F(x) inverted; that is, x
can be regarded as the dependent variable, and F(x) (or R) as the independent
variable. Thus, a value of x can be obtained from the table for any given

value of R.

In any numerical integration scheme it is essential for accuracy that a
suff icient number of points be processed in the phase-space regions where
Targe contributions are made by the integral. In many Monie Carlo problems
adequate sampling becomes a crucial problem, For examp]e? in deep-penetration
probiems analecg sampling may not yield any histories for particles traveling
through the region af interest. Even when a few histories that make important
centributions are obtained, the probable error may be too large, and
increasing the number of histories decreases the error only slowly. A
possible solution to the problem is to alter the sampling scheme to one which

samples primarily from the impariant regions.

In importance-sampling techniques, the basic stochastic process is so
modified that the event density of the basic process is multiplied by a chosen
function (importance function) which measures the jmportance of an event at x
on the quite reasonable basis that important regions of the phase space should
be sampled most frequently. Important regions are those in which events
contribute, directly or potentially, most heavily to the desired answer, the
consideration of which provides some insight to the selection of the

importance function.

-10-
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When the sampling schemes are altered, the concept of statistical weight
is introduced to correct for the altered or biased probability, so that the
expected value of the mean will not be affected. For example, the information
obtained from a case of history is increased (and thus the probable error is
decreased), generally, by not permitting absorption. Absorption is accounted
for by reducing the weight of each particle by the factor {S/{t or, o
be more general, by the ratio of the average number of particles emerging from

a collision to the number entering a collision.

If absorption is not allowed, the particle must eventually be killed by
another means. The normal way is by Russian Roulette. Thus, when the weight
becomes lower than some arbitrary value, a game is played in which a particle
is killed if R>c, where ¢ is the survival probability (ke<1). If
Rec, the particle survives and the weight is increased by the factor 1/c.

The surviving particle then represents all those particles killed in the game.

Russian Roulctte can also be used to decrease the sempling in any region
of phase space by arbitrary tests, in which case 't is often oupled with the
inverse-process splitting. That is, with certain criteria s«tisfied, a
particle can split into two or more pzrticles with the appropriate weight
reduction. This is done when a particle crosses in*o an important region of

phase space or at the first collision site in such a region.

In many cases the imporfance function is selected arbitrarily and
intuitively. A more systematic approach is to use value functions. The value
function, a solution of a transport equation adjoint to the Boltzmann

transport equation, has been shown fo be a very good, and sometimes an

-11-
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optimum, important function for biasing the original Monte Carlo procedure.
In most cases, a reasonable approximation to the actual value function will
produce quite good results. A useful specialization of these techniques is
the exponential transférmation, which can be quite helpful if parameters for

its use are nbtained from a value function approximation.

Thus far only the generation of histories has been considered. At soms
point with each history, a score must be evaluated, a score being the
contribution to the quantity of interest. (Typical quantitieslof interest are
flux density, current, absorption, transmission, and dose.) For example,
suppose that it is desired to estimate a reaction rate integrated over a
volume V of phase space, where x(xiE) is the macroscopic cross section for

the reaction of interest. This rate is given by

fvj (P) & (P)dp.

z(P)

One way of estimating it is to record Za(P) for every particle

absorbed in the volume V., where xa(P) is the macroscopic absorptfon tross 1
section. Another commonly used estimator recofds r(P)-d for every flight

of length d in the volume of interset, where it is assumed that £(P) does

not vary over the track d. It is possible to reduce the variance of the

estimate by using computed means in connection with the basic collision data.

-12-



B

§

¥
¢
.
"
3
i
¥
!

1

e 2 el

The mean is usually the quantity of most interest in a Monte Carlo
prablem, but a study of the statistical properties of the prohlem higher
moments are often calculated, particularly the second moment, or the estimate

of the variance. The sample variance is given by

! 2 | (5x.)

£ _— 2 — ° gt
Tre e g
where i=1

n = number of samples,

Xy = value of a sample,

$ %-{xi = mean value of n samples.

The estimate of the variaznce of the mean is

var (X) =¢ = §
n

There are some principles that should be kept in mind at this point, With
adequate samnling of the jmportant regions of phase space, the distribution of
the mean might be expected to be close to the normal distribution, but there
is a good possibility that it will be skewed, and the above interpretation »f
the sample variance will be far from correct. From a practical standpoint the
above interpretations of the variance are overly optimistic. In many cases
{especially in deep penetration problems) it is typical to undersample
important regions of phase space and to obtain an underestimate of the mear:-
Then, the estimate of the variance is 1ikely to be even worse and hence,
completely unreliable. If the standard deviation approaches 30 to 50% of t#e

mean, the mean itself should be regarded as unreliable.

Monte Carlo techniques may be designed to reproduce a physical model in as
much detail as is necessary, and so provide a powerful tool 5 solve probls#is

with very few compromises with the physics. The Monte Carlz ~zthod is éapa*ﬁle
-13-



of incorporating any geometry. The successful use of Honte Carlo, however,
genera11y'requires a considerable investment in analysis, programhing, and
computer machine time. It is important for the user to keep in mind that a
well developed theory éxists which specifies, in principle, a near-optimum
procedure for solving a given problem. This pracedure consists of obtaining
the best possible approximation to the value function for the problem and then
using this function to obtzin parameters for importance-sampling technigues or

to guide development of new biasing techniques.

In general, Monte Carlo methods will not be applied to one-dimensional
problems, since discrete ordinates codes are likely to be much faster than
Monte Carlo codes. For two-dimensional preblems, Monte Carlo and discrete
ordinates methods are somewhat comparable, but for three-dimensional or
time~dependent problems, there is no competitor to Monte Carlo for a rigorous

solution of transport problems.

MORSE and TARTNP
At LLNL the two Monte Carlo codes which are applicable to neutron
dosimetry problems are MORSE1 and TARTNPZ. Although these codes differ in
many ways, which are unimportant, the special features of MORSE make it
particularly suitable to the soTution of deep penetration problems, problems
with a large geometrical attenuation, and problems invelving coupled
neutron-gamma reactions. As such, it complements TARTHP which is particularly %

well-suited for the determination of dosimeter response functions.
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MORSE solves the group integrated Boltzmann equation which implies the
equation has been integrated over energy to form a series of energy groups.
Input cross sections describe the average reaction in a group and is no longer
point wise in nature. MORSE may be run with as few as one group or as many
groups as desired within machine storage limitations. For deep penetration
problems there are several techniques that can be used to modify the random
walk process in order to spend more computing time on useful histories and

less on those which are unimportant.

The easiest method to use is Russian Roulette. In this method, particles
which have a low statistical weight undergo a Russian roulette. Those losing
the game are killed, while those winning have their statistical weight
increased. The choice of playing this game as well as the probabi]ity of
survival are depandent upon the energy group of a particle coming out of a
collision and the geometrical position of the collision. It is normal
practice to play this game in the lower energy groups. It is also possible to
ki1l off all particles in a geometrical position where ramlom walk histories

contribute nothing to the desired result.

Splitting provides a way of increasing the number of particles in the

region of interest. Generally, splitting is used at high neutron energies.

Occasionally, problems are found where there is a high probability that
most of the particles will not react and will simply leak from the defined
geometry into space. It is possible to alter the problem so that leakage is
not allowed. Meaningful histories are thus generated without the need to

produce an excessive number of source histories.

-15-
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Particles born in certain portigns of phase space may be more important in
their contribution than others. MORSE allows biasing to be made in all phases

of the source description (position, energy, time and angle).

The most powerful technique available in MORSE for deep penetration
problems is the exponential transformation. This method stretches the path of
a particle which is headed toward a giver point in space and shortens the path
of a particle headed away from the point. This method tends to make the
results move accurate at or around the given point while making answers at

other paints less accurate.

The only variance reduction techniques currently in TART are splitting and
Pussian Roulette which take place only as a particle crosses the boundary
ccwveen two zones. HKowever, TART does have the ability to calculate the
energy deposition in a zone or the number of interactions which take place in

a zone which are useful] for detector evaluations.

Let us Toak at some examples which illustrate the usefulness of Mante
Carlo calculations. At LLNL we use the EberTine PNR-4 remmeter for monitoring
neutrons. Two questions which have arisen concern the 1/R2 dependence of
the detection system and sensitivity of the calibration factor to the spectral
shape. In order to address these questions, a series of TARTNP calculations
have been made. The first set of calculations were made to determine the
response function for the system. The results obtained do not agree well with

3

previous calculations made by Hankins.” The results for the TARTNP

calculations are given in Table I. A comparison to the results published by

-16-
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Hankins is shown in Figure 1. Also shown is the neutron dose curve. The
three curves were normalized at 2.2 MeV which is the mean energy of the group
used for normatization by Hankins. TARTNP predicts a greater response to
intermediate energy neutrons than predicted by Hankins the reason for this
difference is not known. Using the TARTNP response function, a Eode Was
written to calculate the neutron dose rate per unit flux density for a given
calibration factor. The c~de uses a given spectrum to calculate the tissue
dose rate, and the dose rate measured by the PNR-4. This enables one to
calculate the errors associated with using calibration factors obtained with
various calibration sources. For example, for a source consisting of 50
percent fission and 50 percent PuBe mode: *ted with approximate]y 5 cm of CH2
the PNR-4 would over estimate the dose by 13 percent if calibrated with a
252Cf source. If the calibration was done with a PuBe source, the error

vould be 31 percent.

A second set of TARTHP calculations-were made to determine the response of
the PNR-4 detector as a function of distance. This was done to see if it has
a 1/R2 behavior. For a point source, an analysis of variance tesf of the
TARTNP results showed that for di-tances greater than 25 cm, the PNR-4 at the
95 percent confidence level indeed has a 1/R2 dependence. This was done for

1 keV, 100 keV, 1 MeV, 100 MeV, and fission neutrons.

Most of the neutron dosimetry work at LLNL is performed using the neutron
sources available in the calibration facility. These sources, vhen used with
different moderators, provide a wide variety of neutron spectra. The dose

5 Since ANISN s a

rates at one meter have been calcuated using ANISN.q’
one-dimensional code, then one can not calculate the effects of such things as

the hole in the moderator to allow insertion of the source and the asymmetry
-17-



of the scattering walls. MORSE does allaw far the calcﬁ]ation of the effects
produced by asymmetry. A MORSE calculation was made on the dose rate at one
meter from 2526f in the 15 cm 020 sphere using the same spherized geomatry
as was used in ANISN. The result was that MORSE predicted a dose rate 1.9%
higher than ANISHN.

-18-

i Satyarieind




T T g e

References
pemo, “MORSE-L, A Special Version of the MORSE Program Designed to Solve
Neutron, Gamma, and Coupled Meutron-Gamma Penetration Problems," T.p.

Wilcox, Sept. 1, 1972,

“TARTNP: A Coupled Neutron-Photon Monte Carlo Transport Code," E.F.
Plechaty and J.R. Kimlinger, UCRL-50400, Vol. 14, July 1976.

"A Modified Sphere Neutron Detectcr,” Dale Hankins, LA-3595, 1967.

"A Users Manual for ANISN," W.W. Engle, K-1693, 1967.

Pwlti-technique Characterization of Neutron Fields from Moderated 252Cf
and 238PuBe Sources," R.V. Griffith, D.R. Slaughter, H.W. Patterson,

J.L. Beach, E.G. Frank, D.W. Rueppel, and J.C. Fisher, IAEA-SM-222/14,
14,3,

210

o o



TABLE 1

E{MeV

2.5 x 108
1.0 x 10
1.0x 10
1.0 x 107
1.0 x 10!
3.0 x 10!
5.0 x 107!
7.0 x 107!
1.0

2.0

2.2

3.0

2.0

6.0

8.0

10.0
14.0

TARTNP Calculated PNR-4 Response
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R{Counts/n}

2.95 x 107
3.57 X 107
5.81 x 107
7.50 x 167>
9.32 x 10
153 x 107
2.07 x 107
2.24 x 107"
2.78 x 107"

3.06 x 107
4

4

3.27 x 107
2.82 x 107
2.72 x 107
251 x 107"
2.04 x 1074
173 x 0t
157 x 107
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FIGURE 1 PNR4 RESPONSE AND TISSUE DOSE RESPONSE AS A FUNCTION OF ENERGY
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