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ABSTRACT 

THE POTENTIAL EFFECTS OF HYDROGEN SULFIDE GAS FROEI GEOTHERMAL 

ENERGY COINERSION O N  TNO PLAfIT SPECIES NATIVE TO 

NORTHERN NEW MEXICO 

BY 

GILBERT JOE GONZALES, B.S. , M.S. 

Doctor of Phi losophy i n  Range Science 

New Mexico S t a t e  Un ive r s i ty  

L a s  Cruces,  Hew Mexico, 1982 

Or. Rex D. P i e p e r ,  Chairman 

Dry weight o f  topgrowth, water c o n t e n t  of topgrowth, l e a f  

i i t r o g e n  c o n t e n t ,  and l e a f  ch lo rophy l l  c o n t e n t  were measured i n  

we1 1 -watered , f i el d-exposed 1 i t t l  e bl uestem ( Schi  zachyri  urn scopari  un 

!.lash. and mountain Srome (Brornus n a r g i n a t u s  Hees. ) p l a n t s  fumigated  

w i t h  v a r i o u s  mean l e v e l s  of H2S ranging  from 0.05 t o  3.58 ppm. 

The younges t  f u l l y  expanded 1 eaves  were sampl ed f o r  chl orophyl l  

c o n t e n t  a f t e r  60, 60, 100,  a n d  140 and G O ,  80, 120, and 140 h t o t a l  

of fumigation f o r  l i t t l e  bluestem and mountain brome, r e s p e c t i v e l y .  

All o t h e r  r e sponses  were measured a f t e r  14C !.I t o t a l  o f  fumigat ion .  



The plants received a 7-day fumigation-free period prior t o  the 

seventh week (140 h )  of fumigations. 

Dry weight o f  l i t t l e  bluestem plants which received low 

concentrations of H2S (0.11 ppm) increased by 34% o f  the control.  

Dry wei g h t  o f  1 i t t l  e bl uesteo plants whi ch recei ved higher 

concentrations of H2S (0.12 t o  0.48 ppm) was reduced t o  the 

control leve l .  

weight of l i t t l e  bluestem was reduced by 44% o f  the control.  Tbere 

was no evidence t h a t  tCle reduction i n  nitrogen content ( 3 8 % )  a t  low 

H2S levels  (5 0.11 ppn)  was detrimental t o  plant g r o w t h .  

productivity increase a t  these low concentrations may have been 

pa r t i a l ly  due to  increases i n  leaf  chlorophyll content (28%) and  

decreases in  water content ( 1 6 % ) .  The l i nea r  dependence of  dry 

weight on leaf chlorophyll content dirninis’7ed as H2S s t r e s s  

increased. 

the usage of  sulfur  from H2S a s  a nu t r ien t  source. 

A t  the highest H2S concentration (2.39 ppm) dry 

The 

The productivity increase may have pa r t i a l ly  ref lected 

Mountain Srome was re la t ive ly  unaffected a t  the d i f fe ren t  

concentrations of H2S urltil 3.53 ppn H2S was received where dry 

weight was reduced by 37% o f  the control.  

There was evidence t h a t  cfianges in leaf  chlorophyll conterlt as 

to t a l  exposure t i n e  increased was p a r t i a l l y  due  t o  a i r  tenperature 

changes. The decline of  l ea f  chlorophyll content f o r  both l i t t l e  

51 1:estem a n d  mountain bronc appeared t o  !)e el a s t i c  s t r a in  because 

f i i r n i  gated pl ants  recovered t o  control or above-control 1 eve1 s. The 

mechznisms behi nd H2S-caused s t int i la t ion o r  i n h i  b i t i o n  o f  

chlorophyll synthesis or destruction of chlorophyll are complex. 

xiv 
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INTRODUCT'IO?J 

Background 

Geothermal energy,  a1 though not  benign,  i s  a d e s i r a b l e  a1 t e r -  

n a t i v e  t o  dependency upon o t h e r  f i n i t e  and r e l a t i v e l y  more env i ron -  

men ta l ly  harmful energy convers ion  sources  ( Joyce  and Fontes , 1978)  

Howver ,  a s  w i t h  most energy techno1 ogy d w e l  opnents ,  environmental 

e f f e c t s  must be a n t i c i m t e d .  

One a r e a  of  p o t e n t i a l  geothermal development i s  w i t h i n  t h e  

Valles Caldera a t  t h e  Baca Location abou t  30 kr,i west of Los Alamos, 

New tlexico ( F i g .  1 ) PJhere a c o n s i d e r a b l e  amount of  e x p l o r a t i o n  has 

a1 ready occur*red. The Baca Known Geothermal Resource Area ( K G R A )  

has been es t ima ted  by t h e  Department o f  Energy (1379) t o  have a 

p o t e n t i a l  e e c t r i c  gene ra t ion  c a p a c i t y  of approximate ly  1100 mega- 

w a t t s .  I n  973 Union Oil Conpany, t h e  Pub l i c  S e r v i c e  Conpany of  ilew 

tlexico, a n d  t $ e  Department o f  Energy announced t h e i r  p l ans  t o  con- 

s t r u c t  a demonst ra t ion  50-mega\vatty 1 iquid-dominated, hydro therna l  

po\rer p l a n t  a t  the Baca Location (U.S.D.O.E., 1979) .  Since t h e n ,  

they have d i scon t inued  t h e  p r o j e c t  and have p laced  t h e  geothermal 

energy e x p l o r a t i o n  and development r-ights u p  for. h i d .  

A n a j o r  concern a t  many e x i s t i n g  hydro therna l  power p l a n t s  i s  

t '?e  r e l e a s e  of hydrogen su1f;'dP (H,S) gas i n t o  tlie s u r r o u n d i n g  

region and i t s  e f f e c t s  on v e 9 e t a t i o n .  Sirnilat- prohlems w i l l  he 

epcountered a t  most planned hydrothermal power p l a n t s  (Anspaugh and 

c- 

Phelps, ? 9 7 8 ) .  
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F i g .  1 .  Regional l o c a t i o n  of the Baca Location No. 1 Land Grant 
and the proposed p l a n t  s i t e  and sur rounding  well f i e l d .  
Source: Mountain iiest Research,  Inc.  Socioeconomic 
Analys is  f o r  the Proposed Baca Geothermal P r o j e c t ,  1979 .  
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H2S i s  a noncondensible gas (Joyce a n d  Fontes, 1978) asso- 

ciated w i t h  geothermal steam, which, i f  permitted t o  co l l ec t  in l o w  

o r  confined areas,  can be lethal t o  plants (Axtrnann, 1975).  How- 

ever,  t i $  can also produce stimulatory e f f ec t s  on plant growth 

(Shinn e t  a1 ., 1977) which may be beneficial i n  many areas. 

To a large extent,  HZS w i l l  be removed from the Baca Geo- 

tzlermal Fluid by an abatement process; however, the exact amount i s  

questionable. The Department of Energy (1 979) predicted tha t  a f t e r  

I$S abatement, normal power p l a n t  operation would r e s u l t  i n  atmo- 

spheric H2S levels  of  approximately 2 parts per b i l l ion  ( p p b )  a t  

the Baca Boundary. Joyce and Fontes (1978) reported t h a t ,  of the 

H2S abatement technologies available a t  the Geysers, only one vas 

in  fu l l  -scale operation, and with unsatisfactory resu l t s .  

s ignif icant  anounts  of H2S a re  typically contained in the noncon- 

densible gases released by IiydrotAermal power plants (Anspaugh and 

Phel ps, 1978). 

Thus, 

Sterns-Roger Incorporated (1 379) projected t h a t  the potential 

h i  ghest 7 -11 average ground-1 eve1 H2S concentration w i  t b i  rl the Baca 

KGRA would be a b o u t  83 ppb .  However, in an e a r l i e r  report Gonzales 

(1980) discussed the possibi l i ty  t h a t  expansion of  power plant capa -  

bil i t i e s  and  contributions of naturally occurring H2S could resu! t 

in ground-level H2S concentrations of  0.26 parts per million ( p p m )  

and  a1 so,  t h a t  temperature inversions, confinement pockets, and  

abatement system f a i l  [ire could elevate t k  estimated concentration 

even fur ther .  
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I ,  

These c o n c e n t r a t i o n  1 eve1 s have produced s i g n i f i c a n t  measurable 

e f f e c t s  on c rop  and f o r e s t  p l a n t s  ( S h i n n  e t  a l . ,  1376; Thompson and 

Kats ,  1978; Coyne and Bingkam, 1378). 

widely i n  s u s c e p t i b i l i t y  t o  H2S (I-iudd, 1379)  depending on gene t i c  

v a r i a b i l i t y  (Bradshaw, 1976) , environmental i n t e r a c t i o n s  ( h r o d ,  

1378) and o t h e r  f a c t o r s .  

However, p l a n t  s p e c i e s  d i f f e r  

From an economic s t a n d p o i n t ,  t he  u5e of geothermal energy and 

r e s u l t a n t  r e l e a s e s  of  H2S near  na tu ra l  v e g e t a t i o n  nay have impact 

n o t  only on timber product ion as once thought  b u t  on other economic 

va lues  i m l u d i n g  1 ives tock  c a r r y i n g  c z p a c i t y ,  watershed p r o t e c t i o n ,  

r e c r e a t i o n a l  use, wi ld1  i f e  h a b i t a t ,  s p e c i e s  d i v e r s i t y ,  and  a e s t h e t i c  

use (Brads?aw, 1976) .  The Val 1 es Cal dera  Region c e r t a i n l y  s t ands  t o  

be a f f e c t e d  in  one o r  a l l  of these v a l u e s  throug? changes i n  n a t i v e  

p l a n t s .  

t a t i o n  n a t i v e  t o  t h e  p r o s p e c t i v e  KGRA would a l low e s t i m a t i o n s  t o  be 

Determination of the p o t e n t i a l  e f f e c t s  of H2S on vegc- 

nade of the  p o t e n t i a l  for  impact gain o r  l o s s  i n c u r r e d  by the 

pub1  i c .  Thus, p o t e n t i a l  e f f e c t s  on v e g e t a t i o n  and t h e  r e s u l t i n g  

economic impact o f  geothermal s o u r c e s  s h o u l d  be determined b e f o r e  

tappi  ng such sources  ( h t d d ,  1979 ). 

Few a a t h o r s  have examined t h e  long-term e f f e c t s  of wide ranges 

of H2S c o n c e n t r a t i o v s  on n a t i v e  spec ie s  of p l a n t s  under f i e l d  con- 

d i t i o n s .  

s t u d i e s  than na t ive  s p e c i e s ,  may be l e s s  usefril for developing the 

Crop p l a n t s ,  w h i c h  a r e  used more commonly in  fumigat ion 

c a p a c i t y  t o  p r e d i c t  H2S r e s i s t a n c e  because "crop p l a n t s  g e n e r a l l y  

have a narrou range o f  stomatal  conductance va lues  uliich i s  the 

r e s u l t  o f  being adzpted t o  a cont inua l  supply of water"  (Winner and 
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!-looney, 1980, p .  290). Thus, the experimental u t i l i za t ion  of native 

species will yield important predictive capabi l i t i es  including (1 

the determi nation o f  the to1  erance 1 eve1 s o f  di f ferent  native 

species t o  d i f fe ren t  levels  of H S *  12)  i n p i i t  t o  the c r i t i c a l  2 '  

review o f  a i r  quality standards; ( 3 )  input t o  considerations o f  the 

eval liati on o f  H2S control s t ra teg ies  a n d  abatement systems ; and 

( 4 )  input t o  the evaluation o f  potential H2S impacts based u p o n  

changes in HJ enissions (Ilinner a n d  !looney, 1S8C)). 

Given t h i s  s i tuat ion there i s  a need for fur ther  study of  the 

e f f e c t s  o f  H2S on native vegetation. 

S : J C ~  a study may k l p  t o  a l lev ia te  some of the recent opposition t o  

geotliermal developaent in the Baca KGRA a n d  may coptri9ute t o  the 

Reporting the resu l t s  of 

devel opriient o f  a geothermal program t h a t ;  woul d a1 low a compromi se 

ainong the energy i n d x t r i  e s ,  other econorni c sectors ,  and  the 

public. 

objectives discussed below. 

This study supports t h i s  concept through the pursuit of  the 

Study Objectives 

The overall objective of  t h i s  study was t o  determiqe the 

responses of t5e native grass specie!; 1 i t t l  e bl uestem (Schi zac3yri urn 

scopariun Nash. a n d  mountain brome (Brornus narginatus t!ees. t o  

controlled gusdients o f  tl,S undep  fie:d ambient environnenta? con-  

di t ions.  Specific o$jectives were a s  follovrs: 
L 

1 .  To examine the  e f f e c t s  o f  several concentrations o f  H2S 

on dry weig+t of t o p g r o w t h ,  leaf chl orophyl? content, water 
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2. 

3 .  

4 .  

content of t opgrowth ,  and leaf nitrogen content of 1 i t t l  e 

To es%ablish dose/response relationships f o r  irnpact t o  

1 i tt! e b l  uestern and 

over a range of  H2S 

To determine the re  

in responses of the 

mountain Srome dry matter production 

concentrations. 

ationship of  plant response variables 

e plants t o  H2S fumigations. 

To examine the implications derived from the above three i n  

order t o  provide input in to  the evaluation o f  H2S abate- 

ment systems, a i r  quali ty s t a n d a r d s ,  a n d  potential H2S 

impacts based u p o n  changes i n  H2S emissions f o r  t h e  Baca 

KGRA and possi b1y other KGRA's. 

The Experimental Area 

The experimental area was located a b o u t  23 km eas t  of  the 

proposed hydrothermal power plant s i t e ,  on Los A1 amos National 

Laboratory (LAFJL)  property. Ideal ! y ,  the experimental area woul d 

have been located s l igh t ly  southeast o f  the proposed power plant 

area t o  take advantage of  downwind ambient environmental condi tic;!,s; 

however, access t o  t h a t  area was n o t  possible. Numerous factors  

were considered in select ing the experimental area, including geo- 

graphic and envi ronnental se t t ing  as compared t o  those sur rounding  

the proposed power plant s i t e ,  distance t o  LANL f o r  obtaining 

supplies, protection from vandalism, and accessibi l i ty .  

The experimental area was located a t  a n  a l t i tude  o f  a b o u t  

2,400 m. Ponderosa pine (Pinus ponderosa Doug1 . I  dominated t9e 
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o v e r s t o r y  and Ar izona fescue  (Festuca a r i  zonica Vasey) and 1 i t t l e  

bl  u e s t e n  (Sc5i  zacRyrium scopar i  urn Flash. domi nated t h e  unders to ry .  

The v e g e t a t i o n  su r round ing  t h e  proposed power p l a n t  s i t e  was t y p i c a l  

of t h e  ponderosa p i n e  h a b i t a t ,  as d e s c r i b e d  by t h e  Department of  

Energy ( 1979 1 i n  t h e  Baca Envi  ronmental Impact Statement. 
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LITERATURE REVIEW 

Introdric t i  on 

Until recently few detailed impact or potential impact analyses 

of geothermal gas emissions have appeared a s  pub1 ished 1 i terature. 

Hovever , increasing in t e re s t  i n  geothermal energy has encouraged 

sc i en t i s t s  t o  study the e f f ec t s  o f  noncondensible geothermal gas 

emissions, especially H2S, on va r ious  aspects of vegetation. 

Several invest igators  have examined the short-term e f fec t s  of s ingle  

H2S concentrations on vegetation under laboratory conditions. 

However , i n  the Engl i sh-1 anguage 1 i t e ra ture  , there are no s a t i  s- 

factory studies on the long-term b 3 0  days) e f f ec t s  of a wide 

range of  r e a l i s t i c  H2S l eve ls  on vegetation under f i e l d  condi- 

t ions.  A vast amount  of research has been applied t o  SO2 e f fec t s ,  

and although sone of t3e principles arld e f fec t s  of SO2 are s imilar  

t o  t h a t  of  H2S, the actions of H2S on plants may he qui te  

d i f fe ren t .  For  exanpl e ,  Steuhi ng and  Jager (1 1178 1 reported tha t  
3 fumigation with 2.5 m g / m  

Pisum sativum leaves which, in the ear ly  stages of symptom develop- 

ment, were s ignif icant ly  d i f fe ren t  from those o f  SO?-fumigated 

plants. 

response t o  r e a l i s t i c  leve ls  of  H2S in order t o  make accurate pre- 

dictions of change in plant and animal connunities exposed t o  H2S. 

(2.1 ppm) H2S produced necrosis on 

T h u s ,  i t  i s  necessary t o  understand the mechanism of  plant 



Chemical Behavior of H2S i n  the Atmosphere - 

The chemical behavior of H2S in the atmosphere was reviewed by 

Sprung (1 976) and Thompson ( 1  976). 

H2S' i s  converted t o  SO2 t h rough  the intermediates of hydro- 

su l f ide  anion (HS-) and su l fur  oxide (SO). Although H2S reacts  

a t  a very "slow" ra te  w i t h  0,, i t  reacts  with OH- a t  ra tes  1000 

t5mes f a s t e r  t h a n  with other atmospheric gas species t o  form HS-. 

This 1 i t e ra ture  showed t h a t  

L 

The hydrosulfide anion then reacts with 0, t o  form SO which reacts  
L 

with O 2  o r  td02 t o  y ie ld  SO2. 

scheme of H2S in the troposphere i s  represented by the following: 

I n  summary the chemical reaction 

O 2  
or E J O ~  * O 2  *so 

0 H- 
H S-RS- 2 

Based on t h i s  reaction, T5ompson (1376) showed how the residence 

t ines  o f  H2S, HS-, and SO i n  the atmosphere can be calculated 

using concentrations and conversion r a t e  constants. 

f o r  the resideme time of H2S i n  the troposphere was calculated t o  

be 18 h, which also represented the mean tropospheric conversion 

time o f  H2S t o  SO2. 

l a t i on  was n o t  given. 

The upper 1 i m i t  

The H2S concentration used in the calcu- 

H S Uptake and Exchange by Plants -2 
Stomates o f  typical plants prove t o  be nearly optimal f o r  naxi- 

cium cjas o r  vapor diffusion (Salisbrrry anti Ross, 1978). 

are ideally adapted f o r  absorption of' g a s  molecules including H2S. 

Thus, plants 
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T h i s  suppor ts  t h e  i d e a  t h a t  u n d i s s o c i a t e d  gaseous HzS may m a i n t a i n  

a s t a t e  o f  dynamic e q u i l i b r i u m  w i t h  t h a t  a t  t he  a i r - p l a n t  i n t e r f a c e  

much l i k e  C02 does (Unsworth e t  a1 ., 1976) .  

by the diagram i n  F ig .  2. 

Th i s  i s  rep resen ted  

A f t e r  H2S e n t e r s  t h e  l e a f  th rough stomata i t  goes i n t o  s o l u -  

t i o n  i n s i d e  the  substomatal c a v i t y .  Water s o l u t i o n s  o f  H2S a re  

n o t  s tab1 e and become t u r b i d  q u i  t e  r a p i d l y  (Hendr ickson,  1979) .  

Most o f  t h e  H2S taken up by p l a n t s  i s  me tabo l i zed  t o  s u l f a t e  

(Thompson, 1976)  th rough t h e  i n t e r m e d i a t e s  o f  HS-, S-, S O z ,  

and SO;. 

i s  represented  by t he  f o l l o w i n g :  

- 

The chemical r e a c t i o n  scheme o f  H2S i n  p l a n t  l eaves  

- 0 H- O2 - O Z  r )  O2 - so2 -so4 . HZS - HS-- S- ( 2 )  

D i s s o c i a t i o n  o f  t he  f i r s t  p r o t o n  r e s u l t s  i n  t h e  f o r m a t i o n  of  t h e  

hydrosu l  f i d e  a n i o n  (HS-1. 

r e s u l t s  i n  t h e  f o r m a t i o n  of  t he  s u l f i d e  an ion  (S=). 

an ion  then goes th rough a s e r i e s  o f  o x i d a t i o n s  t o  y i e l d  SO4 

A t  t h e  p h y s i o l o g i c  pH o f  7.4, ahout  one t h i r d  of  t he  t o t a l  s u l f i d e  

e x i s t s  as t h e  u n d i s s o c i a t e d  a c i d ,  about  two t h i r d - s  as t h e  hydro-  

s u l f i d e  anion,  and a t r a c e  amount as  t h e  s u l f i d e  an ion  (Smi th,  

1979) .  A t  18OC, t h e  pKa f o r  t h e  convers ion  o f  HZS t o  HS- i s  

7.04, whereas t h e  pKa f o r  t he  convers ion  o f  HS- t o  S= i s  

11.96 (Smi th,  1979) .  

D i s s o c i a t i o n  o f  t h e  second p r o t o n  

The s u l f i d e  
- - . 



INWARD H2S AND C 0 2  DIFFUSION PATHS 

SUB-STOMATAL 
CAV I TY 

MAIN STREAM OF 
LIQUID WATER 
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FOR WATER VAPOUR 

H2S AND C 0 2 i n  
t 

EVAP 0 R AT I ON 
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Fig .  2. Diagrammatic r e p r e s e n t a t i o n  o f  gaseous H2S and CO? uptake  by a p l a n t  
stoma. Source:  Page 29 i n  Meidner, H .  and D .  W .  - S h e r i f f ,  1976. Water 
and P l a n t s .  Blackie  & Sons Limited.  



H S Uptake and Plant Resistance -2 
The properties discussed above a re  highly relevant t o  the 

e f f ec t s  of H2S on plants.  The l i t e r a h r e  vaguely indicates t h a t  

the undissociated form ( H 2 S ) ,  which more readily penetrates bio- 

logic  membranes, i s  the nost toxic form t o  plants (Smith, 1 9 7 9 ) .  

Tayl or (1 978) described t h e  processes by which gaseous mol ecul e s  

enter  plants and  the components of plant resistance t o  the s t r e s s  

resul t ing from the presence of these molecules. 

his discussion will serve t o  explain H2S uptake and resistance by 

plants.  

A modification of 

P l a n t s  can close the i r  stomata, t h u s  reducing gas exchange and 

pre\fenting the gas from reaching t5e ce l l  surface within the in t e r -  

ce l lu l a r  leaf  spaces (Mudd, 1975;  Bell and  Muddy 1976;  Unsworth e t  

a1 . , ??76,; Taylor, 1578). 

t ion s t r e s s  avoidance in  h is  revision o f  L e v i t t ' s  (1972)  ideas on 

a i r  pollutant s t r e s s  phenonena in plants.  

other nechani sm resul t i  ng i n  s t r e s s  resistance.  

mecklani sm a1 7 ows the plant t o  come t o  thermodynamic equil i bri un wi th 

Taylor (1978) called t h i s  process poilu- 

Stress  tolerance i s  the 

Thi s resi  stance 

the H,S s t r e s s  by reparative or compensatory p rxesscs  (Taylor, 

1 9 7 0 ) .  
L 

Absorption of H2S in to  the leaf i n t e r io r ,  as shown in Fig. 2 ,  

The must occur prior t o  the development of H2S s t r e s s  tolerance. 

driving force f o r  t h i s  uptake i s  molecular diff: ision, uhi le  i t s  r a t e  

i s  a function of  the H2S concentration gradient from the exter ior  

t o  the leaf  i n t e r io r  and the resistance t o  H2S flow experienced by 

the H2S molecules s!ong t5e diffusion pathway (Taylor, 1978). A 
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change i n  e i t h e r  the concentration gradient o r  the resistance com- 

ponent a l t e r s  the absorption r a t e  of the H2S (Taylor, 1978). 

The concentration gradient r e s u l t s  from a difference in I1 S 2 

concentrations between the 1 eaf ex te r io r ,  the 1 eaf boundary l aye r ,  

and the l ea f  i n t e r i o r  (mainly the i n t e r c e l l u l a r  a i r  space and the 

mesophyll cel l  surface) (Taylor, 1978). T$e extraction s i t e s  of  

H2S molecules from the atmosphere by fol iage a r e  e i t h e r  internal 

(absorption) or external (adsorption) (Tayl or, 1978). Leaf puhe- 

scence, surfact  water, a n d  ot'ier plant features  nay provide effec-  

t i v e  s i t e s  fo r  removal of H2S nolecules from the atmosphere 

(Tay' o r ,  1 078 1. 

The main conponents o f  leaf  res is tance t o  H2S flux a r e  houn- 

dary layer ,  stomata, c u t i c l e s ,  and nesophyll ce l l  surface. No 

fur ther  discussion o f  leaf resistance t o  H2S will be made; how- 

ever, excellent discussions can be found in works by Bennett e t  a l .  

(19731, Unsworth e t  a l .  (19761,  and Taylor (1978). 

The a b i l i t y  of  plants t o  exhihi t  H,S s t r e s s  avoidance, as 

defined hy Taylor (19731, i s  n o t  well documented, however, the f a c t  

t h a t  both internal a n d  external f ac to r s ,  including gaseous pol 1 u -  

t a n t s ,  can a! t e r  epidermal resistance i s  we: 1 documented (Meidner 

and Mansfiel d ,  1968;  Taylor, 1978). 

(0.01 - 0.5 ppn), stomatal opening may actually SF! stimulated. A t  

higher concentrations the uptake of H2S and other a i r  contaminants 

may he modified by conditions whicil cause stomata! diffusion r e s i s -  

tance (Bennett , 1978; Coyne a n d  Bingham, 1978; ). 

absorption has occurred, leaf response may be deterrilined by the 

A t  1 OY H2S concentrations 

When H2S 
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internal H2S concentration and by the  biochemical threshol d 1 eve1 

o f  tolerance for H2S and  i t s  toxic derivatives or dissociation 

products  (Mal hotra  and  Hocki ng , 1976 1. 

plant accommodates the s t r e s s  without being ki l led i s  tenned 

"pol 1 utant s t ress  to1 erance" (Tayl or, 1978). 

i f  the internal H2S concentration exceeds the threshold level 

(Taylor, 1978). 

Thi s resistance whereby the 

Leaf damage may occur 

According t o  Taylor 's  (1978) discussion on the tolerance o f  

plants t o  a i r  pollution s t ress  there are  three mechanisms by which a 

plant can reduce or el iminate the harmful nolecul c s  o f  H2S or i t s  

derivatives.  These mechanisms are as follows: ( 1 )  the a b i l i t y  t o  

continue metahol ism una1  tered despite the presence of  the harmful 

molecules, i . e .  t o l e ra t e ;  ( 2 )  the a b i l i t y  t o  convert t12S and  i t s  

derivatives t o  l e s s  harnful forms and t o  remove them i o  sinks;  the 

chemical reaction of t h i s  process was discussed e a r l i e r ;  (3) the 

a b i l i t y  t o  maintain e lec t r ica l  neutra1it.y by buffering the H2S 

deri vati ves. 

These types o f  hypotheses are n o t  new. Ziegler (1972) proposed 

a hypothesis i b a t  C 3  a n d  C 4  plants may d i f f e r  i n  the i r  suscep- 

t i b i l i t i e s  t o  SO,. This hypothesis was based on potential d i f f e r -  

ences in the way the C02 carboxylating enzymes (RuBP carboxylase 

in C3 plants and PEP carboxylase in C4 plants)  reacted t o  sul-  

f i t e .  

L 
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Responses of Higher Plants 

The symptoms of injury caused by H2S are generally confined t o  

young fol iage,  w i t h  leaf margins being scorched. liith l e s s  intense 

injury,  interveinal portions of the leaf may show ef fec ts  (L inzon ,  

1978). 

k c a l l a n  e t  a l .  (1926) did some o f  the e a r l i e s t  s ign i f icant  

works on the e f f ec t s  of H2S on plant l i f e  by exposing selected 

species t o  very high concentrations (40  t o  400 ppm) f o r  periods t h a t  

were as short  as 2 t o  4 9 .  They f o u n d  t h a t  young plant t i s sue  i s  

generally more sensit ive t o  H2S than  older t i s sue ;  injury symptoms 

were necrosis of  young shoots and leaves,  and basal a n d  marginal 

necrosis of the youngest leaves; injury increased rapidly !.rit? in- 

creases i n  temperature; wilted p l a n t s  were l e s s  sensit ive t h a n  u n -  

willed. The l a t t e r  was a t t r ibu ted  t o  increased stomatal d i f fus ive  

resistance in the water-stressed p l a n t s .  

considered a s  re la t ively nontoxic t o  plants because concentrations 

Until recently HZS was 

used \:iere so m~ck higher t h a n  suspected ambient levels  a n d  greater 

t h a n  levels  o f  other highly injurious pollutants.  However, Shinn 

and Kcrcher (1 978) stated t h a t  under worst-case conditions, the 

threshold f o r  injury (10% loss  of 1ea.f dry  matter)  i s  about 0.2 ppm 

t i2S assuming chronic exposure a n d  no added C02 t o  ameliorate the 

e f f ec t .  

Denedict and Breen (1955)  also measured e f fec ts  o f  H2S ( I 0 0  t o  

5OC ppm) on several species. They f o u n d  considerable species 

differences a n d  greater srisceptihil i ty  in younger t i  ssiie. 
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Thorn ton  and Set ters t ron (1 940) found t h a t  tile foliage of higher 

plants i s  more r e s i s t an t  t o  H2S t h a n  t o  H C N ,  NH3, Cl,, L a n d  

SO2. No e f f ec t  on the pH of the t i s sue  exposed t o  H2S was found .  

Gassnan (1  973) reported t h a t  chl orophyl 1 Si osynthesi s was i nhi b -  

i t ed  by su l f ide ;  however, the chemical mechanism of t h i s  e f fec t  was 

n o t  understood. This e f f e c t  was a t t r ibu ted  t o  t h e  possibi l i ty  of 

H2S acidif icat ion in which case lowering the pH caused the loss  of 

i,lg from the chlorophyll t o  form pheophytin. This i s  a well 

documented e f f ec t  of SO2 on chlorophyll (Muddy 1975; Bell and  

f+ 

Ihdd, 1975). 

tludd (1 9 7 9 )  reported resul t s  o f  Fa1 1 ers '  (1 972) experiments i n  

which young siinflowers (He1 ianthus annus L . )  were exposed t o  H,S 

funi gation whi 1 e t + c  plants had no a ?  ternate  nutrient source of  su i  - 
1- 

fur .  

gas concentration varied between a few micrograms (iig/l 

The fumigations las ted 3 weeks. During t h i s  time the H2S 

per 1 i t e r  

a n d  280 ug/l (200 ppn). Both fresh a n d  d ry  weights of  the buds ,  the 

f i r s t  f ive leaves, the sterns, a n d  t b e  roots were measured. The 

plants exposed t o  H2S were heavier in a l l  respects t h a n  the con- 

t r o l s ,  which were not supplied with su l fur  in the nutr ient  solu- 

t ion.  Analysis of the plants showed ar: accumulation of su l fur ,  

especially in the roots. 

can a c t  as the so7e source of sulfur  f o r  the nutr i t ion of - -  H .  annus. 

Fal ler  ( 1 9 7 2 )  thus demonstrated t h a t  H2S 

Shinn e t  a l .  (1976) examined the responses o f  field-grown 

le t tuce  t o  a synthesized geothermal gas mixture ( 1 5  C02 : 1 H2S : 

1 C H 4  : 2 11, parts hy volume added t o  ambient a i r )  over a 3-h 

period. 
- 

They reported no s ign i f icant  depression of photosynthesis 
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unti l  exposure concentrations approached 75 ppm CO 

added t o  a i r .  This led t5eq t o  conclude t A a t  CO, ameliorates the 

e f f e c t  o f  H2S acting alone. 

photosynthesis was high ( C V  = 0 . 5 ) .  

centrations (1 ppn H2S : 15 pprii C02 and lower) stimulated photo-  

syntt7esis s ign i f icant ly  more than control s and  relaxed stomatal 

resistance.  

* 5 ppn H2S 2 .  

L 

However, the variation experienced i n  

They found t h a t  1ow'H2S con- 

In another study S h i n n  e t  a1 . ( 1 9 7 7 )  exposed field-grown snap 

bean t o  a l i nea r  gradient concentration (2-7  ppm)  o f  H2S g a s  plus 

ozone f o r  4 b dzi!y unt i l  1 week before pod s e t .  They reported a 

s i  g n i  f i can t  H,S dose-response re1 ationsbi p despite the i nsensi - 
t i v i t y  of the plants t o  H2S. They estimated tha t  a dose of 6 .42  

p p n  H2S f o r  94.5 !I was necessary t o  predict  a dry rnatter produc- 

t ion s ignif icant ly  lower t q a n  the controls a t  a 90% confidence 

l eve l .  "Low" coqcentrations o f  H2S were reported t o  stirnulate 

growth a n d  increase photosyntliesi s .  

L 

However, nei t ' ler the g a i n  n o r  

l o s s  in dry matter production could be interpreted a s  economic, 

v!hich depended u p o n  seed production. 

Thompson and  Kats (1978) reported t h a t  continuous fumigation o f  

a1 f a l f a  (tledicago sativa L .  1, Thompson seedless grapes (Vitus 

vinifera L . ) ,  l e t t uce  (Lactlrca sativa L . ) ,  sugar beets (Beta 

vu! g s r i s  L .  1, Cal i f o r n i a  buckeye (Aescul es ca! i fornica (Spach 1 

Nut t . ) ,  ponderosa pine (Pinus ponderosa Laws. 1, a n d  Douglas f i r  

(Pseudotsuga nenziesii Mirb. 1 \ i i th 3 .0  ppv ti$ i n  greenhouses 

caused l ea f  l e s ions ,  defol ia t ion,  reduced growt '7 ,  a n d  death o f  

sensi t ive species. Lesser, b u t  s imilar e f f e c t s ,  resulted with 
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0.3 ppm H2S. 

dosage. 

Lower leve ls  of H,S, 0.03 ppm a n d  sometimes 0.1 ppn, caused s igni -  

f ican t  stimulation in g rowth  of l e t t uce ,  sugar beets,  a n d  a l f a l f a .  

The stimulation occxrred a t  cer ta in  times o f  the year a n d  i t  was 

concluded t h a t  temperature a n d / o r  humidity coul d inf l  uence th i s .  

S u l f y r  accmulation in leaves depended upon H2S 

Faster growing plants accumul ated sulfur nore rapidly. 

L 

In  a sequal t o  t h i s  study Thompson (1376) conducted growth cham- 

her studies by exposing pinto beans, hybrid sweet corn ,  and a l f a l f a  

t o  0 .6  ppq H p S .  

pl ants showed 1 i t t l  e 1 eaf injury or reduced growth  ; however , 'ISOiile' l 

leaf i n j u r y  occurred when water was withheld. 

t ra ry  t o  what one would expect based on the physiological rnecbanics 

and  neckanisms o f  s t o m a t a .  I t  i s  generally accepted t h a t  gaseous 

H2S injury depends on entry t h r o u g h  the stomata , and so conditions 

wtiich favor open stomata a t  the t i ne  of exposure render the plants 

susceptible t o  injury.  One explanation may be t h a t  stomatal opening 

was st-imulated by t i e  H,S i n  the water-stressed plants. 

cept i s  n o t  new t o  those dealing with SO2 e f fec t s  on plants.  

Unswortk e t  a1 . ( 1  972)  reported t h a t  0.1 -0.5 ppm SO2 stimulated 

stomatal opening, especially in  nater-stressed plants where stomata 

tended t o  be closed. 

i,lhen soi l  water was optimum, the pinto bean 

T h i s  resu l t  i s  con- 

This  con- 
c 

I t  becomes evident t h a t  the e f f e c t s  of  gas Contaminants on sto- 

mata a re  complex. 

o f  studies on the e f f ec t s  of  SO2 and other variables on stomatal 

opening. 

d i f fe ren t  than t o  SO2 (Steubing and Jager,  1978), the e f fec ts  t h a t  

Majernik a n d  Plansfield (1 972)  reported a ser ies  

A i  thoug? the responses o f  plants t o  H2S are quite 
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these gases have on stomata may be similar.  Vajernik a n d  Mansfield 

( 1 9 7 1 )  emphasized t 5 a t  t h e i r  findings were made en t i re ly  with Yicia 

faba, which may n o t  be typical o f  other species. Mudd ( 1 9 7 5 )  

sirepgthens t h i s  by indicating t h a t  conditiors used by Flenser a n d  

Heggestad (1 9 6 6 )  , which caused the closure of  tobacco stomata, woul d 

have caused opening of  Vicia faba stociata. -- 
In  a study where Pisum sativum plants were fumigated with 

2.1 ppm H2S Steubing and Jager (1078) reported t h a t  the i12S 

fumigations produced water-stress conditions. T 9 i  s finding may have  

important consequences since we know t h a t  H,S may cause stomatal 

opening i n  p?ar;ts whit? were already water stressed prior t o  the 

funigations. 

the water-stress conditions produced hy t?e H2S funigation. 

accamulation of large quaqt i t ies  of  the anino acid proline in t$e 

They a t t r ibu ted  the accumulation of f r ee  proline t o  

T!ie 

plant vacuo1 es frequently occgrs in ha1 ophytes (Sal i sbury a n d  Ross , 

1378). 

Steiibing and Jager (1978) i s  an increase in osmotic pressure of  the 

cel l  sap. 

e f f e c t s  sicii lar t o  those seen in sal t -s t ressed plants. 

Anot17er occurrence c o m o n  t o  halophytes a n d  reported on 5y 

Thus, t h e  e f fec ts  of  excess HZS upta!;e may produce 

Other plant 

responses reported by Steubi ng and  Jager ( 1  978) were 1 eaf necrosis , 

decreased fr .es3 a n d  dry p l a n t  weight and negative i n f l u e ~ c e s  on 

water re la t ions ,  photosynthesis, a n d  respirat ion.  Apparently, the 

activation of  the p l a n t  enzymes gl utainate  dehydrogenase (GDH) , 

gl utanate-oxal oacetate transaminase ( G O T )  , a n d  g1 utamate pyruvate 

transaminase (GPT)  vere stin!ilated by H2S. 
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Coyne a r d  Bingpam (1978) reported the r e su l t s  of fumigating 

field-grown snap beans (Phaseolus vulgaris L.) w i t h  v a r i o u s  levels  

of H2S alone and in the presence of 0.072 pprn O3 for 4 h each 

day beginning a t  the f i r s t  t r i f o l  i a te  leaf stage. 

cated a 25 and  10% increase in maximum stomatal conductance and  

maximum apparent photosynthesis, respectively,  a t  0.74 ppn H2S. 

Higher concentrations depressed stomatal opening and  C02 uptake, 

while O3 pl t is H2S depressed stomatal and  photosynthetic response 

more than H2S alone. 

i ncreased, photosynthesis ceased t o  respond 1 i nearly t o  increasing 

s t o m a t a l  conductance a t  lobrer conductance values i n d i c a t i n g  t h a t  

mesophyll resistance t o  CG, t ransfer  was more l imit ing t h a n  C02 

diffusion th rough  the stomata a t  higher l i g h t  i n t ens i t i e s .  

The resul t s  indi - 

They concluded t h a t  a s  pollutant s t r e s s  

- 

Most of  i!ic studies c i ted  here +ave heen carried o u t  wit+ con- 

s t a n t  leve ls  of  H,S. 

atior?s of  intermit tent  and  f luctuat ing leve ls  o f  mixed pollutants 

are  probably more comon in r e a l i s t i c  se t t ings  t h a n  the numerotis 

s i  ngl e pol 1 u t a n t  studies i n the 1 i terature  woul d imply. 

the s t u d y  t o  be reported on in t h i s  paper did not  deviate from the 

single pol 1 u t a n t  s tudies ,  i t  did i nadvertzntly depart from the 

steady-level studies by vir tue o f  being conducted using operl-top 

f i e l d  fumigation chambers. Not t o  be misinterpreted t h o u g h ,  the 

H2S gas concentratiovs vere reported i n  a constant-level fashion; 

+owever, i n t e rn i t t en t  a n d  f luctuating levels  were actually the case 

as  cxised by mchivery mlfunct ions ard uinti, respectively. The 

variation froin the constant-level concentrations was measured. 

As Wellburn e t  a l .  (lP75.1 disclosed, s i t u -  
L 

A1 t h o u g h  
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i .' 

MATERIALS At40 METHODS 

Plant Growth a n d  Care 

Seeds of 1 i t t l  e bl uesten (Schi zachyrium scoparium Flash. , a C4 

species (Sa l  isbury and Ross, 19781, a n d  mountain Srome (Bromus 

marginatus k e s . ) ,  a C, species (Salisbury and ROSS, 19781, were 

planted in 25-cn diameter 15-cm deep p las t ic  pots containing Terra- 
J 

Lite Vermiculite. 

l a t e r  t h a n  the l i t t l e  bluestem because o f  i n i t i a l  fa i lures  t o  es ta-  

blish a different  plant (Festuca --- arizonicil Vasey.) as tbe second 

species. T?erefore, the mountain hrome plants were always a b o u t  5 

The mountain brome seeds were planted 5 weeks 

weeks !>ehind the ! i t t l e  bluestem plar,ts i n  age. This required t h a t  

sampling of  the mountain hrome plants take place 5 weeks l a t e r  t h a n  

t h a t  of  the l i t t l e  b?uesten plants in order t o  sample ho ih  species 

a t  a b o u t  the same dcvel opmental stage. However, envi ronrnental 

weather variables were different  for  each species duo  t o  the t i ne  

delay in establishing mountain brone. All plants were watered with 

a Miracl e-gro  Nutrient Solution prior t o  eac5 fumigation, mcin- 

taining s o i l s  near saturation. 

days. 

No watering was attempted on "rain"  

Plants were thinned t o  a5ou t  twenty plants per pot .  !lo herb- 

ivore or weed problems were detected. 

Ex pe r i ne n t a  1 P roc e du r e  s 

Fumigations with H2S were carried o u t  in f o u r  rectangular, 

open-top chambers (Fig. 3 )  described hy Gonzales (198C) and similar 

t o  those described "y Coyne a n d  Bing'iaa ( 1 9 7 C )  a n d  Sbinn e t  a:. 

21 



N 
N 
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E x h a u s t  p o r t a l s  

Fig. 3. An open top field-fumigation chamber for exposing plants to controlled 
level s o f  gases. 



( 1 9 7 7 ) .  

metering valves. A flow diagram can be seen in F i g .  4 .  Details o f  

the c9amSer design, performance, a n d  spatial  dis t r ibut ions of 

irdected gases can be f o u n d  in \,/orirs by Gonzales (1980) and S h i n n  e t  

a l .  (1377). 

The H S delivery ra tes  were fixed u s i n g  s t a i n l e s s  s tee l  2 

The p o t s  were arranged in twin rows on beds 1-rn wide inside the 

chambers. There were two twin rows each of twelve o r  thir teen po ts  

per rob/ inside f o u r  rectangular mi nirnurn interference chambers 0.6 m 

h i g h  x 7.00 m long x 3 m wide. 

plant species i n  each chamber to t a l ing  50 pots per chamber. Each 

c9arnber coritaincd a tvin row of l i t t l e  bluestem a n d  a twin rm! o f  

mountain brome. 

H2S g a s  a n d  t3e o t + w  two were Ysed as control c!!anbers (no H S 

added). The spatial  arrangement of the f o u r  chambers in re la t ion t o  

each ot!ier and i n  r e l a t ion  t o  vegetation i n  the experimental area i s  

shown in Fig. 5. All p o t s  were eventually buried so t h a t  only the 

upper 2.54 cm of the p o t  was above ground  leve l .  

t h i s  was t o  take Sdvantage of  l e s s  v a r i a t i o n  i n  H2S gas concen- 

t r a t ions  near t5e g r o u n d  surface (Gonzales, 1 O l C ) .  

Thiis, there were 25 p o t s  of each 

TWO o f  the four chambers were used t o  fumigate w i t h  

2 

The purpose of 

Beginning a t  ‘2 weeks a f t e r  emergence, the plants were placed 

inside the c’lanbers and fumigated wit5 Ii2S plus charcoal - f i l  tered 

a i r  f ro3 1000 t o  1300 (MST) on Monday t h r o u g h  Friday f o r  a t o t a l  O F  

7 treatment weeks (lp+O h )  per species. 

fumigstion of  the 1 i t t l e  bluestem plant.,, which was concwrent \ ! i th 

the 1st week o f  fumigation o f  the m o u n t a i n  brone p lan ts ,  one b l o w r -  

assenbly motor mal furictior!ed. 

Following the 6 t h  week o f  

This provided a n  o p p Q r t u n i  ty t o  
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evaluate the "recovery" capabi l i t i es  of plants when given a f u m i -  

gation-free period. 

f ree  period t o  b o t h  plant species a t  the same developmental stage 

H2S treatments of the mountain brome plants were continued while 

the l i t t l e  bluestem plants received a 9-day fumigation-free period. 

This required the removal and rearrangement o f  pots so t h a t  only the 

However, i n  order t o  administer the fumigation- 

mountain hrome pl an t s  continued recei v i  ng f u m i g a t i o n s  duri ng the 9 

day period. 

treated 1 i t t l e  bluestem plants received "treatments". 

During this time neither the control nor the It2S- 

Following the 

9-day period ( a f t e r  the b l  ower-assembly motor was repaired) a l l  

fumigat ion  procedures returned t o  normal . The rnoGntain brome p l z n t s  

were also given a 9 day "recovery" period when they reached the same 

developmental stage as were the l i t t l e  bluestem plants when they 

received the i r  fumigati on-free period. 

occurred 1 2  weeks a f t e r  fumigations had commenced. By then a l l  the 

Thi s second 9-day period 

l i t t l e  bluestem plants had been harvested. Thus, the 7 weeks of 

fumigation t o  each plant species vas completed in a 13  week period 

and there was only a three week overlap period d u r i n g  w h i c h  b o t h  

species were fumigated sinu! taneously. Control plants received 

charcoal - f i l  tered a i r  ( 0  ppm H,S) concurrent with the H2S funi - 

gations. The range o f  tt2S concentrations in t'ie "treatment" 

chambers over the duration o f  the study was 0.02 t o  0.86 ppm i n  one 

L 

o f  the fumigation chambers and  0.41 t o  4.39 ppn  i n  the other chamber. 

One chamber was monitored continuously f o r  H2S by means o f  a 

flame-photonetric total  sulfur  detector (Meloy Laboratories Inc., 

Model SA285E, 0-1 ppm) .  Daily spot measurements f o r  H2S were made 
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u s i n g  a porcakl t?, fast-response, eloctrovoi t m e t r i c  detector 

(Intrascan Corporation, Model 1177)  having a sens i t i v i ty  of 2 per- 

cent a t  1 ppm. 

storms often causing wide variations i n  H2S concentations. 

Fumigations were carr ied o u t  on schedule d u r i n g  rain 

A1 t h o u g h  the cClambers were designed to  produce 1 i near gradients 

of  gas  concentrations (Coyne and Bingham, 19781, H2S gas 

concentration measurements viere taker! above p o t s  a n d  averaged fo r  

subplots as described by Gonzal e s  (1 980 1. Mean concentrations of 

H2S f o r  each subplot a t  the end of the experioent were 0 (control 

chambers), 0.05, 0.11, 0.22, 0.311, 0.51, 0.73, 1.16, 1.64, and 2.39 

ppn fo r  l i t t l e  bluestem plants a n d  0 ,  0.07, 0.21, 0.37, 0.65, 0.72, 

1.16, 2.14, and 3.58 ppm f o r  mountain brome plants.  

more 1 i t t l  e bluestem subplot t h a n  m o u n t a i n  brorne because of natural 

breaks i n  H2S concentration along the length of the chamber. 

However, no changes were made a f t e r  subplots were i n t i a l l y  defined 

according to  H2S concentrations a t  the beginning of the experi- 

ment. 

centrations t'ian 1 i t t l  e bl uestern plants because of hypotheses t h a t  

ciountai n hrome would exhibit  greater H2S s t r e s s  resistance.  T h i s  

vas achieved by varying the flow ra te  of  the t rea taent  a i r  a t  t3e 

side stovepipes. 

a f t e r  60, 80, 100, 120, a n d  140 h-total of fumigation, t!ierefore, 

the mean concentrations differed s l igh t ly  from week t o  week. 

Coefficients of variation ( C V )  \rere calculated from the intermit tent  

spot measurements taken over the en t i r e  range of temporal variabil i ty 

in ambient conditions (combined C V  f o r  H2S measurements = 2 7 % ) .  

There was one 

Mountain brone plants were fumigated w i t h  higher H,S con- 
L. 

Concentrations o f  H2S were averaged t o  date 
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Air tenpeyature, wind speed and  direct ion,  a n d  re la t ive  humidi ty  

were recorded outside the chambers wi th a Meteorol ogy Research 

Incorporated (:4RI) weather recording instrument. 

other environmental variables :qere a1 so obtained from a LANL meteor- 

ology group. 

Data on these and 

Experimental Design and S t a t i s t i ca l  Analyses 

The experisental design used was a res t r ic ted  completely randon- 

ized design using the analysis of  variance for any nurnher of groups 

with irnequal repl icat ion.  The res t r ic t ion  was t o  keep species of 

the sane k i n d  together. Twenty experinental uni ts  (20 plants per 

p o t )  received unequal replication ( a  d i f fe ren t  number of  pots per 

treatment) of each o f  3 or 1 0  treatments (H2S g a s ) .  

was achieved by grouping the pots into groups or subplots. 

subplot of  mountain brome consisted of 6 pots with the exception o f  

the subplot which received s mean H2S concentr?tion of 0.65 ppm 

which consisted of 7 pots. 

"low" H2S treatment chamber consisted of  5 pots each and the 4 

subplots i n  the "high" H2S treatment chamber consisted of 6 pots 

each. Because o f  the large variation expected among plants,  two 

chambers were used as controls i n  order t o  reduce the C V  in estab- 

l ishing a mean. 

Replication 

Each 

The 5 subplots of l i t t l e  Slcestem i n  the 

I t  was aniicipted t h a t  the plants vould respond d i f fe ren t ly  even 

\hen treated a1 ike;  i . e . ,  sources of variation other t 9 a n  treatment 

e f fec ts  were anticipated.  Thus, i t  seemed necessary t o  block the 

pots so t h a t  tbe p o r t i o n  of  var iab i l i ty  inherent in the plant could 
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be measured and excluded from the experimental e r ro r .  However, 

there was no way t o  meaningfully g roup  the pots of plants as des- 

cribed by Steel and Torrie (lOGO), so t h a t  groups would have some 

type o f  u n i  formi ty w i t h  respect t o  each other. 

A one-way analysis of variance was used t o  check for  s ignif icant  

differences between the experimental treatments of a species. More 

t h a n  one control mean ( 0  ppni H2S) was often calculated (by rob/) t o  

investigate s ignif icant  differences between control treatments; 

t h i s  served a s  a bray o f  checking for variation in measured plant 

responses caused by factors  other t h a n  the HJ treatment, espe- 

c i a l l y  chamber e f f e c t .  Duncan's New Multiple Fange Test (Steel and 

Torrie,  1360) was used t o  separate treatment means from each other 

statistical!;]. Paired - t t e s t s  were used t o  determine i f  there was a 

s ign i f i can t  difference in the chlorophyll content of  l i t t l e  bluestem 

plants before and a f t e r  fumigations on a par t icu?ar  d a y  during the 

7 t h  veek o f  fumigation for t h a t  species. 

L 

-- Leaf Ch! orophyll Content 

L i t t l e  bluestem 1 eaves were sampl ed f o r  chl orophyll content 

a f t e r  60, 80, ? G O ,  a n d  130 h t o t a l  o f  fumigation as  \/ere moun ta in  

brome leaves a f t e r  60, 80, 120, a n d  140  h t o t a l .  The sampling pro-  

cedure a t  each o f  the sainpl ing times !qas as fo l !  ows: from each p o t  a 

young fu l ly  expanded leaf was removed from a randomly selected plant 

and taken to  the laboratory for  processing. Each leaf was the1 c u t  

into small pieces and  a 0.1 g sample was weighed. The only excel- 

tion to  t 5 i s  !)!as a f t e r  the 6 C  h - t o t a l  fimigation t i n e  f o r  noun ta ;n  
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brome when only the pots in  the "low" H S-concentation chamber 

were sampled. 

the number of pots i n  eac9 subplot a s  discussed under the "Experi- 

mental Design a n d  S t a t i s t i c a l  Analyses" section. Sanple s izes  o f  

"control" p l a n t s  were much l a rge r  because two chambers were used a s  

controls  i n  order t o  examine the va r i ab i l i t y  inherent i n  the plants .  

2 
Sanple s izes  ( n )  consisted o f  5 ,  6 ,  or 7 depending on 

Chlorophyll determinations were made by extract ing the 0.1 g 

l ea f  t i s sue  samples w i t h  ! O  nl of aqueous 80% acetone in subdued t o  

no  1 i gh t  fo r  48 h with periodic shaking, fo l l  owing the methods o f  

Vernon (1960). T!ie zbsorhance of t5e ex t rac ts  vas mezsured a t  649 

and 665 nin by means of a Varian Techtron U.V.-V.S. model G35 scan- 

n i n g  spectrophotoneter using the 0.2 nn bandwidth-measuri n g  beam and 

a 1-nl cuvette having a path l e n g t h  o f  10 mm. Chlorophyll a ,  b ,  a n d  

t o t a l  concentrations were calculated u s i n g  t!ie formul a derived by 

Vernon ( 1960). 

On a pa r t i cu la r  day, midway through the 7 t h  week of fumigations, 

clil orophyll deterrni nations were made on 1 i t t l  e bl uestem ext rzc ts  

both before and a f t e r  fumigations. 

change i n  chlorop5yll content which t o o k  place d u r i n g  the actual 4-h 

fumigation period. All other chlorophyll determinations viere made 

a f t e r  the 4-h fumigations on Friddys. 

determinations were made on H2S-treated and control plant  ex t r ac t s  

t o  determine whether the daily change i n  chlorophyll content was due 

t o  the H?S trcatmect or some other factor .  

T h i s  was done t o  deternine the 

Before-and-after chlorophyll 

L 

The absorbance measurements of the 7th-week 1 i ttl e bl iiestem 

ex t r ac t s  were made in t r i p l i c a t e  i n  order t o  deternine whether t::e 
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variation contributed by the spectrop39toneter a n d  i t s  use was a 

s t a t i s t i c a l l y  s ign i f icant  source of sampling e r ror .  A two-way ana l  - 

y s i s  o f  variance was used here t o  separate the sampling e r ror  from 

the experimental error  and t o  check f o r  sicjnificant differences 

between the experimental treatments. 

Percent ;later 

A t  the end of the experiment ( a f t e r  140 h-total of  fumigation) 

plants were clipped a t  soil  !eve1 and taken t o  the laboratory i n  

preweighed p las t ic  sampling bags. 

Metler analytical  balance. The percentage of the plant material 

comprised of water was calculated using the total  fresh weights and 

dry wefghts o f  tqe  above ground portion o f  the plants in  each p o t .  

The subplot sample s ize  ( n )  was 5 ,  6 ,  or 7 f o r  the H2S-treated 

plants of  b o t h  species a n d  24 and 45’ f o r  the control plants o f  

1 i t t l e  bluestem and mountain bromc, respectively. 

Plants were weighed using a 

Yield 

After drying in 2 forced-air  circ::lat;ion oveti a t  GO°C f o r  30 h 

Average plant yield was determined by the samples were reweighed. 

dividing the total  above-gro!ind plant dry weight per p o t  by the nun- 

ber o f  plants i n  t h a t  p o t .  Subplot sample s izes  were 5, 6 ,  or 7 f o r  

H2S-treated plants and  48 t o t a l  for the c:ontrol plants. 
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Leaf N i  trogen Con tent 

The dry p l a n t  material of each pot used f o r  making y i e ld  de te r -  

minations was powdered u s i n g  a w i g - l - b u g  pulverizer (Mfg .  unknown). 

Percent-ni trogen determination were made by combusting preweighed 

1 - 3  mg nicrosamples of the powdered p lan t  material by means of  a 

Perki n-Elmer 240B to ta l  

f o r  a l l  l i t t l e  bluestem 

mountain brome was 5 or 

f o r  "control I' plants .  

coinbusti on elemental analyzer. Sampl e si zes 

subplots was 3. 

C f o r  H2S-treated subplots and 35 to ta l  

Subplot sample s i z e  f o r  
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RESULTS 

Dry !deight of Topgrowth 

L i t t l e  B1 riestem 

T3e AHOVA table for dry weight of topgrowth data appears i n  

Appendix Table 14. 

treatment means; however, considering the magnitude of H2S dosages 

used, the calculated F i s  lower than expected. 

o f  l i t t l e  bluestem a t  several treatment levels  i s  plotted i n  

Fig. 6. 

sents  the average of f ive  or  six pots (subplot)  and the average o f  

H,S s p o t  measurements taken i n  each subplot, respectively. Com- 

pari  sons among treatment means q s i n g  Duncan's New Mu1 t i  pl e Range 

Test (Table 1 )  shows t h a t  the l i t t l e  bluestem plants fumigated w i t h  

low l eve l s  of H2S (0.05, 0.11, and 0.34 ppm) had a s ignif icant ly  

higher mean yield t h a n  two of the control means a t  the 95% confi- 

dence leve l .  Control neans #1 a n d  2 and  #3 a n d  4 d i d  not  d i f f e r  

s ignif icant ly  w i t h i n  chambers b u t  showed a s ignif icant  difference 

between chmbers,  inplying t h a t  some source of  variation other t h a n  

treatment e f f e c t s  was present. 

centration treatments (1.16, 1 . 6 4 ,  and 2.39 ppm H2S) were s i g n i f i -  

cantly l e s s  t h a n  two of the controls a t  the 95% confidence leve l .  

There was a highly s ignif icant  difference i n  the 

T!ie mean dry weight 

Each dry weight data p o i n t  and H2S concentration repre- 

L 

Mean yield values o f  the higher con- 

The shape of the observed dose-response curve i s  shown i n  Fig. 

6.  A t  low concentrations there was an increase i n  dry weight 
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w 
P 

r i i i  I I I I I - LITTLE BLUESTEM (SCHIZACHYRIUM 
SCOPARlU M) 

v CT MOUNTAIN BROME(BR0MUS MARGINATUS) 
I---+ STD ERROR OF MEAN 

c3 
W 3 0.14 

I I I I ' 
0.11 0.22 0.350.51 0.73 1.16 1.64 2.14 3.58 

MEAN H,S GAS ( p p m )  

F i g .  6. Mean plant dry weight of mountain brome and l i t t l e  bluestem topgrowth 
a f t e r  fumigations w i t h  H?S f o r  140 h over an 8-week period. 
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yield which can be interpreted as  a Stimulation o f  growth; as con- 

centrations increased, there was a reduction in dry weight which can 

he interpreted as  a depression o f  growth .  

Plant dry weights o f  topgrowth  were regressed on H2S concen- 

t r a t i o n .  

grorvth data of l i t t l e  bluestem ( F i g .  7 ) .  

of 0.11 ppn and below (Curve A i n  F i g .  7 )  the correlation cneff i -  

c i e n t  ( r  = 0.97)  indicated a s ignif icant  l i n e a r  relationship a t  a 

= 0.05 and f o r  H2S concentrations greater t h a n  0.11 ppn (Curve B 

i n  F i g .  7 )  the correlation coeff ic ient  ( r  = 0.76)  indicated a s ig -  

nif icant  nonlinear relationship o f  the quadratic form a t  (a = 

0.05) .  The combined coeff ic ients  of determination for  the regres- 

sions indicated t h a t  about three-fourths of the variation i n  the dry 

weight varia51e i s  explained by variation i n  the H2S concentra- 

t i o n .  

predicted a gain o f  0.023 grams dry weight w i t h  each 0.03 pprn 

increase in  concentration u p  t o  and including 0.11 ppm H2S and a 

loss  of 0.003 g r a m  dry weight w i t h  each 0.03 ppm increase i n  

concentration above 0.1 1 ppm H2S. 

Curve A and B in F i g .  7 a r e  ? = 0.091 + 0.77X a n d  Y = 0.1483 + 

(-0.1033X) + 3.02691X , respectively,  where Y i s  the to ta l  dry 

matter i n  grams and X i s  the H2S concentration i n  ppm. 

Regression curves ( A  a n d  B) were f i t t e d  t o  the observed 

For H2S concentrations 

The regression of plant dry weight on H2S concentrstion 

The regression equations fo r  
h 

h 2 

Mountain Brone 

The ANOVA table fo r  dry weight of topgrowth  data appears i n  

ihe dry weight of t o p g r o v t h  d a t a  appears in - Appendix T a b l ?  15. 
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Tab le  2 and represents the average dry weight from s ix  or seven 

groups of pots  a t  nine !evels of H2S and the average of H2S spot  

measurements taken i n  t h e i r  respective subplots. 

dose-response curve i s  plotted i n  Fig. 6. 

The observed 

A s igni f icant  treatment e f f ec t  was evident, however, i t  was 

d i f f i c u l t  t o  ascertain any patterns by separating treatment e f f ec t s  

u s i n g  Diincan's New flu1 tiple-Range t e s t  (Table 2) .  

mean of plants fumigated with the highest H2S level (3.58 ppm) was 

s ign i f icant ly  d i f fe ren t  from the other treatment means except f o r  

the 0.07 ppn mean. 

plants may have been relat ively unaffected by the H2S treatments 

until  concentrations reached 3.58 ppn H2S, where there was a 

negative e f f ec t .  The difference in control p l a n t  means hctweei 

chambers for  t h i s  species was a b o u t  16%. This difference i s  much 

1 ower t h a n  t b a t  observed f o r  1 i t t l e  bluestem, possibly i ndicati ng 

t h a t  the unknown extraneous source of variation affected l i t t l e  

bluestem plants t o  a greater  degree t h a n  i t  affected nountain brome 

p l a n t s .  

The treatment 

Thus, dry weight of topgrowth of  mountain brome 

Plant dry weight of t o p g r o w t h  was regressed on H2S concentra- 

t ion.  A regression curve was f i t t e d  t o  the observed growth d a t a  o f  

mountain brorne (Curve C in Fig. 7 ) .  The correlation coeff ic ient  ( r  

= 0.55) indicated a s ignif icant  cy rv  l inear  relationship a t a  = 

0.05. The coeff ic ient  o f  determinat on for  the regression indicated 

t h a t  only a b o u t  one-third o f  the variation in t h e  d r y  weight var i -  

able was explained by variation in the H,S concentration using 

t h i s  regression equation. 
L 

The regression o f  plant dry weight on 
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H2S concentration predicted a loss  o f  0.002 grams dry weight w i t h  

each 1 .O ppm increase in concentration. 

Curve C i n  Fig. 7 i s  ? = 0.1079 + (-0.002lOSX ) .  

The regression equation fo r  
2 

Hater- Content of Topgrowth 

L i t t l e  B1 uestern 

The ANOVA table  f o r  water content o f  topgrowth  d a t a  appears in 

Appendix Table 16. 

content treatment means. The observed dose/response curve f o r  water  

content ineans appears i n  Fig. 8. Comparisons aiiony treatment means 

(Table 3 )  shows t h a t  the l i t t l e  bluestem plants fumigated w i t h  low 

leve ls  of  H,S (0 .05,  0.11, and 0.22 ppm) had a s ignif icant ly  louer 

mean water content t h a n  those fumigated with 0 ,  0.73, and  2 .39  ppm 

H2S. The reduction in water content a t  the low levels  of H,S 

may have resulted from t\ro possible sources: (1  increased t ranspir-  

ation as caused by an H2S-induced stimulation of stomatal opening 

similar t o  studies with S O 2  (Majernik a n d  Mansfield, 1972; 

Uqsworth e t  a1 ., 1 9 7 2 )  or (2) a process \diere the water potential i n  

t' lc plant apoplast goes helow t h a t  o f  t?e protoplast result ing i n  

water rnovement o u t  o f  the protoplast. 

There was a s ignif icant  difference in \later 

L 

The co-relation between water c o n t e n t  and dry weight in t h e i r  

There i s  a re la t ively strong response t o  H2S i s  s+own in Fig. 9. 

( r  = 0.66) negative relationship in the j o i n t  response of  water 

content and d ry  weight t o  the H,S frmigations. The lowered water 
L 
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content o f  the plant may have actual ly  enabled c e l l s  to  function 

be t t e r  because, a s  Salisbury and Ross (1978) reported, i t  i s  

possible t h a t  c e l l s  function best when there i s  some water d e f i c i t .  

That i s ,  there may be a n  optimum turgidi ty  f o r  c e l l s  above or below 

which the various p l a n t  functions a re  slower o r  l e s s  e f f i c i e n t  

(Salisbury and Ross, 1978). A stimulation of stomatal opening may 

have increased H2S and C02 uptake t o  leve ls  approaching optimum 

f o r  u t i l i za t ion  and  growth. Thus, through the ind i rec t  mechanisms 

of increased COP and H2S uptake a n d  titi ,  1 i z a t i o n ,  a n d  stirnulation 

of  p l a n t  ce l l  function, the presence of  low levels  of  H2S may have 

been a t  l e a s t  p a r t i a l l y  responsiSle for. d ry  :,!eight increases. 

sone concentration of H2S, a b o u t  0.12 ppm, the stimulation e f f ec t s  

nay have been overcome by negative e f fec ts .  

level plant dry weight began decreasing (Fig. 9 ) .  

been due t o  the p lan ts '  i nab i l i t y  t o  continue "detoxifying" the 

H2S t h r o u g h  s t r e s s  tolerance mechanism. 

dry weight continues t o  decrease thr?re i s  a corresponding increase 

i n  water content. As H,S s t r e s s  increased, t5et-e may have been a 

reduction i n stornatal opening and /o r  a stimul a t i  on of stomatal 

closure w$ich reduced transpiration a n d ,  therefore,  lvater loss .  

Also, the lowering of plant water potential due t o  an i o n  increase 

would have increased plant riater uptake. 

continued until  water movement into ce l l  protoplasts was no longer 

possible, t!i!rs causing t9e second dec-ease in water content. 

A t  

A t  t h i s  "threshold" 

This nay have 

Figure 9 shows t h a t  as 

L 

T h i s  process could have 
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Mountai n Brone 

The ANOVA table for  water c m t e n t  o f  mountain hrome topgrowth  

appears in Appendix Table 17. The F-test  was barely s ign i f icant  

i n d i c a t i n g  some difference existed between treatment means. 

8 shows t h a t  the water content of H,S-treated p l a n t s  increased and 

remained higher t h a n  t h a t  of the controls a t  a l l  levels  of  H2S. 

Mu1 t i p l e  comparisons (Table 4 )  showed t h a t  on ly  the mountain broine 

p l a n t s  fumigated w i t h  the highest H,S level (3.58 ppm) had a s ig-  

nif icant ly  higher water content mean t h a n  those which received no 

H2S (cont ro ls ) .  

control plant neans nor between means of H,S-treated plants (Table 

4 ) .  This indicated t h a t  the increase in water content o f  t!ie 

Figure 

L 

L 

There was no s igni f icant  difference between 

L 

H2S-treated plants over t h a t  o f  the non-H2S-treated plants may 

have been caused by some e f f ec t  o f  the H,S. The increase i n  water 

content of the H2S-treated plants may have been due t o  p a r t i a l  

stomatal closure and/or a water potential reduction. 

L 

Figure 1 0  shows the water content/dry brei g h t  re1 a t i  onshi p of  t h e  

mountain brome plants.  

a re1 a t i  vely moderate degree of re1 ation between t!iese response 

A correlation coeff ic ient  of  0.43 indicates  

variables.  A negative relationship i s  evident, further strengthing 

the resul t s  f o u n d  w i  t l i  1 i t t l e  b l  uestern. 
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Leaf Nitrogen Content 

L i t t l e  B1 uestem 

The ANOVA f o r  

provided evidence 

exi s ted ( Appendi x 

mean 1 eaf nitrogen content o f  1 i t t l  e bl uestern 

t h a t  no real differences in treatment means 

Table 18) .  Figure 11 shows t h a t  the mean leaf  

nitrogen content of the H2S-treated plants was lower than  t h a t  of 

the control plants a t  every level of H2S; however, comparisons 

among treatnieni means (Table 5 )  shotred t h a t  the only s ignif icant  

different? was between the control plant mean and the 0.05-ppm 

treatment mean. 

content o f  l i % t l e  bluestem leaves i s  unknown; however, t h i s  nay be 

The mechanism by which H2S reduced the nitrogen 

another  indirect  e f f ec t  of H2S-induced elater s t r e s s .  

Jager (1 978) reported a s t i m l a t i o n  o f  gl utamate oxaloacetate t rans-  

aminase ( G O T )  a n d  glutamate pyruvate transaminase (GPT)  enzyme 

ac t iv i ty ,  a reduction in glutamic and aspar t ic  acids,  and  an  accumu- 

la t ion  o f  f ree  proline in pea (Pisum sativum L . )  leaves funigated 

with 2.1 ppm H2S f o r  SI days. They at t r ibuted the proline accurnu- 

la t ion  t o  !rater s t r e s s  conditions produced by the H,S furniga- 

t ions.  

synthesize large quant i t ies  o f  the amino acid proline via t ransfer  

o f  ami no groirps from gl iitamate and  aspartate by transarni nase enzymes 

such as GOT and  GPT (Salisbury a n d  Ross, 1978) 

of proline which accumulates in the vacuoles would resu l t  in a 

Steubing and 

L 

Apparently, plants under water s t r e s s  have the ab i l i t y  t o  

The large quantity 

highly negative osmotic potential in the protoplasts (Salisbury and 

Ross ,  1079)  possibly wittiout the toxic e f f ec t s  o f  the H2S ions, 
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Tahle 4. Conparisons anong i ra te r  con ten t  mans o f  noirntain hrone p l a n t s  u s i n g  Duncan's Ilebr l lu l t ip le-Range Test. 
fun igated w i t h  H7S f o r  a t o t a l  o f  1411 hours over an eight-week pe r iod .  
no t  s i g n i f i c a n t l y  d i f f e r e n t  a t  the 95% confidence l e v e l .  

P lants  were 
Any two neans underscored hy the Sane l i n e  are 

Rank 1 2 3 4 5 6 7 8 9 10 11 12 

I b a n  HpS (ppn) 0 0 0 n 0.72 2.14 0.07 0.21 0.65 0.37 1.16 3.50 

&an P l a n t  Hater 
Content ( X )  76.4 16.5 76.8 76.9 79.6 79.6 80.0 80.2 00.3 80.7 80.7 81.1 
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3.45 

- L I T T L E B L U E ST EM ( S C H I Z A C H YR I U M S C 0 P M  1- - MOUNTAIN BROHE ( B R O M U S  MARGINATUS) 
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F i g .  71. Mean t o t a l - n i t r o g e n  con ten t  o f  mounta in brome and l i t t l e  b lues tem l e a v e s  
a f t e r  fumigat ions  w i t h  H2S f o r  I40  h ove r  an 8-week pe r iod .  
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b u t  w i t h  the a b i l i t y  t o  al?ow water movement in to  the plant and 

protoplasts,  t h u s  hindering further water s t r e s s .  T h i s  may explain 

the resul t s  reported by S t e u b i n g  and Jager (19?S) and nay possibly 

be related t o  the measured reductions i n  nitrogen i n  this stud:/. 

Figure 12 graphically displays the relationship between nitrogen 

content and water conten t  along the H2S gradient. 

moderate ( r  = 0 . 5 9 )  relationship between leaf nitrogen content and 

water content of topgrowth may possibly !,e a t t r ibu ted  to  the reasons 

d i  sciissed above. 

The relat ively 

Figure 13 depicts the relationship ( r  = 0.16) between leaf ni t ro-  

gen content a n d  dry weight of topgrowth  of l i t t l e  bluesten. 

lower I$S concentrations (0.05 to  0.12 ppm) dry weight increased 

t o  i t s  3ighest level and nitrogen content decreased t o  i t s  lowest 

leve l .  Apparently the reduction in nitrogen content was not 

substantial  enough to  a f f ec t  dry weight, o r  the stimulation e f f ec t s  

o f  H S may qave overcome t!ie negative e f f ec t s  of the nitrogen con- 

t e n t  reductions, a t  l e a s t  a t  the lower H,S leve ls .  

A t  the 

2 

Mountain Broi,ie 

Figure 11  shows the mean leaf  nitrogen content of mountain home 

a f t e r  t h e  ti$ fuaigations. 

evident (Appendix Table 1 9 ) .  

nitrogen content of the control plants M J S  signi f icant ly  1 o w r  thail 

t h a t  of a l l  the H2S-treated rneans. 

only s ignif icant  difference was between the 0.07- and  the 3.58-ppm 

mean. This indicated t h a t  t3e fumigations k l i t h  HzS concentration; 

A s ign i f i can t  t;-catr;;ent e f f e c t  was 

Table 6 S ~ I N S  t h a t  the g rand  mean l e a f  

Of the HzS-treated means the 

5 1  
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Table 6. Conparisons anong nitrogen content means of mountain brone leaves using Duncan's tlew Ilultiple-Range Tcst. Plants were 
funigated w i t h  H2S for a total of 140 hours over an  eight-week period at  the 9 5 1  confidence l e v e l .  

3 4 5 6 7 a 9 10 11 1 2  Rank 

!lean H2S conc. (ppn) 

tlean Leaf Nitrogen 
content ( % I  

1 2 

0 0 

.46  2.56 

0 0 0.07 0.37 0.72 0.65 0.21 2.14 1 .16  3.58 

58 7.60 2.05 2.07 2.89 3.01 3.03 3.10 3.13 3.36 



ranging fron 0.07 t o  2.14 ppm stimulated leaf  nitrogen content t o  

the same degree and the fumigations w i t h  3.58 ppm H2S resulted in  

a s ignif icant ly  higher mean l ea f  nitrogen content. 

The responses of leaf nitrogen content and water content o f  t o p -  

growth appear t o  have a strong ( r  = 0.76) posit ive relat ionship,  as 

shown i n  F g .  1 2 .  

Figure 1 4  depicts the relationship between leaf  nitrogen content 

and dry we g h t  of t o p g r o w t h  of  mountain brome plants fumigated w i t h  

several l eve l s  of H2S. 

s t rong .  T h u s ,  leaf nitrogen content and dry weight were not ,jointly 

affected by t h e  external influences which included H2S. 

The relationship ( r  = 0.24)  was n o t  

Leaf Chlorop3yll - Content 

To faci 1 i t a t e  discussion of the chl orophyll resul t s ,  the length 

of time f o r  which the groups of plants received the various fumiga- 

t ion t reatneots  (exposure) will be ident i f ied as follows: 60 !I = 4 !I 

per day, 5 days per week f o r  3 weeks i n  succession; 80 h = 4 t i  per 

day, 5 days per week fo r  4 treeks i n  succ:ession; 100 h = 4 h per day, 

5 days per week f o r  5 weeks i n  succession; 120 h = 4 h per day, 5 

days per week f o r  6 weeks i n  succession; 140 'n = 4 h per day, 5 days 

per week over a n  &week period ( the re  was a 9-day fumigation-free 

period between the 6 t h  a n d  8tti \reek a f t e r  fumigations comenced). 
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brome a f t e r  f u m i g a t i o n s  w i t h  H2S f o r  140 h .  I 



L i t t l e  61 uestem 

Effects of exposure time. Chlorophyll content determinations of 

l i t t l e  bluestem leaf  extracts  were made a f t e r  GO,  80, 100, and 140 

to ta l  h of fumigation. The ANOVA tables  f o r  mean l ea f  chlorophyll 

content data appear i n  Appendix Tables 20 through 23. 

chlorophyll content a t  each of several mean Ii2S concentrations was 

averaged across pots f o r  each total-hour sampling t i n e  and appears 

The leaf  

i n  F i g .  15.  Comparisons among treatment means f o r  chlorophyll con- 

t e n t  d a t a  appear i n  Tables ?, 8 ,  9, and 10 fo r  the GO-, 80-, loo-,  

and 140-h exposure times, respectively. 

A t  the  60-h exposure time l ea f  chlorophyll content increased 

rapidly from the 0- t o  the 0.12-ppm level of H2S, and then de- 

clined i n  general a t  a decreasing r a t e  from the 0.12- t o  the 

2.50-ppm level w i t h  a second peak being formed a t  0.51 ppm 

( F i g .  15 ) .  

plants above tha t  of  the control plants ( n o  H2S) can be inter- 

preted as a n  H2S-caused stirwl a t i o n  of chl orophyll synthesis.  

T h i s  stimulated chlorophyll product ion may have resulted p a r t l y  f ron 

a greater  r a t e  o f  chloroplast  division (Salisbury a n d  Ross, 1978) 

which may have resulted from c e l l s  functioning bet ter  a t  some water 

d e f i c i t ,  as oentioned e a r l i e r .  

level o f  H2S was signif icant ly  higher t h a n  t h a t  a t  a l l  the other 

l eve l s  o f  H,S; sl l  other treatment means showed no s ignif icant  

d i  fferences ( T a h l  e 7 1. 

T5e increase i n  chlorophyll content o f  the H2S-trcated 

The trea-tnent mean a t  the 0.12-ppm 

L 

A t  the 80-h exposure t i n e  leaf chl orophyll content decreased 

rapidly fron the 0- t o  the 0.11-ppm level of H2S, and a t  a slor;!er 
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Table 7 .  ronparisons anong c h l o r o p h y l l  content  w i n s  o f  l i t t l e  b luesten leaves using Duncan's New 
fl i i l t iple-Range Test. 
per iod.  Any two neans not  underscored hy the sane l i n e  are s i g n i f i c a n t l y  d i f f e r e n t  a t  the  95% 
conf 1 dence 1 eve1 . 

P l a n t s  were funigated wi th  H7S f o r  a t o t a l  o f  60 hours overs a three-week 

?lean H S Conc. (ppn) 0.90 1 . 4 0  0.37 0 0.74 2.50 0.51 0.05 0.12 2 

Mean Leaf Chlorophyll 
i n g i g  j 1 . ~ 1 ) s  t . 3 5 7  1 . 3 ~ 0  1.457 1 .489 1.513 1.566 1.599 1.863 
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r a t e  until 0.21 ppm had been received ( F i g .  15 ) .  Leaf chlorophyll 

content then increased from the 0.21- t o  the 0.45-ppm level of H,S 

forming a peak near t 5 a t  of the control,  and then declined slowly 

L 

from %he 0.45- t o  the 2.03-ppm leve l .  The control treatment mean 

was s ignif icant ly  higher than the 0.11- and the 0.21-ppm treatment 

means (Table 8 ) .  

A t  the 100-!I exposure time leaf chlorophyll content followed a 

pattern similar t o  t h a t  o f  the  86-h exposure t i n e  ( F i g .  15 ) .  There 

was a decrease i n  chlorophyl! con ten t  from the 0- t o  the 0.25-ppm 

level of H2S, a n d  then a n  increase from the 0.26- t o  the 0.67-ppm 

1 eve1 w i t h  a peak being formed a t  the 0.67-ppm leve l .  Chlorophyll 

content then declined slowly again from the 0.67- t o  the 1 .GZ-ppn 

level o f  H2S. 

di f fe ren t  t h a n  a l l  the other treatment means (Table 9 ) .  

The 0.26-ppm treatment mean was s ignif icant ly  

A t  the 14041 exposure time leaf  chlorophyll content followed a 

pattern much l i k e  t h a t  of  the 60-h exposure time without the second 

peak. There was an increase i n  chlorop5yll content from the 0- t o  

the 0.22-ppm level of H2S, and then a gradual decrease from the  0- 

t o  the 2.96-ppn level .  Table 10 shows t h a t  the 0.22-ppm treatment 

mean was rignificant’y higher t h a n  the treatment means which rc -  

ceived A l s o ,  the 1.41 -ppm treatment 

mean w a s  signif icant ly  lower t h a n  those which received 0 ,  0.10, 

0.22, 0.33, and 0.58 ppm H2S (Table 1 0 ) .  

1.41 , a n d  2.39 ppm of  H2S. 

The spectrophotometer absorbance measurements of  the 140-h 

l i t t l e  bluestem leaf-chlorophyll extracts  were made i n  t r ipl icac.  i in  

order t o  determine whether the variation contributed by the spei :ro- 
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photometer and i t s  use was a s t a t i s t i c a l l y  s ignif icant  source of 

sampling e r ror .  

Table 23 and provides evidence t h a t  variation due t o  spectrophoto- 

meter sampling e r ro r  contrihuted negligibly t o  tqe total  e r r o r  i n  

determi n i  ng 1 eaf ci11 orophyll content. 

Reductions i n  chlorophyll d u r i n g  a 4-h fumigation period. 

par t icu lar  day midway through the 7th week of funigations (140 h ) ,  

leaf chlorophyll determinations were made on l i t t l e  bluestem 

The ANOVA table  fo r  these d a t a  appears in Appendix 

Or! a 

ex t r ac t s  50th 

cated no sign 

phyl1 content 

- t-value of 2. 

a s ign i f icant  

before a n d  a f t e r  fumigations. A - t-valire of 0.51 i n d i -  

f icant  differences among control - p l a n t  leaf c!iloro- 

means before a n d  a f t e r  the f u m i g a t i o n s  a t  r y = O . O 5 .  A 

for  the H,S-treated plants indicated t h a t  there was 
L 

7% decrease i n mean 1 eaf chl orophyl 1 content fol lok!ing 

the fumigation a t  the 95% confidence l eve l .  

ence i n  1 eaf chl orophyl 1 content between the H2S-treated plants 

before a n d  a f t e r  a 4-h fumigation l i e s  between -0.065 a n d  -0.109 

mg/g of fresh weight or between 4.6 and 7.63 reductions. 

The t rue  mean d i f f e r -  

Exposure interact ions.  Figure 16 represents the e f f e c t  t h a t  the 

fumigations had on the leaf  chlorophyll content of the H2S-treated 

plants as the exposure time increased. 

t ion levels  (belo!.r 0.67 ppm)  chlorop3yll content decreSsed substan- 

t i a l l y  from the 60- t o  the 100-h exposure time, a n d  then increased 

from the 100- t c  tc7e 14C-h exposure time. 

observed i n  F i g .  15. The increase i n  chlorophyll content from the 

100- t o  the lC0-h exposure t i ne  can be at t r ibuted t o  the 3-day 

A t  t h e  lower H2S f u n i g a -  

This  patterr; can a l s o  be 

fumigation-free period which the plants experienced between the 



120- a n d  the 140-5 exposure t i ne .  The "recovery" period nay have 

enabled the plants t o  resume a more normal r a t e  of ce l l  division 

a n d / o r  chl orophyl i synthesi s ,  resul t i  ng i n 1 eaF chlorophyll contents 

close t o  t h a t  measured a t  the 60-h exposlire time. 

in Fig. 16 i s  simply a l i nea r  extension o f  t!Je 80- t o  the 100-7 

The dotted l i n e  

exposure t i n e  l i n e  which serves a s  a prediction of the change i n  

chlorophyll content fi-om the 100- t o  t 'le ' 4 0 - h  exposure t i n e  i f  t+e 

'r12S-frec period had n o t  occurred. 

A t  the higher H2S fumigation levels  (above 0.G7 ppm)  leaf  

chlorophyll content increased from the 60- t o  the 80-h exposure 

time, and then decreased fro13 the 80- t o  the 140-h exposure t i n e  

( F i g .  1 6 ) .  The absence of an increase in l ea f  chlorophyll content 

a f t e r  the H2S-free period indicates t h a t  the plants which received 

the higher l eve l s  o f  H2S were damaged a t  the biochemical level t o  

such a degree t h a t  they were unable t o  recover. 

defined t h i s  2 s  prolonged e l a s t i c  z i r a i n  culminating i n  i r revers ib le  

Taylor (1978) 

p l a s t i c  s t r a in .  

Air temperature interact ion.  In order t o  determine whether the 

change i r  cblorophyl? cor tent  o v e r  time :/as affected by ensironnen- 

t a l  varia5les average weekly temperature over the 4 h daily funiga- 

t ion period was used t o  represent changes i n  mbient  environmental 

vari ab1 es .  

determi nations were made was plotted against  time a n d  cornpared w i t h  

p lots  of chlorophyll content against  time ( F i g .  1 7 ) .  Air 

Average a i  r temperature of the week t h a t  chl orophyl 1 

tenperature was  sed as  t h e  representative variable becatise i t  nay 

be the ambient environmental factor w i t h  the most s ignif icant  
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influence on a i r  pollutant e f f ec t s  on plants (Heck e t  a:., 1965; 

Heck, 1968; Omrod, 1978) and i t  represents change i n  other ambient 

environmental variables including irradiance and humidity. Figure 

17  shows t h a t  the change i n  control-plant leaf chlorophyll content 

o v w  t i n e  fol:oa,ed the ct-;ange i n  inean eieekly ambient temperature 

quite consistently.  A correlation coeff ic ient  of 0.69 indicates 

t h a t  th i s  relztionship i s  noderately strong. 

between chlorophyll content of the H2S-treated plants and 

temperature i s  moderate as indicated by cor-e??tion coeff ic ients  of 

0.45 and  0.39 f o r  the low (< 0.67 ppm) and high (> 0.67 ppm) 

If S - l e v e l  c u r v e s .  Thus, l e a f  c h l o r o p h y l l  c o n t e n t  o f  t h e  control 

plants was affected t o  a greater degree by ambient temperature than 

t h a t  o f  H2S-treated plants.  

have accounted for more of the variation i n  l e a f  chlorophyll content 

of plants t h a t  received no H2S than i n  H2S-trcated plants. 

However , tbe amount o f  variation i n  chl orophyll content contri  5uted 

The relationship 

2 

This implies t h a t  temperature may 

by a i r  temperature i s u n k n o w n .  

P1 ant response re1 ationships. The relationship between 1 eaf 

ch! o!-ophyl1 cor,:znt and the o th t? r  resporse vari ab1  es of \ later 

content,  nitrogen content,  and dry ;/eight a re  shovn separately in 

Figs. 18, 19, a n d  ? O ,  respectively. Tlie relationship between chlo- 

rophyll content a n d  water content i n  respoilse t o  the f u m i g a t i o n s  was 

a negative one; water content increased as  chlorophyll content 

decreased along an increasing level of H2S (Fig.  18 ) .  

supports a n d  Ray he explained by the s ta tecent  alluded t o  e a r l i e r  

This 
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bluestem a n d  mountain broine fumigated w i t h  H2S for  140 h over an 8 week 
peri od. 
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t h a t  c e l l s  function f a s t e r  o r  more e f f i c i e n t l y  when there i s  some 

water d e f i c i t .  

T!Ie positive relations9ip between chlorophyll and nitrogen i n  

t h & r  responses t o  the H2S ftmigations (Fig. 1 9 )  may bc expected 

since nitrogen i s  a major component of pyrole rings in chlorophyll 

(Salisbury and Ross, 1978). Both leaf chlorophyll and leaf nitrogen 

content decreased from the 0- t o  the 0.07-ppm level of H2S, i n -  

creased from the 0.07- t o  the 0.22-ppm l e v e l ,  and then decreased 

again from the 0.22- t o  the 0.33-ppn leve l .  Above the 0.33-ppm 

level of H2S, factors  other than nitrogen content nay have con- 

t r ibuted more to  the decline of l e a f  chlorophyll content t h a n  a t  the 

1 eve1 s bel ow 0.33 ppm. 

A strong ( r  = 0.60) posi t ive relat ionship between leaf  chloro- 

pliyll content and dry weight i s  evident i n  F i g .  20. An increase i n  

chlorophyll content could have led to  an increase i n  l i g h t  trapping 

and therefore,  d stimulatioti of photosynthesis resul t ing i n  g rea te r  

dry weight production. 

appears t h a t  leaf  chlorophy?l content contributed 1 ess  t o  the change 

i n  dry weight than below the 0.33-ppm level ( F i g .  20) as  was the 

case w i t h  l e a f  nitrogen content. 

be a t t r i bu ted  t o  the lower end of the relationship.  

Above the 0'33-ppm level of H2S, i t  

Thus, most o f  the correlation can 

Mounta in  Brone 

Effects of exposure time. Leaf chl orophyll content determina- 

t i ons  of mountain brone were made a f t e r  60, 80, 120,  a n d  140  t o t a l  h 

of fumigation. The ANDVA tables  fo r  mean leaf chlorophyll content 

12 



data appear i n  Appendix Tables 24 through 27. 

content a t  each of several mean H2S concentrations was averaged 

across pots f o r  es.ch subplot and appears i n  F i g .  21. 

among treatment means for  chlorophyll content data appear i n  Tables 

11 and 1 2  f o r  the 120- and the 140-h exposure times, respectively. 

T h e  chlorophyll 

Comparisons 

A t  the 60-h exposure t i n e  l ea f  chlorophyll content remained 

re la t ive ly  unchanged ( F i g .  21 1. No treatment differences were 

detected (Appendix Tab1 e 24).  

A t  the 80-h exposure time there was an extremely small, i n s i g -  

n i f ican t  cbange ir! leaf chlorophyl! content across a l l  l eve l s  of 

H2S ( F i g .  21). 

(Appendix Table 25). 

Again, no treatment differences were evident 

A t  the 120-h exposure time the - F-value fo r  t e s t ing  treatment 

differences was barely s ignif icant  a t  the a5% confidence leve l .  

There was a general decrease i n  l e a f  chlorophyll content from the 0- 

t o  the 2.14-ppn level of H2S, a n d  tfien an increase from the 2.14-  

t o  the 3.58-ppm level.  The 2.14-ppm treatment mehn differed s ign i -  

f i can t ly  from the control-plant grand mean and  froin the  0.21-ppm 

treatment mean (Table 11 1. 

A t  the 140-h exposure time 1 eaf chl oropliyl 1 content increased 

Significantly from the 0- t o  the 0.37-ppn level of H2S, a n d  then 

decreased s ignif icant ly  from the 0.37- t o  the 3.58-ppm level ( F i g .  

21 a n d  Table 1 2 ) .  

control treatment nesns indicating no s igni f icant  variation i n  l e a f  

chlorophyll content from chamber t o  chamber. 

There were no s ignif icant  differences between the 
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Table 11. Conparisons anong ch lo rophy l l  con ten t  neans o f  nounta ln  brone leaves u s i n g  N n c a n ' s  tkw l ful t iple-Range Test. P lan ts  
were fun iga ted  w i t h  P2S f o r  a t o t a l  o f  170 hoiirs over a six-week pe r iod .  
l i n e  are s i g n i f i c a n t l y  d i f f e r e n t  a t  t he  95% confidence l e v e l .  

Any two neans n o t  underscored by t h e  same 

Rank 

~~ ~ 

1 7 3 4 5 6 7 R 9 10 11 12 

0 0 0.21 Average H2S Conc. (ppn) 2.14 0.72 3.58 0.07 0 0.37 0 0.65 1.16 

Mean Leaf Chlorophyl l  
(ng/g) 0.97 1.07 1.09 1.09 1.12 1.13 1.14 1.14 1.14 1.17 1.18 1.30 



Table 17. Conparisons anong c h l o r o p h y l l  con ten t  m a n s  of mountain brone leaves u s i n g  Duncan's New I lu l t ip le-Range Test. 
P lan ts  were f u n i g a t e d  w i t h  H7S f o r  a t o t a l  o f  140 hours over an eight-week per iod .  
underscored by the  sane l i n e  are  s i g n i f i c a n t l y  d i f f e r e n t  a t  the  95% conf idence l e v e l .  

Any two means n o t  

P __II__ 

7 3 4 5 6 7 a 9 1 0  11 tank 

tlean H2S conc. (ppn) 

llean Leaf Ch lorophy l l  
(ng/g 1 

1 

0 

-39 

0 0 3.58 2.14 0.72  0.07 1.16 0.65 0.21 0.37 

.41 1.42 1.43 1.53 1.55 1.59 1.60 1.60 1.61 1.70 

_ - - -  - - - - - - - _ _ _ _ _  



Exposure interact ions.  As was the case w i t h  l i t t ! e  bluestem, i t  

was evident t h a t  exposure time nay have affected the leaf chloro- 

phyll content o f  the H2S-treated mountain brome plants (Fig. 21 1. 

Fig'ure 22 represents the change in leaf  chlorophyll content of 

mountain brone as  exposure t i n e  increased. Chlorophyll content 

decreased substant ia l ly  from the G O -  t o  the 120-h exposure time, and 

then increasesd from the 120- t o  t'ne 140-il t i n e  t o  a level above 

t h a t  a t  the 60-h time. This pattern can also be observed in  F i g .  

21.  The increase in  chlorophyll content from the 120- to  the 740-h 

exposure time ( F i g .  22)  was again a t t r i bu ted  t o  the 9-d H2S-free 

period which the nountain brome plants experienced hetween the s i x t $  

and seventh week a f t e r  fumigations were commenced. The "recovery" 

period may 3ave enabled t$e  plants t o  resume a r a t e  of  chlorophyll 

synthesis t h a t  resulted i n  a mean chlorophyll content above t h a t  o f  

t'le CO-h exposure t i ne .  Thc dotted l i n e  i n  Fig. 22 i s  a l inear ly  

extended prediction of the change in  chlorophyll content from the 

120- t o  tCle 140-tl time i f  the "recove,-y" period had n o t  occurred. 

Air temperature interaction. The change in  ambient a i r  temper- 

a ture  a s  exposure t i ne  increased i s  compared w i t h  t5e change i n  l e a f  

chlorophyll content of  nountain brome a s  exposure time increased i n  

F i g .  23.  A re lat ively strong ( r  = 0.70) negztive relationship 

between leaf  chlorophyll content and ambient a i r  temperature i s  

evident. 

temperature increased and chlorophyll content decreased for  both t h e  

control a n d  t$e  H2S-treated plants.  

decreased substant ia l ly  and  the chlorophy! 1 contents increased from 

As the exposure t i n e  increased from 60 t o  120 h, a i r  

Then the a i r  temperature 
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the 120- t o  the 1 4 0 4  exposure time. 

between the control a n d  the HpS-treated plants indicated t h a t  they 

T!ie closeness i n  pattern 

were affected similarly by the extraneous variables,  w h i c h  included 

a i r  temperature. The strong negative re1 a t i o n s h i p  hetween changes 

i n  leaf  chlorophyll con ten t  and ambient a i r  temperature +as two 

imp1 ications.  F i r s t l y ,  the strengtfi of the relationship inp l i e s  

t h a t  tevperature contributed substantial l y  t o  the changes i n  1 eaf 

chlorophyll content over time. The m o u n t  of variation i n  l e a f  

chl orophyll content contributed by a i r  temperature can only be 

deternined by par t i  t iopi  ng o u t  t h i s  contribution u s i n g  analyses o f  

variance w i t h  mu1 tiway c lass i f ica t ions  or fac tor ia l  experiments. 

T h i s  requires sanpling a t  t ? e  same H2S level a t  eac’l sanpling 

date, a p-ocedure which \ ’as  n o t  dope i n  t h i s  experiment. Secondly, 

the negative aspect o f  the  relationship implies t h a t  mountain brorne 

may be adapted t o  an a l t i t u d e  of colder a i r  temperatures t h a n  tlie 

a l t i t u d e  a t  which the experiments were conducted o r  t o  growth d u r i n g  

a colder time of season. This deduction i s  based on the f a c t  t h a t  

the maximum measured chlorophyll content was reached a t  the coldest  

a i r  temperature ( F i g .  1 3 ) .  Chase ( 1  979) reported tha t  nountain 

brome i s common t o  the 1 a t i  tude and 1 ongi tude of New blexico , there- 

fo re ,  only a change i n  a l t i t udc  or growing season would sa t i s fy  the 

colder a i r  temperature requirement. 

P l a n t  response re!ations$ips. The relationship between l ea f  

chlorophyll content a n d  the otclet. response variables, of  water 

content o f  topgrowte, l ea f  nitrogen content, a n d  dry w i g h t  of t o p -  

g rowth ,  a r e  shown separately i n  F igs .  18, 74, a n d  2 5 ,  r9spcctive;y. 
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A posit ive ( r  = 0.50) relationship between chlorophyll content and 

water content along an increasing H2S gradient i s  shown i n  F i g .  

18. This encourages the "bet ter  ce l l  functioning a t  sone water 

d e f i c i t "  theory. 

t o  0.37-ppm level of H2S so did chlorophyll content, and  then 

chlorophyll content decreased by about 16% from the 0.37- t o  the 

3.58-level o f  H S as water content remained about the sane. Thus, 

above the 0.37-ppn level of H2S, chlorophyll and water content may 

have ceaspd t o  respond s i n i l a r l y  t o  t h e  H2S fiinigations. 

Generally, as  water content increased from the 0- 

2 

A posit ive 0- = 0.22) relations3ip 'Iretwer! chlorophyll a n d  ni-  

trogen content along an  increasing H,S gradient i s  shown i n  

F i g .  24. The relationship i s  l o t  s t r o n g  and occasionally turns t o  a 

nega t i  vc re1 a t  i onshi  p . 

L 

A posit ive ( r  = 0.42)  re la t ionship between dry weight and  chlo- 

rop:iyl1 content along an increasing H2S gmlicrit  i s  plotted i n  

F i g .  25. However, the l o s s  i n  dry \ /eight (237%) over the e n t i r e  

spectrum of H2S dosages i s  not propgrtional t o  the change in chlo- 

rophyll content, which, i n  f a c t ,  was an  increase of a b o u t  2%. 

Figure 26 repi-esents the change in leaf  chlorophyll content o f  

1 i t t l e  bluestem and mountain brome as H2S concentration increased. 
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After reviewing the 1 i terature  i t  seems evident t h a t  a f t e r  H,S 
L 

i s  released into the troposphere much o f  i t  will he exposed t o  

plants in  an unaltered form. 

before i t  i s  converted t o  SO, supports t h i s  statement. 

The long residence time of  H2S 

Hydrogen 
L 

su l f ide  as a gas i s  a b o u t  16% heavier t h a n  a i r  (Hendrickson, 1 9 7 9 ) ;  

therefore,  i t  seems possible t h a t  some s e t t l  i ng nay O C C U I -  exposing 

some vegetation t o  s l igh t ly  higher concentrations of  H2S than1 t h a t  

found above a canopy layer.  However, the atonic weight o f  CO, i s  
L 

greater  t h a n  t h a t  of H2S. 

be considered since CO, nay ameliorate the e f f ec t s  of  H2S on 

plants (Stiinn e t  a1 . , 1977). Special problems may develop in 

T h u s ,  s e t t l i n g  o f  geotsermal gases must 

L 

mountainous regions where a i r  drainage patterns resu l t  in  gas build- 

u p s  in valleys and  canyons. 

H,S crosses biologic membranes more rapidly t h s n  &e charged 

Since i t  i s  l ike ly  t h a t  undissociated 

L 

anionic species (Smith, 1 9 7 9 ) ,  and H2S i s  the form common t o  the 

troposphere, i t  seems feasiSle  t h a t  there vmuld he less  sires.; 

avoidance and more s t r e s s  tolerance, as described by Taylor ( 1  978), 

in plants exposed t o  H2S. 

Plant species express wide variations in  the i r  responses t o  

gaseous a i r  contaminants (Mudd, 1975; Bradsqaw, 1976; Snith, 1 9 7 9 ) .  

This var iab i l i ty  i s  exhibited b o t h  between species and  within 

species. However, there i s  evidence o f  populations showing specif ic  

adaptations or responses t o  most k n o w n  pollutants (Bradshaw, 1976) .  
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After having reviewed the l i t e r a t u r e  on H2S ef fec ts  on plants and 

considering the r e su l t s  of t h i s  study, a generalized pattern of 

plant reponses t o  H2S can be developed. This i s  shown i n  Table 

13. I t  i s  impor tan t  t o  note t h a t  the l a t t e r  events are most l i ke ly  

ind i rec t  responses t o  one or more o f  the e a r l i e r  events rather than 

t o  H2S stress per - se. 

I n i t i a l l y  most of the absorbed su l fur  i s  incorporated in to  

organic conpounds (Steubing and Jager,  1978). 

t ion of many growth processes a n d ,  i f  gas concentrations a re  non- 

acute,  there i s  a stimulation of g rowth .  Those anounts o f  sulfur  

Lrhich are taken u p  in excess are  accumulated i n  the vacuole a s  

su l f a t e ,  \rhich causes an  increase in osmotic pressure o f  the ce!l 

sap (Steubing and Jager,  1978). The osmotic potential of  the ce l l  

protoplasts continue t o  hecone more negative due t o  storage o f  !is- 
aod SO; ions in the vacuole. 

protoplast  because of the uni versa1 tendency t o  estab15 sh equil i - 
briun in water potentials between the apoplast and the protoplast ,  

thus creating p0siti.e protoplastic pressure potent ia ls .  

tinues until  the protoplast  can EO longer accep t  anions or \mter d ~ l ~  

t o  a high water potential caused by the osmotic pressure o r  due t o  

the f a c t  t h a t  the protoplast has reached i t s  stretching capacity. 

The excess sulfate  which can no longer be stored in the vacuoles 

louers the plater potential in the apcplzst 5elow t h a t  in the p r o t o -  

plast .  As a r e su l t ,  water moves o u t  of the protoplasts of  mesophyll 

There i s  a stimula- 

l a t e r  continlies t o  enter the 

This con- 

and epidermal cel l  s and  pl ants become water stressed (14eidner and 

Sheriff , 1976) .  This may explain the water-stress conditions 
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Table 13. General ized p a t t e r n  o f  p l a n t  processes o r  responses t o  inc reas ing  hydrogen s u l f i d e  l e v e l s  under 
opt i i3a l  o r  near-optimal env i ronnenta l  cond i t ions .a  

- -  - 
H ~ S  nosage” 

Concentrat ion x Length o f  Exposure 

Process o r  Response 
Remarks Affected‘ 0 pprr h 150 ppm h 400 pprr h 650 pprr h 

S t i n u l a t i o n  o f  growth processes 

P r o t o p l a s t i c  In t and Yp t 

C e l l  growth t 

l l a l l  s y n t h e s i s t  

P r o t e i n  s y n t h e s i s t  

Stonatal opening t 

C07 a s s i n i l a t i o n  t 

Overa l l  p l a n t  growth t 

Suppression o f  growth processes 

P r o t o p l a s t i c  Yp t and Yn ++ 

Ce l l  grouth t 

l l a l l  s y n t h e s i s t  

P r c i t e i n  syn ihes js  + 
Chlorophyl l  con ten t  t 
Cytochrnne oxidase l e v e l  t 

Ni t rogen reductase l e v e l  t 

Stonatal Closure t o r  t 

CO a s s i n i l a t i o n  + 
r e s p i r a t i o n  t 

Pro l ine  a c r u n u l a t i o n  t 

ressat ion  o f  a l l  processes 

7 

Protop las ts  c o l l a p s e  

r0 a s s i n i l a t i o n  .+ 
Respi rz t ion  ++ 

7 

Depends on Species 

Depends on Species 

Cont ras t  i n  Species 

Depends on Species 

k a r e l y  occurs 

under na tura l  

c o n d i t i o n s  

-___ _ _ _ _ _ _ ~  _L_ _~_._ _ _ . _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ _ _  

aLPngth o f  the  h n r i z o n t a l  l I n - 5  represents the range o f  H7S dosage l eve l s  w i t h i n  which a process f i r s t  

h i t h  p l a n t s  which rece ived f i l t e r e d  a i r  ( u s u a l l y  charcoa l  f i l t e r e d )  a s  the reference p o i n t .  
c T h e  syrlhol t rcpresents an increase i n  t h a t  process o r  response, + represents n decrease, and ++ 

hecnnes af fected o r  a response i s  f i r s t  not iced. Dashed l i n e s  s i g n i f y  deductions based on more tenuous data. 

represents n e i t h e r  an increase nor a decrease. 

m 
4 



* 

reported by Steubing and Jager (1978). 

cl osed duri ng thi  s process. 

Stomata nay have pa r t i a l ly  

A t  t h i s  point the pattern of  responses may be similar t o  those 

exh’ibited !,y plants updep \dater s t r e s s .  

c i a l l y  photosynthesis, translocation of  ass imilates ,  and respirat ion 

drop  t o  lower level s ,  a1 thoug9 the i n i t i a t i o n  of decl ine in  these 

processes and the degree of decline varies with plant species and 

other factors .  

evidenced as a slowing of  shoot and r o o t  growth (Salisbury and Ross, 

1978) .  T h i s  i s  usually followed closely by a reduction in ce l l  wall 

synthesis and  protein synthesis (Sal  isbury and Ross, 1078). 

Growtll processes, espe- 

The response of ce l lu l a r  growth  t o  water s t r e s s  i s  

A t  s l igh t ly  higher H2S dosages protochlorophyll biosynthesis 

i s  probably inhibited and chlorophyll i s  converted t o  pheophytin. 

The increased a c t i v i t i e s  of  cer ta i  n enzymes , especial ly GDH , GOT, 

and GPT, cor re la te  with reductions in f ree  glutamic and aspar t ic  

acid and increases i n  p:-ol ine (Steuhing a n d  Jager,  1978). I t  i s  

unclear whether o r  n o t  t h i s  process occurs t o  make the protoplast ic  

osmotic potentia; Gore negative, tqereby creating a greater tendency 

f o r  water t o  move in to  the stressed par ts .  

chrome oxidase may occur a t  t h i s  stage. 

The inhibit ion of cyto- 

As stomata continue t o  c lose,  transpiration and photosynthesis 

ra tes  continue to  decrease. 

accumulation o f  f r ee  proline may be f o u n d .  

re la ted t o  the H2S-induced water s t r e s s .  

(1978) s ta ted t h a t  proline night  only a c t  as a storage pool for  

reduced czrboq and nitrogen during s t r e s s ;  however, they suggest 

A t  a b o u t  t h i s  level of H2S s t r e s s ,  

Again t h i s  seem t o  b e  

Salisbury and Ross 
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t h a t  i t s  presence as a s o l u t e  would s i g n i f i c a n t l y  lower t h e  osmot ic  

p o t e n t i a l  wl;icli cou!d h e l p  t o  match the internal water p o t e n t i a l  t o  

t h a t  of the sur roundi  ng nedi  um. 

A t  a c u t e  dosages of H2S, mesophyll and epidermal c e l l  p ro to -  

p l a s t s  c o l l a p s e ,  r e s p i r a t i o n ,  t r a n s l o c a t i o n  of a s s i m i l a t e s ,  and 

C02 a s s i m i l a t i o n  drop t o  l e v e l s  near  ze ro ,  and l e a f  margins  d ry  

o u t  beconi ng bri t t l  e (Meidner and S h e r i f f ,  1976; Sal i sbuyy a n d  Ross, 

1978) .  F i n a l l y ,  i t  seems l i k e l y  t h a t  most p l a n t s  would r ecove r  i f  

the  H2S st ress  was removed or l e s s e n e d  a t  any p o i n t  p r i o r  t o  this,  

a1 though growth and pho tosyn thes i s  i n  young l e a v e s  may n o t  reach  the 

o r i g i n a l  r a t e  f o r  s eve ra l  days o r  weeks, and o l d  l e a v e s  may be shed .  

S ince  there i s  evidence of s i m i l a r i t i e s  between cyanide  and 

s u l f i d e  i n  t h e i r  i n h i b i t o r y  e f f e c t s  of cy tochrone  ox idase  ( S l ' a t e r ,  

1950; Gassman, 1973;  N icho l l s ,  1975;  i h d d ,  19791, i t  i s  l o g i c a l  t o  

sugges t  t h a t  p ? a n t s  exposed t o  poisoning  dosages of ti2S might 

u t i 1  i z e  t he  c y a n i d e - r e s i s t a n t  r e s p i r a t i o n  pathway of e l e c t r o n  t r a n s -  

p o r t .  However, the a p p l i c a b i l i t y  here, among o t h e r  t h i n g s  would be 

c o n t i n g e n t  upor: the  p a r t i c u l a y  species used i n  t h i s  s tudy  p o s s e s s i n g  

this pathway. 

and poisoning of r e s p i r a t i o n .  

be formed a t  r a p i d  r a t e s  i f  e l e c t r o n  t r a n s p o r t  througb the cyanide-  

resi s tsnt  pathway was f a s t  enough, a'l though a t  c o n s i d e r a b l e  expens? 

of food reserves ( S a l i s b u r y  and Ross, 1 9 7 8 ) .  

t i nue  t o l e r a t i n g  t o x i c  e f f e c t s  of HS- i n  an u n a f f e c t e d  manner 

would be determined by the  biochemical t h r e s h o l d  l e v e l  (Malhotra  and 

Hocking, 1976) .  Hoblever, t h i s  i s  mere s p e c u l a t i o n  s i n c e  the ( d e t a i l s  

I t  would avoid  the  p reven t ion  of  e l e c t r o n  t r a n s p o r t  

T$is nay al lot1 both h e a t  and ATP t o  

The c a p a c i t y  t o  con- 
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o r  even the absolute presence of t h i s  pathway have y e t  t o  be 

conf i rmed. 

The ab i l t y  of the p lan t  t o  t o l e r a t e  o r  avoid H2S s t r e s s  may 

vary with plant  netabol ism cha rac t e r i s t i c s .  

four-carbon, three-cqrbon dicarboxylic acid pathway of CO, f ixa-  

t i on  ( C ,  p lan t s )  may deal w i t h  H,S different!y tba r  t$osc 

employing only the three-carbon pathway ( C ,  p lan t s ) .  

C4 d i f f e rewes  mig$t o f f e r  a poss ib i l i t y  f o r  explanation of d i f -  

ferences i n  parameter measurements. 

which the i n i t i a l  CO, acceptor ( P E P  irl C 4  plants  and R u S P  in 

C 

i n  t h e i r  responses t o  H,S. 

boxylase was i n h i b i t e d  by su l f i t e .  

Plants eniploying the 

L 

L 

T h u s ,  C,- 

For example, the a f f i n i t y  f o r  

L 

p lan t s )  has fo r  HpS inolecules may contribute t o  differences 3 
Ziegler (1972) reported t h a t  RubP car -  

L 

The r e l a t ive ly  suppressed responses of mountain brome t o  the 

fumigations as compared to  l i t t l e  bluestem responses may have par- 

t i a l  l y  resul ted from inoptimal environmental growi n3 conditions f o r  

the mountain Srone plants  s ince p l a n t  s ens i t i v i ty  t o  a i r  conta~i i -  

nants i s  1 argely control 1 ed by the environmental fac tors  under which 

the p1 a n t  grows (Onrod, 12778; T i  5bi t t s ,  1978). 

have been the most l imi t ing  f ac to r  i n  the  response of mountain brone 

plants  t o  the tips funigations. 

perature var ia t ions often a f f e c t  p lan t  s e n s i t i v i t y  t o  a i r  pol lut-  

an ts .  !.laxinun cbl orophyll content in  nourltai n brone was reached a t  

the minimum dai ly  a i r  tenpcrature. Sal isbury and Ross (1978) 

indicated t h a t  C ,  plants  generally have a 1 ower temperature optima 

than C 4  plants  fo r  photosynthesi s and biochemical reactions. 

A i  r temperature may 

Omroc! (1978) indicates  t h a t  tern- 

c 
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Inoptimal temperatures f o r  the C3 species would slow down a l l  

growth processes (Sal isbury and 

H2S f umi gati  ons ,  thus resul t i  ng 

Tfiis would explain a lack of s t  

!loss, 1978) and  i t s  responses t o  

in a n  insens i t iv i ty  t o  lips. 
mulation of  growth a t  the low H2S 

levels  and  a lac!: of suppressio.. o f  growth a t  the Aigii H S l eve ls .  

Another factor  possibly affecting the magnitude of respovse in 
2 

plant species t o  the H2S fumigations may have been genetic d i f f e r -  

ences. The atnospheric concentrations of sul fur-contai ni ng gases a t  

the t i ne  of the species evolution may be par t ia l ly  responsible for  

how a plant responds t o  H2S fumigations a t  a l a t e r  evolutionary 

t ine .  

evolved l a t e r  on an evolutionary time scale t h a n  C3 p lants ,  there- 

fore ,  t!iroug’l genetic selection C4 plants may have developed d i f -  

ferent  gene pools in re la t ion t o  the atnospheric gas content a t  the 

Bjorkman and Berry (1973) imply t h a t  C, plants may have 

t ine of the i r  evolution. Bradshaw (1976)  indicated t h a t  polluted 

s i tuat ions are re la t ively new s i tua t ions ;  however, the presence o f  

sul fur-contai ni ng gases duri ng the evol uti on of  photosynthetic 

pl ants would most 1 i Itely resul t in some genetical 1y evolved adaptive 

significance t o  a i r  contaminants by the plants. 

evol \/e during a time of higher sul fur-containing atmospheric gases 

I f  C3 plants did 

t h a n  t h a t  present during the evolution o f  Cp, plants and did evolve 

some type o f  adaptive significance t o  the gases, then t h i s  could 

resu l t  in l e s s  var iabi l ty  i n  C3 plant populations when exposed t o  

sulfur-containing gases. Bradshaw ( 1 9 7 6 )  reported evidence of plant 

populations t h a t  showed specific adaptations t o  most known pol 7 ~ -  

t an ts  including some which had  been in existence f o r  only a few 

91 



years. 

tion in response to pollutants (Bradshaw, 1976). 

However, there i s  also widespread evidence o f  genetic varia- 
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SUtltlARY AND CONCLUSIONS 

Sunma ry 

Environmental e f f ec t s  of energy technology developments must be 

anticipated beforehand so t h a t  recomendations for  environnental 

management pol icy w i  11 preclude any s igni f icant  changes in eco- 

system. Geothermal energy sources in Northern New Hexico nay be 

developed in the near future. "Potential damage t o  vegetation and  

the rcsu! t i n g  economic inpact of geothermal sources shoiild be deter-  

nined before tapping such sources'l ( t ludd,  1379, p. 6 7 ) .  Few scien- 

t i f i c  studies have examined the long-term ef fec ts  of a wide range of 

H2S levels  on vegetation under r e a l i s t i c  f i e l d  conditions. 

gen su l f ide  gas, as  eni t ted from geothernal power plants,  i s  an a i r  

pollutant of n a j o r  concern V i t h  respect t o  e f fec ts  on t e r r e s t i a l  

p y a n t  systems (Axtnann, 1975). 

Hydro- 

Objectives. The overall objective of t h i s  s tudy  were t o  deter-  

nine some responses of l i t t l e  bluestem and noirntain hrone t o  con- 

tro! 1 ed g r a d i  enis of hydrogen sul f ide gas under f i el denvi ronnental 

conditions in order t o  supplement environnental management pol ic iy  

decision naking w f t h  regard t o  the Valles Caldera Geothernal 

l?esor!rce Area. 

Literature review. A discussion o f  the behavior o f  H2S in the 

atmosphere and  i n  plants served t o  identify the infornation needed 

t o  exanine the responses. 

tion o f  the chemical behavior of H,S in the atnosphere; ( 2 )  a des- 

cr ipt ion of the uptake and exchange of H2S by plants ;  (3 )  a 

Such infonnntion included (1 1 a descrip- 

L. 
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description o f  tJ2S in jur ies  t o  plants and t he i r  resistance t o  

H p S ;  and a review of studies re la t ing the response o f  plants t o  

HZS f uni g a t  i ons . 
tlateri a1 and nethods. Rectangular , open-top chanbers f o r  co  

t ro l led  exposure o f  two species of plants t o  gradients o f  H7S gas 

in the fie1 d were descrfbed. Experinental procedures \/ere enploye 

which uould nininize H7S concentration variation and  which lrould 

nininize the coeff ic ient  of variation in establishing neans. 

Analyses o f  variance and nul t i  p1 e regression nethods \!ere iiserl t o  

separate t reatnent  e f fec ts  and es tabl ish dose/response curves, 

respectively. Pel ationships hetween neasured p l a n t  responses \ 'ere 

cxani  ned. 

water content of  topgrowth, 1 eaf to t a :  -nitrogen content, and ? eaf  

Yeasured responses i ncl uded dry weight of topgrowth , 

to ta l  -chl orophyl 1 content. 

Results. Field experinents on the e f fec ts  of long-term Ii2S 

funigations on 1 i t t l e  bluesten and  nountain brone showed t9e 

fol 1 owi ng : 

1 .  The responses of  nountain brone t o  the H2S funigations 

were suppressed 2 s  conpared t o  those o f  1 i t t l  e hl uesten. 

L i t t l e  bluesten dry weight showed a highly s igni f icant  

t reatnent  response. A t  !ow H2S concentrations (< - 0.34 

ppr:i) 1 i t t l e  b l u e s t e n  dry k!eight s ignif icant ly  increase.' 

L i t t l e  bluesten dry weight was s ignif icant ly  reduced a t  

high P2S concentrations (7.16 ppn a n d  higher).  The 

regression of plant dry weight on H,S concentratio? 

predicted an  increase of (7.023 g r a m  dry \/eight with eac5 
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0.03 pprn increase i n  H2S up  t o  and including tine 0.11 ppn 

level of H,S a n d  a decrease of 0.003 grams dry weight 

vi t h  each 0.03 pprn increase i n  H2S above the 0.1 1 ppm 

level of ti2S. 

Dry weight of mounta in  hrome was r e l a t ive ly  unaffected by 

the H2S treatnents unt i l  concentations reached a clean o f  

3.58 ppm H2S where t'nere was a s ign i f icant  (a = 0.05) 

reduction in dry weight. 

2. There was a s ignif icant  difference i n  l i t t l e  bluestem water 

and 

a =  

cel 

vrat 

content treatrnent means, ho:.iever, no discern1 t.1 e patterns 

'./ere evident. The correlation coeff ic ient  ( r  = 0.66) i n d i -  

cated a s ignif icant  l inear  relationship hetveen dry weight 

imter content 9f t o p g r o w t h  d a t a  of l i t t l e  bluestem a t  

C . 0 5 .  A t  tcle !ow H,S levels  (helow 0.13 ppm) plant 
L 

s may have functioned bet ter  due t o  an H2S-caused 

r d e f i c i t ,  possibly result ing in increased dry \.:eight. 

;dater content o f  n o u n t a i n  brome uas insignif icant ly  i n -  

creased b y  the H2S fu9i gations unt i l  concentrations 

reached a mean of 3.58 ppm H,S, a t  which point the water 

content was signif icant ly  higher tllan t h a t  of control 

plants.  A s ign i f i can t  ( r  = 0.43) l i nea r  relationship be- 

tween dry weight arld water content o f  t o p g r o w t h  d a t a  o f  

L 

rmgntain brone :vas f o u n d  a t  a = 0.05. 

L i t t l e  51 uasten 1 eaf-ni trogen content was s ignif icant ly  

reduced a t  the 0.05-ppn !we! of H,S b u t  was insigni- 

3. 

L 
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f 'cantly reduced a t  the higher  ti S l eve l s .  

tionship 5et.ieen leaf n trogen content and dry \./eight o f  

t o p  growth was negative u p  t o  t$e  0.12-ppm level o f  H,S 

and  then posit ive keyon the @.51-ppfii l eve l .  The e f f e c t  of 

the nitrogen.reduction on dry weight may have been negated 

by other inf i  uences, especial ly  bel ob! the 0.1 2-ppn 1 eve1 of 

H2S diere nitrogen content was signif icant ly  reduced. 

T$e l ea f  nitrogen content o f  mountain brome was s ign i -  

f icant ly  increased over t ? a t  o f  the  controls a t  every level 

o f  H7S. A s igni f icant  ( r  = 0.76)  l inear  relationship 

5etwecn water content a n d  nitrogen content a t a  = 0.05 

was found. 

tween water content and dry weight a t  CY = 0.05 was found. 

A t  low l eve l s  o f  H2S (generally below 0.26 ppm) leaf  

c'i1 orophyll corltent of 1 i t t l  e bluestem was increased a f t e r  

@-and 1 4 0 4  to t a l  of fuaigation a n d  reduced a f t e r  80 and 

100-h t o t a l .  After the i n i t i a l  increase i n  chlorophyll , a 

general pattern of decreasing chl orop$y7 1 content a s  to ta l  

exposure t i ne  increased was evident. However, a n  increase 

in chlorophyll content a f t e r  the 140-hour exposure time was 

a t t r ibu ted  t o  a seven day H3S-free ''recovery" period. 

the higher levels  o f  H2S (generally above 0.67 ppm) leaf 

chl orophyll content general 7y decreased from the 60- t o  

140-4our exposure t i n e .  

received > 0.67 p p n  H,S t o  show a n  increase in leaf  

chl orophyll content a f t e r  the H2S-frce "recovery" period 

The reya- 2 

L 

An ins igni f icant  ( r  = 0.43) relationship be- 

4 .  

A t  

The f a i l u r e  of tbe plants which 

1- 



was at t r ibuted t o  i r r eve r s ib l e  p l a s t i c  s t r a in  which cu7mi - 

nated from prolonged el a s t i c  s t r a i n  (Taylor, 1978). Sone 

unmeasured vari a t i  on i n  leaf  chl oi-ophy11 content was con- 

tr ibuted by changes i n  environmental f ac to r s ,  especially 

a i r  tenperature. A signif icant  ?% reduction i n  leaf  

chlorophyll content a f t e r  a four-hour fumigation was due t o  

the H2S furnigztions. 

content contributed by the spectrop9otometer and  i t s  use 

was negl ig ih le .  

The variation i n  leaf chlorophyll 

Leaf chlorophyll content of mountain brone Has r e l a t ive ly  

unaffected by the H7S treatments except a t  the 1CO-h 

exposirre time, where there was a s ignif icant  increase from 

the 0- t o  the 0.37-ppn level of t i $ ,  a n d  then a signi-  

f i c s n t  reduction from the Q.3'-  t o  thc 3.58-ppm leve l .  

flowitai n hromc exhi h i  ted evidence of what Tayl or (1  9 7 8 )  

1.  

r e fe r s  t o  a s  e l a s t i c  s t r a in  b!y recovering t o  produce a 

:eve1 o f  leaf  chloropliyll conten% a t  t h e  140-h sampling 

time above t h a t  measured a t  t h e  6O-hour sampling time. A s  

v i  t h  1 i t t l e  bluestem, i t  Mas evident t h a t  temperature con- 

t r ibuted considerably t o  the variation i n  l e a f  chlorophyll 

content of m o u n t a i n  jrome. Also ! ,  the r e l a t ive  insensi-  

t i v i t y  of  m o G n t a i n  b r o w  t o  t $ e  ti2S f u m i g a t i o n s  may qave 

growing cor?di - Seen due t o  i noptinal ambient envi ronnenta 

t ions.  

L i t t l e  bluestem p l a n t s  were muc3 more sens 

fumigatior?s in  a l l  measured responses t h a n  

5. t i ve  t o  the 

vere the moun- 
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t a i n  brorne plants. Physiologically based hypotheses a s  t o  

why this  occurred were made f o r  each measured response; 

however, inoptimal envi ronnental growth condi t ions , espe- 

c i a l l y  a i r  temperature, may have been the overriding factor .  

Concl usions and Recoinmendations 

L i t t l e  bl uestem. T h i  rty-four 4-h exposures of 1 i t t l  e hl ues tm 

to  Ii2S a t  varying concentrations produced a l i n e a r  response i n  the  

s t inu la t ion  of topgrowth  dry weight, and a curvi l inear  response in 

the reductiop o f  t opgrowth  dry :vei g h t  when fumi gated tinder the 

experimental conditions. The following equations can be used t o  

predict  the response parameter f o r  any similar 140-h exposure: 

tl,S i s  - < 0.11 ppn,  t opgrowth  dry weight of plant = Y = 0.091 + 

(3 .77 x conc.); when > 0.11 ppm H2S, topgrowth dry weight o f  

p lant  = Y = 0.1483 + (-0.1033 x conc) + (0.02591 x c o x L ) .  

when 
A 

L 

h 9 

Seventy-five percent of the var ia t ion i n  response i s  explained by 

changes i n  H2S concentration. 

Growth of 1 i t t l  e hl uestem, a s  dry weight of topgro\vr th ,  responded 

posit ively ( 0  t o  g5% stimulation) t o  low dosages of H2S ( 0  t o  

0.11 ppn fo r  140 hours spread o"er 56 d a y s )  under the environmental 

conditions. This implies t h a t  geot+ermal H2S emissions may Se 

beneficial a t  low levels  i n  cases o f  long-tern i n t e r n i t t e n t  f m i -  

gations. However, differences between d ry  weight mans of control 

plants located i n  separate fumigation c?anher? irlrlic8ted a 

s ignif icant  source o f  v a r i a t i o n  other t h a n  t reatnent  e f f ec t .  

higher average H,S levels  (0 .12  t o  0.48 ppm) s ignif icant  reduc- 

A t  

L 
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t ions in dry weight t o  the original (control level occurred, and 

t h i s  reduction continued ( 0  t o  44%) a t  higher average H2S l eve l s  

(0.48 t o  2.39 pprn). 

There was n o  evidence t h a t  the reduction in nitrogen content 

(9-387; reduction) a t  low ti$ l eve l s  (< - 0.11 ppiii! was detrimental 

t o  plant g rowth .  In f a c t ,  there was indication o f  a productivity 

increase a t  these low concentrations which riay have been p a r t i a l l y  

dQe to  increases i n  chlorophyll synthesis (20% increase in leaf  

chlorophyll content)  a n d  decreases i n  water content (1 6% reduction).  

The relationship between dry weight production and the yeasirred 

responses of chl orop!iyll and  water content somewhat resenbl ed a 

rectangular hyperbola i n  which dry w e i g h t  production i n i t i a l l y  

increased 1 inearly w i t h  chl orophyll and water content changes a n d  

then gradually became curvi l inear  as  other factors  became l imit ing.  

The l i n e a r  dependence of dry weight on chlorop5yll content dimin- 

ished as  H2S s t r e s s  increased. 

source of nutr ient  sulfur  (Mudd, 1979) perhaps the productivity 

increase pa r t i a l ly  ref lected such a usage. 

Since H,S can be used a s  a 
1. 

The increase i n  l e a f  chlorophyll content a f t e r  the seventh week 

(140 h )  o f  fumigations indicated tha t  the 7% measured reduction in 

1 eaf chl orophyll content which occurred d u r i  ng a 4-h furni gati on 

period was e l a s t i c  (reversih 'e) o r  non-pernznent a t  the low levels  

o f  H,S. Thus, i t  can be concluded t h a t  the plants were able t o  

r ecwer  a f t e r  tee  4-h fumigation by returning t o  a normal or above- 

normal r a t e  of  chlorophyll syrlthesis. Ho\rever, t h i s  can only be 

L 

said for  plants a f t e r  having received a seven-day fumigation-free 
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period since prior t o  t h a t  there was a general decrease in  leaf  

chl oropliyll content. 

Mountain brome. Growth o f  mountain brome as dry weight of  t o p -  

growth Lias re1 at ively unaffected a t  average H2S concentrations 

below 2.14 ppm; howeverythere was a reduction in growth a t  con- 

centrations above 2.14 p p n  and there was a s ign i f icant  reduction 

(37%) a t  an average H,S concentration of 3.58 ppm. 

t h a t  cer ta in  grass species may have a high resitance t o  H2S 

s t r e s s .  

direction and  degree of  response between nitrogen, water, a n d  

ch lorophyl l  content f o r  t h i s  species, however, s ignif icant  increases 

i n  these responses a t  H,S l eve ls  below 2.14 ppm remained hidden 

since they d i d  n o t  surface as change in  dry weight. 

Exposure time and a i r  temperature interact ions.  

This indicates 
L 

There was evidence o f  very strong relationships in the 

L 

There was e v i -  

dence t h a t  reductions in chlorophyll content a s  exposure time in- 

creased was par t ia l ly  due t o  a i r  temperature interact ions;  however, 

the variation contributed by tcmperat.gre was n o t  measured. There 

was also evidence t h a t  when given several days of  H2S s t ress - f ree  

conditions, the plant species used here had  strong recovery capa- 

h i l i t i e s ,  a t  l e a s t  as f a r  a s  chlorophyll content was concerned. 

TIius, t3e plants suffered an e l a s t i c  (physiologic) s t r a in  or chloro- 

phyll damage induced by H,S s t r e s s .  

l i t t l e  bluestem plants which received low ti,S levels  and in a l l  

m o u n t a i n  brome plants,  b u t  in l i t t l e  bluestem plants which received 

?i  gh H2S 1 eve1 s the pro1 onged el a s t i c  s t r a in  was i r revers ib le  

resul t ipg in permanent damage or p las t ic  s t ra in .  

This damage was reversible i n  
L. 

L 

Translating these 



chl oropi7;~ll content changes i n t o  c\i?.nges in productivity i s 

d i  f f i cu l  t .  Pire t o  the 2pparent i nhi b i  t i o r !  of  nountai n b r o r x  

responses hy i noptirml envi ronr.ienta1 conditions, resul t s  obtained 

usipg l i t t l e  bluestern night he be t t e r  used r?s c r i t e r ion  f o r  naking 

rccocinendations. 

Eva1 u a t i o n  o f  potential ecological and econonic consequences. - - 
The H2S dose-response functions nay be ir.iportant t o  planncrs o f  

c.nvironr.ienta1 control s t r a t eg ie s  becaKse tl,S i s  a s ignif icant  s i r  

p o l  1 u t z n t  i n  noncondensabl e cjas m i  ssions fror i  geotlierr.:al po\!er 
L 

p:ants (Shinn e t  a1 . , 1 3 7 7 ) .  The threshold f o r  danagc was a b o u t  

0.5: ppn H,S for 1 i t t l c  bluesten; however, s ignif icant  yield 

increases in l i t t l e  bluesterol \ /ere realized a t  a b o u t  0.11 ppn .  
L 

Tropospheric ti,,S concentrstions below 0.11 ppn kfould have the 

potential t o  r e su l t  ir! ccononic gains i n  the Yalles Caldera ri?.inly 
L 

t h r o u g h  incre?ses in anina! carrying capacit;/, lunber production, 

; tnd  aesthet ic  values. 

or.iics.ll:J beneficial z t  low ! c u e ! s  i n  c?ses of  long-tern i n t e r n i t t c n t  

funigations. 

Thus, geothernal ti,S eni ssioris nay be econ- 
L 

The reduction i n  dry \ /e ight  shown in Fig. 4 can  be interpreted 

zs s t r e s s  result ing fron H,S, a l though i t  cannot necessari!;) be 

interpreted a s  econonic l o s s ,  \/hich depends on the par t icular  uses 
L 

of  %he species in the Valles Csldera. Generally, grasses are rtore 
1 r e s i s t an t  t o  H,S funigations t h ? n  other plants (Shinn, 1 C C 1 ) .  

L 

lShinn, J .  H . ,  1981. Personal cor.iriunication. Environraentsl Sciences 
Division, Lawrence Livernore ibtional Laborztory, Livernore, Czliforniz.  
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I f  other nore sensi t ive plants  a re  affected a t  these concentrations,  

then tropospbcric tIqS cor?centr?tions above 0.11 ppri Llould have the 

potential  t o  d i  s rupt  the Val 1 es  Cal dera Ecosysten. 
L 

Econoni c 1 osses  

ar i s ing  from the gaseous H2S e f fec t s  n i g h t  include reductions in  

1 unber yiel  ds , aninal carrgi  ng capacity , a n d  aes the t ic  val ires. 

Extrerie cases resul t ing i n  t h c  el ininat ion of n;ltive p l a n t  species 

o r  individual plants from native stands nay ,  in tiirri, resl; l t  in 

increased riater runoff a n d  soi l  erosion reducing the villue o f  tlie 

land as  a watershed, as z1 recreational a rea ,  or a s  \ ! i ld l i fe  habi tz t  

(Fli l ler ,  e t  a l . ,  1377; Rencdict a p d  Jaksch, 1?7!?). 

Eeductior! in  grouth r a t e  nag have a beneficial e f f e c t  in sone 

vegetative stands by reducing %be f i r e  h a z a r d ;  hoi:ever, t h e  reverze 

nay occiir depending on several fac tors .  Rates or direct ion of 

conmini ty  succession coul c! change , resul t i  r : ~  in 1 ong-tern ecological 

and  econonic consequences. 

Level o f  abatenent. \,!hen the H,S funigation r e su l t s  a r e  
L 

conpared t o  the projections of  the mxinun  tl,S concentrations 

possible for  tke Valles Caldera Region v i th  t h e  operation of a 

50-negai!att hydrotherrasl pokier pl a n t  (Sterns-Roger, Inc. ,  1975 1 ,  i t  

appears t h a t  t h e  proposed abatenent level of H2S enission 

( U . S . D . O . E .  , i37n) would he adequate i n  terns  of protecting native 

grass plants and t h e i r  y ie lds .  l!o\iever, nurierous reservations about 

the concerns, o r  lack of  then, in projecting potential 11,s conccn- 

t r s t i o n s  in  the Valles Caldera Region are  discussed by Gonzales 

(1980).  

L 

L 
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Quali ty  s t anda rds .  Based on the H2S fumigation r e su l t s ,  the !Jew 

Mexico ambient one-hour H2S standard of 10 ppb was f o u n d  t o  be t o o  

s t r ingent .  

reconinended hecaclse possible synergistic e f fec ts  o f  H2S with other 

geothermal gases were n o t  studied. 

However, ra is ing the s t a t e  quality standard f o r  H2S i s  n o t  

Synergistic e f fec ts  of  air .contaninants.  Since geothermal gas 

emissions consis t  of several gases other t h a n  H2S, the e f fec t  o f  these 

gases acting i n  concert saould be examined. However, r e a l i s t i c  ratiDs 

of  geothermal gases avaiIa51e t o  plants a f t e r  s e t t l i n g  m u s t  be consid- 

ered. 

pol  1 gtants shoul d he considered. 

Also, norc  r e a l i s t i c  si t i iat ions o f  fli,tc?:ii..ticg leve ls  q f  n i x e d  
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Appendix Table 14. A N I V A  f o r  dry weight o f  l i t t l e  bluestell frinigated 
f o r  1110 hours. 

~I 

Source o f  Variation df ss r1s -- F 
- 

b o n g  Trts. 12 0.1 2924 0.01 077 1 9.23** 

Wi t h i  n Trts. 85 0.04760 0.00056 

TOTAL 97 0.1 7654 

**Hi ghl y si gn i  f i ca nt 

Appendix T a b l e  15. ANOVA f o r  dry weight of nountain hrome fumigated 
f o r  I n 0  hours. 

-- -~ 
Source of Var ia t ion  d f  ss r1s F 

Rnong Trts. 11 0.01 971 0.001 791 82 4.93* 

lli t h i  n Trts. 86 0.021 26 0.00036339 

TO TAL 97 O.OfiOC17 

*Significant 
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Appendix Tahle 16. ANOVA f o r  wa te r  c o n t e n t  o f  l i t t l e  b luestem 
topg rowth  da ta  f u n i g a t e d  f o r  140 hours.  

d f  ss t1S F I 

Source o f  V a r i a t i o n  

b o n g  T rea tnen ts  11 1550.8 140.98 10.62** 

Ili t h i  n T rea tnen ts  62  827.8 13.27 

TOTAL 7 3  2373.6 

**Highly S i  g n i  f i c a n t  

Appendix Tahl e 17. AtiOVA f o r  wa te r  c o n t e n t  of  no i rn ta in  brone topg rowth  
da ta  f o r  140 hours.  

_-- d f  ss t lS  F Source o f T a r i a t i o n  

Anong T r t s .  11 334.8 30.4 3.17* 

!.li t h i  n T r t s .  87 831.5 9.6 

TOTAL 98 11 66.3 

* S i  g n i  f i c a n t  
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Appendix  Table  18. AEIOVA f o r  l e a f  n i t r o g e n  c o n b e n t  d a t a  o f  1 
b l u e s t e n  fumigated f o r  140 hours. 

t t l  e 

Source o f  Var ia t ion  df SS 11s F 

b o n g  Trts. 

!,li t h i  n Trtr . 
TOTAL 

8 71.050 0.25625 ? . l l N S  

l e  2.184 0.1 21 33 

36 E.. 23 c 

A p p e n d i x  Table  19.  ANOVA f o r  l e a f  n i t r o g e n  c o n t e n t  d a t a  o f  noun ta in  
brone fun i  ga ted  f o r  1 fl-0 hours. 

-_-___-- - ~ _ _ _ _ _ _ _ _ _ _  -- 
Source of Var i a t ion  df ss t1s F - 

Anong Trts. 1: 6.394 0.681 37 7 . M *  

Ili t h i  n Trts. 72 5. fl.7 0 0.0751 4 

TOTAL 83 11.804 

---____-_ 

* S i g n i f i c a n t  
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Appendix Table  3 .  ANOVA f o r  l e a f  ch lo rophy l l  c o n t e n t  da t a  o f  l i t t l e  
bl u e s t e n  fumigated f o r  60 hours .  

F 
- 

Source of  Var i a t ion  df  ss N s 

Cslong Trts. 8 0.528 0.066 2.7s* 

Ifi t h i  n Trts. 1 J- 0.333 0.024 

TOTAL 213 0.861 

__ \ -- 

* S i g n i f i c a n t  

Appendix Table  21. ANOVA f o r  ch lo rophy l l  c o n t e n t  d a t a  of  l i t t l e  
b l  liesten 1 eaves  f u n i g a t e d  f o r  80 hours.  

Source of Var i a t ion  df ss 1-1 s F 

Among Trts. 6 0.223 I) .03? 3.36* 

!4i t h i  n Trts. ? ?  0.71.5 0.011 

T0TP.L 3s 0.438 

* S i g n i f i c a n t  
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Appendix Tahle 22. AIJCVA fo r  chlorophyll content d a t a  of l i t t l e  
b l  uestcn leaves funigated fo r  100 hours. 

Anong Trts. 3 0 . 0.1 4 0.051 7 5  2.1 G'" 

Idi t h i  n Trts 1 6  0.385 0.024 

TOTAL 24 0.739 

Appendix Tahle 23. AHOVA f o r  chlorophyll content data of l i t t l e  
b l  uestern leaves fumigated f o r  140 hours and f o r  
spectrophotoneter sanpl i ng e r ro r .  

Source of 'lariation df SS t1s ____ F 
_ ~ _ _ _ _ _ _ _ _ _  

H?S Trts. 

Analysi s w i  t h i n  H2S 
1-  

Trts. = Experinental 

Error 

8 1 .On57 0.1 307 2. DO* 

1 3  0.001 , -5 

(Spectrophotoneter) ?n 2.1 62 0.04504 

TOTAL. 69 3 .  ?n87 

0. o o z t ~ s  

*Si g n i  f i cant 

'" tlot si g n i  f i  can t 
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Appendix Table 24. ACKJVA fo r  chlorophyll content data o f  noiintai 
leaves firnigated f o r  60 hours. 

b rone 

df ss 11s F Source of- Variation 

Anong Trts. 

IJi t h i  n Trts . 
TOTAL 

4 0.0224 0.0056 

31 0.6095 0.1 966 

35 0.631 s 

0.03'" 

- 

"!lot Signif icant  

Appendix Table 25. AtlOVA f o r  chlorophyll content data of nountain 
brone leaves funigated for  80 hours.  

6 0. O O J f l  @. 001 1 0.08r's A m n g  Trts. 

Ili t h i  n Trts 32 0.8945 0.01 33 

TOTAL 36 0.8989 

_- 
"%ot Signif icant  



Appendix Table 26. ANOVA f o r  chlorophyll content data of nountain 
brorne leaves funigated f o r  130 hours. 

- 
d f  ss f 1s F Source of Variation 

Among Trts. 11 0.4494 0.04O85 2.1 9* 

W i t h i n  Trts. 74 1 .3780 0.01 862 

TOTAL 85 1.8374 

- -____ 

*Significant 

Appendix Table 27. AtKNA for  chlorophyll content data of  mountain 
brone leaves funigdted f o r  140 hours .  

-- - -- 
d f  SS t1S F Source of  variation 

Anong Trts.  10  0.8443 0.08443 3.98** 

L!i t h i  n Trts.  7 ?  0.61?5 0.00846 

TOTAL 83 1 .461 I! 

___ -__-.__ -___ -_--________ -- --__ ~ _ _ _ _ ~  

**Highly SSgnificant *U.S. QOVERNMENT PRINTING OFFICE:lW--TISMB I 4013 
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