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ABSTRACT 

A recent review article by Hirshman and Sigmar includes expressions 

needed to calculate the parallel friction coefficients the 

essential ingredients of the plateau-Pfirsch-Schliiter transport 

coefficients, using the method of reduced charge states. These 

expressions have been collected and an expanded notation introduced in 

some cases to facilitate differentiation between reduced charge state 

and full charge state quantities. A form of the Coulomb logarithm 

relevant to the method of reduced charge states is introduced. This 

method of calculating the f|j has been implemented in the impurity 

transport simulation code IMPTAR and has resulted in an overall 

reduction in computation time of approximately 25$ for a typical 

simulation of impurity transport in the Impurity Study Experiment 

(ISX-B). Results obtained using this treatment are almost identical to 

those obtained using an earlier approximate theory of Hirshman. 

-v-



1. INTRODUCTION 

At various stages in the development of our IMPurity Transport And 
Recycling computer simulation code, IMPTAR, we have used different 
formulations for the impurity transport coefficients. They have been, 
in approximate historical order, approximations based on a Lorentz 
plasma hierarchy, i.e., m^ << n^ « ... << mit where the n^ stand for 
the masses of the various hydrogenic and impurity chemical elements;1 

an exact treatment2 that does not take into account the effects of the 
plateau-Pfirsch-Schluter transition;3 a reduced charge state 
formulation1* of the theory of Ref. 2; and a treatment similar to that 
of Ref. 2 that incorporates an approximation to the effects of the 
plateau-Pfirsch-Schluter transition.5-7 Recently, Hirshman and Sigmar 
have published a review paper8 in which the effects of the 
plateau-Pfirsch-Schluter transition are taken into account,in a reduced 
charge state formulation. We have now implemented the theory of Ref. 8 
in IMPTAR and present here some preliminary results. 

The Lorentz hierarchy approximation was unsatisfactory because the 
experiments we simulate contain impurities that do not satisfy the 
required mass relationship very well, e.g., oxygen (m = 16 amu) and 
argon (m = 10 amu). Before the introduction of the CRAY computer with 
its vector capabilities at the National Magnetic Fusion Energy 
Computing Center, limitations of computer time kept us from using the 
method of Ref. 2 except for cross checks. Even after we began using 
the CRAY, approximately 40X of the calculation time was used in 
computing coefficients for multispecies plasmas, primarily because the 
treatments of Refs. 2 and 5 require the solution of linear systems on 
the order oi' the nunber of different charge states of the chemical 
elements present. Thus, for example, a plasma containing hydrogen, 
oxygen, and argon requires solutions of 27 sets of coupled equations. 
The reduced charge state formalism introduced in Ref. 4 reduces the 
nunber of sets from n = nunber of charge states present to n' = number 
of chemical elements present, which for the above example would be a 
reduction from 27 to 3. We implemented this method as a test and found 
considerable time savings, but by that time the theory had progressed 
to the point of considering the plateau-Pfirsch-Schluter transition,9 
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which showed an important temperature screening effect not treated in 
Refs. 2 and so we could not make use of the less time-consuning 
method. The implementation of the theory of Ref. 5 allowed us to take 
the temperature screening effect into account, but it was still 
necessary to solve large linear systems. Now, with the implementation 
of the theory of Ref. 8. we again have to invert only small matrices. 

In Sect. 2 we review the reduced charge state method of 
calculation of the parallel friction coefficients which are 
central to the calculation of the impurity transport coefficients. In 
Sect. 3 we present preliminary numerical results, which show that the 
approximate method of including the plateau-Pfirsch-Schliiter 
transition5 yields surprisingly good results for the cases considered, 
and discuss the savings in computing time. In Sect. 4 we present our 
conclusions and plans for future work. Finally, in the Appendix, we 
give an example of typical units used in a practical evaluation of one 
of the quantities needed for the calculation of the f̂ ij. 
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2. NUMERICAL CALCULATION OF fflj FOR APPLICATION 
IN IMPURITY TRANSPORT SIMULATION 

T h e p a r a l l e l f r i c t i o n c o e f f i c i e n t s f f j j o f R e f . 8 p l a y t h e same 

r o l e i n t h e c a l c u l a t i o n o f t h e p e r p e n d i c u l a r P f i r s c h - S c h l u t e r f l u x e s 

t h a t w a s p l a y e d b y t h e o f R e f . 2 , a n e a r l i e r v e r s i o n o f t h i s 

c a l c u l a t i o n w i t h o u t p l a t e a u - P f i r s c h - S c h l u t e r t r a n s i t i o n e f f e c t s . T h e 

r e l a t i o n s h i p b e t w e e n t h e f f ^ a n d t h e A f ^ i s g i v e n b y E q . ( 6 . 3 9 ) o f 

R e f . 8 . 

Numerical calculation of the f?§ using the reduced charge state 
model rather than the full charge state model permits a considerable 
reduction in the time required for matrix manipulation because the full 
charge state model requires one matrix element for each charge state of 
each chemical element considered* while the reduced charge 3tate model 
requires only one matrix element for each chemical element. The 
reduced charge state model is covered in Ref. 8 and the references 
therein; it is discussed here only as needed in presenting the 
equations to be used. 

2.1 THE PARALLEL FRICTION COEFFICIENTS ffjj 

The symmetric parallel friction coefficients ffjj for the 
interaction of charge state species a with charge state species b are 
given in Ref. 8 as 

* 5 bNjb l , j" 1 N^ 1' 2AJ b) , (6.4-1) (1) 
k 

where the indices i and j range from 1 tc 2. (Here and in what 
follows, the corresponding equation number from Ref. 8 is shown 
immediately to the left of our equation nunber for reference.) In 
Eq. (1), 
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5a = 
naea 
? naea 

( 2 ) 

where the summation is over the various charge states of the chemical 
element of mass m a and a specific charge state is indicated in the 
nunerator. In clearer but more cumbersome notation, Eqs. (1) and (2) 
may be written as 

• « b s 3 b , , J " 1 - « »ik 1 , 2*ib v> <3> 

and 

n e^ 
M y 

z na el v av av 
(4) 

where u and v index the densities n and electric charge e- , 
y u 

respectively, of distinct charge states of chemical element a. 
Other terms in Eq. (1) are defined as follows: 

(5.28) (5) 

and 

(5.29) (6) 



where 

5 

< \ V b ) ) = f 1Ek — 8 5 - ' (5.25) (7) W W / * a t a b 3/n 

We discuss the and the AJb in Sects. 2.2 and 2.3, respectively. 
Here we point out only that the determination of the o^b and A^b is at 
the heart of the nunerical problem of determining the In 
Eqs. (1), (3), (5), and (6), the overbars denote reduced charge state 
quantities, i.e., quantities that do not explicitly depend on the 
density and charge state of a given species. However, the notation of 
Ref. 8 is not complete in that regard, no doubt in an attempt to reduce 
cumbersomeness tcf. Eqs. (3) and (i|)]t because the M^J and 

are also ab ab free of those dependences. Explicitly, 

MOg b _ ( 1 + x2 b )-3/2 = -HOC f ( 4 > 1 1 ) ( 8 ) 

Ma I • Hffi - - | (1 + ~><1 • x f o - " * = -Nig , ; (1.12) (9) 

Mlb = - < T + **lo + T Xab)(1 + xa2b>"5/2 . »-13> "0) 

Mgg = M|g = (1 * i ) ( 1 + x a V 7 / z = x b aNg| , (i».15) (11) 

Mlb = MfJ = (fif • 6x|b + x aV(1 + xa2b)"7/2 , w . 1 6 ) ( 1 2 ) 

1i 2 7 Ta / 27 ® a Nlb = T % "a2b • " a V " 5 ^ (1 + xa2b>_5/2 • «.1«.<13> 
D b 
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< 1 - ™ ^ *ib« • «ib>-7/2 = ̂  * * , V - x . v - 7 / 2 . <«•"> ('« 

where 

v i 2 V r a b raa Tb 
ab = V T S 2Ta/ma

 = ® b Tg 
(15) 

and x a b is defined in Ref. 8 in text just preceding Eq. (t.11). We 
have used Eq. (15) to obtain the second equivalences in Eqs. (13) and 
(14); the symmetry properties of the matrix elements, some of which are 
indicated in Eqs. (8)-04), are given by 

M H = (4.8) (16a) 

and 

< V T r 1 = (TbvT r ^ j i . (4.9) (16b) 
8 D 

We can use Eq. 15 to rewrite Eq. (16b) as 

Ji mb , IJ Tb iJ , , , 
«ba s T xa3b "ah = T *abMab • 8 9 

We note, however, that (as in Ref. 2) the fact that T a 4 Tb for ma 4 m b 

has been accounted for only in the evaluation of the j = 0 matrix 
elements. 
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Using the definition of the thermal speed vT implicit in *a 
Eq. (15) i we can rewrite the right-hand side of Eq. (7) in the familiar 
form 

/ n I naea | A 
//J!l\\ Is J * . (17) 
\ V a b / / 3 ml T| / 2 

In Ref. 8, Hirshnan and Sigmar state that the Coulomb logarithm, to A, 
is nte'<en to be the same large constant (Jin A « 20) independent of 
species." It can readily be shown that the Coulomb logarithm may vary 
by as much as 50* f depending on the interacting species; because it is 
a multiplicative factor in the ff§, a more accurate estimate is 
desirable. An analysis of the Coulomb collision terms in the reduced 
charge state problem11 leads to the following expression for the Coulomb 
logarithm in terms of the interacting reduced charge states: 

T? (eV) 
to A = to Aab = 23.46 + 0.5to i , (18) 

ne (cm"3) • + zeff) 

where 

" 4 -

Z 
i. 

nae a^a 
Z i„ (19) 

nae' 

and e is the unit electric charge. In the notation of Eq. (4). 
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1 Z na e, 
2 £ = 7 Z 

2 'a "a H V 
n a, 

(20) 

In Eq. (18) we have sssuned that all of the interacting ions have 
a common (local) temperature T^. This approximation requires further 
scrutiny involving the analysis of heat transfer among the ions, which 
is addressed in Sect. 6.4.3 of Ref. 8. At present, however, we note 
that even a factor of 2 error in the value of Tĵ  would lead to less 
than a 10% correction in An Aab. We use the overbar in our definition 
of the Coulomb logarithm to indicate its reduced charge state nature. 
Finally, we point out that Z e f f takes its usual form because 

1 "a ea 
E n ae| Z Z ̂  ^ S E na e| a a u £ n a a y ay a u 

2 ^ 7 = n — H _ . ( 2 D 
e t z ne

 ne ne 

2.2 THE EXPANSION COEFFICIENTS A ^ OF THE REDUCED CHARGE STATE HIGHER 
ORDER FLOW u g 2 

In Ref. 8, Hirslman and Sigmar have inverted the system of linear 
algebraic equations for the reduced charge state higher order flow u a 2 

to obtain 

(6.32) (22) 

or, in expanded notation. 
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2
 Q » b v uflo : -S E Alb U|h + r S Aab " T — « a 2 b v a Dv ,Dv 5 b v a Dv P b 

(23) 

where u |(b is the parallel flow velocity of species bv, Qjbv
 i s ifcs 

random heat flux, and pb is the pressure. The A^b are given by 

= A a b M g ' j - U b — + (Z A a k ^ J - 1 )gb 

-2S?PiA /T, 

fk/ \ Mb~ / \ Tk ' J 
i \ / j 

^ k b M b ' ^ l ^ b • (6.33) (24) 

In Eq. (24), the A a b are symmetric matrix coefficients, 

Aab = ( M " = Aba • ab - *ba (25) 

the matrix elements of the inverse of the symmetric reduced charge 
state matrix M, where 

(M)ab = M f D ^ 4- • g a = (">ba • 
i na/\a> (6.34) (26) 

and the matrix P is also a symmetric reduced charge state'matrix, 
i , 

(P>ab = W a b + Qab = <P>ba • <6-35) (27) 



We may rewrite Eq. (24) in expanded notation to indicate its 
lack of dependence on the actual charge state of the chemical element 
with mass ma and its dependence on the charge state of the chemical 
element with mass mb: 

4b = AabMg'J-1
?b 

Xb v / 2, j-1\ 

v — + \m k
 A a k " k b K 

lb 

m 
n / \ M 2 2> nk/ \ Mb / va/ 

6nv (28) 

We now continue defining the symbols in Eqs. (24), (26), and (27). We 
have 

Ia = 1 + g a 

A^A' J 

-1 
(6.27) (29) 

and 

= f 5aIa . 
la 

(6.29) (30) 

where, in expanded notation. 

1 + 8 a 

' n. 

W a 

-1 

(31) 

P / . 

and 
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I a = Z 5a Ig • a jj ay a M 
(32) 

In Eqs. (24), (?5), (28), (29), and (31), 

^ - V 6 L 
(6.28) (33) 

and 

n. = 
na*a 

a — 
1= 

II1 I n . Ia (6.29) (34) 

[Henceforth, where desirable, we write the original and the expanded 
notation forms in the same equation, as in Eq. (34).] The connection 
length Lc, which appears in Eq. (33) , is defined by Hirshman and Sigmar 
in the relation 

1 n • V[B • V(u.o/B)] (B • V)2(I/B2) 
— = , (6.25) (35) 
LC u a 2 I - < I > ( B V < B 2 > ) 

where I is related to the toroidal magnetic flux [cf. the paragraph 
preceding Eq. (2.18) of Ref. 8]. In the large aspect ratio, low beta 
limit, 

Lc = Rq , (36) 

where R is the major radius of the plasma and q is the safety factor. 
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Recalling Eqs. (5) and (6), we have 

m22 _ (*<33 . 17„2 . 159 . pfty 6 . m y 8 )(1 . y 2 \-7/2 
ab * VTiT 7 a b ~ a b ab + ~ ' W 1 1 + xab) 

(5.21) (37) 

and 

2625 T n/„ 2625 m a ^ 
= I T T J xab<1 - xab^~ = " W m ^ Xab<1 + " a V " 9 ' 2 5 

(5.22) (38) 

we need Eq. (38) to solve Eq. (26). The remaining undefined quantity 
in Eq. (33) is 

= • " • , 0 > ( 3 9 > 

where 

> i f - -3x|b * * I <1 * " ( 6' , , ) W 0 > 

We define the remaining undefined quantities in Eqs. (24) and (26)-(28) as 

,Da = [ I a ( 1 + g a ) r ; (41 ) 

[from the text following Eq. (6.31) of Ref. 8] and the APab, which are 
also elements of a symmetric reduced charge state matrix, as 



APab = ( p" l j«b " W P j f l ) " 1 = ^ b a • 'ab ~ °abvraua ba (6.36) (42) 

where 6ab is the reduced charge state Kronecker delta 

6 a b = ia?ib
 5fl6ab = 

= 1, m a s m b . 
- 1 z ?a 6a b y v ay y v 

= 0S m a 4 rab 

Returning to Eqs. (24) and (28) , we have 

6na = (TTaSa - na)Ia 

or 

(5.30) (42a) 

(43b) 

(44a) 

6na = (TTa£a - na )Ia y y y y (44b) 

The symmetric matrix element Q a b, which appears in Eq. (27). is defined 
as 

' a b = T a ( ( " ^ ) ) Q | 2 b = Q b a ' 
(6.20) (45) ' 

where 

q22 _ i»5 it (1 x2u>-7/2 wab - ~ *abvl + xab; (6.12) (46) 

*As in the evaluation of the this equation does not satisfy 
Eq. (45) unless T a = Tb. 
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Thus, in the determination of the the only computational problem 
is the inversion of the two reduced charge state matrices, P and M, and 
their rank will be low, ~2-5, for problems of interest. We note from 
Eq. (26) that P must be formed and inverted before M can be formed. 

2.3 THE EXPANSION COEFFICIENTS o ^ OF THE HIGHER ORDER FLOW u a 2 

In Ref. 8, the higher order flow u g 2 ( = " a ^ * w h i c h i s 

expressible in terms of the parallel flow velocities and random heat 
fluxes as 

2
 P q «b - ? "D (47) r 1 _ 2 q«t 

ua2 = °fabulib + 5 £ Oab "p^" 

[from text following Eq. (6.39) of Ref. 8] or 

1 2 2 Q|,bV u a p = -E E ai h uUK, + - U 4 h , (48) a]f b v ybv IIDv 5 b v Pb v 

is eliminated by finding the relation between the a^b and the A^ b, 

1 Ja Aj Ia'»§,J'1 L " W b O 
°Sb = — Aab + 5ab 

la *a^a2 \ Jb 

Mg.J-1 5naDa g aP 

n a 5 a
 Ta 

I n kT kD k(AP a k)A^ b - «n bT bD b(AP a b) m k 

(6.40) (49) 
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or 

4 ybv = _ 
Aab + 

I M 2 ' ^ 1 a a ^ab^b^by 
y^v 

6nav
Da 8apa 

I n k T k D k ( A P a k ) A ^ v - «n b vT bD b(AP a b) 
Mg'J-1 

M|2 

(50) 

There are no previously undefined quantities in Eqs. (49) and (50). At 
the risk of pointing out the obvious, we note that the A^b must be 
completely determined before the ag|b can be calculated. 
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3. IMPLEMENTATION AND RESULTS 

We have implemented the calculation of the f||j in the impurity 
transport simulation program IMPTAR and have compared the results 
obtained using this treatment to results obtained using previous 
formulations. 

3.1 COMPARISON OF NUMERICAL RESULTS 

We make three set? of nunerical comparisons. First, we compare 
the effects of using the reduced charge state method1* to the effects of 
using the full charge state method2 without the additional encunbrance 
of the plateau-Pfirsch-Schluter transition, for which the most advanced 
treatment8 has been done only using thft reduced charge state method. 
Second, we compare the effects of using the approximate treatment of 
the plateau-Pfirsch-Schluter transition in the full charge state 
method5 to the effects of using the treatment of Hirshman and 
Sigmar.8 Third, we illustrate the importance of including the effect 
of the plateau-Pfirsch-Schluter transition in the calculations. While 
this last comparison is not strictly speaking part of the topic of this 
report, the results obtained from it clarify our motivation for 
including this effect. 

For the purpose of these comparisons, we consider a deuterium 
plasma with an oxygen impurity content of 1.6% of the local electron 
density. This impurity level leads to a central Z e f f = 1.9 and an edge 
zeff ~ 1*3* Plasma characteristics are typical of an ohmically 
heated ISX-B plasma at about 100 ms. We make comparisons both near the 
plasna center, Rq = 56 cm, and near the plasma edge, Rq = 454 cm, where 
R is the plasma major radius and q is the safety factor. This case is 
considered as a matter of convenience, since it is part of our current 
study of titanium injection experiments in ISX-B. 

We modified the IMPTAR code to print out various friction 
coefficients f̂ jj, to which the transport coefficients are directly 
proportional. We use the coefficient flĵ  for comparison because its 
magnitude determines whether there can be a temperature screening 
effect on the impurities. If the plateau-Pfirsch-Schluter transition 



is not taken into account, there can be no temperature screening effect 
in the Pfirsch-Schluter regime of the impurities except in special 
cases.1(1 1 

The nimerical results are presented in terms of ratios in Tables 
1-3. In all three cases, results typical of the edge of the plasma 
(Rq = 154 cm) and results typical of the center of the plasma 
(Rq = 56.2 cm) are given. The tables are arranged in matrix form, with 
charge state species a listed in the rows and charge state species b 
listed in the columns. Thus, in Table 1, the entry in the fourth 
colunn of the second row has to do with the interaction of 0 3 + and 0 s* 
at Rq = 454 cm. No entries are given for oxygen charge states that 
represent less than 0.1$ of the total oxygen. 

3.1.1 Effects of Using the Reduced Charge State Model 

If the plateau-Pfirsch-Schluter transition is not taken into 
account, the coefficients ff̂ j of Ref. 8 reduce to the coefficients Jlfjj 
of Ref. 2. In Table 1, we give the ratios of the calculated using 
the full charge state method (i.e., solving systems of linear equations 
with one equation for each charge state of each element present, which 
means nine equations in this case) to the calculated using the 
reduced charge state method (i.e., inverting square matrices of order 
n, where n is the nunber of elements present; here n = 2). 

It is seen that the entries in Table 1 are generally within 2% of 
unity; the deviations are most prominent for the 0 s* interactions at 
the plasma edge and for the 0 6* interactions near the plasma center. 
The 054" density of the edge plasma is less than 5% of the total oxygen 
content and the O6* density of the central plasma is less than 0.3% of 
the total energy content; in each case these are the lowest densities. 

These small deviations are almost entirely due to differences in 
the Coulomb logarithms used in the calculations. In the full charge 
state calculation, there is a different Coulomb logarithm for each 
interaction of a given charge state of a given element; in the reduced 
charge state calculation, there is a different Coulomb logarithm only 
for each interaction of a given element. If a fixed Coulomb logarithm 
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is used in both calculations, the deviations are reduced to 0.1$ or 
less. 

3.1.2 Effects of Using an Approximate Treatment of the Plateau-Pfirsch-
Schluter Transition 

In Table 2 we give the ratios of the f ^ calculated using the 
approximate method of Ref. 5 to the calculated using the exact 
method of Ref. 8. It is immediately apparent, when Tables 1 and 2 are 
compared, that the deviations from unity of the ratios in Table 2 are 
almost entirely due to the forms of the Coulomb logarithm used, as 
discussed in Sect. 3.1.1. This is very encouraging because it 
indicates that work done since the implementation of the method of 
Ref. 5, such as that appearing in Refs. 6 and 7. apparently needs no 
revision. Implementing the method of Ref. 8 does provide significant 
time savings, as discussed in Sect. 3*2, and there may be regimes of 
impurity concentration in which the method of Ref. 5 does not compare 
so favorably with that of Ref. 8; however, we have not yet done an 
extensive survey. 

3.1.3 Effects of Including the Plateau-Pfirsch-Schluter Transition 

As a final numerical comparison, we give in Table 3 the ratios of 
the of Ref. 2, which do not include the plateaucPfirsch-Schluter 
transition, to the f̂ j? of Ref. 8, which do. It is seen, especially for 
interactions with D+, that use of the would lead to severe 
underestimates of the coefficients of the temperature gradient term in 
the fluxes, both at the plasma edge and near the plasma center. As 
indicated above, this could completely obscure any temperature 
screening effect on the impurities. 
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3.2 COMPARISON OF COMPUTING TIME 

For the purposes of comparing overall numerical results and CPU 
time requirements, we have used the new version of IMPTAR, which 
incorporates the reduced charge state theory of Ref. 8, to run two 
cases that were originally run with the previous version, which 
employed the full charge state theory of Ref. 5. As expected from the 
ratios in Tables 1 and 2, only very minor nunerical differences appear 
in the simulation results, and we will not discuss that aspect further. 

The first case run with the new version of IMPTAR was a simulation 
of the first 50 ms following the puffing of a small amount of titaniun 
into an ISX-B-like deuterium plasma with an oxygen impurity level large 
enough to make the central Z e f f a 1.9. The original calculation 
required 6.65 min of CPU time; the second run required cnly 1.75 min, a 
reduction of ~29$. The savings are of this magnitude, rather than 
larger or smaller, because calculation of the transport coefficients 
previously took about 40* of the CPU time for this type of run. Thus, 
the time saved in calculating the transport coefficients alone is about 
711. A more complete simulation of 200 ms of the same ISX-B discharge, 
in which oxygen was present throughout the simulation but titanium only 
during the last 100 ms, originally required 16.2 min of CPU time; the 
second run required only 12.2 min, representing a saving of in 
total CPU time. The percentage is smaller in this case because the 
savings increase with the nunber of chemical elements present, and only 
two elements were present for part of this run. 
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4. CONCLUSIONS AND PLANS FOR FUTURE WORK 

We have shown that implementation of a new treatment8 of impurity 
transport in the Pfirsch-Schluter regime in the IMPTAR code leads to 
significant savings in computer time. For the cases we have 
considered, it appears to lead to simulation results that are not 
significantly different from those obtained with the approximate 
treatment5 we were using. (However, this merely indicates that the 
approximation is very good for these cases.) 

In the immediate future, we plan to tighten up the programming of 
the new method and may gain further slight savings in computer time. 
Also, we have discussed with S. P. Hirshman the possibility of deriving 
a method of obtaining the transport coefficients that is more direct 
than actual computation of the which may yield additional time 
savings. 

A subroutine FFRIC to calculate the ff^ on a vector computer such 
as the CRAY is available from the authors over the Magnetic Fusion 
Energy Computer Network. 
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APPENDIX 
Typical Units for Calculating "ga 

We define ga in Eq. (33) as 

M f ^ r ) 2 ^ ' - 1 • 

For practical calculations, the units of the quantities in which 
6- is defined are as follows: 

Quantity Definition Units 

"a 
Ta 

Eq. (31) 
temperature 
Eq. (35) 

cm" 3 

eV 
cm 

M ? Eq. (5) amu •cm" 3 *s"" 

Pa Eq. (39) eV »cm~ 3 »s~1 

Substituting to obtain the units of ga, we have 

(8a>units ~ e V , a m u" 1' c n r 2 , s" 1 • 

Now, eV*amu_1 has the units cm2-s_1, so ga is, as one would 
expect, dimensionless. Using a standard conversion factor to 
obtain the thermal velocity in these units, 

1 vl = I = 9.6H8U52 x 1 0 " T ( a V ) , (A.2) 2 1 m m (amu) 

we can write Eq. (A.1) as 
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,, r35 na (cm-3) T a (eV)"| a , 
•ga = 9.648452 x 10 1 1 j-g- — ^ y (amu .cm" 3 '3' l) 

c 

x p a (eV»cm~3*s~1)] . (A.3) 


