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Some reduced terna.ry. and quaternary oxides of molybdenum 

containing s t rong metal -metal bonds 1 

Char1 i e  Carmi ne Torardi . . 

Under t he  supervision of Robert E .  McCarley 
From the Department of Chemistry 

Iowa S t a t e  University 

Several new, reduced ternary  and quaternary.oxides of  molybdenum 

a r e  reported,  each containing molybdenum i n  an average oxidation s t a t e  

< 4.0. All of these  co'mpounds contain e i t h e r  d i s c r e t e  molybdenum atom 

cl  us t e r s  o r  i n f i n i t e  chains of bonded molybdenum atoms. 

. The compounds ScznMo3o8, LiZn2Mo3O8, and Zn3M0308 have been 

synthesized and c ry s t a l  s t r u c t u r e s  have been determined f o r  the  l a t t e r ,  

two. .These oxides contain the  same type of t r i angu l a r  molybdenum atom 

c l  us ters  found i n  the  compound Zn2Mo3O8 (McCarroll , W .  H .  ; Katz, L . ; 
Wa.rd, J .  J. Am. -- Chem. Soc.. 1957, 79, 5410). However, each of the  

t r imer ic  c l u s t e r s  i n  these  new compounds has ava i l ab le  one o r  two 

addi t i  opal e lec t rons  for .  pa r t i c i pa t i on  i n  metal -metal bonding. 

Another newly prepared and character ized ternary  oxide containing 

d i s c r e t e  metal atom c l  us te r s  is Bal 4M~801 6. The s t r u c t u r e  of t h i s '  
, . .  

'DOE Report IS-T-960. This work was performed under Contract 
W-7405-eng-82 w i t h  the  Department of Energy. 



compound cons is ts  o f  molybdenum-oxide c l  us te r  chains extended para1 1  e l  

w i t h  the c  ax is .  These chains a re  b u i l t  from c lus te rs  o f  the type 

Mo4016 sharing the oxygen atoms on the four  outer  edges o f  the planar 

tetrameric molybdenum atom c l  us te r  t o  g ive  an Mo408 stoichiometry . 
Two d i f f e r e n t  i n f i n i t e  chains, b u i l t  up from ~ 0 ~ 0 ~ ~ '  and Mo408 0.28- 

c l us te r  un i t s ,  respect ive ly ,  are  ' i n te r1  inked v i a  Mo-0-Mo br idge 

bonding t o  create  four-sided tunnels i n  which the ~a '+  ions reside.  

The new compound NaMo406 contains i n f i n i t e  chains o f  bonded 

molybdenum atom c l us te r s .  These chains a re  comprised o f  c l  usters of 

the type Mo6012 fused a t  opposite edges by removal o f  two edge- 

b r idg ing  oxygen atoms, ,and shar ing o f  the metal and remaining . .  oxygen . 

atoms between c l us te r  un i t s .  The sodium ions occupy s i t e s  i n  . . channels , . 

formed ., . by . f ou r  . molybdenum-oxide c l  us te r  chains cross1 i nked by strong 

Mo-0-Mo,, bonds. 

Another new compound, whose s t r uc tu re  i s  c lose ly  r e l a ted  t o  t h a t  

of NaMo406, i s  Bag,62M$06. This mater ia l  a lso exh ib i t s  a  super1 a t t i c e  

order ing o f  barium ions w i t h i n  the channels. An analysis o f  t h i s  

superstructure from s i ng le  c r y s t a l  x-ray d i f f r a c t i o n  data i s  discussed. 

Other compounds t h a t  have been prepared and a1 so p a r t i a l l y  

character ized by chemical analyses and x-ray powder d i f f r a c t i o n  data 

MO 0  and CaMo5O8. are  t e n t a t i v e l y  formulated as K2+,Mol 201 9, Na2+, 19, 
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GENERAL INTRODUCTION 

Over the past decade, there has been an increasing in teres t  in 

' sol id  s t a t e  compounds containing discrete  t ransi t ion metal atom c lus ters  

and condensed t ransi t ion metal atom c lus ters  which form chain and sheet 

s t ructures .  Many sul fu r ,  sel eni urn, t e l l  urium, and ha1 ogen compounds 

containing metal atom cl usters 'have. been synthesized. One important 

family of compounds, known as Chevrel phases (1 ) ,  incorporates the 

discrete  b!06X8 c lus te r  unit with X = S,  Se and Te (an Mo6X8 c lus ter  i s  

composed of an octahedron of bonded molybdenum atoms with X atoms 

bridging the eight faces of the octahedron). Members of ' th is  family 

have the same basic solid s t a t e  s t ructure and many have interest ing 

superconduc t i  ng  properties. In ha1 i de compounds, examples of condensed 

c lus te r  systems include the compounds GdZC13 (Z) ,  Sc5Clg ( 3 ) ,  and ZrCl 

( 4 ) .  The f i r s t  compound contains i n f i n i t e  chains derived from bonded 

metal atom clusters  Of type M6XB The second compound i s  related to the 

f i r s t  b u t  contains, i n f in i t e  chains derived from bonded scandium atom 

clusters  of type M6X1 (an M6X1 c lus te r  consists of an octahedron of 

M atoms with X atoms bridging the twelve edges of the octahedron). The 

compound ZrCl i s  composed of sheets of bonded metal atoms and sheets of 

. . ha1 ogen atoms in a double 1 ayered arrangement ( . . .C1 -Zr-Zr-Cl . . . ) . 
Structures such as these a re  clear ly dominated by metal-metal in te r -  

actions and the s t a b i l i t y  of these compounds must cer tainly a r i se  from 

the contributions made to the l a t t i c e  energy by metal -metal bonding. 

In contrast ,  t ransi t ion metal atom c lus ters  and condensed c lus te rs  

in oxide systems are  relat ively few in number. The most comnonly 



observed metal c l u s t e r  geometry i n  these oxide compounds involves 

bqnding between two metal atoms t o  form dimers. ' Some exampl es of these 

oxides inc lude the r u t i l e - r e l a t e d  dioxides (5)  o f  V, Nb, Mo, Tc, and W, 

and the compounds Nd4Re201 ( 6 )  and La4Re2010 (7) .  P r i o r  t o  1970, oxide 

compounds which contained c l us te r s  cons is t ing  o f ' t h r e e  o r  more bonded 

metal atoms were rare .  Several examples o f  these compounds were 

I I 
A2 M0308 ( A  = Mg, Mn, Fe, Co, ~ i ,  Zn, and Cd) (8), the perovski t e -  

re la ted  BaRu03 (9) ,  orthorhombic Re02 ( l o ) ,  the compound Pt304 (1 1 ),  

and the h igh ly  reduced compound NbO (12). These compounds conta in  

t r i angu l  a r  c l  usters of molybdenum ions,  1 inear  c l us te r s  o f  three 

ruthenium ions, i n f i n i t e  zig-zag chains o f  rhenium ions, , i n f i n i t e  

1 i near chains of p lat inum ions, and corner-sharing octahedra o f  niobium 

ions, respect ive ly .  Since t h a t  time, o ther  oxides reported t o  contai'n 

c l us te r s  o f  three o r  more bonded metal atoms inc jude  the compounds 

I I 
A2 M o ~ - ~ W ~ O ~  (w i t h  0 < x < 3  - and A = Mg, Mn, Fe, Co, N i ,  Zn, and Cd) (13), 

the compounds LiRMo 0 (R = Sc, Y, I n ,  Sm, Gd, Tb, Dy, Ho, Er, Yb) (14), 3 8 
and the compound Mg3Nb6011 (15). The f i r s t  two groups of compounds 

I I incorporate  t r i angu la r  c l us te r s  such as those found i n  the A2 Mo308 

compounds (mentioned above) whi 1 e the l a t t e r  compound contains d isc re te  

octahedra o f  bonded niobium atoms. 

The research presented here began i n  an attempt t o  b e t t e r  under- 

stand the metal -metal bonding i n te rac t i ons  i n  the tri nucl ear c l us te r s  

o f  the compounds A;'Mo~o~. The i n i t i a l  experiments have l e d  t o  the  

discovery of several o ther  new reduced ternary and quaternary oxides of 

molybdenum. Some of these new compounds possess unprecedented 



structures in an oxide system. One compound contains discrete  planar 
-l 

tetrameric molybdenum atom c lus ters  (1 6 )  (section 11),  while two other 

compounds contain i n f i n i t e  chains of condensed octahedral molybdenum 

atom clusters  (17) (sections I11 and IV). 

Explanation of Dissertation Format 

This disser tat ion i s  divided into f ive  sections,  Each of - the  f i r s t  
. . . . 

four sections i s  written i n  a form sui table  fo r  pub1 ication as a 

technical paper. The research presented in t h i s  disser tat ion i s  the 

work of the author. While references c i ted  in the general introduction 

may be found a t  the end of the d isser ta t ion ,  each section contains an 

independent l i s t i n g  'of references which are  c i ted  i n  t ha t  section. 



SECTION I. SYNTHESIS,  CRYSTAL STRIJCTLJRES, AND PROPERTIES 

OF L i Z n 2 M 0 3 0 8  AND Zn3Mo3O8. SYNTHESIS AND 

CHARACTERIZATION O F  ScZnMoj08. COMPOUNDS 

CONTAINING THE M O ~ O ,  CLUSTER UNIT 



Many su l f i des  , se l  enides, t e l l  u r i des  and ha1 ides  con ta in ing  d i s c r e t e  

metal atom c l u s t e r s  and condensed c l u s t e r  arrangements a re  known. A few 

c l a s s i c  examples o f  these a r e  PbMo6S8 (1 ),  M0&1 (Z),  Gd2C13 (3)  and 

Z r C l  ( 4 ) .  However, metal atom c l u s t e r s  and condensed c l u s t e r s  i n  ox ide  

systems are  r e l a t i v e l y  few i n  number. Some examples o f  these oxides are  

Mo 0  ( 7 ) ,  and NaMo406 (8 ) .  Nb02 (s ) ,  M!33Nb6011 (6) ,  Ba1,14 8  16 

A n  i n t e r e s t i n g  fami ly  of compounds i n c o r p o r a t i n g  the  Mo301 c l  u s t e r  

I I uni t i n c l  udes compounds o f  t h e  types A2 Mo308 (A  = M ~ ,  Mn, Fe, Co, N i  , Zn, 

Cd) (9)  and LiRMo3o8 (R = Sc, Y, In ,  Sm, Gd, Tb, Dy, Ho, Er, Yb) (10).  

The c r y s t a l  s t r u c t u r e  o f  Zn2Mo3O8 was determined (1 1  ) and shown t o  c o n s i s t  

of a  d i s t o r t e d  hexagonal close-packed arrangement o f  oxygen atoms ( w i t h  

l a y e r  s tack ing  sequence abac) where t h e  oxygen l a y e r s  are  h e l d  together  by 

a1 t e r n a t i n g  z inc  atom l a y e r s  and molybdenum atom 1  ayers. The d iva1 e n t  

z inc  ions occupy both  te t rahedra l  and octahedral  s i t e s  i n  a  1  :1 r a t i o .  

The t e t r a v a l e n t  molybdenum ions  occupy octahedral  s i t e s  t o  form s t r o n g l y  

bonded t r i a n g u l a r  c l u s t e r s  o f  molybdenum atoms i n  which th ree  Moos octa- 

hedra. a re  each shared a long two edges. Oxygen atoms o f  t he  Mojol 

c l  us ters  a re  shared w i t h  o t h e r  c l u s t e r  u n i t s  as represented by t h e  formu- 

l a t i o n .  t o  g i ve  the  Mo3O8 s t o i c h i o n e t r y .  A molecular  . . o r b i t -  

a1 c a l c u l a t i o n  (12) f o r  t he  Mo3013 c l u s t e r  u n i t  exp la ined the  s t rong  

bonding, weak paramagnetism, and 1  ow e l e c t r i c a l  c o n d u c t i v i t y  of t h e  

A2M0308 compounds by showing t h a t  t he  s i x  e lec t rons  avai 1  ab le  f o r  Mo-Mo 

bonding occupy bonding o r b i t a l s  w i t h  a l l  e l e c t r o n  sp ins  pa i red .  The 

basic s t r u c t u r e  o f  t he  LiRMo308 compounds d i f f e r s  f rom the  A2Mo3O8 



compounds i n  having a simple oxygen layering of the (abab) type with 

the ~ i +  ions in tetrahedral s i t e s  and the R ~ +  ions in octahedral 

positions. 

The M3X1 c lus t e r  u n i t  has also been observed in the ha1 ide com- 

pounds Nb3X8 (X = C1 , Br, I )  (1 3 ) ,  and Ti7X1 e ( X  = C1 , Br) (1 4 ) .  The 

f i r s t  molecular example of a compound containing the M3X13 c lus te r  u n i t  

was w3(OcH2C (CH3)3)03Cr3(02CC (CH3)3)1 (1 5)  where M = tungsten. whil e the 

f i r s t  reported ionic example of an M3X13 c lu s t e r  was the w ~ ~ ~ F ~ ~ -  (16) 

anion. Ionic species containing the Mo3O1 c lus t e r  unit  have recently 

been prepared from aqueous solutions of molybdenum(1V). Two such 
2 - exampies of these ions a re  [Mo3O4(c2o4) j(H20)31 , (1 71, and 

[ M O ~ O C I  3 ( . ~ 2 ~ ~ ~ 3 ) 3 ( ~ 2 0 ) 3 ~ 2 t  (18). 

This section reports the preparation, crystal  s t ructures ,  magnetic 

and physical properties of the new compounds ~i zn2~0308 and Zn3Mo3O8. 

These phases represent two new types of reduced molybdenum oxides 
I I I I containing Mo3OI3 c lus t e r  uni ts ,  L i A 2  Mo308 and A3 Mo308. The 

triangular molybdenum atom c lus t e r  units i n  these new compounds have 

avai lab1 e 7. and 8 electrons,  respectively,  f o r  Mo-Mo bonding. A1 so 

described in t h i s  section a re  the preparation, x-ray powder d i f f rac t ion  

data,  magnetic and physical properties of another reduced quaternary 

oxide of molybdenum, ScZnMo308. This phase represents the f i r s t  

exampl e .of an A' 'B' " ~ 1 0 ~ 0 ~  type compound. 



EXPERIMENTAL 

Ma t e r i  a1 s  

The s t a r t i n g  ma te r ia l s  used were A l f a  Products Li2Mo04 (98.5%), 

F isher  C e r t i f i e d  A.C.S. ZnO, Moo3, and KOH (85.6%), Atomergic Sc203 

(99.9%), Hach Chemical CsCl (99.9%) ,' Thermo-Electron Mo t u b i n g  (99.97%), 

Rembar Mo sheet (99.95%), A l d r i c h  Mo powder (99.99%), and Moo2. The 

Li2Mo04 and ZnO were d r i e d  a t  120°C before  use. Potassium molybdate, 

'which was used 'as a  f l u x ,  was prepared 'by  the  r e a c t i o n  o f  KOH w i t h  a 

s l i g h t  s t o i c h i o m e t r i c  excess o f  Moo3 i n  de ion ized water .  A f t e r  t h e  so lu -  

t i o n  was f i l t e r e d ,  i t s  volume was reduced by heat ing,  and the  p r e c i p i t a t e  

c o l l e c t e d  on a  g lass fri t, washed w i t h  ethanol ,  d r i e d  a t  1  20°C, and 

s to red  over  P401 0. Cesium molybdate, a1 so used as a  f l  ux, was prepared 

by passing an aqueous s o l u t i o n  o f  CsCl through a  column o f  Amber1 i t e  

IRA-400 s t r o n g l y  bas ic  i o n  exchange r e s i n  i n  hydroxide form and 

n e u t r a l i z i n g  the  e f f l u e n t  w i t h  t h e  s t o i c h i o m e t r i c  q u a n t i t y  o f  Moo3. 

The s o l u t i o n  was s low ly  evaporated t o  dryness and t h e  wh i te  so l  i d  d r i e d  

i n  vacuo a t  1  10°C f o r  several hours, then s to red  over  P4O1 0. -- Molybdenum 

d iox ide  was prepared by two methods ; r e a c t i o n  o f   MOO^ and Mo powder i n '  

mole r a t i o  2:1 i n  an evacuated fused q u a r t z  tube h e l d  a t  700°C f o r  

2 days, and by the  hydrogen reduc t i on  o f  Moo3 a t  460°C f o r  48 hours. 

Each p repa ra t i on  o f  Moo2 was washed several  t imes w i t h  a l t e r n a t e  

p o r t i o n s  o f  3M NH40H, de ion ized water, and 314 HCl u n t i l  t h e  washings 

were c o l o r l e s s ,  and f i n a l l y  d r i e d  -- i n  vacuo a t  110°C. The product  of  the  

Mo03/Mo r e a c t i o n  was l a t e r  found t o  c o n t a i n  h ighe r  molybdenum oxides and 



i t s  use was d iscont inued.  The p roduc t  o f  t h e  Hz reduc t i on  r e a c t i o n  was 

analyzed and found t o  c o n t a i n  74.9% Mo - vs t h e  c a l c u l a t e d  75.0% Mo f o r  

Syntheses 

This  c r y s t a l  1  i n e  compound was f i r s t  d iscovered i n  a  mu1 t i phase  

produc t  ob ta ined f rom a  r e a c t i o n  o f  Li2Mo04, ZnO and Moo2 ( c o n t a i n i n g  

'. . h igher  molybdenum ox ide  i m p u r i t i e s )  i n  mole r a t i o  1  :2:5. The reac tan ts  

2  were ground toge the r  i n  a  mor ta r ,  p e l l e t i z e d  under - ca. 10,000 l b / i n  , 

sealed i n  an evacuated molybdenum tube ( 3  cm l o n g  x  1.9 cm diam) which, 

i n  t u r n ,  was sealed i n  an .evacuated fused qua r t z  p r o t e c t i o n  tube, and 

h e l d  a t  11 00°C f o r  2  day,s. Other i d e n t i f i e d  products were unreacted 

Moo2 and a  new te rna ry  ox ide  o f  l i t h i u m  and molybdenum p r e s e n t l y  under 

i n v e s t i g a t i o n .  C r y s t a l s  o f  LiZn2M0308 grew as b lack  chunks and t h i n  

p la tes .  The composi t ion o f  t h i s  phase was determined f rom s i n g l e  c r y s t a l  

and powder x- ray d i f f r a c t i o n  da ta  as w e l l  as chemical analyses (see 

be1 ow). 

The compound LiZn2M0308 was prepared w i t h  90% p u r i t y  i n  powder form 

by r e a c t i n g  t h e  s t o i c h i o m e t r i c  q u a n t i t i e s  o f  Li2Mo04, ZnO, Moo2 (99.9%) 

and Mo powder as a  p e l l e t  i n  a  molybdenum tube a t  l l O O ° C  f o r  5 days. 

The p o l y c r y s t a l  1  i n e  p roduc t  pe l  l e t  was powdered i n  a  mor ta r  and washed 

severa l  t imes w i t h  3M HC1 and de ion i zed  water  t o  remove unreacted ZnO 

and Li2Mo04; t h e  s o l i d  was then d r i e d  under vacuum a t  l l O ° C .  A Gu in ie r  

x- ray powder d i f f r a c t i o n  p a t t e r n  o f  t h i s  p roduc t  showed o n l y  t he  



s t r o n g e s t  1  ines  f o r  Mo and Moo2, and t h e  1  i n e s  t h a t  c o u l d  be 

c a l c u l a t e d  (1 9 )  f rom t h e  s i n g l e  c r y s t a l  s t r u c t u r e  o f  LiZn2M0308. 

Samples f o r  chemical  analyses were prepared by d i s s o l v i n g  weighed 

p o r t i o n s  o f  p roduc t  i n  aqua r e g i a  and d i l u t i n g  t o  100 m l  i n  vo lume t r i c  

f l a s k s .  The L i  and Zn analyses were performed by atomic a b s o r p t i o n  

spectroscopy and r4o was analyzed spec t ropho tomet r i  c a l  l y  . Anal.  Calcd. 

f o r  LiZn2M0308: L i ,  1.25; Zn, 23.6; Mo, 52.0. Found: L i 9  1.1; 

Zn, 21.2; Mo, 54.9. 

The observed percentage compos i t ion  con f i rmed t h e  Zn/L i  r a t i o  o f  

2.0. However, t h e  observed r e s u l t s  were low when compared t o  t h e  

c a l c u l a t e d  va lues f o r  L i  and Zn, and were h i g h  when compared t o  t h e  

c a l c u l a t e d  va lue  f o r  Mo. These r e s u l t s  c o u l d  be e x p l a i n e d  when t h e  

r e s u l t s  o f  o x i d a t i o n - r e d u c t i o n  t i  t r a t i o n s  f o r  molybdenum were cons idered.  

For  de te rm ina t i on  o f  t h e  o x i d a t i o n  s t a t e  o f  molybdenum, weighed samples 

were d i s s o l v e d  i n  s tandard ized  c e r i c  s u l f a t e  - 3M H2S04 s o l u t i o n .  

A f t e r  complete o x i d a t i o n  o f  a l l  molybdenum t o  Mo(VI) ,  t h e  excess Ce(1V) 

was t i t r a t e d  w i t h  s tanda rd  F e ( 1 I )  s o l u t i o n .  The r e s u l t s  o f  these  redox 

t i . t r a t i o n s  showed molybdenum t o  be i n  an average o x i d a t i o n  s t a t e  o f  

+3.48 when based on t h e  c a l c u l a t e d  va l  ue of  52.0% Elo, and +3.61 when 

t h e  observed va lue  o f  54.9% Mo was used. An Moop i m p u r i t y  would have 

r a i s e d  t h e  pe rcen t  molybdenum above t h a t  c a l c u l a t e d  f o r  LiZn2M0308 b u t  

would have r e s u l t e d  i n  an average molybdenum o x i d a t i o n  s t a t e  g r e a t e r  

than +3.66. An Mo meta l  i m p u r i t y  would have lowered t h e  n e t  o x i d a t i o n  

s t a t e  va lue  below t h a t  c a l c u l a t e d  f o r  LiZn2M0308 b u t  would n o t  have 

been enough t o  account  f o r  t h e  h i g h  Mo a n a l y s i s .  The b e s t  e x p l a n a t i o n  



f o r  these r e s u l t s  was t h a t  bo th  Moo2 and Mo powder remainedunreac ted  . 

i n  t h e  product  as seen i n  t he  x- ray powder d i f f r a c t i o n  p a t t e r n .  The 

composit ion o f  t h e  produc t  was, t he re fo re ,  c a l c u l a t e d  as c o n t a i n i n g  

approximately 89% LiZn2M0308, 9.5%  MOO^. and 1.5% Mo. 

I t  was found t h a t  a  f l u x i n g  agent such as K2Mo04 o r  Cs2Mo04 was 

necessary i n  t he  p repa ra t i on  o f  t h i s  compound. Three t o  f i v e  percent  by 

weight  o f  f l u x  was mixed by g r i n d i n g  w i t h  t h e  s t o i c h i o m e t r i c  q u a n t i t i e s  

o f  Sc203, ZnO, Moo2 (99.9%), and Mo. The r e a c t a n t  m i x t u r e  was p e l l e t i z e d ,  

sealed i n  an evacuated molybdenum tube ( 3  cm i n  l e n g t h  x  1.3 cm diam) 

which, i n  t u r n ,  was sealed i n  an evacuated incone l  p r o t e c t i o n  tube, and 

f i r e d  a t  1100°C f o r  5-7 days. The produc t  was powdered i n  a  mor ta r  and 

washed severa l  t imes w i t h  3M KC1 t o  remove ZnO, then r i n s e d  w i t h  

de ion ized  water  and dr ied..  A G u i n i e r  x- ray powder d i f f r a c t i o n  p a t t e r n ,  

taken on the  washed produc t  where K2Mo04 f l u x  was used, showed l i n e s  of  

the  des i red  phase, ScZnMo308 (see x-ray powder da ta  below), 1  i nes  of t h e  

new phase K2Mo12U19 (20), and t h e  s t ronges t  l i n e s  o f  Sc203. The powder 

p a t t e r n  o f  ScZnMo308 i s  e s s e n t i a l l y  t h e  same as t h a t  f o r  Zn2Mo3o8 except 

t he  u n i t  c e l l  volume i s  l a r g e r  f o r  t h e  new compound. I f  a l l  of t h e  

K2Mo04 reac ted  t o  form K2Mo12019, then t h e  r e s u l t a n t  m i x t u r e  should 

con ta in  approximately 80.7% S C Z ~ M O ~ O ~ . ,  17.2% K2Mol 2019, and 2.1% Sc2O3 

I n  con t ras t ,  when Cs2Mo04 f l  ux was used, t h e  1  i n e s  of S C Z ~ M O ~ O ~ ,  

ZnZMo3O8, Sc 0 , MooZ, and Mo were a l l  v i s i b l e  i n  t h e  x- ray d i f f r a c t i o n  2  3  

powder p a t t e r n .  



. This phase was f i r s t  discovered i n  a ' r e a c t i o n  product obtained from 

a mixture of K2MoO4, ZnO, and Moo2 (containing higher molybdenum oxide 

impuri t ies)  i n  mole r a t i o  1 :2:5. The reactants  were ground i n  a mortar, 

pressed i n to  a p e l l e t ,  sea led i n  an evacuated molybdenum tube 

(2 .5  cm long x 1 .9  cm diam) which., i n  t u r n ,  was sealed i n  an evacuated 

fused quartz tube, and held a t  1100°C f o r  10 days. Crystals  of this 

new phase grew mostly as  bundl es of small e r  i  rregul a r l y  shaped c ry s t a l s  . 
Electron microprobe analys is  confirmed the  presence of Zn and Mo as the  

only meta l l i c  elements i n  this phase. A Guinier x-ray powder d i f f r ac t i on  

pat tern  of these  c r y s t a l s  was e s sen t i a l l y  ident ica l  t o  t h a t  of LiZn2M0308 

except the  u n i t  c e l l  volume was l a rge r  f o r  Zn3Mo3o8 ( see  x-ray powder 

data below). The composition and s t r u c t u r e  of Zn3M0308 was obtained from 

s ing l e  c rys ta l  x-ray d i f f r a c t i o n  data  and supported by a magnetic 

suscepti  bi 1 i t y  measurement, in f ra red  spec t r a ,  and physical property 

observations ( see  below). Other i den t i f i ed  products in the  above 

reaction were Zn2M0308 ( 9 )  and the new compound K2Mo12019 (20) as 

.. evidenced from a Guinier x-ray powder d i f f r ac t i on  pat tern  taken .on the  

product pel 1 e t  . 
. . I t  w a s l a t e r  found t h a t  Zn3M0308 could be prepared i n  approximately 

97% pur i ty  by mixing the  s to ichiometr ic  quan t i t i e s  of ZnO,  Moo3, and M o ,  

and heating the  pe l l e t i zed  react ion mixture i n  a molybdenum tube a t  

1100°C f o r  5 days ( sho r t e r  react ion times were not inves t iga ted) .  This 

product was powdered i n  a mortar ,  washed several times w i t h  2M HC1, 

r insed wlth de10,nlzed water ,  and dr ied .  A Gulnler x-ray powder 
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diffraction pattern of th is  preparation showed only the l ines  tha t  could 

be calculated from the s t r u c t u r e o f  Zn3Mo3O8 and fa in t ly  showed the 

strongest 1 ine for  Mo metal . The average molybdenum oxidation i t a t e  

for  th i s  product was determined as described f o r  LiZn2M0308. The 

resul ts  showed a net molybdenum oxidation s t a t e  of +3.03 when. based on 

pure Zn3M0308. This resu l t  was low when compared to  the calculated 

value of +3.33. Based on th i s  information, the product was calculated 

as containing 97% Zn3Mo3O8 and 3% Mo metal. 

This compound was prepared as described in the l i t e r a t u r e  (9)  by 

grinding together the stoichiometric quant i t ies  of ZnO and Moo2, 

pressing the reaction mixture into a p e l l e t ,  sealing in an evacuated 

fused quartz tube, and heating a t  1100°C for  4 days. The product was 

washed. with 3M HC1 to  remove unreacted ZnO, rinsed with deionized water, 

and dried. 

Physical Measurements and Properties 

Magnetic suscept ib i l i t ies  of the sol id  compounds LiZn2M0308, 

ScZnMo308. and Zn3M0308 were measured by the G0u.y method in a i r  a t  

room temperature. The gram suscept ibi l i ty  of ScZnMo30D was corrected 

fo r  the presence of K2Mo12019 (20) impurity. The correction was based 

on the estimated impurity 1 eve1 calculated above (see syntheses) and on 

the observed gram suscepti bil i ty obtained for  pure K2Mol 201 (20).  

Molar susceptibil i t i e s  were corrected for  diamagnetic contributions 



from the  c o n s t i t u e n t  atoms. Corrected molar s u s c e p t i b i l i t i e s ,  x,, 

and e f f e c t i v e  magnetic moments, peff, per  gram molecule ( fo rmula  u n i t )  

of each compound a r e  g iven i n  Table 1-1. The moments were c a l c u l a t e d  

assuming t h a t  t he  compounds obeyed the  Cur ie  law, peff + = 2.84 (xJ) . 

Table 1-1. Magnetic data f o r  ox ide  compounds c o n t a i n i n g  t h e  Mojol3 
c l u s t e r  u n i t  

Compound X, (cgs)  ueff (B.M.1 

I n f r a r e d  spec t ra  i n  t he  reg ion  300 - 1000 cm'l were taken us ing  a  

Beckman I R  4250 spectrometer w i t h  Nu jo l  m u l l s  o f  t h e  samples on CsI  

windows. The spectra were c a l  i bra ted  us ing  po lys ty rene absorpt ions 

i n  t he  reg ion  1000 - 1200 cm-l. The observed absorpt ions f o r  t he  

compounds Zn2Mo3O8, S C Z ~ M O ~ O ~ , L ~ Z ~ ~ M O ~ ~ ~ ~  Zn3M0308, and ZnO a r e  

shown i n  F igure  1-1, and the  absorp t ions  a t t r i b u t e d  t o  Mo-0 bonds a re  

l i s t e d  i n  Tahle 1-2. 



Figure 1-1 . 

Zn2M0308 

ScZn Mo30s 

WAVENUMBER cm-I 

Infrared absorption spectra  fo r  Mo301 cl  uster-containing 

compounds. Mo-0 absorptions a r e  in the  600 - 900 cm-' 

region. Zn-0 absorptions a r e  i n  the  300 - 600 cm-' region 



Table 1-2. In f r a red  da t a  (cm-I) f o r  Mo-0 abso rp t ions  i n  t h e  

600 - 900 cm-I region a 

- - -- - - - -- - - - 

817 (m) 790 (m) 767 ( s )  760 ( s )  

742 ( s )  712 ( s )  695 ( s )  700 ( s )  

725 (m,sh) 660 ( s )  670 ( s )  650 ( s )  

635 (m,sh) 630 (m,sh) 

as = s t r o n g ,  rn = medium, sh  = shoulder .  

. . 

When f i n e l y  powdered, LiZn2M0308 and ScZnMo308 were bl ac k i n  

c o l o r  whi le  Zn2Mo3o8 was dark green and Zn3M0308 was dark  brown. 

All 'of t h e  new compounds appeared s t a ' b l e  towards 3M hydrochlor ic  ac id  

bu t ,  un l ike  Zn2Mo3O8, they were r a p i d l y  decomposed i n  3M HNO3 and 

slowly decomposed in 1.5M HN03 wi th  gas evo lu t ion .  

X-Ray Powder D i f f r a c t i o n  Data 

An Enraf Nonius De l f t  t r i p l e  focus ing  Guin ier  x-ray powder 

d i f f r a c t i o n  camera was used with C u  Ka r a d i a t i o n  ( A  = 1.54056 1) t o  . 

1 
ob ta in  u n i t  c e l l  d a t a .  National Bureau o f  Standards s i l i c o n  powder 

was mixed wi th  a l l  samples a s  an i n t e r n a l  s t anda rd .  The l a t t i c e  

parameters f o r  ScznMo3O8, Zn3M030e and Zn2Mo3O8 were c a l c u l a t e d  by a 

l e a s t  squares  method and a r e  l i s t e d  i n  Table 1-3. The compound 



Table 1-3. Lattice parameters fo r  oxide compounds containing the 
Mo3013 c lus te r  unit 

Compound a ,  A c ,  A v, l3 

a ~ r o m  sing1 e crystal  x-ray diffract ion data.  

b~rom powder x-ray diffract ion data.  

'~eference  11. 

ScZnMo308 was indexed on the basis of a hexagonal unit ce l l  and 

Zn3M0308 on the basis of an R-centered hexagonal unit  c e l l .  The 

1 a t t i  ce parameters fo r  Z ~ ~ M O ~ O ~  were calculated using the strongest 13 

I i nes, and the l a t t i c e  parameters for  S C Z ~ M O ~ O ~  were calculated using 

the strongest 14 l ines which remained when the l ines  of known 

impurities were removed. The observed calculated d-spacings for  

these two compounds are  l i s t ed  i n  Tables 1-4 and 1-5. Lattice param- 

e te rs  for  Zn2Mo3O8 were calculated using the strongest 18 l ines  

observed in i t s  x-ray powder diffract ion pattern.  



Table 1-4. X-ray powder d a t a  f o r  ScZnMo3O8 

= very s t r o n g ,  s = s t r o n g ,  rn = medium, w = weak, 
w = very weak. 



Table 1-5. X-ray powder data fo r  Zn3Mo3O8 

a .  vs = very strong, s = , s t rong ,  m = medium, w = weak, 
vw = very weak. 



X-Ray Data C o l l e c t i o n  f o r  LiZn2M0308 

A  s i n g l e  c r y s t a l  o f  LiZn2M0308 i n  t h e  form o f  a  t h i n  p l a t e  o f  

dimensions 0.14 x  0.13 x  0.03 mm was mounted on t h e  t i p  o f  a  g lass  

f i b e r  w i t h  epoxy adhesive and used f o r  x- ray da ta  c o l l e c t i o n .  The 

c r y s t a l  was indexed as C-centered monoc l in ic  on an automated f o u r -  

c i r c l e  d i f f r a c t o m e t e r ,  designed 'and bu i  1  t i n  Ames Laboratory (21 ), w i t h  

an automat ic  i ndex ing  program (22) t h a t  uses r e f l e c t i o n s  taken f rom 

severa l  U - o s c i l l a t i o n  photographs as i n p u t .  The da ta  s e t  was c o l l e c t e d  

on the  same d i f f r a c t o m e t e r  a t  ambient temperature us ing  Mo Ka r a d i a t i o n  

(A = 0.71034 i) monochromatized w i t h  a  g r a p h i t e  s i n g l e  c r y s t a l .  A l l  

data w i t h i n  a  sphere 'def ined by 20 - < 60' were c o l l e c t e d  i n  t h e  HKL and 

H K ~  oc tan ts  us ing  an w-scan mode. The peak he igh ts  of t h r e e  standard 

r e f l e c t i o n s  which were remeasured every 75 r e f l e c t i o n s  d i d  n o t  show any 

s i g n i f i c a n t  change over  t he  p e r i o d  o f  da ta  c o l l e c t i o n .  F i n a l  u n i t  c e l l  

parameters and t h e i r  est imated standard d e v i a t i o n s  were ob ta ined f rom 

the  same c r y s t a l  by a  least -squares re f inement  o f  28 values o f  14 

F r i e d e l  - re1 a ted  p a i r s  o f  independent re f1  ec t i o n s  randomly d i  s t r i  buted 

i n  r e c i p r o c a l  space having 28 > 30'. The r e s u l t s  were a  = 26.624(5) 8 ,  
b  = 5.811 (1 ) W ,  c  = 12.326(3) 1, and 8 = 107.95(2)'. 

S t ruc tu re  Determina t ion  and Refinement o f  LiZn2M0308 

Upon examinat ion o f  t h e  data, i.t was found t h a t  a l l  b u t  two very 

weak r e f l e c t i o n s  (which were then e l i m i n a t e d )  s a t i s f i e d  the  c o n d i t i o n  

f o r  C-center ing, h+k = 2n. The observed i n t e n s i t i e s  were c o r r e c t e d  f o r  



Loren tz -po la r i za t i on  e f fec ts  and t h e i r  s tandard dev ia t i ons  c a l c u l a t e d  

(23)  t o  y i e l d  868 observed independent r e f l e c t i o n s  w i t h  I > 3oI a f t e r  

averaging o f  equ iva len t  r e f l e c t i o n s .  

pa t terson-superposi  t i o n  techniques (24) were used t o  1  ocate  the  

p o s i t i o n s  o f  a1 1  36 molybdenum atoms i n  t h e  u n i t  c e l l  and t o  determine 

the space group as C2/m (no. 12) .  A f u l l - m a t r i x  least-squares . r e f i n e -  

ment (25) on t h e  p o s i t i o n a l  parameters o f  t he  molybdenum atoms 

i n i t i a l l y  r e s u l t e d  i n  an unweighted res idua l  R = E I  I F o l - I F c l  ~ / z ~ F ~ I  

o f  0.35, b u t  t h e  p o s i t i o n s  were very s t r o n g l y  c o r r e l a t e d  and q u i c k l y  

caused the . re f i nemen t  t o  d iverge.  A t  t h a t  p o i n t ,  a  s tudy o f  t h e  

s t r u c t u r e  from an e l e c t r o n  dens i t y  map (26) showed t h a t  t h e  monocl in ic  

c e l l  cou ld  be transformed t o  a  sma l l e r  monocl in ic  c e l l  c o n t a i n i n g  one- 

t h i r d  the  volume w i t h  a =  10.062(3), b = 5.811(1),  c  = 10.869(5) 1, 

and B = 107.95". Transformat ion mat r ices  were c a l c u l a t e d  t o  o b t a i n  new 

r e f 1  e c t i o n  i nd i ces  and f r a c t i o n a l  coord inates f o r  t he  smal l  e r  c e l l ,  and 

a l l  b u t  two very weak r e f l e c t i o n s  were transformed t o  i n t e g e r  i nd i ces .  

Examination o f  t h i s  data s e t  revealed the  systemat ic  no 'next inct ion 

c o n d i t i o n  h+k = 2n , and again the space group C2/m was se l  ected. 

Least-squares ref inement  o f  molybdenum p o s i t i o n s  then proceeded 

smoothly w i t h  no c o r r e l a t i o n  e f f e c t s .  Zinc and oxygen p o s i t i o n s  were 

l oca ted  f rom e l e c t r o n  dens i t y  Fou r ie r  maps and subsequent ref inement o f  

p o s i t i o n a l  parameters, z i nc  mu1 t i  p l  i e r s  , and i s o t r o p i c  thermal 

parameters converged t o  g i v e  R = 0.082. The z inc  atom p o s i t i o n s  were 

a l l  p a r t i a l l y  occupied and r e s u l t e d  i n  a  t o t a l  z i nc  occupat ion number 

of 7.84(8) atoms/cel l  . Because the  c r y s t a l  possessed a  1  i n e a r  



absorp t ion  c o e f f i c i e n t  o f  140 cm-' and a t h i n  p l a t e  morphology, 

r e l a t i v e  t ransmiss ion f a c t o r s  were found t o  vary f rom 0.3 t o  0.7. An 

absorp t ion  c o r r e c t i o n  was made us ing  an emp i r i ca l  $-scan method (27) 

where the  i n t e n s i t y  o f  a se lec ted  r e f l e c t i o n  a t  x = 90' was measured 

every 10' i n  $ on t h e  x-'ray d i f f r a c t o m e t e r .  . I s o t r o p i c  re f inement  o f  

t he  s t r u c t u r e  then converged a t  R = 0.054 and Rw = 0.070 where 

2 2 % - 2 
Rw = [zw(.lF0 I -  IF21 ) /zwlF0 I ] and w = oF . F u r t h e r  re f inement  o f  t he  

sca le  f a c t o r ,  p o s i t i o n a l  parameters, z inc  mu1 t i p 1  ie rs ,  and a n i s o t r o p i c  

thermal parameters gave convergence a t  R = 0.049 and Rw = 0.064 w i t h  no 

s i g n i f i c a n t  change i n  z inc  m u l t i p l i e r s .  

A study o f  t h e  s t r u c t u r e  and symmetry l e d  t o  t h e  d iscovery  t h a t  

LiZnpMo30s cou ld  be b e t t e r  descr ibed i n  an R-centered hexagonal u n i t  

c e l l .  Ind ices  i n  t h e  monoc l in ic  reduced data  s e t  were a l l  conver ted t o  

the  rhombohedral equ iva len ts  and redundant da ta  averaged t o  y i e l d  352 

independent r e f 1  ec t i o n s  s a t i s f y i n g  t h e  c o n d i t i o n  -h+k+R = 3n. The 

14 r e f l e c t i o n s  o r i g i n a l l y  used t o  o b t a i n  t h e  l a r g e  monoc l in ic  c e l l  

parameters were re1  abel ed and a 1 east-squares f i t  gave an R-hexagonal 

u n i t  c e l l  w i t h  a = 5.8116(6) 1 and c = 31.013(8) f i  (a l so  l i s t e d  i n  

Table 1-3).  A f u l l  -ma t r i x  least-squares ref inement  o f  sca le  f a c t o r ,  

p o s i t i o n a l  parameters, z i n c  occupat ion numbers, and a n i s o t r o p i c  thermal 

parameters i n  space group R%I (no. 166) gave R = 0.042 and Rw = 0.055 

w i t h  a t o t a l  z i n c  occupat ion number of 11.77(14) atoms/cel l  o r  

1.96(.2) z inc  atoms per  molybdenum t r i m e r .  I n  bo th  the  monoc l in ic  

and rhombohedral ref inements,  one o f  t h e  ' o c t a h e d r a l l y '  coord ina ted  

z inc  atoms was found t o  be d isordered w i t h i n  i t s  s i t e .  E lec t ron  



density maxima were found along the  hexagonal z d i rec t ion  j u s t  above 

and below the  inversion cen te r  located a t  t h i s  s i t e .  (Constraining the 

zinc atom on t h i s  j m  posit ion a t  0,0,+ resul ted  in a very l a rge  

i so t rop ic  thermal parameter f o r  this atom and poor overall  refinement 

with R = 0.1 2. ) The l i thium atoms could not be found from subsequent 

e lec t ron density d i f ference maps and were assumed t o  be p a r t i a l l y  

occupied i n  the same s i t e s  t h a t  a r e  p a r t i a l l y  occupied by zinc atoms. 

These s i t e s  would, therefore ,  always be occupied by zinc o r  1 i t h i u m  

03 atoms. A , f i n a l  d i f ference Fourier  synthes is  map was f l a t  t o  - < 0.5 e/A . 
The atomic s ca t t e r i ng  f ac to r s  used were those of Hanson -- e t  a1 . 

(.28) f o r  neutral  atoms, and molybdenum and z i n c  were corrected f o r  the 

real  and imaginary par t s  of anomalous dispersion (29) .  

X-Ray Data Coll ec t ion  f o r  Zn3Mo3O8 

Many i r regu la r ly  shaped c r y s t a l s  of Zn3Mo3O8 were ca re fu l ly  

se lected and mounted i n  0.2 mrn Lindemann glass  c a p i l l a r i e s  w i t h  a small 

amount of s i l i cone  grease.  Each c ry s t a l  was, in t u r n ,  placed on the  

four-ci rc l  e x-ray di ffractometer (21 ) and th ree  o r  four  w-osci 11 a t ion  

photographs were taken a t  various $I s e t t i n g s .  The photographs showed 

t h a t  most of the c ry s t a l s  were ac tua l ly  mu1 t i p l e  c r y s t a l s  o r  twinned 

c r y s t a l s .  The th ree  best  c r y s t a l s ,  possessing re1 a t i ve ly  sharp s i ng l e  

d i f f r a c t i on  peaks, were indexed (22) and the reduced c e l l s  which 

resul ted  could' be transformed t o  t he  desired R-centered hexagonal u n i t  

c e l l .  Based on the  qua l i ty  of  t he  o s c i l l a t i o n  photographs and an 

examination of several  d i f f r a c t i on  peak widths, a c ry s t a l  



0.22' x  0.22 x  0.12 ptn was se lec ted  f o r  data c o l l e c t i o n .  The data  s e t  

was c o l l e c t e d  on t h e  bas is  of a  hexagonal u n i t  c e l l  on the  same x-ray 

d i  f f r a c  tometer and under the  same cond i t i ons  descr ibed above. 'A1 1  data 

i n  a  sphere de f ined by 28 5 60' were c o l  l e c t e d  i n  t h e  HKL, fik, and 

HKC oc tan ts  us ing  an w-scan mode. The peak he igh ts  o f  t h ree  standard 

r e f l e c t i o n s  which were remeasured every 75 r e f l e c t i o n s  d i d  n o t  show any 

s i g n i f i c a n t  change over  t h e  p e r i o d  o f  da ta  c o l l e c t i o n .  F i n a l  u n i t  c e l l  

parameters were obta ined f rom the  same c r y s t a l  by a  least-squares 

refinement o f  + 28 values o f  21 independent r e f l e c t i o n s  randomly 

d i s t r i b u t e d  i n  r e c i p r o c a l  space having 28 > 24'. The r e s u l t s  were 

a  = 5.8617(4) 1, c = 31.100(3) 8 ,  and V = 925.5 l3 (also  l i s t e d  i n  

Table 1-3).  

S t r u c t u r e  Refinement o f  Zn3Mo3O8 

Examination o f  t h e  data s e t  revealed t h a t  a l l  o f  t he  observed 

r e f l e c t i o n s  s a t i s f i e d  the nonex t i nc t i on  c o n d i t i o n  o f  h-k+R = 3n. The 

i nd i ces  were transformed t o  g i v e  -h+k+R = 3n and an absorp t ion  

c o r r e c t i o n  (27) was made (p = 160 cm-')  us ing  an emp i r i ca l  $-scan 

method as described above f o r  LiZn2Mo3O8 The observed i n t e n s i t i e s  

were co r rec ted  f o r  Lorentz  and p o l a r i z a t i o n  e f f e c t s  and t h e i r  s tandard 

dev ia t i ons  c a l c u l a t e d  as p rev ious l y  descr ibed (23)  t o  y i e l d  1308 

r c f l c c t i o n s  w i t h  I 30~. Thc data  wcrc f i n a l l y  averaged i n  jm 

symmetry t o  g i v e  370 independent ' r e f l e c t i o n s  f o r  t he  f i n a l  da ta  s e t .  

Previous x-ray powder d i f f r a c t i o n  data had shown t h i s  new compound 

t o  be i s o s t r u c t u r a l  w i t h  t h a t  o f  LiZnpMo308, see Tables 1-3 and 1-5. 



Therefore, the  atomic posi t ions  f o r  LiZn2M0308 were used as the  

s t a r t i n g  s e t  of posi t ions  f o r  Zn3Mo3O8 i n  space group ~ j m .  The zinc ; 

atom t h a t  was found t o  be disordered through an inversion cen te r  within 

i t s  octahedral s i t e  in LiZn2M0308 was i n i t i a l l y  constrained t o  t h a t  

special  posit ion a t  0,0,$ i n  t h i s  new s t r u c t u r e ,  and a l l  z inc  atom 

mul t ip l i e r s  were constrained t o  give f u l l  s i t e  occupancies. A f u l l -  

matrix leas t -squares  refinement (25) on a1 1 posit ional  and i so t rop ic  

thermal parameters resul ted  i n  an unweighted residual  R of 0.150 b u t ,  

as  seen f o r  LiZn2M0308, the one zinc atom had a l a rge  i so t rop i c  

temperature f a c to r  of 3.5 w'. This atom was then removed from the  

atomic parameter l i s t  and an e lect ron density map was generated (26) 

which revealed zinc e lec t ron  density maxima along t he  hexagonal c ax i s  

j u s t  above and below the s i t e  of 3 m  symmetry a t  0,0,+ as  seen i n  

LiZn2M0308. The z inc  atom was then placed a t  z = 0.48 and a refinement 

of a l l  posi t ional  and i so t rop i c  thermal parameters as well a s  a l l  zinc 

occupation numbers (mu1 t i p l  i e r s )  converged t o  give R = 0.076 and 

Rw= 0.099 w i t h  18 .0(4)  Z n  atoms/cell o r  3.00(7) zinc atoms per 

molybdenum t r imer .  Further refinement of the s ca l e  f a c to r ,  zinc 

mu1 t i p l  i e r s ,  posi t ional  and anisot ropic  thermal parameters gave 

convergence a t  R = 0.060 and Rw = 0.080 with 2.98(5) zinc atoms per 

rnolybdcnum t r imer .  A cor re la t ion  matrix s h n w ~ d  the  mu1 t i p l  i e r s  of zinc 

atoms Znl and Zn4 t o  be c o r r e l a t ~ d  and mul t ip l i e r s  of Zn2 and Zn3 

a1 so cor re la ted  with corre l  a t ion  values of  0.4 and 0.5, respect ively .  

3 A f i na l  d i f ference Fourier synthes is  map was f l a t  t o  5 1 e /a  . 



The atomic s c a t t e r i n g  f a c t o r s  and c o r r e c t i o n s  f o r  anomal ous 

d i spe rs ion  were as descr ibed above (28,29). 



RESULTS AND DISCUSSION 

C r y s t a l  S t ruc tures  o f  LiZn2M0308 and Zn3Mo3O8 

F ina l  p o s i t i o n a l  parameters f o r  LiZn2Mo3O8 and zn3Mo3o8 a r e  1  i s t e d  

i n  Tables 1-6 and 1-7, and thermal parameters i n  Tables 1-8 and 1-9, 

r e s p e c t i v e l y .  Important  i n te ra tom ic  d is tances  f o r  bo th  compounds a re  

given i n  Table 1-10, and bond angles f o r  bo th  compounds a re  l i s t e d  i n  

Table 1-11. Observed and c a l c u l a t e d  s t r u c t u r e  fac to rs  a r e  a v a i l a b l e  as 

supplementary m a t e r i a l .  

The e s s e n t i a l  s t r u c t u r a l  f ea tu res  o f  LiZn2M0308(I) and 

Zn3M0308(II) a r e  t h e  same and a re  r e l a t e d  t o  those o f  Zn2Mo3O8 (11) .  

Both new compounds c o n s i s t  o f  a  d i s t o r t e d  cubic c l o s e  packing (abc) o f  

oxygen atoms i n  which t h e  oxygen l a y e r s  a re  h e l d  together  by a l t e r n a t e  

l aye rs  o f  z inc  and molybdenum ions .  The z inc  i o n  s i t e s  i n  LiZn2M0308 

are  f r a c t i o n a l l y  occupied w i t h  roughly one- four th o f  t h e  z i n c  ions  i n  

approximately octahedral  coo rd ina t i on  w i t h  oxygen and th ree - fou r ths  

i n  approximately t e t rahedra l  coo rd ina t i on  w i t h  oxygen. When the  s i t e s  

are  n o t  occupied by z inc  ions, they a re  assumed t o  c o n t a i n  t h e  l i t h i u m  

0 t ions  and resu l  t i n  t h e  formul a t i o n  L i O ,  56Li 0. 4 8 ~ n i .  44~n:. 52M~308 ( t h i s  
+ 

assumes the  x-ray s c a t t e r i n g  power o f  L i  t o  be n e g l i g i b l e  and t o  have 

no a f f e c t  on the  z inc  i o n  occupat ion numbers). The same z inc  i o n  s i t e s  

are  f u l l y  occupied i n  Zn3Mo3O8 w i t h  o n e - t h i r d  o f  t h e  z inc  ions  i n  

approximately octahedral  coo rd ina t i on  w i t h  oxygen and two- th i rds  i n  

approximately t e t r a h e d r a l  coo rd ina t i on  w i t h  oxygen, thus r e s u l t i n g  i n  

0- t the fo rmula t ion  Znl Ln2M030g Wi th in  t h e  molybdenum 1 ayers o f  



Table 1-6. Pos i t ional  parameters f o r  LiZn2Mo3O8 

Atom posi t iona  Mul t ip l i e r  x Y z 

aspace group ~ 3 m  (no. 166). 



Tab1 e 1-7. ~ o s i  t iona l  parameters f o r  zn3~0308 

Atom ~ o s i  t iona Mu1 t ip1  i e r  x Y z 

aspace group R3m (no. 166).  



a 
Tab1 e 1-8. Thermal parameters f o r  LiZn2M0308 

  tom Bl 1 B22 33 B1 2 '1 3 23 

a ~ h e  thermal parameter expression used i s  
2 *2 exp[-1 /4(Bl h a + BZ2  k2b*'. . . 2 ~ ~ ~ k ! t b * c * ) ] .  



Tab1 e 1-9. Thermal parameters f o r  Zn3Mo3O8 a 

Atom B1 1 B22 B33 B1 2 '4 3 B23 

MO 1 0.15(4) 0.15 0.64(5) 0.10(3) -0.01'(1) 0.01 

. 0 1 0.75(29) 0.75 0.79(34) 0.61 (32) -0.13(13) 0.13 

0 2 0.67(29) 0.67 2.04(45) -0.32(32) . -0.69(18) 0.69 

0 3  ' 0 . 1 8 ( 3 5 ) '  .0.18 1.12(59) 0.09 ' . 

0 4 0.31(36) 0.31 0.73(55) 0.16 

a ~ h e  general  thermal parameter express ion used i s 
2 *2 exp[-1/4(B, h a + ~ ~ ~ k ~ b * ~ .  . . 2 ~ ~ ~ k t b * * c ) ] .  



Table 1-10. In tera tomic  d is tances (1) f o r  L ~ Z ~ ~ M O ~ O ~  and Zn3Mo3O8 

Mol -Mol 2.578(1) 

Mol -Mol 

. . 

Znl -01 



Tab1 e 1-1 1 . Bond angles (deg) i n  LiZn2M0308 and. Zn3M0308 



both compounds, the ions a r e  arranged with 3-fold symmetry t o  form an 

equi la tera l  t r i angula r  pat tern  of bonded (and nonbonded) Mo atoms each 

i n  approximately octahedral coordination with oxygen with the  octahedra 

sharing edges. , 

Each t r imeric  molybdenum atom c l u s t e r  i s  bonded t o  a t o t a l  of 

13 oxygen atoms as shown by the  ORTEP drawing i n  Figure 1-2. The so.lid, 

black l i n e s  i n  t h i s  f igure  represent Mo-Mo bonding, the unf i l l ed  l i n e s ,  

represent Mo-0 bonding;while the  atomic l abe l s  correspond t o  those i n  

Tables 1-10 and 1-11. Each No atom i n  the  c l u s t e r  i s  bonded.to two 

o ther  molybdenum atoms and s i x  oxygen atoms. The Mo3013 c l u s t e r  uni t  

contains one oxygen atom (04) which i s  t r i p l y  bridging t o  t he  three  Mo 

atoms i n  a  tr igonal  pyramidal fashion,  and has three  oxygen atoms (02) 

which a r e  each doubly bridging t o  two Mo atoms along the  three  edges of 

the  t r i ang le .  Each molybdenum atom in the  c l u s t e r  i s  a l so  bonded t o  

three  terminal oxygen atoms (01 and 03) .  These terminally bonded 

oxygen atoms a l so  connect individual cl us te r s  t o  s i x  o ther  surrounding 

cl us ters  i n  a  hexagonal -1 i  ke pa t te rn .  Oxygen atoms (01 ) a r e  each 

shared between two t r i angula r  c l u s t e r  uni ts  while oxygen atoms (03) 

a r e  each shared between th ree  separate  c l u s t e r  uni ts  resu l t ing  in the 

connectivity formula [ M O ~ O ~ / ~  03/106/203/3] MO O as  shown in 3 8 '  

Figure 1-3. All atoms in the  un i t  c e l l s  f o r  both compounds I and I 1  i 

l i e  on mirror planes. 

W i t h i n  the  Mojol c l u s t e r s ,  the molybdenum ions a r e  strongly bonded 

to  one another with bond distances of 2.578(1) i, ( I )  and 2.580(2) A 

( I I ) ,  which a r e  a. 0.1 5 shorter t h a n  the dis tance between nearest  



Figure 1-2. The Mo3013 cluster unit as found in the compounds 

LiZn2M0308, Zn3M0308, and Zn2Mo3O8 Fifty percent 

probability anisotropic thermal ellipsoids of 

LiZn2M0308 are shown 



Figure  1-3. A view down t h e  c  a x i s  o f  LiZn2Mo3O8 and Zn3M0308 

showing an 0-Mo-0 sec t ion ,  and the  c o n n e c t i v i t y  

between Mo301 c l u s t e r  u n i t s ,  M o ~ O ~ / ~ O ~ / ~ O ~ / ~ O ~ / ~  



neighbors i n  bcc molybdenum meta l .  The nex t  neares t  Mo-Mo i n t e r a t o m i c  

d is tances o f  3.234(1) ( I )  and 3.282(2) 8 (11)  i n d i c a t e  no meta l -  

metal  bonding i n t e r a c t i o n  between t r i m e r i c  c l u s t e r  u n i t s .  Each 

t r i p l y  b r i d g i n g  oxygen atom (04) w i t h  Mo-0 d is tances  o f  2.079(7) 8. ( I )  . 

and 2.054(11) 1 (11) i s  a l s o  coo rd ina ted  t o  t e t r a h e d r a l  z i n c  (Zn3). 

The doubly b r i d g i n g  oxygen atoms (02) a re  each s t r o n g l y  bonded t o  two 

molybdenum atoms w i t h  Mo-0 d is tances  o f  2.003(8) 8. (I) and 

2.056(13) 8. (11) ,  and a re  a l so  coord ina ted  t o  t e t r a h e d r a l  z i nc  (Zn2) 

and octahedra l  z i n c  (Zn4).  The l onges t  Mo-0 bond lengths  a r e  those 

i n v o l v i n g  oxygen atoms (03);  2.138(5) 8, f o r  compound ( I )  and 2.160(8) 8, 

f o r  compound (11) .  These te rm ina l  oxygen atoms a r e  a l s o  coord ina ted  t o  

t e t r a h e d r a l  z i n c  (Zn2).  Terminal oxygen atoms (01 ) a re  bonded t o  

molybdenum w i t h  bond d is tances  o f  2.063(6) 8. ( I )  and 2.100(9) 8, (11) ,  

and a l s o  form octahedra l  i n t e r s t i c e s  f o r  z inc  i ons  ( Z n l ) .  

The d i s t o r t e d  oc tahedra l  c o o r d i n a t i o n  around Znl i nvo l ves  s i x  01 

oxygen atoms w i t h  Zn-0 bond d is tances  o f  2.1 51 ( 7 )  (6X) 8 ( I )  and 

2.1 15(10) (6X) 8. (11),  which a r e  r e p r e s e n t a t i v e  o f  t y p i c a l  s i x -  

. , coord ina te  Zn-0 d is tances .  These oxygen atoms a r e  arranged around Znl 

t o  form a  t r i g o n a l  a n t i p r i s m  w i t h  0-0 d is tances  o f  2.695(11) (6X) and 

3.353(13)(6X) 8. ( I ) ;  and 2.692(18)(61) and 3.264(18)(6X) 8. (11).  The 

d i s t o r t e d  octahedra l  i n t e r s t i c e  c o n t a i n i n g  t h e  d isordered  Zn4 ions  i s  

composed of si.x 02 oxygen,atoms; t h ree  be long ing  t o  one c l u s t e r  u n i t  

above and th ree  belonging t o  another  c l u s t e r  u n i t  below t h i s  octahedra l  

s i t e  which l i e s  on a  c e n t e r  o f  i n v e r s i o n  symmetry as shown i n  F igu re  

1-4. The d isordered  z inc  i o n  p o s i t i o n s  result i n  t h r e e  s h o r t  and 



F i g u r e  1-4. A v iew pe rpend i cu la r  t o  t h e  c  a x i s  o f  LiZn2M0308 and 

Zn3M030s showing t h e  arrangement o f  two Mo3O1 c l u s t e r s  

and t h e  d i so rde red  oc tahedra l  z i n c  i o n  (Zn4) s i t e .  

F i f t y  percen t  p r o b a b i l  i ty a n i s o t r o p i c  thermal e l  1  i p s o i d s  

f o r  LiZn2M0308 a r e  shown 



: th ree  l ong  Zn-0 bonds i n  bo th  compounds; 1.851 (8)(3X) and 2.344(9)(3X) 8. .  
f o r  ( I ) ,  and 1.873(13)(3X) and 2.318(13)(3X) 8, f o r  ( 1 1 ) .  The oxygen 

atoms form a t r i g o n a l  a n t i p r i s m  around t h i s  i n v e r s i o n  c e n t e r  w i t h  0-0 

d is tances  o f  2.795(13) (6X) and 3.066(13) (6X) '8. ( I ) ;  and 2.851 (23).(6X) 

'I 
and 3.015(.20) (6X) 1 (11) .  Te t rahedra l  z i n c  ions  (Zn2) a re  each bonded 

t o  t h ree  02 oxygen atoms f rom t h r e e  separate c l u s t e r s  and one 03 oxygen 

atom which br idges  th ree  separate c l  u s t e r  u n i t s .  These d i s t o r t e d  

t e t r a h e d r a l  s i t e s  have Zn-0 bond 1 engths o f  1.952(7) (3X) and 

1.948(10)(1X) 8 ( I ) ;  and 1.939(13)(3X) and 1.955(17)(1X) 1 (11); w i t h  

0-0 d is tances  o f  3.017(13)(3X) and 3.321(11)(3X) f i  ( I ) ;  and 

3.011 (20) ( 3 ~ )  and 3.307(19) (3X) 8 (11) .  Te t rahedra l  z i n c  i ons  (Zn3) 

a re  each bonded t o  t h ree  01 oxygen atoms and one 04 oxygen atom 

(F igure  1-4) which i s  t r i p l y  b r i d g i n g  on one t r i m e r i c  molybdenum atom 

c l u s t e r .  The Zn-0 bond lengths  a re  1.931 (6 ) (3X)  and 1.936(10)(1X) 8 

( I )  ; and 1.937(10) ( 3 ~ )  and 1.986(16) (1 X) . (11) ; wi.th 0-0 d is tances  o f  

3.117(11)(.3X) and 3.192(11)(3X) 1 (1'); and 3.170(18)(3X) and 

3.195(16)(3X) (11) .  The t e t r a h e d r a l  Zn-0 d is tances  f o r  bo th  Zn2 and 

Zn3 a re  s l i g h t l y  s h o r t e r  than the  t y p i c a l  average fou r - coo rd ina te  va lue 

o f  1.98 8. (30). 

The oxygen atom l a y e r s  a re  d i s t o r t e d  f rom a c l o s e s t  pack ing 

arrangement i n  bo th  LiZn2M0308 and zn3Mo3o8. The i n t r a l a y e r  0-0 

d is tances  range f rom 2.70 t o  3.12 1, and 2.69 t o  3.17 f i  f o r  compounds 

( , I )  and (11) ,  r e s p e c t i v e l y .  The average i n t e r l a y e r  0-0 spacing i s  

s h o r t e r  between O-Mo-0 sec t ions ,  2.41 ( I )  and 2.47 a (11), than 

between. 0-7n-0 sec t inns ,  2.76 8, (I) and 2.71 8. (11) .  



Discussion o f  the  LiZn2Mo3O8 and dn3M~308 Compounds 

The c r y s t a l  s t r u c t u r e  refinement o f  LiZn2M0308 has es tab l  i shed the  

Zn, Mo, and 0  s to ich iomet ry ,  w h i l e  chemical analyses have shown the  

Zn/Li r a t i o  t o  be 2.0. Ev.idence f o r  t he  presence of l i t h i u m  i n  t h i s  

phase a1 so comes from x-ray powder d i f f r a c t i o n  da ta  obta ined on . the 

chemical ly  analyzed prepara t ions .  The on ly  l i n e s  present  i n  these 

powder pa t te rns  a re  the  same l i n e s  t h a t  can be c a l c u l a t e d  (19) f rom the  

t r i g o n a l  s t r u c t u r e  o f  LiZn2M0308 and the  s t ronges t  l i n e s  o f  Mo and Moo2. 
. . 

I f  t h e  ~ i +  ions were t o  r e s i d e  i n  t h e  p a r t i a l l y  occupied z inc  i o n  

s i t e s  when z inc  was absent f rom these s i t e s ,  then the  LiZn2M0308 

s to ich iomet ry  woul d  resu l  t . This occupat ion scheme appears most 1  i ke ly  

f o r  several  reasons. One reason i s  t h a t  both z i n c  and l i t h i u m  ions  are 

known t o  occupy octahedral  and te t rahedra l  oxygen i n t e r s t i c e s .  Another 

reason i s  t h a t  t h e  i o n i c  r a d i i  f o r  zn2+ and ~ i +  a r e  almost i d e n t i c a l  

(30) w i t h  0.74 0.76 8 f o r  octahedral ,  and 0.60 - vs 0.59 8, f o r  

t e t rahedra l  zn2+ and ~ i '  ions,  r e s p e c t i v e l y .  Fu r the r  support  f o r  t h i s  

Zn-Li occupat ion model comes from the  c r y s t a l  s t r u c t u r e  o f  Zn3Mo3O8. 

The z inc  i o n s  i n  Zn3M0308 f u l l y  occupy the  same octahedral .  and t e t r a -  

hedral  s i t e s  t h a t  a r e  on ly  p a r t i a l l y  occupied by z inc  ions  i n  

LiZn2M0308 ( a d d i t i o n a l  z inc  ions  do n o t  occupy any 'new' s i t e s  

Magnetic suscept i  b i l  i t y  measurements f o r  LiZn2M0308 and Zn3Mo3o8 

support t h e  s t r u c t u r e s  o f  these two compounds. The molybdenum ions  i n  

LiZn2M0308 are  i n  t h e  n e t  o x i d a t i o n  s t a t e  o f  + 3 . 6 6 s o  the re  are  



7 e lec t rons  a v a i l  ab l  e  per  t r i n u c l  ear  c l  u s t e r  u n i t  f o r  metal -metal 

bonding. S i x  o f  these e lec t rons  are  known t o  r e s i d e  i n  bonding 

o r b i t a l s  (12) w i t h  t h e i r  sp ins pa i red ,  there fore  l e a v i n g  one unpaired 

e lec t ron .  The observed room temperature magnetic moment o f  1.2 B.M. 

f o r  LiZnZMo308 (Table 1-1 ) i s  c o n s i s t e n t  w i t h  t h i s  assessment. The Mo 

ions i n  Zn3Mo3O8 a r e  i n  t he  +3.33 n e t  o x i d a t i o n  s t a t e  and t h e r e  a r e  8  

e l  ect rons a v a i l  ab l  e  pe r  molybdenum t r i m e r  f o r  Mo-Mo bonding. Once 

again, s i x  o f  these e i g h t  e lec t rons  r e s i d e  i n  bonding o r b i t a l s  w i t h  

t h e i r  sp ins pa i red ,  and according t o  a  molecular  o r b i t a l  c a l c u l a t i o n  

(12) ,  the  nex t  two e lec t rons  should occupy an al o r b i t a l  (Cgv symmetry) 

w i t h  t h e i r  sp ins pa i red .  The observed small magnetic.moment o f  

0.6 B.M. f o r  Zn3M0308 (Table 1-1) supp l ies  evidence f o r  t h i s  sp in -  

p a i r e d  e l e c t r o n  occupat ion scheme. The weak magnetic moment obser.ved 

f o r  t h i s  m a t e r i a l  may be due t o  a  temperature-independent paramagnetic 

(TIP)  c o n t r i b u t i o n .  

I t  has a l s o  been observed t h a t  t he  metal -metal and metal-oxygen 

bond d is tances i n  these t r i n u c l e a r  c l u s t e r  compounds become l o n g e r  as 

the  o x i d a t i o n  s t a t e  o f  molybdenum i s  lowered. Table 1-1 2  compares the  

Mo-Mo and Mo-0 bond lengths  f o r  the compounds Zn2Mo3O8, LiZn2M0308, and 

Zn3M0308. The increase i n  Mo-Mo bond lengths  i s  a t t r i b u t e d  t o  Mo-0 p i  

bonding e f f e c t s  and i s  discussed below. The increase i n  Mo-0 bond 

d is tances a r i s e s  from the  placement o f  more e l e c t r o n  dens i t y  on t h e  

molybdenum ions .  This  weakening o f  Mo-0 i n t e r a c t i o n s  i s  a l s o  

mani fested i n  the  i n t e r l a y e r  oxygen spacings o f  t h e  new compounds. As 

the  Mo-0 i n t e r a c t i o n s  become weaker, t he  i n t e r 1  ayer  oxygen d i s tance  i n  



Table 1-12. Comparison o f  Mo-Mo and Mo-0 bond d is tances (8)  i n  
Zn2Mo3O8, LiZn2Mo3O8, and Zn3Mo3O8 

Mol -Mol 2.524 (2)  2.578(1) 2.580(2) 

Mol-03 2.1 28(30) 2.1 38(5) 2.160(8) 

Mol-04 2.002(30) 2.079(7) 2.054(11) 

Mol-0 (ave) 2.017 2.058 2.088 



the  0-Mo-0 1 ayers becomes longer  w h i l e  i n  the  0-Zn-0 1 ayers the  oxygen 

i n t e r l a y e r  spacing becomes s h o r t e r .  As expected, t he  molybdenum-oxygen 

i n f r a r e d  absorp t ion  bands f o r  these compounds s h i f t  t o  r e l a t i v e l y  lower 

energies as t h e  t r i a n g u l a r  c l u s t e r s  a r e  reduced. F igure  1-1 shows the  

I R  absorp t ion  spec t ra  f o r  these compounds, and Table 1-2 l i s t s  t he  

observed band energies assigned t o  Mo-0 absorpt ions.  The bands i n  t he  

reg ion  300 - 600 cm-' a re  a t t r i b u t e d  t o  Zn-0 absorpt ions as seen f o r  

the  compound ZnO. Although ZnO conta ins  on l y  t e t r a h e d r a l l y  coord ina ted  

Zn ions, octahedral  Zn-0 bands would be expected t o  absorb r a d i a t i o n  o f  

lower energies.  The 2% increase i n  u n i t  c e l l  volume f o r  Zn3M0308, 

r e l a t i v e  to .  LiZn2M0308, thus r e s u l t s  f rom the  increase i n  t h e  

molybdenum-molybdenum and. molybdenum-oxygen bond d is tances  . 

S t r u c t u r e  and Discussion o f  ScZnMo3O8 

Based on x-ray powder d i f f r a c t i o n  data (Tables 1-3 and I -4) ,  the  

s t r u c t u r e  o f  ScZnMo308 i s  e s s e n t i a l l y  i d e n t i c a l  t o  t h a t  o f  hexagonal 

Zn Mo 0 (space group P63mc) (1 1 ) . The 2% increase i n  u n i t  c e l l  vo l  ume 
2 3 8  

f o r  ScZnMo308 i s  a t t r i b u t e d  t o  l onge r  Mo-Mo and Mo-0 bond d is tances  

a r i s i n g  from a one e l e c t r o n  reduc t i on  o f  the  Mo301 c l u s t e r s  t h a t  a re  

present  i n  Zn2Mo3O8 The sc3+ ions  a re  assumed t o  occupy the.  octahedral  

s i t e s  w h i l e  t he  zn2+ ions occupy the  te t rahedra l  s i t e s .  I o n i c  r a d i i  

f o r  t r i v a l e n t  scandium and d i v a l e n t  z i n c  ions  i n  octahedral  ox-ygen 

coo rd ina t i on  a re  almost i d e n t i c a l  (30),  0.745 1 f o r  sc3+.and 0.74 1 
fo r  zn2+,. Therefore, i t  i s  assumed t h a t  the  presence o f  sc3+ ions  i n  

t.he octahedral  s i t e s  has negl i g i b l e  e f f e c t  on the  change i n  u n i t  c e l l  
, 



volume when comparing Zn2Mo3O8 and ScZnMo308. A comparison o f  the 

Mo-0 in f ra red  absorption energies fo r  these two compounds (Figure 1-1 

and Table 1-2) r e f l e c t s  the longer Mo-0 bond lengths i n  ScZnMo3O8. 

Magnetic suscep t ib i l  i t y  data f o r  , t h i s  new compound (Tab1 e' 1-1 ) 

supply evidence t h a t  the Mo3013 c l us te r s  each possess 7 e lectrons fo r  
6 

metal-metal bonding. The e f f e c t i v e  magneti'c moment o f  1.5 B.M. 

conf i rms the presence o f  one unpaired e lec t ron  i n  .each tri nucl ear 

c l us te r  u n i t  as expected f o r  the sto ichiometry ScZnMoj08. The much 

greater r e a c t i v i t y  o f  t h i s  new compound towards ox ida t ion  i n  d i  1  u t e  

n i t r i c ,  a c i d  so lu t ions,  re1 a t i v e  t o  Zn2Mo3o8, a1 so supports the 

assessment o f  ScZnMo3O8 as a more reduced phase. 



CONCLUSIONS 

The new compounds LiZn2Mo3O8, S C Z ~ M O ~ O ~ ,  and Zn3Mo3O8 a re  th ree  

new important  members i n  t he  f a m i l y  o f  reduced molybdenum oxides 

con ta in ing  the  Mojol3 c l u s t e r  u n i t .  The metal o r b i t a l s  i n  these 

t r i n u c l e a r  molybdenum atom c l u s t e r s  a re  now known t o  accommodate 6, 7, 

and 8  e lec t rons  i n  t h e  compounds Zn2Mo3O8y L i Z n 2 M ~ 3 0 8 / S ~ Z n M ~ 3 0 8 ~  and 

Zn3Mo3o8, respec t i ve l y .  The i n d i v i d u a l  Mo3Ol c l  us te rs  i n  Zn2M0308, 

which possess 3m (C3v) symmetry, were t r e a t e d  by an LCAO-MO method and 

Huckel - type c a l c u l a t i o n s  were c a r r i e d  ou t  (1 2 ) .  Two d  o r b i t a l s  pe r  

molybdenum atom were reserved f o r  Mo-0 bonding and the  t h r e e  remaining 

d  o r b i t a l s  were used f o r  metal -metal i n t e r a c t i o n s  . The energy 1  evel  

diagram which emerged f rom t h i s  c a l c u l a t i o n  prov ided th ree  bonding 

o r b i t a l s  (al and e) ,  an approx,imately nonbonding l e v e l  (al ) , and f i v e  

a n t i  bonding o r b i t a l  s  ( 2 e  and a?) .  This  energy 1  evel scheme exp la ined 

the  weak paramagnetism (Table 1-1 ), low e l e c t r i c a l  c o n d u c t i v i t y  , and 

s h o r t  Mo-Mo bond d is tance o f  2.524(2) A i n  Zn2Mo3O8 Each molybdenum 

atom, w i t h  formal o x i d a t i o n  s t a t e  n f  +4,, would c o n t r i b u t e  two e lec t rons  

t o  the  o r b i t a l s  o f  t h e  c l u s t e r .  These s i x  e lec t rons  f i l l  t h e  s t r o n g l y  

bonding al and e  molecular  o r b i t a l s .  According t o  t h i s  molecu lar  

o r b i t a l  p i c t u r e ,  a  seventh e l e c t r o n  (as i n  LiZn2M0308) would OCCUPY a  

r e l a t i v e l y  nonbonding o r b i t a l .  However, the  observed Mo-Mo bond 

d is tance o f  2.578(1) 8. i n  LiZn2M0308 i s  0.054 8. l onger  than t h e  Mo-Mo 

bond d i ,s tance i n  Zn2Mo3O8, i n d i c a t i v e  o f  an an t ibond ing  e f f e c t .  



The observed d i f f e rences  i n  metal  -metal bond 1  engths can be 

expla ined when Mo-0 p i  bonding i n t e r a c t i o n s  a r e  in t roduced t o  the  

molecular  o r b i t a l  diagram. Evidence f o r  molybdenum-oxygen p i  bonding 

comes f rom an examinat ion o f  Mo-0 bond lengths  i n  t he  Mo3013 c l u s t e r s .  

It has.been observed t h a t  t h e  s h o r t e s t  Mo-0 bond d is tances i n  these 

compounds are  those i n v o l v i n g  the' doubly b r i d g i n g  oxygen atoms, ,02 i n  

F igure  1-2 and Table 1-12. These oxygen atoms i n  Zn2M0308 a re  each 

bonded t o  'two Mo atoms and one Zn i o n  i n  an ip2-1  i k e  p lana r  arrangement 

(.the sum o f  t h e  Mo-0-Mo and MO- '0-~n bond angles around t h i s  oxygen 

atom i s  356"). The unhybr id ized p  o r b i t a l  remain ing on t h i s  oxygen 

atom i s  i n  excel 1  e n t  a1 ignment t o  over lap  w i t h  one d  o r b i t a l  on each o f  

the  adjacent  Mo atoms i n  t h e  t r i n u c l e a r  c l u s t e r .  These d  o r b i t a l s  a re  

the  same ones t h a t  g i ve  r i s e  t o  t h e  nonbonding al o r b i t a l .  Th is  p i  

i n t e r a c t i o n  would d e s t a b i l i z e  the  nonbonding al o r b i t a l ,  making i t  

ant ibonding i n  charac ter .  The same oxygen atoms i n  LiZn2M0308 and 
+ 

Zn3l4o3O8 a re  each bonded t o  two Mo atoms and two Zn ions  (.or L i  ions  

2 i n  LiZn2M0308) i n  an arrangement t h a t  i s  halfway between an sp - and 

3  s p , , - l i k e  c o n f i g u r a t i o n .  I f  t he  h y b r i d i z a t i o n  o f  t h i s  oxygen atom had 

2 remained e s s e n t i a l l y  sp -p lanar ,  a  weaker Mo-0 p i  i n t e r a c t i o n  would 

have heen expected due t o  an increase i n  e l e c t r o n  dens i t y  r e s u l t i n g  

from t h e  a d d i t i o n  of t h e  seventh o r  e igh th -  e lec t rons  t o  the  t r i a n g u l a r  

c l u s t e r s .  I n  LiZn2M0308, t he  p i  over lap  i s  f u r t h e r  weakened because 

a l l  o f  the  oxygen atom's p  o r b i t a l s  a r e  u t i l i z e d  i n  forming metal -  

oxygen bonds. The al an t ibond ing  o r b i t a l  i s ,  there fore ,  lowered i n  

energy b u t  s t i l l  possesses ant ibond ing  charac ter .  The seventh 



e l e c t r o n  i n  t he  LiZn2M0308 c l u s t e r s  thus occupies t h i s  o r b i t a l  and 

causes an increase i n  the  Mo-Mo bond d is tance.  The p i  i n t e r a c t i o n s  i n  

the  ZnjMo308 c l u s t e r s  a re  much weaker than i n  LiZn2Mo3O8 f o r  t he  

reasons g iven above.' This can be seen i n  the  Mol-02 bond d i s tance  o f  

2.056 8, f o r  Zn3M0308 which i s  r a t h e r  l o n g  f o r  a  s t rong  Mo-0 bond. The 

ant ibond ing  al o r b i t a l  i s  lowered f u r t h e r  i n  energy so as t o  become a  

weakly an t ibond ing  l e v e l .  The seventh and e i g h t h  e lec t rons  i n  t h e  

Zn3Mo3O8 c l u s t e r s  f i l l  t h i s  o r b i t a l  and cause e s s e n t i a l l y  no change i n  

the  Mo-Mo bond l e n g t h  f rom t h a t  i n  LiZn2M0308. 

I t  can be argued t h a t  t h e  placement o f  z i nc  i o n  (Zn4) i n  a  

p o s i t i o n  t h a t  i n t e r a c t s  w i t h  t h e  o therwise  nonhybr id ized p  o r b i t a l  on 

oxygen atom (02) causes t h e  weakening o f  Mo-0 p i  bonding. It can a l s o  

be argued t h a t  t he  weakeni.ng of t he  Mo-0 p i  bonding, due t o  e l e c t r o n i c  

charge bu i ld -up  on t h e  c l u s t e r s ,  a l lows z inc  i o n  (Zn4) t o  occupy. t h i s  

otherwise nonava i lab l  e  s i t e .  The t r u e  p i c t u r e  probably represents a  

s y n e r g i s t i c  e f f e c t  between these two types o f  i n t e r a c t i o n s .  The 

assessment o f  Mo-0 p i  - vs Zn-0 i n t e r a c t i o n s  cou ld  poss ib l y  be c l a r i f i e d  

w i t h  a  c r y s t a l  s t r u c t u r e  de terminat ion  o f  ScZnMo308. Th is  compound, 

2 
which i s  i s o s t r u c t u r a l  w i t h  Zn2M0308, would c o n t a i n  the  sp - l i k e  p lana r  

oxygen atoms (02); therefore,  the e f fec t  of another  c a t i o n  competing 

f o r  the  l one  p a i r  o r b i t a l  on oxygen,would be e l im ina ted .  
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SECTION I I .  SYNTHESIS AND CRYSTAL STRUCTURE OF Bal ,,I 4M0801 6. 

' A HOLLANDITE-RELATED PHASE CONTAINING PLANAR 

TETRAMERIC MOLYBDENUM ATOM CLUSTERS AND A 

SUPERLATTICE ORDERING OF BARIUM IONS 



INTRODUCTION 

Tetranuclear metal atom c l us te r s  are known t o  e x i s t  i n  ha1 ide,  

sul f ide,  and selenide compounds, and i n  i o n i c  and molecular sol  i d s  i n  

three d i f fe ren t  geometries. I n  one type, the f ou r  metal atoms bond 

together w i t h  te t rahedra l  o r  d i s t o r t e d  te t rahedra l  symmetry as i n  the . 

compounds Mo4S4Br4 (1 ) and GaMo4S8 (2) .  A d i f f e r e n t  but  r e l a ted  

geometry o f  metal atoms i.s the -open te t rahedra l  o r  ' b u t t e r f l y '  arrange- 

ment where one edge o f  a  tetrahedron i s  elongated r e l a t i v e  t o  the others. 

This c l u s t e r  type i s  found i n  the anion o f  the compound . ( B u ~ N ) ~ M o ~ I ~ ~  

(3 ) .  A t h i r d  type o f  c l u s t e r  has the f o u r  metal atoms i n  a  p lanar  

diamond-shaped o r  edge-sharing t r i a n g u l a r  arrangement. Two . o f  . the  metal 

atoms i n  t h i s  te t ranuc lear  c l u s t e r  are each bonded t o  three metal, atoms 

whi le  the two end atoms are each bonded t o  only two metal atoms as i n  the 

compounds MNb4X11 (M = Rb, Cs; X = C1, Br )  (4) ,  and W4(OEt)8 ( 5 ) .  The 

compounds ReSp (6) and ReSe2 ( 7 )  also conta in  t h i s  planar f ou r  metal atom 

c l us te r  , bu t  these c l  usters.  are 1  inked.  i n t o  i n f i n i t e ,  one-dimensional 

chains by Re-Re bonds between adjacent c l u s t e r  un i t s .  However, t e t r a -  

nuclear metal a tomc lus te r s  o f  a n y t y p e  have no t  been found i n  an oxide 

system u n t i l  recent ly .  . : , 
This sect ion describes the preparat ion and s i ng le  c r ys ta l  s t r uc tu re  

of the new ternary compound Bal . 4MogOl 6. It i s  the f i r s  t exampl e  of an 

oxide conta in ing a te t ranuc lear  metal atom c l us te r ,  and i t  i s  a lso  the 

f i r s t  example o f  a  hol l and i  te - re la ted  (8 )  tunnel s t r uc tu re  conta in ing 

molybdenum. The s t r uc tu re  o f  Bal .14M08016 has a lso been found t o  e x h i b i t  

a supe r l a t t i ee  order ing o f  barium ions w i t h i n  the tunnels. 



EXPERIMENTAL 

Materials 

Bari um molybdate was 'prepared by mixing an aqueous sol ut i  on of 

BaC1 2-2H20 ( 'Baker Analyzed' Reagent, 99.6%) w i t h  an aqueous solut ion 

containing the  stoichiometric quanti ty of ammonium heptamolybdate t e t r a -  

hydrate ( ' Baker Analyzed' Reagent, 83.0%' as Moo3) and' ammoni um hydroxide. 

The white p rec ip i  t a t 6  was f i l t e r e d ,  washed several  times w i t h  deionized 

water ,  dried a t  ~ Z O O C  f o r  20 hours, and stored over P4010. Molybdenum 

dioxide was prepared by the  hydrogen reduction of Moo3 (Fisher Cer t i f i ed  

A.C.S.) a t  460°C f o r  40 hours. The reduced material was then washed 

several times with a l t e rna t e  portions of 3M NH40H, deionized water, and 

3M HC1 un t i l  the  washings were co lo r l e s s ,  and f i n a l l y  dried -- in vacuo a t  

110°C. Anal. Calculated f o r  Moo2: Mo, 74.99. Found: Moy 74.96. 

Molybdenum tubing was obtained from Thermo-Electron Corp. (,99.97%), Mo 

sheet  from Rembar Co. (99.95%), and Mo powder from A1 drich (99.99%). 

Synthesis 

Barium molybdate and molybdenum dioxide, in mole r a t i o  2:5, were 

ground together i n  a mortar and then sealed i n  an evacuated molybdenum 

reaction vessel ( 3  cm long x 1 . 3  cm diam) by e lect ron beam welding. 

This molybdenum tube was then sealed i n  an evacuated inconel protection 
I tube.and the  reaction mixture held a t  1 100°C f o r  9 days. The f ree -  

flowing contents of the  tube contained some unreacted BaMo04, as  well 

as four types of c ry s t a l s ;  t h i n  hexagonal -1 i ke p l a t e l e t s ,  long black 



c o l  umnar c r y s t a l  s  , t h i n  metal 1 i c  c o l  ored need1 es o f  Ba-O. 62M0406 (9), 

and c r y s t a l s  o f  MooT The compos i t i on  o f  t h e  columnar c r y s t a l s  proved 

t o  be Bal a14M0801 from s i n g l e  c r y s t a l  x-ray d i f f r a c t i o n  data (see 

below). The composit ion and s t r u c t u r e  o f  t h e  t h i n  hexagonal -1 i ke 

p l a t e l e t s  has n o t  y e t  been determined. 

An at tempt was made t o  prepare the  pure  compound BaMo8016 us ing  

the s t o i c h i o m e t r i c  q u a n t i t i e s  of BaMo04, Moo2, and Mo. The p e l l e t i z e d  

r e a c t i o n  m ix tu re  was sealed i n  a molybdenum tube which, i n  t u rn ,  was 

sealed i n  an inconel  p r o t e c t i o n  tube, and f i r e d  a t  l l O O ° C  f o r  7 days. 

A mu1 t i  phase product  was again observed. 

C rys ta l  Sel e c t i o n  

Several 1 ong co l  umnar c r y s t a l s  were se lec ted  f rom t h e  mu1 t i  phase 

product  m ix tu re  and mounted i n  0.2 mm Lindemann g lass c a p i l l a r i e s  w i t h  

a smal l  amount o f  s i l i c o n e  grease. Each c r y s t a l  was mounted w i t h  t h e  

l ong  dimension nea r l y  c o l l i n e a r  w i t h  the  $ - c i r c l e  a x i s  on a fou r -  

c i r c l e  x- ray d i f f r a c t o m e t e r  designed and b u i l t  i n  t he  Ames 

Laboratory (1 0 ) .  Three o r  f o u r  w-osci l  1  a t i o n  photographs were taken 

on each c r y s t a l  a t  var ious $ s e t t i n g s .  These photographs revea led  t h a t  

the  c r y s t a l s  e x h i b i t e d  a range o f  imper fec t ions ,  f rom those showing 

re1 a t i  ve l y  d i s c r e t e  sharp d i f f r a c t i o n  maxima t o  those which produced 

two o r  more c l o s e l y  spaced peaks; o n l y  t h e  th ree  bes t  c r y s t a l s  were 

then indexed. Several independent r e f l e c t i o n s  were se lec ted  f rom these 

photographs and t h e i r  coord ina tes  i n p u t  i n t o  an automat ic  index ing  

program (1 1 ) . The reduced c e l l  and reduced-cel l  sca la rs  which 



r e s u l t e d  i n d i c a t e d  t r i c l i n i c  symmetry w i t h  the  same l a t t i c e  parameters 

f o r  a l l  t h ree  c r y s t a l s .  A c r y s t a l  o f  dimensions 0.14 x 0.08 x 0.07 mm 

was se lec ted  f o r  data c o l l e c t i o n  based on the  q u a l i t y  of  i t s  

o s c i l  l a t i o n  photographs. 

X-Ray Data Col 1  e c t i o n  

X-ray da ta  were c o l l e c t e d  on t h e  same x-ray d i f f r a c t o m e t e r  a t  

ambient temperature us ing  Mo Ka r a d i a t i o n  ( A  = 0.71034 1) mono- 

chromatized w i t h  a  g r a p h i t e  s i n g l e  c r y s t a l .  An w-scan mode was used 

t o  c o l l e c t  a1 1  data i n  the  HKL, HKL, ;KC and HKL oc tan ts  w i t h  28 5 50'. 

The peak he igh ts  o f  t h r e e  standard r e f l e c t i o n s  which were remeasured 

every 75 r e f l e c t i o n s  d i d  n o t  show any s i g n i f i c a n t  change ove r  t he  pe r iod  

o f  data c o l l e c t i o n .  F i n a l  c e l l  parameters and t h e i r  est imated standard 

dev ia t i ons  ,were obta ined from t h e  same c r y s t a l  .by a  least-squares 

ref inement  o f  528 values o f  16 independent r e f l  ec t i ons  randomly 

d i s t r i b u t e d  i n  r e c i p r o c a l  space having 28 > 30'. The r e s u l t s  were 

3 B , =  99.60(.2)", y = 89.31 (.2)", and V = 301.4 8. . 

S t r u c t u r e  Determinat ion and Refinement 

The observed i n t e n s i t i e s  were co r rec ted  f o r  Lorentz-pol  a r i , za t i on  

e f fec ts  and standard dev ia t i ons  ca l cu la ted  (1 2 )  t o  g i v e  ,131 6 observed 

r e f l e c t i o n s  ( I  > 3 a ( I ) )  f rom a  p o s s i b l e  1368. Appropr ia te  averaging o f  

dupl i cate  r e f  1  ec t i ons  y i  e l  ded 1024 independent r e f l  ec t i o n s  f o r  t h e  

f i n a l  data s e t .  



parameter .as w e l l  as a l l  Mo and 0 p o s i t i o n a l  parameters were n e x t  

v a r i e d  and ref inement converged a t  R = 0.127. This  was then fo l l owed  

w i t h  a ref inement  o f  Ba atom mu1 t i p l  i e r ,  a l l  heavy atom i s o t r o p i c  

thermal parameters, and a l l  Mo and 0 p o s i t i o n a l  parameters t o  g i v e  

R = 0.122. A t  t h i s  p o i n t ,  an e l e c t r o n  dens i t y  map revealed a , s m a l l  

amount of e l e c t r o n  dens i t y  near  the  spec ia l  p o s i t i o n  %,+,%. . Oxygen 

was f i r s t  placed a t  t h i s  s i t e  b u t  ref inement  , l ed  t o  a h i g h l y  negat ive  

i s o t r o p i c  temperature f a c t o r  and a h igh  occupation number (>I. a t o m l s i t e )  

f o r  t h i s  atom. Barium was then p laced a t  th i ' s  p o s i t i o n  and a re f inement  

of b a r i  um mu1 t i  p l  i e r s  and atomic p o s i t i o n a l  and i s o t r o p i c  thermal 

parameters converged a t  R = 0.081 and Rw = 0.120 where Rw = 

A Pat te rson-superpos i t ion  method (13) was used t o  l o c a t e  t h e  

p o s i t i o n s  o f  a l l  8 molybdenum atoms and 1 barium atom. Space group 

PT (no. 2)  was se lec ted  w i t h  barium on the  spec ia l  p o s i t i o n  %,%,O 

and a f u l l  -ma t r i x  1 east-squares refinement (14) on t h e  p o s i t i o n a l  

2 
CCU(. IF~ I -   IF^ 1 ) / L U ~ F ~ ~ ~ ] '  and w '= o F -2. An absorp t ion  c o r r e c t i o n  f o r  

t h e  c r y s t a l  shape was made ( u  = 106 cm-' ) us ing  a n  emp i r i ca l  $-scan 

parameters f o r  Mo r e s u l t e d  i n  a r e s i d u a l  R = L 

method (16) where the  i n t e n s i t y  o f  a se lec ted  r e f l e c t i o n  a t  x % 90° was 

measured every 10' i n  $ us ing  the  x-ray d i f f r a c t o m e t e r ,  b u t  t h i s  

c o r r e c t i o n  made no improvement i n  t h e  ref inement .  A f u l l  a n i s o t r o p i c  

ref inement  gave R = 0.041 and Rw = 0.059 w i t h  a t o t a l  popu la t i on  o f  

F - F  / L o  o f  

0.253. Oxygen atom p o s i t i o n s  were l o c a t e d  f rom an e l e c t r o n  dens i t y  

Fou r ie r  map (15) and ref inement  o f  a1 1 Mo and 0 p o s i t i o n a l  parameters 

gave R = 0.205. The barium atom mu1 t i p l  i e r  and i s o t r o p i c  thermal 



1 .14(1) Ba atoms/cel 1 ; however, two oxygen atoms had negative tempera- 

tu re  f a c to r s .  An examination of the  s t r uc tu r e  f a c to r s  showed many 

strong low-angle re f l ec t ions  t o  have Fo < F,, which suggested a 

secondary.extinction problem. The value f o r  a secondary ex t inc t ion  

f ac to r ,  g = 8 x lom7,  was obtained from a l i n e a r  regression calcula t ion 

using the  expression IFc I /  1 Fol  = 1 + g Ic .  I t  was a l s o  observed t h a t  

the  data a t  high and low values of s i n  B/h had l a r g e r  values of 

w l  1 Fo I -  I Fc 1 I .  T h u s ,  the data were reweighted in f i f t y  overlapping 
2 groups sor ted  according t o  Fo so  t h a t  wA was e s sen t i a l l y  constant .  

A f i na l  f u l l  -matrix 1 east-squares refinement, varying the  s c a l e  f a c to r ,  

barium mu1 t i p l  i e r s ,  posi t ional  and anisot ropic  thermal parameters, 

converged a t  R = 0.036 and Rw = 0.049 w i t h  no s i gn i f i c an t  change i n  

the Ba atom mu1 t i p l  i e r s  . A f i na l  d i f fe rence  Fourier synthes is  map. was 

f l a t  t o  5 1 . 5  e/W3. 

The atomic s ca t t e r i ng  fac to rs  used were those of Hanson e t  a1 . 
(1 7)  f o r  neutral  atoms; molybdenum and barium were corrected f o r  the  

rea l  and imaginary pa r t s  ,of anomalous dispersion (18) .  



RESULTS AND DISCUSSION 

C r y s t a l  S t r u c t u r e  of Bal 4M0801 

The f i n a l  p o s i t i o n a l  parameters are  g iven i n  Table 11-1 and 

thermal parameters i n  Table 11-2. Important  i n t e r a t o m i c  d is tances  and 

angles l i s t e d  i n  Tables 11-3 and 11-4, respec t i ve l y ,  correspond t o  t h e  

l a b e l s  i n  F igures 11-1 and 11-2. Observed and c a l c u l a t e d  s t r u c t u r e  

f a c t o r s  a re  a v a i l  ab l  e  as supplementary m a t e r i a l  . 
The s t r u c t u r e  o f  Bal 4M~8016 cons i s t s  o f  molybdenum-oxide c l  u s t e r  

chains extended p a r a l l e l  t o  t he  c  a x i s .  The chains a r e  b u i l t  up from 

c l u s t e r s  of t he  type Mo4016 shar ing  t h e  oxygen atoms on t h e  f o u r  ou te r  

edges of t h e  p lanar  t e t ramer i  c  molybdenum atom c l  us te r .  (Conceptual ly , 

an MoqO16 c l  u s t e r  can be fo rmed by adding a  molybdenum atom w i t h  th ree  

at tached oxygen atoms t o  one edge o f  t he  molybdenum t r i a n g l e  found i n  

the  rdo3ol3 c l u s t e r  u n i t  (19) . )  The barium ions  occupy s i t e s  a long the  

c  a x i s  i n  channels formed by f o u r  meta l -ox ide c l u s t e r  chains cross-  

1  inked by mol ybdenum-oxygen bonds. 

F igure  11-1 i s  an ORTEP drawing o f  a  s e c t i o n  o f  one molybdenum- 

ox ide  c l u s t e r  chain which shows the  arrangement o f  molybdenum atoms 

w i t h i n  t h e  i n d i v i d u a l  c l u s t e r s  and a l s o  t h e  c o n n e c t i v i t y  w i t h i n  t h e  

chains v i a  the sha r ing  o f  oxygen atoms between c l u s t e r  u n i t s .  Bonds 

between mo1,ybdenum atoms a re  represented i n  t h i s  f i g u r e  by t h e  b lack  

so l  i d  1  ines  and Mo-0 bonds by the  open u n f  i 11 ed 1  ines  . The i n d i v i d u a l  

c l u s t e r s  conta in  two types o f  Mo atoms; t h e  end o r  a p i c a l  atoms Mol 

and Mol ' which a re  each bonded t o  two o the r  molybdenum atoms and s i x  



a Table  11-1. Pos i t i ona l  parameters  f o r  Bal . 14M~8016 

A tom x Y z Mu1 t i  pl i er 

a Space group ( n o .  2 ) .  



a Tab1 e 11-2. Thermal parameters for  Bal 14M0801 6 

A tom B l l  B22 '333 B1 2 

2 
a ~ h e  general thermal parameter expression used i s  e ~ p [ - 1 / 4 ( B ~ ~ h ~ a * ~  + BZ2k b*2 +...2B23k!Lb*c*)]. 



Table 11-3. I n te ra tomic  d i s tances  ( A )  i n  Bal ,14M08016 

Mo-Mo and Mo-0 Distances 

D i s t o r t e d  C l u s t e r  Regular C lus te r  

Mol -Mo2 2.847(1) 

Mol -M02' 2.546(1) 

Mol-Mo2' 3.197(1) 

" Mo2-Mo2' 2.560(1) . 

Mol -01 .2.082 (6)  

Mol-02 2.046(6) 

Mol-02 ' 2.104(6) 

Mol-03 1.931 (6)  

Mol-04 2.079(6) 

Mol-08 1 .894 (6) 

MoZ-01 
. . 

2.051 ( 6 )  

Mo2-01' 2.038(6) 

Mo2-02 2.062 (6)  

Mo2-03 . 2.003(6) 

Mo2-04 2.119(6) 
I Mo2-07 2.030(6) 

€h -0 Distances 

Ba2-01. 

Ba2-02" 

Ba 2-05 ' 
Ba2-06 



Table 11-4. Bond angles ( d e g )  i n  Bal,14M08016 
. . 

I n t r a c h a i n  Bond Angles 

I n t e r c h a i n  Bond Angles 



Figure  11-1. A s e c t i o n  o f  one meta l -ox ide  cha in  c o n t a i n i n g  t h e  

' d i s t o r t e d  ' molybdenum atom cl us te rs  . i n  Bal 4M0801 6. 
, F i f t y  percent  probabi 1 i t y  a n i s o t r o p i c  thermal 

e l  1 i pso i  ds a re  shown 



F i g u r e  11-2. A s e c t i o n  o f  one meta l -ox ide cha in  c o n t a i n i n g  t h e  

' r e g u l a r '  molybdenum atom c l u s t e r s  i n  Bal .l 4M~g01 

F i f t y  percent  p robab i l  i t y  a n i s o t r o p i c  thermal 

e l l i p s o i d s  a r e  shown 



oxygen atoms, and the  atoms Mo2 and Mo2' which a r e  each bonded to  three  

molybdenum and s i x  oxygen atoms. The molybdenum atoms a r e  a l l  i n  

approximately octahedral coordination with oxygen. Each metal-oxide 

c l u s t e r  can a l so  be viewed as a small sect ion of a close-packed 

arrangement of two oxygen atom layers w i t h  the Mo atoms occupying 

neighboring octahedral s i t e s  between the  two layers  w i t h  the  Moo6 

octahedra sharing edges. Molecular species ,  without metal -metal 

bonding, which have the  same s t ruc tu r a l  arrangement a r e  Ti4(0R)1 6 ,  

where R = methyl (20) and ethyl (21 ), and W4Ol6 8- as  found i n  the  

compound Ag8W4016 (22) and the s i l v e r  ion conductor Ag26118W4016 (23) .  

Each metal-oxide c l u s t e r  chain in Bal, 14M08016 contains four  types of 

oxygen a toms which a r e  a1 1 three-coordinate w i t h  respect  t o  molybdenum. 

One type, 01 - Figure 11-1, i s  t r i p l y  bridging t o  three  Mo atoms within 

an Mo4Ol 6 c l u s t e r ,  while a second type, 02, i s  doubly bridging on an 

edge of one c l u s t e r  uni t  and singly bonded to  a n  apical Mo atom in a 

neighboring c l u s t e r ,  thereby 1 inking the individual c lu s t e r s  within 

the chain. Both types of oxygen atoms a r e  bonded to  molybdenum atoms 

in a trigonal-pyramidal fashion,  and a r e  a l so  coordinated to  barium 

(see  below). A t h i rd  type of oxygen, 04 - Figure 11-1 , connects two 

intrachain c l u s t e r  units  along one edge of t he  chain and a l so  serves 

as an interchain l ink  hy bonding to  an apical  Mo atom, Mo3 - Figure 

11-2, i n  an adjacent metal-oxide c l u s t e r  chain. The fourth type of 

oxygen atoms, 03 and 07 - Figures 11-1 and 11-2, respect ively ,  which 

a lso  connect individual c l u s t e r  chains,  a r e  doubly bridging along an 

ou te r  edge o f  one MogOls c l u s t e r  uni t  and s ingly  bonded to an Mo atom 



i n  an adjacent metal-oxide c l u s t e r  chain.  Ind iv idua l  chains are, 

therefore,  each connected t o  four o the r  c l u s t e r  chains v i a  Mo-0-Mo 

bdnds'. These in te rcha in -b r idg ing  oxygen atoms a re  i n  a  t r i gona l  p lanar-  

li ke 'coord ina t ion  w i t h  molybdenum atoms as evidenced by the sum o f  

Mo-0-Mo bond angles around each O.atom, 359.5 t o  360°. The i n t e r -  

l i n k i n g  o f  the c l u s t e r  u n i t s  w i t h i n  and between chains can be 

represented i n  the connec t i v i t y  fo rnu l  a  M o ~ O ~ O ~ , ~ O ~ , ~  = Moq08. 

An i n t e r e s t i n g  feature  o f  t he  s t r uc tu re  i s  t h a t  there  a re  two 

d i f fe ren t  types o f  i n f i n i t e  chains. One cha in  contains d i s t o r t e d  

c l u s t e r  un i t s ,  as shown i n  Figure 11-1, which have three sho r t  and two 

long Mo-Mo bonds; 2.560(1)(1X), 2.546(1)(2X), and 2.847(1)(2X) i. 
The other -  chain cons is ts  o f  regu la r  c l u s t e r  un i t s ,  as shown i n  Figure 

11-2, where the  f i v e  'MO-Mo bonds i n  the edge-shared b i t r i a n g l e  a re  

near ly  equal ; 2.578(1) (3X) and 2.61 6(1)  (2X) 1. Both types o f  c l u s t e r  

chains possess 7 symmetry w i t h i n  the p lanar  tetrarner ic  c l u s t e r  un i t s .  

There i s  a lso  a  p o i n t  o f  i nve rs ion  symmetry between i nd i v i dua l  c l us te r s  

a long each chain, g.g., r e l a t i n g  02 w i t h  02 ' ,  Mol w i t h  Mol I, e tc .  

w i t h i n  the c l us te r s  o f  regu la r  geometry, the Mo-Mo bonding i s  

understood as r e s u l t i n g  . f rom 10 e lec t rons i n  bonding a-orb i  t a l s  

d i rec ted  along the 5  bonded edges w i t h  each edge having a bond order  

of 1.0. This ind ica tes  t h a t  the  Mo atoms on the shared edge o f  the  

t r i ang les  furn ish 3 e lec t rons each and are  i n  the  ne t  ox i da t i on  s t a t e  

3+, whereas the Mo atoms on the ou te r  apices f u rn i sh  2  e lec t rons each 

and are i n  the  4+ n e t  ox ida t ion  s ta te .  Each regu la r  c l u s t e r  u n i t  i s  

2- then formulated as Mo408 . From the  Mo-Mo distances i n  the d i s t o r t e d  



c l u s t e r  u n i t ,  i t  appears the  th ree  s h o r t  bonds a re  o f  o rde r  1.0 and 

the  two elongated bonds a r e  approximately o f  o rde r  0.5. Thus, a  t o t a l  

o f  - ca. 8  e lec t rons  i s  i nvo l ved  i n  t h e  Mo-Mo bonding and the n e t  

o x i d a t i o n  s ta tes  a r e  3.5+ f o r  the  atoms on the  shared edge and 4.5+' 

f o r  the  atoms on t h e  o u t e r  apices.  I n  bo th  the  d i s t o r t e d  and r e g u l a r  

c l u s t e r  u n i t s ,  the  sho r tes t  Mo-0 d is tances a r e  those around the  o u t e r  

ap i ca l  Mo atoms; 2.02 vr 2.05 8. (ave) i n  t h e  d i s t o r t e d  c l u s t e r s ,  and 

2.05 2.06 8. (a&) i n  t he  r e g u l a r  c l u s t e r s ,  which supports t h e i r  

assessment o f  a  h igher  n e t  o x i d a t i o n  s t a t e .  I n  view ' o f  these consider-  

a t i ons ,  the  compound may be fo.rmulated as t h e  mixed-valence species 

A 3-dimensional view down the  c  a x i s  o f  Bal .14M0801 6  i s  g iven i n  

F igure  11-3 (on l y  Bal i s  shown). I n  t h i s  view, t he re  i s  a  s t rong  

resemblance between t h i s  s t r u c t u r e  and t h a t  o f  NaMo406 (24) o r  

Mo 0  (25) .  I n  each case, t he  molybdenum-oxide c l u s t e r  chains Ba0.62 4  6  
+ 

a re  l i n k e d  together  t o  fo rm tunnels i n  which t h e  Na o r  ~ a * +  c a t i o n s  

a re  l oca ted .  The s t r u c t u r e  o f  Bal 4M0801 6 i s  , however, more c l o s e l y  

r e l a t e d  t o  the  s t r u c t u r e  o f  t he  minera l  h o l l a n d i t e  (8 ) ,  BaMn8016, b u t  

i s  reduced i n  symmetry through s t rong  metal-metal  bonding t o  form t h e  

t e t r a n u c l e a r  c l u s t e r  u n i t s .  

The barium ions  i n  Bal .14M08016 a re  f r a c t i o n a l l y  occupied i n  s i t e s  

of Inw symmetry. The e i g h t  i n t r a c h a i n  oxygen atoms i n  the  coo rd ina t i on  

sphere o f  Bal form a  d i s t o r t e d  rec tangu la r  box compressed a long the  c  

a x i s  w i t h  Ba-0 d is tances f rom 2.68 t o  2.89 #. O f  these, t he  s h o r t e s t  

d is tances i n v o l v e  the  0  atoms, 01 and 05, which b r i dge  th ree  Mo atoms 



F i g u r e  11-3. A three-d imensional  v iew down t h e  c a x i s  o f  Bal ,14M~g016. 

Molybdenum and ' ba r i  um atoms a r e  1 abeled. F i f t y  pe rcen t  

p r o b a b i l i t y  a n i s o t r o p i c  thermal e l  1 i p s o i d s  a r e  shown - 



w i t h i n  an Mo4016 u n i t  as shown i n  F igures 11-4 and 11-5. Because 

oxygen atoms 02 and 06 b r i dge  two separate c l u s t e r s  w i t h i n . a  chain, 

they a re  l oca ted  c l o s e r  t o  t h e  p lane of Mo atoms and, t he re fo re ,  

f u r t h e r  from barium. The oxygen coo rd ina t i on  around the  Ba2 ions  i s  

dep ic ted  i n  F igure  11-5. The p a r t i a l l y  occupied Ba2 s i t e  i s  d isordered,  

cons is t ing .  o f  two invers ion- re1  a ted  p o s i t i o n s  w i t h i n  a  d i s t o r t e d  

rec tangu lar  box o f  e i g h t  oxygen atoms. This  oxygen atom arrangement i s  

t he re fo re  s i m i l a r  t o  t h a t  of Bal except t he  c a t i o n  has now been 

s h i f t e d  upwards o r  downwards and t o  t h e  s i d e  i n  t he  d i s t o r t e d  

rec tangu lar  box. Th is  r e s u l t s  i n  s i x  shor t ,  2.51 -2 .72  f i ,  and two 

long, 3.33 and 3.44 8 ,  Ba-0 d is tances .  

The f r a c t i o n a l  occupat ion numbers as we1 1  as the  l a r g e  B33 thermal 

parameter f o r  barium (Ba l )  suggested 'a s u p e r l a t t i c e  o rde r ing  o f  Ba 2+ 

ions  w i t h i n  t h e .  channels, as f r e q u e n t l y  observed i n  hol  l a n d i t e - r e l a t e d  

phases. For example, the  compounds Ba,MgxTi8_x016 e x h i b i t  an 

incommensurate s u p e r l a t t i c e  o r d e r i n g  (26) o f  ~a '+  i ons  w i t h  

0.8 - < x  - < 1.33 and x  f 1.20. An a x i a l  o s c i l l a t i o n  photograph a long 

the c  a x i s  o f  a  s i n g l e  c r y s t a l  o f  Bal . 4M~8016 revealed 1 ayers o f  

s u p e r l a t t i c e  r e f l e c t i o n s  which i n d i c a t e d  the  t r u e  u n i t  c e l l  dimension 

a long the  c a x i s  was 5n (5.726) a ,  where n  i s  an i n t e g e r .  This ,  of 

course, a l s o  i m p l i e d  t h a t  the  s u p e r l a t t i c e  o r d e r i n g  was commensurate 

w i t h  the  l e n g t h  of t h e  subce l l  c  a x i s .  Using t h e  f r a c t i o n a l  occupat ion 

numbers, r a t i o  o f  occupat ion numbers, t o t a l  b a r i  um content ,  and 

r e c i p r o c a l  l a t t i c e  l a y e r  spacings obta ined f rom t h e  a x i a l  photograph, 

a  value o f  n  = 3  was c a l c u l a t e d  t o  bes t  f i t  a l l  o f  t h e  above 



Figure 11-4. A three-dimensional view down the c axis of Bal .14Mog016 
showing the oxygen coordination around bari urn ion (Bal ) . 
Fifty percent  probabil i ty anisul;raup ic Ltler.~r~dl 

ellipsoids are shown 



Figure  11-5. A view perpend icu la r  t o  t he  c  a x i s  o f  Ba, .14Mog01 

showing the  oxygen coo rd ina t i on  around the  two 

barium i o n  s i t e s .  F i f t y  percent  p rohah i l  i t y  % 

a n i s o t r o p i c  thermal e l l  i pso ids  a r e  shown 



in format ion.  I n  t h i s  model, there.  would be .30  poss ib le  barium s i t e s  

w i t h i n  each channel along t h e  c  a x i s  o f  t he  s u p e r l a t t i c e  c e l l ;  .I3 barium 

ions would occupy s i t e s  s i m i l a r  t o  Bal and 4  would occupy s i t e s  s i m i l a r  

t o  Ba2. However, t he  compound Ba1.14M08016 may a c t u a l l y  e x h i b i t  an 

incommensurate s u p e r l a t t i c e  o rde r ing  of  barium ions  w i t h  a  c  a x i s  

repeat  u n i t  much l e s s  than 15(5.726) 1 (i.g., the  s u p e r l a t t i c e  repeat  

u n i t  would be a  non in tegra l  mu1 t i p l e  o f  t h e  subce l l  c  a x i s ) .  

As can be d iscerned from F igu re  11-3, the  s t r u c t u r e  a l s o  inc ludes  

a d d i t i o n a l  oxygen-1 i n e d  tunnels runn ing  para1 l e l  t o  t h e  c  a x i s .  These 

tunnel s have wa l l  s  composed of t he  i n t e r c h a i n ,  t r i g o n a l  p lanar-1 i ke 

oxygen atoms (03, 04, 07, and 08) .  The oxygen atoms a r e  arranged along 

t h e  c  a x i s  t o  form i n f i n i t e  chains of edge-sharing octahedra. A sec t i on  

of one such cha in  i s  p i c t u r e d  i n  F igure  11-6. These vacant channels 

a re  t h e  same as those found i n  r u t i l e .  (T i02)  and r e l a t e d  metal 

d iox ides  . 



F igu re  11-6. A s e c t i o n  of  one of t he  empty channels found i n  

Mo 0 showing t h e  edge-sharing, octahedra l  Ba1.14 8 16 
oxygen atom arrangement a long t h e  c' a x i s  



CONCLUSIONS 

Although the  d i s t o r t e d  Mo4Ol6 c l u s t e r s  i n  Bal.14Mog016 have on ly  

i (Ci ) symmetry, t he  r e g u l a r  c l u s t e r s  very c l o s e l y  approximate 2 /m (CZh) 

symmetry and a  molecular  o r b i t a l  bonding p i c t u r e  f o r  bo th  c l u s t e r  types 

can be sketched. Two metal d  o r b i t a l s  per  Mo atom a r e  reserved f o r  

Mo-0 bonding and the  th ree .  remaining metal d  o r b i t a l s  a r e  used i n  

forming Mo-Mo bonds. In  the  r e g u l a r  c l u s t e r s ,  these 12 o r b i t a l s  

combine i n C Z h  symmetry t o  p rov ide  a  s e t  o f  f i v e  bonding 

(.Zag + b  + au + bu),  two nonbonding (a + bu) , and f i v e  a n t i b o n d i n g  
9  9  

molecular  o r b i t a l s  (a  + b  + 2au + bu) (27) .  Therefore, t he  10 metal 
9  9  

e lec t rons  i n  t h e  regu la r  c l u s t e r  f i l l  t h e  f i v e  bonding l e v e l s  and r e s u l t  

i n  an average Mo-Mo bond o rde r  o f  1  .O. This  molecular  o r b i t a l  scheme . 

can be mod i f ied ,  however, by cons ider ing  Mo-0 p i  bonding i n t e r a c t i o n s .  

Evidence f o r  metal-oxygen p i  o r b i t a l  over lap  comes f rom a  study o f  t he  

molybdenum-oxygen d is tances i n  t h e  r e g u l a r  Mo4O1 c l  u s t e r  u n i t s  . The 

s h o r t e s t  Mo-0 d is tances  i n  these c l  us te rs ,  1.936(6) 1, a r e  those 

i n v o l v i n g  the  a p i c a l  Mo atoms, Mo3, and the  t r i g o n a l  p l a n a r - l i k e ,  

i n t e r c h a i n  ox.ygen atoms, 07, which a re  edge b r i d g i n g  t o  the  i n d i v i d u a l  

c l u s t e r  u n i t s .  The unhybr id ized p  o r b i t a l  on these oxygen atoms can 

e f f e c t i v e l y  over lap  w i t h  t h e  molybdenum d  o r b i t a l s  t h a t  a re  nonbonding 

w i t h  respect  t o  No-Mo i n t e r a c t i o n s ,  i.~., the  (a + bu) s e t .  Th i s  p i  
9  

o r b i t a l  over lap  would lower the  energy o f  these oxygen p  o r b i t a l s  and 

consequently r a i s e  the  energy o f  t h e  o therwise  nonbonding s e t  o f  

molybdenum molecular  o r b i t a l s  t o  an a n t i  bonding p o s i t i o n .  The f i v e  



bonding l e v e l s  would remain e s s e n t i a l l y  unchanged. It may there fore  

be very d i f f i c u l t  t o  f u r t h e r  reduce these 10-el ec t ron  Mo401 6  c l u s t e r s  

because a d d i t i o n a l  e lec t rons  woul d  have t o  r e s i d e  i n  a n t i  bonding 

o r b i t a l s .  

The d i s t o r t e d  c l u s t e r s ,  which possess on l y  Ci symmetry, a l s o  

e x h i b i t  t h i s  mode o f  p i  bonding i n t e r a c t i o n  between atoms Mol and 03 as 

seen i n  t h e  Mo-0 bond l e n g t h  o f  1.931 (6)  1. More impor tan t  f o r  t he  

d i s t o r t e d  c l  us ters  , however, i s  t h e  i n t e r a c t i o n  between t h i s  ap i ca l  Mol 

atom and the  t e r m i n a l l y  bonded, s p Z - l i k e  oxygen atom, 08, which r e s u l t s  

i n  a very s h o r t  Mo-0 bond d i s tance  o f  1.894(6) 1. This  s h o r t  bond 

. . l e n g t h  ar ises ,  i n  p a r t ,  f rom a  h igher  n e t  o x i d a t i o n  s t a t e  f o r  t h i s  Mo 

atom, thereby i nc reas ing  the  Mo-0 e l e c t r o s t a t i c  a t t r a c t i o n .  However, 

. the  s t rongest  i n t e r a c t i o n  between these two atoms, which g ives r i s e  t o  

the  s h o r t  Mo-0 bond d is tance,  i s  a  p i  bonding i n t e r a c t i o n .  The 

unhybr id ized p  o r b i t a l  on t h i s  oxygen atom i s  i n  a  p o s i t i o n  t o  p i  bond 

w i t h  the same molybdenum d  o r b i t a l  i nvo l ved  i n  forming the l o n g  bond 

between atoms Mol-Mo2 and Mol '-Mo2'. ~ e c a u s e  t h i s  d  o r b i t a l  

p a r t i c i p a t e s  i n  an e l e c t r o n - d e f i c i e n t  Mo-Mo bond, i t  i s  more access ib le  

t o  p i  bonding w i t h  oxygen atom 08. Th is  i n t e r a c t i o n  ra i ses  one of  t h e  

f i v e  bonding 11101 ecul a r  o r b i t a l s  t o  h igher  energy 1  eaving f o u r  bonding 

MO's  t.o h o l d  e i g h t  e lec t rons .  It the re fo re  seems. 1 i k e l y  t h a t  t h i s  

compound cou ld  be reduced by z. 2  e lec t rons  t o  g i v e  equ iva len t ,  

regu la r  c l u s t e r  u n i t s  i n  a1 1  o f  t he  molybdenum-oxide c l u s t e r  chains. 

However, reduc t i on  o f  the  compound Bal 4M~801 6  by the  i n s e r t i o n  

o f  a d d i t i o n a l  ~a '+  ions  i n t o  t h e  channels t o  g i v e  BapM~g016 does n o t  



appear 1 i k e l y  f o r  two reasons. The f i r s t  reason i s  t h a t  t h e  d i v a l e n t  

barium ions  would have t o  occupy s i t e s  t h a t  a re  on l y  2.86 1 a p a r t  

making e l e c t r o s t a t i c  repu ls ion  a destabi  1 i z i  ng e f f e c t .  Secondly, the  

two barium i o n  s i t e s  w i t h i n  the  u n i t  c e l l  a r e  n o t  equ iva len t ,  and one 

o f  t h e  s i t e s  i s  apparent ly  favored as evidenced by t h e  occupat ion 

numbers o f  0.87 f o r  Bal and 0.27 f o r  Ba2. The l a t t e r  s i t e  i s  l o c a t e d  

i n  f r o n t  o f  f o u r  surrounding molybdenum-oxide c l  "s te rs  w h i l e  t h e  former 

s i t e  i s  s i t u a t e d  i n  between f o u r  1 inked p a i r s .  o f  molybdenum-oxide 

c l u s t e r s  tha t '  form a sec t i on  o f  t h e  tunnel  w a l l s .  I t  may be poss ib le  

t o  reduce Bal .14M~8016 by - ca. one e l e c t r o n  by s u b s t i t u t i n g  t r i v a l e n t .  

ca t i ons  f o r  barium ions  w i t h i n  the channels t o  make, f o r  example, 

LaMo801 6. 

As mentioned p rev ious l y ,  the  s t r u c t u r e  of Bal ,14M08016 a l so  

possesses vacant tunnels c o n s i s t i n g  o f  edge-shared octahedra o f  oxygen 

atoms such as those found i n  r u t i l e  and r e l a t e d  metal d iox ides .  Several 

o f  these M02 compounds are  known t o  r e a c t  w i t h  b u t y l l  i thium a t  room 

temperature t o  form compounds LiXMO2 (x < 2)  w i t h  va ry ing  1 i t h i u m  

content  (28) .  I t  may be poss ib le  t o  reduce t h e  ' e l e c t r o n - d e f i c i e n t '  

c l u s t e r s  i n  Bal 4M~801 6 by s i m i l a r  reac t i ons  t h a t  would i n s e r t  

hydrogen o r  1 i th ium i n t o  the  vacant oxygen-1 ined channels, 
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SECTION I I I. SYNTHESIS  AND CRYSTAL STRUCTURE OF NaMoq06. 

A METALLIC . I N F I N I T E - C H A I N  POLYMER DERIVED BY 
j 

COMDENSATION OF OCTAHEDRAL CLUSTERS 



INTRODUCTION 

Over the past several years,  there has been considerable in te res t  
. . 

in sol id  s t a t e  compounds containing discrete  t ransi t ion metal atom 

clusters  and condensed t ransi t ion metal atom c lus ters  which form chain 

and sheet s t ructures .  Some examples of sol id  s t a t e  compounds containing 

discrete  clusters  are Nb02 (1 1, LiZn2Mo3O8 (21, Bal 14M0801 6 3 and 

PbMo6S8 (4)  with dimeric, tr imeric,  planar tetrameric and octahedral 

hexameric metal atom c lus ters ,  respectively. The ha1 ide compounds 

Gd2C13 ( 5 ) .  Sc5C18 (6)  and Sc7Cl10 (-7) contain i n f i n i t e  chains of 

bonded metal atom cl usters while the metal-rich compound ZrCl (.8) , i s  

composed of sheets of Zr and C 1  atoms. i n  a double-layer stacking 

arrangement. The chain s t ructure of Gd2c13 i s  derived from cl usters of 

the type M6X8 (an octahedral metal atom c lus ter  w i t h  X atoms b r i d g i n g  

each face of the octahedron). .sharing the metal atoms on .opposite edges. 
+ 

The anionic chain s t ructure i n  the compound Sc5Clg= [ScC12 ][sc4cl6-] 

can be conceptually formed by condensation of M6X1 c lus t e r  units 

( X  bridging a l l  edges of the M6 octahedron) w i t h  sharing of Sc and C1 

atoms on t rans edges as represented by the  formula 
- 

[ S C ~ S C ~ / ~ C ~ ~ / ~ C ~  2/2JC1 2/2 . This compound was the f i r s t  example of 

an M6X1 2- type of condensation. 

This section reports the synthesis, s ingle  crystal  s t ructure,  

chemical and e lec t r ica l  properties of the recently described ternary 

oxide, NaMo406 ( 9 ) .  This compound contains i n f i n i t e  molybdenum-oxide 

c lus te r  chains extended parallel  t o  the c axis.  The ~ a +  ions occupy 



s i t e s  i n  channels formed by four  metal -ox i  de c l  u s t e r  chains cross1 inked 

by molybdenum-oxygen bonds. The sodium can be replaced, i n  p a r t ,  w i t h  

l i t h i u m  o r  potassium by ion-exchange i n  mol ten L i C l  o r  KC1 s a l t s ,  

respec t i ve l y .  The s t r u c t u r e  of NaMo406 i s  the  second example o f  M6X12 

c l  u s t e r  condensation -and prov ides evidence t h a t  . the range o f  compounds 

w i t h  such s t r u c t u r e s  may extend over  numerous metal-nonmetal 

combinations. 



EXPERIMENTAL 

Ma t e r i  a1 s  

Sodi um molybdate d i  hydra te  (F isher  C e r t i f i e d  A.C . S. ) was dehydrated 

by d r y i n g  i n  a  120°C oven f o r  severa l  days and then s to red  ove r  CaS04. 

The KC1 (F i she r  C e r t i f i e d  A.C.S.) was d r i e d  a t  120°C f o r  a  few hours 

j u s t  be fore  use. L i t h i u m  c h l o r i d e  was d r i e d  by h e a t i n g , s l o w l y  under 

vacuum t o  a  f i n a l  temperature o f  500°C (over  a  p e r i o d  o f  one day) and 

then s to red  i n  a  d ry  box. Molybdenum d i o x i d e  was prepared by t h e  

hydrogen reduc t i on  o f  Moo3 (F i she r  C e r t i f i e d  A.C.S.) a t  460°C f o r  

48 hours. The Moo2 was washed severa l  t imes w i t h  a l t e r n a t e  p o r t i o n s  o f  

3M NH40H, de ion ized  water,  and 3M HC1 u n t i l  t h e  washings were co lo r l ess ,  

and f i n a l l y  d r i e d  i n  vacuo a t  110°C. Chemical analyses f o r  molybdenum 

were performed g r a v i m e t r i c a l  l y  by o x i d i z i n g  weighed samples o f  Moo2 t o  

Moo3. Anal. Ca l cu la ted  f o r  Moo2: Mo, 74.99. Found: Mo, 74.96. 

Molybdenum tub ing  was ob ta ined f rom Thermo-Electron Corp. (.99.97%), 

Mo sheet  f rom Rembar Co. (99.95%), and Mo powder f rom A l d r i c h  (.99.99%). 

Syntheses 

NaMo4O6 

This  phase was f i r s t  d iscovered  as one produc t  ob ta ined f rom a  

r e a c t i o n  o f  Na21*lo04, Moo2, and LnU i n  mole r a t i o  1  :5:2. The r e a c t a n t  

m ix tu re  was ground i n  a  mortar ,  p e l l e t i z e d  under 700 ~ ~ / c r n ' ,  e l e c t r o n  

beam we1 ded i n  an evacuated molybdenum tube (2.5 cm 1  ong x  1.9 cm diam) 

wh'ich, i n  t u r n ,  was sealed i n  an evacuated fused qua r t z  p r o t e c t i o n  tube, 



and f i r e d  a t  l l O O ° C  fo r  2  days. The new compound grew from the surface 

o f  the pressed reac t ion  pel l e t  and molybdenum container wal ls  as t h i n ,  

metal 1  ic -co lored need1 es., The other i d e n t i f i e d  product t h a t  was formed 

i n  t h e  pressed pe l  l e t  was the we1 1  -known compound Zn2Mo3O8 (10). 

~ l e c t r o n  microprobe analysis o f  the needles establ ished t h a t  Na and Mo 

were the on ly  m e t a l l i c  elements present. The composition of NaMo4O6 

was determined from s i ng le  c r y s t a l  x-ray d i f f r a c t i o n  data (see below). 

subsequent. work showed t h a t  essen t i a l l y  pure NaMo406 'could be prepared 

from the s to ich iometr ic  quan t i t i e s  o f  Na2Mo04, Moo2, and No w i t h  a  two 

percen tby  weight excess of Na2Mo04. This reactant  mixture was pressed 

i n t o  a  sealed i n  an evacuated Mo tube, and f i r e d  a t  l l O O ° C  f o r  

7  days (.shorter reac t ion  times were not  invest igated) .  The product 

p e l l e t  was powdered, washed severa l . t imes w i t h  deionized water, r i nsed  

w i t h  methanol., and vacuum d r i ed  a t  110°C. A Guinier  x-ray powder 

d i f f r ac t i on  pa t te rn  of the washed product contained the l i n e s  of 

NaMo406 and f a i n t l y  showed the strongest  1  i n e  of Mo metal . I n  order t o  

obta in  a  net  ox ida t ion  s ta te  of the product, oxidat ion-reduct ion 

t i t r a t i o n s  were performed by d i sso l v i ng  weighed samples i n  a1 iquots  o f  

standardized c e r i c  su l fa te  - 3M H2S04 so lu t i on  and t i t r a t i n g  the 

unreacted Ce(.IV) w i t h  standard Fe(1I )  so l u t i on  a f t e r  complete ox idat ion 

of molybdenum t o  Mo(V1). The analyses, based on the ca lcu la ted value 

of 76.3% Mo fo r  NaMo406, resu l ted  i n  a  molybdenum ox ida t ion  s t a t e  o f  

+2.74 compared t o  the ca lcu la ted formal ox ida t ion  s t a t e  of +2.75. 

Therefore, the amount o f  Mo metal impur i ty  was assumed t o  be very 
. . 

small. 
4 .  . . 



Reactions between sol  i d  NaMo4o6 and mol ten L i C l  r e s u l t e d  i n  a  

p a r t i a l  i o n  exchange o f  sodium by 1  i t h i u m  ions ( x  i s  approximately equal 

t o  0.25), and a  change i n  s t r u c t u r e  from te t ragona l  t o  orthorhombic 

symmetry. I n  a  t y p i c a l  reac t i on ,  500 mg of  NaMo406 powder and 8.5 g  

L i C l  were sealed i n  an evacuated fused qua r t z  ampoule and h e l d  a t  700°C 

f o r  18 t o  48 hours. A f t e r  c o o l i n g  t o  room temperature, the  contents o f  

t h e  ampoule were p laced i n  a  beaker o f  de ion ized water  u n t i l  a l l  o f  the  

L i C l  was d issolved;  then the  b lack  s o l i d  was washed w i t h  several  

po r t i ons  o f  de ion ized water  and a i r  d r i ed .  Gu in ie r  x-ray powder 

d i f f r a c t i o n  pa t te rns  o f  t he  products were aql t he  same regardless o f  

reac t i on  t ime. They showed the  l i n e s  o f  a  new NaMo406-related o r tho -  

rhorobic phase (see x-ray powder d i f f r a c t i o n  da ta ) ,  Moo2, and Mo metal 

which was an i m p u r i t y  i n  t he  s t a r t i n g  ma te r ia l  (see above), b u t  l i n e s  

f o r  t e t ragona l  NaMo406 were n o t  observed. Chemical analyses were 

obta ined f o r  L i  and Na by atomic absorp t ion  spectroscopy, and Mo 

spect rophotomet r ica l l y  on t h e ' p r o d u c t  of a  48 hour ion-exchange 

reac t i on .  Found: L i ,  1  .O; Na, 1.1 ; Mo, 77.7. These r e s u l t s  

es tab l i shed  a  Li /Na r a t i o  o f  3.0, and a  Mo/Li r a t i o  o f  4/0.71. 

Ca lcu la ted  values f o r  an assumed formula Li0.75Na0.25M0406 are: 

L i ,  1  .I ; Na, 1.2;  Mo, 78.2. A ten  percent  by weight  i m p u r i t y  o f  MoU2 

would lower  these c a l c u l a t e d  values t o  those found by chemical 

analyses. The reason f o r  EloOp fo rmat ion  was n o t  apparent b u t  i t  cou ld  

have been formed f rom res idua l  mo is tu re  o r  ox ide-hydroxide i m p u r i t i e s  

i n  . t h e  LiC1, o r  f rom water adsorbed on the  w a l l s  o f  the  fused qua r t z  



ampoul e. For example, the f o l l  owing reac t i on :  

2  NaMo406 + 6  H20 - > Na2Mo04 + 7 Moo2 + 6  Hz 

would r e q u i r e  6.0 mg H20 t o  g i v e  a  ten  percent  Moo2 i m p u r i t y  i n  t he  ion-  

exchange reac t i ons  descr ibed above, and the  r e a c t i o n :  

> 11 Moo2 + 5 Mo + 4  NaOH 4 NaMo406 + 2  HiO - 

would on ly  r e q u i r e  1 .3  mg H20 t o  g i v e  the  est imated l e v e l  o f  Moo2. 

A r e a c t i o n  between s o l i d  NaMo4o6 and mol ten KC1 r e s u l t e d  i n  some 

i o n  exchange o f  sodium w i t h  potassium ions  and an increase i n  t h e  

tet ragonal  u n i t  c e l l  volume. Two i o n  exchange reac t i ons  were conducted 

each c o n s i s t i n g  o f  500 mg o f  powdered NaMo406 and 11 g  KC1 sealed i n  an 

evacuated fused qua r t z  tube and h e l d  a t  800°C f o r  24 hours i n  a  tube 

furnace and 85 hours i n  a  r o c k i n g  furnace, r e s p e c t i v e l y .  The contents 

. o f  t he  tubes were p laced i n  beakers and covered w i t h  de ion ized water  . 

u n t i l  t h e  KC'I disso'l ved; then the  b lack  products were washed several  

t imes w i t h  de ion ized water  and a i r  d r i e d .  Gu in ie r  x-ray powder 

d i f f r a c t i o n  pa t te rns  f o r  t he  two products were e s s e n t i a l l y  t he  same. 

They conta ined the 1  ines  of NaMo406, Moo2, Mo, and a  s e t  o f  1  ines  l i ke 

those o f  NaMo406 pos i t i oned  a t  s l  i g h t l y  lower  d i f f r a c t i o n  angles and 

w i t h  approximately equal i n t e n s i t i e s  (see x-ray powder d i f f r a c t i o n  data 

below). Chemical analyses o f  t h e  mixed product  obta ined f rom t h e  85 

hour ion-exchange r e a c t i o n  es tab l  i shed a  Na/K r a t i o  o f  1 .2, However, 



i t  was n o t  poss ib le  : to determine whether the  potassium was present  as 

pure KMo406 o r  as a  mixed a l k a l i  metal compound. Also, the o r i g i n  of 

molybdenum d iox ide  format ion was no t  apparent bu t  assumed t o  be a  

r e s u l t  o f  reac t i on  w i t h  res idua l  moisture as descr ibed above f o r  the  

L i C l  ion-exchange reac t ions .  

Physical and Chemical .Propert ies 
. . 

C rys ta l s  o f  NaMo406 were grown up t o  1  mn i n  l eng th  b u t  on l y  

0.02 m i n  w id th  and they e x h i b i t e d  a  tendency t o  separate i n t o  t h i n n e r  

whiskers a long the  c  ax is  ( long dimension). I t  was determined t h a t  

NaMo406 i s  s t a b l e  i n  a i r  up t o  a t  l e a s t  300°C by v iewing c r y s t a l s  on a  

ho t  stage microscope. The compound NaMo406 i n  powder form appeared 

s t a b l e  t o  concentrated hyd roch lo r i c  a c i d  bu t  was decomposed i n  3M HN03 

w i t h  gas evo lu t i on .  

X-Ray Powder D i f f r a c t i o n  Data 

An Enraf  Nonius D e l f t  t r i p l e  focus ing Guin ier  x-ray powder 

d i f f r a c t i o n  camera was used w i t h  Cu Kal r a d i a t i o n  ( A  = 1.54056 1) t o  

ob ta in  u n i t  c e l l  data.  Nat iona l  Bureau o f  Standards s i l i c o n  powder was 

mixed w i t h  a l l  samples as an i n t e r n a l  standard. The l a t t i c e  parameters 

Na Mo 0  and K1 -xNaxM~406 were c a l c u l a t e d  by a  l e a s t  f o r  NaMo4O6y Lil-, 4  6  

squares method and are  l i s t e d  i n  Table 111-1. L a t t i c e  pa.rameters f o r  

NaMo406, ca l cu la ted  using t h e s t r o n g e s t  17 l i n e s  observed i n  the  x-ray 

powder pa t te rn ,  compare very we l l  w i t h  those obta ined from s i n g l e  

c r y s t a l  data. The compound Lil-xNaxMo406 was indexed on t h e  bas is  of 



Table 111-1. L a t t i c e  parameters f o r  NaMo406, Li l -x  Na Mo 0 6 y  and 

Compound a ,  1 by a c ,  A: v Y  f i 3  

a ~ r o m  s i n g l e  c r y s t a l  x-ray d i f f r a c t i o n  d a t a .  

b ~ r o m  powder x-ray di  f f  rac t i  on d a t a .  



an orthorhombic u n i t  c e l l  and K1 ,NaxMo406 on the  bas is  o f  a te t ragona l  

u n i t  c e l l .  The l a t t i c e  parameters f o r  both compounds were c a l c u l a t e d  

u s i n g ' a l l  o f  the  r e f l e c t i o n s  remaining when t h e  l i n e s  o f  a l l  o t h e r  

known phases were removed.. . These data a re  shown i n  Tables 111-2 and 

111-3. 

Pressed Pel l e t  E l e c t r i c a l  R e s i s t i v i t y  Measurement 

A p e l l e t  of NaMo406 powder, 0.48 cm t h i c k  and 0.64 cm i n  diameter,  

con ta in ing  l e s s  than one percent  o f  Mo metal i m p u r i t y  was pressed 

2 under 700 Kg/cm and four p la t i num w i r e  connect ions made w i t h  s i l v e r  

adhesive. E l e c t r i c a l  r e s i  s t i v i ' t y  :ymeasuremenats were made us ing  a 

standard f o u r  probe a.c. (27.5 H z )  method by reco rd ing  the  vo l tage  

across the  pressed p e l l e t  as a func t i on  o f  temperature. .The c o o l i n g  

r a t e  was ad jus ted  t o  1 -2 degrees/mi.nute and temperature readings were 

prov ided by P t  and Ge res i s tance  thermometers. Voltage readings were 

recorded approximately every 2.5 degrees. i n  t h e  i n t e r v a l  20-280 K 

and a t  l e a s t  every degree from 20 t o  2.4 K. The vo l tage across a 

c a l i b r a t e d  standard r e s i s t o r  was measured p e r i o d i c a l l y  and showed no 

s i g n i f i c a n t  change du r ing  the  experiment. The r a t i o  o f  t he  measured 

r e s i s t i v i t y  t o  t h a t  measured a t  280 K was graphed as a f u n c t i o n  of  

tcmpcraturc. 



Tab1 e I 1  1-2 .  X-ray powder d i f f r a c t i o n  data f o r  L i l  -,Na,Mo406 

h k R  a 
dobsd dcalcd 'obsd 

as = s t rong,  m = medium, w = weak, vw = very weak. 



Table I1  1-3. X-ray powder d i f f r a c t i o n  data f o r  K1 _,N~,MO~O~ 

a - s - st rong,  m = medium, w = weak, vw = very weak. 
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Photoel ec t r o n  Spectra 

The valence band u l t r a v i o l e t  photoe lec t ron  spectrum o f  NaMo406 

was obta ined w i t h  an AEI-200B ins t rument  us ing  monochromatic He1 

r a d i a t i o n  (21.2 eV). The valence band x-ray photoe lec t ron  spectrum was 

obta ined w i t h  the  same inst rument  us ing  A1 Ka r a d i a t i o n  (1486.6 eV). 

Photoelect ron b ind ing  energies were referenced aga ins t  s i  1  v e r  metal  . 
The powdered sample o f  NaMo406, which conta ined l e s s  than one percent  

o f  Mo metal impur i t y ,  had been washed several t imes w i t h  de ion ized 

water and d r i e d  i n  vacuo a t  1 10°C. 

X-Ray Data Col 1 e c t i o n  

a A s i n g l e  c r y s t a l  o f  NaMo406 i n  the  shape o f  a t h i n  needle w i t h  

dimensions 0.36 x 0.02 x 0.02 mm was se lec ted  f o r  x-ray da ta  c o l l e c t i o n  

and was mounted w i t h  epoxy adhesive on t h e  t i p  o f  a g lass f i b e r  w i t h  

the  c a x i s  ( long dimension) p a r a l l e l  w i t h  the  l ong  f i b e r  a x i s .  The 

c r y s t a l  was indexed as te t ragona l  on a f o u r - c i  r c l  e  x-ray d i f f r a c t o m e t e r  

(designed and b u i l t  i n  Ames Labora tory )  (11) w i t h  an automatic index ing  

program (1 2)  t h a t  uses r e f 1  ec t i ons  ob ta ined from several  w-osci 11 a t i o n  

photographs a t  var ious x and 4 s e t t i n g s  as i n p u t .  The data s e t  was 

c o l l e c t e d  a t  room temperature on t h e  same x-ray d i f f r a c t o m e t e r  us ing  

Mo Ka r a d i a t i o n  ( A  = 0.71034 1) monochromatized w i t h  a g r a p h i t e  s i n g l e  

c r y s t a l .  An w-scan mode was used t o  c o l l e c t  a l l  da ta  i n  t h e  HKL, R ~ L ,  
- - 
HKL, and HKL oc tan ts  w i t h  28 - < 60". The peak he igh ts  o f  t h r e e  standard 

r e f l e c t i o n s  which were remeasured every 75 r e f l e c t i o n s  d i d  n o t  show any 

s i g n i f i c a n t  change over  t he  p e r i o d  o f  data c o l l e c t i o n .  F i n a l  c e l l  



parameters and the i r  standard deviations were obtained from the same 

crystal by a least-squares refinement of k28 values of 7 independent 

reflections randomly dis t r ibuted i n  reciprocal space having 28 > 28O. 

The resul ts  a re  l i s t e d  in Table 111-1. 

Structure Determination and Refinement 
1 .  

The observed in tens i t ies  wehe corrected fo r  Lorentz-pol a r i  zation 

ef fec ts  and standard' deviations calculated (13) to  give 1497 

reflections with I > 3 a ( I ) .  Examination of the data s e t  revealed the 

systematic nonextinction condition O K R :  k = 2 n .  The data were averaged 

i n  4/m Laue symmetry to y ie ld  a to ta l  of 216 independent ref lect ions 

for  the f inal  data s e t .  

A Patterson-superposi t ion -method (1 4 )  was used to  1 ocate the 

positions of a l l  8 molybdenum atoms contained i n  the unit c e l l .  Space 

group P4/mbm (no. 127) was selected and the molybdenum atoms assigned to 

mirror planes with s i t e  symmetry mm a t  z = 0 and k. A full-matrix 

least-squares refinement (15) on the positional and isotropic  thermal 

parameters of the  molybdenum atoms res.ultcd in a residual 

R . = . z I I F ~ I - I F ~ I I / L ~ F ~ I  of 0.262. Oxygen atom positions were located 

from an electron density Fourier map (16) and subsequent refinement of 

Mo and 0 ,  positional and isotropic thermal parameters converged to  give 

R = 0.081 and  Rw = 0.111 'where Rw = [ L W ( ~ F ~ ~ - ~ F ~ ~ ) ~ / L W ~ F ~ ~ ~ ~  . , . .  and 
- 2 w = a F : .  A t  t h i s  point, an electron density map revealed four peaks 

of sodium electron density spaced a t  - ca. 0.5 8, from one another in a 

square pattern around the special position 0,  0 ,  112 and with very 



shal low minima between peaks. This  i m p l i e d  t h a t  t h e  sodium ions  were 

s t a t i s t i c a l l y  d isordered around t h a t  spec ia l  p o s i t i o n .  Attempts t o  

r e f i n e  t h e  s t r u c t u r e  w i t h  sodium a t  these p o s i t i o n s  r e s u l t e d  i n  very  

l a r g e  p o s i t i o n a l  s h i f t s  and a  d i v e r g i n g  ref inement .  The sodium was 

then cons t ra ined a t  t he  p o s i t i o n  0, 0, 1/2 and a  f u l l  i s o , t r o p i c  

ref inement  gave R = 0.062 and Rw = 0.076 w i t h  a  sodium i s o t r o p i c  

02 temperature f a c t o r  o f  7.3 A . Fu r the r  ref inement  of t h e  sca le  f a c t o r ,  

p o s i t i o n a l  parameters, sodium m u l t i p l i e r  and a l l  a n i s o t r o p i c  thermal 

parameters gave convergence a t  R = 0.045 and Rw = 0.054 w i t h  a  sodium 

atom occupancy per  s i t e  o f  1.02(6) .  An absorp t ion  c o r r e c t i o n  was n o t  

cons5dered necessary because the  c a l c u l a t e d  t ransmiss ion  f a c t o r s  va r ied  

from on ly .  0.85 t o  0.87 over  a l l  c r y s t a l  o r i e n t a t i o n s .  A f i n a l  

d i f f e r e n c e  F o u r i e r  syn thes is  map was f l a t  t o  - < 1  .5e/I3. The atomic 

s c a t t e r i n g '  fac tors  used were those o f  Hanson -- e t  a l .  (17) f o r  n e u t r a l  

atoms and molybdenum was co r rec ted  f o r  t he  r e a l  and imaginary p a r t s  o f  

anomalous d i spe rs ion  (1 8 ) .  
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RESULTS 

S t r u c t u r e  D e s c r i p t i o n  

The f i n a l  p o s i t i o n a l  parameters f o r  NaMo406 a r e  g iven i n  Table 

111-4, thermal parameters' i n  Tab1 e 111-5, and impor tan t  i n te ra tom ic  

d is tances and angles i n  Table 111-6. Observed and c a l c u l a t e d  s t r u c t u r e  

f a c t o r s  a r e  a v a i l a b l e  as supplementary m a t e r i a l  . 
F igure  111-1 i s  an ORTEP drawing, w i t h  l a b e l s  r e f e r r i n g  t o  

Table 111-6, o f  a s e c t i o n  o f  one metal -ox ide c l u s t e r  cha in  showing the  

repeat  u n i t  along the  c a x i s .  Bonds between molybdenum atoms a re  

represented by the  so l  i d - f  i 11 ed 1 i nes and Mo-0 bonding by t h e  open 

u n f i l  l e d  1 ines.  A l l  Mol and 02 atoms 1 i e  i n  m i r r o r  p lanes perpend icu la r  

t o  t he  c axi.s a t  z = 0 and 1, w h i l e  t h e  Mo2 and 01 atoms l i e  i n  a 

m i r r o r  p lane a t , z  = 1/2. Two o the r  m i r r o r  p lanes a r e  present  i n  t h i s  

s t r u c t u r e ;  one conta ins  a l l  o f  t h e  Mol atoms as w e l l  as Ola and Olb, 

the o t h e r  m i r r o r  conta ins  t h e  Mo2, Olc and Old atoms and b i s e c t s  t h e  

bonds between Mol a - Mol b and Mol c  - Mol d. The atoms Mol , Mo2, and 01 , 

there fore ,  l i e  on s l t e s  of  mm symmetry w h i l e  the  02 atoms r e s i d e  on 

s i t e s  o f  m symmetry. Note t h a t  i f  atoms Olc and d were removed and 

oxygen atoms p laced so as t o  b r i dge  the'edges Mola - Molb and Molc - 
Mold, then the  MoGO12 ' b u i l d i n g  b l o c k '  would r e s u l t .  However, i n  t h i s  

condensed c l u s t e r  system, the  atoms a t  z  = 0 and. 1 a l s o  c o n s t i t u t e  

p a r t s  of ne ighbor ing  u n i t  c e l l s .  

An extended view o f  one o f  t he  chains runn ing  p a r a l l e l  t o  t h e  c 

a x i s  i s  prov ided i n  F igure  111-2, This  drawing shows the  a r c h i t e c t u r e  



Tab1 e 111-4. P o s i t i o n a l  parameters f o r  NaMo406 

Atom p o s i t i o n a  ~ u l t i ~ l i b r  x Y z 

Mo2 4 h  0.250 0 . 1  438(2) 0.6438 0.50 

0 1 4 h  0.250 0.293(2) 0,793 0.50 

0 2 8 i 0.50 0.0457(9) 0.7599 ( 9 )  0.00 

Nal 2b ' 0  ..I27 (8) 0.00 0.00 0.50 

aspace group P4/mbm (no. 127). 



Table I1  1-5. Thermal parameters f o r  

A tom 
. . B1 l  B22 B33 B1 2 

, . a ~ h e  genera l  thermal parameter express ion  used i s  
2 *2 + exp[-1/4(Bli h2a*' + BZ2k b * * . . . 2Bz3k&b c )], however, B1 = BZ3 = 0 

by symmetry . 



Table I 11-6.  I n t e r a t o m i c  d i s t a n c e s  and angles  i n  N ~ M ~ ~ O :  

In te ra tomic  Distances (1) 
Mol a - ~ o i  b 2.75'3(3) 

Mol a-Mo2' 2.780(2) 

Mol a-Mol c 2.8618(2) 

Mol a-Mol d 3.971 ( 2 )  

Mo2-Pi02 3.892(3)  

Bond Angles (,deg) 

' .  Mol a-Mol b-Mol d 90.00 

. . Mol a-Mo2-Mol b 58.35(5)  

Mol a-Mo2-Mol c 61 .95(5)  

Mol b-Mol a-Mo2 60.32(.4) 

Mol c-Mol a-Mo2 59.02 (,2) 

Mol a-02a-Mo2 85..2(3) 

Mol a-01 a-Mol c 90. 5 ( 4 )  

Mol a-02a 2.068 ( 8 )  

Mol a-01 a 2.015(8) 

a ~ a l c u l  a t e d  using t h e  u n i t  c e l l  parameters obtained from Guinier  
x-ray powder d i f f r a c t i o n  d a t a .  



9 oie  

c - a x i s  

Figure 111-1. A sec t i on  o f  one molybdenum-oxide c l u s t e r  cha in  i n  

NaMoqOs showing t h e  repeat  u n i t  a long t h e  c a x i s .  

F i f t y  percent  p robab i l  i t y  an iso t rop ic  thermal 

e l  1  i psoids a r e  shown 



F i g u r e  I 11-2. A view o f  one molybdenum-oxide c l u s t e r  cha in ,  [ ~ o ~ ~ o ~ , ~ 0 ~ , ~ 0 ~ ~ ~ ] 0 ~ ~ ~ ' ,  

extended para1 1 e l  t o  t h e  c a x i s  



of t he  chains as comprised of Mo6012-type c l u s t e r s  fused a t  oppos i te  

edges by removal o f  two edge-bridging 0  atoms and shar ing  o f  t h e  metal 

and remaini  rig oxygen atoms between c l  u s t e r  u n i t s .  The doubly b r i d g i n g  

and exo oxygen atoms, 1.abeled as 01 i n  F igure  111-1, a re  bonded t o  and 

consequently connect neighbor ing metal -ox ide c l  u s t e r  chains as 
+ - 

i n d i c a t e d  by the  formul a t i o n  Na [ M o ~ M o ~ / ~ O ~ , ~ O ~ / ~ ~ O ~ / ~  . The s  t ' ruc t u r e  

o f  these chains i s  e s s e n t i a l l y  the' same as t h a t  i n  the anion o f  

[ S ~ C I  2 + ~ [ ~ c 4 ~ ~  6-1. ~owbver ,  because o f  t he  g rea te r  number o f  va l  i n c e  

e lec t rons  a v a i l a b l e  per  repeat  u n i t  f o r  metal-metal  bonding i n  the  Mo 

chains, 13 i n  [Mo406-] - vs 7  i n  [Sc4Cl 6-], t h e  metal -metal bonds a re  

s t ronger  and c l o s e r  t o  being equ iva len t  over  t he  var ious edges o f  t he  

octahedral  u n i t s .  The sho r tes t  Mo-Mo bond length ,  2.753(3) A ,  i s  found 

on the shared edges o f  the  octahedral u n i t s  perpend icu la r  t o  t h e  c  ax i s  

d i r e c t i o n  w h i l e  t he  longest  Mo-Mo bond d is tance,  2.8618(2) W ,  i s  equal 

and p a r a l l e l  t o  the  1.ength o f  the  c  a x i s .  The bonds between w a i s t  and 
. . 

apex molybdenum atoms, Mol -Mo2, a re  i n te rmed ia te  i n  length,  2.780(2) i. 
The Mo-Mo bond d is tances w i t h i n  the  repeat  u n i t ,  2.753(3) (1 X), 

2 .8618(.2)(4~)  and 2.780(2) (SX) 1, r e s u l t  i n  an average d is tance o f  

2.803 a which i s  o n l y  0.078 longer  than the  d is tance between nearest  

neighbors i n  bcc ~nolybdenum metal .  These 13 Mo-Mo bonds w i t h i n  t h e  

Mo406 repeat  uni t .  con ta in  13 e lec t rons  and r e s u l t  i n  an average bond 

order  of 0.5. The metal -ox ide c l u s t e r  chains c o n t a i n  molybdenum i n  two 

d i f f e r e n t  environments, bo th  e leven coordinate;  t he  w a i s t  Mo atoms, Mol, 

a re  bonded t o  seven molybdenum and f o u r  oxygen atoms, and the  ap i ca l  

Mo atoms, Mo2, which are  bonded t o  s i x  molybdenum and f i v e ,  oxygen atoms. 



The oxygen atoms i n  t h i s  s t r u c t u r e  a r e  each s t r o n g l y  bonded t o  

th ree  Mo atoms i n  two d i f f e r e n t  geometries. Oxygen atoms, 02 i n  

F igure  1'11-1, which a re  shared between octahedral  u n i t s  w i t h i n  t h e  

chains a r e  each i n  a  t r i g o n a l  pyramidal-1 i ke coo rd ina t i on  t o  two ap i ca l  

molybdenum atoms, Mo2, and one w a i s t  molybdenum atom, Mol . The doubly, 

edge-bridging oxygen atoms i n  F igure  111-2 are  a l s o  the  exo-bonded 

oxygen atoms on a  neighbor ing metal -ox ide c l u s t e r  cha in  j u s t  as the  exo 

oxygen atoms p i c t u r e d  are doubly b r i d g i n g  t o  molybdenum atoms a long the  

edge o f  another neighbor ing c l u s t e r  cha in .  The r e s u l t  i s  a  t r i g o n a l  

p lana r - l  i ke arrangement o f  Mo atoms around these equ iva len t ,  i n t e r c h a i n  

b r i d g i n g  oxygen atoms, 01 i n  F igure  111-1. The arrangement o f  oxygen 

atoms w i t h i n  and between c l u s t e r  chains i s  more c l e a r l y  dep ic ted  i n  

F igure  111-3 which i s  a  view o f  t h e  s t r u c t u r e  down the  c  a x i s  and 

perpend icu la r  t o  t h e  a-b plane. The average i n t r a c h a i n  Mo-0 bond l eng th  

i s  2.049 a compared t o  the  s h o r t e r  average i n t e r c h a i n  Mo-0 bond 

d is tance of  2.018 1. 
+ 

F igure  111-3 a l s o  shows t h a t  t h e  Na ions  occupy s i t e s  i n  channels 

formed by four  metal -ox ide c l u s t e r  chains cross1 inked.  by metal -oxygen 

.bonds as descr ibed above. Each sodi  urn i o n  i s  surrounded by. e i g h t  

i n t r a c h a i n  oxygen atoms a t  a  d is tance o f  2.742(.8) 8, i n  te t ragona l  

symmetry. The e i g h t  0  atoms i n  the  coo rd ina t i on  sphere o f  ~ a +  form a  

square box compressed along the  c  a x i s  w i t h  0-0 d is tances of 2.862 and 

3.307 i. The Na-0 d is tance i s  3. 0.16 l onger  than the  sum of i o n i c  

rad i i . ,  2.58 1 us ing  t h e  i o n i c  r a d i i  o f  Shannon and P r e w i t t  (19)., and 

the ~ a +  ions e x h i b i t  l arge thermal parameters i n  the  a-b plane, 



Figure 111-3. The s t r u c t u r e  o f  NaMoqOs as viewed down the  c  a x i s  

showing t h e  i n t e r 1  i n k i n g  o f  c l u s t e r  chains and 

sodium i o n  p o s i t i o n s  along t h e  channels 



9.0(11) A'. However, as mentioned p rev ious l y ,  the sodium ions  may n o t  

. a c t u a l l y  r e s i d e  on these s i t e s  of 4/m symmetry b u t  may be s t a t i s t i c a l l y  

d isordered i n  t h e  a-b p lane around t h i s  i n v e r s i o n  center .  Some o f  t he  

Na-0 d is tances would then be s h o r t e r  and some longer  than 2.74 fi and 

the  i n d i v i d u a l  sodium thermal parameters would be much smal l e r  than 

9.0 fi2. ' Perhaps low temperature x-ray d i f f r a c t i o n  da ta  would prove 

usefu l  i n  p r o v i d i n g  i n fo rma t ion  on the  sodium i o n  p o s i t i o n s .  

E l e c t r i c a l  R e s i s t i v i t y  Measurement 

A pressed pe l  1 e t  e l e c t r i c a l  r e s i s t i v i t y  r a t i o  - vs temperature curve 

f o r  NaMo406 i s  shown i n  F igure  I1  1-4. The value o f  the  pressed pe l  1 e t  

e l e c t r i c a l  r e s i s t i v i t y  a t  room temperature i s  E. 1 0 ' ~  ohm-cm and 

represents some k i n d  o f  averaged ( p  and p ) e l e c t r i c a l  res is tance.  I I 
4 

1. 
The r e s i s t i v i t y  increases s lowly ,  a t  f i r s t ,  as the  temperature i s  

lowered, bu t  i t  i s  n o t  an exponent ia l  inc rease i n d i c a t i v e  of a semi- 

conductor.  The increase i n  r e s i s t i v i t y  becomes more r a p i d  s t a r t i n g  a t  

approximately 100 K and reaches a maximum value a t  T = 11 K w i t h  roughly 

e i g h t  t imes the  room temperature e l e c t r i c a l  res is tance.  The 

r e s i s t i v i t y  then drops sharply  i n  the  temperature range 10 t o  2.4 K. 

However, a superconduct ing t r a n s i t i o n  f o r  NaMo406 was n o t  observed 

du r ing  a . c .  s u s c e p t i h i l  i t y  measurements taken i n  t he  temperature 

i n t e r v a l  1.1 - 30 K. There was a l s o  no evidenc,e fdr a magnetic phase 
.'. . 

t r a n s i t i o n  w i t h i n  t h i s  temperature range. The maxihum i n  t h e  

r e s i s t i v i t y  r a t i o  temperature curve  c o u l d  be due t o  a s t r u c t u r a l  

phase t r a n s i t i o n .  I f  such a t r a n s i t i o n  occurs, i t  should be de tec tab le  



Figure 111-4.. Resistivity r a t io  temperature curve for a pressed pel l e t  

of NaMb406 



by heat capac i t y  experiments o r  by low temperature x-ray d i f f r a c t i o n  

stud.ies. 

U l t r a v i o l e t  Photoelect ron Spectrum 

The valence band u l t r a v i o l e t  photoe lec t ron  spectrum o f  NaMo406 i s  

shown i n  F igure  111-5. The spectrum conta ins  two broad over lapp ing  

bands which a r e  approximately 3.5 - 4 eV wide. Maxima i n  the  spectrum 

occur a t  2 and 5.5 eV below the  Fermi l e v e l .  The presence o f  e l e c t r o n  

dens i ty  a t  t he  Ferrni l e v e l  o f  NaMo406 i s  i n d i c a t i v e  o f  a m e t a l l i c  

compound, b u t  t he  dens i t y  o f  s ta tes  near EF i s  low. The maximum of 

t h i s  band i s  observed a t  a r e l a t i v e l y  h igh  b ind ing  energy o f  2 eV. 

A s i m i l a r  spectrum f o r  t he  valence band o f  NaMo40s was obta ined us ing '  

x- ray photoe lec t ron  spectroscopy. The observed spec t ra  may, however, 

r e f l e c t  a surface contaminat ion due t o  the  hand l ing  and t reatment  of 

t he  sample as descr ibed above. 



Figure 111-5. Valence band u l t rav io le t  photoelectron spectrum 

of NaMo40s 



DISCUSSION AND CONCLUSIONS 

The i n f i n i  te-chain,  polymer ic  s t r u c t u r e  o f  NaMo406 i s  c l e a r l y  

dominated by s t rong Mo-Mo bonding. W i th in  the  chains, each Mo406 repeat  

u n i t  has a v a i l a b l e  13 e lec t rons  t o  p a r t i c i p a t e  i n  Mo-Mo bonding and 

each u n i t  has 13 metal-metal bonds. If a l l  13 e lec t rons  r e s i d e  i n  

bonding o r b i t a l s ,  then the  average Mo-Mo bond o rde r  i s  0.5. Use o f  t h e  

Pau l ing  emp i r i ca l  equat ion (20) ,  Dn = Dl - 0.6 l o g  n, permi ts  ca lcu-  

l a t i o n  o f  t he  bond o rde r  n  associated w i t h  each Mo-Mo bond i n  t h e  

repeat  u n i t  o f  1  ength Dn re1 a t i v e  t o  the  1  ength o f  a  s i n g l e  Mo-Mo bond, 

Dl = 2.614 8. (21 ) .  When averaged over  a l l  13 Mo-Mo bonds, t he  r e s u l t  

i s  n  = 0.49 which prov ides evidence t h a t  the 13  e lec t rons  r e s i d e  i n  

bonding o r b i t a l s  . 
Several o t h e r  fea tures  o f  t h i s  s t r u c t u r e  should be noted. One 

fea tu re  i s  t h a t  t he  repeat  d i s tance  between u n i t s  o f  2.862 1 c o n s t i t u t e s  

both the  bonded Mo-Mo and nonbonded 0-0 d is tance a long the  d i r e c t i o n  of 

t h e  cha in .  Another f e a t u r e  i s  t h a t  t h e  r e l a t i v e l y  l onge r  average Mo-0 

dis ldr lce o f  2.049 a f o r  t he  i n t r a c h a i n  oxygen atoms r e s u l t s ,  i n  p a r t ,  

f rom t h e i r  s p 3 - l i k e  geometry and coo rd ina t i on  t o  sodium. The s h o r t e r  

average Mo-0 bond l eng th  o f  2  .018 f o r  the  i n t e r c h a i n  oxygen atoms may 

r e s u l t  f rom t h e i r  sp2-1 i ke h y b r i d i z a t i o n  and resu l  t a n t  a b i l  i t y  t o  form 

p i  bonds t o  t h e  molybdenum c l  u s t e r  chains.  

A  p i  bonding i n t e r a c t i o n  cou ld  serve as a  mechanism f o r  e l e c t r o n  

d e l o c a l i z a t i o n  f rom cha in  t o  cha in  and be respons ib le  f o r  t he  f a c t  

t h a t  c r y s t a l s  o f  NaMo406 a r e  opaque t o  p o l a r i z e d  l i g h t  perpend icu la r  t o  



the c ax i s .  A sing1 e crys ta l  e l ec t r i c a l  r e s i s t i v i t y  measurement along 

the c axis  has shown NaMo406 t o  be a moderately good e l ec t r i c a l  

conductor w i t h  p g. ohm-cm, b u t  the r e s i s t i v i t y  perpendicular to  

the c ax i s ,  which would provide information regarding interchain 

e lec t ron ic  t ranspor t  proper t ies ,  has not been measured because of the  

very small c rys ta l  dimension ( <  - 0.02 m), 

Another in te res t ing  s t ruc tu r a l  fea tu re  of NaMo406 i s  t he  
+ 

r e l a t i ve ly  l a rge  s i t e  occupied by Na ions w i t h i n  the  channels. This 

s i t e  appeared t o  be of s u f f i c i e n t  s i z e  t o  accommodate ions as l a rge  as 
+ + 

~ a ~ +  and possibly K ,.  and because of the  ' loose  f i t '  of the  Na ions,  
+ 

the question a l so  arose as t o  whether a smaller cat ion such as Li 

could be placed in the  channels. A reaction designed t o  prepare the  

i soe lec t ron ic  compound BaOe5Mo4O6 was ~ u c c e s s f u l  i n  preparing t h e  new 

compound BaO. 62M~406 (22) which a l so  contains a commensurate super- 

l a t t i c e  ordering of barium ions.  Attempts t o  prepare KMo406 always 

resul ted in the  formation of a new phase t en ta t ive ly  for?mulated, as  

K2+xMo1 (23).  Reactions bal anced to  give LiMo4O6 gave instead 

a new l i th ium molybdenum oxide which i s  presently under investigation.. 
+ + 

The pos s ib i l i t y  of ion exchanging the  sodium f o r  K o r  Li was 

a l so  considered. Aqueous ion exchange reactions a t  room temperature 

using KC1 ar~d LiCl solut ions  wcrc unsuccessful However, an ion- 

exchdrige reaction between NaMo40s and rnol ten l.iC1 a t  700°C was 

successful i n  forming Lil-,NaxMoq06 w i t h  x .-- ca.  0.25. The l i t h i a t e d  

s t ruc tu r e  was lowered in symmetry from tetragonal to  orthorhombic, 

see Table 111-1, b u t  no explanation f o r  t h i s  s t r uc tu r a l  t r ans i t i on  i s  



apparent. I f  the  t r a n s i t i o n  r e s u l t s  f rom a  change i n  the  number o f  

e lec t rons  per  Mo 0  repeat  u n i t ,  then t h e  s t r u c t u r e  must con ta in  more 
4  .6 

o r  l e s s  than -one a1 ka l  i metal i o n  per  s i t e  a long the  channels. It may 

be poss ib le  t o  reduce the  mol.ybdenum-oxygen c l  u s t e r  chains by i n s e r t i n g  

a d d i t i o n a l  l i t h i u m  i n t o  the  channels t o  g i v e  some s i t e s  c o n t a i n i n g  two 
+ 

L i  ions  each i n  approximately f ou r -coo rd ina t i  on w i t h  oxygen. .A 

c e r t a i n  amount o f  NaMo406 would a l s o  be ox id ized,  poss ib l y  forming some 

Moo2. The 0.6% increase i n  u n i t  c e l l  volume o f  the  l i t h i a t e d  compound 

re1 a t i v e  t o  NaMo406 could, there fore ,  r e s u l t  f rom a  smal l  o v e r a l l  

lengthen ing  o f  Mo-Mo and Mo-0 bonds. However, another reason f o r  t h i s  

volume increase cou ld  s imply be the  r e s u l t  o f  l ess  e f f i c i e n t  space 

f i l l  i n g  by the  atoms i n  the  orthorhombic s t r u c t u r e .  S i m i l a r  i on -  

exchange reac t i ons  between NaMo406 and mol ten KC1 a t  800°C were 
+ + 

successful  i n  exchanging some Na w i t h  K w i t h  a  r e s u l t a n t  2% increase 

i n  t he  te t ragona l  u n i t  c e l l  volume (see Table 111-1 ), b u t  as mentioned 

e a r l i e r ,  i t  i s  n o t  known whether the  potassium i s  p resent  as KMo406 o r  

as a  mixed a l k a l i  metal compound. The f a c t  t h a t  24 and 85 hour 

r e a c t i o n  t imes r e s u l t e d  i n  t he  same r a t i o  of NaMo406 t o  NaxK1-xM~406 

imp l i es  t h a t  fo rmat ion  o f  t he  potassium compound becomes i n h i b i t e d .  

This  cou ld  be d u e . t o  a  coa t i ng  o f  t he  potassium compound on the  

p a r t i c l e s  o f  NaMo406, thereby h inde r ing  f u r t h e r  r e a c t i o n .  I t  can thus 

be concluded t h a t  t he  sodium ions  are  indeed exchangeable under the  

proper .  experimental  cond i t i ons .  I t  may a l s o  be poss ib le  t o  remove the  

+ 
Na ions  a1 together  i n  an o x i d a t i v e  process l e a v i n g  i n t a c t  t h e  Mo406 

s t r u c t u r e  w i  L t l  eapty s i t e s  a long the  channels 7.5 - 3 8 i n  d iameter  o r  



to 'p repare  compounds M : + [ M O ~ O ~ ~ ~ - ]  w i t h  n  = 2, x > 0.5, o r  n  = 3, 

x > 0.33 such t h a t  t h e  el 'ectron/metal r a t i o  i s  v a r i e d  over t he  range 

A f i n a l  comment i s  made on the  mechanism o f  c r y s t a l  growth f o r  

#aMo406. The c r y s t a l s  grew n o t  on l y  from the pressed r e a c t i o n  p e l l e t  

b u t  a l so  from the  w a l l s  and ends o f  t h e  molybdenum r e a c t i o n  vessel .  

This  suggests a vapor t r a n s p o r t  mechanism. Under the  cond i t i ons  o f  t he  

reac t ion ,  some p o s s i b l e  vapor s t a t e  species a re  Na20 (g )  , Mo03(g), 

M O O ~ ( O H ) ~ ( ~ )  and H z .  The f i r s t  two gaseous compounds coul  d  be generated 

by the  thermal decomposit ion o f  Na2Mo04 and the  l a t t e r  two a r i s i n g  

from the  r e a c t i o n  o f  Moo2 w i t h  res idua l  mo is tu re  (24) ;  b u t  i t  i s  n o t  

poss ib le  t o  say a t  t h i s  t ime which, i f  any, a r e  i nvo l ved  i n  s i n g l e  

c r y s t a l  growth. . 
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SECTION I V .  THE SYNTHESIS AND CRYSTAL STRUCTURE OF Bao,62M0406. 

A METALL IC  I N F I N I T E - C H A I N  POLYMER DERIVED BY 

CONDENSATION OF OCTAHEDRAL CLUSTERS AND CONTAINING 

A SUPERLATTICE ORDERING OF BARIUM IONS 



INTRODUCTION 

The s y n t h e s i s  and s t r u c t u r e  o f  t he  conipound NaMo406 was r e c e n t l y  

descr ibed (1 ) as ' con ta in ing  octahedral  molybdenum atom c l  u s t e r  un i t s .  

fused on opposi te edges t o  form l i n e a r  chains.  Oxygen atoms' b r i dge  the  

outwardly  exposed edges o f  t h e  octahedral  c l u s t e r  chains and connect. one 

cha in  t o  another through Mo-O-Mo br idges as i n d i c a t e d  i n  t he  c o n n e c t i v i t y  

+ 
formula Na [ (Mo2~041208120212)0212~] .  These i n f i n i t e  chains a re  i n t e r -  

+ 
l i n k e d  i n  such a manner t h a t  channels accommodating t h e  Na ions a re  

provided. This  s t r u c t u r e  possesses many i n t e r e s t i n g  fea tures ,  b u t  t he  

s t rong  metal-metal bonding' c l  e a r l y  dominates i n  de termin ing  the  

a r c h i t e c t u r e  o f  t he  chains.  I n  t he  course o f  f u r t h e r  research dea l i ng  

w i t h  t h i s  s t r u c t u r e  type, a r e l a t e d  barium compound was synthesized (2 ) .  

This  sec t i on  repo r t s  the  p repa ra t i on  and c r y s t a l  s t r u c t u r e  of t h e  

compound Ba0.6211~406. The new compound e x h i b i t s  a s u p e r l a t t i c e  o rde r ing  

o f  barium ions w i t h i n  the  channels. E f f o r t s  made t o  so l ve  the  super- 

s t r u c t u r e  o f  t h i s  compound from s ing1 e c r y s t a l  x-ray d i f f r a c t i o n  da ta  

are  a1 so discussed. 



EXPERIMENTAL 

M a t e r i a l s  

Barium molybdate was prepared by m ix ing  an aqueous s o l u t i o n  o f  

BaC1 2*2H20 ( ' Baker Analyzed ' Reagent, 99.6%) w i t h  an aqueous so l  u t i o n  

c o n t a i n i n g  the  s t o i c h i o m e t r i c  q u a n t i t y  o f  anunonium heptamolybdate 

t e t r a h y d r a t e  ( 'Baker Analyzed' Reagent, 83.0% as Moog) and ammonium 

hydroxide. The w h i t e  p r e c i p i t a t e  was f i l  tered,  washed severa l  t imes 

w i t h  de ion ized  water,  d r i e d  a t  120°C f o r  20 hours, and s t o r e d  over  P4010. 

Molybdenum d i o x i d e  was prepared by the  hydrogen r e d u c t i o n  o f  Moo3 

(F i she r  C e r t i f i e d  A.C.S. ) a t  460°C f o r  40 hours. The reduced mater ia l .  

was washed severa l  t imes w i t h  a1 t e r n a t e  p o r t i o n s  o f  3M NH40H, 

de ion ized  water, and 3M HC1 u n t i l  t h e  washings were c o l o r l e s s ,  and 

f i n a l l y  d r i e d  *vacua - a t  110°C. Anal.  Ca l cu la ted  f o r  Moop: Mo, 74.99. 

Found: Mo, 74.96. Molybdenum t u b i n g  was ob ta ined f rom Thermo-El e c t r o n  

' Corp. (99.97%), Mo shee r  f rom Rembar Co. (99.95%) ,. and Mo powder from 

A l d r i c h  (99.99%). 

Synthesis 

An a t tempt  was made t o  prepare t h e  compound Bao.5M0406 (which would 

be i s o e l e c t r o n i c  w i t h  t he  NaMn4Q6 phase) us ing  BaMo04, MOO*, and Mo 

powder i n  a 1:4:3 rnnle r a t i o .  The r e a c t i o n  m i x t u r e  was ground i n  a  

2  mortar ,  .pe l  1  e t i  zed under 700 kg/cm , seal ed i n  an evacuated molybdenum 

tube ( 3  cm long  x  1  cm diam) which, i n  t u r n ,  was sealed i n  an evacuated 

incone l  p r o t e c t i o n  tube, and h e l d  a t  11 00°C f o r  one week. The product  



pe l  1  e t  was covered w i t h  small , need1 e-s haped c r y s t a l  s  possessing 

m e t a l l i c  l u s t e r .  Some o f  these c r y s t a l s  were scraped from t h e  p e l l e t  

and powdered i n  a  mortar .  An x-ray powder d i f f r a c t i o n  p a t t e r n  o f  t h i s  

ma te r i a l  conta ined the  l i n e s  o f  a  new phase r e l a t e d  t o  te t ragona l  

NaMo406 as we l l  as the  s t ronges t  l i n e s  o f  Moo2 and Mo metal .  The 

composit ion o f  the  new phase was determined as Ba0.62M0406 from s i n g l e  

c r y s t a l  x-ray d i f f r a c t i o n  data (see below). The experiment was repeated 

us ing  a  5 day r e a c t i o n  t ime and i d e n t i c a l  r e s u l t s  were obta ined.  I f  

the  compound Ba0.62M0406 were the  o n l y  phase formed i n  the  reac t i on ,  

then unreacted Moo2 and Mo would be expected. 

X-Ray Data C o l l e c t i o n  f o r  t h e  BaO. 62M0406 Subcel l  

A s i n g l e  c r y s t a l  o f  Ba0.62M0406 i n  the  shape o f  a  t h i n  needle w i t h  

dimensions 0.22 x  0.02 x  0.02 mm was se lec ted  f o r  x-ray data c o l l e c t i o n  

and was mounted i n  a  0.2 mm Lindemann g lass c a p i l l a r y  w i t h  a  small 

amount of s i l i c o n e  grease. The c r y s t a l  was a l i gned  w i t h  i t s  l o n g  

dimension nea r l y  c o l  1 i nea r  w i  t h  the p h i - c i  r c l e  axi's on a  f o u r - c i r c l e  

x-ray d i f f r a c t o m e t e r  designed and b u i l t  i n  t he  Ames Laboratory ( 3 ) .  

Four w - o s c i l l a t i o n  photographs were then taken a t  var ious x and @ 

s e t t i n g s .  Re f l ec t i ons  obta ined f rom these photographs were i n p u t  i n t o  

an automat ic  index ing  program ( 4 )  from which an orthorhombic u n i t  c e l l  

was c a l c u l a t e d  w i t h  l a t t i c e  parameters s i m i l a r  t o  those o f  NaMo406. 

The data s e t  was c o l l e c t e d  a t  ambient temperature on the  same x-ray 

d i f f r a c t o m e t e r  us ing  Mo Kcl r a d i a t i o n  ( A  = 0.71034 1) monochromatized 

w i t h  a  g raph i te  sing1 e  c r y s t a l  . An w-scan mode was used ' t o  co l  l e c t  a1 1  



data i n  the  HKL, R K L ,  and D K i  oc tan t s  with 28 5 60'. The peak heights 

of th ree  standard r e f l e c t i ons  which were remeasured every 75 

r e f l e ~ t i o n s ~ d i d  not show, any s i gn i f i c an t  change over the  period of data 

col 1 ec t ion ;  Final c e l l  parameters and t h e i r  s tandard devia t ions  were 

obtained from the  same c rys ta l  by a leas t -squares  refinement of 228 

val ues of 16 independent re f l ec t ions  randomly d i s t r i bu t ed  i n  reciprocal  

space having 28 >'27O. The r e s u l t s  were a = 9.509(2) i, b = 9.825(2) 1, 
c = 2.853(1) 1, and V = 266.5 i3. 

St ruc tu re  Refinement of t h e  Ba0.62M0406 

Subcell 

The observed i n t e n s i t i e s  were corrected f o r  Lorentz and po la r i -  

zat ion e f f e c t s  and standard devia t ions  calcula ted as  described previously 

(5 )  t o  give 1076 r e f l e c t i o ns  w i t h  I  > 3 a ( I ) .  Examination of the  data s e t  

revealed the  systematic nonextinction condit ions hOR: h = 2n, and O k R :  

k = 2n. The data  were averaged i n  mmm Laue symmetry t o  y i e l d  a t o t a l  

of 394 independent re f l ec t ions  f o r  the  f ina l  data  s e t .  

The posit ional  parameters of NaMop6 were used a s  the  S t a r t i ng  

s e t  of posi t ions  f o r  the  new barium compound in  space group dbam 

(no. 55). Barium was constrained on the  2b posi t ions  (0,0,%; %,%,%) and 

i t s  mu1 t i p1  i.er f ixed t o  give an occupancy of one Ba atom per u n i t  c e l l  

-Mo 0 ) .  A fu l l -mat r ix  leas t -squares  i so t rop ic  'refinement @.e. . Bag. 6 

(6) resu l t ed  in a residual  R = Z I  I F o l - I F c I  I / L I F ~ I  of 0.212 w i t h  a l a rge  

barium i so t rop ic  thermal parameter of 3.6 i2. The barium atom was 

removed from the atomic parameter 1 i s t  and an e lec t ron  density Fouri.er 



map was c a l c u l a t e d  ( 7 )  us ing on l y  the  phases de r i ved  f rom the  Mo and 

0 p o s i t i o n s .  This map c l e a r l y  showed a  reg ion  o f  e l e c t r o n  dens i t y ,  

elongated a long t h e  c  ax is ,  c o n s i s t i n g  o f  two peaks symmetr ica l ly  

r e l a t e d  a t  (O,O,+z) w i t h  z  approximate ly  0.375. Therefore, these 4e 

pos i t i ons ,  r a t h e r  than 2b s i t e s ,  were assigned t o  the  barium atom w i t h  

an i n i t i a l  m u l t i p l i e r  value o f  0.125 (1 Ba a tom/ce l l ) .  An i s o t r o p i c  

ref inement  i n c l  uding the  barium atom p o s i t i o n  and mu1 t i p 1  i e r  converged 

2 t o  g i v e  R = 0.093 and Rw = 0.149 where Rw = [ z ~ ( I F ~ / - I F ~ ~ )  / ~ I F ~ I ~ I '  

and w = oF-'. An absorp t ion  c o r r e c t i o n  was made (p = 121 cm-' ) us ing  

an emp i r i ca l  @-scan method (8) where t h e  i n t e n s i t y  o f  a  se lec ted  

r e f l e c t i o n  a t  x approximately 90" was measured every 10' i n  @ w i t h  the  

a i d  o f  t he  x-ray d i f f r ac ton ie te r ;  however, t h i s  c o r r e c t i o n  made no 

s ign i f i can t . chang .e  i n  th'e ref inement .  A f u l l  a n i s o t r o p i c  ref inement  

gave R = 0.081 and Rw = 0.123 w i t h  a  t o t a l  barium occupancy o f  1.25(3) 

2  atoms/cel l  . A 1  arge b a r i  um B33 thermal parameter o f  2.6(3) 8, a1 so 

r e s u l t e d  frorrr the ref inement .  A  f i n a l  d i f f e r e n c e  F o u r i e r  syn thes is  map 

o 3  conta ined e l e c t r o n  d e n s i t i e s  as h igh  as 7.5e/A on molybdenum s i t e s  and 

3.3e/a3 on the  i n v e r s i o n  center a t  (O,O,f). , 

I t  was observed t h a t  the  h igh  angle da ta  (.sin B / X  0,6) re f i ned  

t o  a  r e l a t i v e l y  h i g h  res idua l  R o f  0.14..  A  f u l l  a n i s o t r o p i c  refinement 

us ing  on ly  data w i t h  20 5 50' (265 r e f l e c t i o n s )  r e s u l t e d  i n  R = 0.056 

and Rw = 0.091 w i t h  no s i g n i f i c a n t  change i n  t h e  barium atom 

mu l t i . p l i . e r ;  t he re  was a l s o  no increase i n ,  the  p o s i t i o n a l  and thermal 

parameter standard dev ia t i ons .  An e l e c t r o n  dens i t y  d i f f e rence  map was 

generated a f t e r  t h i s  ref inement  and 3 t reveal  ed e l  ec t ron  peak d e n s i t i e s  



3 of 5e/1 on a1 1 molybdenum atom s i t e s ,  and 3e/l3 a t  the positions 

( O , O , ;  , )  . The residual electron density , fractional occupation 

of barium, and large B33 thermal parameter for  barium a l l  suggested the 

possibil i t y  of a super la t t ice  ordering of barium ions within the 

channels. I t  was be1 ieved tha t  the barium ion ordering could af fec t  

the c lus te r  chains and resu l t  in several s l ight ly  d i f fe rent  molybdenum 

and oxygen atomic positions along the chains in the supercell .  

The atomic scat ter ing factors used were those of Hanson e t  a1 . 
(.9) fo r  neutral atoms. Molybdenum and barium were corrected fo r  the 

real and imaginary parts o f '  anomalous dispersion (1 0 ) .  

Super1 a t t i c e  Determination 

Several crystals  of Ba0.62M0406 were mounted in 0.2 mn Lindemann 

gl ass capi l l  ar ies  , and oscil 1 ation photographs a1 ong the c axis (1 ong 

dimension) were obtained. They a l l  showed the presence of weak super- 

l a t t i c e  layers ,  consisting of discrete  diffract ion spots,  indicating the 

t rue unit cel l  dimension along the c axis to be 8(2.853) a.  This 

suggested a commensurate super la t t ice  ordering with barium ions 

occupying f ive  of the eight possible cation s i t e s  along each channel in 

the supercell .  Phis occupation scheme would r e su l t  in the stoichiometry 

- Mo 0 - as ahserved from the s ingle  crystal  s t ructure Ba5M032048 ' BaO. 625 4 b 

analysis described a h n v ~ .  



X - ~ a y  Data Col l e c t i o n  f o r  t he  BaO ,62M0406 

supercel 1 

A c r y s t a l  of Ba0.62M~406 of dimensions 0.18 x 0.02 x 0.02 mn was 

se lec ted f o r  x-ray data c o l l e c t i o n .  The c r y s t a l  was mounted on t h e  

f o u r - c i r c l e  x-ray d i f f rac tomete r  and indexed as orthorhombic w i t h  t h e  

same l a t t i c e  parameters p rev ious l y  obta ined f o r  t h e  subce l l  . The 

c r y s t a l ' s  o r i e n t a t i o n  m a t r i x  was transformed t o  g i v e  a c a x i s  which was 

e i g h t  t imes the  l e n g t h  o f  the subce l l  c  a x i s .  The data s e t  was 

c o l l e c t e d  a t  room temperature us ing  Mo Ka r a d i a t i o n  ( A  = 0.71034 A)'  
monochromatized w i t h  a g raph i te  s i n g l e  c r y s t a l .  ,An w-scan mode was 

used t o  c o l l e c t  a l l  da ta .  i n  the HKL and HKL oc tan ts  w i t h  28 5 60°. The 

peak heights o f  t h r e e  standard r e f 1  ec t i o n s  which were remeasured every 

75. r e f l e c t i o n s  d i d  n o t .  show any s i g n i f i c a n t  change over the  p e r i o d  o f  

data ,col. l  ec t i on .  . F i n a l  c e l l  parameters and t h e i r  standard dev ia t i ons  

were obta ined from the  same c r y s t a l  by a least-squares ref inement o f  

+28 values o f  17 independent r e f 1  ec t i o n s  randomly d i s t r i b u t e d  i n  

reciprocal space having ?R > 27'. The r e s u l t s  were a = 9.517(1) a, 
b = 9.822(1) 1, c = 22.813(.4) 1. and V = 2132.4 13,  . # 

S t ruc tu re  Refinement of t h e  BaO. 62M~406 

Examination o f  t h e  data s e t  revealed t h a t  a l l  observed r e f l e c t i o n s  

s a t i s f i e d  the  nonex t inc t i on  cond i t i ons  hOR: h = 2r1, and Oki: k = 2n. 

An absorp t ion  c o r r e c t i o n  was made us ing an emp i r i ca l  +-scan method (as 

described above f o r  t he  Ba0.62M0406 subce l l ) ,  and t h e  i n t e n s i t i e s  were 



corrected f o r  Lorentz-polarization ef fec ts  to yield 1121 reflections 

with I '  > 3 u ( I ) .  The data were f ina l ly  averaged in n1m2 symmetry t o  give 

639 independent reflections for  the final data s e t .  

The s t a r t ing  s e t  of molybdenum and oxygen positions were taken from 

Mo 0 subcell refinement; only the z fractional coordinates. the 62 4 6 

were changed to form 8 'subcells stacked into one supercell .  With a l l  

of the Mo and 0 atoms fixed in . these .pos i t ions ,  a refinement o f  only 

the scale factor  in the noncentrosymnietric space group Pba2 (no. 32) 

gave an R of 0.42. Because of pseudosymmetry created.by the molybdenum 

atom positions,  a centr ic  electron density map resulted from th i s  

refinement; a l l  eight subcells contained bari um electron dens1 ty 

elongated along the c axis .  To disperse th i s  pseudosymmetry, the 

molybdenum atom positions were next allowed to  vary, b u t  severe 

positional correlations among the Mo atoms caused a diverging refine- 

ment. This problem was circumvented by employing a cyc.1 i c  p'rocess where 

the molybdenum atoms were varied in groups of two o r  three while a l l  

other atoms remained fixed in position. In th i s  manner, a.  residual R 

of 0.34 was obtained. A difference map now displayed d range of  barium 

electron density in the eight s i t e s  along each channel. The position 

of the strongest peak i n  t h i s  map was assigned to a barium ion and i t  

was refined along w i t h  the molybdenum atom positions through the atomic 

cycling process; then another electron density difference map was 

generated. This procedure was repeated until a f i f t h  barium ion was 

located and a difference map showed only low levels of residual 

el ectron density a1 ong the channel s . The 1 east-squares fu l l  -matrix 



ref inement  gave R = 0.125 a t  t h i s  p o i n t .  A study o f  the  atomic 

p o s i t i o n s  i n d i c a t e d  t h a t  t he  s t r u c t u r e  was a c t u a l l y  centrosymrnetric; 

there fore ,  the o r i g i n  o f  t he  c e l l  was changed and a barium atom 

constra ined on the  i nve rs ion  cen te r  a t  (0,0,&), w i t h  the  remain ing 

b a r i  um atoms on 4e p o s i t i o n s  (O,O,+z). An e s s e n t i a l l y  i d e n t i c a l  r e f i n e -  

ment r e s u l t e d  i n  space group Pbam,, w i t h  t h e  added b e n e f i t  o f  a decrease 

i n  p o s i t i o n a l  c o r r e l a t i o n s  and o v e r a l l  standard dev ia t i ons .  

The oxygen atom p o s i t i o n s  were nex t  r e f i n e d  through t h e  c y c l i n g  

process u n t i l  a l l  p o s i t i o n a l  s h i f t s  were l e s s  than the  p o s i t i o n a l  

standard dev ia t i ons .  The i s o t r o p i c  thermal parameters f o r  oxygen had 

been const ra ined t o  1.0 i2 and remained f i x e d  a t  t h i s  va lue f o r  the  

e n t i  r e  s t r u c t u r a l  ref inement .  The barium and molybdenum i s o t r o p i c  

. thermal parameters were then inc luded i n  the  c y c l i c  process o f  re f i ne -  

ment. A f t e r  many i n d i v i d u a l  barium, molybdenum, and oxygen c y c l  es, the 

i s o t r o p i c  ref inement  converged a t  R = 0.072 and Rw = 0.091 where 

2 Rw = [ L w ( l F o l - / F c I )  / L w ~ F ~ l ] ' a n d  w = oF-2. Fur ther  c y c l i c  ref inement  

of atomic p o s i t i o n s  and heavy atom a n i s o t r o p i c  thermal parameters, which 

were very s e n s i t i v e  t o  c o r r e l a t i o n  e f f e c t s ,  r e s u l t e d  i n  R = 0.066 and 

RLv = 0.083. A l l  posi  t i o n a l  , thermal , and occupat ional  parameter 

standard dev ia t i ons  were a1 so 1 owered by t h e  a n i s o t r o p i c  t reatment .  

V a r i a t i o n  o f  the. occupat ion parameters f o r  the  th ree  independent b a r i  um 

i o n  s i t e s  gave, converged va l  ues of 1 .028(24), 1.020(20), and 0.936(16). 

A d i f ference map d isc1  osed two smal l  inyers ion- re1  ated peaks w i t h  

3 d e n s i t i e s  o f  6e/R i n  one o f  t he  'empty' barium s i t e s .  This  s i t e  was 

ad jacent  t o  t h a t  o f  t he  barium i o n  possessing t h e  low occupat ion number. 



. . 

A fourth ~a atom was placed a t  t h i s  new posi t ion .and assigned a low 

value f o r  i t s  mu1 t ip1  i e r .  The cyc l i c  process of refinement was again 

employed and included the occupation. parameters of the  four th  Ba atom 

and i t s  neighbor. A residual R = 0.064 and Rw = 0.077 was obtained with 

occupation values of 0.10(2) and 0.88(2) f o r  the two barium ion s i t e s .  

This r e su l t  implied t h a t  the  t r ue  barium ion s u p e r l a t t i c e  ordering was 

more complicated than had been an t ic ipa ted .  A f i na l  e lec t ron density 

d i f ference map was f l a t  to  5 3e/l3. ( A  f i na l  anisot ropic  refinement of 

the four  barium ion ,  posit ions in  a supercell  containing anisot ropic  

molybdenum and i so t rop ic  oxygen atoms, constrained using the  equivalent  

,, subcell posit ional  and thermal parameters, resul ted  in R = 0.135 and 

R w  = 0.190.) 

Posit ional  parameter standard deviat ions were obtained from one . 

cycle  of least-squares fu l l -matr ix  refinement where a l l .  atomic 

posi t ions  were simul taneously varied.  ~hermal  parameter standard 

deviat ions a r e  those obtained from the  atomic cycl i ng process; therefore ,  

the values a r e  s l i g h t l y  lower than those t h a t  would have been obtained 

from a simultaneous refinement. Atomic s ca t t e r i ng  f ac to r  tab1 es and 

correct ions  f o r  anomalous dispersion used in the  s.tructura1 refinement 

were a s  described f o r  the BaO. 62M~406 subcell refinement. 



RESULTS AND DISCUSSION 

S t ruc tu re  Desc r ip t i on  and Discussion of t he  Ba0.62M0406 Subcel l  

The f i n a l  posi  t i o n a l  parameters f o r  the  BaO, 62Mo4o6 subce l l  a re  

1 i s t e d  i n  Tabl e IV-1, and thermal parameters a re  g iven i n  Tabl e IV-2. 

Important  i n te ra tom ic  d is tances and angles are  g iven i n  Table IV-3. 

The atomic l a b e l s  i n  t h i s  t a b l e  correspond t o  those i n  F igure  IV-1. 

The i n fo rma t ion  l i s t e d  i n  these tab les  i s  t he  r e s u l t  o f  t he  ref inement  

where R = 0.081 and Rw = 0.123. Observed and c a l c u l a t e d  s t r u c t u r e  

f a c t o r s  a r e  a v a i l a b l e  as supplementary m a t e r i a l  . 
F igure  IV-1 i s  an ORTEP drawing o f  a s e c t i o n  o f  one molybdenum- 

ox ide  c l u s t e r  cha in  showing the  repeat  u n i t  a long t h e  c '  a x i s .  Bonds 

between mslybdenum atoms a r e  represented by the  so l  i d ,  f i l l e d  1 ines ;  

Mo-0 bonding i s  represented by t h e  open, u n f i l l e d  l i n e s .  From t h i s  

f i g u r e ,  i t  can be seen t h a t  the  molybdenum-oxide c l u s t e r  chains i n  

Mo 0 a r e  e s s e n t i a l l y  t he  same as those i n  NaMoq06 (11 ) ,  except Ba0.62 4 6 

the  former possess lower symmetry. A1 1 molybdenum and oxygen atoms 1 i e  

on s i t e s  of m symmetry i n  t h i s  subce l l  refinement. The Mol , 02, and 03 
. . 

atoms l i e  i n  m i r r o r  planes perpend icu la r  t o  the  c a x i s  a t  z = 0 and 1, 

w h i l e  t h e  Mo2 and 01 atoms l i e  i n  a m i r r o r  plane a t  z = 1/2. There 

i s  a l s o  a two - fo ld  r o t a t i o n  a x i s  running p a r a l l e l  w i t h  t h e  c a x i s  and 

passing through the  midpo in t  of t he  bonds between Mol a - Mol b and 

Molc -Mold .  Consequently, i n v e r s i o n  centers  a r e  l oca ted  a t  t he  midpo in t  

o f  these two Mo-Mo bonds as w e l l  as i n  the . .center  o f  t he  octahedral  

c l  us t e r  repeat  uni  t. 



 able IV-I . P o s i t i o n a l  parameters f o r  t h e  Ba0.62M0406 subce l l  a 

Atom p o s i t i o n b  M u l t i p l i e r  x Y z 

Mol 

a ~ o s i  t i o n a l  parameters obta ined from the  re f inement  us ing  a1 1 
c o l l e c t e d  data w i t h  20 5 60' (R = 0.081; Rw = 0.123). 

b ~ p a c e  group Pbam (no. 55).  



 able IV-2. Thermal parameters f o r  the Ba0.62M0406 subcell a ' b  

. . 
Atom Bl 1 B22 B33 B1 2 

a The general thermal parameter expression used i s  

2 *2 2 *2 + * * exp[-1/4(Bll h a + Be2k b . . . 2BZ3kLb c 1 ,  however, 

B 1 3 =  BZ3 = 0 by symmetry. 

b~hermal parameters obtained from the  refinement using a1 1 
col lec ted data with 28 5 60' ( R  = 0.081 ; Rw = 0.123). 



Tabl e IV-3. Interatomic d i s t a n c e s  and' angles  i n  t he  BaO. 62M0406 subcel l a  

Distances (a) 
Mol a-Mol b 2.787 (4 )  Mol a-01 a 2.022(13) 

Mol a-Mol c 2.853(1) Mol a-02a 2.075(15) 

Mol a-Mo2a 2.785(2) Mol a-03b 2.067(16) 

Mol a-Mol d 3.988(3)  Mo2a-Olc 2.084(19) 

Mol b-Mo2a 2.795 (2 )  Mo2a-02a 2.032(11) 

Mo2a-Mo2b 3.904 ( 4 )  Mo2a-03a 2.039(11) 

Mol a-Molc-Mold 

Mol a-Mol c-Mo2a 

Mol a-Mol c-Mo2b 

Mol a-Mol b-Mo2a 

Mol a-Mo2a-Mol b 

Mol a-Mo2a-Mol c 
Mol a-Mo2b-Mol c 

Mol b-Mol a-Mo2a 

Mo2a-Mol a-Mo2b 

Mol a-Ql a-Mol c 89 .7 (7 )  

Mol a-02a-Mo2a 35.4(5)  

Mol'a-03b-Mo2b 85 .8 (5 )  

Angles (deg)  

Bal -02 

Ba 1 -02 

Bal-03 

Bal -03 

Bal -01 

Bal -01 

a ~ i s t a n c e s  and angles  obtained using t h e  pos i t i ona l  parameters in  
Tabl e IV-1 . 



Figure IV-1 . A s e c t i o n  of .  one molybdenum-oxide c l u s t e r  cha in  i n  t h e  

Mo 0 subce l l  showing t h e  r e p e a t  u n i t  a long t h e  Ba0.62 4 6 
c a x i s  ( .para l le l  wi th  t h e  Mola-Molc bond). The f i f t y  

percent  probabil  i  t y  i s o t r o p i c  thermal e l  1 i p so ids  a r e  

shown 



An extended view o f  one of the  c l u s t e r  chains running p a r a l l e l  

w i t h  the  c a x i s  i s  prov ided i n  F igure  IV-2. The a r c h i t e c t u r e  o f  t h e  

chains i s  comprised of  c l u s t e r s  of t h e  type Mo6012 fused a t  oppos i te  

edges by removal of two edge-bridging oxygen atoms and shar ing  o f  t h e  

metal and remaining oxygen atoms on those edges between c l u s t e r  u n i t s .  

The doub ly -br i  dg ing and exo oxygen atoms, 01 atoms i n  F igure  IV-1 ,' are  

s t r u c t u r a l l y  equ iva len t ,  and connect,each metal -oxide c l  u s t e r  cha in  t o  

f o u r  o t h e r  adjacent  c l  u s t e r  chains. The c o n n e c t i v i t y  w i t h i n  and 

between chains can be represented by the  fo rmu la t i on  

2+ )ol . 24-]. The molybdenum-oxi de c l  us t e r  chains 
BaO. 62C(M02M04/ 2°8/202/2 212 

con ta in  two types o f  molybdenum atoms, bo th  eleven coord ina te ;  the  

w a i s t  Mo atoms, Mol, which are  bonded t o  seven Mo and f o u r  0 atoms, and 

the  a p i c a l  Mo atoms, Mo2, which a re  bonded t o  s i x  Mo and f i v e  0 atoms. 

One o f  t he  s h o r t e s t  Mo-Mo bond lengths ,  2.787(4) 1, i s  found on t h e  

shared edges of t h e  octahedral  u n i t s  perpend icu la r  t o  the  c a x i s  

d i r e c t i o n .  The l onges t  Mo-Mo bond d is tance,  2.853(1) 1, i s  equal and 

p a r a l l e l  t o  t he  l e n g t h  o f  t he  . c  a x i s .  There a r e  two d i f f e r e n t  Mo-Mo 

bond lengths  o f  2.785(2) 8, and 2.794(2) 8, between molybdenum atoms Mol 

and Mo2. The molybdenum bond d is tances  w i t h i n  the  repeat  u n i t ,  

2.787(4)(1X), 2.853(1)(4X), 2.785(2)(4X), and 2.794(2)(4X) 1, r e s u l t  i n  

an average d is tance o f  2.809 A .  This value i s  o n l y  0.004 8, l onge r  t h a n  

the average d is tance i n  NaMo406, and 0.082 W l onger  than the  d is tance 

between neares t  neighbors i n  bcc molybdenum meta l .  

The oxygen atoms i n  t h i s  s t r u c t u r e  a r e  each bonded t o  th ree  

molybdenum atoms i n  two d i f f e r e n t  geometries. Oxygen atoms 02 and 03 



F igu re  IV-2. A view of one nolybdenum-oxide c l  u s t e r  c h a i n  i n  i3a0.62M0406 = 
2+ .24-, 

BaO. 62[(M02M04i208/202/2 212 extended p a r a l l e l  w i t h  t he  c a x i s .  
F i f t y  pe rcen t  p r o b a b i l i t y  i s o t r o p i c  thermal e l  1 i p s o i d s  a re  shown 



(,Figure IV-1) a re  shared between octahedral  u n i t s  w i t h i n  the  chains, as 

depicted i n  F igure  IV-2, and are  i n  a  t r i g ~ n a l  pyramidal - l i k e  

coo rd ina t i on  w i t h  two Mo2 atoms and one Mol atom. The doub ly -br idg ing  

oxygen atoms i n  F igure  IV-2 a r e  a l s o  the  singly-bonded oxygen atoms on 

a  neighbor ing metal -ox ide c l  u s t e r  chain;  j u s t  as the  singly-bonded 

oxygen atoms p i c t u r e d  a r e  doub ly -br idg ing  t o  molybdenum atoms a long the  

edge o f  another adjacent  c l u s t e r  chain.  As a  r e s u l t ,  the  molybdenum 

atoms a r e  arranged around these i n t e r c h a i n  oxygen atoms i n  approx i -  

mately t r i g o n a l  p lanar  coo rd ina t i on .  A view o f  t he  s t r u c t u r e  down the  

c  ax i s ,  F igure  IV-3, shows the  arrangement o f  oxygen atoms w i t h i n  and 

between c l u s t e r  chains. The average i n t r a c h a i n  Mo-0 bond l e n g t h  of 

2.053 1 i n  t h i s  compound i s  q u i t e  comparable t o  the  val ue o f  2.049 8' . 
found i n  NaMo406. However, t he  i n t e r c h a i n  Mo-0 bond 1  engths c o n s i s t i n g  

o f  two s h o r t  bonds, 2.022(13) W ,  and one l ong  bond, 2.084(19) i, 
r e s u l t  i n  a  longer  average Mo-0 d i s tance  r e l a t i v e  t o  t h a t  observed i n  

NaMo406, &. , 2.043 P\ -- vs. 2.018 A .  The two s h o r t  Mo-0 bonds i n v o l  ve 

the  Mol atoms where the  i n t e r c h a i n  oxygen atom i s  doub ly -br idg ing  on an 

edge o f  the  octahedr'al c l  us trr; r'eped 1 url i 1. 

I t  can a l s o  be seen f rom F igu re  IV-3 t h a t  t he  p r i n c i p a l  features 

of t h i s  s t r u c t u r e  a re  e x a c t l y  l i k e  those o f  NaMo40s except t he  u n i t  c e l l  

i s  d i s t o r t e d  from te t ragona l  t o  orthorhombic symmetry. I n  p a r t ,  t h i s  i s  

a  r e s u l t  o f  a  s l i g h t  r o t a t i o n  o f  each Mo406 cha in  about i t s  own a x i s  

p a r a l l e l  t o  t he  c  a x i s .  The r o t a t i o n  o f  each cha in  i s  i n  a  d i r e c t i o n  

oppos i te  t o  t h a t  o f  each o f  i t s  neighbors. Thus, t he  0-0 d is tances 

between atoms i n  neighbor ing chains a r e  reduced i n  one d i r e c t i o n  and 

increased i n  the  o t h e r  d i r e c t i o n  w i t h i n  t h e  a-b p lane.  



F igu re  IV-3.  The s t r u c t u r e  o f  Ba0.62M0406 (subce l l  re f inement )  

as viewed down the  c a x i s  showing the  c r o s s l i n k i n g  

o f  c l u s t e r  chains and barium i o n  p o s i t i o n s  a long 

the channels 



F igu re  IV-3 a l s o  shows t h a t  t he  ~a '+  ions  occupy s i t e s  i n  channels 

formed by f o u r  metal -ox ide c l  us t e r  chains cross1 i nked  by Mo-0-No bonds 

as descr ibed above. Each barium i o n  i s  surrounded by e i g h t  i n t r a c h a i n  

oxygen atoms, 02 and 03, forming a  rec tangu la r  box (angles i n  t h e  a-b 

m i r r o r  p lane are  a c t u a l l y  90.6' and 89.4") compressed a long t h e  c  a x i s  

w i t h  0-0 d is tances o f  2.853(1), 3.144(22), and 3.622(22) W .  Th is  box 

conta ins  two b a r i  urn i o n  s i t e s  symmetrical l y  re1  a ted  through t h e  

i n v e r s i o n  cen te r  l o c a t e d  a t  t he  c e n t e r  of the  box. Only one of these 

two s i t e s ,  which a r e  0.74 8 apar t ,  can be occupied by a  barium i o n  a t  

any t ime. The barium i o n  p o s i t i o n  g ives  r i s e  t o  two average Ba-0 

d is tances o f  2.620 and 2.998 1. I n  a d d i t i o n ,  t h e r e  a re  two i n t e r -  

cha in  oxygen atoms, 01 i n  F igu re  IV-3, as nex t -neares t  ne ighbors t o  

bar ium each w i t h  a  Ba-0 d i s tance  o f  3.1 9  1. 

The cause o f  t h e  reduc t i on  i n  symmetry f rom te t ragona l  f o r  NaMo406 

t o  orthorhombic f o r  Ba0.62M0406 i s  n o t  obvious. I f  t h e  e f f e c t  i s  

e l e c t r o n i c a l l y  d r i ven ,  then i t  r e s u l t s  from o n l y  an a d d i t i o n a l  0.24 

e lec t rons  p e r  Mo406 u n i t .  A l ower ing  o f  t he  s t r u c t u r a l  symmetry cou ld  

a l s o  be due t o  t h e  presence o f  t he  more h i g h l y  charged 8a2+ i ons .  I n  

2  NaMo406, the  sp -1 i k e  oxygen atoms, each b r i d g i n g  two i n d i v i d u a l  

c l u s t e r  chains, possess the  c a p a b i l i t y  o f  p i  bonding t o  t he  molybdenum 

chains through t h c  unhyb r id i zcd  p  o r b i t a l s .  I n  these l one  

p a i r  p  o r b i t a l s  weakly i n t e r a c t  w i t h  t h e  ~ a "  ions  as evidenced by the  

Ba-01 i n t e r a t o m i c  d i s tance  o f  3.19 A .  This  d i s tance  i s  approx imate ly  

0.35 8. l onge r  than the  sum o f  i o n i c  r a d i i  (1  2)  f o r  b a r i  urn and oxygen. 

Each barium i o n  can a t t r a c t  e l e c t r o n  d e n s i t y  f rom t h e  unhyb r id i  zed 



p orb i ta l s  of two interchain oxygen atoms through opposite faces of 

the surrounding rectangular box of intrachain oxygen atoms. Only one 

lobe of each lone pair  p orbi ta l  i s  properly directed and close enough 

for  interaction with barium. The resul t i n g  polarization of electron 

density in these orb i ta l s  towards the divalent cation could, therefore, 

cause loss of the sp2-1 i ke pl inar i  ty, and reduction in overall 

.structural symmetry as shown in Figure IV-3. 

Structure Description and Discussion of the 

Mo 0 Supercell Ba0.62 4 6 

The final posi tional parameters for  the BaO. 62M0406 supercell are 

l i s t ed  in Table IV-4. Thermal parameters a re  given in Table IV-5; 

however, the significance of these numbers i s  questionable due to  

strong correlation effects  in the structural refinement. Important 

molybdenum interatomic distances are l i s t ed  in Table IV-6, and Mo-Mo-Mo 

bond angles are given in Table IV-7. The atomic labels in these two 

tables correspond to those shown in Figure IV-4. Molybdenum-oxygen and 

barium-oxygen interatomic distances a re  not tabulated because of the i r  

very high standard deviations, 0.08 a (ave);  a l l  of the Mo-0 bond 

distances a re  well within 30 of being equivalent. The Mo-0-Mo bond 

angles a re  not l i s t e d  because they possess large standard deviations of 

3-4 degrees. The high standard deviations fo r  the metal -oxygen 

distances and Mo-0-Mo angles are  also a consequence of the correlation 

problem encountered during the s t ructural  refinement. Observed and 

calculated s t ructure factors a re  available as supplementary material. 



Tab1 e IV-4. p o s i t i o n a l  parameters f o r  t he  Ba0.62~0406 supe rce l l  

Atom x ' Y z 

Ba 4 

MoA 1 

MoA2 , ' 

MoA 3 

MoA4 

M O A ~  

MoBl 

MoB2 

MoB3 

Mo B4 

O A l  



Table IV -5 .  Thermal parameters f o r  t he  EaO. 62r40406 superce l l  a 'b  

A tom Bl 1 B22 B33 B1 2 '1 3 '2 3 

Bal 0.67 (28) 0.80(30) 3.47(42) -0.56(30) 0.00 0.00 

Ba 2 1 .34(22) 1.13(:23) 2.61 (33) 0.70(22) 0.00 0.00 

Ba 3 0.46(15) 1.22(19) 1.45(20) 0.03(17) 0.00 0.00 

Ba4' 0. 29 (.I 23.) 

Mokl 

Mok2 

Mok3 

MoA4 

No85 

MoBl 

MoB2 

MoB3 

MoB4 

2 *2 + 

a~$e*genera l  thermal parameter expression used i s  e ~ p [ - 1 / 4 ( B ~ ~ h ~ a * ~  + BZ2k b .. . 
2BZ3kkb c )]. 

2 
b ~ x y g e n  atoms constra ined i s o t r o p i c a l l y  w i t h  B = 1.0 1 . 
C ~ s o t r o p i c  va l  ue. 



Tab1 e IV-6. Molybdenum-molybdenum bond d is tances  (a)  i n  the  
~ a ~ :  62M~406 supe rce l l  



Table IV-7. Selected Mo-Mo-Mo bond angles (deg) in the Ba0.62M0406 
supercell 





Figure  IV-4 i s  an ORTEP drawing o f  a  s e c t i o n  o f  one molybdenum-' 

ox ide c l u s t e r  cha in  showing f i v e  o f  the  e i g h t  subce l l  u n i t s  extended 

along the  c  a x i s .  Bonds between molybdenum atoms a r e  repres.ented by 

the  s o l i d ,  f i . 1 l ed  l i n e s ,  w h i l e  Mo-0 bonding i s  represented by t h e  open, 

u n f i l l e d  1  ines;  on l y  t he  molybdenum atoms are  1  abel ed. Atoms A1 and A5 

l i e  i n  m i r r o r . p l a n e s  perpend icu la r  t o  t he  c  a x i s  a t  z = 0  and 1/2, 

respec t i ve l y ,  and a l l  o t h e r  Mo atoms occupy general p o s i t i o n s  i n  space 

group Pbam. There i s  a  two- fo ld a x i s  o f  r o t a t i o n  runn ing  para1 l e l  w i t h  

the  c  a x i s  and passing through the  m idpo in t  o f . t h e  bonds between atoms 

B1 -B1 ' , B2-BZ' , e t c .  However, i n v e r s i o n  centers  i n  these c l  u s t e r  chains 

a r e  on l y  1  ocated midway between molybdenum atoms A1 -A1 ' and A5-A5' . 
, I t  can be seen from t h i s  f i g u r e  t h a t  t h e  superce l l  molybdenum-oxide 

c l  u s t e r  chains a re  d i s t o r t e d  from the  h i g h l y  symmetr ic.chains found i n  

NaMo406 (1 1  ) .  The a r c h i t e c t u r e  o f  t h e  chains and t h e  c o n n e c t i v i t y  

w i t h i n  and between c l u s t e r  chains i s  b a s i c a l l y  t h e  same as descr ibed 

f o r  t he  Ba0.62M0406 subce l l  (see above). The most obvious s t r u c t u r a l  

d i f f e r e n c e  between.these d i s t o r t e d  chains and those o f  t h e  subce l l  i s  

t he  a1 t e r n a t i n g  1  ong-short-1 ong molybdenum bond d is tances  a1 ong t h e  

c  a x i s  d i r e c t i o n  o f  t he  superce l l  (see Table IV-6) .  The average 

molybdenum bond 1  engths per  octahedral  u n i t  a l s o  a1 t e r n a t e  a long t h e  

chain.  O f  t he  f i v e  bonded octahedral  c l u s t e r  u n i t s  shown i n  Figure. 

.IV-4, the  f i r s t ,  t h i r d ,  and f i f t h  have an average Mo-Mo bond l e n g t h  o f  

2.880 i; t he  second and f o u r t h  octahedral  u n i t s  have an average bond 

l e n g t h  o f  2.743 i. The o v e r a l l  average molybdenum bond d i s tance  w i t h i n  

the  superce l l  repeat  u n i t  i s  2.811 8 which compares favo rab l y  w i t h  the  



Figure IV-3. A section of o3e molybdenum-oxide c lu s t e r  chain in the Bao,62M0406 supercell 

showing one-ha! f of the  repeat u n i t  along the c axis between atoms A1 (A1 I )  

and A5(A5'). Only the molybdenum atoms are  labeled.  An average isot ropic  

value fo r  moly2denum and oxygen a re  represented by the  f i f t y  percent 

proba bi 1 i ty  thxrnal el 1 i psoi ds 



subce l l  average bond l e n g t h  of  2.809 h .  Wi th in  and between the  

i n f i n i t e  chains, t he  average Mo-0 bond d is tances remain q u i t e  compa- 

r a b l e  t o  those i n  the ~ a i . ~ ~ ~ o ~ 0 ~  subce l l ,  - v .  , 2.053 and 2.043 8, i n  

the subce l l  - vs. 2.059 and 2.047 h i n  the  superce l l ,  f o r  the  i n t r a c h a i n  

and i n t e r c h a i n  oxygen atoms, r e s p e c t i v e l y .  

A three-dimensional view o f  t he  supers t ruc tu re  down the  c  a x i s  i s  

* g iven i n  F igure  IV-5. This  drawing shows t h e  c r o s s l i n k i n g  o f  the.  

d i s t o r t e d  molybdenum-oxide c l  u s t e r  chains and the  resu l  t i n g  b a r i  urn i o n  

s i t e s  a long the  channels, Each barium i o n  i s  surrounded by e i g h t  

i n t r a c h a i n  oxygen atoms forming a  d i s t o r t e d  rec tangu la r  box compressed 

along the c  a x i s .  To a  f i r s t  approximation, on l y  f i v e  o f  t h e  e i g h t  

boxes stacked along the  c  a x i s  o f  the  u n i t  c e l l  a r e  occupied by barium 

ions.  The arrangement o f  these barium ions  alo.ng one channel o f  t h e  

u n i t  c e l l  i s  shown i n  F igure  IV-6. The barium i o n  a t  t h e  center  o f  t he  

channel, Bal , , 1  i e s  on an i n v e r s i o n  cen te r  a t  (0,0,1/2) ;, i t s  two 

adjacent  s i t e s  a re  empty. The average Ba-0 bond d is tance f o r  t h i s  atom 

i s  2.75(8) a .  The two Ba2 ions and the  two Ba3 ions  a re  r e l a t e d  

through the  i n v e r s i o n  cen te r  a t  (0,0,1/2). Barium ions Ba2 and Ba3 

occupy ad jacent  s i t e s  along the  channel, b u t  they a re  s h i f t e d  away from 

each o t h e r  a long the  c  a x i s  t o  minimize e l e c t r o s t a t i c  repu ls ion .  The 

p o s i t i o n s  o f  these ca t i ons  a long t h e  channels r e s u l t  i n  a  s h o r t  and 

l nng  average barium-oxygen bond d i s tance  f o r  each: 2.63(.9) i and 

2.99(6) i f o r  Ba2, and 2.70(7) B. and 2.88(6) 8 f o r  Ba3. The r e f i n e d  

occupation numbers o f  1.03(2) f o r  Bal and 1.02(.2) f o r  Ba3 i n d i c a t e  f u l l  

occupancy f o r  ' these two ca t i ons  , whereas a  p a r t i a l  occupat ion value of 



Figure  IV -5 .  The supers t ruc tu re  o f  Ba Mo 0 as viewed down t h e  0.62 4 6 
c  a x i s  showing the  cross1 i n k i n g  o f  c l u s t e r  chains and 

barium i o n  p o s i t i o n s  a long the  channels 



I ' B a l  ' I 
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1 1  
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F igure IV -6 .  The arrangement o f  t h e  f i v e  barium ions i n  t he  e i g h t  

s i t e s  a v a i l a b l e  a long one channel o f  t he  Ba0,62M0406 

superce l l  



0.88(2) fo r  Ba2 was obtained. . A fourth barium ion s i t e  was discovered 

from the s t ruc tu ra l  refinement (Ba4 in Table IV-4), and i s  labeled 

with an x in Figure IV-6. This s i t e ,  which i s  adjacent to  the Ba2 s i t e ,  

i s  only par t ia l ly  occupied with a refined occupation number of 0.10(2). 

Thus, i t  appears tha t  the Ba.2 ion i s  s ta t is t ical .1y disordered between 

two neighboring s i t e s  with a 'distribution r a t io  of 9 : l .  This 

apparent.disorder in the supercell suggests the existence of an even 

larger  .supercell where a1 1 of the barium ions are  ordered in ful ly  

occupied s i t e s .  



CONCLUSIONS 

The Mo406 s t r u c t u r e  type i s  now known t o  i nco rpo ra te  L,i, Na, K, 
. . 

and Ba ions w i t h i n  i t s  channels ( 2 , l l ) .  Compared t o  NaMo406, the  

Mo 0  phase i s  s l i g h t l y  more reduced by ca. 0.25 e lec t rons .  The Ba0.62 4  6 - 
longer  o v e r a l l  average Mo-Mo bond d is tance i n  t h i s  compound, a., 
2,810 A f o r  Ba0a62M0406 E. 2.803 1 f o r  NaMo406, suggests t h a t  t h e  

a d d i t i o n a l  e lec t rons  occupy ant1 bonding o r b i t a l s  ( o r  bands), b u t  o the r  

e f f e c t s  cou ld  a l s o  be responsib le f o r  t h i s  small  d i f f e r e n c e  (g.g., s i z e  

and charge of t he  c a t i o n  w i t h i n  the  channels; o r  ex ten t  o f  Mo-0 p i  

bonding). The longer  average Mo-0 bond d is tance f o r  t h e  i n t e r c h a i n  

oxygen atoms i n  t h e  b a r i  urn compound, re1 a t i  ve t o .  N ~ M O ~ O ~ ,  cou ld  resu l  t 

from a d imin ished p i  bonding i n t e r a c t i o n  o r  from the  reduc t ion  o f  

symmetry f rom te t ragona l  t o  orthorhombic . However, explanat ions f o r  

the  adopt ion o f  orthorhombic symmetry and i t s  a f f e c t  on the  s t r u c t u r a l  

d e t a i l s  a r e  on ly  specu la t i ve  a t  t h i s  t ime. 

The s u p e r l a t t i c e  o rde r ing  o f  barium ions  i n  the  channels o f  
. . 

Mo 0  i s  s i m i l a r  t o  t h a t  .observed i n  h o l l a n d i t e s  (13) and Ba0.62 4 6 

r e l a t e d  m a t e r i a l s  (e.q., ~ a ~ T i ~ - , M g ~ 0 ~  6')' The channels i n  these 

h o l l a n d i t e  phases a r e  e s s e n t i a l l y  i d e n t i c a l  t o t h o s e  i n  the  Mo406 

compounds. . . .  . .  Apparent ly,  the  b a r i  um ions  i n  t h e  BaO, 62M~406 superce l l  

a re  o r d e r e d  i n  a  manner t h a t  minimizes t h e  barium-barium e l e c t r o s t a t i c  

r*epulsion c o n t r l b u t f o n  tO t h e  l a t t i c e  energy. Least-squares ref inement 

of t h e  supers t ruc ture  was plagued w i t h  c o r r e l a t i o n  problems which made 

a  f i n a l  comparison o f  Mo-0 bond d is tances impossib le.  I n  s p i t e  o f  



these problems, t he  a1 t e r n a t i n g  Mo-Mo bond d is tances a long the  c  a x i s  

of the superce l l  appear s t a t i s t i c a l l y  s i g n i f i c a n t ,  b u t  t he re  i s  no 

obvious connect ion between t h i s  p a t t e r n  and t h a t  o f  t h e  barium i o n  

order ing .  There i s  no doubt t h a t  t he  presence o f  barium i n  the 
I 

channel s  i n f l  uences the  r e l a t i v e  p o s i t i o n s  of  i t s  surrounding oxygen 

atoms. It i s  very poss ib le  t h a t  the  molybdenum atoms associated w i t h  

these oxygen atoms a l so  ' f e e l '  t he  presence o f  t he  barium ions  and 

become pos i t i oned  i n  the  observed p e r i o d i c  manner. Fur ther  research 

i n t o  the  Mo406 s t r u c t u r e  type w i l l ,  hope fu l l y ,  answer many o f  t he  

quest ions r a i s e d  by the  present  supe rs t ruc tu re  ana lys i s  . 
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SECTION V.  THE PREPARATION AND PARTIAL  CHARACTERIZATION OF 

SOME REDUCED TERNARY OXIDES OF MOLYBDENUM CONTAINING 

Na, K, AND Ca  



INTRODUCTION 

The syntheses and cha rac te r i za t i ons  o f  several  new reduced 

molybdenum oxides have r e c e n t l y  been repo r ted  (1,Z). Some o f  these 

compounds incorpora te  d i s c r e t e  t r i m e r i c  o r  t e t ramer i c  molybdenum atom 

c l u s t e r s ,  w h i l e  o thers  con ta in  i n f i n i t e  chains o f  bonded molybdenum 

atoms. I n  the course o f  t h i s  reduced molybdenum ox ide  research, th ree  

more new compounds have been synthesized. From a n a l y t i c a l  and x-ray 

powder d i f f r a c t i o n  data, the  t e n t a t i v e  formul as K2+,Mol 201 9, 

Mo 0  and CaMo508 have been assigned t o  these compounds. This  Na2+x 12 19'  

s e c t i o n  repo r t s  t he  p repa ra t i on  and p a r t i a l  c h a r a c t e r i z a t i o n  o f  these 

new te rna ry  molybdenum o x i  des . 



EXPERIMENTAL 

M a t e r i a l s  

The s t a r t i n g  m a t e r i a l s  used were F i s h e r c e r t i f i e d  A.C.S. Moo3 and 

KOH, ' Baker Analyzed ' Reagent (NH4)6M07024-4H20 (83 .O% as Moo3) and 

anhydrous CaC1 (.97.8%), A1 d r i c h  molybdenum powder (99.99%), Thermo- 

El ec t ron  Corp. molybdenum t u b i n g  (99.97%), and Rembar Co. molybdenum 

sheet (99.95%). Potassium molybdate was prepared by t h e  r e a c t i o n  o f  KOH 

' w i t h  the  s t o i c h i o m e t r i c  q u a n t i t y  o f  Moo3 i n  de ion ized water .  The 

molybdate s o l u t i o n  was f i l t e r e d ,  i t s  volume reduced by heat ing,  and the  

p r e c i p i t a t e  c o l l e c t e d  on a  g lass fri t. The product  was f i n a l l y  d r i e d  a t  

120°C and s to red  over  P4010. Calcium molybdate was prepared by mix ing  a  

f i  1  t e r e d  aqueous so l  u t i o n  o f  CaC1 w i t h  an aqueous so l  u t i o n  c o n t a i n i n g  

the  s t o i c h i o m e t r i c  q u a n t i t y  o f  ammoni urn heptamolybdate t e t r a h y d r a t e  

and ammonium hydroxide. The wh i te  p r e c i p i t a t e  was c o l l e c t e d  on a  glass 

frit, washed several  t imes w i t h  de ion ized water, d r i e d  a t  110°C f o r  one 

hour and a t  500°C overn igh t ,  and s to red  over  P4010. Molybdenum d i o x i d e  

was prepared by the  hydrogen reduc t i on  o f  Moo3 a t  460°C f o r  40 hours. 

The reduced ma te r ia l  was washed several  t imes w i t h  a1 t e r n a t e  p o r t i o n s  of 

3M NH40H, deionized water, and 3M HC) u n t i l  the  washings were co lo r l ess ,  

and f i n a l l y  d r i e d  -- i n  vacuo a t  l l O ° C .  Anal.  Ca lcu la ted  f o r  Moo2: Mo, 

74.99. Found: Mo, 74.96. 



Syntheses 

I n  a t y p i c a l  reac t ion ,  Moo2 (1.32 g, 10.3 m l )  and K2Mo04 (0.61 g y  

2.6 mmol e )  were mixed by g r i n d i n g  i n  a mor tar  and sealed i n  an 

evacuated molybdenum r e a c t i o n  tube (3.5 cm long,  1.3 cm 0.d.). Th is  

r4o tube was sealed i n  an evacuated inconel  p r o t e c t i o n  tube, 'and then 

h e l d  a t  1100°C f o r  5-7 days. The contents o f  t he  tube were washed 

several  t imes w i t h  deionized water t o  remove unreacted K2Mo04, r i n s e d  

w i t h  several  po r t i ons  o f  acetone, and a i r  d r i e d .  

A range o f  product  c r y s t a l  l i n i  ty was observed f rom one p repa ra t i on  

t o  another. One o f  these reac t i ons  produced many small .black c r y s t a l s  

each c o n s i s t i n g  o f  t h ree  i ntergrown hexagonal p l  ate1 e t s  . Guin i  e r  x-ray 

powder d i f f r a c t i o n  pa t te rns  were always f r e e  o f  Moo2 and Mo l i n e s .  

Elemental analyses and o x i d a t i o n  s t a t e  determinat ions on molybdenum 

were performed f o r  t h e  products o f  two separate reac t i ons .  For  determi-  

n a t i o n  o f  t h e  molybdenum o x i d a t i o n  s t a t e ,  weighed samples were d i sso l ved  

i n  s tanderd izcd  c c r i c  su l  fate-3M H2S04 s o l u t i o n .  A f t e r  complete 

o x i d a t i o n  o f  a1 1 molybdenum t o  Mo(VI),  t he  excess Ce(.IV) was t i t r a t e d  

w i t h  s tandard Fe ( I1 )  s o l u t i o n .  The a n a l y t i c a l  r e s u l t s  f o r  the  two, 

r e a c t i  on products were: 

1 )  K, 5.05; Mo, 74.0; Mo (+2.95) 

The f i r s t  s e t  o f  r e s u l t s  gave a Mo/K r a t i o  o f  6/1, and the  sto ich iom- 

k t r y  K2Mo1201 was obta ined.  Ca lcu la ted  values f o r  t h i s  composit ion 

were: Ky 5.10; Mo,' 75.1 ; Mo (+3.00). The second s e t  o f  a n a l y t i c a l  



data,, which gave a Mo/K r a t i o  o f  6/1 .25, resu l  t ed  i n  t h e  formula 

K2. 5'01 2'1 9 ' Ca lcu la ted  values f o r  t h i s  composit ion were: K, 6.29; 

Mo, 74.1; Mo (+2.96). Based on the  combi-ned a n a l y t i c a l  i n fo rma t ion  

g iven above, t he  t e n t a t i v e  formul a KZtxMo1 201 was assigned. 

This  phase was f i r s t  d iscovered as small c r y s t a l s  growing on t h e  

ends o f  a molybdenum r e a c t i o n  vessel used i n  t h e  p repa ra t i on  o f  t he  

compound NaMoq06 (2,3). Only a few m i l  1 igrams o f  t h i s  new phase were 

obta ined.  E lec t ron  m i  croprobe analyses c o n f i  rmed the presence o f  sodi urn 

and molybdenum as w e l l  as the  absence o f  potassium i n  t h i s  phase. From 

Gui n i e r  x-ray powder d i f f r a c t i o n  data, t he  sodi um compound appeared t o  

be i somorphous w i t h  KZtxMol 201 9 ;  there fore ,  t he  formul a NaZtxMol ?Ol was 

assigned. 

Calcium nolybdate and molybdenum d i o x i d e  i n  mole r a t i o  1 :1 were 

mixed by g r i n d i n g  i n  a mortar  and sealed i n  an evacuated molybdenum 

r e a c t i o n  tube (3.5 cm long, 1.9 crn o.d.2. Th is  Mo tube was sealed i n  

an evacuated fused qua r t z  tube and the r e a c t i o n  m i x t u r e  h e l d  a t  1 100°C 

f o r  7 days. One end o f  t h e  molybdenum tube conta ined bundles o f  small , 

black,  chunk-1 i ke c r y s t a l s  mixed w i t h  unreacted CaMo04. The o t h e r  end 

of t he  tube conta ined t h i n  whiskers o f  Mooz as evidenced f rom an x-ray 

powder d i f f r a c t i o n  pa t te rn .  The chunk-1 i ke c r y s t a l s  were i s o l a t e d  from 

the  calci.um molybdate by d isso lv i .ng  the  l a t t e r  i n  0.5 M tlC1. There was 

no apparent a f f e c t  on the  new compound by t h i s  t reatment .  A G u i n i e r  



x-ray powder d i f f r a c t i o n  p a t t e r n  o f  powdered c r y s t a l s  d i d  no t  show any 

, l i n e s  f o r  Elo, Moo2, o r  CaMo04. The s to i ch iome t ry  CaMo5O8 was ob ta ined  

from e l  emental ana lyses  and resu l  ts o f  oxi dat ion-reduc t i  on t i  t r a t i  ons 

( a s  descr ibed  above f o r  K ~ + ~ M ~ ~  201 9 ) .  Anal . Calcu la t ed  f o r  CaMo5O8: 

Ca, 6.19; Mo, .74.1 ; Mo (+2.80) .  Found: Ca, 6.25; Mo, 72.0; Mo (+2.80). 

The compound CaMo508 was a l s o  prepared from t h e  s t o i c h i o m e t r i c  

q u a n t i t i e s  of CaMo04, Moo2, and Mo i n  t h e  presence  of a Cs2Mo04 f l u x .  

Thus, CaMo04 (0.62 g,  3.1 mmole), Moo2 (0.79 g ,  6 . 2 m o l e ) ,  Mo (0.59 g ,  

6.2 mmole), and Cs2Mo04 (0.30 g ,  0.70 mmole) were mixed by g r ind ing  i n  

a mor ta r ,  pel l e t i z e d  under 700 kg/cm2, and s e a l e d  i n  an evacuated 

molybdenum r e a c t i o n  tube ( 3 . 5  cm long ,  1 . 3  cm 0 . d . ) .  After s e a l i n g  

t h i s  Mo tube  i n  an evacuated inconel  p r o t e c t i o n  tube ,  t h e  r e a c t i o n  

mixture  was held a t  1100°C f o r  5 days .  The product  was washed s e v e r a l  

t imes with 1 . 5  M HC1 unt i l '  t h e  washings were c o l o r l e s s ,  then  r i n s e d  w i t h  

de ion ized  water  and d r i e d  i n  vacuo a t  11 0 " ~ .  A Guin ie r  x-ray powder 

d i f f r a c t i o n .  p a t t e r n  of this  p o l y c r y s t a l l  ine ma te r i a l  was i d e n t i c a l  t o  

t h a t  o b t a i n e d  from t h e  powdered c r y s t a l s ;  the 1 ines of Moo2 and Mo were 

absen t .  The composition of t h i s  p r epa ra t i on  was a l s o  c a l c u l a t e d  a s  

CaMo5O8 from e l  emental ana lyses  and. ox ida t ion  s t a t e  de t e rmina t ions  f o r  - 

molybdenum. The r e s u l t s  were: Ca, 5.87; M o ,  74.8;  Mo (+2.84) .  

X-Ray Powder D i f f r a c t i o n  Data 

An Enraf Nonius De l f t  t r i p l e  focus ing  Guin ie r  x-ray powder 

d i f f r a c t i o n  camera was used with C u  K al r a d i a t i o n  ( A  = 1.54056 1) t o  

o b t a i n  d-spacings.  National Bureau o f  Standards s i l i c o n  powder was 

mixed wi t h  a1 1 samples a s  an i n t c rna l  s t anda rd .  The 11 nes and t h e i r  



re1 a t i v e  i n t e n s i t i e s  f o r  t h e  compounds K2+xMol.201 , Na2+xMo1 201 9, and 

CaMo508 a r e  1 i s t e d  i n  Tables V-1 through V-3, r e s p e c t i v e l y .  

Tab1 e V-1 . Observed d-spacings f o r  K2+xMo1 201 

e 

d-Spaci ng In tens  i tya d-Spacing 1n tens i  tya 

6.776 v s 2.203 m 

6.1 36 w 2.045 m 

4.559 vw 1.953 . S 

4.231 vw 1 .948 s 

4.051 v w 1 .941 s 

3.112 m . 1 .909 m 

2.967 m 1.834 m 

2.838 vw 1.826 m 

2.508 m . ' 1'.708 ' m 

2.483 m 1 .701 m 

2.420 m 1.497 w 

2.415 ti1 1.493 m 

2.399 m 1.449 m 

2.335 rn 1 ,439 m 

2.280 m 1.435 m 

2.265 w 1 .379 vw 

2.209 . m '1 .323 vw . 

a vs = very s t rong,  s = s t rong,  m = medium, w = weak, vw = very  
weak: , 



Tab1 e V-2. Observed d-spacings f o r  Na:,, $lo1 2C119 
. ... ... . 

d -Spacing . . intensitya d-Spac i ng ~ n t e n s i  tya 

= very s t rong,  s = s t rong,  m = medium, w = weak, vw = very 
weak. 



Tab1 e V-3. Observed d-spaci ngs f o r  CaMo508 

d-Spaci ng 1ntens i tya d-Spacing 1ntens.i tya 

a v ~  = very s t rong,  s = st rong,  m = medium, w = weak, vw = very 
weak. 



Crystal Indexing 

Mo 0 , and CaMo5O8 were placed on Crystal s of K2+,Mol 201 Na2+, 1 2 1 9 

the t i p  of a glass f iber  with epoxy adhesive, or in a 0.2 mm Lindemann 

glass capillary with a small amount of s i  1 icone grease. Each crystal  

was mounted on an automated four-circle x-ray diffractometer designed 

and bui l t  in the Ames Laboratory ( 4 ) .  Three or  four w-oscil la t ion 

photographs were then taken a t  various x and 4 se t t ings .  Several 

reflections obtained from these photographs were input into an 

automatic indexing program ( 5 ) .  Lattice parameters calculated by th i s  

program were not refined. 

Pressed Pel l e t  Electrical Resistivity Measurement 

A pel l e t  of K2+xMo1 2019' powder (0.32 cm diam, 0.2 cm thick)  was 

2 pressed under 500 kg/cm and sintered in an evacuated fused quartz , 

ampoule a t  900°C for  60 hours. Four platinum wire leads were attached 

to the pel l e t  with s i l v e r  adhesive. Electrical r e s i s t iv i ty  measure- 

ments were made using.a standard four probe a .c .  (27.5 Hz) method by 

recording the voltage across the pressed pe l l e t  as a function of 

temperature. The cool i ng ra te  was adjusted to  1-2 degrees/mi nute 

and temperature r e a d ~ n ' ~ s  were provided by P t  and Ge resistance 

thermometers. Voltage readings were recorded approx-ilr~ately every two 

degrees in t he  interval 20-280 1( and a t  l c a s t  cvcry degree fr-ow 1.5 - 
20 K. The voltage across a standard cal i brated r e s i s to r  was measured 

periodically and showed no s ignif icant  change during the course of the 



experiment. The . r a t i o  o.f t he  measured r e s i s t i v i t y  t o  t h a t  measured a t  

288 K was graphed as a f unc t i on  of temperature. 

Magnetic Suscept i  b i l  i ty Measurement 

The magnetic suscept i  b i  1  i t y  o f  t he  s o l i d  compound K2+xMo1 201 

was measured by the  Gouy method i n  a i r  a t  room temperature. The molar  

s u s c e p t i b i l i t y  was c o r r e c t e d  f o r  diamagnet ic c o n t r i b u t i o n s  f rom t h e  

cons t i , tuen t  atoms. Assuming the  average composi t ion K2 .25M01 201 9, 

a value f o r  t h e  c o r r e c t e d  molar s u s c e p t i b i l i t y ,  X ,  o f  1200 x (cgs 

u n i t s ) / f o r m u l a  . . u n i t  o r  100 x (cgs)/gram atom o f  Mo was obta ined.  

The corresponding e f f e c t i v e  magnetic moment values o f  1.7 and 0.5 B.M., 

r espec t i  ve l y  , were c a l c u l  a ted  assuming t h e  compound obeyed t h e  Cur ie  

1 / 2 law, uef, = 2.84 (xi T) . 



RESULTS AND DISCUSSION 

The compound K2+xMol 2019 can be e a s i l y  prepared f rom K2Mo04, 

Moo2, and Mo (suppl i e d  by the  molybdenum r e a c t i o n  vessel ) a t  1  100°C 

as l ong  as a  two- fo ld  excess o f  K2Mo04 i s  present .  Reactions i n v o l v i n g  

the  s t o i c h i o m e t r i c  q u a n t i t i e s  o f  K2Mo04, Moo2, and Mo powder, i n c l u d i n g  

a  ten percent  excess o f  potassium molybdate, always gave mix tures  o f  

K2+xMo1 *01 and unreacted s t a r t i n g  m a t e r i a l s  . S l i g h t l y  d i f f e r e n t  

a n a l y t i c a l  r e s u l t s  were ob ta ined on the  products o f  two separate 

p r e p a r a t i  ons (i.~. , K2Mol 201 and K2. 5 M ~ 1  201 9)  . These resu l  t s  may 

i n d i c a t e  a  s t r u c t u r e  possessing a  v a r i a b l e  potassium i o n  l e v e l .  

Al though c r y s t a l s  o f  K2+xMo12019 were obta ined i n  one r e a c t i o n  product,  

the cond i t i ons  f o r  c r y s t a l  growth have no t  y e t  been es tab l ished.  A 

problem associated w i t h  these c r y s t a l  s, as we1 1  as those of 

Mo 0  i s  t h a t  they a r e  a c t u a l l y  composed o f  two o r  more i n t e r -  Na2+x 12 19'  

grown sing1 e  c r y s t a l s .  Several o f  these mu1 t i p l e  c r y s t a l s  were broken 

i n t o  sma l l e r  pieces w i t h  the  hope o f  o b t a i n i n g  a segment o f  a  s i n g l e  

c r y s t a l .  The segments were o f  dimensions on t h e  o rde r  o f  0.1 mm 

along each edge. The potassium and sodium co~~~pounds were indexed, and 

1  arge u n i t  c e l l s  were c a l c u l a t e d  f o r  both.  A hexagonal u n i t  c e l l  was 

obta ined f o r  each o f  several  K2+xMo1 2019 c r y s t a l s  w i t h  c e l l  dimensions 

o f  a  = 40.5 and c  = 9.35 # .  Only one c r y s t a l  o f  Na2+xM~1 201 was 

indexed, dnd i t  a l s o  appeared t o  be hexagonal w i t h  u n i t  c e l l  dimensions 

o f  a  = 40.0 1 and c  = 9.30 8 .  The sma l l e r  u n i t  c e l l  volume f o r  t h e  

sodium compound was c o n s i s t e n t  w i t h  x-ray powder d i f f r a c t i o n  da ta  



(.Tables V-1 and V-2). If the l a r g e  a x i a l  l a t t i c e  parameters a re  

co r rec t ,  an x-ray s t r u c t u r e  de terminat ion  f o r  e i t h e r  o f  t he  two 

compounds w i  1 1 be very d i  f f  i cul  t . 
A pressed p e l l e t  e l e c t r i c a l  r e s i s t i v i t y  r a t i o  E. temperature curve 

was obta ined f o r  K2+,Mol 2019 and i s  shown i n  F igure  V-1. The value o f  

the  pressed pe l  l e t  e l  e c t r i c a l  r e s i s t i v i t y  a t  room temperature i s  

ca. 5 x ohm-cm. I n i t i a l l y ,  t he  r e s i s t i v i t y  increases s lowly  as - 

the temperature i s  1 owered and i s  almos t 1 i nea r  t o  120 K. A t  t h i s  

po in t ,  the increase i n  r e s i s t i v i t y  becomes more r a p i d  and reaches a 

maximum value a t  T = 8 K w i t h  roughly twelve t imes the  room temperature 

e l  e c t r i c a l  res is tance.  The r e s i s t i v i t y  then drops sharp ly  i n  t he  

temperature i n t e r v a l  7 - 1.5 K. However, a.c.  s u s c e p t i b i l i t y  measure- 

ments i n  t he  temperature range 1.1 - 30 K showed no evidence f o r  a 

magnetic phase t r a n s i t i o n .  The pressed pe l1  e t  e l e c t r i c a l  r e s i s t i v i t y  

behavior o f  K2+xMo1201,9 i s  e s s e n t i a l l y  i d e n t i c a l  t o  t h a t  o f  the  

compound NaMo406 ( 3 ) .  A magnetic '  phase t r a n s i t i o n  i n  t he  temperature 

i n t e r v a l  1.1 - 30 K i 's  a l s o  absent f o r  t he  l a t t e r  compound. 

The observed magnetic moment o f  approximately 1 .7  B.M. f o r  

K2+xMo1 201 9. imp1 i e s  the  presence o f  one unpaired e l e c t r o n  pe r  formul a 

u n i t .  However, t h i s  value cou ld  very we1 1 be due t o  a temperature- 

jndependent paramagnetic c o n t r i b u t i o n .  A TIP e f f e c t  i s  suggested by 

the  co r rec ted  mala,. s u s c e p t i b i l i t y  value o f  on l y  100 x 1 o - ~  (cgs)/gram 

atom Mo. Furthermore, t he re  was no change i n  t h e  a.c. s u s c e p t i b i l  i t y  

Mo 0 through the temperature i n t e r v a l  30 - 1.1 K. 
O f  K2+x 12 19 



F igu re  V-1 . E l e c t r i c a l  r e s i s t i v i t y  r a t i o  E. temperature curve  f o r  a pressed pe l  l e t  

o f  t he  compound K2+xMo12019. The r e s i s t i v i t y  a t  room temperature i s  

approx imate ly  5 x 10.' ohm-cm 



The compound CaMo5O8 can be prepared f rom the  s t o i c h i o m e t r i c  

q u a n t i t i e s  o f  CaHo04, Moo2, and Mo powder a t  11 00°C i n  t h e  presence o f  

a f l u x i n g  ma te r ia l  such as cesium molybdate. Without t he  a i d  o f  a 

f l  ux i  ng agent, s i g n i f i c a n t  1 eve1 s o f  unreacted Moo2 remained i n  the  

product .  The 1 a rges t  c r y s t a l s  of  CaMo5o8, however, were ob ta ined from 

a r e a c t i o n  product  which inc luded l o n g  need1 es- of Moo2 as w e l l  as 

unreacted CaMo04. O s c i l l a t i o n  photographs were taken on many o f  these 

CaMosOs c r y s t a l s  . The photographs revealed t h a t  most o f  the  chunk-1 i ke 

specimens were a c t u a l l y  twinned o r  mu1 t i p 1  e c r y s t a l s  . Three apparent ly  

s i n g l e  c r y s t a l s  were found, w i t h  average dimensions o f  0.15 mm/edge, 

and indexed as orthorhombic w i t h  u n i t  c e l l  dimensions o f  a = 14.41 1, 

b = 24.46 1, and c = '9.06 W .  However, t he re  were some . weak . 1 ow-angl e 

r e f l e c t i o n s  v i s i b l e  i n  the  a x i a l  o s c i l  l a t i o n  photographs t h a t  i n d i c a t e d  

the  ex is tence o f  a much l a r g e r  u n i t  c e l l  than the  one c a l c u l a t e d  by the 

i ndexi ng program. 



CONCLUSIONS 

Three new reduced t e r n a r y  ox ides o f  molybdenum have been 

sy nthes i zed. The compounds K2+flo1 201 Na2+x Mo 0 and CaMo508 

con ta in  molybdenum i n  an average o x i d a t i o n  s t a t e  o f  approximately +3. 

With an average o f  t h ree  e lec t rons  per  molybdenum atom a v a i l a b l e  f o r  

metal-metal bonding, these compounds would be expected t o  c o n t a i n  metal 

atom c l u s t e r s  o f  some s o r t .  For example, t he  compound NaMo406 ( 3 ) ,  w i t h  

an average Mo o x i d a t i o n  s t a t e  o f  +2.75, conta ins  i n f i n i t e  chains of 

bonded molybdenum atoms. I n  the  compound Bal , 4M0801 ' (6 ) ,  c o n t a i n i n g  

molybdenum i n  a n e t  ox ida t io 'n  s t a t e  o f  +3.72, d i s c r e t e  te t ramer i c  

molybdenum atom c l  us t e r s  a r e  found. Strong s i rn i l  a r i  t i e s  i n  . t h e  

e l e c t r i c a l  r e s i s t i v i t y  E. temperature curves f o r  NaMo406 and 

Mo 0 suggest a s t r u c t u r a l  r e l a t i o n s h i p  between the  two cornpourids. K2+x 12 19 

However, c r y s t a l  morphology i n d i c a t e s  otherwise;  HaMoq06 grows as l ong  

needles, whi 1 e K2+,Mo1 201 c r y s t a l  1 i zes as hexagonal p l a t e s  . Sing1 e 

c r y s t a l  x-ray d i f f r a c t i o n  data w i  11 be necessary t o  determine the  

s t r u c t u r e s  o f  t he  th ree  new reduced molybdenum oxides repo r ted  here. 
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SUMMARY 

The o r i g i n a l  goal of t h i s  research'  p r o j e c t  was t o  prepare reduced 

so l  i d  s t a t e  molybdenum ox ide  compounds con ta in ing  t r i n u c l  ear  metal atom 

c l u s t e r s  i n  which the number of  e lec t rons  a v a i l a b l e  f o r  molybdenum- 

molybdenum bonding was var ied .  This was accompl ished w i t h  the  

synthesis  o f  L  i Zn2Mo3O8, ScZnMo30g, and Zn3Mo3o8. Metal -centered 

molecular  o r b i t a l s  i n  Mo3013 c l u s t e r s  a re  now known t o  accommodate s i x ,  

seven, and e i g h t  e lec t rons  as observed i n  t h e  compounds Zn2M~308y 

L i  Zn2M~308y and Zn3Mo3O8, r e s p e c t i v e l y .  D i f fe rences between these 

compounds regard ing  Mo-Mo and Mo-0 bond lengths  were r a t i o n a l i z e d  i n  

terms o f  molybdenum-oxygen p i  bonding . i n t e r a c t i o n s  and t h e i r  a f f e c t  on 

the c l u s t e r ' s  molecular  o r b i t a l s .  

I n  t he  course o f  f u r t h e r  research i n  reduced molybdenum ox ide  

chemist ry ,  t he  compound Bal .l 4M0801 6 was synthesized. It i s  t he  f i r s t  

example o f  an ox ide system c o n t a i n i n g  te t ramer i c  metal atom c l  us te rs  , 

and i s  a l s o  the  f i r s t  example o f  a  molybdenum h o l l a n d i t e .  The 

s t r u c t u r e  of Bal 4M~801 was found t o  con ta in  i n f i n i t e  molybdenum-oxide 

c l u s t e r  chains extended p a r a l l e l  w i t h  the  c a x i s .  Four o f  thcse mcta l -  

ox ide  c l u s t e r  chains are  i n t e r l i n k e d  v i a  Mo-0-Mo b r idge  bonding t o  

c rea te  tunnels i n  which the  ~ a ' +  ions  res ide .  There a re  two d i f f e r e n t  

types o f  i n f i n i t e  chains i n  t h i s  compound which c o n t a i n  ~ 0 ~ 0 ~ ' -  and 

~ o ~ 0 ~ ~ ' ~ ~ -  c l  u s t e r  u n i t s ,  r e s p e c t i v e l y .  The f i v e  Mo-Mo bonds i n  t he  

M O ~ O ~ ~  u n i t s  were descr ibed as c o n t a i n i n g  a  t o t a l  o f  t en  e lec t rons  

w i t h  two e lec t rons  per bond; whereas, t he  Mo408 u n i t s  c o n t a i n  



'approximately e i g h t  e lec t rons  d i s t r i b u t e d  i n  3 two-elect ron bonds, and 

2 one-el ec t ron  bonds. The, compound Bal 4M~801 a l s o  e x h i b i t s  a  super- 

l a t t i c e  o rde r ing  o f  barium ions w i t h i n  the  p a r t i a l l y  occupied channels. 

The most i n t e r e s t i n g  ma te r ia l  t o  emerge f rom t h i s  molybdenum- 

ox ide research was the compound NaMo406. The s t r u c t u r e  o f  NaMo40s 

cons is ts  o f  i n f i n i t e  chains o f  bonded molybdenum atom c l  us ters .  These 

chains a re  comprised of c l u s t e r s  of t h e  type Mo6012 fused a t  oppos i te  

edges by removal o f  two edge-bridging oxygen atoms, and shar ing  o f  the 

metal and remaining oxygen atoms between c l u s t e r  u n i t s .  Cross1 i n k i n g  

o f  t h e  i n f i n i t e  chains by Mo-0-Mo bonds prov ides channels para1 1  e l  w i t h  
+ 

the  c  a x i s  i n  which the  Na ions  res ide .  The c o n n e c t i v i t y  w i t h i n  and 

between molybdenum-oxi de c l  us t e r  chains can be represented by the  
- 

formul a t i  on (Mo2t~~0412081 20212)0212 . There a re  t h i r t e e n  e lec t rons  i n  

t h i r t e e n  Mo-Mo bonds i n  every Mo406 repeat  u n i t ;  t h i s  r e s u l t s  i n  an 

average metal-metal bond order  o f  0.5. Each sodium i o n  i s  coord ina ted  

t o  e i g h t  oxygen atoms a t  t h e  corners o f  a  compressed cube. The sodium 
+ 

ions can be p a r t i a l l y  i o n  exchanged w i t h  L i  and K+ i n  mol ten L i C l  and 

KC1 s a l t s  , respective1.y. 

A c o n t i  nuat ion  o f  t h i s  research i n t o  h i g h l y  reduced molybdenum 

oxide compounds l e d  t o  the  p repa ra t i on  o f  Ba0,62M0406 The s t r u c t u r e  

Mo 0  i s  e s s e n t i a l l y  the  same as t h a t  o f  NaMo406, b u t  o f  lower 
O f  Ba0.62 4  6  

. symmetry. C l  u s t e r  chains i n  t he  b a r i  um compound possess an a d d i t i o n a l  

0.24 e lec t rons  per  Mo406 repeat  u n i t .  Barium i o n  o rde r ing  w i t h i n  the  

channels c rea tes  a  super l ' a t t i ce  where the  c a t i o n s  a r e  pos i t i oned  i n  a  

manner t h a t  minimizes 6 a 2 + - ~ a ~ +  e l e c t r o s t a t i c  repu ls ions .  



The syntheses and partial  characterizations of the compounds 

Mo 0 and CaMoSOs were also discussed. K2+xM012019' 'la2+x 12 19' 

Unfortunately, crystal  structures for  these compounds have not ye t  

been determined. 

The research presented above has uncovered several new and 

interest ing sol-id s t a t e  compounds,'and has opened the door to  some 

exciting reduced molybdenum-oxide chemistry. There can be .l i t t l  e 

doubt that  the future holds many more surprising resu l t s  as research 

in th i s  area continues. 
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