

LA--9984-T

DE84 008370

**NOTICE**  
**PORTIONS OF THIS REPORT ARE ILLEGIBLE.**

**It has been reproduced from the best  
available copy to permit the broadest  
possible availability.**

## **The Potential Effects of Hydrogen Sulfide Gas from Geothermal Energy Conversion on Two Plant Species Native to Northern New Mexico**

Gilbert Joe Gonzales\*

### **DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

\* Division of Science and Mathematics, New Mexico Highlands University, Las Vegas, NM 87701.

# Los Alamos

Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## TABLE OF CONTENTS

|                                                              | Page |
|--------------------------------------------------------------|------|
| List of Tables.....                                          | vii  |
| List of Appendix Tables.....                                 | ix   |
| List of Figures.....                                         | x    |
| INTRODUCTION.....                                            | 1    |
| Background.....                                              | 1    |
| Study Objectives.....                                        | 5    |
| The Experimental Area.....                                   | 6    |
| LITERATURE REVIEW.....                                       | 8    |
| Introduction.....                                            | 8    |
| Chemical Behavior of H <sub>2</sub> S in the Atmosphere..... | 9    |
| H <sub>2</sub> S Uptake and Exchange by Plants.....          | 9    |
| H <sub>2</sub> S Uptake and Plant Resistance.....            | 12   |
| Responses of Higher Plants.....                              | 15   |
| MATERIALS AND METHODS.....                                   | 21   |
| Plant Growth and Care.....                                   | 21   |
| Experimental Procedures.....                                 | 21   |
| Experimental Design and Statistical Analyses.....            | 28   |
| Leaf Chlorophyll Content.....                                | 29   |
| Percent Water.....                                           | 31   |
| Yield.....                                                   | 31   |
| Leaf Nitrogen Content.....                                   | 32   |

|                                                                  | Page |
|------------------------------------------------------------------|------|
| RESULTS.....                                                     | 33   |
| Dry Weight of Topgrowth.....                                     | 33   |
| Little Bluestem.....                                             | 33   |
| Mountain Brome.....                                              | 36   |
| Water Content of Topgrowth.....                                  | 40   |
| Little Bluestem.....                                             | 40   |
| Mountain Brome.....                                              | 45   |
| Leaf Nitrogen Content.....                                       | 46   |
| Little Bluestem.....                                             | 46   |
| Mountain Brome.....                                              | 51   |
| Leaf Chlorophyll Content.....                                    | 55   |
| Little Bluestem.....                                             | 57   |
| Effects of exposure time.....                                    | 57   |
| Reductions in chlorophyll during a 4-h<br>fumigation period..... | 64   |
| Exposure interactions.....                                       | 64   |
| Air temperature interaction.....                                 | 65   |
| Plant response relationships.....                                | 68   |
| Mountain Brome.....                                              | 72   |
| Effects of exposure time.....                                    | 72   |
| Exposure interactions.....                                       | 77   |
| Air temperature interaction.....                                 | 77   |
| Plant response relationships.....                                | 80   |

|                                                                      | Page |
|----------------------------------------------------------------------|------|
| DISCUSSION.....                                                      | 85   |
| SUMMARY AND CONCLUSIONS.....                                         | 93   |
| Summary.....                                                         | 93   |
| Objectives.....                                                      | 93   |
| Literature review.....                                               | 93   |
| Materials and methods.....                                           | 94   |
| Results.....                                                         | 94   |
| Conclusions and Recommendations.....                                 | 98   |
| Little bluestem.....                                                 | 98   |
| Mountain brome.....                                                  | 100  |
| Exposure time and air temperature interactions.....                  | 100  |
| Evaluation of potential ecological and economic<br>consequences..... | 101  |
| Level of Abatement.....                                              | 102  |
| Quality Standards.....                                               | 103  |
| Synergistic effects of air contaminants.....                         | 103  |
| LITERATURE CITED.....                                                | 105  |
| APPENDIX: Analysis of Variance Tables.....                           | 110  |

## LIST OF TABLES

| <u>Table</u> |                                                                                                                                                                                                                                                                                                                    | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1            | Comparisons among dry weight means of little bluestem plants using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.....       | 35          |
| 2            | Comparisons among dry weight means of mountain brome plants using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.....        | 39          |
| 3            | Comparisons among water content means of little bluestem plants using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.....    | 42          |
| 4            | Comparisons among water content means of mountain brome plants using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.....     | 47          |
| 5            | Comparisons among nitrogen content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight week period. Any two means underscored by the same line are not significantly different at the 95% confidence level..... | 50          |
| 6            | Comparisons among nitrogen content means of mountain brome leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight week period at the 95% confidence level.....                                                                              | 54          |

| <u>Table</u>                                                                                                                                                                                                                                                                                                            | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7 Comparisons among chlorophyll content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 60 h over a three-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.....   | 59          |
| 8 Comparisons among chlorophyll content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 80 h over a four-week period.....                                                                                                            | 60          |
| 9 Comparisons among chlorophyll-content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 100 h over a five-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.....   | 61          |
| 10 Comparisons among chlorophyll content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over a seven-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level..... | 62          |
| 11 Comparisons among chlorophyll content means of mountain brome leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 120 h over a six-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.....    | 75          |
| 12 Comparisons among chlorophyll content means of mountain brome leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H <sub>2</sub> S for a total of 140 h over an eight-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level..... | 76          |
| 13 Generalized pattern of plant processes or responses to increasing hydrogen sulfide levels under optimal or near-optimal environmental conditions.....                                                                                                                                                                | 87          |

LIST OF APPENDIX TABLES

| <u>Table</u> |                                                                                                                                | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|
| 14           | ANOVA for dry weight data of little bluestem fumigated for 140 h.....                                                          | 111         |
| 15           | ANOVA for dry weight data of mountain brome fumigated for 140 h.....                                                           | 111         |
| 16           | ANOVA for water content of little bluestem top-growth data fumigated for 140 h.....                                            | 112         |
| 17           | ANOVA for water content of mountain brome top-growth data fumigated for 140 h.....                                             | 112         |
| 18           | ANOVA for leaf nitrogen content data of little bluestem fumigated for 140 h.....                                               | 113         |
| 19           | ANOVA for leaf nitrogen content data of mountain brome fumigated for 140 h.....                                                | 113         |
| 20           | ANOVA for leaf chlorophyll content data of little bluestem fumigated for 60 h.....                                             | 114         |
| 21           | ANOVA for chlorophyll content data of little bluestem leaves fumigated for 80 h.....                                           | 114         |
| 22           | ANOVA for chlorophyll content data of little bluestem leaves fumigated for 100 h.....                                          | 115         |
| 23           | ANOVA for chlorophyll content data of little bluestem leaves fumigated for 140 h and for spectrophotometer sampling error..... | 115         |
| 24           | ANOVA for chlorophyll content data of mountain brome leaves fumigated for 60 h.....                                            | 116         |
| 25           | ANOVA for chlorophyll content data of mountain brome leaves fumigated for 80 h.....                                            | 116         |
| 26           | ANOVA for chlorophyll content data of mountain brome leaves fumigated for 120 h.....                                           | 117         |
| 27           | ANOVA for chlorophyll content data of mountain brome leaves fumigated for 140 h.....                                           | 117         |

## LIST OF FIGURES

| <u>Figure</u>                                                                                                                                                                      | <u>Page</u> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1    Regional location of the Baca Location No. 1 Land Grant and the proposed plant site.....                                                                                      | 2           |
| 2    Diagrammatic representation of gaseous $H_2S$ and $CO_2$ uptake by a plant stoma.....                                                                                         | 11          |
| 3    An open-top field-fumigation chamber for exposing plants to controlled levels of gases.....                                                                                   | 22          |
| 4    A flow diagram of $H_2S$ plus ambient air.....                                                                                                                                | 24          |
| 5    A diagram showing the spatial relationship between fumigation chambers and surrounding vegetation.....                                                                        | 25          |
| 6    Mean plant dry weight of mountain brome and little bluestem topgrowth after fumigations with $H_2S$ for 140 h over an 8-week period.....                                      | 34          |
| 7    Fitted regression curves for plant dry weight of topgrowth data of little bluestem (Curves A and B) and mountain brome (Curve C) after 140 h of fumigations with $H_2S$ ..... | 37          |
| 8    Mean plant water content of little bluestem and mountain brome topgrowth after fumigations with $H_2S$ for 140 h over an 8-week period.....                                   | 41          |
| 9    Mean plant water content and plant dry weight of little bluestem topgrowth after fumigations with $H_2S$ for 140 h over an 8-week period.....                                 | 43          |
| 10   Mean water content and dry weight of mountain brome topgrowth after fumigations with $H_2S$ for 140 h over an 8-week period.....                                              | 48          |
| 11   Mean total-nitrogen content of mountain brome and little bluestem leaves after fumigations with $H_2S$ for 140 h over an 8-week period.....                                   | 49          |
| 12   Mean plant water content of topgrowth and leaf nitrogen content of little bluestem and mountain brome after fumigation with $H_2S$ for 140 h over an 8-week period.....       | 52          |

| <u>Figure</u> |                                                                                                                                                                         | <u>Page</u> |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 13            | Mean leaf nitrogen content and dry weight of top-growth of little bluestem after fumigations with H <sub>2</sub> S for 140 h.....                                       | 53          |
| 14            | Mean leaf nitrogen content and plant dry weight of topgrowth of mountain brome after fumigations with H <sub>2</sub> S for 140 h.....                                   | 56          |
| 15            | Mean leaf chlorophyll content of little bluestem after 3,4,5 and 7 weeks of H <sub>2</sub> S fumigations.....                                                           | 58          |
| 16            | Change in leaf chlorophyll content of little bluestem as total H <sub>2</sub> S fumigation time increased.....                                                          | 66          |
| 17            | Change in ambient air temperature and leaf chlorophyll content of little bluestem as total H <sub>2</sub> S fumigation time increased.....                              | 67          |
| 18            | Mean water content of topgrowth and leaf chlorophyll content of little bluestem and mountain brome fumigated with H <sub>2</sub> S for 140 h over an 8-week period..... | 69          |
| 19            | Mean total-nitrogen and total-chlorophyll content of little bluestem leaves fumigated with a range of H <sub>2</sub> S gas (in ppm).....                                | 70          |
| 20            | Mean leaf chlorophyll content and dry weight of topgrowth of little bluestem plants fumigated with a range of H <sub>2</sub> S for 140 h.....                           | 71          |
| 21            | Mean leaf chlorophyll content of mountain brome after 3,4,6 and 7 weeks of H <sub>2</sub> S fumigations.....                                                            | 74          |
| 22            | Changes in leaf chlorophyll content of mountain brome as total fumigation time increased.....                                                                           | 78          |
| 23            | Changes in ambient air temperature and leaf chlorophyll content of mountain brome as total H <sub>2</sub> S fumigation time increased.....                              | 79          |
| 24            | Mean total-nitrogen and total-chlorophyll content of mountain brome leaves fumigated for 140 h with H <sub>2</sub> S.....                                               | 81          |
| 25            | Mean plant dry weight of topgrowth and leaf chlorophyll content of mountain brome fumigated with H <sub>2</sub> S for 140 h.....                                        | 82          |

| <u>Figure</u> |                                                                                                                                              | <u>Page</u> |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 26            | Mean total-chlorophyll content of mountain brome<br>and little bluestem leaves fumigated with $H_2S$<br>for 140 h over an 8-week period..... | 84          |

ABSTRACT

THE POTENTIAL EFFECTS OF HYDROGEN SULFIDE GAS FROM GEOTHERMAL  
ENERGY CONVERSION ON TWO PLANT SPECIES NATIVE TO  
NORTHERN NEW MEXICO

BY

GILBERT JOE GONZALES, B.S., M.S.

Doctor of Philosophy in Range Science

New Mexico State University

Las Cruces, New Mexico, 1982

Dr. Rex D. Pieper, Chairman

Dry weight of topgrowth, water content of topgrowth, leaf nitrogen content, and leaf chlorophyll content were measured in well-watered, field-exposed little bluestem (Schizachyrium scoparium Nash.) and mountain brome (Bromus marginatus Nees.) plants fumigated with various mean levels of  $H_2S$  ranging from 0.05 to 3.58 ppm. The youngest fully expanded leaves were sampled for chlorophyll content after 60, 80, 100, and 140 and 60, 80, 120, and 140 h total of fumigation for little bluestem and mountain brome, respectively. All other responses were measured after 140 h total of fumigation.

The plants received a 7-day fumigation-free period prior to the seventh week (140 h) of fumigations.

Dry weight of little bluestem plants which received low concentrations of  $H_2S$  (0.11 ppm) increased by 94% of the control. Dry weight of little bluestem plants which received higher concentrations of  $H_2S$  (0.12 to 0.48 ppm) was reduced to the control level. At the highest  $H_2S$  concentration (2.39 ppm) dry weight of little bluestem was reduced by 44% of the control. There was no evidence that the reduction in nitrogen content (38%) at low  $H_2S$  levels ( $\leq 0.11$  ppm) was detrimental to plant growth. The productivity increase at these low concentrations may have been partially due to increases in leaf chlorophyll content (28%) and decreases in water content (16%). The linear dependence of dry weight on leaf chlorophyll content diminished as  $H_2S$  stress increased. The productivity increase may have partially reflected the usage of sulfur from  $H_2S$  as a nutrient source.

Mountain brome was relatively unaffected at the different concentrations of  $H_2S$  until 3.58 ppm  $H_2S$  was received where dry weight was reduced by 37% of the control.

There was evidence that changes in leaf chlorophyll content as total exposure time increased was partially due to air temperature changes. The decline of leaf chlorophyll content for both little bluestem and mountain brome appeared to be elastic strain because fumigated plants recovered to control or above-control levels. The mechanisms behind  $H_2S$ -caused stimulation or inhibition of chlorophyll synthesis or destruction of chlorophyll are complex.

## INTRODUCTION

### Background

Geothermal energy, although not benign, is a desirable alternative to dependency upon other finite and relatively more environmentally harmful energy conversion sources (Joyce and Fontes, 1978). However, as with most energy technology developments, environmental effects must be anticipated.

One area of potential geothermal development is within the Valles Caldera at the Baca Location about 30 km west of Los Alamos, New Mexico (Fig. 1) where a considerable amount of exploration has already occurred. The Baca Known Geothermal Resource Area (KGRA) has been estimated by the Department of Energy (1979) to have a potential electric generation capacity of approximately 400 megawatts. In 1978 Union Oil Company, the Public Service Company of New Mexico, and the Department of Energy announced their plans to construct a demonstration 50-megawatt, liquid-dominated, hydrothermal power plant at the Baca Location (U.S.D.O.E., 1979). Since then, they have discontinued the project and have placed the geothermal energy exploration and development rights up for bid.

A major concern at many existing hydrothermal power plants is the release of hydrogen sulfide ( $H_2S$ ) gas into the surrounding region and its effects on vegetation. Similar problems will be encountered at most planned hydrothermal power plants (Anspaugh and Phelps, 1978).

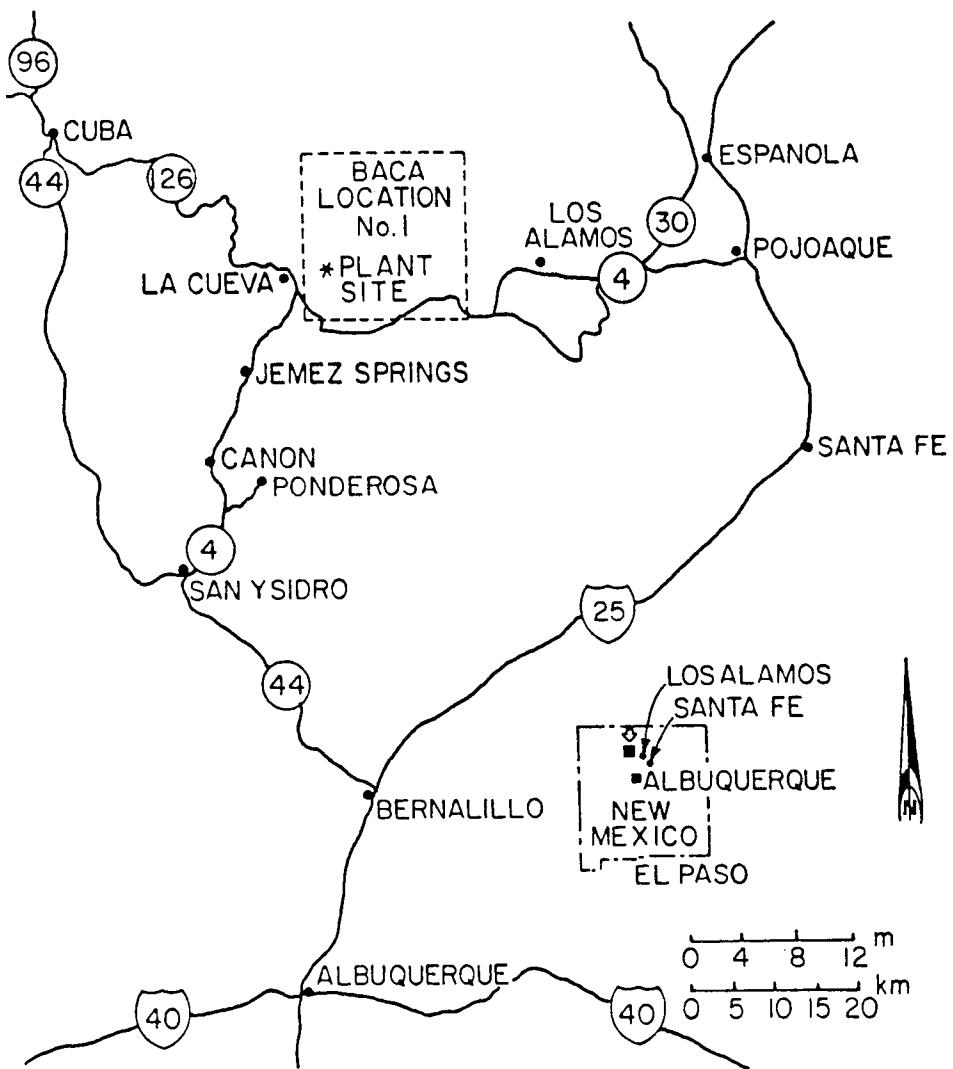



Fig. 1. Regional location of the Baca Location No. 1 Land Grant and the proposed plant site and surrounding well field.  
 Source: Mountain West Research, Inc. Socioeconomic Analysis for the Proposed Baca Geothermal Project, 1979.

$H_2S$  is a noncondensable gas (Joyce and Fontes, 1978) associated with geothermal steam, which, if permitted to collect in low or confined areas, can be lethal to plants (Axtmann, 1975). However,  $H_2S$  can also produce stimulatory effects on plant growth (Shinn et al., 1977) which may be beneficial in many areas.

To a large extent,  $H_2S$  will be removed from the Baca Geothermal Fluid by an abatement process; however, the exact amount is questionable. The Department of Energy (1979) predicted that after  $H_2S$  abatement, normal power plant operation would result in atmospheric  $H_2S$  levels of approximately 2 parts per billion (ppb) at the Baca Boundary. Joyce and Fontes (1978) reported that, of the  $H_2S$  abatement technologies available at the Geysers, only one was in full-scale operation, and with unsatisfactory results. Thus, significant amounts of  $H_2S$  are typically contained in the noncondensable gases released by hydrothermal power plants (Anspaugh and Phelps, 1978).

Sterns-Roger Incorporated (1979) projected that the potential highest 1-h average ground-level  $H_2S$  concentration within the Baca KGRA would be about 83 ppb. However, in an earlier report Gonzales (1980) discussed the possibility that expansion of power plant capabilities and contributions of naturally occurring  $H_2S$  could result in ground-level  $H_2S$  concentrations of 0.26 parts per million (ppm) and also, that temperature inversions, confinement pockets, and abatement system failure could elevate the estimated concentration even further.

These concentration levels have produced significant measurable effects on crop and forest plants (Shinn et al., 1976; Thompson and Kats, 1978; Coyne and Bingham, 1978). However, plant species differ widely in susceptibility to  $H_2S$  (Mudd, 1979) depending on genetic variability (Bradshaw, 1976), environmental interactions (Omrod, 1978) and other factors.

From an economic standpoint, the use of geothermal energy and resultant releases of  $H_2S$  near natural vegetation may have impact not only on timber production as once thought but on other economic values including livestock carrying capacity, watershed protection, recreational use, wildlife habitat, species diversity, and aesthetic use (Bradshaw, 1976). The Valles Caldera Region certainly stands to be affected in one or all of these values through changes in native plants. Determination of the potential effects of  $H_2S$  on vegetation native to the prospective KGRA would allow estimations to be made of the potential for impact gain or loss incurred by the public. Thus, potential effects on vegetation and the resulting economic impact of geothermal sources should be determined before tapping such sources (Mudd, 1979).

Few authors have examined the long-term effects of wide ranges of  $H_2S$  concentrations on native species of plants under field conditions. Crop plants, which are used more commonly in fumigation studies than native species, may be less useful for developing the capacity to predict  $H_2S$  resistance because "crop plants generally have a narrow range of stomatal conductance values which is the result of being adapted to a continual supply of water" (Winner and

Mooney, 1980, p. 290). Thus, the experimental utilization of native species will yield important predictive capabilities including (1) the determination of the tolerance levels of different native species to different levels of  $H_2S$ ; (2) input to the critical review of air quality standards; (3) input to considerations of the evaluation of  $H_2S$  control strategies and abatement systems; and (4) input to the evaluation of potential  $H_2S$  impacts based upon changes in  $H_2S$  emissions (Winner and Mooney, 1980).

Given this situation there is a need for further study of the effects of  $H_2S$  on native vegetation. Reporting the results of such a study may help to alleviate some of the recent opposition to geothermal development in the Baca KGRA and may contribute to the development of a geothermal program that would allow a compromise among the energy industries, other economic sectors, and the public. This study supports this concept through the pursuit of the objectives discussed below.

### Study Objectives

The overall objective of this study was to determine the responses of the native grass species little bluestem (Schizachyrium scoparium Nash.) and mountain brome (Bromus marginatus Nees.) to controlled gradients of  $H_2S$  under field ambient environmental conditions. Specific objectives were as follows:

1. To examine the effects of several concentrations of  $H_2S$  on dry weight of topgrowth, leaf chlorophyll content, water

content of topgrowth, and leaf nitrogen content of little bluestem and mountain brome.

2. To establish dose/response relationships for impact to little bluestem and mountain brome dry matter production over a range of  $H_2S$  concentrations.
3. To determine the relationship of plant response variables in responses of these plants to  $H_2S$  fumigations.
4. To examine the implications derived from the above three in order to provide input into the evaluation of  $H_2S$  abatement systems, air quality standards, and potential  $H_2S$  impacts based upon changes in  $H_2S$  emissions for the Baca KGRA and possibly other KGRA's.

#### The Experimental Area

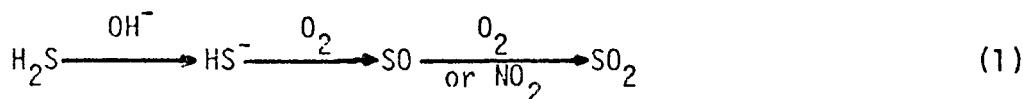
The experimental area was located about 23 km east of the proposed hydrothermal power plant site, on Los Alamos National Laboratory (LANL) property. Ideally, the experimental area would have been located slightly southeast of the proposed power plant area to take advantage of downwind ambient environmental conditions; however, access to that area was not possible. Numerous factors were considered in selecting the experimental area, including geographic and environmental setting as compared to those surrounding the proposed power plant site, distance to LANL for obtaining supplies, protection from vandalism, and accessibility.

The experimental area was located at an altitude of about 2,400 m. Ponderosa pine (Pinus ponderosa Dougl.) dominated the

overstory and Arizona fescue (Festuca arizonica Vasey) and little bluestem (Schizachyrium scoparium Nash.) dominated the understory. The vegetation surrounding the proposed power plant site was typical of the ponderosa pine habitat, as described by the Department of Energy (1979) in the Baca Environmental Impact Statement.

## LITERATURE REVIEW

### Introduction


Until recently few detailed impact or potential impact analyses of geothermal gas emissions have appeared as published literature. However, increasing interest in geothermal energy has encouraged scientists to study the effects of noncondensable geothermal gas emissions, especially  $H_2S$ , on various aspects of vegetation.

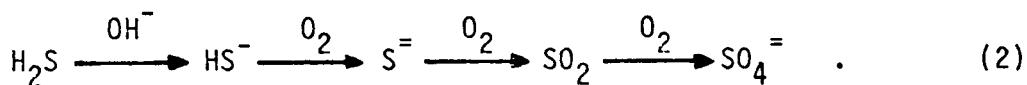
Several investigators have examined the short-term effects of single  $H_2S$  concentrations on vegetation under laboratory conditions.

However, in the English-language literature, there are no satisfactory studies on the long-term (> 30 days) effects of a wide range of realistic  $H_2S$  levels on vegetation under field conditions. A vast amount of research has been applied to  $SO_2$  effects, and although some of the principles and effects of  $SO_2$  are similar to that of  $H_2S$ , the actions of  $H_2S$  on plants may be quite different. For example, Steubing and Jäger (1978) reported that fumigation with  $2.5 \text{ mg/m}^3$  (2.1 ppm)  $H_2S$  produced necrosis on Pisum sativum leaves which, in the early stages of symptom development, were significantly different from those of  $SO_2$ -fumigated plants. Thus, it is necessary to understand the mechanism of plant response to realistic levels of  $H_2S$  in order to make accurate predictions of change in plant and animal communities exposed to  $H_2S$ .

### Chemical Behavior of H<sub>2</sub>S in the Atmosphere

The chemical behavior of H<sub>2</sub>S in the atmosphere was reviewed by Sprung (1976) and Thompson (1976). This literature showed that H<sub>2</sub>S is converted to SO<sub>2</sub> through the intermediates of hydro-sulfide anion (HS<sup>-</sup>) and sulfur oxide (SO). Although H<sub>2</sub>S reacts at a very "slow" rate with O<sub>2</sub>, it reacts with OH<sup>-</sup> at rates 1000 times faster than with other atmospheric gas species to form HS<sup>-</sup>. The hydrosulfide anion then reacts with O<sub>2</sub> to form SO which reacts with O<sub>2</sub> or NO<sub>2</sub> to yield SO<sub>2</sub>. In summary the chemical reaction scheme of H<sub>2</sub>S in the troposphere is represented by the following:




Based on this reaction, Thompson (1976) showed how the residence times of H<sub>2</sub>S, HS<sup>-</sup>, and SO in the atmosphere can be calculated using concentrations and conversion rate constants. The upper limit for the residence time of H<sub>2</sub>S in the troposphere was calculated to be 18 h, which also represented the mean tropospheric conversion time of H<sub>2</sub>S to SO<sub>2</sub>. The H<sub>2</sub>S concentration used in the calculation was not given.

### H<sub>2</sub>S Uptake and Exchange by Plants

Stomates of typical plants prove to be nearly optimal for maximum gas or vapor diffusion (Salisbury and Ross, 1978). Thus, plants are ideally adapted for absorption of gas molecules including H<sub>2</sub>S.

This supports the idea that undissociated gaseous  $H_2S$  may maintain a state of dynamic equilibrium with that at the air-plant interface much like  $CO_2$  does (Unsworth et al., 1976). This is represented by the diagram in Fig. 2.

After  $H_2S$  enters the leaf through stomata it goes into solution inside the substomatal cavity. Water solutions of  $H_2S$  are not stable and become turbid quite rapidly (Hendrickson, 1979). Most of the  $H_2S$  taken up by plants is metabolized to sulfate (Thompson, 1976) through the intermediates of  $HS^-$ ,  $S^-$ ,  $SO_2^-$ , and  $SO_4^{=}$ . The chemical reaction scheme of  $H_2S$  in plant leaves is represented by the following:



Dissociation of the first proton results in the formation of the hydrosulfide anion ( $HS^-$ ). Dissociation of the second proton results in the formation of the sulfide anion ( $S^-$ ). The sulfide anion then goes through a series of oxidations to yield  $SO_4^{=}$ . At the physiologic pH of 7.4, about one third of the total sulfide exists as the undissociated acid, about two thirds as the hydrosulfide anion, and a trace amount as the sulfide anion (Smith, 1979). At  $18^0C$ , the  $pK_a$  for the conversion of  $H_2S$  to  $HS^-$  is 7.04, whereas the  $pK_a$  for the conversion of  $HS^-$  to  $S^-$  is 11.96 (Smith, 1979).

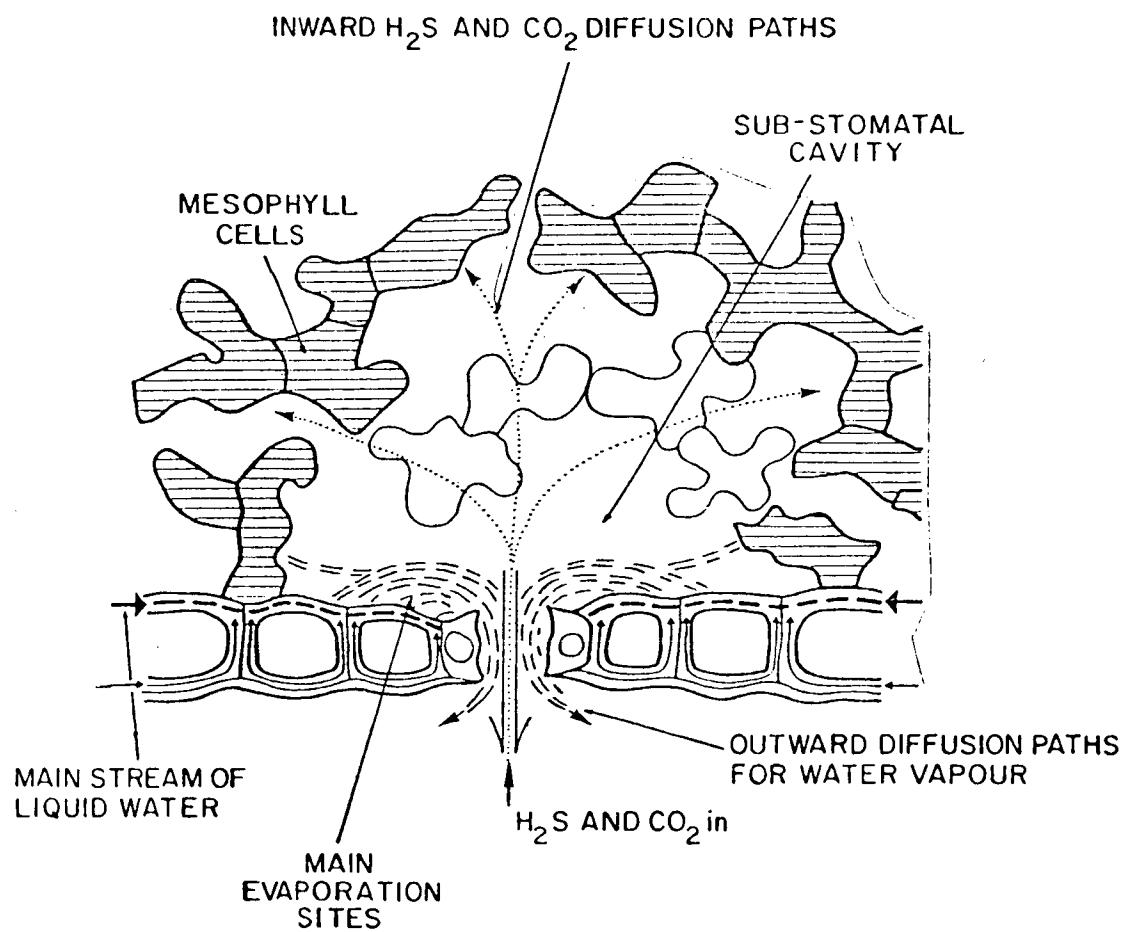



Fig. 2. Diagrammatic representation of gaseous H<sub>2</sub>S and CO<sub>2</sub> uptake by a plant stoma. Source: Page 29 in Meidner, H. and D. W. Sheriff, 1976. Water and Plants. Blackie & Sons Limited.

## $H_2S$ Uptake and Plant Resistance

The properties discussed above are highly relevant to the effects of  $H_2S$  on plants. The literature vaguely indicates that the undissociated form ( $H_2S$ ), which more readily penetrates biological membranes, is the most toxic form to plants (Smith, 1979).

Taylor (1978) described the processes by which gaseous molecules enter plants and the components of plant resistance to the stress resulting from the presence of these molecules. A modification of his discussion will serve to explain  $H_2S$  uptake and resistance by plants.

Plants can close their stomata, thus reducing gas exchange and preventing the gas from reaching the cell surface within the intercellular leaf spaces (Mudd, 1975; Bell and Mudd, 1976; Unsworth et al., 1976; Taylor, 1978). Taylor (1978) called this process pollution stress avoidance in his revision of Levitt's (1972) ideas on air pollutant stress phenomena in plants. Stress tolerance is the other mechanism resulting in stress resistance. This resistance mechanism allows the plant to come to thermodynamic equilibrium with the  $H_2S$  stress by reparative or compensatory processes (Taylor, 1978).

Absorption of  $H_2S$  into the leaf interior, as shown in Fig. 2, must occur prior to the development of  $H_2S$  stress tolerance. The driving force for this uptake is molecular diffusion, while its rate is a function of the  $H_2S$  concentration gradient from the exterior to the leaf interior and the resistance to  $H_2S$  flow experienced by the  $H_2S$  molecules along the diffusion pathway (Taylor, 1978). A

change in either the concentration gradient or the resistance component alters the absorption rate of the  $\text{H}_2\text{S}$  (Taylor, 1978).

The concentration gradient results from a difference in  $\text{H}_2\text{S}$  concentrations between the leaf exterior, the leaf boundary layer, and the leaf interior (mainly the intercellular air space and the mesophyll cell surface) (Taylor, 1978). The extraction sites of  $\text{H}_2\text{S}$  molecules from the atmosphere by foliage are either internal (absorption) or external (adsorption) (Taylor, 1978). Leaf pubescence, surface water, and other plant features may provide effective sites for removal of  $\text{H}_2\text{S}$  molecules from the atmosphere (Taylor, 1978).

The main components of leaf resistance to  $\text{H}_2\text{S}$  flux are boundary layer, stomata, cuticles, and mesophyll cell surface. No further discussion of leaf resistance to  $\text{H}_2\text{S}$  will be made; however, excellent discussions can be found in works by Bennett et al. (1973), Unsworth et al. (1976), and Taylor (1978).

The ability of plants to exhibit  $\text{H}_2\text{S}$  stress avoidance, as defined by Taylor (1978), is not well documented, however, the fact that both internal and external factors, including gaseous pollutants, can alter epidermal resistance is well documented (Meidner and Mansfield, 1968; Taylor, 1978). At low  $\text{H}_2\text{S}$  concentrations (0.01 - 0.5 ppm), stomatal opening may actually be stimulated. At higher concentrations the uptake of  $\text{H}_2\text{S}$  and other air contaminants may be modified by conditions which cause stomatal diffusion resistance (Bennett, 1978; Coyne and Bingham, 1978;). When  $\text{H}_2\text{S}$  absorption has occurred, leaf response may be determined by the

internal  $\text{H}_2\text{S}$  concentration and by the biochemical threshold level of tolerance for  $\text{H}_2\text{S}$  and its toxic derivatives or dissociation products (Malhotra and Hocking, 1976). This resistance whereby the plant accommodates the stress without being killed is termed "pollutant stress tolerance" (Taylor, 1978). Leaf damage may occur if the internal  $\text{H}_2\text{S}$  concentration exceeds the threshold level (Taylor, 1978).

According to Taylor's (1978) discussion on the tolerance of plants to air pollution stress there are three mechanisms by which a plant can reduce or eliminate the harmful molecules of  $\text{H}_2\text{S}$  or its derivatives. These mechanisms are as follows: (1) the ability to continue metabolism unaltered despite the presence of the harmful molecules, i.e. tolerate; (2) the ability to convert  $\text{H}_2\text{S}$  and its derivatives to less harmful forms and to remove them to sinks; the chemical reaction of this process was discussed earlier; (3) the ability to maintain electrical neutrality by buffering the  $\text{H}_2\text{S}$  derivatives.

These types of hypotheses are not new. Ziegler (1972) proposed a hypothesis that  $\text{C}_3$  and  $\text{C}_4$  plants may differ in their susceptibilities to  $\text{SO}_2$ . This hypothesis was based on potential differences in the way the  $\text{CO}_2$  carboxylating enzymes (RuBP carboxylase in  $\text{C}_3$  plants and PEP carboxylase in  $\text{C}_4$  plants) reacted to sulfite.

### Responses of Higher Plants

The symptoms of injury caused by  $H_2S$  are generally confined to young foliage, with leaf margins being scorched. With less intense injury, interveinal portions of the leaf may show effects (Linzon, 1978).

McCallan et al. (1936) did some of the earliest significant works on the effects of  $H_2S$  on plant life by exposing selected species to very high concentrations (40 to 400 ppm) for periods that were as short as 2 to 4 h. They found that young plant tissue is generally more sensitive to  $H_2S$  than older tissue; injury symptoms were necrosis of young shoots and leaves, and basal and marginal necrosis of the youngest leaves; injury increased rapidly with increases in temperature; wilted plants were less sensitive than unwilted. The latter was attributed to increased stomatal diffusive resistance in the water-stressed plants. Until recently  $H_2S$  was considered as relatively nontoxic to plants because concentrations used were so much higher than suspected ambient levels and greater than levels of other highly injurious pollutants. However, Shinn and Kercher (1978) stated that under worst-case conditions, the threshold for injury (10% loss of leaf dry matter) is about 0.2 ppm  $H_2S$  assuming chronic exposure and no added  $CO_2$  to ameliorate the effect.

Benedict and Breen (1955) also measured effects of  $H_2S$  (100 to 500 ppm) on several species. They found considerable species differences and greater susceptibility in younger tissue.

Thornton and Setterstrom (1940) found that the foliage of higher plants is more resistant to  $H_2S$  than to HCN,  $NH_3$ ,  $Cl_2$ , and  $SO_2$ . No effect on the pH of the tissue exposed to  $H_2S$  was found.

Gassman (1973) reported that chlorophyll biosynthesis was inhibited by sulfide; however, the chemical mechanism of this effect was not understood. This effect was attributed to the possibility of  $H_2S$  acidification in which case lowering the pH caused the loss of  $Mg^{++}$  from the chlorophyll to form pheophytin. This is a well documented effect of  $SO_2$  on chlorophyll (Mudd, 1975; Bell and Mudd, 1976).

Mudd (1979) reported results of Fallers' (1972) experiments in which young sunflowers (Helianthus annus L.) were exposed to  $H_2S$  fumigation while the plants had no alternate nutrient source of sulfur. The fumigations lasted 3 weeks. During this time the  $H_2S$  gas concentration varied between a few micrograms (ug/l) per liter and 280 ug/l (200 ppm). Both fresh and dry weights of the buds, the first five leaves, the stems, and the roots were measured. The plants exposed to  $H_2S$  were heavier in all respects than the controls, which were not supplied with sulfur in the nutrient solution. Analysis of the plants showed an accumulation of sulfur, especially in the roots. Faller (1972) thus demonstrated that  $H_2S$  can act as the sole source of sulfur for the nutrition of H. annus.

Shinn et al. (1976) examined the responses of field-grown lettuce to a synthesized geothermal gas mixture (15  $CO_2$  : 1  $H_2S$  : 1  $CH_4$  : 2  $N_2$  parts by volume added to ambient air) over a 3-h period. They reported no significant depression of photosynthesis

until exposure concentrations approached 75 ppm  $\text{CO}_2$  : 5 ppm  $\text{H}_2\text{S}$  added to air. This led them to conclude that  $\text{CO}_2$  ameliorates the effect of  $\text{H}_2\text{S}$  acting alone. However, the variation experienced in photosynthesis was high ( $\text{CV} = 0.5$ ). They found that low  $\text{H}_2\text{S}$  concentrations (1 ppm  $\text{H}_2\text{S}$  : 15 ppm  $\text{CO}_2$  and lower) stimulated photosynthesis significantly more than controls and relaxed stomatal resistance.

In another study Shinn et al. (1977) exposed field-grown snap bean to a linear gradient concentration (2-7 ppm) of  $\text{H}_2\text{S}$  gas plus ozone for 4 h daily until 1 week before pod set. They reported a significant  $\text{H}_2\text{S}$  dose-response relationship despite the insensitivity of the plants to  $\text{H}_2\text{S}$ . They estimated that a dose of 6.42 ppm  $\text{H}_2\text{S}$  for 94.5 h was necessary to predict a dry matter production significantly lower than the controls at a 90% confidence level. "Low" concentrations of  $\text{H}_2\text{S}$  were reported to stimulate growth and increase photosynthesis. However, neither the gain nor loss in dry matter production could be interpreted as economic, which depended upon seed production.

Thompson and Kats (1978) reported that continuous fumigation of alfalfa (Medicago sativa L.), Thompson seedless grapes (Vitus vinifera L.), lettuce (Lactuca sativa L.), sugar beets (Beta vulgaris L.), California buckeye (Aesculus californica (Spach) Nutt.), ponderosa pine (Pinus ponderosa Laws.), and Douglas fir (Pseudotsuga menziesii Mirb.) with 3.0 ppm  $\text{H}_2\text{S}$  in greenhouses caused leaf lesions, defoliation, reduced growth, and death of sensitive species. Lesser, but similar effects, resulted with

0.3 ppm  $H_2S$ . Sulfur accumulation in leaves depended upon  $H_2S$  dosage. Faster growing plants accumulated sulfur more rapidly. Lower levels of  $H_2S$ , 0.03 ppm and sometimes 0.1 ppm, caused significant stimulation in growth of lettuce, sugar beets, and alfalfa. The stimulation occurred at certain times of the year and it was concluded that temperature and/or humidity could influence this.

In a sequel to this study Thompson (1976) conducted growth chamber studies by exposing pinto beans, hybrid sweet corn, and alfalfa to 0.6 ppm  $H_2S$ . When soil water was optimum, the pinto bean plants showed little leaf injury or reduced growth; however, "some" leaf injury occurred when water was withheld. This result is contrary to what one would expect based on the physiological mechanics and mechanisms of stomata. It is generally accepted that gaseous  $H_2S$  injury depends on entry through the stomata, and so conditions which favor open stomata at the time of exposure render the plants susceptible to injury. One explanation may be that stomatal opening was stimulated by the  $H_2S$  in the water-stressed plants. This concept is not new to those dealing with  $SO_2$  effects on plants. Unsworth et al. (1972) reported that 0.1-0.5 ppm  $SO_2$  stimulated stomatal opening, especially in water-stressed plants where stomata tended to be closed.

It becomes evident that the effects of gas contaminants on stomata are complex. Majernik and Mansfield (1972) reported a series of studies on the effects of  $SO_2$  and other variables on stomatal opening. Although the responses of plants to  $H_2S$  are quite different than to  $SO_2$  (Steubing and Jäger, 1978), the effects that

these gases have on stomata may be similar. Majernik and Mansfield (1971) emphasized that their findings were made entirely with Vicia faba, which may not be typical of other species. Mudd (1975) strengthens this by indicating that conditions used by Menser and Heggestad (1966), which caused the closure of tobacco stomata, would have caused opening of Vicia faba stomata.

In a study where Pisum sativum plants were fumigated with 2.1 ppm  $H_2S$  Steubing and Jäger (1978) reported that the  $H_2S$  fumigations produced water-stress conditions. This finding may have important consequences since we know that  $H_2S$  may cause stomatal opening in plants which were already water stressed prior to the fumigations. They attributed the accumulation of free proline to the water-stress conditions produced by the  $H_2S$  fumigation. The accumulation of large quantities of the amino acid proline in the plant vacuoles frequently occurs in halophytes (Salisbury and Ross, 1978). Another occurrence common to halophytes and reported on by Steubing and Jäger (1978) is an increase in osmotic pressure of the cell sap. Thus, the effects of excess  $H_2S$  uptake may produce effects similar to those seen in salt-stressed plants. Other plant responses reported by Steubing and Jäger (1978) were leaf necrosis, decreased fresh and dry plant weight and negative influences on water relations, photosynthesis, and respiration. Apparently, the activation of the plant enzymes glutamate dehydrogenase (GDH), glutamate-oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) were stimulated by  $H_2S$ .

Coyne and Bingham (1978) reported the results of fumigating field-grown snap beans (Phaseolus vulgaris L.) with various levels of  $H_2S$  alone and in the presence of 0.072 ppm  $O_3$  for 4 h each day beginning at the first trifoliate leaf stage. The results indicated a 25 and 10% increase in maximum stomatal conductance and maximum apparent photosynthesis, respectively, at 0.74 ppm  $H_2S$ . Higher concentrations depressed stomatal opening and  $CO_2$  uptake, while  $O_3$  plus  $H_2S$  depressed stomatal and photosynthetic response more than  $H_2S$  alone. They concluded that as pollutant stress increased, photosynthesis ceased to respond linearly to increasing stomatal conductance at lower conductance values indicating that mesophyll resistance to  $CO_2$  transfer was more limiting than  $CO_2$  diffusion through the stomata at higher light intensities.

Most of the studies cited here have been carried out with constant levels of  $H_2S$ . As Wellburn et al. (1976) disclosed, situations of intermittent and fluctuating levels of mixed pollutants are probably more common in realistic settings than the numerous single pollutant studies in the literature would imply. Although the study to be reported on in this paper did not deviate from the single pollutant studies, it did inadvertently depart from the steady-level studies by virtue of being conducted using open-top field fumigation chambers. Not to be misinterpreted though, the  $H_2S$  gas concentrations were reported in a constant-level fashion; however, intermittent and fluctuating levels were actually the case as caused by machinery malfunctions and wind, respectively. The variation from the constant-level concentrations was measured.

## MATERIALS AND METHODS

### Plant Growth and Care

Seeds of little bluestem (Schizachyrium scoparium Nash.), a C<sub>4</sub> species (Salisbury and Ross, 1978), and mountain brome (Bromus marginatus Nees.), a C<sub>3</sub> species (Salisbury and Ross, 1978), were planted in 25-cm diameter 15-cm deep plastic pots containing Terra-Lite Vermiculite. The mountain brome seeds were planted 5 weeks later than the little bluestem because of initial failures to establish a different plant (Festuca arizonica Vasey.) as the second species. Therefore, the mountain brome plants were always about 5 weeks behind the little bluestem plants in age. This required that sampling of the mountain brome plants take place 5 weeks later than that of the little bluestem plants in order to sample both species at about the same developmental stage. However, environmental weather variables were different for each species due to the time delay in establishing mountain brome. All plants were watered with a Miracle-gro Nutrient Solution prior to each fumigation, maintaining soils near saturation. No watering was attempted on "rain" days. Plants were thinned to about twenty plants per pot. No herbivore or weed problems were detected.

### Experimental Procedures

Fumigations with H<sub>2</sub>S were carried out in four rectangular, open-top chambers (Fig. 3) described by Gonzales (1980) and similar to those described by Coyne and Bingham (1978) and Shinn et al.

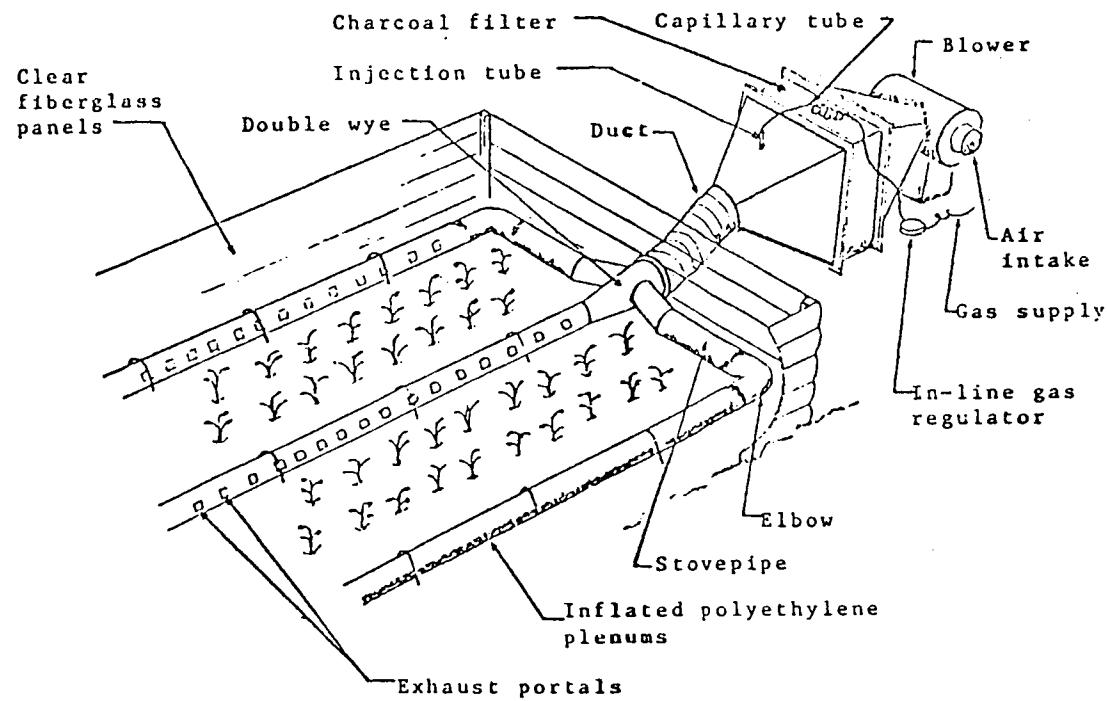



Fig. 3. An open top field-fumigation chamber for exposing plants to controlled levels of gases.

(1977). The  $\text{H}_2\text{S}$  delivery rates were fixed using stainless steel metering valves. A flow diagram can be seen in Fig. 4. Details of the chamber design, performance, and spatial distributions of injected gases can be found in works by Gonzales (1980) and Shinn et al. (1977).

The pots were arranged in twin rows on beds 1-m wide inside the chambers. There were two twin rows each of twelve or thirteen pots per row inside four rectangular minimum interference chambers 0.6 m high x 7.08 m long x 3 m wide. Thus, there were 25 pots of each plant species in each chamber totaling 50 pots per chamber. Each chamber contained a twin row of little bluestem and a twin row of mountain brome. Two of the four chambers were used to fumigate with  $\text{H}_2\text{S}$  gas and the other two were used as control chambers (no  $\text{H}_2\text{S}$  added). The spatial arrangement of the four chambers in relation to each other and in relation to vegetation in the experimental area is shown in Fig. 5. All pots were eventually buried so that only the upper 2.54 cm of the pot was above ground level. The purpose of this was to take advantage of less variation in  $\text{H}_2\text{S}$  gas concentrations near the ground surface (Gonzales, 1980).

Beginning at 2 weeks after emergence, the plants were placed inside the chambers and fumigated with  $\text{H}_2\text{S}$  plus charcoal-filtered air from 1000 to 1400 (MST) on Monday through Friday for a total of 7 treatment weeks (140 h) per species. Following the 6th week of fumigation of the little bluestem plants, which was concurrent with the 1st week of fumigation of the mountain brome plants, one blower-assembly motor malfunctioned. This provided an opportunity to

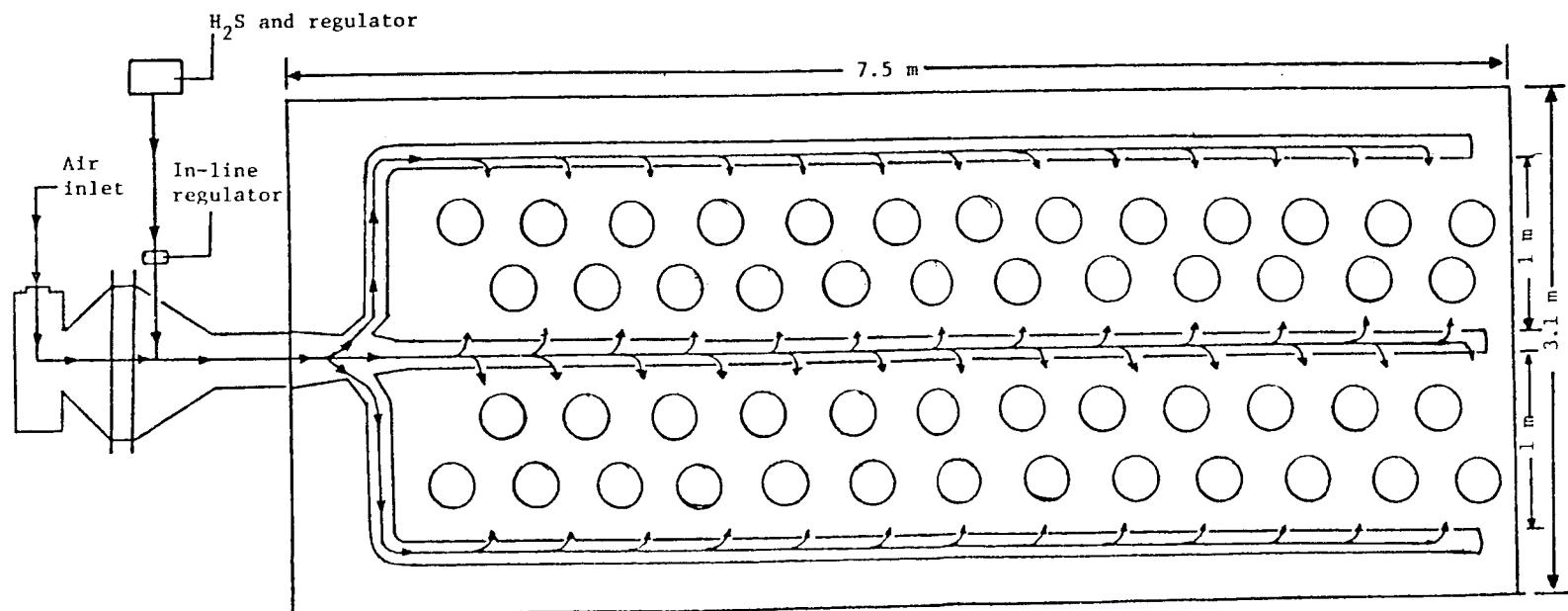



Fig. 4. A flow diagram of  $\text{H}_2\text{S}$  plus ambient air.

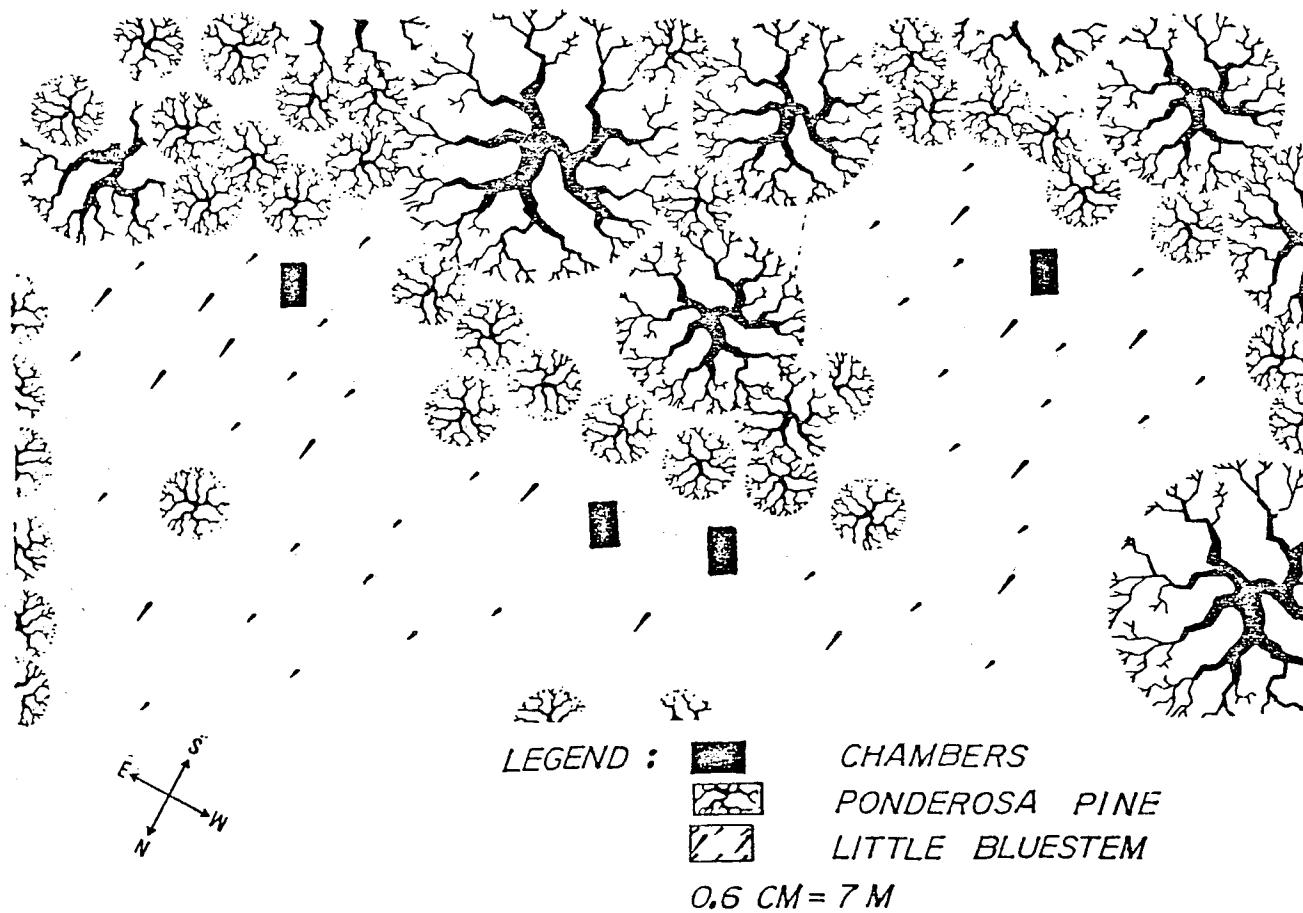



Fig. 5. The spatial arrangement of the 4 chambers in relations to each other and to vegetation in the experimental area.

evaluate the "recovery" capabilities of plants when given a fumigation-free period. However, in order to administer the fumigation-free period to both plant species at the same developmental stage  $H_2S$  treatments of the mountain brome plants were continued while the little bluestem plants received a 9-day fumigation-free period. This required the removal and rearrangement of pots so that only the mountain brome plants continued receiving fumigations during the 9 day period. During this time neither the control nor the  $H_2S$ -treated little bluestem plants received "treatments". Following the 9-day period (after the blower-assembly motor was repaired) all fumigation procedures returned to normal. The mountain brome plants were also given a 9 day "recovery" period when they reached the same developmental stage as were the little bluestem plants when they received their fumigation-free period. This second 9-day period occurred 12 weeks after fumigations had commenced. By then all the little bluestem plants had been harvested. Thus, the 7 weeks of fumigation to each plant species was completed in a 13 week period and there was only a three week overlap period during which both species were fumigated simultaneously. Control plants received charcoal-filtered air (0 ppm  $H_2S$ ) concurrent with the  $H_2S$  fumigations. The range of  $H_2S$  concentrations in the "treatment" chambers over the duration of the study was 0.02 to 0.86 ppm in one of the fumigation chambers and 0.41 to 4.39 ppm in the other chamber.

One chamber was monitored continuously for  $H_2S$  by means of a flame-photometric total sulfur detector (Meloay Laboratories Inc., Model SA285E, 0-1 ppm). Daily spot measurements for  $H_2S$  were made

using a portable, fast-response, electrovoltametric detector (Intrascan Corporation, Model 1177) having a sensitivity of 2 percent at 1 ppm. Fumigations were carried out on schedule during rain storms often causing wide variations in  $H_2S$  concentrations.

Although the chambers were designed to produce linear gradients of gas concentrations (Coyne and Bingham, 1978),  $H_2S$  gas concentration measurements were taken above pots and averaged for subplots as described by Gonzales (1980). Mean concentrations of  $H_2S$  for each subplot at the end of the experiment were 0 (control chambers), 0.05, 0.11, 0.22, 0.34, 0.51, 0.73, 1.16, 1.64, and 2.39 ppm for little bluestem plants and 0, 0.07, 0.21, 0.37, 0.65, 0.72, 1.16, 2.14, and 3.58 ppm for mountain brome plants. There was one more little bluestem subplot than mountain brome because of natural breaks in  $H_2S$  concentration along the length of the chamber.

However, no changes were made after subplots were intially defined according to  $H_2S$  concentrations at the beginning of the experiment. Mountain brome plants were fumigated with higher  $H_2S$  concentrations than little bluestem plants because of hypotheses that mountain brome would exhibit greater  $H_2S$  stress resistance. This was achieved by varying the flow rate of the treatment air at the side stovepipes. Concentrations of  $H_2S$  were averaged to date after 60, 80, 100, 120, and 140 h-total of fumigation, therefore, the mean concentrations differed slightly from week to week.

Coefficients of variation (CV) were calculated from the intermittent spot measurements taken over the entire range of temporal variability in ambient conditions (combined CV for  $H_2S$  measurements = 27%).

Air temperature, wind speed and direction, and relative humidity were recorded outside the chambers with a Meteorology Research Incorporated (MRI) weather recording instrument. Data on these and other environmental variables were also obtained from a LANL meteorology group.

#### Experimental Design and Statistical Analyses

The experimental design used was a restricted completely randomized design using the analysis of variance for any number of groups with unequal replication. The restriction was to keep species of the same kind together. Twenty experimental units (20 plants per pot) received unequal replication (a different number of pots per treatment) of each of 9 or 10 treatments ( $H_2S$  gas). Replication was achieved by grouping the pots into groups or subplots. Each subplot of mountain brome consisted of 6 pots with the exception of the subplot which received a mean  $H_2S$  concentration of 0.65 ppm which consisted of 7 pots. The 5 subplots of little bluestem in the "low"  $H_2S$  treatment chamber consisted of 5 pots each and the 4 subplots in the "high"  $H_2S$  treatment chamber consisted of 6 pots each. Because of the large variation expected among plants, two chambers were used as controls in order to reduce the CV in establishing a mean.

It was anticipated that the plants would respond differently even when treated alike; i.e., sources of variation other than treatment effects were anticipated. Thus, it seemed necessary to block the pots so that the portion of variability inherent in the plant could

be measured and excluded from the experimental error. However, there was no way to meaningfully group the pots of plants as described by Steel and Torrie (1960), so that groups would have some type of uniformity with respect to each other.

A one-way analysis of variance was used to check for significant differences between the experimental treatments of a species. More than one control mean (0 ppm H<sub>2</sub>S) was often calculated (by row) to investigate significant differences between control treatments; this served as a way of checking for variation in measured plant responses caused by factors other than the H<sub>2</sub>S treatment, especially chamber effect. Duncan's New Multiple Range Test (Steel and Torrie, 1960) was used to separate treatment means from each other statistically. Paired t tests were used to determine if there was a significant difference in the chlorophyll content of little bluestem plants before and after fumigations on a particular day during the 7th week of fumigation for that species.

#### Leaf Chlorophyll Content

Little bluestem leaves were sampled for chlorophyll content after 60, 80, 100, and 140 h total of fumigation as were mountain brome leaves after 60, 80, 120, and 140 h total. The sampling procedure at each of the sampling times was as follows: from each pot a young fully expanded leaf was removed from a randomly selected plant and taken to the laboratory for processing. Each leaf was then cut into small pieces and a 0.1 g sample was weighed. The only exception to this was after the 60 h-total fumigation time for mountain

brome when only the pots in the "low"  $\text{H}_2\text{S}$ -concentration chamber were sampled. Sample sizes ( $n$ ) consisted of 5, 6, or 7 depending on the number of pots in each subplot as discussed under the "Experimental Design and Statistical Analyses" section. Sample sizes of "control" plants were much larger because two chambers were used as controls in order to examine the variability inherent in the plants.

Chlorophyll determinations were made by extracting the 0.1 g leaf tissue samples with 10 ml of aqueous 80% acetone in subdued to no light for 48 h with periodic shaking, following the methods of Vernon (1960). The absorbance of the extracts was measured at 649 and 665 nm by means of a Varian Techtron U.V.-V.S. model 635 scanning spectrophotometer using the 0.2 nm bandwidth-measuring beam and a 1-ml cuvette having a path length of 10 mm. Chlorophyll a, b, and total concentrations were calculated using the formula derived by Vernon (1960).

On a particular day, midway through the 7th week of fumigations, chlorophyll determinations were made on little bluestem extracts both before and after fumigations. This was done to determine the change in chlorophyll content which took place during the actual 4-h fumigation period. All other chlorophyll determinations were made after the 4-h fumigations on Fridays. Before-and-after chlorophyll determinations were made on  $\text{H}_2\text{S}$ -treated and control plant extracts to determine whether the daily change in chlorophyll content was due to the  $\text{H}_2\text{S}$  treatment or some other factor.

The absorbance measurements of the 7th-week little bluestem extracts were made in triplicate in order to determine whether the

variation contributed by the spectrophotometer and its use was a statistically significant source of sampling error. A two-way analysis of variance was used here to separate the sampling error from the experimental error and to check for significant differences between the experimental treatments.

#### Percent Water

At the end of the experiment (after 140 h-total of fumigation) plants were clipped at soil level and taken to the laboratory in preweighed plastic sampling bags. Plants were weighed using a Metler analytical balance. The percentage of the plant material comprised of water was calculated using the total fresh weights and dry weights of the above ground portion of the plants in each pot. The subplot sample size (n) was 5, 6, or 7 for the  $H_2S$ -treated plants of both species and 24 and 49 for the control plants of little bluestem and mountain brome, respectively.

#### Yield

After drying in a forced-air circulation oven at  $80^0C$  for 30 h the samples were reweighed. Average plant yield was determined by dividing the total above-ground plant dry weight per pot by the number of plants in that pot. Subplot sample sizes were 5, 6, or 7 for  $H_2S$ -treated plants and 48 total for the control plants.

### Leaf Nitrogen Content

The dry plant material of each pot used for making yield determinations was powdered using a wig-l-bug pulverizer (Mfg. unknown). Percent-nitrogen determination were made by combusting preweighed 1-3 mg microsamples of the powdered plant material by means of a Perkin-Elmer 240B total combustion elemental analyzer. Sample sizes for all little bluestem subplots was 3. Subplot sample size for mountain brome was 5 or 6 for H<sub>2</sub>S-treated subplots and 35 total for "control" plants.

## RESULTS

### Dry Weight of Topgrowth

#### Little Bluestem

The ANOVA table for dry weight of topgrowth data appears in Appendix Table 14. There was a highly significant difference in the treatment means; however, considering the magnitude of  $H_2S$  dosages used, the calculated F is lower than expected. The mean dry weight of little bluestem at several treatment levels is plotted in Fig. 6. Each dry weight data point and  $H_2S$  concentration represents the average of five or six pots (subplot) and the average of  $H_2S$  spot measurements taken in each subplot, respectively. Comparisons among treatment means using Duncan's New Multiple Range Test (Table 1) shows that the little bluestem plants fumigated with low levels of  $H_2S$  (0.05, 0.11, and 0.34 ppm) had a significantly higher mean yield than two of the control means at the 95% confidence level. Control means #1 and 2 and #3 and 4 did not differ significantly within chambers but showed a significant difference between chambers, implying that some source of variation other than treatment effects was present. Mean yield values of the higher concentration treatments (1.16, 1.64, and 2.39 ppm  $H_2S$ ) were significantly less than two of the controls at the 95% confidence level.

The shape of the observed dose-response curve is shown in Fig.

6. At low concentrations there was an increase in dry weight

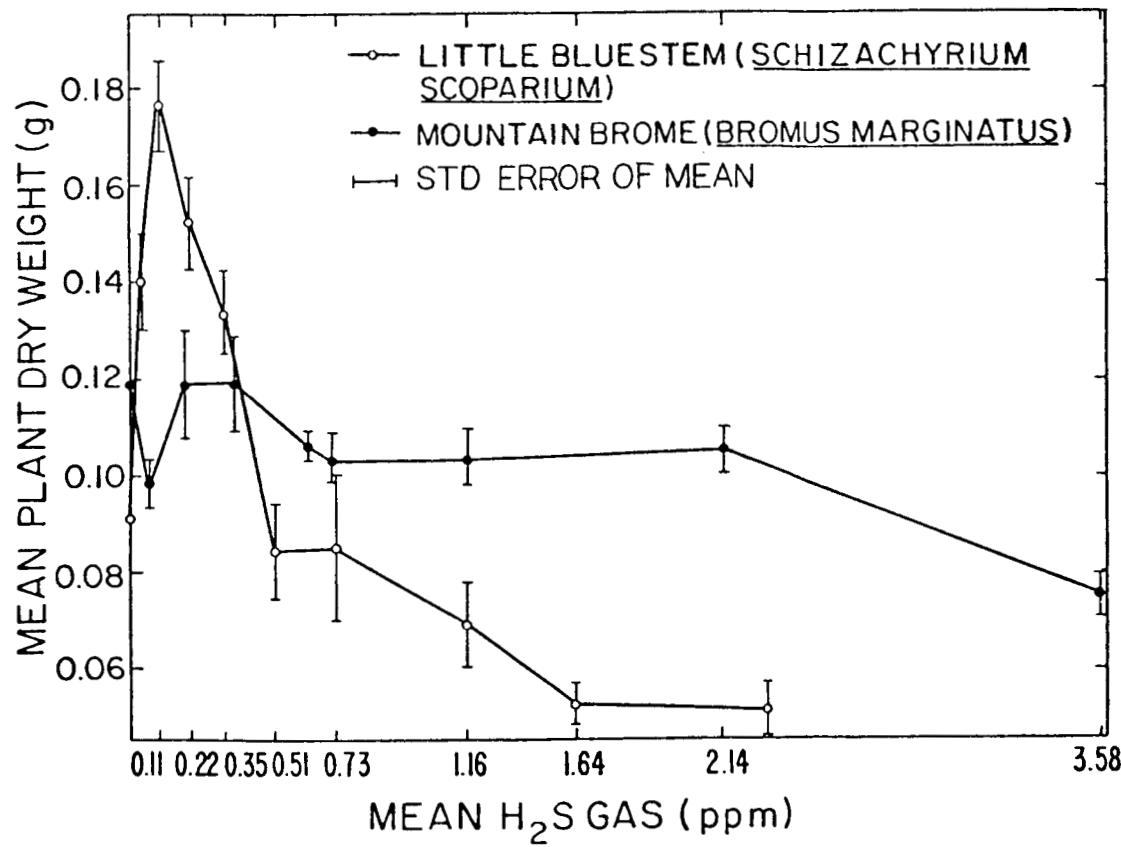



Fig. 6. Mean plant dry weight of mountain brome and little bluestem topgrowth after fumigations with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

Table 1. Comparisons among dry weight means of little bluestem plants using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.

| Rank                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S Conc. (ppm) | 2.39  | 1.64  | 1.16  | 0     | 0     | 0.51  | 0.73  | 0     | 0     | 0.34  | 0.05  | 0.22  | 0.11  |
| Mean Plant Dry Weight (g)         | 0.051 | 0.052 | 0.068 | 0.069 | 0.069 | 0.084 | 0.085 | 0.111 | 0.114 | 0.133 | 0.140 | 0.152 | 0.177 |

yield which can be interpreted as a stimulation of growth; as concentrations increased, there was a reduction in dry weight which can be interpreted as a depression of growth.

Plant dry weights of topgrowth were regressed on  $H_2S$  concentration. Regression curves (A and B) were fitted to the observed growth data of little bluestem (Fig. 7). For  $H_2S$  concentrations of 0.11 ppm and below (Curve A in Fig. 7) the correlation coefficient ( $r = 0.97$ ) indicated a significant linear relationship at  $\alpha = 0.05$  and for  $H_2S$  concentrations greater than 0.11 ppm (Curve B in Fig. 7) the correlation coefficient ( $r = 0.76$ ) indicated a significant nonlinear relationship of the quadratic form at ( $\alpha = 0.05$ ). The combined coefficients of determination for the regressions indicated that about three-fourths of the variation in the dry weight variable is explained by variation in the  $H_2S$  concentration. The regression of plant dry weight on  $H_2S$  concentration predicted a gain of 0.023 grams dry weight with each 0.03 ppm increase in concentration up to and including 0.11 ppm  $H_2S$  and a loss of 0.003 grams dry weight with each 0.03 ppm increase in concentration above 0.11 ppm  $H_2S$ . The regression equations for Curve A and B in Fig. 7 are  $\hat{Y} = 0.091 + 0.77X$  and  $\hat{Y} = 0.1483 + (-0.1033X) + 0.02691X^2$ , respectively, where  $\hat{Y}$  is the total dry matter in grams and  $X$  is the  $H_2S$  concentration in ppm.

#### Mountain Brome

The ANOVA table for dry weight of topgrowth data appears in Appendix Table 15. The dry weight of topgrowth data appears in

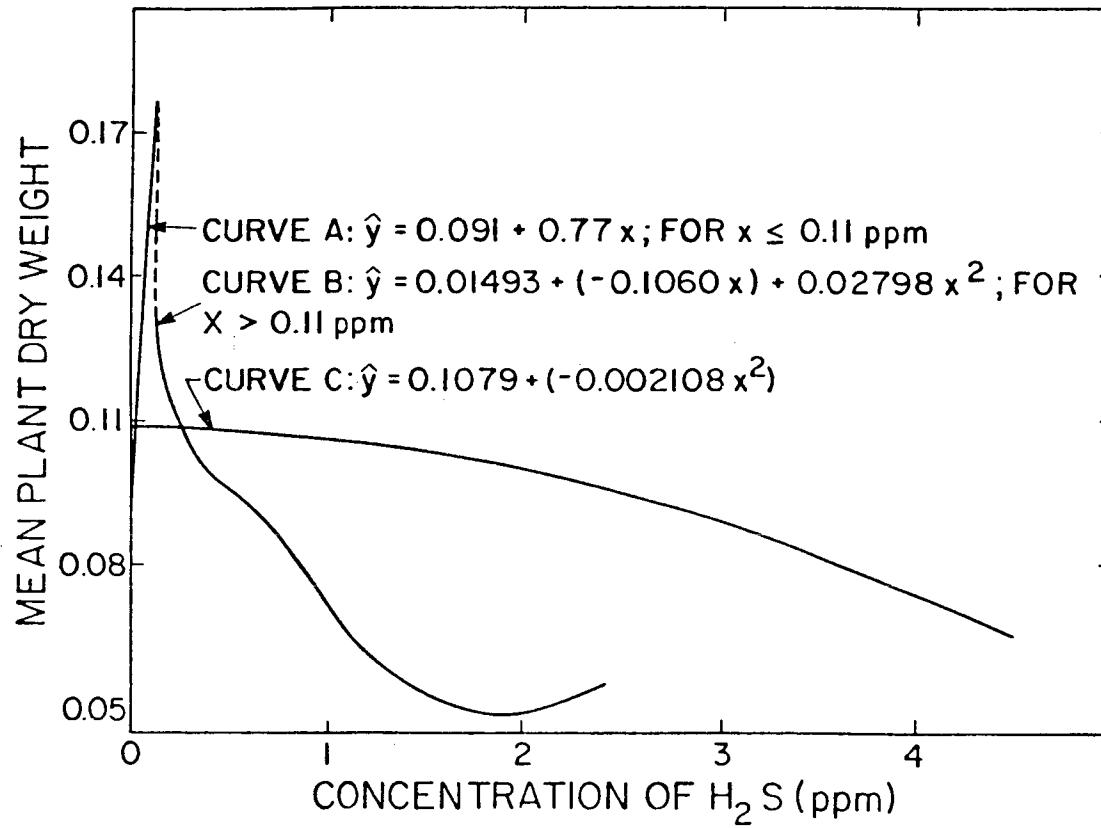



Fig. 7. Fitted regression curves for plant dry weight of topgrowth data of little bluestem (Curves A and B) and mountain brome (Curve C) after 140 h of fumigations with  $H_2S$ .

Table 2 and represents the average dry weight from six or seven groups of pots at nine levels of  $H_2S$  and the average of  $H_2S$  spot measurements taken in their respective subplots. The observed dose-response curve is plotted in Fig. 6.

A significant treatment effect was evident, however, it was difficult to ascertain any patterns by separating treatment effects using Duncan's New Multiple-Range test (Table 2). The treatment mean of plants fumigated with the highest  $H_2S$  level (3.58 ppm) was significantly different from the other treatment means except for the 0.07 ppm mean. Thus, dry weight of topgrowth of mountain brome plants may have been relatively unaffected by the  $H_2S$  treatments until concentrations reached 3.58 ppm  $H_2S$ , where there was a negative effect. The difference in control plant means between chambers for this species was about 16%. This difference is much lower than that observed for little bluestem, possibly indicating that the unknown extraneous source of variation affected little bluestem plants to a greater degree than it affected mountain brome plants.

Plant dry weight of topgrowth was regressed on  $H_2S$  concentration. A regression curve was fitted to the observed growth data of mountain brome (Curve C in Fig. 7). The correlation coefficient ( $r = 0.55$ ) indicated a significant curvilinear relationship at  $\alpha = 0.05$ . The coefficient of determination for the regression indicated that only about one-third of the variation in the dry weight variable was explained by variation in the  $H_2S$  concentration using this regression equation. The regression of plant dry weight on

Table 2. Comparisons among dry weight means of mountain brome plants using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.

| Rank                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S Conc. (ppm) | 3.58  | 0.07  | 1.16  | 0.72  | 2.14  | 0.65  | 0     | 0     | 0.37  | 0.21  | 0     | 0     |
| Mean Plant Dry Weight (g)         | 0.075 | 0.098 | 0.103 | 0.103 | 0.105 | 0.106 | 0.109 | 0.109 | 0.119 | 0.119 | 0.129 | 0.131 |
| <hr/>                             |       |       |       |       |       |       |       |       |       |       |       |       |
| <hr/>                             |       |       |       |       |       |       |       |       |       |       |       |       |
| <hr/>                             |       |       |       |       |       |       |       |       |       |       |       |       |

$H_2S$  concentration predicted a loss of 0.002 grams dry weight with each 1.0 ppm increase in concentration. The regression equation for Curve C in Fig. 7 is  $\hat{Y} = 0.1079 + (-0.002108X^2)$ .

#### Water Content of Topgrowth

##### Little Bluestem

The ANOVA table for water content of topgrowth data appears in Appendix Table 16. There was a significant difference in water content treatment means. The observed dose/response curve for water content means appears in Fig. 8. Comparisons among treatment means (Table 3) shows that the little bluestem plants fumigated with low levels of  $H_2S$  (0.05, 0.11, and 0.22 ppm) had a significantly lower mean water content than those fumigated with 0, 0.73, and 2.39 ppm  $H_2S$ . The reduction in water content at the low levels of  $H_2S$  may have resulted from two possible sources: (1) increased transpiration as caused by an  $H_2S$ -induced stimulation of stomatal opening similar to studies with  $SO_2$  (Majernik and Mansfield, 1972; Unsworth et al., 1972) or (2) a process where the water potential in the plant apoplast goes below that of the protoplast resulting in water movement out of the protoplast.

The co-relation between water content and dry weight in their response to  $H_2S$  is shown in Fig. 9. There is a relatively strong ( $r = 0.66$ ) negative relationship in the joint response of water content and dry weight to the  $H_2S$  fumigations. The lowered water

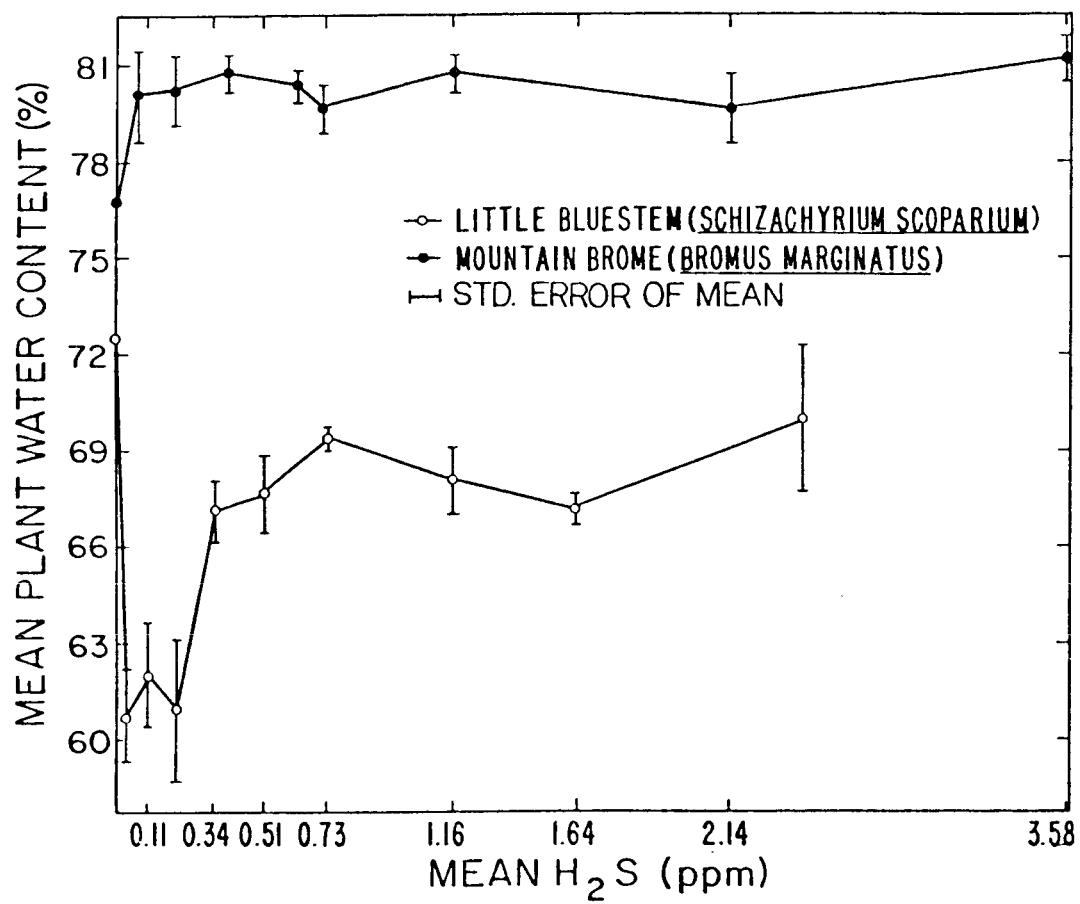



Fig. 8. Mean plant water content of little bluestem and mountain brome topgrowth after fumigations with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

Table 3. Comparisons among water content means of little bluestem plants using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level

| Rank                         | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Mean H <sub>2</sub> S (ppm)  | 0.05 | 0.22 | 0.11 | 0.34 | 1.64 | 0.51 | 1.16 | 0.73 | 0    | 2.39 | 0    | 0    |
| Mean Plant Water Content (%) | 60.7 | 61.1 | 61.8 | 67.2 | 67.2 | 67.6 | 68.0 | 69.3 | 70.5 | 71.1 | 73.3 | 74.0 |

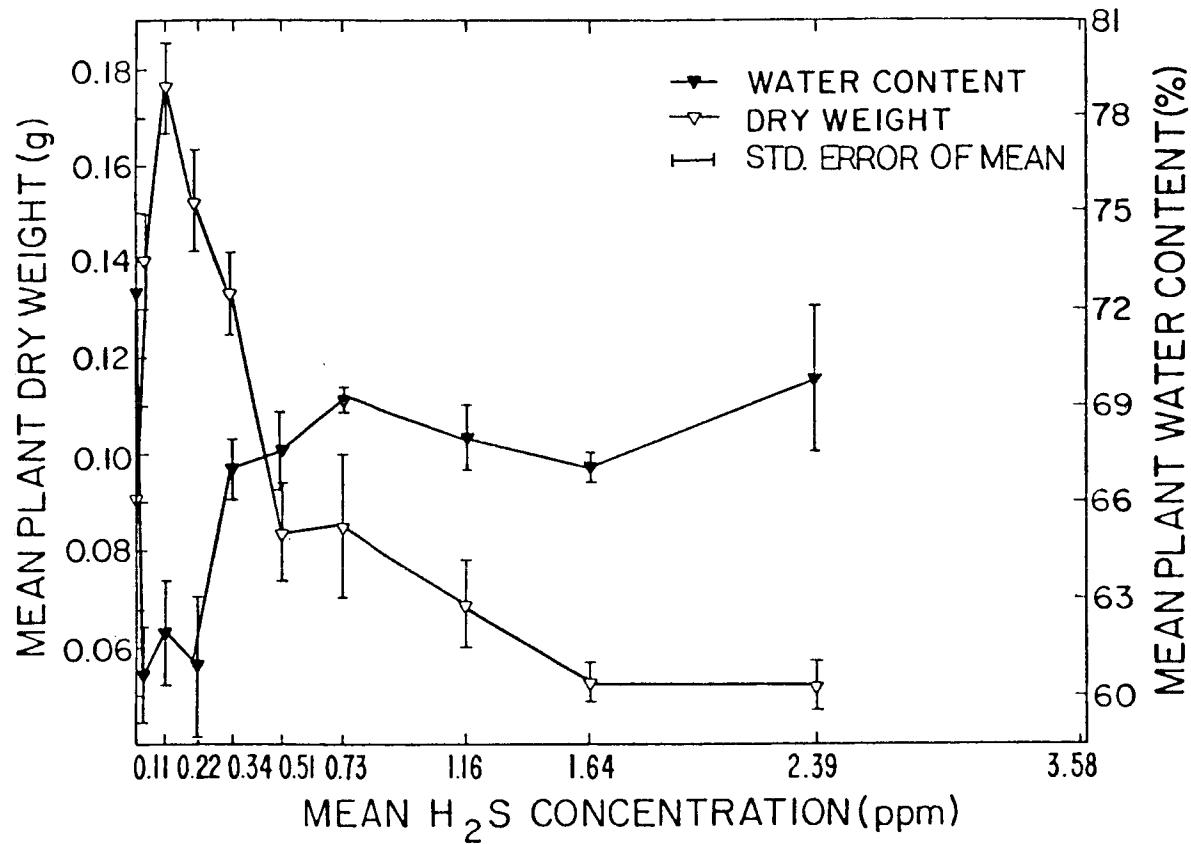



Fig. 9. Mean plant water content and plant dry weight of little bluestem topgrowth after fumigations with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

content of the plant may have actually enabled cells to function better because, as Salisbury and Ross (1978) reported, it is possible that cells function best when there is some water deficit. That is, there may be an optimum turgidity for cells above or below which the various plant functions are slower or less efficient (Salisbury and Ross, 1978). A stimulation of stomatal opening may have increased  $H_2S$  and  $CO_2$  uptake to levels approaching optimum for utilization and growth. Thus, through the indirect mechanisms of increased  $CO_2$  and  $H_2S$  uptake and utilization, and stimulation of plant cell function, the presence of low levels of  $H_2S$  may have been at least partially responsible for dry weight increases. At some concentration of  $H_2S$ , about 0.12 ppm, the stimulation effects may have been overcome by negative effects. At this "threshold" level plant dry weight began decreasing (Fig. 9). This may have been due to the plants' inability to continue "detoxifying" the  $H_2S$  through stress tolerance mechanisms. Figure 9 shows that as dry weight continues to decrease there is a corresponding increase in water content. As  $H_2S$  stress increased, there may have been a reduction in stomatal opening and/or a stimulation of stomatal closure which reduced transpiration and, therefore, water loss. Also, the lowering of plant water potential due to an ion increase would have increased plant water uptake. This process could have continued until water movement into cell protoplasts was no longer possible, thus causing the second decrease in water content.

### Mountain Brome

The ANOVA table for water content of mountain brome topgrowth appears in Appendix Table 17. The F-test was barely significant indicating some difference existed between treatment means. Figure 8 shows that the water content of  $H_2S$ -treated plants increased and remained higher than that of the controls at all levels of  $H_2S$ . Multiple comparisons (Table 4) showed that only the mountain brome plants fumigated with the highest  $H_2S$  level (3.58 ppm) had a significantly higher water content mean than those which received no  $H_2S$  (controls). There was no significant difference between control plant means nor between means of  $H_2S$ -treated plants (Table 4). This indicated that the increase in water content of the  $H_2S$ -treated plants over that of the non- $H_2S$ -treated plants may have been caused by some effect of the  $H_2S$ . The increase in water content of the  $H_2S$ -treated plants may have been due to partial stomatal closure and/or a water potential reduction.

Figure 10 shows the water content/dry weight relationship of the mountain brome plants. A correlation coefficient of 0.43 indicates a relatively moderate degree of relation between these response variables. A negative relationship is evident, further strengthening the results found with little bluestem.

### Leaf Nitrogen Content

#### Little Bluestem

The ANOVA for mean leaf nitrogen content of little bluestem provided evidence that no real differences in treatment means existed (Appendix Table 18). Figure 11 shows that the mean leaf nitrogen content of the  $H_2S$ -treated plants was lower than that of the control plants at every level of  $H_2S$ ; however, comparisons among treatment means (Table 5) showed that the only significant difference was between the control plant mean and the 0.05-ppm treatment mean. The mechanism by which  $H_2S$  reduced the nitrogen content of little bluestem leaves is unknown; however, this may be another indirect effect of  $H_2S$ -induced water stress. Steubing and Jäger (1978) reported a stimulation of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) enzyme activity, a reduction in glutamic and aspartic acids, and an accumulation of free proline in pea (*Pisum sativum* L.) leaves fumigated with 2.1 ppm  $H_2S$  for 9 days. They attributed the proline accumulation to water stress conditions produced by the  $H_2S$  fumigations. Apparently, plants under water stress have the ability to synthesize large quantities of the amino acid proline via transfer of amino groups from glutamate and aspartate by transaminase enzymes such as GOT and GPT (Salisbury and Ross, 1978). The large quantity of proline which accumulates in the vacuoles would result in a highly negative osmotic potential in the protoplasts (Salisbury and Ross, 1979) possibly without the toxic effects of the  $H_2S$  ions,

Table 4. Comparisons among water content means of mountain brome plants using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.

| Rank                         | 1    | 2           | 3    | 4    | 5    | 6           | 7    | 8    | 9    | 10   | 11   | 12   |
|------------------------------|------|-------------|------|------|------|-------------|------|------|------|------|------|------|
| Mean H <sub>2</sub> S (ppm)  | 0    | 0           | 0    | 0    | 0.72 | <u>2.14</u> | 0.07 | 0.21 | 0.65 | 0.37 | 1.16 | 3.58 |
| Mean Plant Water Content (%) | 76.4 | <u>76.5</u> | 76.8 | 76.9 | 79.6 | <u>79.6</u> | 80.0 | 80.2 | 80.3 | 80.7 | 80.7 | 81.1 |

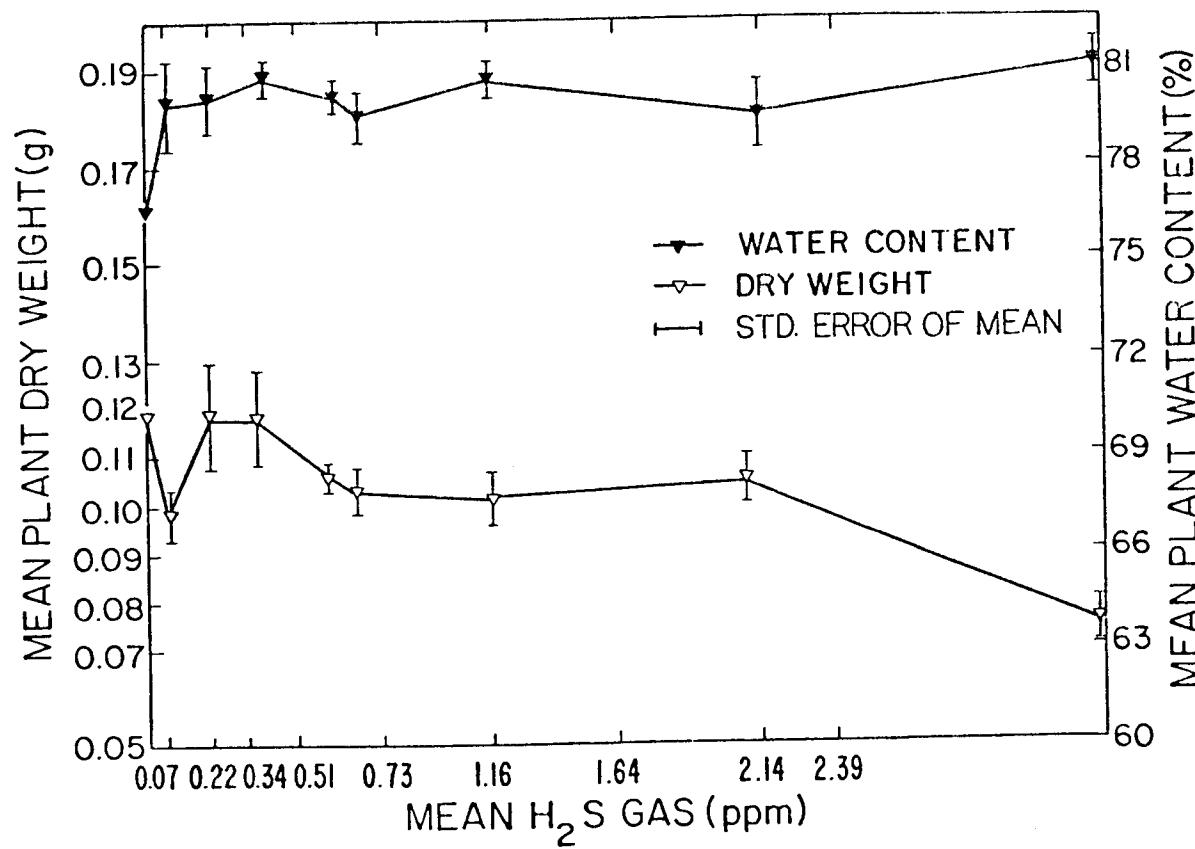



Fig. 10. Mean water content and dry weight of mountain brome topgrowth after fumigations with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

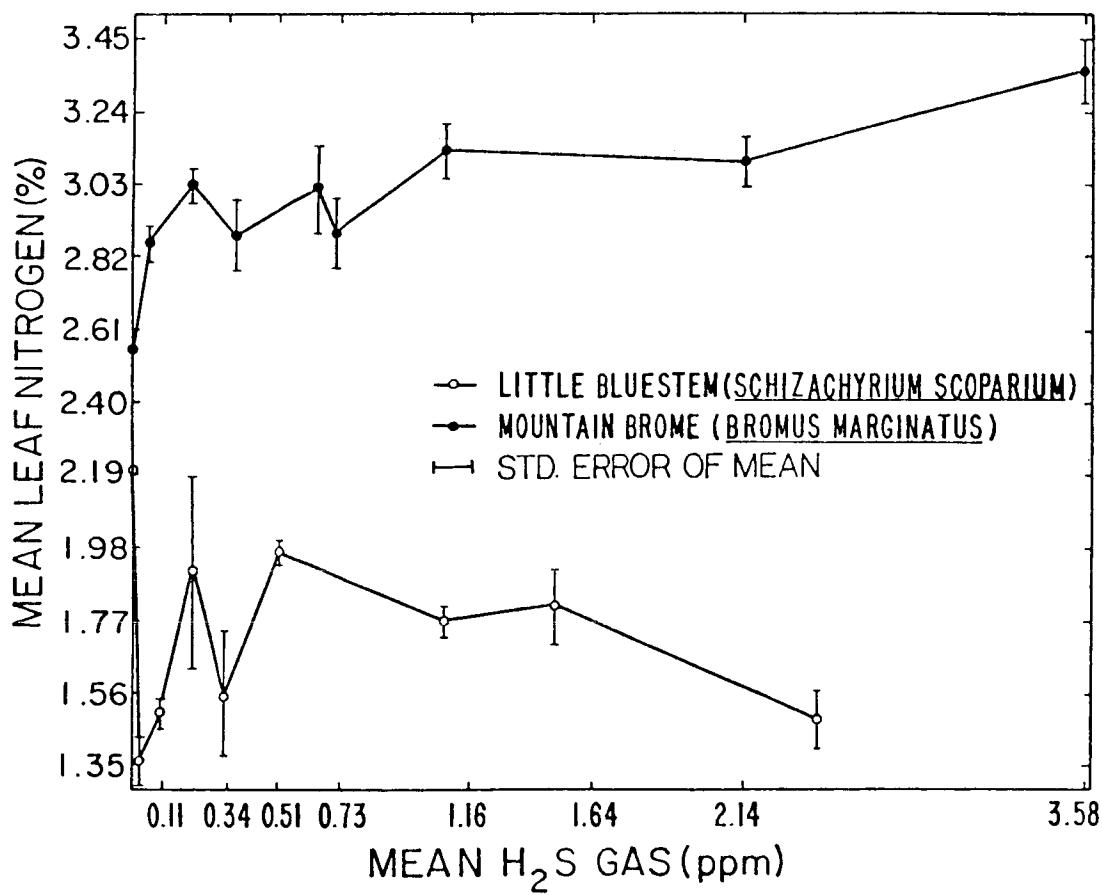



Fig. 11. Mean total-nitrogen content of mountain brome and little bluestem leaves after fumigations with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

Table 5. Comparisons among nitrogen content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.

| Rank                        | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-----------------------------|------|------|------|------|------|------|------|------|------|
| Mean H <sub>2</sub> S (ppm) | 0.05 | 2.39 | 0.11 | 0.34 | 1.16 | 1.64 | 0.22 | 0.51 | 0    |
| Mean Leaf Nitrogen (%)      | 1.37 | 1.49 | 1.53 | 1.55 | 1.77 | 1.81 | 1.92 | 1.97 | 2.20 |

but with the ability to allow water movement into the plant and protoplasts, thus hindering further water stress. This may explain the results reported by Steubing and Jäger (1978) and may possibly be related to the measured reductions in nitrogen in this study.

Figure 12 graphically displays the relationship between nitrogen content and water content along the  $\text{H}_2\text{S}$  gradient. The relatively moderate ( $r = 0.59$ ) relationship between leaf nitrogen content and water content of topgrowth may possibly be attributed to the reasons discussed above.

Figure 13 depicts the relationship ( $r = 0.16$ ) between leaf nitrogen content and dry weight of topgrowth of little bluestem. At the lower  $\text{H}_2\text{S}$  concentrations (0.05 to 0.12 ppm) dry weight increased to its highest level and nitrogen content decreased to its lowest level. Apparently the reduction in nitrogen content was not substantial enough to affect dry weight, or the stimulation effects of  $\text{H}_2\text{S}$  may have overcome the negative effects of the nitrogen content reductions, at least at the lower  $\text{H}_2\text{S}$  levels.

#### Mountain Brome

Figure 11 shows the mean leaf nitrogen content of mountain brome after the  $\text{H}_2\text{S}$  fumigations. A significant treatment effect was evident (Appendix Table 19). Table 6 shows that the grand mean leaf nitrogen content of the control plants was significantly lower than that of all the  $\text{H}_2\text{S}$ -treated means. Of the  $\text{H}_2\text{S}$ -treated means the only significant difference was between the 0.07- and the 3.58-ppm mean. This indicated that the fumigations with  $\text{H}_2\text{S}$  concentrations

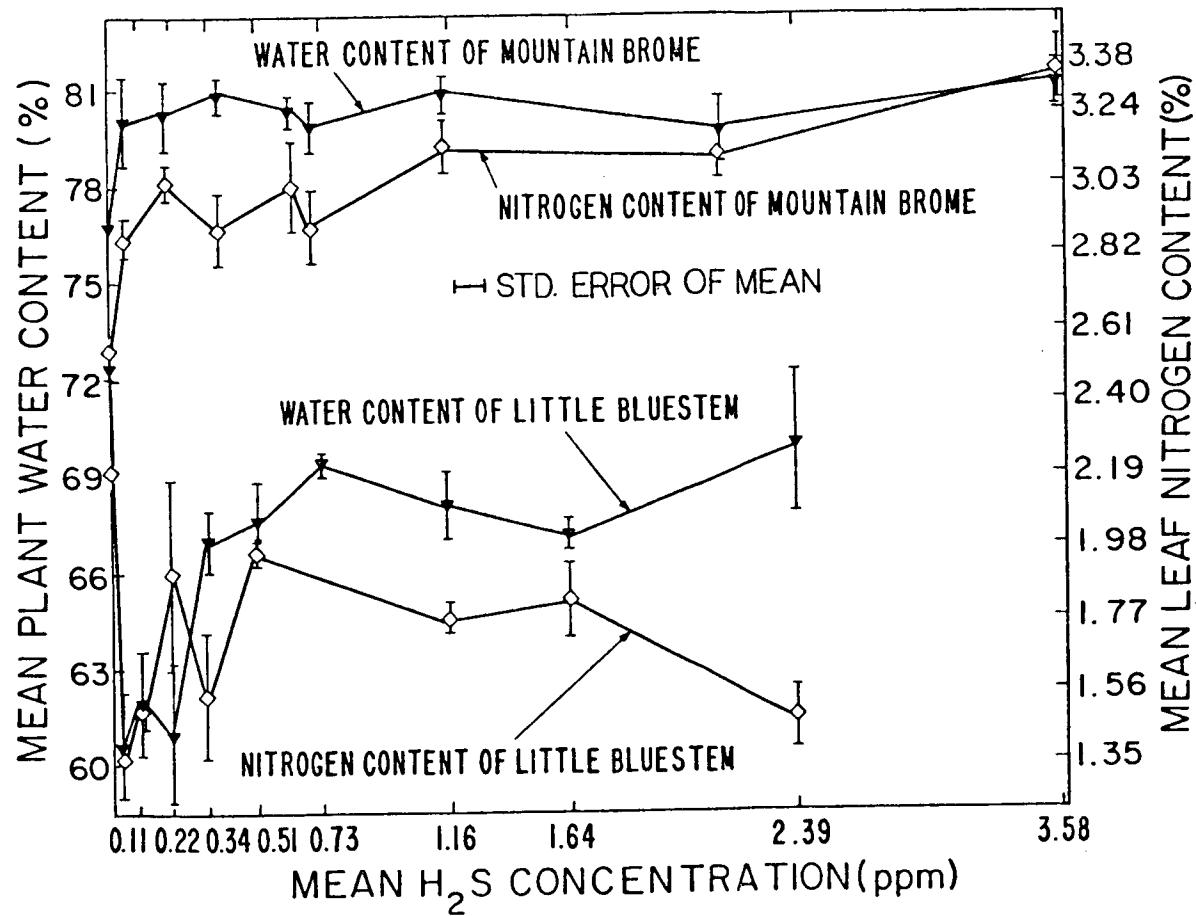



Fig. 12. Mean plant water content of topgrowth and leaf nitrogen content of little bluestem and mountain brome after fumigation with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

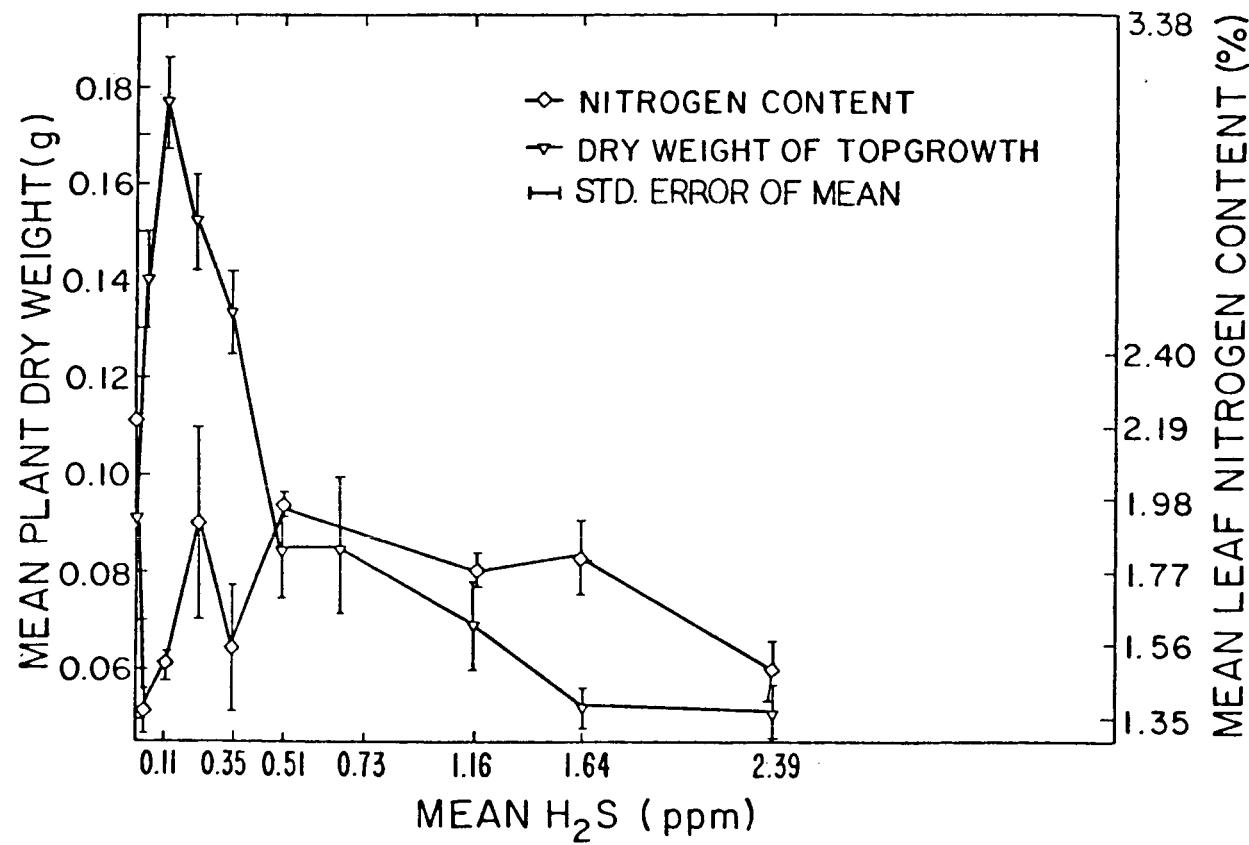



Fig. 13. Mean leaf nitrogen content and dry weight of topgrowth of little bluestem after fumigations with  $\text{H}_2\text{S}$  for 140 h.

Table 6. Comparisons among nitrogen content means of mountain bromegrass leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over an eight-week period at the 95% confidence level.

| Rank                              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Mean H <sub>2</sub> S conc. (ppm) | 0    | 0    | 0    | 0    | 0.07 | 0.37 | 0.72 | 0.65 | 0.21 | 2.14 | 1.16 | 3.58 |
| Mean Leaf Nitrogen Content (%)    | 2.46 | 2.56 | 2.58 | 2.60 | 2.05 | 2.87 | 2.89 | 3.01 | 3.03 | 3.10 | 3.13 | 3.36 |

ranging from 0.07 to 2.14 ppm stimulated leaf nitrogen content to the same degree and the fumigations with 3.58 ppm  $H_2S$  resulted in a significantly higher mean leaf nitrogen content.

The responses of leaf nitrogen content and water content of top-growth appear to have a strong ( $r = 0.76$ ) positive relationship, as shown in Fig. 12.

Figure 14 depicts the relationship between leaf nitrogen content and dry weight of topgrowth of mountain brome plants fumigated with several levels of  $H_2S$ . The relationship ( $r = 0.24$ ) was not strong. Thus, leaf nitrogen content and dry weight were not jointly affected by the external influences which included  $H_2S$ .

#### Leaf Chlorophyll Content

To facilitate discussion of the chlorophyll results, the length of time for which the groups of plants received the various fumigation treatments (exposure) will be identified as follows: 60 h = 4 h per day, 5 days per week for 3 weeks in succession; 80 h = 4 h per day, 5 days per week for 4 weeks in succession; 100 h = 4 h per day, 5 days per week for 5 weeks in succession; 120 h = 4 h per day, 5 days per week for 6 weeks in succession; 140 h = 4 h per day, 5 days per week over an 8-week period (there was a 9-day fumigation-free period between the 6th and 8th week after fumigations commenced).

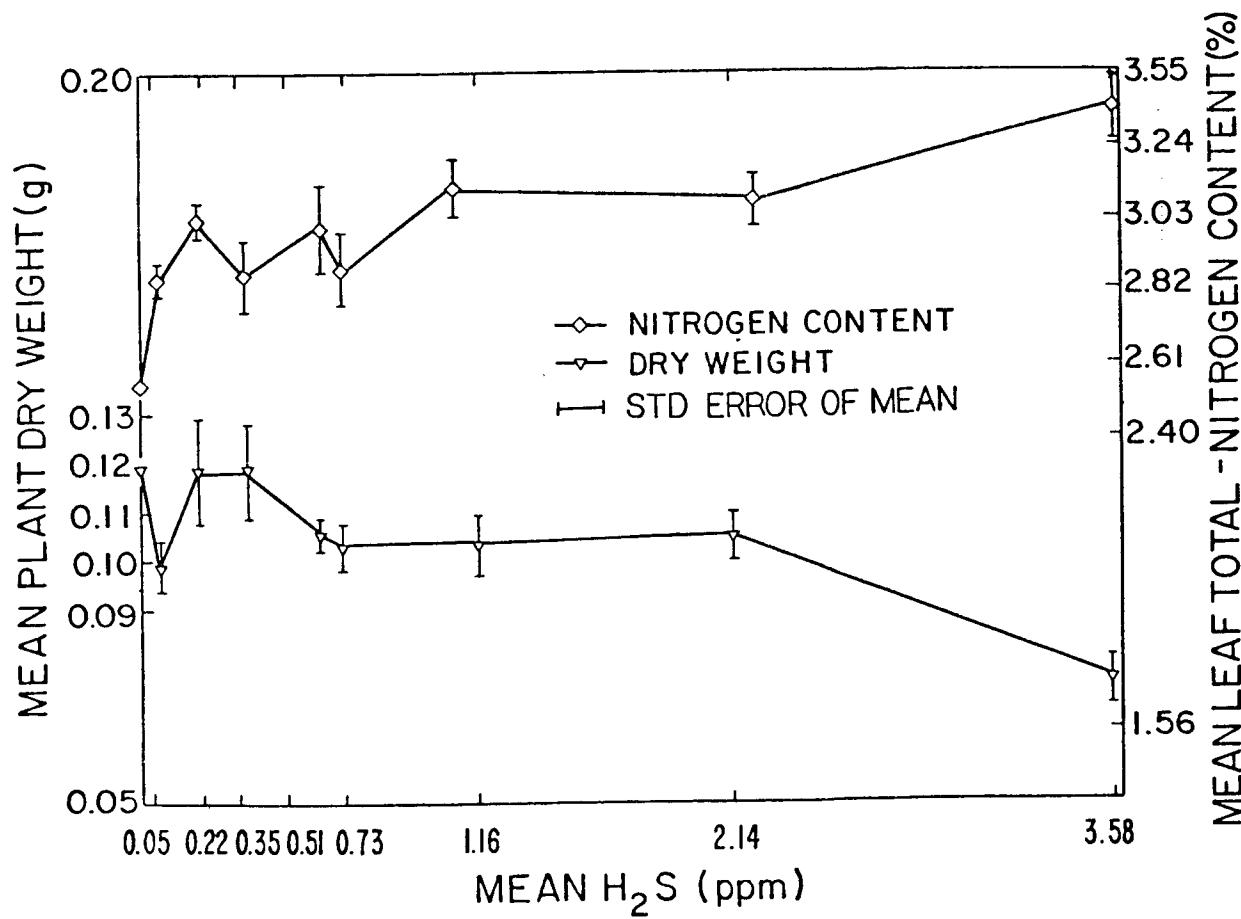



Fig. 14. Mean leaf nitrogen content and plant dry weight of topgrowth of mountain brome after fumigations with  $\text{H}_2\text{S}$  for 140 h.

### Little Bluestem

Effects of exposure time. Chlorophyll content determinations of little bluestem leaf extracts were made after 60, 80, 100, and 140 total h of fumigation. The ANOVA tables for mean leaf chlorophyll content data appear in Appendix Tables 20 through 23. The leaf chlorophyll content at each of several mean  $H_2S$  concentrations was averaged across pots for each total-hour sampling time and appears in Fig. 15. Comparisons among treatment means for chlorophyll content data appear in Tables 7, 8, 9, and 10 for the 60-, 80-, 100-, and 140-h exposure times, respectively.

At the 60-h exposure time leaf chlorophyll content increased rapidly from the 0- to the 0.12-ppm level of  $H_2S$ , and then declined in general at a decreasing rate from the 0.12- to the 2.50-ppm level with a second peak being formed at 0.51 ppm (Fig. 15). The increase in chlorophyll content of the  $H_2S$ -treated plants above that of the control plants (no  $H_2S$ ) can be interpreted as an  $H_2S$ -caused stimulation of chlorophyll synthesis. This stimulated chlorophyll production may have resulted partly from a greater rate of chloroplast division (Salisbury and Ross, 1978) which may have resulted from cells functioning better at some water deficit, as mentioned earlier. The treatment mean at the 0.12-ppm level of  $H_2S$  was significantly higher than that at all the other levels of  $H_2S$ ; all other treatment means showed no significant differences (Table 7).

At the 80-h exposure time leaf chlorophyll content decreased rapidly from the 0- to the 0.11-ppm level of  $H_2S$ , and at a slower

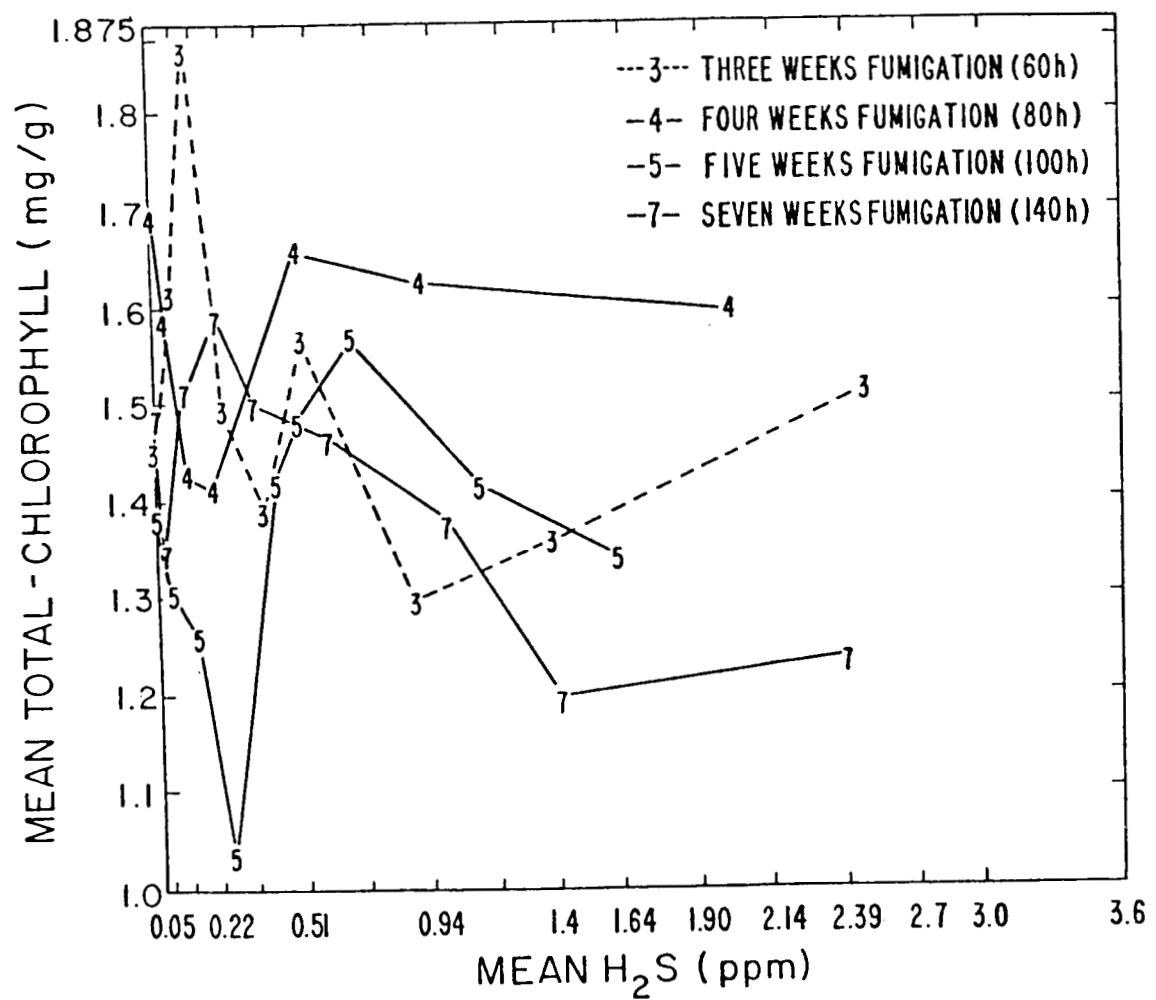



Fig. 15. Mean leaf chlorophyll content of little bluestem after 3, 4, 5 and 7 weeks of  $\text{H}_2\text{S}$  fumigations.

Table 7. Comparisons among chlorophyll content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 60 hours over a three-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.

| Rank                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S Conc. (ppm) | 0.90  | 1.40  | 0.37  | 0     | 0.24  | 2.50  | 0.51  | 0.05  | 0.12  |
| Mean Leaf Chlorophyll (mg/g)      | 1.295 | 1.352 | 1.388 | 1.452 | 1.489 | 1.513 | 1.566 | 1.599 | 1.863 |

Table 8. Comparisons among chlorophyll content means of little bluestem leaves using Duncan's Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 80 hours over a four-week period

| Rank                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S Conc. (ppm) | 0.21  | 0.11  | 2.03  | 0.05  | 0.93  | 0.45  | 0     |
| Mean Leaf Chlorophyll (mg/g)      | 1.412 | 1.424 | 1.584 | 1.585 | 1.622 | 1.656 | 1.698 |

Table 9. Comparisons among chlorophyll-content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 100 hours over a five-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.

| Rank                         | 1     | 2     | 3     | 4           | 5     | 6     | 7     | 8     | 9     |
|------------------------------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S (ppm)  | 0.26  | 0.12  | 0.06  | <u>1.62</u> | 0     | 1.10  | 0.38  | 0.47  | 0.67  |
| Mean Leaf Chlorophyll (ng/g) | 1.032 | 1.260 | 1.305 | 1.333       | 1.386 | 1.409 | 1.420 | 1.476 | 1.564 |

Table 10. Comparisons among chlorophyll content means of little bluestem leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 140 hours over a seven-week period. Any two means underscored by the same line are not significantly different at the 95% confidence level.

| Rank                              | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mean H <sub>2</sub> S Conc. (ppm) | 1.41  | 2.39  | 0.04  | 1.01  | 0.58  | 0     | 0.33  | 0.10  | 0.22  |
| Mean Leaf Chlorophyll (ng/g)      | 1.194 | 1.247 | 1.347 | 1.374 | 1.468 | 1.495 | 1.498 | 1.519 | 1.586 |

rate until 0.21 ppm had been received (Fig. 15). Leaf chlorophyll content then increased from the 0.21- to the 0.45-ppm level of  $H_2S$  forming a peak near that of the control, and then declined slowly from the 0.45- to the 2.03-ppm level. The control treatment mean was significantly higher than the 0.11- and the 0.21-ppm treatment means (Table 8).

At the 100-h exposure time leaf chlorophyll content followed a pattern similar to that of the 80-h exposure time (Fig. 15). There was a decrease in chlorophyll content from the 0- to the 0.26-ppm level of  $H_2S$ , and then an increase from the 0.26- to the 0.67-ppm level with a peak being formed at the 0.67-ppm level. Chlorophyll content then declined slowly again from the 0.67- to the 1.62-ppm level of  $H_2S$ . The 0.26-ppm treatment mean was significantly different than all the other treatment means (Table 9).

At the 140-h exposure time leaf chlorophyll content followed a pattern much like that of the 60-h exposure time without the second peak. There was an increase in chlorophyll content from the 0- to the 0.22-ppm level of  $H_2S$ , and then a gradual decrease from the 0- to the 2.96-ppm level. Table 10 shows that the 0.22-ppm treatment mean was significantly higher than the treatment means which received 1.41, and 2.39 ppm of  $H_2S$ . Also, the 1.41-ppm treatment mean was significantly lower than those which received 0, 0.10, 0.22, 0.33, and 0.58 ppm  $H_2S$  (Table 10).

The spectrophotometer absorbance measurements of the 140-h little bluestem leaf-chlorophyll extracts were made in triplicate in order to determine whether the variation contributed by the spectro-

photometer and its use was a statistically significant source of sampling error. The ANOVA table for these data appears in Appendix Table 23 and provides evidence that variation due to spectrophotometer sampling error contributed negligibly to the total error in determining leaf chlorophyll content.

Reductions in chlorophyll during a 4-h fumigation period. On a particular day midway through the 7th week of fumigations (140 h), leaf chlorophyll determinations were made on little bluestem extracts both before and after fumigations. A  $t$ -value of 0.51 indicated no significant differences among control-plant leaf chlorophyll content means before and after the fumigations at  $\alpha=0.05$ . A  $t$ -value of 2.1 for the  $\text{H}_2\text{S}$ -treated plants indicated that there was a significant 7% decrease in mean leaf chlorophyll content following the fumigation at the 95% confidence level. The true mean difference in leaf chlorophyll content between the  $\text{H}_2\text{S}$ -treated plants before and after a 4-h fumigation lies between -0.066 and -0.108 mg/g of fresh weight or between 4.6 and 7.6% reductions.

Exposure interactions. Figure 16 represents the effect that the fumigations had on the leaf chlorophyll content of the  $\text{H}_2\text{S}$ -treated plants as the exposure time increased. At the lower  $\text{H}_2\text{S}$  fumigation levels (below 0.67 ppm) chlorophyll content decreased substantially from the 60- to the 100-h exposure time, and then increased from the 100- to the 140-h exposure time. This pattern can also be observed in Fig. 15. The increase in chlorophyll content from the 100- to the 140-h exposure time can be attributed to the 9-day fumigation-free period which the plants experienced between the

120- and the 140-h exposure time. The "recovery" period may have enabled the plants to resume a more normal rate of cell division and/or chlorophyll synthesis, resulting in leaf chlorophyll contents close to that measured at the 60-h exposure time. The dotted line in Fig. 16 is simply a linear extension of the 80- to the 100-h exposure time line which serves as a prediction of the change in chlorophyll content from the 100- to the 140-h exposure time if the H<sub>2</sub>S-free period had not occurred.

At the higher H<sub>2</sub>S fumigation levels (above 0.67 ppm) leaf chlorophyll content increased from the 60- to the 80-h exposure time, and then decreased from the 80- to the 140-h exposure time (Fig. 16). The absence of an increase in leaf chlorophyll content after the H<sub>2</sub>S-free period indicates that the plants which received the higher levels of H<sub>2</sub>S were damaged at the biochemical level to such a degree that they were unable to recover. Taylor (1978) defined this as prolonged elastic strain culminating in irreversible plastic strain.

Air temperature interaction. In order to determine whether the change in chlorophyll content over time was affected by environmental variables average weekly temperature over the 4 h daily fumigation period was used to represent changes in ambient environmental variables. Average air temperature of the week that chlorophyll determinations were made was plotted against time and compared with plots of chlorophyll content against time (Fig. 17). Air temperature was used as the representative variable because it may be the ambient environmental factor with the most significant

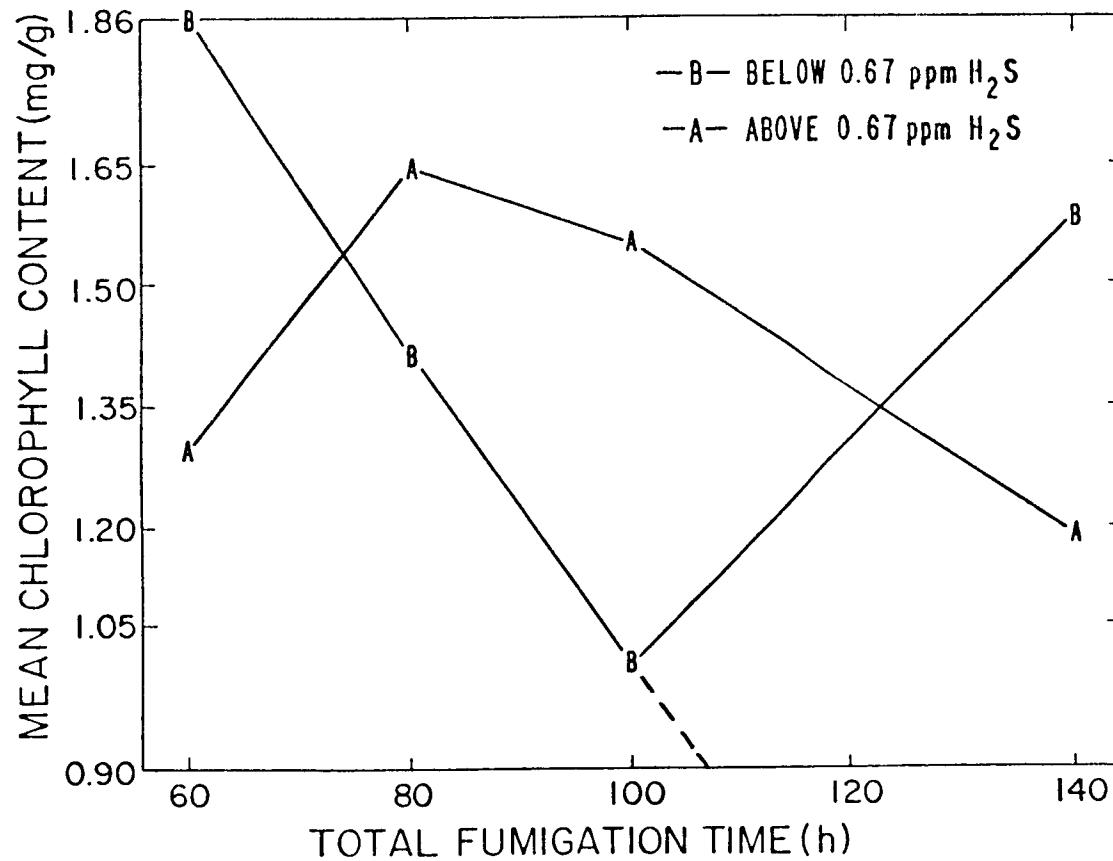



Fig. 16. Change in leaf chlorophyll content of little bluestem as total H<sub>2</sub>S fumigation time increased.

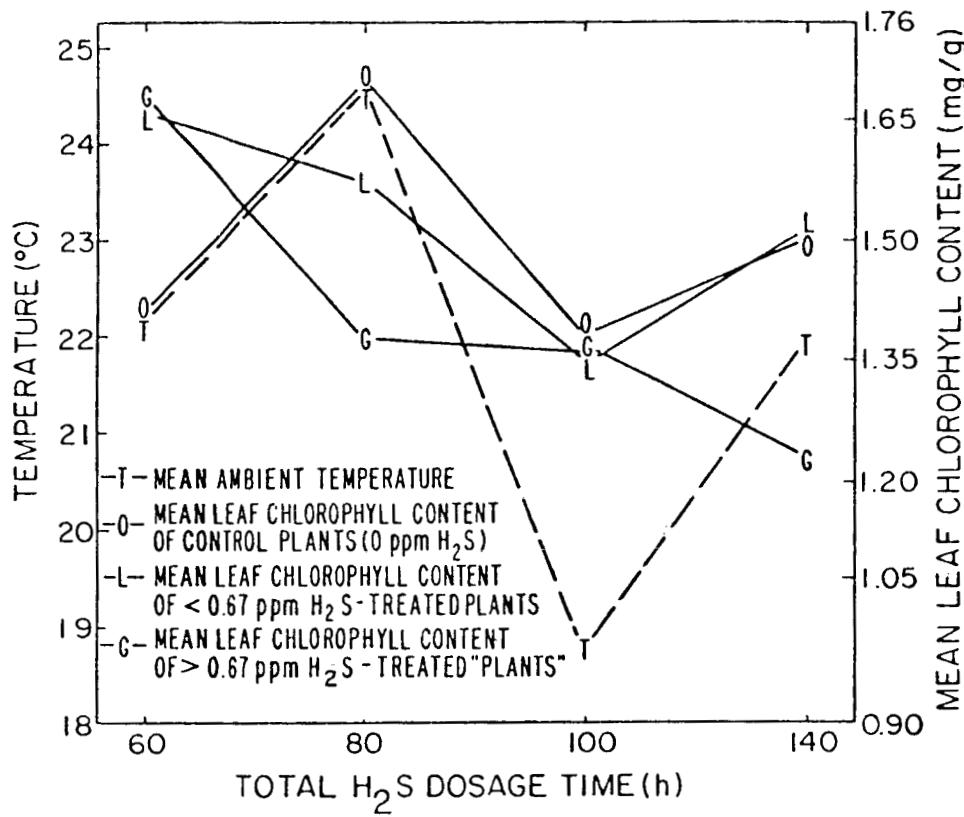



Fig. 17. Change in ambient air temperature and leaf chlorophyll content of little bluestem as total H<sub>2</sub>S fumigation time increased.

influence on air pollutant effects on plants (Heck et al., 1965; Heck, 1968; Omrod, 1978) and it represents change in other ambient environmental variables including irradiance and humidity. Figure 17 shows that the change in control-plant leaf chlorophyll content over time followed the change in mean weekly ambient temperature quite consistently. A correlation coefficient of 0.69 indicates that this relationship is moderately strong. The relationship between chlorophyll content of the  $H_2S$ -treated plants and temperature is moderate as indicated by correlation coefficients of 0.45 and 0.39 for the low ( $< 0.67$  ppm) and high ( $> 0.67$  ppm)  $H_2S$ -level curves. Thus, leaf chlorophyll content of the control plants was affected to a greater degree by ambient temperature than that of  $H_2S$ -treated plants. This implies that temperature may have accounted for more of the variation in leaf chlorophyll content of plants that received no  $H_2S$  than in  $H_2S$ -treated plants. However, the amount of variation in chlorophyll content contributed by air temperature is unknown.

Plant response relationships. The relationship between leaf chlorophyll content and the other response variables of water content, nitrogen content, and dry weight are shown separately in Figs. 18, 19, and 20, respectively. The relationship between chlorophyll content and water content in response to the fumigations was a negative one; water content increased as chlorophyll content decreased along an increasing level of  $H_2S$  (Fig. 18). This supports and may be explained by the statement alluded to earlier

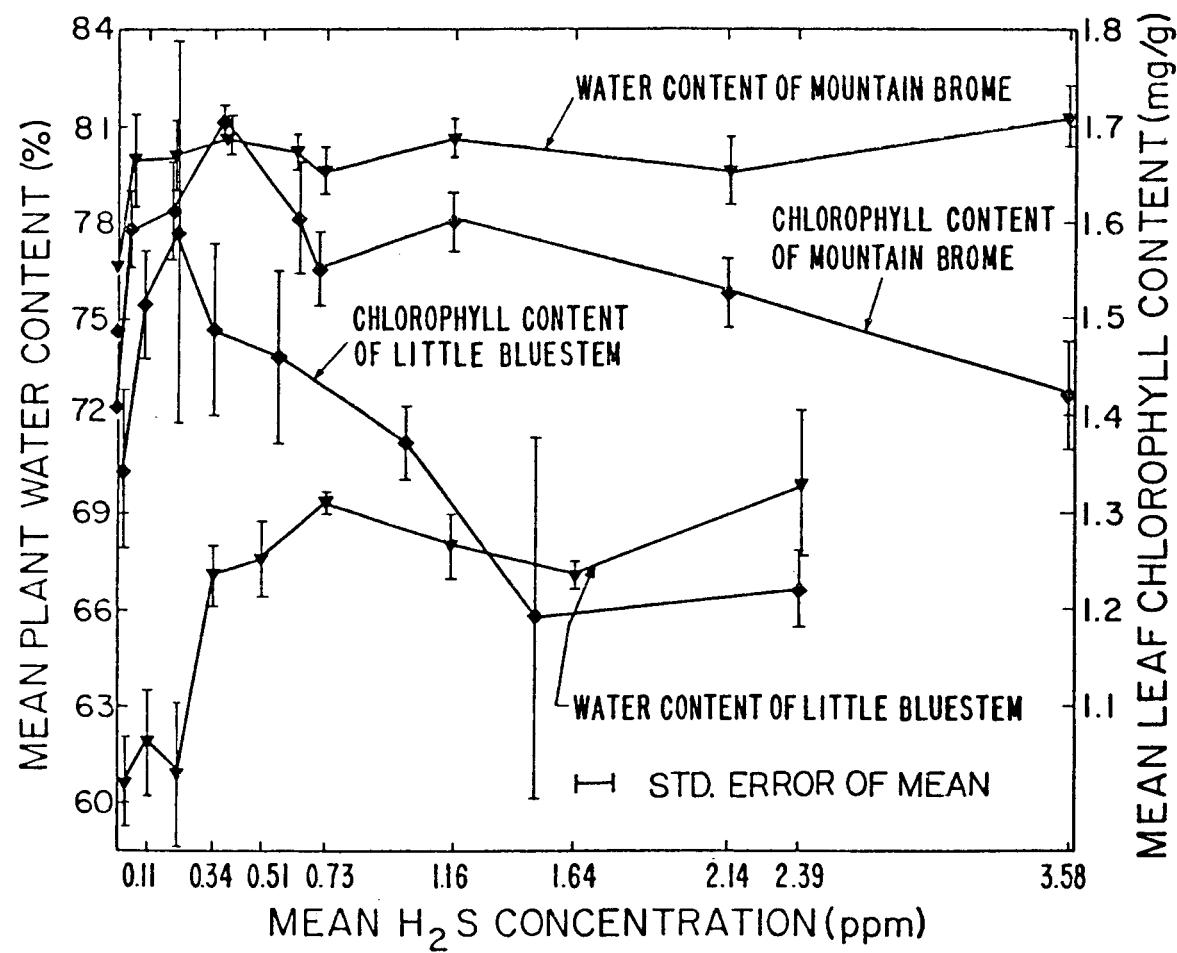



Fig. 18. Mean water content of topgrowth and leaf chlorophyll content of little bluestem and mountain brome fumigated with  $\text{H}_2\text{S}$  for 140 h over an 8 week period.

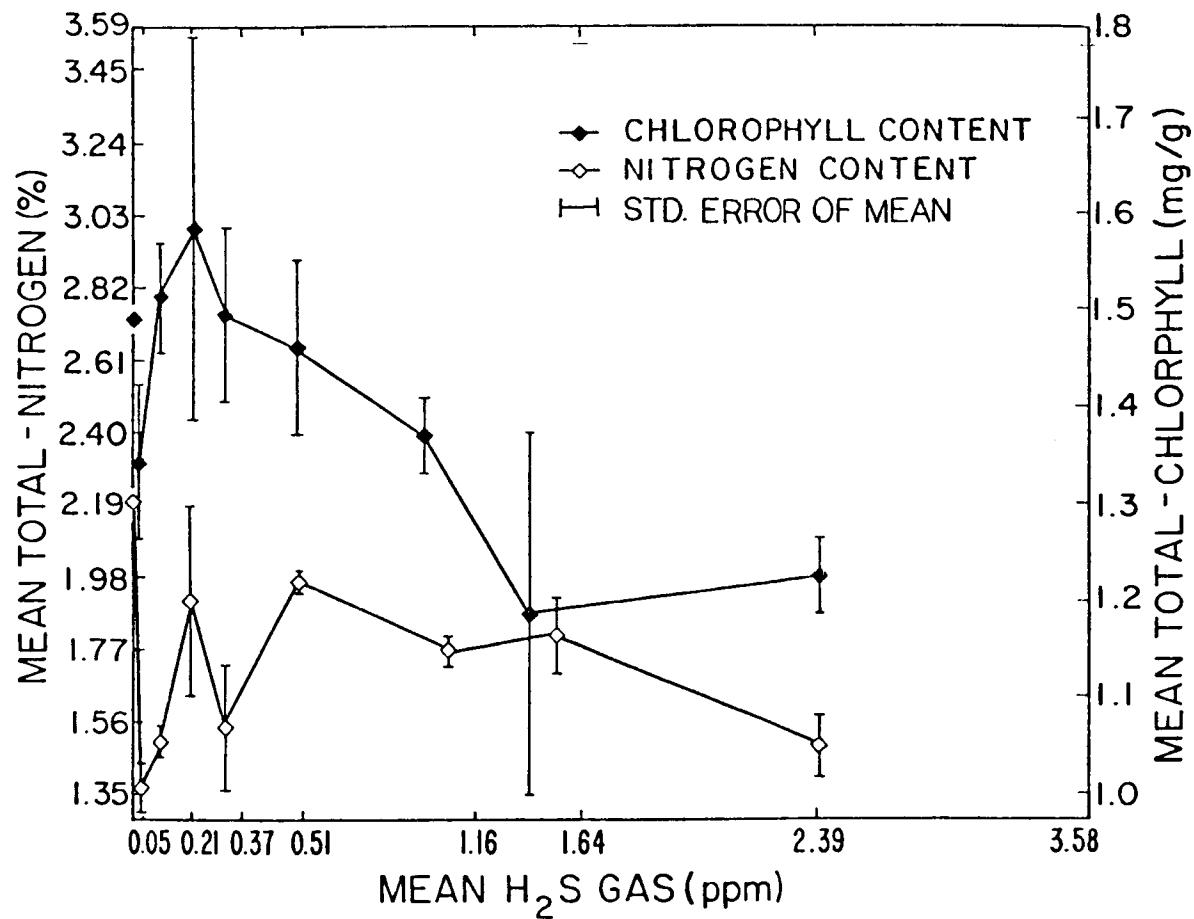



Fig. 19. Mean total-nitrogen and total-chlorophyll content of little bluestem leaves fumigated with a range of  $\text{H}_2\text{S}$  gas (in ppm).

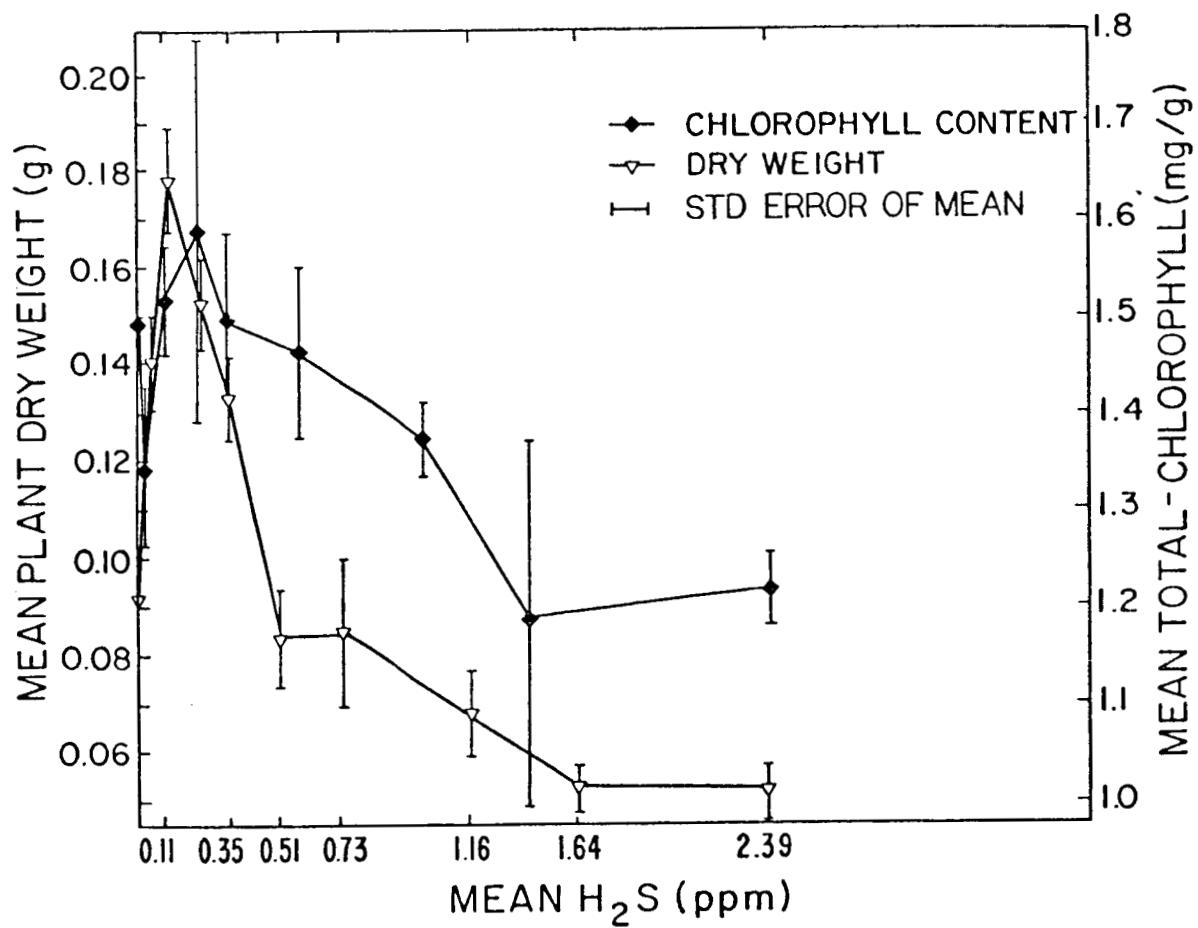



Fig. 20. Mean leaf chlorophyll content and dry weight of topgrowth of little bluestem plants fumigated with a range of  $\text{H}_2\text{S}$  for 140 h.

that cells function faster or more efficiently when there is some water deficit.

The positive relationship between chlorophyll and nitrogen in their responses to the  $\text{H}_2\text{S}$  fumigations (Fig. 19) may be expected since nitrogen is a major component of pyrole rings in chlorophyll (Salisbury and Ross, 1978). Both leaf chlorophyll and leaf nitrogen content decreased from the 0- to the 0.07-ppm level of  $\text{H}_2\text{S}$ , increased from the 0.07- to the 0.22-ppm level, and then decreased again from the 0.22- to the 0.33-ppm level. Above the 0.33-ppm level of  $\text{H}_2\text{S}$ , factors other than nitrogen content may have contributed more to the decline of leaf chlorophyll content than at the levels below 0.33 ppm.

A strong ( $r = 0.60$ ) positive relationship between leaf chlorophyll content and dry weight is evident in Fig. 20. An increase in chlorophyll content could have led to an increase in light trapping and therefore, a stimulation of photosynthesis resulting in greater dry weight production. Above the 0.33-ppm level of  $\text{H}_2\text{S}$ , it appears that leaf chlorophyll content contributed less to the change in dry weight than below the 0.33-ppm level (Fig. 20) as was the case with leaf nitrogen content. Thus, most of the correlation can be attributed to the lower end of the relationship.

#### Mountain Brome

Effects of exposure time. Leaf chlorophyll content determinations of mountain brome were made after 60, 80, 120, and 140 total h of fumigation. The ANOVA tables for mean leaf chlorophyll content

data appear in Appendix Tables 24 through 27. The chlorophyll content at each of several mean  $H_2S$  concentrations was averaged across pots for each subplot and appears in Fig. 21. Comparisons among treatment means for chlorophyll content data appear in Tables 11 and 12 for the 120- and the 140-h exposure times, respectively.

At the 60-h exposure time leaf chlorophyll content remained relatively unchanged (Fig. 21). No treatment differences were detected (Appendix Table 24).

At the 80-h exposure time there was an extremely small, insignificant change in leaf chlorophyll content across all levels of  $H_2S$  (Fig. 21). Again, no treatment differences were evident (Appendix Table 25).

At the 120-h exposure time the F-value for testing treatment differences was barely significant at the 95% confidence level. There was a general decrease in leaf chlorophyll content from the 0- to the 2.14-ppm level of  $H_2S$ , and then an increase from the 2.14- to the 3.58-ppm level. The 2.14-ppm treatment mean differed significantly from the control-plant grand mean and from the 0.21-ppm treatment mean (Table 11).

At the 140-h exposure time leaf chlorophyll content increased significantly from the 0- to the 0.37-ppm level of  $H_2S$ , and then decreased significantly from the 0.37- to the 3.58-ppm level (Fig. 21 and Table 12). There were no significant differences between the control treatment means indicating no significant variation in leaf chlorophyll content from chamber to chamber.

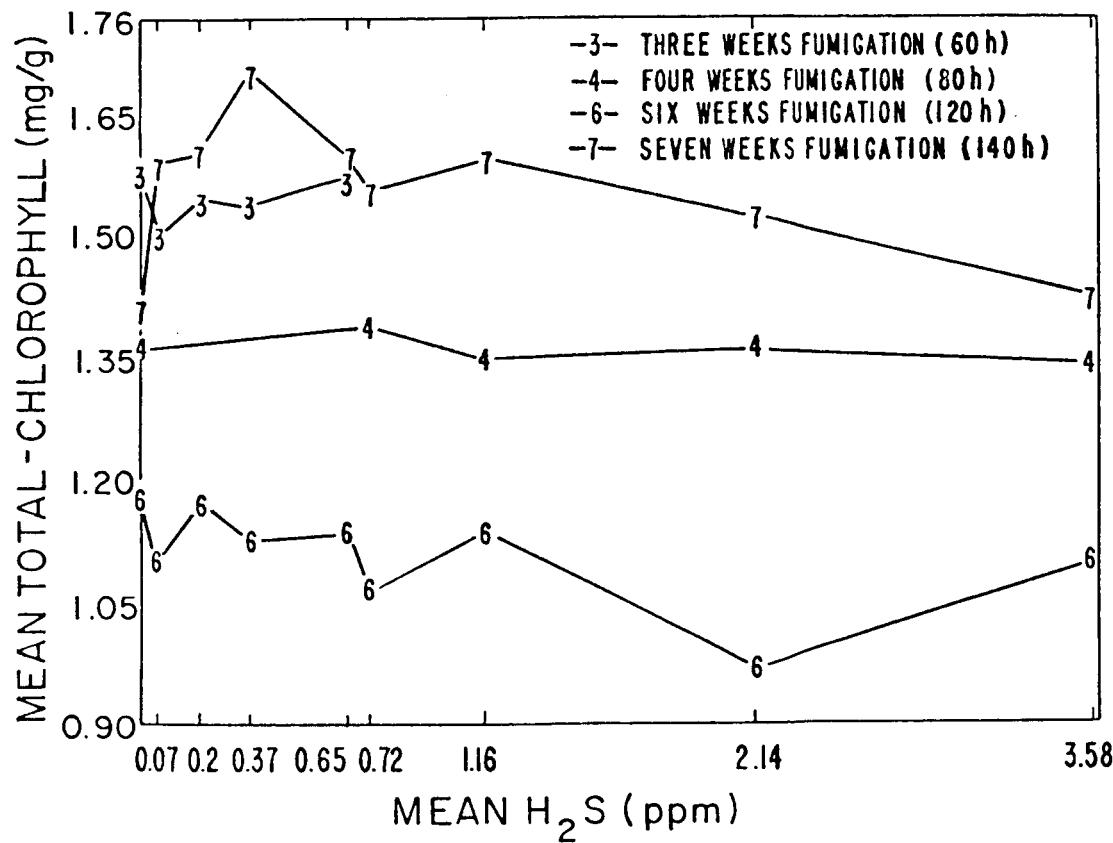



Fig. 21. Mean leaf chlorophyll content of mountain brome after 3,4,6 and 7 weeks of  $\text{H}_2\text{S}$  fumigations.

Table 11. Comparisons among chlorophyll content means of mountain bromegrass leaves using Duncan's New Multiple-Range Test. Plants were fumigated with H<sub>2</sub>S for a total of 120 hours over a six-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.

| Rank                                 | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Average H <sub>2</sub> S Conc. (ppm) | 2.14 | 0.72 | 3.58 | 0.07 | 0    | 0.37 | 0    | 0.65 | 1.16 | 0    | 0.21 | 0    |
| Mean Leaf Chlorophyll (mg/g)         | 0.97 | 1.07 | 1.09 | 1.09 | 1.12 | 1.13 | 1.14 | 1.14 | 1.14 | 1.17 | 1.18 | 1.30 |

Table 12. Comparisons among chlorophyll content means of mountain brome leaves using Duncan's New Multiple-Range Test. Plants were fumigated with  $H_2S$  for a total of 140 hours over an eight-week period. Any two means not underscored by the same line are significantly different at the 95% confidence level.

| Rank                              | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|-----------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Mean H <sub>2</sub> S conc. (ppm) | 0    | 0    | 0    | 3.58 | 2.14 | 0.72 | 0.07 | 1.16 | 0.65 | 0.21 | 0.37 |
| Mean Leaf Chlorophyll (ng/g)      | 1.39 | 1.41 | 1.42 | 1.43 | 1.53 | 1.55 | 1.59 | 1.60 | 1.60 | 1.61 | 1.70 |

Exposure interactions. As was the case with little bluestem, it was evident that exposure time may have affected the leaf chlorophyll content of the  $H_2S$ -treated mountain brome plants (Fig. 21). Figure 22 represents the change in leaf chlorophyll content of mountain brome as exposure time increased. Chlorophyll content decreased substantially from the 60- to the 120-h exposure time, and then increased from the 120- to the 140-h time to a level above that at the 60-h time. This pattern can also be observed in Fig. 21. The increase in chlorophyll content from the 120- to the 140-h exposure time (Fig. 22) was again attributed to the 9-d  $H_2S$ -free period which the mountain brome plants experienced between the sixth and seventh week after fumigations were commenced. The "recovery" period may have enabled the plants to resume a rate of chlorophyll synthesis that resulted in a mean chlorophyll content above that of the 60-h exposure time. The dotted line in Fig. 22 is a linearly extended prediction of the change in chlorophyll content from the 120- to the 140-h time if the "recovery" period had not occurred.

Air temperature interaction. The change in ambient air temperature as exposure time increased is compared with the change in leaf chlorophyll content of mountain brome as exposure time increased in Fig. 23. A relatively strong ( $r = 0.70$ ) negative relationship between leaf chlorophyll content and ambient air temperature is evident. As the exposure time increased from 60 to 120 h, air temperature increased and chlorophyll content decreased for both the control and the  $H_2S$ -treated plants. Then the air temperature decreased substantially and the chlorophyll contents increased from

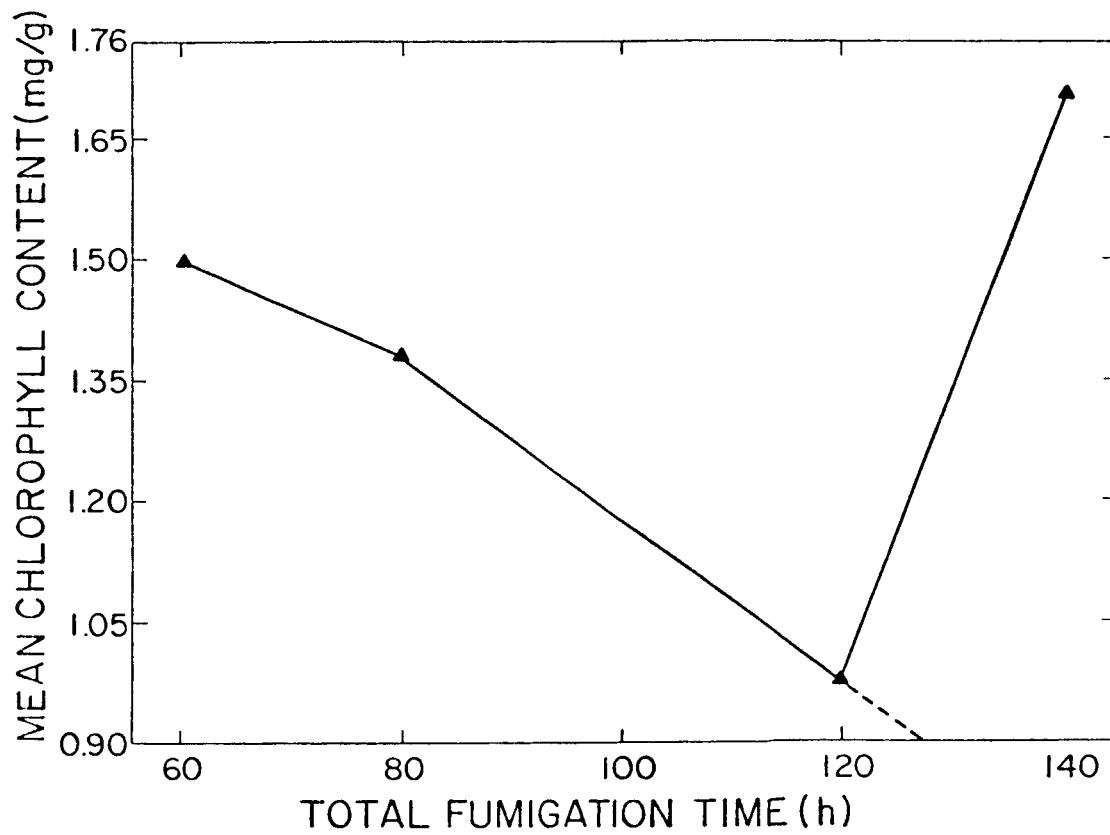



Fig. 22. Changes in leaf chlorophyll content of mountain brome as total fumigation time increased.

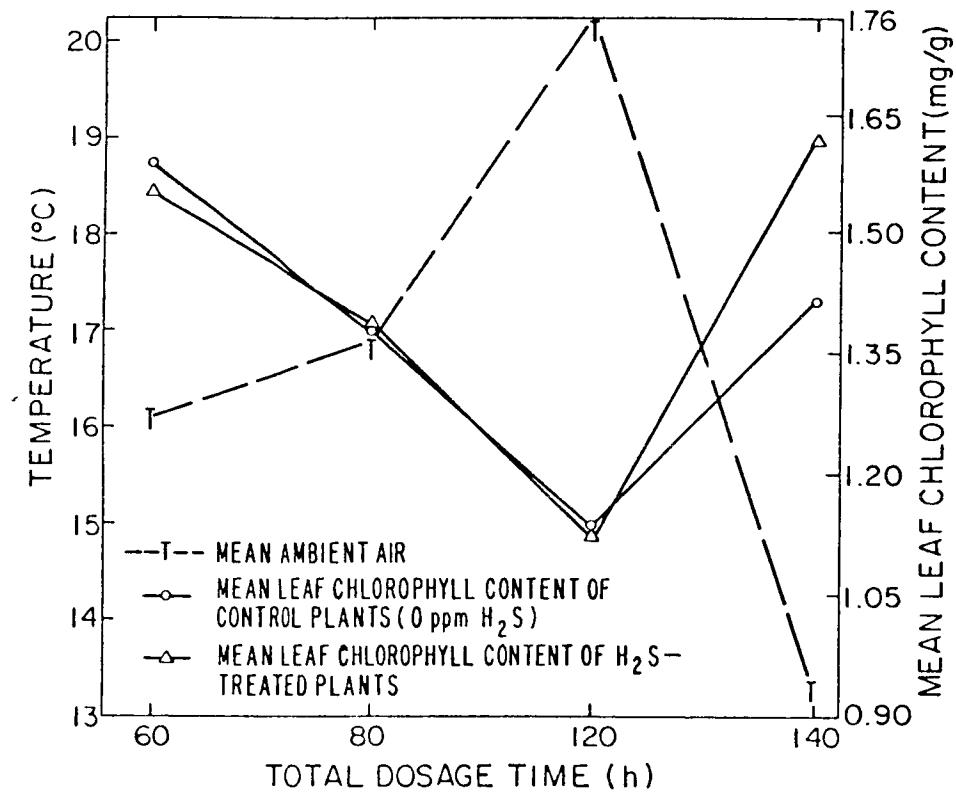



Fig. 23. Changes in ambient air temperature and leaf chlorophyll content of mountain brome as total  $\text{H}_2\text{S}$  fumigation time increased.

the 120- to the 140-h exposure time. The closeness in pattern between the control and the  $H_2S$ -treated plants indicated that they were affected similarly by the extraneous variables, which included air temperature. The strong negative relationship between changes in leaf chlorophyll content and ambient air temperature has two implications. Firstly, the strength of the relationship implies that temperature contributed substantially to the changes in leaf chlorophyll content over time. The amount of variation in leaf chlorophyll content contributed by air temperature can only be determined by partitioning out this contribution using analyses of variance with multiway classifications or factorial experiments. This requires sampling at the same  $H_2S$  level at each sampling date, a procedure which was not done in this experiment. Secondly, the negative aspect of the relationship implies that mountain brome may be adapted to an altitude of colder air temperatures than the altitude at which the experiments were conducted or to growth during a colder time of season. This deduction is based on the fact that the maximum measured chlorophyll content was reached at the coldest air temperature (Fig. 23). Chase (1979) reported that mountain brome is common to the latitude and longitude of New Mexico, therefore, only a change in altitude or growing season would satisfy the colder air temperature requirement.

Plant response relationships. The relationship between leaf chlorophyll content and the other response variables, of water content of topgrowth, leaf nitrogen content, and dry weight of topgrowth, are shown separately in Figs. 18, 24, and 25, respectively.

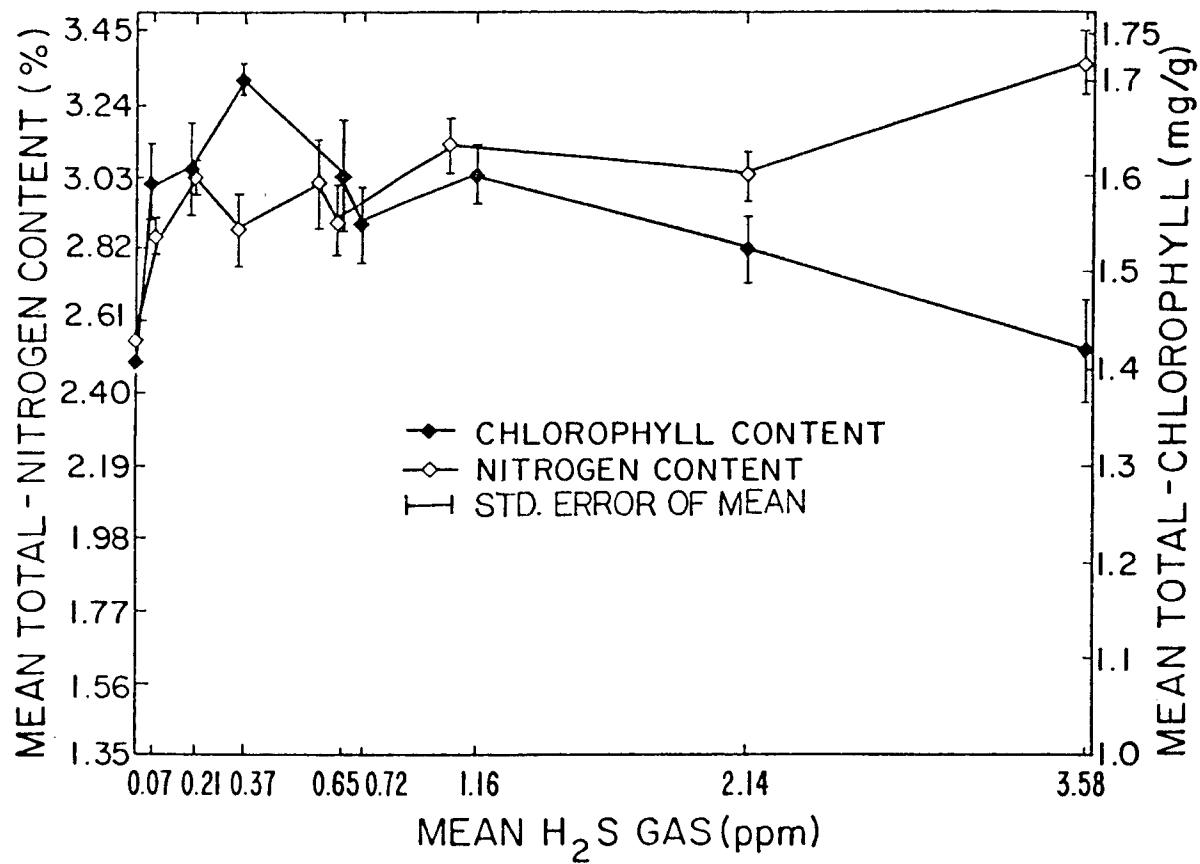



Fig. 24. Mean total-nitrogen and total-chlorophyll content of mountain brome leaves fumigated 140 h with  $H_2S$ .

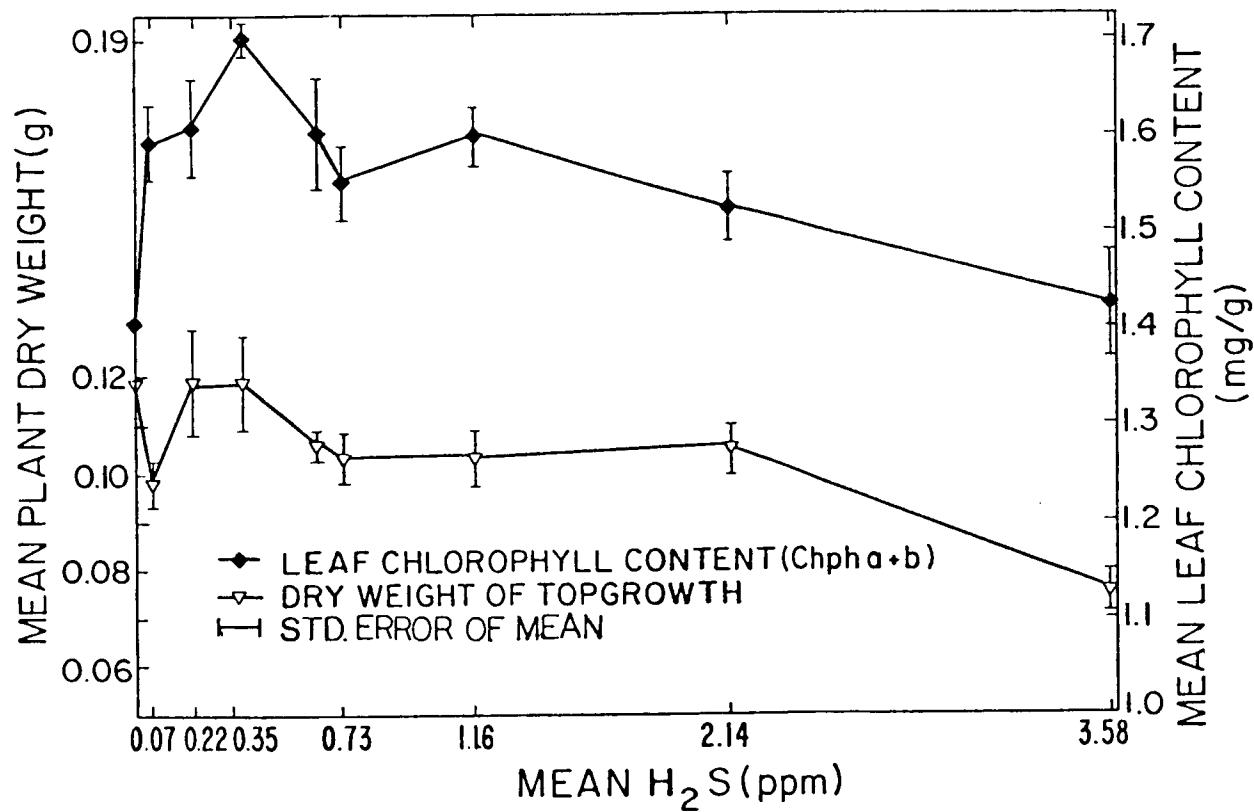



Fig. 25. Mean plant dry weight of topgrowth and leaf chlorophyll content of mountain brome fumigated with  $\text{H}_2\text{S}$  for 140 h.

A positive ( $r = 0.50$ ) relationship between chlorophyll content and water content along an increasing  $\text{H}_2\text{S}$  gradient is shown in Fig. 18. This encourages the "better cell functioning at some water deficit" theory. Generally, as water content increased from the 0- to 0.37-ppm level of  $\text{H}_2\text{S}$  so did chlorophyll content, and then chlorophyll content decreased by about 16% from the 0.37- to the 3.58-level of  $\text{H}_2\text{S}$  as water content remained about the same. Thus, above the 0.37-ppm level of  $\text{H}_2\text{S}$ , chlorophyll and water content may have ceased to respond similarly to the  $\text{H}_2\text{S}$  fumigations.

A positive ( $r = 0.32$ ) relationship between chlorophyll and nitrogen content along an increasing  $\text{H}_2\text{S}$  gradient is shown in Fig. 24. The relationship is not strong and occasionally turns to a negative relationship.

A positive ( $r = 0.42$ ) relationship between dry weight and chlorophyll content along an increasing  $\text{H}_2\text{S}$  gradient is plotted in Fig. 25. However, the loss in dry weight ( $\sim 37\%$ ) over the entire spectrum of  $\text{H}_2\text{S}$  dosages is not proportional to the change in chlorophyll content, which, in fact, was an increase of about 2%.

Figure 26 represents the change in leaf chlorophyll content of little bluestem and mountain brome as  $\text{H}_2\text{S}$  concentration increased.




Fig. 26. Mean total-chlorophyll content of mountain brome and little bluestem leaves fumigated with  $\text{H}_2\text{S}$  for 140 h over an 8-week period.

## DISCUSSION

After reviewing the literature it seems evident that after  $H_2S$  is released into the troposphere much of it will be exposed to plants in an unaltered form. The long residence time of  $H_2S$  before it is converted to  $SO_2$  supports this statement. Hydrogen sulfide as a gas is about 16% heavier than air (Hendrickson, 1979); therefore, it seems possible that some settling may occur exposing some vegetation to slightly higher concentrations of  $H_2S$  than that found above a canopy layer. However, the atomic weight of  $CO_2$  is greater than that of  $H_2S$ . Thus, settling of geothermal gases must be considered since  $CO_2$  may ameliorate the effects of  $H_2S$  on plants (Shinn et al., 1977). Special problems may develop in mountainous regions where air drainage patterns result in gas build-ups in valleys and canyons. Since it is likely that undissociated  $H_2S$  crosses biologic membranes more rapidly than the charged anionic species (Smith, 1979), and  $H_2S$  is the form common to the troposphere, it seems feasible that there would be less stress avoidance and more stress tolerance, as described by Taylor (1978), in plants exposed to  $H_2S$ .

Plant species express wide variations in their responses to gaseous air contaminants (Mudd, 1975; Bradshaw, 1976; Smith, 1979). This variability is exhibited both between species and within species. However, there is evidence of populations showing specific adaptations or responses to most known pollutants (Bradshaw, 1976).

After having reviewed the literature on  $H_2S$  effects on plants and considering the results of this study, a generalized pattern of plant responses to  $H_2S$  can be developed. This is shown in Table 13. It is important to note that the latter events are most likely indirect responses to one or more of the earlier events rather than to  $H_2S$  stress per se.

Initially most of the absorbed sulfur is incorporated into organic compounds (Steubing and Jäger, 1978). There is a stimulation of many growth processes and, if gas concentrations are non-acute, there is a stimulation of growth. Those amounts of sulfur which are taken up in excess are accumulated in the vacuole as sulfate, which causes an increase in osmotic pressure of the cell sap (Steubing and Jäger, 1978). The osmotic potential of the cell protoplasts continue to become more negative due to storage of  $HS^-$  and  $SO_4^{=}$  ions in the vacuole. Water continues to enter the protoplast because of the universal tendency to establish equilibrium in water potentials between the apoplast and the protoplast, thus creating positive protoplasmic pressure potentials. This continues until the protoplast can no longer accept anions or water due to a high water potential caused by the osmotic pressure or due to the fact that the protoplast has reached its stretching capacity. The excess sulfate which can no longer be stored in the vacuoles lowers the water potential in the apoplast below that in the protoplast. As a result, water moves out of the protoplasts of mesophyll and epidermal cells and plants become water stressed (Meidner and Sheriff, 1976). This may explain the water-stress conditions

Table 13. Generalized pattern of plant processes or responses to increasing hydrogen sulfide levels under optimal or near-optimal environmental conditions.<sup>a</sup>

| Process or Response                     | $H_2S$ Dosage <sup>b</sup><br>Concentration x Length of Exposure |           |           |           | Remarks             |
|-----------------------------------------|------------------------------------------------------------------|-----------|-----------|-----------|---------------------|
|                                         | 0 ppm h                                                          | 150 ppm h | 400 ppm h | 650 ppm h |                     |
| Affected <sup>c</sup>                   |                                                                  |           |           |           |                     |
| Stimulation of growth processes         |                                                                  |           |           |           |                     |
| Protoplasmic $\Psi_m$ + and $\Psi_p$ +  | ---                                                              | ---       | ---       | ---       |                     |
| Cell growth +                           | ---                                                              | ---       | ---       | ---       |                     |
| Wall synthesis +                        | ---                                                              | ---       | ---       | ---       |                     |
| Protein synthesis +                     | ---                                                              | ---       | ---       | ---       |                     |
| Stomatal opening +                      | ---                                                              | ---       | ---       | ---       | Depends on Species  |
| $CO_2$ assimilation +                   | ---                                                              | ---       | ---       | ---       | Depends on Species  |
| Overall plant growth +                  | ---                                                              | ---       | ---       | ---       |                     |
| Suppression of growth processes         |                                                                  |           |           |           |                     |
| Protoplasmic $\Psi_p$ + and $\Psi_m$ ++ | ---                                                              | ---       | ---       | ---       |                     |
| Cell growth +                           | ---                                                              | ---       | ---       | ---       |                     |
| Wall synthesis +                        | ---                                                              | ---       | ---       | ---       |                     |
| Protein synthesis +                     | ---                                                              | ---       | ---       | ---       |                     |
| Chlorophyll content +                   | ---                                                              | ---       | ---       | ---       |                     |
| Cytochrome oxidase level +              | ---                                                              | ---       | ---       | ---       |                     |
| Nitrogen reductase level +              | ---                                                              | ---       | ---       | ---       |                     |
| Stomatal Closure + or +                 | ---                                                              | ---       | ---       | ---       | Contrast in Species |
| $CO_2$ assimilation +                   | ---                                                              | ---       | ---       | ---       | Depends on Species  |
| Respiration +                           | ---                                                              | ---       | ---       | ---       |                     |
| Proline accumulation +                  | ---                                                              | ---       | ---       | ---       |                     |
| Cessation of all processes              |                                                                  |           |           |           |                     |
| Protoplasts collapse                    | ---                                                              | ---       | ---       | ---       | Rarely occurs       |
| $CO_2$ assimilation ++                  | ---                                                              | ---       | ---       | ---       | under natural       |
| Respiration ++                          | ---                                                              | ---       | ---       | ---       | conditions          |

<sup>a</sup>Length of the horizontal lines represents the range of  $H_2S$  dosage levels within which a process first becomes affected or a response is first noticed. Dashed lines signify deductions based on more tenuous data.

<sup>b</sup>With plants which received filtered air (usually charcoal filtered) as the reference point.

<sup>c</sup>The symbol + represents an increase in that process or response, + represents a decrease, and ++ represents neither an increase nor a decrease.

reported by Steubing and Jäger (1978). Stomata may have partially closed during this process.

At this point the pattern of responses may be similar to those exhibited by plants under water stress. Growth processes, especially photosynthesis, translocation of assimilates, and respiration drop to lower levels, although the initiation of decline in these processes and the degree of decline varies with plant species and other factors. The response of cellular growth to water stress is evidenced as a slowing of shoot and root growth (Salisbury and Ross, 1978). This is usually followed closely by a reduction in cell wall synthesis and protein synthesis (Salisbury and Ross, 1978).

At slightly higher  $H_2S$  dosages protochlorophyll biosynthesis is probably inhibited and chlorophyll is converted to pheophytin. The increased activities of certain enzymes, especially GDH, GOT, and GPT, correlate with reductions in free glutamic and aspartic acid and increases in proline (Steubing and Jäger, 1978). It is unclear whether or not this process occurs to make the protoplasmic osmotic potential more negative, thereby creating a greater tendency for water to move into the stressed parts. The inhibition of cytochrome oxidase may occur at this stage.

As stomata continue to close, transpiration and photosynthesis rates continue to decrease. At about this level of  $H_2S$  stress, accumulation of free proline may be found. Again this seems to be related to the  $H_2S$ -induced water stress. Salisbury and Ross (1978) stated that proline might only act as a storage pool for reduced carbon and nitrogen during stress; however, they suggest

that its presence as a solute would significantly lower the osmotic potential which could help to match the internal water potential to that of the surrounding medium.

At acute dosages of  $H_2S$ , mesophyll and epidermal cell protoplasts collapse, respiration, translocation of assimilates, and  $CO_2$  assimilation drop to levels near zero, and leaf margins dry out becoming brittle (Meidner and Sheriff, 1976; Salisbury and Ross, 1978). Finally, it seems likely that most plants would recover if the  $H_2S$  stress was removed or lessened at any point prior to this, although growth and photosynthesis in young leaves may not reach the original rate for several days or weeks, and old leaves may be shed.

Since there is evidence of similarities between cyanide and sulfide in their inhibitory effects of cytochrome oxidase (Slater, 1950; Gassman, 1973; Nicholls, 1975; Mudd, 1979), it is logical to suggest that plants exposed to poisoning dosages of  $H_2S$  might utilize the cyanide-resistant respiration pathway of electron transport. However, the applicability here, among other things would be contingent upon the particular species used in this study possessing this pathway. It would avoid the prevention of electron transport and poisoning of respiration. This may allow both heat and ATP to be formed at rapid rates if electron transport through the cyanide-resistant pathway was fast enough, although at considerable expense of food reserves (Salisbury and Ross, 1978). The capacity to continue tolerating toxic effects of  $HS^-$  in an unaffected manner would be determined by the biochemical threshold level (Malhotra and Hocking, 1976). However, this is mere speculation since the details

or even the absolute presence of this pathway have yet to be confirmed.

The ability of the plant to tolerate or avoid  $H_2S$  stress may vary with plant metabolism characteristics. Plants employing the four-carbon, three-carbon dicarboxylic acid pathway of  $CO_2$  fixation ( $C_4$  plants) may deal with  $H_2S$  differently than those employing only the three-carbon pathway ( $C_3$  plants). Thus,  $C_3$ - $C_4$  differences might offer a possibility for explanation of differences in parameter measurements. For example, the affinity for which the initial  $CO_2$  acceptor (PEP in  $C_4$  plants and RubP in  $C_3$  plants) has for  $H_2S$  molecules may contribute to differences in their responses to  $H_2S$ . Ziegler (1972) reported that RubP carboxylase was inhibited by sulfite.

The relatively suppressed responses of mountain brome to the fumigations as compared to little bluestem responses may have partially resulted from inoptimal environmental growing conditions for the mountain brome plants since plant sensitivity to air contaminants is largely controlled by the environmental factors under which the plant grows (Omrod, 1978; Tibbitts, 1978). Air temperature may have been the most limiting factor in the response of mountain brome plants to the  $H_2S$  fumigations. Omrod (1978) indicates that temperature variations often affect plant sensitivity to air pollutants. Maximum chlorophyll content in mountain brome was reached at the minimum daily air temperature. Salisbury and Ross (1978) indicated that  $C_3$  plants generally have a lower temperature optima than  $C_4$  plants for photosynthesis and biochemical reactions.

Inoptimal temperatures for the  $C_3$  species would slow down all growth processes (Salisbury and Ross, 1978) and its responses to  $H_2S$  fumigations, thus resulting in an insensitivity to  $H_2S$ . This would explain a lack of stimulation of growth at the low  $H_2S$  levels and a lack of suppression of growth at the high  $H_2S$  levels.

Another factor possibly affecting the magnitude of response in plant species to the  $H_2S$  fumigations may have been genetic differences. The atmospheric concentrations of sulfur-containing gases at the time of the species evolution may be partially responsible for how a plant responds to  $H_2S$  fumigations at a later evolutionary time. Björkman and Berry (1973) imply that  $C_4$  plants may have evolved later on an evolutionary time scale than  $C_3$  plants, therefore, through genetic selection  $C_4$  plants may have developed different gene pools in relation to the atmospheric gas content at the time of their evolution. Bradshaw (1976) indicated that polluted situations are relatively new situations; however, the presence of sulfur-containing gases during the evolution of photosynthetic plants would most likely result in some genetically evolved adaptive significance to air contaminants by the plants. If  $C_3$  plants did evolve during a time of higher sulfur-containing atmospheric gases than that present during the evolution of  $C_4$  plants and did evolve some type of adaptive significance to the gases, then this could result in less variability in  $C_3$  plant populations when exposed to sulfur-containing gases. Bradshaw (1976) reported evidence of plant populations that showed specific adaptations to most known pollutants including some which had been in existence for only a few

years. However, there is also widespread evidence of genetic variation in response to pollutants (Bradshaw, 1976).

## SUMMARY AND CONCLUSIONS

### Summary

Environmental effects of energy technology developments must be anticipated beforehand so that recommendations for environmental management policy will preclude any significant changes in ecosystems. Geothermal energy sources in Northern New Mexico may be developed in the near future. "Potential damage to vegetation and the resulting economic impact of geothermal sources should be determined before tapping such sources" (Mudd, 1979, p. 67). Few scientific studies have examined the long-term effects of a wide range of  $H_2S$  levels on vegetation under realistic field conditions. Hydrogen sulfide gas, as emitted from geothermal power plants, is an air pollutant of major concern with respect to effects on terrestrial plant systems (Axtmann, 1975).

Objectives. The overall objective of this study were to determine some responses of little bluestem and mountain brome to controlled gradients of hydrogen sulfide gas under field environmental conditions in order to supplement environmental management policy decision making with regard to the Valles Caldera Geothermal Resource Area.

Literature review. A discussion of the behavior of  $H_2S$  in the atmosphere and in plants served to identify the information needed to examine the responses. Such information included (1) a description of the chemical behavior of  $H_2S$  in the atmosphere; (2) a description of the uptake and exchange of  $H_2S$  by plants; (3) a

description of  $H_2S$  injuries to plants and their resistance to  $H_2S$ ; and a review of studies relating the response of plants to  $H_2S$  fumigations.

Material and methods. Rectangular, open-top chambers for controlled exposure of two species of plants to gradients of  $H_2S$  gas in the field were described. Experimental procedures were employed which would minimize  $H_2S$  concentration variation and which would minimize the coefficient of variation in establishing means.

Analyses of variance and multiple regression methods were used to separate treatment effects and establish dose/response curves, respectively. Relationships between measured plant responses were examined. Measured responses included dry weight of topgrowth, water content of topgrowth, leaf total-nitrogen content, and leaf total-chlorophyll content.

Results. Field experiments on the effects of long-term  $H_2S$  fumigations on little bluestem and mountain brome showed the following:

1. The responses of mountain brome to the  $H_2S$  fumigations were suppressed as compared to those of little bluestem. Little bluestem dry weight showed a highly significant treatment response. At low  $H_2S$  concentrations ( $\leq 0.34$  ppm) little bluestem dry weight significantly increased. Little bluestem dry weight was significantly reduced at high  $H_2S$  concentrations (1.16 ppm and higher). The regression of plant dry weight on  $H_2S$  concentration predicted an increase of 0.023 grams dry weight with each

0.03 ppm increase in  $H_2S$  up to and including the 0.11 ppm level of  $H_2S$  and a decrease of 0.003 grams dry weight with each 0.03 ppm increase in  $H_2S$  above the 0.11 ppm level of  $H_2S$ .

Dry weight of mountain brome was relatively unaffected by the  $H_2S$  treatments until concentrations reached a mean of 3.58 ppm  $H_2S$  where there was a significant ( $\alpha = 0.05$ ) reduction in dry weight.

2. There was a significant difference in little bluestem water content treatment means, however, no discernible patterns were evident. The correlation coefficient ( $r = 0.66$ ) indicated a significant linear relationship between dry weight and water content of topgrowth data of little bluestem at  $\alpha = 0.05$ . At the low  $H_2S$  levels (below 0.13 ppm) plant cells may have functioned better due to an  $H_2S$ -caused water deficit, possibly resulting in increased dry weight. Water content of mountain brome was insignificantly increased by the  $H_2S$  fumigations until concentrations reached a mean of 3.58 ppm  $H_2S$ , at which point the water content was significantly higher than that of control plants. A significant ( $r = 0.43$ ) linear relationship between dry weight and water content of topgrowth data of mountain brome was found at  $\alpha = 0.05$ .
3. Little bluestem leaf-nitrogen content was significantly reduced at the 0.05-ppm level of  $H_2S$  but was insigni-

fificantly reduced at the higher  $H_2S$  levels. The relationship between leaf nitrogen content and dry weight of top growth was negative up to the 0.12-ppm level of  $H_2S$  and then positive beyond the 0.51-ppm level. The effect of the nitrogen reduction on dry weight may have been negated by other influences, especially below the 0.12-ppm level of  $H_2S$  where nitrogen content was significantly reduced.

The leaf nitrogen content of mountain brome was significantly increased over that of the controls at every level of  $H_2S$ . A significant ( $r = 0.76$ ) linear relationship between water content and nitrogen content at  $\alpha = 0.05$  was found. An insignificant ( $r = 0.43$ ) relationship between water content and dry weight at  $\alpha = 0.05$  was found.

4. At low levels of  $H_2S$  (generally below 0.26 ppm) leaf chlorophyll content of little bluestem was increased after 60-and 140-h total of fumigation and reduced after 80 and 100-h total. After the initial increase in chlorophyll, a general pattern of decreasing chlorophyll content as total exposure time increased was evident. However, an increase in chlorophyll content after the 140-hour exposure time was attributed to a seven day  $H_2S$ -free "recovery" period. At the higher levels of  $H_2S$  (generally above 0.67 ppm) leaf chlorophyll content generally decreased from the 60- to 140-hour exposure time. The failure of the plants which received  $> 0.67$  ppm  $H_2S$  to show an increase in leaf chlorophyll content after the  $H_2S$ -free "recovery" period

was attributed to irreversible plastic strain which culminated from prolonged elastic strain (Taylor, 1978). Some unmeasured variation in leaf chlorophyll content was contributed by changes in environmental factors, especially air temperature. A significant 7% reduction in leaf chlorophyll content after a four-hour fumigation was due to the  $H_2S$  fumigations. The variation in leaf chlorophyll content contributed by the spectrophotometer and its use was negligible.

Leaf chlorophyll content of mountain brome was relatively unaffected by the  $H_2S$  treatments except at the 140-h exposure time, where there was a significant increase from the 0- to the 0.37-ppm level of  $H_2S$ , and then a significant reduction from the 0.37- to the 3.58-ppm level. Mountain brome exhibited evidence of what Taylor (1978) refers to as elastic strain by recovering to produce a level of leaf chlorophyll content at the 140-h sampling time above that measured at the 60-hour sampling time. As with little bluestem, it was evident that temperature contributed considerably to the variation in leaf chlorophyll content of mountain brome. Also, the relative insensitivity of mountain brome to the  $H_2S$  fumigations may have been due to inoptimal ambient environmental growing conditions.

5. Little bluestem plants were much more sensitive to the fumigations in all measured responses than were the moun-

tain brome plants. Physiologically based hypotheses as to why this occurred were made for each measured response; however, inoptimal environmental growth conditions, especially air temperature, may have been the overriding factor.

#### Conclusions and Recommendations

Little bluestem. Thirty-four 4-h exposures of little bluestem to  $H_2S$  at varying concentrations produced a linear response in the stimulation of topgrowth dry weight and a curvilinear response in the reduction of topgrowth dry weight when fumigated under the experimental conditions. The following equations can be used to predict the response parameter for any similar 140-h exposure: when  $H_2S$  is  $\leq 0.11$  ppm, topgrowth dry weight of plant =  $\hat{Y} = 0.091 + (0.77 \times \text{conc.})$ ; when  $> 0.11$  ppm  $H_2S$ , topgrowth dry weight of plant =  $\hat{Y} = 0.1483 + (-0.1033 \times \text{conc}) + (0.02691 \times \text{conc}^2)$ . Seventy-five percent of the variation in response is explained by changes in  $H_2S$  concentration.

Growth of little bluestem, as dry weight of topgrowth, responded positively (0 to 95% stimulation) to low dosages of  $H_2S$  (0 to 0.11 ppm for 140 hours spread over 56 days) under the environmental conditions. This implies that geothermal  $H_2S$  emissions may be beneficial at low levels in cases of long-term intermittent fumigations. However, differences between dry weight means of control plants located in separate fumigation chambers indicated a significant source of variation other than treatment effect. At higher average  $H_2S$  levels (0.12 to 0.48 ppm) significant reduc-

tions in dry weight to the original (control) level occurred, and this reduction continued (0 to 44%) at higher average  $H_2S$  levels (0.48 to 2.39 ppm).

There was no evidence that the reduction in nitrogen content (0-38% reduction) at low  $H_2S$  levels ( $\leq 0.11$  ppm) was detrimental to plant growth. In fact, there was indication of a productivity increase at these low concentrations which may have been partially due to increases in chlorophyll synthesis (28% increase in leaf chlorophyll content) and decreases in water content (16% reduction). The relationship between dry weight production and the measured responses of chlorophyll and water content somewhat resembled a rectangular hyperbola in which dry weight production initially increased linearly with chlorophyll and water content changes and then gradually became curvilinear as other factors became limiting. The linear dependence of dry weight on chlorophyll content diminished as  $H_2S$  stress increased. Since  $H_2S$  can be used as a source of nutrient sulfur (Mudd, 1979) perhaps the productivity increase partially reflected such a usage.

The increase in leaf chlorophyll content after the seventh week (140 h) of fumigations indicated that the 7% measured reduction in leaf chlorophyll content which occurred during a 4-h fumigation period was elastic (reversible) or non-permanent at the low levels of  $H_2S$ . Thus, it can be concluded that the plants were able to recover after the 4-h fumigation by returning to a normal or above-normal rate of chlorophyll synthesis. However, this can only be said for plants after having received a seven-day fumigation-free

period since prior to that there was a general decrease in leaf chlorophyll content.

Mountain brome. Growth of mountain brome as dry weight of top-growth was relatively unaffected at average  $H_2S$  concentrations below 2.14 ppm; however, there was a reduction in growth at concentrations above 2.14 ppm and there was a significant reduction (37%) at an average  $H_2S$  concentration of 3.58 ppm. This indicates that certain grass species may have a high resistance to  $H_2S$  stress. There was evidence of very strong relationships in the direction and degree of response between nitrogen, water, and chlorophyll content for this species, however, significant increases in these responses at  $H_2S$  levels below 2.14 ppm remained hidden since they did not surface as change in dry weight.

Exposure time and air temperature interactions. There was evidence that reductions in chlorophyll content as exposure time increased was partially due to air temperature interactions; however, the variation contributed by temperature was not measured. There was also evidence that when given several days of  $H_2S$  stress-free conditions, the plant species used here had strong recovery capabilities, at least as far as chlorophyll content was concerned. Thus, the plants suffered an elastic (physiologic) strain or chlorophyll damage induced by  $H_2S$  stress. This damage was reversible in little bluestem plants which received low  $H_2S$  levels and in all mountain brome plants, but in little bluestem plants which received high  $H_2S$  levels the prolonged elastic strain was irreversible resulting in permanent damage or plastic strain. Translating these

chlorophyll content changes into changes in productivity is difficult. Due to the apparent inhibition of mountain bromegrass responses by inoptimal environmental conditions, results obtained using little bluestem might be better used as criterion for making recommendations.

Evaluation of potential ecological and economic consequences.

The  $H_2S$  dose-response functions may be important to planners of environmental control strategies because  $H_2S$  is a significant air pollutant in noncondensable gas emissions from geothermal power plants (Shinn et al., 1977). The threshold for damage was about 0.51 ppm  $H_2S$  for little bluestem; however, significant yield increases in little bluestem were realized at about 0.11 ppm. Tropospheric  $H_2S$  concentrations below 0.11 ppm would have the potential to result in economic gains in the Valles Caldera mainly through increases in animal carrying capacity, lumber production, and aesthetic values. Thus, geothermal  $H_2S$  emissions may be economically beneficial at low levels in cases of long-term intermittent fumigations.

The reduction in dry weight shown in Fig. 4 can be interpreted as stress resulting from  $H_2S$ , although it cannot necessarily be interpreted as economic loss, which depends on the particular uses of the species in the Valles Caldera. Generally, grasses are more resistant to  $H_2S$  fumigations than other plants (Shinn, 1981).<sup>1</sup>

---

<sup>1</sup>Shinn, J. H., 1981. Personal communication. Environmental Sciences Division, Lawrence Livermore National Laboratory, Livermore, California.

If other more sensitive plants are affected at these concentrations, then tropospheric  $H_2S$  concentrations above 0.11 ppm would have the potential to disrupt the Valles Caldera Ecosystem. Economic losses arising from the gaseous  $H_2S$  effects might include reductions in lumber yields, animal carrying capacity, and aesthetic values. Extreme cases resulting in the elimination of native plant species or individual plants from native stands may, in turn, result in increased water runoff and soil erosion reducing the value of the land as a watershed, as a recreational area, or as wildlife habitat (Miller, et al., 1977; Benedict and Jaksch, 1979).

Reduction in growth rate may have a beneficial effect in some vegetative stands by reducing the fire hazard; however, the reverse may occur depending on several factors. Rates or direction of community succession could change, resulting in long-term ecological and economic consequences.

Level of abatement. When the  $H_2S$  fumigation results are compared to the projections of the maximum  $H_2S$  concentrations possible for the Valles Caldera Region with the operation of a 50-megawatt hydrothermal power plant (Sterns-Roger, Inc., 1975), it appears that the proposed abatement level of  $H_2S$  emission (U.S.D.O.E., 1979) would be adequate in terms of protecting native grass plants and their yields. However, numerous reservations about the concerns, or lack of them, in projecting potential  $H_2S$  concentrations in the Valles Caldera Region are discussed by Gonzales (1980).

Quality standards. Based on the H<sub>2</sub>S fumigation results, the New Mexico ambient one-hour H<sub>2</sub>S standard of 10 ppb was found to be too stringent. However, raising the state quality standard for H<sub>2</sub>S is not recommended because possible synergistic effects of H<sub>2</sub>S with other geothermal gases were not studied.

Synergistic effects of air contaminants. Since geothermal gas emissions consist of several gases other than H<sub>2</sub>S, the effect of these gases acting in concert should be examined. However, realistic ratios of geothermal gases available to plants after settling must be considered. Also, more realistic situations of fluctuating levels of mixed pollutants should be considered.

I wish to thank the Life Sciences-6 Group of Los Alamos National Laboratory for allowing me the opportunity and financial support to complete this research project. Also, gratitude is due to Joe H. Shinn of Lawrence Livermore Laboratory for the loan of necessary field equipment.

I wish to extend my sincerest appreciation to Mr. Felix R. Miera, Jr. who provided me with the moral support, encouragement, and initial opportunity necessary to complete this research.

Finally, I wish to thank my graduate committee for reviewing this manuscript and providing critical input and, especially Dr. Rex D. Pieper for aiding me in pursuing a higher education.

## LITERATURE CITED

Anspaugh, L. R. and P. L. Phelps. 1978. Environmental assessment (EAR) for geothermal energy systems. Lawrence Livermore National Laboratory, Livermore, CA. Preprint no. UCRL-81910.

Axtmann, R. C. 1975. Environmental impact of a geothermal power plant. *Science* 187:795-803.

Bell, J. N. B. and C. H. Mudd. 1976. Sulfur dioxide resistance in plants: A case study of Lolium perenne. Pages 87-104 in *Effects of Air Pollutants on Plants*, T. A. Mansfield (ed.). Cambridge University Press, Cambridge.

Benedict, H. M. and W. H. Breen. 1955. The use of weeds as a means of evaluating vegetation damage caused by air pollution. *Proceedings of the Third National Air Pollution Symposium*. Sponsored by Stanford Research Institute, Pasadena, California, April 1955.

Benedict, H. M. and J. H. Jaksch. 1979. Economic assessment of damage to vegetation. Pages 15-1 to 15-5 in *Methodology for the Assessment of Air Pollution Effects on Vegetation*, W. W. Heck, S. W. Krupa, and S. N. Linzon (eds), from a specialty conference April 1978, sponsored by the Upper Midwest Section and the Technical Council of the Air Pollution Association.

Bennett, J. H. 1978. Foliar exchange of gases. In *Handbook of Methodology for the Assessment of Air Pollution Effects on Vegetation*. Upper Midwest Sect. Air Pollut. Control Assoc. April 1978, pp. 10-1 to 10-30.

Bennett, J. H., A. C. Hill, and D. M. Gates. 1973. A model for gaseous pollutant sorption by leaves. *J. Air Pollut. Control Assoc.* 23:957-62.

Björkman, O. and J. Berry. 1973. High-efficiency photosynthesis. *Scienc. Amer.* 229:80-83.

Bradshaw, A. D. 1976. Pollution and evolution. Pages 135-160 in *Effects of Air Pollutants on Plants*, T. A. Mansfield (ed.). Cambridge University Press, Cambridge.

Chase, A. 1971. *Manual of The Grasses of the United States* (2nd Ed.). A. S. Hitchcock revision. Dover Publications Inc., New York.

Coyne, P. I. and G. E. Bingham. 1978. Photosynthesis and stomatal light responses in snap beans exposed to  $H_2S$  and  $O_3$ . *J. Air Pollut. Control Assoc.* 28:1119-1123.

Faller, N. 1972. Schwefeldioxid, schwefelwasserstoff, nitrose gase und ammoniak als ausschliessliche S=fzw. N-Quellen der höheren Pflanze. Z. Pflanzenernähr. Dueng. Bodenk. 131:120-130.

Gassman, M. L. 1973. A reversible conversion of phototransformable protochlorophyll(ide)<sub>650</sub> to photoinactive protochlorophyll(ide)<sub>633</sub> by hydrogen sulfide in etiolated bean leaves. Plant Physiol. 51:139-145.

Gonzales, G. J. 1980. Design and evaluation of a fumigation chamber for testing potential geothermal gas emissions. M.S. Thesis. New Mexico State University, Las Cruces.

Heck, W. W. 1968. Factors influencing expression of oxidant damage to plants. Annu. Rev. Phytopath. 6:165-188.

Heck, W. W., J. A. Dunning, and I. J. Hindawi. 1965. Interactions of environmental factors on the sensitivity of plants to air pollution. J. Air Pollut. Control Assoc. 15:511-515.

Hendrickson, E. R. 1979. Hydrogen sulfide - its properties, occurrences, and uses. Pages 1-10 in Hydrogen Sulfide. National Research Council. Committee on medical and biological effects of environmental pollutants. Subcommittee on hydrogen sulfide. University Park Press, Baltimore.

Joyce, L. and R. A. Fontes. 1978. Air quality as the limiting factor on development of the Geysers Geothermal Resources. Transactions. 2:345-349.

Linzon, S. N. 1978. Effects of hydrogen sulfide on plants. Pages 149-150 in Sulfur in the Environment. Part II: Ecological Impacts, J. O. Nriagu (ed.). John Wiley & Sons, New York, Chichester, Brisbane, Toronto.

Majernik, O. and T. A. Mansfield. 1971. Effect of SO<sub>2</sub> pollution on stomatal movements in Vicia faba. Phytopathol. Z. 71:123-128.

Majernik, O. and T. A. Mansfield. 1972. Stomatal responses to raised atmospheric CO<sub>2</sub> concentrations during exposure of plants to SO<sub>2</sub> pollution. Environ. Pollut. 3:1-7.

Malhotra, S. S. and D. Hocking. 1976. Biochemical and cytological effects of sulphur dioxide on plant metabolism. New Phytol. 76:227-237.

McCallan, S. E. A. , A. Hortzell, and F. Wilcoxon. 1936. Hydrogen sulfide injury to plants. Contrib. Boyce Thompson Institute. 8:189-197.

Meidner, H. and T. A. Mansfield. 1968. *Physiology of Stomata*. McGraw-Hill Publ. Company, London.

Meidner, H. and D. W. Sheriff. 1976. *Water and Plants*. Blackie & Sons Limited, Glasgow and London.

Menser, H. A. and H. E. Heggestad. 1966. Ozone and sulfur dioxide synergism: Injury to tobacco plants. *Science* 153:424-435.

Miller, P. R., R. Kickert, O. C. Taylor, and et al. 1977. Photochemical oxidant air pollution effects on a mixed conifer forest ecosystem: A progress report. *Environ. Protection Agency*, Corvallis Oregon. EPA-600/3-77-104.

Mudd, B. J. 1975. Sulfur dioxide. Pages 9-22 in *Responses of Plants to Air Pollutants*, J. B. Mudd and T. A. Kozlowski (eds.). Academic Press, Inc., New York.

Mudd, B. J. 1979. Effects on vegetation and aquatic animals. Pages 67-80 in *Hydrogen Sulfide*. National Research Council. Committee on medical and biological effects of environmental pollutants. Subcommittee on hydrogen sulfide. University Park Press, Baltimore.

Nicholls, P. 1975. The effect of sulphide on cytochrome aa<sub>3</sub>. Isoteric and allosteric shifts of the reduced  $\alpha$  peak. *Biochem. Biophys. Acta* 396:24-35.

Omrod, D. P. 1978. *Pollution in Horticulture. Fundamental aspects of pollution control and environmental science*: 4. Elsevier Scientific Publishing Co., Amsterdam.

Salisbury, F. B. and C. L. Ross. 1978. *Plant Physiology* (2nd edition). Wadsworth Publishing Company, Inc., Belmont, CA.

Shinn, J. H., B. R. Clegg, M. L. Stuart, and S. E. Thompson. 1976. Exposures of field-grown lettuce to geothermal air pollution: photosynthetic and stomatal response. *J. Environ. Sci. Health* A11(10&11):603-612.

Shinn, J. H., B. R. Clegg, and M. L. Stuart. 1977. A linear-gradient chamber for exposing field plants to controlled levels of air pollutants. Lawrence Livermore National Laboratory, Livermore, CA. Report no. UCRL-80411.

Shinn, J. H. and J. R. Kercher. 1978. Ecological effects of atmospheric releases from synthetic fuels processes. Lawrence Livermore National Laboratory, Livermore, CA. Report no. UCRL-81691.

Slater, E. C. 1950. The components of the dihydrocozymase oxidase system. *Biochem. J.* 46:484-499.

Smith, R. P. 1979. Absorption, distribution, metabolism, and excretion of sulfides in animals and humans. Pages 21-24 in *Hydrogen Sulfide*. National Research Council. Committee on medical and biological effects of environmental pollutants. Subcommittee on hydrogen sulfide. University Park Press, Baltimore.

Sprung, J. L. 1976. Tropospheric oxidation of H<sub>2</sub>S. *Advances in Environ. Sci. and Technol.*

Steel, R. G. D. and J. H. Torrie. 1960. *Principles and Procedures of Statistics*. McGraw-Hill Book Company, Inc.

Sterns-Roger Inc. 1975. Preliminary ground-level H<sub>2</sub>S concentration estimates, Baca Location No. 1, New Mexico. Environmental Sciences Division. Prepared for Geothermal Division, Union Oil Company of California. Project no. C-15474.

Steubing, L. and H. J. Jäger. 1978. Ecophysiological-biochemical effect of H<sub>2</sub>S on Pisum sativum L. *Angewandte Botanik*. 52:137-148.

Taylor, G. E. Jr. 1978. Plant and leaf resistance to gaseous air pollution stress. *New Phytol.* 80:523-534.

Thompson, R. C. 1976. Behavior of H<sub>2</sub>S in the atmosphere and its effects on vegetation. U. S. Dept. Commerce NTIS report no. NSF-RA-760398. Prepared for NSF, Washington, D. C.

Thompson, R. C. and G. Kats. 1978. Effects of continuous H<sub>2</sub>S fumigation on crop and forest plants. *Environ. Sci. Technol.* 12:550-553.

Thornton, N. C. and C. Setterstrom. 1940. Toxicity of ammonia, chlorine, hydrogen cyanide, hydrogen sulphide, and sulfur dioxide gases. III. Green plants. *Contrib. Boyce Thompson Institute* 11:343-356.

Tibbitts, T. W. 1978. Monitoring. Pages 3-1 to 3-9 in *Methodology for the Assessment of Air Pollution Effects on Vegetation*, W. W. Heck, S. V. Krupa, and S. N. Linzon (eds.). From a specialty conference April 1978. Sponsored by the Upper Midwest Section and the Technical Council of the Air Pollution Association.

United States Department of Energy. 1979. Draft environmental impact statement; geothermal demonstration program; 50 MWe power plant; Baca Ranch, Sandoval and Rio Arriba counties, New Mexico. Report no. DOE/EIS-0049-D.

Unsworth, M. H., P. V. Biscoe, and H. R. Pinckney. 1972. Stomatal responses to sulphur dioxide. *Nature*. 239:458-459.

Unsworth, M. H., P. V. Biscoe, and V. Black. 1976. Analysis of gas exchange between plants and polluted atmospheres. Pages 5-30 in *Effects of Air Pollutants on Plants*, T. A. Mansfield (ed.). Cambridge University Press, Cambridge.

Vernon, L. P. 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. *Anal. Chem.* 32:1144.

Wellburn, A. R., T. M. Capron, H. -S. Chan, and D. C. Horsman. 1976. Biochemical effects of atmospheric pollutants on plants. Pages 105-114 in *Effects of Air Pollutants on Plants*, T. A. Mansfield (ed.). Cambridge University Press, Cambridge.

Winner, W. E. and H. A. Mooney. 1980. Ecology of  $\text{SO}_2$  resistance: II. Photosynthetic changes of shrubs in relation to  $\text{SO}_2$  absorption and stomatal behavior. *Oecologia (Berl.)*. 44:296-302.

Ziegler, I. 1972. The effects of  $\text{SO}_3^-$  on the activity of ribulose 1,5-diphosphate carboxylase in isolated spinach chloroplasts. *Planta*. 103:155-163.

APPENDIX TABLES

Appendix Table 14. ANOVA for dry weight of little bluestem fumigated for 140 hours.

| Source of Variation | df | SS      | MS      | F       |
|---------------------|----|---------|---------|---------|
| Among Trts.         | 12 | 0.12924 | 0.01077 | 19.23** |
| Within Trts.        | 85 | 0.04760 | 0.00056 |         |
| TOTAL               | 97 | 0.17684 |         |         |

\*\*Highly significant

Appendix Table 15. ANOVA for dry weight of mountain brome fumigated for 140 hours.

| Source of Variation | df | SS      | MS         | F     |
|---------------------|----|---------|------------|-------|
| Among Trts.         | 11 | 0.01971 | 0.00179182 | 4.93* |
| Within Trts.        | 86 | 0.03126 | 0.00036339 |       |
| TOTAL               | 97 | 0.05097 |            |       |

\*Significant

Appendix Table 16. ANOVA for water content of little bluestem topgrowth data fumigated for 140 hours.

| Source of Variation | df | SS     | MS     | F       |
|---------------------|----|--------|--------|---------|
| Among Treatments    | 11 | 1550.8 | 140.98 | 10.62** |
| Within Treatments   | 62 | 822.8  | 13.27  |         |
| TOTAL               | 73 | 2373.6 |        |         |

\*\*Highly Significant

Appendix Table 17. ANOVA for water content of mountain brome topgrowth data for 140 hours.

| Source of Variation | df | SS     | MS   | F     |
|---------------------|----|--------|------|-------|
| Among Trts.         | 11 | 334.8  | 30.4 | 3.17* |
| Within Trts.        | 87 | 831.5  | 9.6  |       |
| TOTAL               | 98 | 1166.3 |      |       |

\*Significant

Appendix Table 18. ANOVA for leaf nitrogen content data of little bluestem fumigated for 140 hours.

| Source of Variation | df | SS    | MS      | F                  |
|---------------------|----|-------|---------|--------------------|
| Among Trts.         | 8  | 2.050 | 0.25625 | 2.11 <sup>NS</sup> |
| Within Trts.        | 18 | 2.184 | 0.12133 |                    |
| TOTAL               | 26 | 4.234 |         |                    |

<sup>NS</sup>Not Significant

Appendix Table 19. ANOVA for leaf nitrogen content data of mountain brome fumigated for 140 hours.

| Source of Variation | df | SS     | MS      | F     |
|---------------------|----|--------|---------|-------|
| Among Trts.         | 11 | 6.394  | 0.58127 | 7.74* |
| Within Trts.        | 72 | 5.410  | 0.07514 |       |
| TOTAL               | 83 | 11.804 |         |       |

\*Significant

Appendix Table 20. ANOVA for leaf chlorophyll content data of little bluestem fumigated for 60 hours.

| Source of Variation | df | SS    | MS    | F     |
|---------------------|----|-------|-------|-------|
| Among Trts.         | 8  | 0.528 | 0.066 | 2.75* |
| Within Trts.        | 14 | 0.333 | 0.024 |       |
| TOTAL               | 22 | 0.861 |       |       |

\*Significant

Appendix Table 21. ANOVA for chlorophyll content data of little bluestem leaves fumigated for 80 hours.

| Source of Variation | df | SS    | MS    | F     |
|---------------------|----|-------|-------|-------|
| Among Trts.         | 6  | 0.223 | 0.037 | 3.36* |
| Within Trts.        | 19 | 0.215 | 0.011 |       |
| TOTAL               | 25 | 0.438 |       |       |

\*Significant

Appendix Table 22. ANOVA for chlorophyll content data of little bluestem leaves fumigated for 100 hours.

| Source of Variation | df | SS    | MS      | F                  |
|---------------------|----|-------|---------|--------------------|
| Among Trts.         | 8  | 0.414 | 0.05175 | 2.16 <sup>NS</sup> |
| Within Trts         | 16 | 0.385 | 0.024   |                    |
| TOTAL               | 24 | 0.799 |         |                    |

NS Not Significant

Appendix Table 23. ANOVA for chlorophyll content data of little bluestem leaves fumigated for 140 hours and for spectrophotometer sampling error.

| Source of Variation              | df | SS     | MS              | F                   |
|----------------------------------|----|--------|-----------------|---------------------|
| H <sub>2</sub> S Trts.           | 8  | 1.0457 | 0.1307          | 2.90*               |
| Analysis within H <sub>2</sub> S |    |        |                 |                     |
| Trts. = Experimental             |    |        |                 |                     |
| Error                            | 13 | 0.001  | 7 <sup>-5</sup> | 0.002 <sup>NS</sup> |
| Sampling Error                   |    |        |                 |                     |
| (Spectrophotometer)              | 48 | 2.162  | 0.04504         |                     |
| TOTAL                            | 69 | 3.2087 |                 |                     |

\*Significant

NS Not Significant

Appendix Table 24. ANOVA for chlorophyll content data of mountain brome leaves fumigated for 60 hours.

| Source of Variation | df | SS     | MS     | F                  |
|---------------------|----|--------|--------|--------------------|
| Among Trts.         | 4  | 0.0224 | 0.0056 | 0.03 <sup>NS</sup> |
| Within Trts.        | 31 | 0.6095 | 0.1966 |                    |
| TOTAL               | 35 | 0.6319 |        |                    |

NS Not Significant

Appendix Table 25. ANOVA for chlorophyll content data of mountain brome leaves fumigated for 80 hours.

| Source of variation | df | SS     | MS     | F                  |
|---------------------|----|--------|--------|--------------------|
| Among Trts.         | 4  | 0.0044 | 0.0011 | 0.08 <sup>NS</sup> |
| Within Trts.        | 32 | 0.8945 | 0.0133 |                    |
| TOTAL               | 36 | 0.8989 |        |                    |

NS Not Significant

Appendix Table 26. ANOVA for chlorophyll content data of mountain brome leaves fumigated for 120 hours.

| Source of Variation | df | SS     | MS      | F     |
|---------------------|----|--------|---------|-------|
| Among Trts.         | 11 | 0.4494 | 0.04085 | 2.19* |
| Within Trts.        | 74 | 1.3780 | 0.01862 |       |
| TOTAL               | 85 | 1.8274 |         |       |

\*Significant

Appendix Table 27. ANOVA for chlorophyll content data of mountain brome leaves fumigated for 140 hours.

| Source of Variation | df | SS     | MS      | F      |
|---------------------|----|--------|---------|--------|
| Among Trts.         | 10 | 0.8443 | 0.08443 | 9.98** |
| Within Trts.        | 73 | 0.6175 | 0.00846 |        |
| TOTAL               | 83 | 1.4618 |         |        |

\*\*Highly Significant

★U.S. GOVERNMENT PRINTING OFFICE:1984-778-026 / 4013