

PHYSICAL PROPERTIES OF EXPLOSIVES

This work is for the development of testing methods and determination of physical properties of H.E. formulations.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Glenn W. Neff

Quarterly Report for January, February, March, 1964

Engineering Order No. 814-00-003

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

ABSTRACT

An eight-cycle bulk compliance test on LX-04-1 produced a gain in density of 0.017 gm/cc from an average starting density of 1.858 gm/cc, net gain of .810 gm/cc after one month storage.

A group of tensile specimens were tested on three test machines in three locations (Baldwin at LRL, Instrom in Pantex Engineering and Tinius Olsen in Pantex Development), using specimens from a single pressing. The tests showed that these machines are able to produce similar results and are not extremely operator sensitive.

It has been determined that LX-04-1 will not flow well enough at a loading of 50 psi to produce orientation grooves for pents.

A tabulation of density, tensile strength, strain at ultimate stress, granule size and HMX particle size has been compiled for evaluating the several powder lots of LX-04-1 which have been used.

Density and tensile strength appear to be better when PBX 9404 is pressed in the 300-ton (ram) press than it was for the same lot of material which was pressed in the 20-inch hydrostatic press.

PREVIOUS APPLICABLE WORK

Bulk compliance tests reported previously have depended on an operator to measure changes of specimen length during the temperature cycling. This

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

limitation required stopping the cycles for off-shifts and weekends or limiting the number of measurements which were practical. Therefore, a stop-motion camera has been employed to obtain continuous readings.

Some questions arose about the comparability of the test information obtained from different testing machines on viscoelastic materials, which led to the comparison described in this report.

Testing was started last quarter to determine if LX-04-1 will flow into unpressured voids when most of the surface is under mild pressure. Dead weight loading was tried, but proved to be bulky for the loading required and was discontinued until the hydraulic system of this report could be obtained.

DISCUSSION

Bulk Compliance of LX-04-1

An eight-cycle test of the bulk compliance of three samples from one lot (SR 49-63) of LX-04-1 at 16°F/hr temperature change was completed using the stop-motion camera for recording changes at 5-minute intervals. This is intended to be the first of several such tests using different rates of temperature change to determine quickest cycle for obtaining maximum density, and to define lot differences. The record of this run indicates that a longer dwell than one hour at the extreme temperatures is required for the LX-04-1 to reach maximum dimensional change; however, each of the 3 specimens gained .017 gm/cc in density in this test and gave an average bulk compliance of 9×10^{-8} .

The bulk compliance test run this quarter was the most successful of any which

has been tried to date. An accurate set of measurements was made of the initial deformation of the LX-04-1 during loading to 800 psi which indicated an average reduction in length of .0239"/6" specimen. This is mathematically equal to a densification of .0062 gm/cc. Dial indicators were mounted on the units as quickly as possible after loading to permit continuous readings of changes in the specimen's length.

The temperature-controlling cam was allowed to run continuously throughout this test, so time is a less important consideration than in past tests; the data (see Figure 1) show dimensional and density changes as a function of chamber temperature for each cycle. The average density at the start was 1.858 gm/cc and was 1.875 gm/cc after removal from confinement. The length immediately before unloading was 5.942 inches from an initial length of 5.999 inches; after one month, the length had grown to 5.963 inches and the density reduced to 1.868 gm/cc. Table I gives a summary of this test.

Table I
Bulk Compliance Summary

Spec. Lot No.	Bulk Comp. (psi) ⁻¹	Retained Length Change		Initial Lgth. (inch)	Density Just After 1 Mo. (gm/cc)	Density After 1 Mo.	
		Loaded (inch)	Change (inch)			Unloading	Unloaded
7	SR-49-63 11×10^{-6}	-.057	-.035	1.858	1.875	1.868	
10	SR-49-63 8×10^{-6}	-.058	-.036	1.858	1.875	1.868	
14	SR-49-63 8×10^{-6}	-.060	-.037	1.859	1.876	1.869	

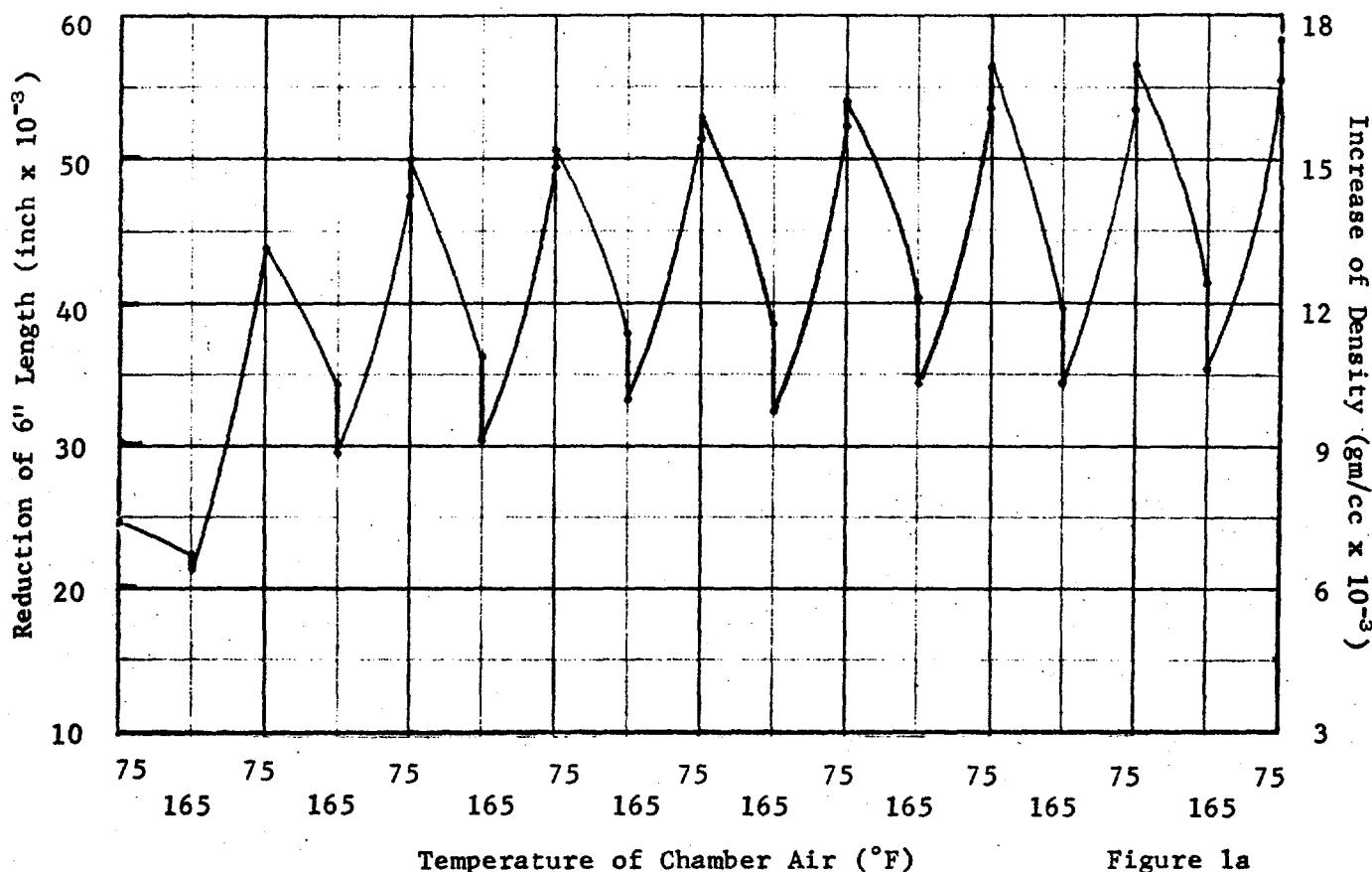


Figure 1a

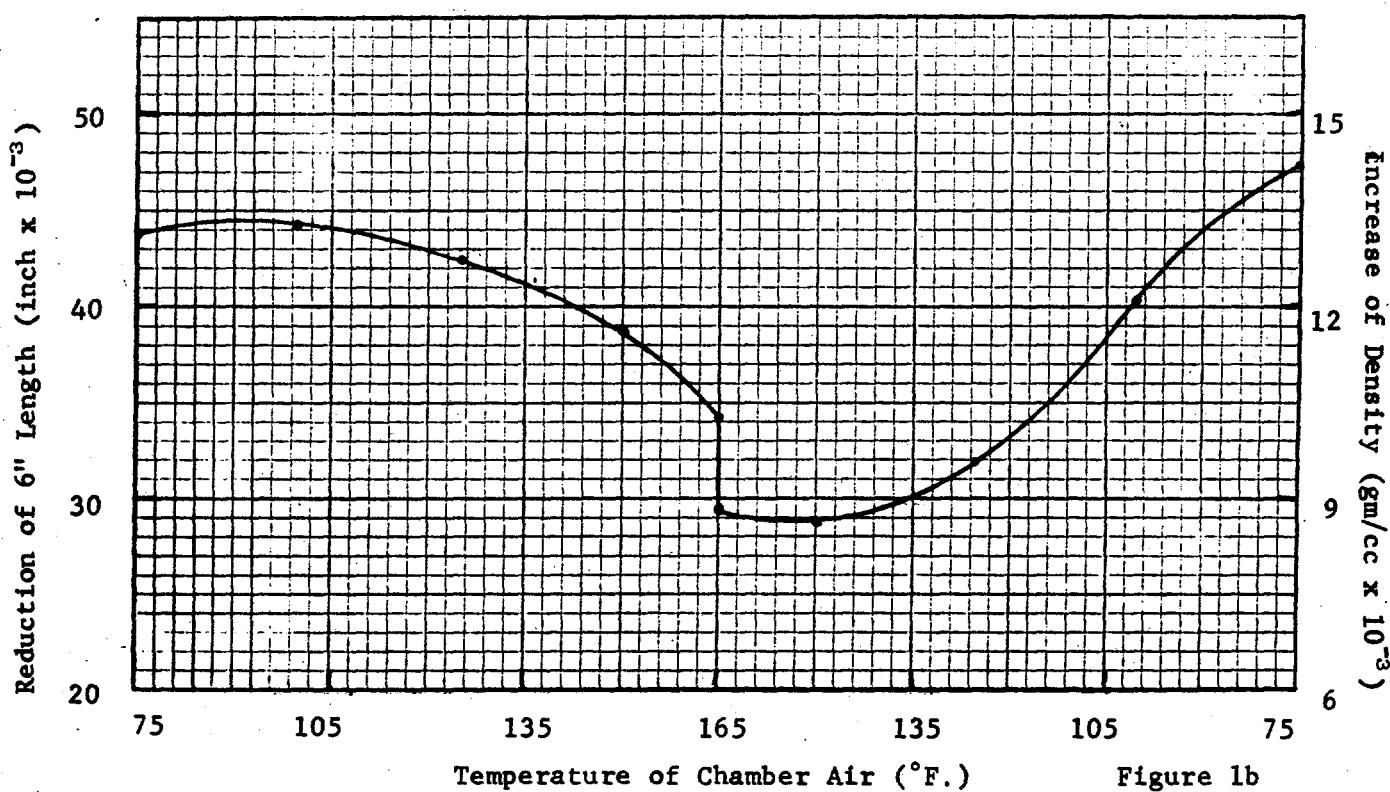


Figure 1b

One Typical Cycle

Test Machine Comparison

A series of tensile tests was performed using the Baldwin tester at LRL, the Instron tester in the Pantex Process Engineering group, and the Tinius Olsen tester in the Pantex Development Group, to determine whether the three different machines will give comparable data using common material at similar speeds and temperatures. Also, the variations arising from use of different extensometers and different operators were evaluated in this series.

The comparison was composed of 20 tensile specimens which were tested on each of the 3 testing machines at the same time. All of the specimens were fabricated from a single pressing of LX-04-1 from Lot SR-154-63 by the Pantex Development group. All were simultaneously dried five days in desiccant and tested at 73°F and .005"/min. crosshead speed on March 25 and March 26.

The measured strengths and strains at ultimate for this evaluation are shown in Table II and it does not appear to matter which machine is used as all values are quite similar. Differences due to operator, machine, and extensometer are all statistically insignificant. Average values of stress and strain of all test groups fell within a common statistical population.

Table II

Test Machine Comparison

Development				Process				LRL			
Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)
Tested 3-25-64				Tested 3-26-64				Tested 3-26-64			
Pantex Extensometer With Operator 1	26 23 59	431 426 426	4240 5070 4470	15 33 18	413 422 425	5570 5070 4800	13 19 22*	438 436 431	5260 4470 4310		
	2 38	413 426	4320 4410	55 45	434 425	4720 5460	37 50	435 446	4270 4190		
	\bar{x}	424	4500	424	424	5120	437	4500			
	σ	8	370	8	430	560	6	490			
Tested 3-25-64				Tested 3-26-64				Tested 3-26-64			
Pantex Extensometer With Operator 2	44 8 5 56 14	438 428 433 429 413	4620 5110 4300 4470 3470	24 3 27 30 6	418 420 406 424 420	5010 4790 6090 5480 5260	4* 28 43 46 58	437 433 430 440 433	4580 4600 4870 4590 4570		
	\bar{x}	428	4390	418	5330		435	4640			
	σ	10	670	8	560		4	140			
Tested 3-26-64				Tested 3-26-64				Tested 3-25-64			
LRL Extensometer With Operator 1	41 20 32 35 29	418 401 422 420 420	4120 4120 4160 4780 4300	12 51 42 57 36	418 429 427 434 435	4220 4390 3630 4290 4110	7 31 34 47*	428 420 430 434 430	4200 5040 4580 3670 4330		
	\bar{x}	416	4300	429	4130		428	4360			
	σ	10	320	8	330		6	570			

Table II
(Continued)

Development				Process				LRL			
Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)	Specimen Number	Ultimate Stress (psi)	Strain @ Ultimate (με)
Tested 3-26-64				Tested 3-26-64				Tested 3-25-64			
LRL	11	414	4560	39	427	4210	1	433	4190		
Extensometer	52	435	4140	21	412	4970	10	419	4110		
With	17	409	3840	60	430	4420	16	422	4490		
Operator 2	54	411	3340	48	434	4170	25	423	5150		
				9	424	4520	40	427	4520		
X		417	3970		425	4460		425	4490		
σ		17	600		9	360		6	460		

*outer surface was rough

Flowability of LX-04-1

A static load was applied to LX-04-1 to determine whether or not it would flow into a keyway type slot when subjected to a long-term, mild pressure. Pressure was increased from 21 psi last quarter to 50 psi this quarter and maintained for three days with no measurable flow occurring.

The first attempt to obtain flow was tried using 520 lbs. of dead weights resting on an assembly consisting of a 5" x 5" x 3/8" block of Plexiglas with a 0.010-inch deep x 0.120-inch wide slot extending completely across the center of the bottom surface which rested on a 5" x 5" x 1½ inch thick piece of LX-04-1 from Lot SR-51-63 and was supported on a surface plate. This loading was continued for two weeks at room temperature without any detectable flow having taken place, so the method of loading was abandoned due to the volume of weights required to obtain further increase in loading.

At this point, a frame was acquired which permitted the use of an air-operated hydraulic jack to create 1250 lbs. of load on the Plexiglas - H.E. assembly or 50 psi over the entire area. This loading was maintained for three consecutive days at room temperature with no detectable ridge being formed on the LX-04-1 and so it was decided that LX-04-1 will not flow under conditions which are now practically obtainable and testing was discontinued. If interest remains, trials could be made at moderately elevated temperature (say 150°F).

LX-04-1 Evaluation Data

This tabulation of available LX-04-1 data was begun at the request of LRL to gather as much information as possible in one place in order to determine which

variables need to be controlled to obtain consistently good material. The data will not be complete so long as the material is in constant use, but will be added to as rapidly as information becomes available.

Table III is made up of tensile test results from both LRL and Pantex, chemical analysis, particle and granule size from Holston and Pantex.

300-Ton (Ram) Press

The 300-ton press has been reactivated and the billets produced of PBX 9404 (Lot SR 618-GG-62). As others have often found, the ram press yielded significantly higher density. The billets had a density of 1.850, σ .001 gm/cc, while material from the same lot pressed in the 20-inch hydrostatic press had a density of 1.840, σ .002 gm/cc. As one would expect, the higher density material seemed to have a slightly greater tensile strength when tested, although this difference is statistically insignificant. The data are shown in Table IV.

LX-04-1 pressings have also been made in the 300-ton press, but test results are not available at this time.

TABLE IV
TENSILE TEST OF 300-TON PRESSINGS

<u>PBX 9404</u> <u>LOT NUMBER</u>	<u>PRESS</u>	<u>TENSILE ULTIMATE (psi)</u>	<u>STRAIN AT ULTIMATE (μ ϵ)</u>	<u>SPECIMEN DENSITY (gm/cc)</u>	<u>AVERAGE CORE DENSITY (gm/cc)</u>
SR-618J-62	300 Ton	344	1280	1.852	1.850 σ .001
SR-618J-62	300 Ton	<u>365</u>	<u>2320</u>	1.852	
	Mean	355	1800		
SR-618GG-62	300 Ton	416	1980	1.852	1.850 σ .001
SR-618GG-62	300 Ton	422	2800	1.852	
SR-618GG-62	300 Ton	440	1900	1.853	
SR-618GG-62	300 Ton	<u>371</u>	<u>2760</u>	1.847	
	\bar{X} =	412	2360		
	Std. Dev.	34	580		
SR-618GG-62	20 Inch	380	2130	1.841	1.840 σ .002
SR-618GG-62	20 Inch	371	2360	1.841	
SR-618GG-62	20 Inch	<u>332</u>	<u>2240</u>	1.841	
	\bar{X} =	361	2240		
	Std. Dev.	31	140		

New Equipment

The 20,000-pound, tri-mode, closed loop test machine which was purchased from Research Inc. of Minneapolis, Minn. has been installed and adjusted and is ready to use as soon as the operator can become familiar enough with it. The environmental chamber for use with this tester is in place and will be connected soon to allow full temperature range testing to be accomplished in the near future.

The recording system for measuring linear coefficient of thermal expansion which was purchased from LaClare Instrument Co. has been completely rebuilt and ~~rearranged as possible in one place~~ ~~and~~ ~~rearranged as possible in one place~~ ~~and~~ ~~determine which~~ at Pantex. This work has removed the temperature-strain cross-feed problems

completely and improved the system design.

Tooling has been received from LRL for testing the compressive creep of various H.E.'s at Pantex. This equipment will be modified as required to permit using lead weights for loading rather than the tuballoy which was available at LRL but is not at Pantex. Proper use of the equipment depends on how quickly a building can be rehabilitated for proper isolation, temperature, and humidity controls.

FUTURE WORK; COMMENTS; CONCLUSIONS

More bulk compliance testing will be done using additional specimens from the same pressing as those reported at this time. Different rates of temperature change will be used to determine if the speed of densification can be increased. The stop-motion camera will again be used to furnish a continual record of the entire run. This method is especially good because it will show clearly if any irregularities occur in the temperature cycle even during an unworked shift. Lot differences can then be determined in practical lengths of time.

The testing herein reported is fairly conclusive evidence that the results obtained from the Tinius Olsen, Instron, and the Baldwin testing machines may be regarded as interchangeable. It also shows that the machines are capable of producing reliable data for more than one operator and that with careful calibration, either the Pantex or the LRL extensometer will record equivalent strain values.

Since LX-04-1 did not flow at 50 psi loading for 3 days, it may be assumed

that it will not flow without considerably more load being added, unless temperature is increased.

The LX-04-1 data chart in this report will be kept current with the addition of new information as it becomes available and copies of the latest data may be obtained on request.

Apparently, the 300-ton (ram) press will produce higher density PBX 9404 billets than the 20,000 psi hydrostatic press using material from the same powder lot. Billets of LX-04-1 have also been made in the 300-ton press and will be tested soon.

Measurements will be made of the linear coefficient of thermal expansion with specimens of LX-04-1 from various lots of material which have been used by the Development Group as soon as the recording system is checked out for accuracy and installed.

EVALUATION DATA FOR LX-04-1

LOT NO.	INCH BATCH NO.	ROUGH DENSITY (gm/cc)	FINISHED DENSITY (gm/cc)	TENSILE ULTIMATE (PSI)	STRAIN AT ULTIMATE (%)	STRAIN AT COMP. HOLE/PX (%)	INCH PARTICLE SIZE (cumulative % retained) Pontex	Holtson										MEDIAN SIZE
								% INCH 1/16 in	21/32	125 $\frac{1}{2}$	47 $\frac{1}{2}$	30 $\frac{1}{2}$	20 $\frac{1}{2}$	10 $\frac{1}{2}$	8 $\frac{1}{2}$	6 $\frac{1}{2}$	4 $\frac{1}{2}$	
SR-388-62	BF-520	1.866					1/85	15		34	57	70	73	79				50
SR-461-62	BF-579	1.859	1.857	2351	4129		85	15		28	40	56	60	70				37
SR-583-62	BF-674	1.855	1.854	303*	2770*		85	15		28	44	55	68	84				36
SR-584-62	BF-675	1.861**	1.854	292*	4010*		85	14		21	47	60	74	86				41
SR-585-62	BF-677	1.863	1.860	137*	1706*		86	14	4	16	37	50	56	63	80			43
SR-586-62	BF-675	1.864	1.858	232	2590		85	15	1	9	25	42	56	58	82			36
SR-672-62	BF-906	1.863					85			11	38	58	67	76	90			51
SR-673-62	BF-906	1.864**	1.864	238	3299		85	15	1	11	38	58	67	76	90			51
SR-686-63	BF-977	1.867(6)**	1.866(5)	250	3010		85	15	1	8	25	38	55	64	73			34
SR-693-63	BF-985	1.865(2)	1.864(4)**	305	3360		85	15	1	6	19	37	42	52	57			34
SR-505-63	BF-993	1.864(4)**	1.862(4)	110	110		85	15	2	12	27	38	53	60	66			36
SR-511-63	BF-1003	1.866(6)**	1.864(7)	364	4270		85	15	3	13	29	51	57	66	75			39
SR-844-63		1.852(2)		110	4060		85	15	2	12	29	47	56	62	80			
SR-102-63	BF-1067	1.866(6)**	1.869(6)	341	2760		86	14	9	31	46	54	59	82				40
SR-103-63	BF-1069	1.868(4)	1.863(5)	442	4030		85	15										
SR-152-63		1.860(1)	1.858(2)	432	4370		85	15										
SR-153-63		1.859(4)	1.853(2)	393	4120		85	15										31
SR-154-63		1.849(3)	1.856(2)	434	3320		85	15	2	12	26	38	51	67	84			31
SR-155-63		1.853(4)**	1.856(2)	43	3320		85	15	2	12	26	38	51	67	84			45
SR-156-63		1.850(5)	1.857(2)	448	3260		85	15	2	12	26	38	51	59	69	87		
SR-157-63							85	15	2	12	35	52	59	69	87			45
SR-164-63		1.852	1.846(17)															37
SR-193A-63																		
SR-198-63																		
SR-4A-64																		45
SR-5A-64																		39
SR-6A-64																		35
** VALUES OBTAINED FROM LRL TESTING OF EVALUATION																		
** REPRESSED																		
SAMPLES	NUMBERS	IN PARENTHESIS () INDICATE THE NUMBER OF SPECIMENS REPRESENTED																