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Introduction 

It is important for any research and development program that 
calculational tools be available to complement experimental efforts. In 
neutron dosimetry, calculations enable one to predict the response of a 
proposed dosimeter before effort is expended to design and fabricate the 
neutron instrument or dosimeter. Also, since the neutron spectrum is so 
important in determining how a particular dosimeter will respond, having the 
ability to calculate the neutron spectrum for a wide variety of source, 
moderator, and shield configurations is extremely valuable. The nature of 
these calculations requires the use of computer programs that implement 
mathematical models representing the transport of radiation through 
attenuating media. Numerical, and in some cases analytical, solutions of 
these models can be obtained by one of several calculational techniques. 

Calculational methods include spherical harmonics, discrete ordinates, 
moments, Monte Carlo, diffusion theory, invariant imbedding, and kernels, plus 
a method which combines a removal kernel with diffusion theory. Except for 
the invariant bedding method, all of these techniques are either approximate 
solutions to the well-known Boltzmann equation or are based on kernels 
obtained from solutions to the equation. The Boltzmann equation is a precise 
mathematical description of neutron behavior in terms of position, energy, 
direction, and time. 



The Boltzmann transport equation describes the general behavior of 
uncharged particles or quanta of electromagnetic radiation in terms of the 

seven-dimensional phase space (r, E, n, t). This space consists of three 
spatial coordinates, two direction-defining angles, the particle energy, and 
time. Knowledge of the radiation particle density over all phase space for 
some prescribed physical situation is in fact the complete solution to the 
transport equation. However, experience has shown that the particle flux 
density, which is simply related to the particle density, is a more convenient 
variable for analysis^ Accordingly, particle flux density, rather than 
current, is used as the dependent variable in the Boltzmann equation. 

The flux density quantity used is the angular flux, denoted by $(f, E, 
u, t) and defined as the number of particles that cross a unit area normal 
to the a direction per unit time with energies in dE about E and in a 
direction that lies in cB about a. This function is more properly called 
the differential energy and angle spectrum of the number flux density, but the 
simple expression angular flux density has become standard terminology. • 
Integrating the angular flux density over all directions yields the scalar 
flux density, given by 

« (r, E, t) = I * {f, E, n, t) dn 

-2 -1 -1 
and having the units neutron cm sec MeV . This scalar flux density 
is sometimes referred to as a total flux, although it is differential with 
respect to energy. A second integration over some specified energy range will 
produce «(r), which is truly a total flux density. 
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Derivation of the Boltzmann equation can be regarded as a bookkeeping 

process that sets particle losses equal to particle gains within a 

differential element of phase space (dr dE dn). One of the more familiar 

forms for the time-dependent problem is given by 

v • Bt {?, E, B) + ^ ( f , E}» ( r , E, a) = S (r , E, n) 

+ III (r E' - E, a"' * n) « (r E', a"! dE' da* 

where 
v • Hi (r, E, n) dE dv = net convective loss at r of particles with 

energies in dE about E and with directions 
which lie in dn about a per unit 
volume per unit time, 

£ t (r, E) i {r, E, B ) dEda = collision loss at f of particles with 
energies in dE about E and directions 
which lie in dn about a per unit 
volume per unit time, 

S (r, E, a) dEch = source particles emitted at r with 
energies in dE about E and directions 
which lie in dn about a per unit 
volume per unit volume per unit time, 
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inscattering gain at r of particles with 
energies in dE about E and directions 
which lie in dn about n per unit 
volume per unit time, 

total macroscopic cross section at r 

evaluated at the energy of the 
incident particle, 

I dEds = differential scattering cross section 
which describes the probability that a 
particle with initial energy E' and an 
initial direction a' undergoes a 
scattering collision at r which places it 
into a direction that lies in dn about 
fi with a new energy in dE about E. 

The solution of the transport equation represents the average value of the 
particle flux density. Solutions of the transport equation are inherently 
complex due to its integradifferential forms, and exact solutions are limited 
to a few highly specialized problems. The most practical techniques are 
approximate and essentially numerical in nature, the more familiar ones being 
the sphereical harmonic method, the discrete ordinates (S ) technique, and 
the moments methods. It is interesting to note that diffusion theory actually 
corresponds to a low-order approximation of the transport equation. Also, 
integral forms of the transport equation are generally regarded as the formal 

V 4 (r, E',5') dE'cfi = 
s dEcfi 

ItCr.E) 
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basis for the Monte Carlo method, the results of which can in principle be 
made to approach the exact solution. For the remainder of this paper the 
focus will be on the Monte Carlo technique. 

The Monte Carlo Method 

The Monte carlo method is a mathematical technique used to approximate- a 
desired quantity by random sampling from the probabilities describing the true 
stochastic processes that affect the magnitude of the quantity. With 
sufficient sampling it is assumed that the average value obtained is an 
accurate estimate of the quantity. For example, a game of chance may be 
played in which the probability of success P is a number whose value is 
desired. If the game is played N times with r wins, then r/N is an estimate 
of P. 

Many types of problems in physics and mathematics can be solved 
successfully by random sampling or stochastic techniques. For simple 
problems, such as the evaluation of single or double integrals, the usual 
numerical integration schemes will give accurate results with less effort, but 
for four- or five-fold integrals, Monte Carlo becomes a practical tool. 
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The method can be demonstrated by considering the Monte Carlo evaluation 

of a single integral, for example the integral 

i*\_ g (x) f (x )dx 

which generates the average of the function g (x) weighted by the function 

f (x ) . Let the values of the random variable x be sampled from f (x ) , a 

normalized probability density function (pdf); the normalization condition is 

/ f(x) dx = 1 

^a 

with this sampling procedure the integral can be rewritten as 

r b 

J = g(x) dF(x), 

Ji 

with 
r x 

F(x) = I f (x ' ) dx1 . 

The function F(x) is the cumulative distribution function (cdf) 
corresponding to f(x). With this transformation a selection of values of F(x) 
with uniform probability over the interval (0,1) is equivalent to the 
selection of values of x according to f(x) over the interval (a,b). Then for 
the ith selection there is a value g(x.), and an estimation for the value of 
J is given by 

- 1 N 

" i=l 1 
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Where l i s the Monte Carlo estimate of J and N is the arbitrary number of 

samples. 

When generalized to multidimensional integrals Q, the above procedure gives 

Q = /g(nlf(P)dP, 

Where P denotes the multidimensional phase space. The Monte Carlo 

estimate of Q is given by 

N 

' • J J,'"' 1 

When? the P.s are selected according to a complicated set of 

probabilities giving rise to the probability density function f(P). 

In solving for the basic quantities mentioned above or for others 

determined, by these quantities, the sampling in phase space is accomplished by 

following particle case histories from birth to death by absorption or 

leakage. This analogy to real particles has led some to call Monte Carlo a 

theoretical experiment. 

When generating the sequence of events in the l i fe of a case history, 

certain quantities of interest are selected or computed at each step of the 

random walk. Each step may be regarded as a collision or as a f l igh t . 

Termination of a history generally takes place when the particle is 

absorbed, reaches a portion of phase space not allowed, or is kil led according 
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to some prescription such as Russian Roulette The most common areas of phase 

space not allowed are spatial regions exterior to the system or energy regions 

below an arbitrary cutoff. 

Selecting a sample from a distribution usually requires f i r s t the 

selection of one or more random numbers. Once a random number has been 

selected, there are a number of possible ways to select from a distribution. 

Consider the following examples: 

1. Select a nuclide from N nuclides in a mixture. Each nuclide has a total 

macroscopic cross section J and the total macrascopic cross section 

for the medium, \, is given by 

N 
1=1 L 

n=l n 

Nuclide 1 is selected i f a random number R is less than £-,/£, and 

the i ts nuclide is selected i f 

I = y < R< I y 
n = i n = i 

Once the nuclide has been selected, a choice is made between an absorption 

or a scattering reaction. I f a random number is less than I /[> 

where I is the scattering cross section, a scattering reaction wi l l 

occur; otherwise, i t w i l l be an absorption. 



2. Select a value of x from the pdf f(x), where 

I f(x)dx = l, 

and define the cdf F(x): 

F (x) = [ f (x ' ) dx'. 

A value of x is selected by setting R = F(x) and solving for x: 

x = F"1 (R) 

As an example, pick the distance from one collision site to the next. The 
pdf is given by 

f(x) 

and the cdf by 

F(x) = 
Jo 

-I*' 
dx 

Let 

R = 
-n 

1 -e 

x = -fin (1-R) 

-u 

then 

The quantity (1-R) is a random number and consequently can be replaced by the 
random number R", giving 

x.-flnR-
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Often it is difficult or impossible to solve for x explicitly, as was done 
in this example. A table can be constructed with F(x) inverted; that is, x 
can be regarded as the dependent variable, and F(x) (or R) as the independent 
variable. Thus, a value of x can be obtained from the table for any given 
value of R. 

In any numerical integration scheme it is essential for accuracy that a 
sufficient number of points be processed in the phase-space regions where 
large contributions are made by the integral. In many Monte Carlo problems 
adequate sampling becomes a crucial problem. For example, in deep-penetration 
problems analog sampling may not yield any histories for particles traveling 
through the region of interest. Even when a few histories that make important 
contributions are obtained, the probable error may be too large, and 
increasing the number of histories decreases the error only slowly. A 
possible solution to the problem is to alter the sampling scheme to one which 
samples primarily from the important regions. 

In importance-sampling techniques, the basic stochastic process is so 
modified that the event density of the basic process is multiplied by a chosen 
function (importance function) which measures the importance of an event at x 
on the quite reasonable basis that important regions of the phase space should 
be sampled most frequently. Important regions are those in which events 
contribute, directly or potentially, most heavily to the desired answer, the 
consideration of which provides some insight to the selection of the 
importance function. 
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When the sampling schemes are altered, the concept of statistical weight 
is introduced to correct for the altered or biased probability, so that the 
expected value of the mean will not be affected. For example, the information 
obtained from a case of history is increased (and thus the probable error is 
decreased), generally, by not permitting absorption. Absorption is accounted 
for by reducing the weight of each particle by the factor J / K or, to 
be more general, by the ratio of the average number of particle: emerging from 
a collision to the number entering a collision. 

If absorption is not allowed, the particle must eventually be killed by 
another means. The normal way is by Russian Roulette. Thus, when the weight 
becomes lower than some arbitrary value, a game is played in which a particle 
is killed if R > c , where c is the survival probability (Occ<l). If 
R<c, the particle survives and the weight is increased by the factor 1/c. 
The surviving particle then represents all those particles killed in the game. 

Russian Roulette can also be used to decrease the sampling in any region 
of phase space by arbitrary tests, in which case *t is often oupled with the 
inverse-process splitting. That is, with certain criteria s«nsfied, a 
particle can split into two or more particles with the appropriate weight 
reduction. This is done when a particle crosses in+.o an important region of 
phase space or at the first collision site in such a region. 

In many cases the importance function is selected arbitrarily and 
intuitively. A more systematic approach is to use value functions. The value 
function, a solution of a transport equation adjoint to the Boltzmann 
transport equation, has been shown to be a very good, and sometimes an 
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optimum, important function for biasing the original Monte Carlo procedure. 

In most cases, a reasonable approximation to the actual value function wil l 

produce quite good results. A useful specialization of these techniques is 

the exponential transformation, which can be quite helpful i f parameters for 

i ts use are obtained from a value function approximation. 

Thus far only the generation of histories has been considered, fit some 

point with each history, a score must be evaluated, a score being the 

contribution to the quantity of interest. (Typical quantities of interest are 

flux density, current, absorption, transmission, and dose.) For example, 

suppose that i t is desired to estimate a reaction rate integrated over a 

volume V of phase space, where E(XJE) is the macroscopic cross section for 

the reaction of interest. This rate is given by 

J v l (P)»(P)dP. 

MP) 
One way of estimating i t is to record £ (P) for every particle 

absorbed in the volume V-, where i (?) is the macroscopic absorption cross 
a 

section. Another commonly used estimator records i(P)*d for every f l ight 

of length d in the volume of interset, where i t is assumed that E(P) does 

not vary over the track d. I t is possible to reduce the variance of the 

estimate by using computed means in connection with the basic collision data. 
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The mean is usually the quantity of most interest in a Monte Carlo 

problem, but a study of the statistical properties of the problem higher 

moments are often calculated, particularly the second moment, or the estimate 

of the variance. The sample variance is given by 

c2 _L _ 2 J - 2 U*/ 
S = n - l < * r * > 2 = n - l * r l ~ r . , L n 

where 

n = number of samples, 

x, = value of a sample, 

" = - V x . = mean value of n samples. x n ' l ^ 
The estimate of the variance of the mean is 

2 
var fx) = a = _S 

n 

There are some principles that should be kept in mind at this point. With 

adequate sampling of the important regions of phase space, the distribution of 

the mean might be expected to be close to the normal distribution, but there 

is a good possibility that i t wi l l be skewed, and the above interpretation " f 

the sample variance wil l be far from correct. From a practical standpoint the 

above interpretations of the variance are overly optimistic. In many cases 

(especially in deep penetration problems) i t is typical to undersample 

important regions of phase space and to obtain an underestimate of the mea<v.-

Then, the estimate of the variance is likely to be even worse and hence, 

completely unreliable. I f the standard deviation approaches 30 to 50% of t-^e 

mean, the mean itself should be regarded as unreliable. 

Monte Carlo techniques may be designed to reproduce a physical model in as 

much detail as is necessary, and so provide a powerful tool to solve problems 

with very few compromises with the physics. The Monte Carls -^thod is cap9 t u l e 
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of incorporating any geometry. The successful use of Monte Carlo, however, 

generally requires a considerable investment in analysis, programming, and 

computer machine time. I t is important for the user to keep in mind that a 

well developed theory exists which specifies, in pr inciple, a near-optimum 

procedure for solving a given problem. This procedure consists of obtaining 

the best possible approximation to the value function for the problem and then 

using th is function to obtain parameters for importance-sampling techniques or 

to guide development of new biasing techniques. 

In general, Monte Carlo methods w i l l not be applied to one-dimensional 

problems, since discrete ordinates codes are l i ke l y to be much faster than 

Monte Carlo codes. For two-dimensional problems, Monte Carlo and discrete 

ordinates methods are somewhat comparable, but for three-dimensional or 

time-dependent problems, there is no competitor to Monte Carlo for a rigorous 

solution of transport problems. 

MORSE and TARTNP 

At LLNL the two Monte Carlo codes which are applicable to neutron 

1 2 

dosimetry problems are MORSE and TARTNP . Although these codes d i f fe r in 

many ways, which are unimportant, the special features of MORSE make i t 

par t icu lar ly suitable to the solution of deep penetration problems, problems 

with a large geometrical attenuation, and problems involving coupled 

neutron-ganma reactions. As such, i t complements TARTNP which is part icular ly 

wel l-suited for the determination of dosimeter response functions. 
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MORSE solves the group integrated Boltzmann equation which implies the 
equation has been integrated over energy to form a series of energy groups. 
Input cross sections describe the average reaction in a group and is no longer 
point wise in nature. HORSE may be run with as few as one group or as many 
groups as desired within machine storage limitations. For deep penetration 
problems there are several techniques that can be used to modify the random 
walk process in order to spend more computing time on useful histories and 
less on those which are unimportant. 

The easiest method to use is Russian Roulette. In this method, particles 
which have a low statistical weight undergo a Russian roulette. Those losing 
the game are killed, while those winning have their statistical weight 
increased. The choice of playing this game as well as the probability of 
survival are dependent upon the energy group of a particle coming out of a 
collision and the geometrical position of the collision. It is normal 
practice to play this game in the lower energy groups. It is also possible to 
kill off all particles in a geometrical position where random walk histories 
contribute nothing to the desired result. 

Splitting provides a way of increasing the number of particles in the 
region of interest. Generally, splitting is used at high neutron energies. 

Occasionally, problems are found where there is a high probability that 
most of the particles will not react and will simply leak from the defined 
geometry into space. It is possible to alter the problem so that leakage is 
not allowed. Meaningful histories are thus generated without the need to 
produce an excessive number of source histories. 

-15-



Particles born in certain portions of phase space may be more important in 
their contribution than others. HORSE allows biasing to be made in all phases 
of the source description (position, energy, time and angle). 

The most powerful technique available in MORSE for deep penetration 
problems is the exponential transformation. This method stretches the path of 
a particle which is headed toward a giver point in space and shortens the path 
of a particle headed away from the point. This method tends to make the 
results move accurate at or around the given point while making answers at 
other points less accurate. 

The only variance reduction techniques currently in TART are splitting and 
Russian Roulette which take place only as a particle crosses the boundary 
i.̂ ;.ween two zones. However, TART does have the ability to calculate the 
energy deposition in a zone or the number of interactions which take place in 
a zone which are useful for detector evaluations. 

Let us look at some examples which illustrate the usefulness of Monte 
Carlo calculations. At LLNL we use the Eberline PNR-4 remmeter for monitoring 

2 
neutrons. Two questions which have arisen concern the 1/R dependence of 

the detection system and sensitivity of the calibration factor to the spectral 

shape. In order to address these questions, a series of TARTNP calculations 

have been made. The f i r s t set of calculations were made to determine the 

response function for the system. The results obtained do not agree well with 
3 

previous calculations made by Hankins. The results for the TARTNP 

calculations are given in Table I . A comparison to the results published by 
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Hankins is shown in Figure 1. Also shown is the neutron dose curve. The 

three curves were normalized at 2.2 MeV which is the mean energy of the group 

used for normalization by Hankins. TARTNP predicts a greater response to 

intermediate energy neutrons than predicted by Hankins the reason for this 

difference is not known. Using the TARTNP response function, a code was 

written to calculate the neutron dose rate per unit flux density for a given 

calibration factor. The cxle uses a given spectrum to calculate the tissue 

dose rate, and the dose rate measured by the PNR-4. This enables one to 

calculate the errors associated with using calibration factors obtained with 

various calibration sources. For example, for a source consisting of 50 

percent fission and 50 percent PuBe mode; •'ted with approximately 5 cm of CH-

the PNR-4 would over estimate the dose by 13 percent i f calibrated with a 
252 

Cf source. If the calibration was done with a PuBe source, the error 
would be 31 percent. 

A second set of TARTNP calculations-were made to determine the response of 
the PNR-4 detector as a function of distance. This was done to see if it has 
a 1/R behavior. For a point source, an analysis of variance test of the 
TARTNP results showed that for distances greater than 25 cm, the PNR-4 at the 
95 percent confidence level indeed has a 1/R dependence. This was done for 
1 keV, 100 keV, 1 MeV, 100 MeV, and fission neutrons. 

Most of the neutron dosimetry work at LLNL is performed using the neutron 
sources available in the calibration facility. These sources, when used with 
different moderators, provide a wide variety of neutron spectra. The dose 

4 5 rates at one meter have been calcuated using ANISN. ' Since ANISN is a 
one-dimensional code, then one can not calculate the effects of such things as 
the hole in the moderator to allow insertion of the source and the asymmetry 
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of the scattering walls. MORSE does allow for the calculation of the effects 

produced by asymmetry. A MORSE calculation was made on the dose rate at one 
252 meter from Cf in the 15 cm D-O sphere using the same spherized geometry 

as was used in ANISN. The resul t was that MORSE predicted a dose rate 1.9% 

higher than ANISN. 
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TABLE I TARTNP Calculated PNR-4 Response 

E(MeV R(Counts/n) 
t 
i 

2.5 x ID" 8 2.95 x 10"5 

1.0 x io- 6 3.57 x 10"5 

1.0 x io- 3 5.81 X 10"5 

1.0 x 10"Z 7.50 x 10"5 

1.0 x IO-1 9.32 x 10"5 

3.0 x lO"1 1.53 x 10~4 

5.0 x IO-1 2.07 x 10~4 

7.0 x ID" 1 2.24 x 10" 4 

1.0 2.78 x 10" 4 

2.0 3.06 x 10~ 4 

2.2 3.27 x 10" 4 

3.0 2.82 x 10" 4 

4.0 2.72 x 10" 4 

6.0 2.51 x 10" 4 

8.0 2.04 x 10" 4 

10.0 1.73 x 10" 4 

14.0 1.57 x 10" 4 
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