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ABSTRACT

A recent review article by Hirshman and Sigmar includes expressions
needed to calculate the parallel firiction coeificients fﬁg, the
essential ingredients of the plateau-Pfirsch-Schliiter transport
coefficients, using the method of reduced charge states, These
expressions have been collected and an expanded notation introduced in
some cases to facilitate differentiation between reduced charge state
and full charge state quantities. A form of the Coulomb 1logarithm
relevant to the methed of reduced charge states is introduced. This
method of calculating the fgg has been implemented in the impurity
transport simulation code IMPTAR and has resulted in an overall
reduction in computation time of approximately 25% for a typical
simulation of impurity transport in the Impurity Study Experiment
(ISX-B). Results obtained using this treatment are almost identical to

those obtained using an earlier approximate theory of Hirshman.
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1. INTRODUCTION

At various stages in the development of our IMPurity Transport And
Recycling computer simulation code, IMPTAR, we have used different
formulations for the 1hpurity transport coefficients. They have been,
in approximate historical order, approximations based on a Lorentz
plasma hierarchy, i.e., my << my << .., << my, where the my stand for
the masses of the various hydrogenic and impurity chemical elements; !
an exact treatment? that does not take into account the effects of the
plateau-Pfirsch-Schliiter transition;3 a reduced charge state
formulation® of the theory of Ref. 2; and a treatment similar to that
of Ref. 2 that incorporates an approximation to the effects of the
plateau-Pfirsch-Schliiter transition.$7 Recently, Hirshman and Sigmar
have published a review paper® in which the effects of the
plateau-Pfirsch-Schliiter transition are taken into account in a reduced
charge state formulation., We have now implemented the theory of Ref, 8
in IMPTAR and present here some preliminary results.

The Lorentz hierarchy approximation was unsatisfactory because the
experiments we simulate contain impurities that do not satisfy the
required mass relationship very well, e.g., oxygen (m = 16 amu) and
argon (m = 40 amu). Before the introduction of the CRAY computer with
its vector capabilities at the National Magnetic Fusion Energy
Computing Center, limitations of computer time kept us from using the
method of Ref. 2 except for cross checks. Even after we began using
the CRAY, approximately 40% of the calculation time was used in
computing coefficients for multispecies plasmas, primarily because the
treatments of Refs. 2 and 5 require the solution of linear systems on
the order ot the number of different charge states of the chemical
elements present, Thus, for example, a plasma containing hydrogen,
oxygen, and argon requires solutions of 27 sets of coupled equations,
The reduced charge state formalism introduced in Ref. 4 reduces the
number of sets from n = number of charge states present to n” = number
of chemical elements present, which for the above example would be a
reduction from 27 to 3. We implemented this method as a test and found
considerable time savings, but by that time the theory had progressed
to the point of considering the plateau-Pfirsch=Schliiter transition,?

-1~



-2

which showed an important temperature screening effect not treated in
Rels. 2 and 4, s0 we could not make use of the less time-consuming
method. The implementation of the theory of Ref. 5 allowed us to take
the tenperature acreening effect into account, but it was still
necessary to solve large linear systems. Now, with the implementation
of the theory of Ref. 8, we again have to invert only =mall matrices.

In Sect. 2 we review the reduced charge state method of
calculation of the parallel friction coefficients fig, which are
central to the calculation of the impurity transport coefficients. In
Sect. 3 we present preliminary numerical results, which show that the
approximate method of including the platéau-?firsch—Schlﬁter
transition5 yields surprisingly good results for the cases considered,
and discuss the savings in computing time. In Sect. 4 we present our
conclusions and plans for future work. Finally, in the Appendix, we
give an example of typical units used in a practical evaluation of one
of the quantities needed for the calculation of the fﬁg.
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2. NUMERICAL CALCULATION OF £33 FOR APPLICATION
IN IMPURITY TRANSPORT SIMULATION

The parallel friction coefficicunts ffg of Ref. 8 play the same
role in the calculation of the perpendicular Pfirsch-Schluter fluxes
that was played by the 2?3 of Ref., 2, an earlier version of this
calculation without plateau-Pfirsch-Schluter transition effects. The
relationship between the {9 and the 2§} 1s given by Eq. (6.39) of
Ref. 8.

Numerical calculation of the fﬁg using the reduced charge state
model rather than the full charge state model permits a considerable
reduction in the time required for matrix manipulation because the full
charge state model requires one matrix element for each charge state of
each chemical element considered, while the reduced charge state model
requires only one matrix element for each chemical element. The
reduced charge state model 1is covered in Ref, 8 and the references
therein; it 1is discussed here only as needed in presenting the
equations to be used.

2.1 THE PARALLEL FRICTION COEFFICIENTS ffg

The symmetric parallel friction coefficients fgg for the
interaction of charge state species a with charge state species b are
given in Ref. 8 as

—'1' - ui~-1,
1) = sy 6gp - W11 20,

+ gy Mg ':':k NiEh2ady o 6. (1)

where the indices i and j range from 1 tc 2. (Here and in what
follows, the corresponding equation number from Ref. 8 is shown
immediately to the 1left of our equation nqnber for reference.) In
Eq. (1),
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where the summation is over the various charge states of the chemical

element of mass m, and a specific charge state is indicated in the

numerator. In clearer but more cumbersome notation, Eqs. (1) and (2)
may be written as

aby, _ =i=1,3=1 =i-1,2
f':I.jl Ve Eau(Ma +d 6a b - Mg ’ “g

v
+5Nb1j'-£’ﬁi12!\g (3)
My
and
n, e?
e . a,%a, "
a, " Tn, e '
a %3
v 2vdy

where- ¢ and v index the densities na and electric charge e, ,
u

respectively, of distinct charge states of chemical element a.
Other terms in Eq. (1) are defined as follows:

Wi = << >> (5.28) (5)

and

- <gi js> (5.29) (6)



where

lhr(E n ez)( n 2).Q.n A
<<‘2?“\>= r op ‘a4 ta 7 fb > (5.25) (T)
Tab/. ia ib Tab - 3]“ * *

We discuss the ng and the Agb in Sects. 2.2 and 2.3, respectively,
Here we point out only that the determination of the of, and A}, is at
the heart of the numerical problem of determining the fgg. In
Eqs. (1), (3), (5), and (6), the overbars denote reduced charge state
quantities, i.e., quantities that do notl exﬁlicitly depend on the
density and charge stéte of a given species. However, the notation of
Ref'. 8 is not éomplete in that regard, no doubt in an aftempt to reduce
cumbersomeness [c¢f. Eqs. (3) and (h)], because the MiJ and Nig are also

ab a
free of those dependences. Explicitly,

m
M3 = -C1 +-,,-,E)(1 s xZ=¥2 = NG .11 @)
m

Mgg = M;g = --2-, (1 +-m—E)(1 + x,};,)'S/2 = \—NL%”A o (4.12) (9)
M;g = —(—1‘-? + UxZ + JEE Xgp) (1 + xazh)‘s/2 . M.13) (10)
02 . M20 - 15 (1 . 081 4 x2.y-772 o 4. y02

Mab = Map = = 8 *‘a;) + Xap) = XpaNba (4.15) (11)
MZ = w3l = 24 exy« B xip (e x)72 W.16) (12)
’ ’ 27 T - 27 m T

19 _ <" "a 2 \=5/2 _ a -
Nab = T T, xZy (1 + x3p)7Y2 Tm x2)~¥2 (4.14). (13)
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225 Ty

72 .
Nab —-3- T Xab(1 + X2 )

25 m
"3"59 x2,(1 + x2p)" 72, WaT (1)

where

V'? 2Tb/mb ma Tb
x2 b

= = R Y 1
ab ';¥; 2T,/my  my Ty (15)

and x,, is defined in Ref. 8 in text Just preceding Eq. (4.11). We
have used Eq. (15) to obtain the second equivalences in Eqs., (13) and
(14); the symmetry properties of the matrix elements, some of which are
indicated in Eqs. (8)-(14), are given by

uif = mii (4.8) (16a)
and
(Tgvp )7 ' W3 - (rvabrlngg . (4.9) (16b)

We can use Eq. 15 to rewrite Eq. (16b) as

i _ ™ 13 T i)
Nba = o X3b Nab = T, *ablab - (16¢)

We note, however, that (as in Ref. 2) the fact that T, #¢ T, for my # my
has been accounted for only in the evaluation of the j = 0 matrix

elements.
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Using the definition of the thermal speed vTa implicit 1in

Eq. (15), we can rewrite the right-hand side of Eq. (7) in the familiar
form

@y --

Aw Fraed } nped 4n A
- > : Qa7
3

In Ref, 8, Hirshman and Sigmar state that the Coulomb logarithm, 4n A,
is "teken to be the same large constant (&n A= 20) independent of
species." It can readily be shown that the Coulomb logarithm may vary
by as much as 50%, depending on the interacting species; because it is
a multiplicative factor 1in ' the fﬁg. a more accurate estimate 1is
desirable, An analysis of the Coulomb collision terms in the reduced
charge state problem‘ leads to the following expression for the Coulomb
logarithm in terms of the interacting reduced charge states:

e T} (eV)
fn A= n Ay = 23.46 + 0.5 1 - : (18)
Na (cm‘3) . ;aZ;g ('?E + Zeff)
where
o2 1 1§ nge?
--2 - - _ a
Za = — = 7 § == (19)
e2 ne2 @ 2 I p

and e is the unit electric charge., 1In the notation of Eq. (4),

fe i \ v
.



1 In, e2
a 3
~a_ p “u %y
z2 = 2T e (20)
B 9y

In Eq. (18) we have assumed that all of the interacting ions have
a common (local) temperature T;. This approximation requires further
scrutiny involving the analysis of heat transfer among the ions, which
is addressed in Sect., 6.4.3 of Ref. 8. At present, however, we note
that even a factor of 2 error in the value of T; would lead to 1less
than a 10% correction in IE"K;;. We use the overbar in our definition
of the Coulomb logarithm to indicate its reduced charge state nature,
Finally, we point out that Z oo takes its usual form because

ﬁnaueau
a ara au E nau ' ayu au au
yA = = = . (21)
eff
l’le l’!e ne

2.2 THE EXPANSION COEFFICIENTS AJ, OF THE REDUCED CHARGE STATE HIGHER
ORDER FLOW U

In Ref. 8, Hirsman and Sigmar have inverted the system of 1linear
algebraic equations for the reduced charge state higher order flow ;aa
to obtain

2 q
1 2 []]
u = =2 = =~ L ~— 6.32 22
22 3 Aab“llb 5 L Aab ™ ’ (6.32) (22)

or, in expanded notation,



-~ 1 2 2 3ib,, (23)
u = -2z u - Z I A 23
a2 = f § Aab b, * 7 o § Aab, P, )

where u,, 1is the parallel flow velocity of species b,, q"bv is 1its
v
random heat flux, and p, is the pressure. The Agb are given by
v

I
=2 =1, b - =2 3.1
My = KoMy Flg, 24 (rﬁk K2~ ey

Ip

e [\ MR\ /T
. :;‘AakaDb-—E\ kK N[ 2w 23 on, . (6.33) (28)

22
YA AN

In Eq. (24), the'xab are symmetric matrix coefficients,

— L. d -
Aab = (M -l)ab = Aba . (25)

Y

the matrix elements of the inverse of the symmetric reduced charge
L
state matrix M, where

n T — © ©
- b b -

na/\la , (6.34) (26)

L d 4 - H
and the matrix P is alsc a symmetric reduced charge state matrix,

4

H
-

<+ — — <>
(P)ab = PaDaGab + Qab = (P)ba - (6 .35) (27)

o T/
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We may rewrite Eq. (24) in expanded notation to indicate its
lack of dependence on the actual charge state of the chemical element

with mass m, and its dependence on the charge state of the chemical
element with mass my:

I
- - b - 2,51

ad, = aame e Yo ANt

ab, = AabMp™ &b — m, ek kb %,
Iy

+ [E AakaDb —~— ~—— APkng' anv . (28)
k ~ =22
nk Mb a

We now continue defining the symbols in Eqs. (24), (26), and (27). We
have

- na
I, = |1+¢;, (6.27) (29)
-ﬁa Ea
and
T,= 1 g, o (6.29) (30)

I, =1+§ak C (31D

and
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To= g I, . (32)

In Eqs. (24), (P5), (28), (29), and (31),

2
— 35 n,T ——yy -
and
- naly =,
= = . (6.2 y
n, fa - I, ﬁ nauIau 9) (34)
Ia

{Henceforth, where desirable, we write the original and the expanded
notation forms in the same equation, as in Eq. (34).] The connection
length L., which appears in Eq. (33), is defined by Hirshman and Sigmar
in the relation

> > »
1 n s V[B » Wu,/B)] (B + VI/B2)

- — = - , (6.25) (35)
L, Ugo I - <I>(B2/<B%>)

where I is related to the toroidal magnetic flux [c¢f. the paragraph
preceding Eq. (2.18) of Ref. 8]. 1In the large aspect ratio, low beta
limit,

Lc = Rq » (36)

where R is the major radius of the plasma and q is the safety factor.
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Recalling Eqs. (5) and (6), we have

=

w22 . (_%% + 17x2, +-5%g Xgp + 28x$, + 1%2 xgb)(1 + xZp)"72

N

(56.21) (37N

and
2625 T 2625 my
22 a =
Nab = T’-T—TI'— xab“ + xzb) -9/2 "ﬁ"&i—b xab(1 + xz )< -9/2

(5.22) (38)

we need Eq. (38) to solve Eq. (26). The remaining undefined quantity
in Eq. (33) is

P, = E T, <<—--—->>P ’ (6.10) (39)

where

-7/2
P22 o _3x2, (lui + 2x2y + 2 x;b) (1 + x3) . (6.11) (40)

We define the remaining undefined quantities in Eqs. (24) and (26)-(28) as

D, = [To(1 + gx)1 " 1)

[from the text following Eq. (6.31) of Ref. 8] and the AP, which are
also elements of a symmetric reduced charge state matrix, as
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Moy = (P~1gp = Sap(FaPad™! = MPpy . (6.36) (42)

where'iab is the reduced charge state Kronecker delta

I Eadap = &n_m (5.30) (4za)

I
ab 1a'ib

z 6 1. ma H mb .
v Eau aubv (43b)
0. m, # m, .

Returning to Eqs. (24) and (28), we have

fng = (Fgkg = ng)Iy (44a)
or
a, aEau "au a,

The symmetric matrix element'aab. which appears in Eq. (27), is defined

as

Qb = Ty <<-%>> @2 -, . (6.2;0) s5) *
where"

Q22 = A3 xhy(1 + xZ"V2 . ' (6.12) (46)

"As in the evaluation of the NiJ = this equation does not satisfy
Eq. (45) unless T, = Tp.
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Thus, in the determination of the Agb, the only computatiogal p:)oblem
is the inversion of the two reduced charge state matrices, P and M, and
their rank will be low, ~2-5, for problems of interest. We note from
Eq. (26) that‘¥ must be formed and inverted bgfore'§ can be formed.

2.3 THE EXPANSION COEFFICIENTS “gb OF THE HIGHER ORDER FLOW ug,
In Ref. 8, the higher order flow ug, (= uy ,), which is

expressible in terms of the parallel flow velocities and random heat
fluxes as

2 Qb
1 2
Ua2 = =L aapuyp + 5 I op Pp (47)

[from text following Eq. (6.39) of Ref, 8] or

2 qubv

u + =L I
ub\) ||b\, 5 b v ubV pbv

Mg p = -k %o \ (48)

is eliminated by finding the relation between the “gb and the Agb.

I, 3 Iaig'j-1 TsabEbIb
"gb=""Aab“ Sgp = —
Ia Iaﬁiz Ib
+ aa_aa t nkaDk( APak) A&b - G“bTbDb( APab’
-, T M 22
naéa la b

(6.40) (49)



or
Iau IauMz' Gabgbvlbv
°g = - Agb * 8a. b, =
ubv - 2 'y ~
Ia w3 Ip
T =3 -1
éng uDa EaPa - - - Mg+J
" — gk % O Apak)Aﬁbv- 6np, ToDp( APgp) . (50)
n2, T, w22

B

There are no previcusly undefined quantities in Eqs. (49) and (50). At

the risk of pointing out the obvious, we note that the Agb must be
completely determined before the ogb can be calculated.
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3. IMPLEMENTATION AND RESULTS

We have implemented the calculation of the f?? in the impurity
transport simulation program IMPTAR and have compared the results
cbtained using this treatment to results obtained using previous
formulations,

3.1 COMPARISON OF NUMERICAL RESULTS

We make three sets of numerical comparisons, First, we compare
the effects of using the reduced charge state method' to the effects of
using the full charge state method? without the additional encumbrance
of the plateau-Pfirsch-Schluter transition, for which the most advanced
treatment® has been done only using the reduced charge state method,
Second, we compare the effecis of using the approximate treatment of
the plateau-Pfirsch-Schluter transition in the full charge state
method® to the effects of using the treatment of Hirshman and
Sigmar. 8 Third, we illustrate the importance of including the effect
of the plateau-Pfirsch-Schluter transition in the calculations, While
this last comparison is not strictly speaking part of the topie of this
report, the results obtained from it clarify our motivation for
including this effect.

For the purpose of these comparisons, we consider a deuterium
plasma with an oxygen impurity content of 1.6% of the 1local electron
density. This impurity level leads to a central Zepse = 1.9 and an edge
Zeff =~ 1.3, The plasma characteristics are typical of an ohmically
heated ISX-B plasma at about 100 ms. We make comparisons both near the
plasma center, Rq = 56 cm, and near the plasma edge, Rq = 454 cm, where
R is the plasma major radius and q is the safety factor. This case is
considered as a matter of convenience, since it is part of our current
study of titanium injection experiments in ISX-B.

We modified the IMPTAR code to print out various friction
coefficients fﬁg. to which the transport coefficients are directly
proportional. We wuse the coefricient f?g for comparison because its
magnitude determines whether there can be a temperature screening
effect on the impurities. If the plateau-Pfirsch-Schluter transition
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is not taken into account, there can be no temperature screening effect
in the Pfirsch-Schluter regime of the impurities except in special
cases. 1. 11

The numerical results are presented in terms of ratios in Tables
1-3. In all three cases, results typical of the edge of the plasma
(Rq 454 em) and results typical of the center of the plasma
(Rq = 56.2 cm) are given. The tables are arranged in matrix form, with
charge state species a listed in the rows and charge state species b
listed in the columns. Thus, 1in Table 1, the entry in the fourth
column of the second row has to do with the interaction of 03* and 0%

at Rq = U54 cm, No entries are given for oxygen charge states that
represent less than 0.1% of the total oxygen,

3.1.1 Effects of Using the Reduced Charge State Model

If the plateau-Pfirsch-Schliter transition is not taken into
account, the coefficients fgg of Ref., 8 reduce to the coefficients z§3
of Ref. 2. In Table 1, we give the ratios of the 233 calculated using
the full charge state method (i.e., solving systems of linear equations
with one equation for each charge state of each element present, which
means nine equations in this case) to the zgg calculated using the
reduced charge state method (i.e., inverting square matrices of order
n, where n is the number of elements present; here n= 2).

It is seen that the entries in Table 1 are generally within 2% of
unity; the deviations are most prominent for the 0% interactions at
the plasma edge and for the 05" interactions near the plasma center.
The 0% density of the edge plasma is less than 5% of the total oxygen
content and the 06+ density of the central plasma is less than 0.3% of
the total energy content; in each case these are the lowest densities,

These small deviations are almost entirely due to differences 1in
the Coulomb logarithms used in the calculations. In the full charge
state calculation, there is a different Coulomb logarithm for each
interaction of a given charge state of a given element; in the reduced
charge state calculation, there is a different Coulomb logarithm only
for each interaction of a given element. If a fixed Coulomb logarithm



Table 1.

ab
Ratios of nuw

calculated using method of Ref. 2 to hw
using method of Ref. 4

b

2 calculated

Rq

=1L = 4546 cm

[

Rq = rn

= 56.2 em

Charge state species a

Charge state species b

e

o+ o3t oi+ oSt oft
0.998 1.038 1.014 0.996 0.981
1.036 1.037 1.054 1.033 1.016
1.012 1.054 1.005 1.007 0.990
0.994 1.033 1.007 0.995 0.970
0.979 1.016 0.990 0.970 0.979

Charge state species a

Charge state species b

e

c... om+ ou+ om..
1.000 1.019 1.009 1.000
1.019 1.022 1,032 1.022
1.009 1.032 1.010 1.010
1.000 1.022 1.010 1.014
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Table 2, Ratios of mww calculated using method of Ref. 5 to mww czlculated
using method of Ref. 8
Rq ._..n = 454 cm Rq = H.n = 56.2 cm
Charge state species b Charge state species b
A A
r N
c+ 0u+ oa+ ou+ om+ c+ om+ o.~+ om+
© ﬁu+ 0.998 1.042 1.015 0.995 0.980 o ¥ 1.000 1.018 1.008 1.000
: g
$ 0 1.036 1.037 1.054 1.033 1.016 4 1.019 1.022 1.027 1.026
& @
a 4+ @ 7+
® o 1.012 1.053 1.006 1.007 0.990 5 1.009 1.128 1.010 1.014
G 8
oy 5+ 9 8+
o o 0.994 1.032 1.006 0.995 0.969 & 1.000 1.022 1.010 1.002
2 £
o 6+ (5]
.. 0 0.978 1.015 0.989 0.969 0.979
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Table 3.

Ratios of nmw

1

calculated using method of Ref. 2 to mww calculated
using method of Ref. 8

Rq

=L =454 cm

Rq = ﬁn = 56.2 em

Charge state specles a

o+

3

3+

4+

5+

6+

\_ 0

Charge state species b

A
o o3t oi+ oot of*
0.699 0.584 0.569 0.558 0. 549
0.726 1.034 1.168 1.146 1.128
0.709 1.017 0.966 1,117 1.099
0.696 1.144 1.116 0.929 1.076
0.685 1.125 1.097 1.076 0.961

Charge state species a

7+

8+

Charge state specles b

A

hY

ot om+ ow+ om+
0.477 0.039 0.039 0.039
0.486 0.888 0.885 1.000
0.481 0.989 0.887 0.994
0.477 0.986 0.986 0.097

-oz-
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is used in both calculations, the deviations are reduced to 0.1% or
less.,

3.1.2 Effects of Using an Approximate Treatment of the Plateau-Pfirsch-
Schliiter Transition

In Table 2 we give the ratios of the f?g calculated using the
approximate method of Ref.5 to the f?s calculated using the exact
method of Ref, 8. It is immediately apparent, when Tables 1 and 2 are
compared, that the deviations from unity of the ratios in Table 2 are
almost entirely due to the forms of the Coulomb 1logarithm used, as
discussed in Sect. 3.1.1. This 1is very encouraging because it
indicates that work done since the implementation of the method of
Ref. 5, such as that appearing in Refs, 6 and 7, apparently needs no
revigsion. Implementing the method of Ref. 8 does provide significant
time savings, as discussed in Sect. 3.2, and there may be regimes of
impurity concentration in which the method of Ref. 5 does not compare
so favorably with that of Ref. 8; however, we have not yet done an
extensive survey.

3.1.3 Effects of Including the Plateau-Pfirsch-Schluter Transition

As a final numerical comparison, we give iﬁ Table 3 the ratiogh?of
the 238 of Ref, 2, which do not include the plateaucPfirsch-Schluter.
transition, to the fﬁg of Ref. 8, which do. It is seen, especially for
interactions with D*, that use of the 2%5 would 1lead to severe
underestimates of the coefficients of the temperature gradient term in
the fluxes, both at the plasma edge and near the plasma center. As
indicated above, this could completely obscure any temperature
screening effect on the impurities.
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3.2 COMPARISON OF COMPUTING TIME

For the purposes of comparing overall nimerical results and CPU
time requirements, we have used the new version of IMPTAR, which
incorporates the reduced charge state theory of Ref, 8, to run two
cases that were originally run with the previous version, which
employed the full charge state theory of Ref, 5, As expected from the
ratios 1in Tables 1 and 2, only very minor numerical differences appear
in the simulation results, and we will not discuss that aspect further.

' The first case run with the new version of IMPTAR was a simulation
of the first 50 ms following the puffing of a small amount of titanium
into an I1SX~B-like deuterium plasma with an oxygen impurity level large
encugh to make the central Zgep ~ 1,9, The original calculation
required 6.65 min of CPU time; the second run required crly 4.75 min, a
reduction of ~29%, The savings are of this magnitude, rather than
larger or smaller, because calculation of the transport coefficients
previously took about 40% of the CPU time for this type of run. Thus,
the time saved in calculating the transport coefficients aleone is about
71%. A more complete simulation of 200 ms of the same ISX-B discharge,
in which oxygen was present throughout the simulation but titanium only
during the 1last 100 ms, originally required 16.2 min of CPU time; the
second run required only 12.2 min, representing a saving of ~24% in
total CPU time, The percentage is smaller in this case because the
savings increase with the number of chemical elements present, and only
two elements were present for part of this run.
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4, CONCLUSIONS AND PLANS FOR FUTURE WORK

We have shown that implementation of a new treatment® of impurity
transport in the Pfirsch-Schliiter regime in the IMPTAR code leads to
significant savings in computer time. For the cases we have
considered, it appears to lead ¢to simulation results that are not
significantly different from those obtained with the approximate
treatmentS we were using. (However, this mersly indicates that the
approximation is very good for these cases.)

In the immediate future, we plan to tighten up the programming of
the new method and may gain further slight savings in computer time.
Also, we have discussed with S. P. Hirshman the possibility of deriving
a method of obtaining the transport coefficients that is more direct
than actual computation of the fgg. which may yield additional time
savings.

A subroutine FFRIC to calculate the f?g on a vector computer such
as the CRAY is available from the authers over the Magnetic Fusion
Energy Computer Network.
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APPENDIX
Typical Units for Calculating B,

We define Ea in Eq. (33) as

- 35 0gTg\2 —op-  _
3a=(’é""f.;"> Mara ™ - v

For practical calculations, the units of the quantities in which
Ea is defined are as follows:

Quantity Definition Units
-';a Eq. (3% cm™ 3
Ta temperature eV
Lo Eq. (35) cm
ﬁiz Eq. (5) amu scm™ 3 o5~ 1
P, Eq. (39 eV scm™ 3e5~1

Substituting to obtain the units of g,, we have

(Ea)'units ~ eV -anu'l-cm'zos'l R

Now, eVeamu~! has the units cm2.s”1, so Ea is, as one would

expect, dimensionless. Using a standard conversion factor to
obtain the thermal velocity in these units,

1

= 9.648u52 x 101! I.LeV) (A.2)

1 -
2 vf T m (amu). °'

we can write Eq. (A.1) as
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) 35 n, (cm™3) T, (eV)] —
Ba = 9.648452 x 1011 [T T (cm? ][M§2 (amu scni™ 357 1)

X Pa (eV'Om-a' -1)] . (A-3)



