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Magnetic behavior of current-carrying t y p e - I 1  

superconduc t i ng  cylinders* 

, Michael Lawrence S i lber  

Under the  supervision of John R. Clem 
From .the Department of Physics 

Iowa S t a t e  Universi ty 

The theo re t i ca l  magnetic behavior of current-carrying 

superconduc t ing  cyl inders  i n  the  presence of applied a x i a l  

f i e l d s  i s  ' inves t igated.  A n  attempt i s  made t o  systematize 

the  complex behavior by ca re fu l ly  accounting f o r  c r i t i c a l '  

cur ren t ,  surface  pinning, and surface  p i t ch  angle,  and by 

s t r e s s ing  the  importance of the  magnetic h i s t o r y  of the  

sample. 

A d i f f e r e n t i a l  ,'equation i s  developed ' r e la t ing  the  

thermodynamic f i e l d  H ( B )  t o  the  cylinder rad ius  p. This 

equation, of the  form aH(B)/ap = F( p,B,H) i s  r e a d i l y  i n t e -  

grated numerically using a Runge-Kutta technique on a dig-  

i t a l  computer. The r e s u l t a n t  f l u x  p r o f i l e s  a r e  fu r the r  

in tegra ted numerically t o  obta in  t he  mean magnetization of 
/ 

the  cyl inder ,  < - ~ T M ~ > .  Careful d i s t i n c t i o n  i s  maintained be- 

tween the  magnetic f l u x  dens i ty  B and the  magnetic f i e l d  H 

* 
USWDA ~ e ~ b r t  IS-T-7n. This work was performed under 

Contract w=7405-eng-82 with the  Energy Research and . Develop- . 

ment AdminLstration. . .  ' 
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i n s i d e  t h e  cyl inder .  Resu l t s  a r e  displayed using a phase- 

diagrammatic technique,  which shows t h e  r e l a t i v e  amounts of 
. . 

a x i a l  and azimuthal f i e l d  needed t o  produce a g iven  f i e l d .  

wi th in  t h e  c y l i n d e r ,  a s  a  f u n c t i o n  of t h e  bulk pinning 

s t r eng th '  and t h e  ' s u r f a c e  p i t c h  angle.  

I n .  order  t o  incorpora te  t h e  magnetic h i s t o r y  of a  Sam- 

p l e ,  a  pa, i r  of simultaneous d i f f e r e n t i a l  equat ions i s  de-, 

veloped, r e l a t i n g  the '  f i e l d  H and t ime, and t h e  r a d i u s  p and 

t h e  time, i n  a q u a s i s t a t i c  manner. When, s imultaneously 

i n t e g r a t e d ,  t h e s e  equat ions y i e l d  a  f l u x  p r o f i l e  H( p)  which 

accounts f o r  any a r b i t r a r y  v a r i a t i o n s  i n  t h e  c u r r e n t  and 

a x i a l  f i e l d  experi,enced by t h e  sample i n  progress ing  from 

t h e  v i r g i n  s t a t e  t o  t h e  f i n a l  f l u x  conf igura t ion ,  provided 

t h e  s u r f a c e  magnetic f i e l d  i n c r e a s e s  with time. This  .should 

enable  c e r t a i n  l a b o r a t o r y  sequences i n  t h e  a p p l i c a t i o n  of 

c u r r e n t  and f i e l d  t o  .be modeled a n a l y t i c a l l y .  



I. INTRODUCTION 

A .  In t roduc to ry  Remarks 

We a r e  concerned h e r e  with t h e  magnetic p r o p e r t i e s  of a 

s p e c i f i c  c l a s s  of superconductors i n  a s p e c i a l  geometry. The 

complexity of nonideal  superconductors on both microscopic 

and macroscopic l e v e l s  r e q u i r e s  a  d e l i b e r a t e l y  nar row.area  of 

study. On a  microscopic s c a l e ,  one looks a t  t h e  d e t a i l s  of 

f l u x  v o r t i c e s  and t h e i r  i n t e r a c t i o n s  with t h e  d e f e c t s  and ir- 

r e g u l a r i t i e s  i n  t h e  metal ,  while  on a  l a r g e r  s c a l e ,  t h e  aver-  

age electrodynamic p r o p e r t i e s  of t h e  sample become important.  

I n  t h e  end, one hopes t o  p r e d i c t  t h e  g ross  magnetic behavior 

without  r ecourse  t o  microscopic d e t a i l s .  

For s i m p l i c i t y ,  we choose an  i n f i n i t e ,  round wire  of 

type-I1 superconductor i n  a  l o n g i t u d i n a l  f i e l d .  The wire  
. . 

c a r r i e s  a  t r a n s p o r t  c u r r e n t  I,, which i s  r e g u l a t e d i n d e -  

pendently of t h e  appl ied  f i e l d ,  Ha. Af te r  t h e  c u r r e n t  and 

f i e l d  fo l low a  prescr ibed  pa th  t o  some f i n a l  assigned va lues ,  

we seek t o  know t h e  r e s u l t a n t  f l u x  and c u r r e n t  d i s t r i b u t i o n s  

i n '  t h e  wire. I n  an  a c t u a l  experiment, t h e r e  a r e  two meas- 

urements which a r e  ,.most convenient f o r  t h i s  s i t u a t i o n .  These 

a r e  t h e  magnetic moment. of t h e  specimen and t h e  c r i t i c a l  cur-  

r e n t .  The magnet izat ion measurement r e v e a l s  t h e  n a t u r e  of 

t h e  f l u x  d i s t r i b u t i o n ,  and t h e  c r i t i c a l  c u r r e n t  measurement 

r e v e a l s  t h e  onse t -  of f l u x  . . l i n e  motion, thus i n d i c a t i n g ,  t h e  



s t a b i l i t y  of a  given configurat ion.  A s  a  complication, o n e  

must ca re fu l ly  def ine  what cons t i t u t e s  a ' c r i t i c a l  current ,  
. . 

since,  the  breakdown of superconductivity and the  appearance 

of a  longi tudinal  voltage a r e  not' necessar i ly  simultaneous . 
I n  the  remainder of t h i s  chapter ,  we present . ' a  very 

t e r s e  review of the  e s sen t i a l  f ea tu re s  of superconduc t i v i . t y  

f o r  the r e a d e r  who i s  not  very fami l ia r  with the  f i e l d .  I n  

p a r t i c u l a r ,  we discuss  force-f ree  configurat ions and longi-  

tudinal  f i e l d s  i n  Section D. 3. Force-free configurat ions 

were f i r s t  suggested by Bergeron (1) a f t e r  the  experiments of 

Bergeron e t  a l .  (2) and others  revealed t h a t  long i tud ina l  

c r i t i c a l  currents  a r e  found t o  be much grea te r  than. those 

measured i n  t ransverse  f i e l d s .  T h e  force-f ree  conf igurat ion 
-+ 

i s  so named because the l o c a l .  t r anspor t  cur ren t  . . dens i ty  J i s :  
" 3 

p a r a l l e l  t o  the  magnetic f l u x  dens i ty  B ,  causing the. ~ o r e n t z  
. . 

3 3 

fo rce  densi ty  JxB/c t o  be zero or  near ly  zero. One of our 

conclusions Shows t h a t  t h e  exis tence  of fo rce- f ree  flow de- 

pends upon the  r e v e r s i b i l i t y  of the  mater ia l  and the  r e l a t i v e  

' ,  
amounts of cur ren t  and applied f i e l d  ( i . e . ,  the  p i t ch  angle 

of the  r e s u l t a n t  magnetic f i e l d  vector  a t  the  surface  of 
. . 

the  sample). ' , .  

For the most p a r t ,  however, we concentrate on a nonforce- 

f r e e  model which allows fo r  any a r b i t r a r y  amount of i r re -  

vers ih i  1 i t y  i n  t he  material .  I n  our model, i r r e v e r s i b i l i t y  

i s  accounted for .  through the  desc r ip t ion  o f '  t he  c r i t i c a i  



c u r r e n t ,  and t h e  d i s c o n t i n u i t y  'between B and H a t  t h e  su r face  

of t h e  sample. In Chapter I V  we genera l i ze  t h e ,  model t o  ac- 

count f o r  a  more genera l  magnetic h i s t o r y  which t h e  specimen 

has  experienced. That i s ,  we g i v e  a  q u a s i - s t a t i c  formulat ion 

t h a t  accommodates any a r b i t r a r y  sequence i n  t h e  a p p l i c a t i o n  ' - 

of c u r r e n t  and l o n g i t u d i n a l  f i e l d  up t o  the .  f i n a l  configura-  

t i o n ,  provided t h e  surface,  magnetic' f i e l d  i n c r e a s e s  with 

B. H i s t o r i c a l  Review of Superconduct ivi ty  

1. 'Zero r e s i s t a n c e  

The f i e l d  of knowledge included i n  t h e  'realm of super- 

conduc t iv i ty  i s  ve ry  broad; f o r  a complete and concise  .sur- 

vey of. t h e  e a r l y  experiments and phenomenonological t h e o r i e s ,  

t h e  , r e a d e r  i s  re f  erred t o  t h e  review a r t i c l e  by Chandrasekhar 

(3 1. Addit ional  background may -be  obtained from t e x t s  de-. 

voted exc lus ive ly  t o  superconduct iv i ty  (4-13). I t  would be 

u s e f u l  t o  review a ',few of t h e  more important  p r o p e r t i e s  of 

superconduct iv i ty  here.  

The Dutch. p h y s i c i s t  H. Kamerlingh Onnes discovered super- 

conduc t iv i ty  i n  1911 (14) while  i n v e s t i g a t i n g  t h e  e l e c t r i c a l  

r e s i s t i v i t y  of mercury. . . Onnes found t h a t  . t h e  r e s i s t a n c e  of 

t h e  sample dropped abrup t ly  t o , z e r o  a t  about 4 ' ~  and c a l l e d  

t h e  phenomenon superconduct ivi ty .  S ince  t h a t  t ime, many more 



elements and compounds have been found t o  be .superconductors.  

The c h a r a c t e r i s t i c ,  a l though n o t  .fundamental, f e a t u r e  of 

a superconductor i s '  t h e  sudden disappearance of dc e l e c t r i c a l  

r e s i s t a n c e  below some well-defined temperature,  denoted T i .  

A t  t h i s  time, most p h y s i c i s t s  b e l i e v e  t h a t  t h e  r e s i s t a n c e  of 

a superconductor i s  t r u l y  zero,  and n o t  merely some very small  

f i n i t e  number. Recent experiments (15) have confirmed t h a t  

i t  i s  no l a r g e r  than  1 0  -23 ohm-cm. Superconductors a l s o  r e -  

spond ' t o  magnetic . f i e l d s ,  a s u f f i c i e n t l y  h igh  f i e l d  being 

capable of . . quenching superconductor back i n t o  t h e  normal 

s t a t e . .  Because magnetic e f f e c t s  .vary g r e a t l y  with sample 

geometry and t h e  d i r e c t i o n  o f  t h e  ' app l i ed  f i e l d ,  we conf ine  

our a t t e n t i o n  t o  long c y l i n d r i c a l  samples immersed i n  uniform 

magnetic f i e l d s ,  appl ied  p a r a l l e l  t o  t h e  cy l inder  a x i s .  I n  

t h i s  s i t u a t i o n ,  t h e r e  a r e  two b a s i c  types of superconductor,  

def ined  by t h e i r  magnetic behavior.  For a type-I  supercon- 

ductor  a t  a temperature T below T c ,  t h e  c r i t i c a l  va lue  of the  

qusnahtng f i e l d ,  Hc,, apprnximates t h e  fol lowing rule: 

where Ho i s  t h e  c r i t i c a l  f i e l d  a t  zero  degrees Kelvin.  The 

o the r  kind of superconductor,  c a l l e d  type-11, has  a gradual  

t r a n s i . t i o n  t o  t h e  normal s t a t e  occurr ing  over a f i n i t e ' s p a n  

of f i e l d  i n t e n s i t y .  The upper and lower l i m i t s  of t h e  t rans5-  



t i o n  f i e l d s  a r e  c a l l e d  Hc2 and Hcl, r e s p e c t i v e l y .  Type-I1 

superconductors w i l l  be  d iscussed  i n  more d e t a i l  l a t e r .  

Understanding of superconduct iv i ty  i s  f u r t h e r  compli- 

ca ted  by' t h e  ex i s t ence  of so-cal led nonideal  mater ia l s . .  

These substances e x h i b i t  i r r e v e r s i b l e  behavior i n  t h e  

presence of changing magnetic f i e l d s ,  so  t h a t  t h e  s t a t e  of 

a sample i s  history-dependent.  I r r e v e r s i b l e  e f f e c t s  a r e  a t -  

t r i b u t e d  t o  the  phenomenon of pinning,  'whereby inhomogene- 

i t i e s ,  p o i n t  d e f e c t s ,  i m p u r i t i e s ,  and o the r  m e t a l l u r g i c a l  

irr e g u l a r i . t i e s  impede t h e  motion of f l u x  l i n e s  , through t h e  

m a t e r i a l  ., 
The thermodynamic n a t u r e  of t h e  superconducting t r a n s i -  

t i o n  i s  obscured . in  nonideal m a t e r i a l s .  However, i n  1933 

Meissner and Ochsenf e ld  (16) discovered t h a t  a n  i d e a l  type-I 

superconductor t o t a l l y  excludes magnetic f l u x ,  with t h e  

except ion of a t h i n  su r face  l a y e r .  That i s ,  such supercon- 

duc to r s  behave l i k e '  p e r f e c t  diamagnets. I n  i d e a l  type-I 

m a t e r i a l s ,  t h e  onset of diamagnetic behavior i o  indcpcndont 

of t h e  order  which t h e  temperature and f i e l d  a r e  var ied .  

Thus, f o r  a sample a l r eady  immersed i n  a magnetic f i e l d ,  

lowering t h e  temperature below Tc w i l l  cause t h e  sudden ex- 

c l u s i o n  of f l u x  from the  sample. S imi la r ly ,  lowering t h e  

appl ied  f i e l d  below Hc f o r  a sample a l r e a d y  below t h e  zero- 

f i e l d  c r i t i c a l  temperature would cause t h e  sudaen expulsion 

of f l u x .  I n t e r e s t i n g l y  enough, one can.show t h a t  t h e  proper ty  



of zero r e s i s t a n c e  a lone  i s  i n s u f f i c i e n t  t o  guarantee a  

Meissner e f f e c t .  It appears t h a t  a  Meissner e f f e c t  impl ies  

superconduct iv i ty ,  and n o t  conversely.  The behavior of B 

versus  H f o r  an i d e a l  type-I cy l inder  i n  a .  l o n g i t u d i n a l  

f i e l d  i s  shown i n  Figure  1. 

For type-I c y l i n d r i c a l  specimens i n  t r a n s v e r s e  f i e l d s ,  

and f o r  bulky shapes such a s  spheres  and e l l i p s o i d s ,  h igher  

magnetic f i e l d s  l ead  t o  t h e  formation of t h e  in te rmedia te  

s t a t e .  This phase i s  cha rac te r i zed  by intermixed zones of 

superconduc t i n g  and. normal m a t e r i a l ,  wherein a l l  f l u x  passing 

through t h e  sample i s  confined t o  t h e  normal zones, and a l l  

superconducting regions  remain f lux- f ree .  The in te rmedia te  

s t a t e  r e s u l t s  from . the  'demagnetizing e f f e c t  of t h e  sample 

shape, which causes an enhancement o f .  t h e  magnetic f l u x  den- 

s i t y  around t h e  e q u a t o r i a l  zones. Thus, while  t h e  appl ied  

f i e l d  may . . .  be l e s s  than H,, t h e  i o c a l  f i e l d  i n  c e r t a i n  . p laces  . 

may exceed Hc , d r i v i n g  those reg ions  i n t o ,  t h e .  normal s t a t e .  

A, type-I  cyllrlcier i n  a l o i ~ g i t u d i n a l  f i e l d  e x h i b i t s  a 

Meissner e f f e c t  up t o  t h e  c r i t i c a l  f i e l d  Hc. Above H c ,  t h e  

sample r e v e r t s  t o  t h e  normal s t a t e .  In c o n t r a s t ,  a  type-I1 

m a t e r i a l  e x h i b i t s  a Meissner phase only  up t o  a  f i e l d  Hcl 

H,. Above HC1, m,agnetic f l u x  p e n e t r a t e s  t h e  c y l i n d e r ,  b u t  a t  

a  lower d e n s i t y  than  t h e  appl ied  f i e l d .  

The p e n e t r a t i o n  of f l u x  becomes complele o1d.y al a 

higher  f i e l d  HC2 > Hc. For f i e l d s  above Hc2, a macroscopic 



Figure 1. Magnetic f lux  density B inside an idea l  type-I 
superconducting cylinder, as a function of the  
applied f i e ld  H 
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sample does n o t  show any f l u x  expulsion,  and t h e  i n t e r n a l  

f l u x  d e n s i t y  B i s  equal t o  t h e  appl ied  f i e l d  H. While t h e  

bulk of t h e  m a t e r i a l  no longer  shows zero dc r e s i s t a n c e  above 

Hc2' t h e r e  does e x i s t  a t h i n  s u r f a c e  shea th  which i s  super- 

conductive up t o  an  appl ied  f i e l d  denoted H 
c3' 

Typica l ly ,  
. . 

Hc 3 i s  about 70% g r e a t e r  than Hc2, while  Hc2 can va ry  from 

Hcl up t o  s e v e r a l  o rde r s  of magnitude above Hcl, depending 

upon . the  ma te r i a l .  I n  much of what fo l lows,  we w i l l  be con- 

cerned with t h e  r eg ion  between Hcl and Hc2, which i s  c a l l e d  

t h e  vor tex  s t a t e .  (Sometimes t h e  v o r t e x  s t a t e  i s  c a l l e d  

t h e  Shubnikov phase,  a f t e r  t h e  Russian exper imen ta l i s t  who 

f i r s t  discovered evidence f o r  its exis tence . )  The behavior 

of , B  versus  H f o r  an i d e a l  type-I1 cy l inder  ' i n  a l o n g i t u d i -  

n a l  f i e l d  i s  shown i n  Figure  2. 

The p r e c i s e  way i n  which a superconductor breaks down 

i n t o  normal and superconducting zones i s  r e l a t e d  t o  t h e  . . f r e e  

energy c o s t  of t h e  zone boundaries.  For type-I1  m a t e r i a l s  

t h e  i n t e r f a c e  energy i s  negat ive ,  favor ing  t h e  c r e a t i o n  of a 

f i n e l y  divided mixture of normal and superconduc t i n g  zones, 

with a maximum of i n t e r f a c e  a r e a .  The s i z e  of t h e  smal l e s t  

p o s s i b l e  u n i t  must be c o n s i s t e n t  with quantum mechanics, .and 

what a c t u a l l y  appears  ( i n  t h e  vor tex  s t a t e )  i s  an  a r r a y  of 

i s o l a t e d  bundles of f l u x ,  c a l l e d  f l u x  vor t i c ' e s ,  o r  f l u x o i d s ,  

each containing .one qua.nt11m nf  ma.gnet,i r. f 11-~x . The experi- 

ments of Deaver and Fairbank (17) and Doll  and Nabauer (18) 
. . 



Figure 2. Magnetic f l u x  dens i ty  B i n s i d e  an i d e a l  type-I1 
superconducting cyl inder ,  a s  a funct ion of the  
applied f l e l d  H 



have shown t h a t  t h e  f l u x  quantum go i s  equal t o  hc/2e, 

where h i s  Planck 's  constant. ,  c  i s  t h e  speed of l i g h t ,  and 

. e i s  t h e  magnitude of t h e  e l e c t r o n i c  charge. I n  t h e  cgs 

2 system of u n i t s ,  t h i s  i s  equiva lent  t o  2.07 x gauss-cm . 
The phenomenological theory  of Ginzburg and Landau (19) 

and i t s  extens ion  by Abrikosov (20) were g r e a t  - advances i n  

our understanding of type-I1 superconductors.  I n  b r i e f l y  

desc r ib ing  t h e  v o r t e x  s t a t e ,  we use  some terminology from 

t h e s e  theor ie s .  

Refer r ing  t o  t h e  f l u x  v o r t e x  model- i l l u s t r a t e d  i n  Fig-  
. . 

ure. 3, t h e  approximate magnetic r a d i u s  of t h e  v o r t e x  i s  

given by t h e  parameter h, and t h e  zone of reduced super- 

e l e c t r o n  d e n s i t y  has  a  r a d i u s  approximately equal  to. (. The 

Ginzburg-LandLu theory d e f i n e s  a parameter K (kappa) a s  t h e  

r a t i o .  A/( , and shows t h a t  K i s  o f  c r i t i c a l  importance i n  

desc r ib ing  t h e  . p r o p e r t i e s  of a  superconductor. One of t h e  

r e s u l t s  of t h e i r  theory i s  t h a t '  when K exceeds 1/n, t h e  

m a t e r i a l  has a  negat ive  surface engsgy, and s o  i s  of t h e  

type-I1 v a r i e t y .  ~ a p p a s  l e s s  than  1 / 0  i n d i c a t e  a  p o s i t i v e  

su r face  energy, and so  d e s c r i b e  a .  type.-I superconductor. 

The parameter X i s  c a l l e d  t h e  p e n e t r a t i o n  depth ,  and i s  an  

approximate measure of t h e  depth  of p e n e t r a t i o n  of magnetic 

f l u x  i n t o  a  superconductor. Typica l ly ,  X i s  on t h e  order  of 

hundrcd3 of Ang~trom3. The parameter < i s  c a l l e d  t h e  E- 

herence length .  The coherence l e n g t h  i s  d i f f i c u l t  t o  d e f i n e  



MODEL'. OF A FLUXOID 

.' ' FLUXOID 
rnx l s 

Figure.  3.. Model of a .quant ized  f l u x o i d ,  showing t h e  r.eLa- 
t i v e  magnitudes of X and. 4 ' .  



without going i n t o  the  d e t a i l s  of the  microscopic theory. 

For our purposes, we need only consider the  Ginzburg-Landau 

parameter K ,  r a the r  than X and f exp l i c i t l y .  

Figure 4 shows an i d e a l  magnetization curve f o r  a long 

cy l ind r i ca l  type-11 superconductor, with an applied f i e l d  

p a r a l l e l  t o '  the  ax i s .  The slope i n  the  Meissner phase i s  

un i ty ,  which der ives  from the  electromagnetic r e l a t i o n ,  

w i t h  3 i d e n t i c a l l y  zero i n  the  bulk of the  cyl inder .  The 
' I 

area  under the magnetization curve, divided by 4rr, i s  equal 
2 t o  Hc/8n, t h e  f r e e  energy d i f fe rence  per ' u n i t  volume between 

the  superconducting and normal s t a t e s .  For a type-I1 ma- 

t - e r i a l ,  t h i s  serves a s  a .de f in i t i ,on  of the  thermodynamic 

c r i t i c a l  f i e l d  Hc,  which i s  in termedia te ,  i n  value be:tween 

HC1 and Hc2. . 

C . Thermodynamics and. Magnotio Quant i t ies  

I n  defining the  electromagnetic quan t i t i e s  a s  they w i l l  

be used here,  we' follow the  convention of DeGennes (10) and 

o thers  and, except where e x p l i c i t l y  noted, employ Gaussian 

u n i t s . .  

On a l o c a l  l e v e l ,  we def ine  the  l o c a l  magnetic f l u x  
-+ 3 

dens i ty  b ,  which i s  r e l a t ed  t o  the  l o c a l  .current  dens i ty  j 

through Ampere s law, 



APPLIED FIELD 
Figure 4. Magnetization curve for  an idea l  type-I1 super- 

conducting ,cylinder i n  an applied f i e l d  pa ra l l e l  
t o  t h e  cylinder axis 



Here, the  word l o c a l  implies a  quan t i ty  which has meaning on 

a . sca le  small i n  comparison with the  penetra t ion depth A. 

Thus, over the  space of one f l u x  vortex,, we expect wide var- 
-+ . -+ 

i a t i o n s  i n  b and j .  

When dealing with the  macroscopic p roper t i es  of a  super- 

conductor, i t  i s  more useful  t o  consider averages i n  the  f l u x  

dens i ty  .and cur ren t  densi ty.  That i s ,  we a r e  i n t e r e s t ed  i n  

the  average f l u x .  dens i ty  over t he  space of severa l  f l u x  vor- 
-+ 3 

t i c e s ,  and c a l l  t h e  re levan t  q u a n t i t i e s  B and <j>.  If ld, i s  

the  magnitude of one f l u x  quantum, and i f  there  a r e  N f l u x  

vo r t i ce s  perpendicularly in te r sec t ing '  an area  S ,  the  average. 

f l u x  densi ty  i s  simply 

--+ -+ 
and the  average cur ren t  densi ty  < j  > i s  r e l a t e d  t o  B through 

Following Campbell and Evetts  (21, p. 15) we next 'de- 
-+ 

f i n e  the  thermodynamic magnetic f i e l d  H a s  

3 

where the  d i r e c t i o n  of H i s  the  same a s  the  d i r e c t i o n  of 



. 3 

The f i e l d  H defined i n  t h i s  way has a l l  the usual elec- 

tromagnetic' propert ies normally associated with the quanti ty 
-+ . . 

H. In  f a c t ,  i f  the Gibbs f r e e  energy density i s  re la ted  t o  

the Helmholtz f r e e  energy density through the Legendre trans- 

formation 

a G  then one can show tha t  the equilibrium condition (rn) = 0 
rn u 

i s  equivalenLto Equation 1.7. 
+ 

Associated with B i s  the thermodynamic current  density 
. . . . -+ 

J ,  where 

London (12, p. 102).  referred to  t h i s  as  the "coarse-grained 

current  densi tyt t ,  and Campbell and Evetts (21, p. 19) c a l l  

i t  the  l t transport  c u r r e n t  densitytt .  Actually, it i s  not i n  

general. the density of current '  fed i n t o  the specimen by ex- 
+ 

t e rna l  sources. Note a l so  tha t  J i s  not i n  general equal. . to. 
+ .  + 
<j . ~ l t h o u g h  J i s  d i f f i c u l t  t o  explain i n  a physical sense,, 

i t  may be roughly thought of a s  the current  .density needed t o  
+ 

maintain the gradients i n  H. 



D .  C r i t i c a l  Currents  and Hard Superconductors , 

1. C r i t i c a l  c u r r e n t s  

The magnetic behavior of type-11 m a t e r i a l s  i s  i n t i m a t e l y  

connected with t h e ,  . behavior . of c r i t i c a l  c u r r e n t s  i n  the'se 

m a t e r i a l s .  I n  f a c t ,  : t h e  top ic  of c r i t i c a l  c u r r e n t s  a lone  

comprises an extens ive  l i t e r a t u r e ;  f o r  a thorough review of 

t h i s  s u b j e c t ,  t h e  reader  i s  r e f e r r e d  t o  Campbell and E v e t t s l  

r ecen t .  monograph (21) .  . . 

F'or our purposes,  we s h a l l  regard  a : c r i t i c a l  c u r r e n t  a s  

t h e  magnitude of c u r r e n t  d e n s i t y  which i s  j u s t  s u f f i c i e n t  $0 

b r ing  about t h e  onse t  of f l u x  flow. Experimentally . f l u x  f low 

i s  de tec ted  i n  a c y l i n d r i c a l  sample by t h e  appearance of a .  

l o n g i t u d i n a l  vol tage;  i n d i c a t i v e  of a nonzero e l e c t r i c  f i e l d .  . .  . 

T y p i c a l l y ,  about one microvol t  i s  d e t e c t a b l e  i n  t h e  labora-  

t o r y  and i s  an  accep tab le  s tandard  f o r  the  ex i s t ence  of f l u x  

flow. 

P a r t  of t h e  e a r l y  d i f f i c u l t i e s  i n  understanding type-I1 

superconduct iv i ty  a r o s e  because many type-I1 m a t e r i a l s  ex- 

h i b i t  i r r e v e r s i b l e ' b e h a v i o r  i n  changing m a g n e t i c ' f i e l d s .  Ir- 

r e v e r s i b i l i t y  means t h a t  these  m a t e r i a l s  cannot be explained 

thermodynamically, because t h e  f i n a l  i t a t e  of t h e  m a t e r i a l  i s  

h i s  tory-dependent. Mate r i a l s  of t h i s  s o r t  were c a l l e d  "hard. 

superconductor sH , because u s u a l l y  th,ey were mechanically hard 

substances.  Qui te  o f t e n ,  i r r e v e r s i b l e  m a t e r i a l s  a r e ,  a l l o y s  



MAGNETIZATION VS APPLIED FIELD 

TYPE- I SUPERCONDUCTING 

. . 

Figure  5. Magnetization curve ' f o r  an i d e a l  - type-I super-'  
conductin cy l inder  i n  an appl ied  f i e l d  p a r a l l e l  f t o  t h e  cy inder  a x i s  



or otherwise impure metals with shor t  mean f r e e  paths ,  such 

a s  Nb Sn, NbZr, and V S i .  I n  f a c t ,  the  only known i d e a l  type- 3 3 
I1 mater ia l s  a r e  Nb, V ,  and Tc. I n  con t r a s t ,  i d e a l  type-I 

superconductors a r e  usually very pure substances, such a s  

mercury, t i n  and lead ,  and a r e  mechanically s o f t .  Hence, 

the  names s o f t  and hard become synonymous with i d e a l  and non- 

i d e a l ,  respect ively .  A s  w i l l  be shown, the  nonidea l i ty  of 

most type-I1 mate r ia l s  has g r e a t l y  complicated recen t  e f f o r t s  

t o  understand the  current  and f i e l d  d i s t r i b u t i o n s  i n  'cylin- 

d r i c a l  samples. Later ,  we w i l l  propose a model whereby the  

h i s t o r y  of , a  sample may be incorporated i n t o  a ca l cu l a t i on  

f o r  the  magnetic s t a t e  of the  mater ia l .  

Figure 6 i s  c h a r a c t e r i s t i c  of most c r i t i c a l  cur ren t  be- 

havior ,  when p lo t ted  a s  a funct ion of the  magnetic f l u x  den- 

s i t y  B. A s  w i l l  bemade c l ea r  l a t e r ,  t h e e x a c t  fomi of t h i s  

curve i s  not  primary t o  our model.   hat i s ,  J,(B) appears a s  

an unspecified funct ion which presumably would be known f o r  a 

spec i f i c  mater ia l .  A l l  we r equ i r e  of J,(B) i s  t h a t  i t  be 

single-valued and everywhere f i n i t e .  Urban (22) has compared 

various c r i t i c a l  current  models, and has proposed a new model 

which b e t t e r  agrees with ex i s t ing  da t a  on ~ b - 2 S % ~ r  wire. 

Urban gives the  empirical expression, i n  MKSA u n i t s ,  



Figure  6. Example of i d e a l i z e d  c r i t i c a l  c u r r e n t  behavior 

according t o  t h e  Urban model, f o r  a m a t e r i a l  with 

moderately s t rong pinning. i_ i s  t h e  reduced 
G ,  

c u r r e n t  dens it,^, def ined  by jc = J , / ( C H ~ ~ / ~ T ~ ~ ) ,  
. 

. where, a i s t h e  cy l inder  r ad ius .  B = B / H ~ ~  i s  
e" 

t h e  reduced magnetic f l u x  d e n s i t y ,  and B, =, - 
Bo/Hc2 i s  an a d j u s t a b l e  parameter which i s  

respons ib le  f o r  t h e  convexity i n  t h e  shape of 

t h e  curve 



WAS INTENTIONALLY 
LEFT BLANK 





where ac  i s  a  f i e l d  independent, temperature dependent con- 

s t a n t  pecu l i a r  t o  a  given m a t e r i a l ,  and Bo i s  a  c o r r e c t i o n  

which becomes important  a t  small  B. In cgs u n i t s ,  t h i s  ex- 

p ress ion  may be w r i t t e n  as 

and has t h e  p r o p e r t i e s  t h a t  J c ( 0 )  d e f i n e s  t h e  maximum, and 

J,(H:c2) i s  zero. Table 1, from Urban's (22) paper ,  shows 

some o the r  r e c e n t  models f o r  Jc(B) . Later  we w i l l  use  Equa- 

t i o n  1.10 i n  obta in ing  numerical s o l u t i o n s  f o r  t h e  f l u x  pro- 

f i l e . a c r o s s  a  c y l i n d r i c a l  wire.  

2. C r i t i c a l  s ta te .mode1 

The c r i t i c a l  s t a t e  model due t o  Bean (23) was a s i g -  

n i f i c a n t  breakthrough i n  explaining t h e  magnet izat ion of 

hard superconductors.  In t h e  d i s c u s s i o n  which fo l lows,  we 

w i l l  t ake  some 1 i . b e r t i e s  with Bean1 s formalism, and mainta in  

a  more c a r e f u l  d i s t i n c t i o r i  between t h e  f l e l d s  H B. 

Bean assumed t h a t  1 )  t h e  c r i t i c a l  c u r r e n t  d e n s i t y  i s  

independent of t h e  magnetic f l u x  d e n s i t y  B, and 2) a s  f l u x  

accumulated i n  t h e  specimen, s h i e l d i n g  c u r r e n t s  a r e  induced 

t o  flow a t  a maximum value  Jc, up t o  whatever depth  i s  r e -  

quired t o  s h i e l d  o u t  t h e  appl ied  f i e l d .  The f i e l d  i n s i d e  a  

c y l i n d r i c a l  superconduc.tor of r a d i u s  a  i s  obtained from 

Ampere's law, 



Table 1. Cri t ica l  c u r r e n t  models 
- - 

Source 
Funct ional  Form 

f o r  Jc(B) 
MKSA u n i t s  

Bean (23); London (24) Cons t. 

K i m  e t  a l .  (25) a/(Bo +B) 

Anderson ( 2 6 ) ;  F r i e d e l  (27) ;  S i l c o x  and 
R o l l i n s  (28) 

Yasukochi e t  a l .  (29) 

I r i e  and Yamafuji (30.) 

F i e t z  e t  a l .  (31) 

Goedemoed e t  a l .  (32) 

~ l d e n '  and Livings ton  (33) ; Campbell e t  a l .  
a [ poHc2 -B1 (34) ;  Coffey (35) B% 

PoH,* - B  
Urban (22). a [  B o + B  



which. s i m p l i f i e s  t o  

and t h e  boundary cond i t ion  

where Ha i s  t h e  appl ied  f i e l d .  Straight-forward i n t e g r a t i o n  

y i e l d s  t h e  f i e l d  a s  a  f u n c t i o n  of r a d i u s ,  

The p e n e t r a t i o n  r a d i u s  p marks t h e  p o s i t i o n  of t h e  f l u x .  , 
P 

f r o n t ,  where t h e  f i e l d  H must be equal t o  Hcl. 'Thus, 

Whon t h e  f l u  f r o n t  reaches the  cy l inder  a x i s  r~ = 0 and 
;Ir 

t h e  appl ied  f i e l d  has  magnitude H , so  t h a t  

Then Equation 1.15 can be w r i t t e n  a s  



, K i m  e t  a l . '  (36) extended Bean's (23) approach by' assum- 

ing t h a t  Jc depended upon the f l u x  dens i ty  B. I n  cy l ind r i -  

c a l  s h e l l  specimens of ~ b - ~ r ,  they found t h a t  the  c r i t i c a l '  

s - t a t e  model, a l t e r ed  t o  the  form 

Jc =cons t . / (Bo+B)  , (1.18) 

yielded screening f i e l d s  in ,  agreement with t h e i r  experi- 

mental r e s u l t s .  Thus, Equation 1.12 y i e l d s , . i n  general ,  

a  
47.r r H(p) = H(a) - - c  J . .  J c [ B ( p t  ).]dpt (1.19) 

I t  i s  useful  t o  examine the  c r i t i c a l  s t a t e  model f o r  a  

curr,ent.-carrying type-I1 mater ia l  i n  the  absence of a  longi-  

tudinal  f i e l d .  We assume t h a t  the  longi tud ina l  thermodynamic 

cur ren t  densi ty  J i s  equal t o  the  c r i t i c a l  cur ren t  dens i ty  

within the  region of f l u x  penetrat ion.  Then; from Ampere's 
-k .+ 47.r + 

law, V x H  = ,z,..J, we have 
.. . 

which in t eg ra t e s  t o  

where we have assumed . , J,  t o  be independent of B. 

We def ine  the  t o t a l  t r anspor t  cur ren t  through the  
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We use t h e  p lus  s i g n  f o r  t h e  r a d i c a l ,  as the  nega t ive  r o o t  

would y i e l d  a  nega t ive  p or  a  s o l u t i o n  where d ~ / d p  would be 
N 

P 
N - N 

negat ive .  Le t t ing  m = Hcl/Jc and q  = Jo/Jc, Equation 1.26 

becomes 

Y 
pP 

= m +  [m2+ 1 - q] (1.27) 

and Equation 1 .25  becomes 

Clea r ly ,  t h e p e n e t r a t i o n  r a d i u s  i s  a decreas ing  f u n c t i o n  of 
2 q and has a  minimum .va lue  of m ,  which occurs  a t  q  = 1 + m . 

. . 

Thus, f o r  s t a b l e  s o l u t i o n s  we r e q u i r e  
. . .  

and 

8, 2 m . 

These l a t t e r  r e s u l t s  may 'also. be obtained by d i f f e r e n t i a t i o n  

n f  Eqlm. t i  nn 1.. 28 and r e q u i r i n g  t h a t  dH/dp be npnnegat ive  a t  

the.  pene t ra t ion  radius. .  
. . 

. . 

A s  w i l l  be explained i n  t h e  n e x t '  pa ragraph ,  t h e  l a r g e s t  

p h y s i c a l l y  meaningful va lue  f o r  8 i s  un i ty .  The correspond- 
P  

ing  va lue  f o r  q ,  i . e . ,  q = 2m, i s  then p ropor t iona l  t o  t h e  
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Figure 7. Cross-hatched region defines values of m and q 

necessary to  obtain the s t a t i c  mixed s t a t e  con- 

d i t ion ,  for  a  current-carrying cylinder i n  the 
I 

absence of' an applied. longitudinal  f i e l d .  .m = 
N N 

Hcl/Jc and q = Jo/Jc, where Jo i s  the mean cur- . 
' . '  

r e n t  density and Jc i s  the c r i t i c a l  current  den- 
s i t y .  Below the l i n e  q = a, the  sample i s  i n  
the Meissner s t a t e .  Above the l i n e s  q = 2m/gc1 
and q = m2 + 1, sample rever t s  t o  e i ther  . a  f lux- 

fl..ow stace or t he  normal s t a t e  







F i g u r e  8. Cross s e c t i o n  of type- I1  c y l i n d e r  i n  t h e  c u r r e n t -  
on ly  s i t u a t i o n ,  showing l o c a t i o n  of f l u x  f r o n t  
and t h e  d i s t r i b u t i o n  of  c u r r e n t s .  pc r e p r e s e n t s  
t h e  f l u x  f r o n t ,  and a  i s  t h e  c y l i n d e r  r a d i u s  
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most vor t ex  r ing .  That i s  
P ~ ,  = pc and H(pc) =HC1. I n  t h e  

r eg ion  where, 0 ( p ( p,, t h e  thermodynamic c u r r e n t  d e n s i t y  i'.s 

denoted 11, and i n  t h e  r eg ion  where pc ( p  ( a ,  t h e  c u r r e n t  i s  
. . 

denoted 12. Thus, the  t o t a l  c u r r e n t  I i s  
0 . ,  

and 

s o ' t h a t '  , 

and ' 

In reduced form, t h i s  i s  simply 

which i s  t h e  same a s  Equation 1.29 with m equal t o  PC. 

I n  .summary,. . . .  one may d e s c r i b e  t h e  c r i t i c a l  s t a t e  model 



by' considering the  f l u x  p r o f i l e s  which obta in  a s  the  magni- 

tude of the  surface  f i e l d  i s  progress ively  increased from 

zero. S t a r t i ng  with a  sample i n  the  v i r g i n  s t a t e ,  subjected 

t o  a  p a r a l l e l  magnetic f i e l d  but  no cur ren t ,  we observe no 

f l u x  penetra t ion u n t i l  the  surface  f i e l d  reaches H C 1  AS 

the  surface  f i e l d  climbs above Hcl, f l u x  penetra tes  pro- 

g ress ive ly  deeper i n t o  the  specimen, with prpf i l -es  s imi la r  

t o  those sketched i n  ~ i g u r e  9 .  

I n  the  current-only case (Figure 7) , however, s t a t i c  

' f lux  penetra t ion.  goes no f u r t h e r  than p = ma, where m = 
P 

ficl/jc = PC i s  a. material-dependent f a c t o r ,  which must be 

l e s s  than 'one. t o  guarantee a  s t a b l e  mixed s t a t e .  Should 
2  - the  current  dens i ty  jo then . . exceed the  value ( 1  + m )Jc, 

the  innermost f l u x  r ings  col lapse  und.er t h e i r  own l i n e  ten- 
-. 

s i o n , ,  and the  sample en te rs  a  flux-flow s t a t e  . . or , r e v e r t s  t o  

the  normal s t a t e .  We note t h a t  t he  c r i i t i ca l  cur ren t  Jc i s  

proport ional  t o  t he  pinning s t reng th  of the  mate r ia l .  , Hence, 

s trong pinning mate r ia l s  would have smaller minimum penetra- 

t i o n  r a d i i  . . m ,  and . would . allow a  deeper pene t ra t ion  of f l u x  

before breakdown of the mixed s t a t e  occurred. Figures 10 

and .ll a r e  typ ica l  H .and B p r o f i l e s  f o r  the  current-only 
N 

c r i t i c a l  s t a t e  model i n  a  specimen f o r  which Hcl = 0.25, 

se1e.c ted f o r  ' the maximum poss ible  cur ren t  d e n s i t i e s  allowed 

a$ four values of the  parameter m. The. f l u x  dens i ty  B ob- 

t a i n s  from. the  i n t r i n s i c  Abrikosov diamagnetism a s  i l l u s t r a t e d  



Figure  9. S impl i f ied  diagram of Bean-London c r i t i c a l  
s t a t e  model, f o r  a  m a t e r i a l  with no s u r f a c e  
b a r r i e r .  HI <Ha <... <H6 
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Figure:  10.  Magnetic f i e l d  p r o f i l e s ,  H versus  p, f o r  type-11 
#.a 

. . 
cy l inder  with HC1 = 0.25 under t h e  condi t ions 

corresponding t o  A ,  B ,  . C ,  and D i n  Figure 7 
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F i g u r e  11. F l u x  d e n s i t y  p r o f i l e s ,  8 ve r sus  p " ,  correspond-  

i n g  t o  F i g u r e  1 0  . . 



i n  F igure  2. The p r e c i s e  form of B(H) used i n  F igure  11 i s  

n o t  important h e r e ;  a more complete explanat ion  i s  given i n  

Sec t ion  E of Chapter 

3. Force-free model 

I n  1963 Bergeron e t  a l .  (2)  presented measurements of 

c r i t i c a l  c u r r e n t s  i n  commercially a v a i l a b l e  cold-drawn NbZr 

a l l o y  wires ,  subjec ted  t o  l o n g i t u d i n a l  f i e l d s .  Their  r e -  

s u l t s  showed an  anomalous hump i n  t h e  curve of c r i t i c a l  cur-  

r e n t  I, versus appl ied  f i e l d ,  a s  reproduced i n  F igure  12. 

To exp la in  t h i s  hump, Bergeron (1)  pos tu la ted  t h e  ex i s t ence  

of a h e l i c a l  c u r r e n t  f low, which would g ive  r i s e  t o  a para-  

magnetic moment. The h e l i c a l  curref i t  response was regarded 

a s  necessary t o  minimize t h e  Lorentz f o r c e s  on t h e  cu r ren t s .  

LeBlanc e t  a l .  (.37) repor ted  pararnagne.tic moments i n  cold-  
. . 

worked , ~ b - 2 $ ~ r  wire  and high p u r i t y  annealed N ~ - S O % T ~  wire ,  

under experimental  ' condi t k n s  s i m i l a r  t o  those  used by 

Bergeron e t  a l .  (2 ) .  LeBlanc e t  a l .  (37) found r a t h e r  poor 

quan t i  l;a Lfve agreement with Bergeronl s f o r c e - f r e e  model, and 

regarded fo rce - f ree :  f i e l d s  a s  probable only i n  n e a r l y  i d e a l  

type-I1 . superconductors. . 

We review h e r e ,  t h e  theory  of fo rce - f ree  f i e l d s ,  begin- 

ning with an i n f i n i t e  f l a t  s l a b  of type-I1 superconductor i m -  

mersed i n  a f i e l d  p a r a l l e l  t o  t h e  s u r f a c e  of t h e  s l a b .  The 

coordina tes  desc r ib ing  t h e  geometry a r e  shown in '  F igure  13. 



0 . 10 20 30 40 50 60 70 80 90 

. . N, E XTERNAL FIELD (kgouSs)' 

Figure  12 .  Experimental values of c r l t i c a l  c u r r e n t  versus 
external f i e l d ,  from reference 2 



Figure 13. Coordinates' for .flat slab 



We assume t h a t  a l l  c u r r e n t s  and f i e l d s  a r e  p a r a l l e l  t o  t h e  

f a c e . o f  t h e  s l a b ,  s o  t h a t  t h e  components normal t o  t h e  - f aces ,  

i. e . ,  J and Hx, a r e  zero. The f o r c e - f r e e  requirement i s  ex- 
' X  3 3  . . 3  , 3  3 3  

pressed a.s. JxB/c=O; or  , s i n c e  H i s  p a r a l l e l  t o  B, JxH = O ;  

We b e g i n  with Ampere's law, 

where 9 ,  ẑ  a r e  u n i t  vec to r s  i n  those  r e s p e c t i v e  d i r e c t i o n s .  
3 3  3  3 

The f o r c e - f r e e  requirement,  JxH = 0 ,  impl ie s  t h a t  J and H a r e  

where f ( x )  i s  some f u n c t i o n  of x ,  t o  be determined.. Arbi- 

t r a r i l y ,  l e t .  . .  

f (x ) '  = c ~ ( x ) / ~ T  . .  : 

s o  ' t h a t  k(x)  has  u n i t s  of i n v e r s e  length .  By combining Equa- 

t i o n  l. 36 and l. 37 we o b t a i n  

which y i e l d s  , '  



2 2 2 Since H = H + HZ,  Equation 1.39 becomes 
Y 

which demands t h a t  e i t he r  H = 0 or  t h a t  H i s  everywhere the  

same. Rejecting the  former .as t r i v i a l ,  the l a t t e r  so lu t ion  

allows us t o  express the  components of H parametrical ly a s  

where a ( x )  i s  some a r b i t r a r y  funct ion of x, sub jec t  only t o  

t h e  boundary condit ion t h a t  H and Hz be continuous a t  t he  
Y 

surfaces.  Using Equation 1.38 together  with 1.41 we obta in  

so t h a t  

We see  t h a t  the  magnitude of k(x) determines t he  amount of 
. .  . 

. . 



t w i s t  which the  f i e l d  undergoes i n  t raversing the  thickness 

of t he  slab.  I f  k(x)  i s  s u f f i c i e n t l y  large.,  t t  appears pos- 

s i b l e  fo r  t h e  f i e l d  a,nd cur ren t  t o  reverse  d i rec t ions '  one ,or 
. . 

&ore ' times . . .  within the  span of t h e  s l ab  thickness.  . 

The f l a t  i n f i n i t e  s l ab  ca lcu la t ion  above i s  eas i lymod- ' .  

i f i e d  t o  accommodate the  case of a t h i n  c y l i n d r i c a l  s h e l l  I n  
. . an a x i a l  f i e l d .  That i s ,  we regar& the  f l a t  s l ab  a s  a cyl -  

inder with an i n f i n i t e  radius .  Referring t o  Figure 2 we' . . 

d e f i n e  - the  word " th int1  t o  mean t h a t  the  thickness of the. ' 

cylinder wall i s ,  small compared with the  radius .  I t  i s  con- 
2 2 8  venient t o  switch t o  cy l ind r i ca l  coordinates p = ( x  + y  ) ., 

-1 0 = t an  (y/x) ,  and z,  with u n i t  vectors  p^ = fcosd + f s i d ' ,  
A 

fl = pco'sa - ?sir-@, and 2 ,  where the  z-axis i s  coincident  with 

the  . I cylinder axis .  (See Figure:  14. ) . w e  s h a l l  assume . t h a t  8 
has no #-dependence and no z-dependence, but  only p-dependenc e. 

. . 
-b 

Thus, Equation 1.37 guarantees t h a t  J w i l l  have p-dependence 
4 -+ 

only, s o  t h a t  . . J and ,H may be wr i t t en  

. . 
3 

I n  cy l ind r i ca l  coordinates the  c u r l  of H i s  



CY LINDRICAL COORDINATES : 

Figure 14. cyli;drical coordinates 



so t h a t  from Ampere's law we obta in  

where the approximatiori used i n  Equation 1.4% i s  va l id  i n  . . 

the  case, of a t h i n  s h e l l  where 4 << 5 . A &  bef,ore, we 
P a P 

may wr i te  

from the  force-f ree  requirement, which y i e ld s  



. . 

Then, a s  before,  we may d e f i n e  a parametric  angle a  = a (  p )  

such t h a t  

and where H . i s  constant.  ' Using arguments presented above, i t  

i s  easy t o  show t h a t  'v = k (  p )  , or  

Equations 1.48 descr ibe  a f l u x  s p i r a l  whose p i t ch  angle with 

r e s p e c t  t o  t h e .  z-axis i s  a ( p ) .  

We consider next  the  case of the  thick-walled cyl inder ,  . 
. 

. . 

where the  thickness of the  wall i s  .on. . the  same, order of mag- 

n i tude a s  the  rad ius  of the cylinder., The. analysis proceeds 

a s  before, ,  although the  term H@/; may n o  longer be neglected 
. . .  

i n  Equation 1.44. Thus, , . 

J u s t  a s  above, the re  i s  a wide va r i e ty  of d i f f e r e n t  

fo rce- f ree  configurat ions poss ible ,  correspondina+' t o  d i f f  b r -  

ent  r a d i a l  dependencies of t he  p i t c h  angle a .  An i n t e r e s t i n g  



example t o  consider  i s  t h a t  f o r  which k i s  cons tant .  Then 
. . 

we may s u b s t i t u t e  t h e  dimensionless ' q u a n t i t y  w i n  p l a c e  o f .  
. . 

. . 
pk', giving k-'d/dp = d/dw, so  t h a t  ~ ~ u a t i o n s  1.47 become. 

. . 

and 

. . 

S u b s t i t u t i n g  Equation 1.50a i n t o  1.50b y ie lds .  

a H h  - - - 1 -) 
. 'Hz wdw a w  

. . 
a H z .  1 d l w  -1 = 0 

H z +  wdw a w  

and subs ti t u t i n g  Equation 1.50b i n t o  1.50a gives '  
. . . . 

Equations 1.51 and 1.52 a r e  Besse ls  equat ions of order  

zero and one r e s p e c t i v e l y .  A B e s s e l ,  equat ion of i n t e g r a l  

o r d e r  v has  f o r  s o l u t i o n s  t h e  Besse l  func t ions  of t h e  first 

and- second k inds ,  Jjcw) and Yv(w), r e spec t ive ly .  Thus, a 

l i n e a r  combination of J,(w) and .Y,(w) a l s o  r e p r e s e n t s  a ' 



so lu t ion ,  and we ob ta in :  

where the  constants  a ,  b may be evaluated from the  boundary 

condit ions.  

Recently Clem (38) has shown tha t '  f o r  any a r b i t r a r y  

funct ional  dependence of the  p i t ch  angle a (p)  upon p ,  one 
. . 

may determine H ( p )  and k( p )  e x p l i c i t l y ,  according t o  

and 

. +  -b -b ' 

where, a s  i n  Equation 1.46, H ,  J a n d  k a r e  r e l a t e d  through 

I n  t h e , s p e c i a l  case  where k ( p )  i s  a constant ,  one may show 
. . 

t h a t  . .  . 
. . 



which i s  the  well. known Bessel f u n c t i o n  s o l u t i o n  (39) .  

For d e t a i l s  of t h e  above s o l u t i o n ,  s e e  Appendix C .  

F igure  15  shows a ( p )  versus  p ( =  p / a )  f o r  s e v e r a l  a r b i -  

t r a r y  values o f  k (Equation 1.58).  E'igures 1 6 ,  and 17 show 

, H and B p r o f i l e s  corresponding t o  Equation 1.59,  where k( p ) ,  
' 

has  been assigned severa l  a r b i t r a r y  values.  A s  was t h e  case  

with Figure  11, t h e  f l u x  d e n s i t y  B o b t a i n 3  from t h e  i n t r i n s i c  
. . 

' . Abrikosov diamagnetism of t h e  mixed s t a t e ,  t h e  model f o r  

which appears  i n ' s e c t i o n  E of Chapter 11. 

We w i l l  r e t u r n  . . t o  t h e  f o r c e - f r e e  %hodel i n  t h e  nex t  

chap te r ,  a f t e r  f i r s t  didcussing some genera l  f e a t u r e s  o f  

s p i r a l  f l u x  l i n e s .  The o r i g i n s  of Equations 1.55 and 1.56 

. . w i l l  be shown t h e r e , ,  a s  wel l  a s  a  phase diagrammatic method . 
. 

to' c h a r a c t e r i z e  t h e  fo rce - f ree ,  o r  weak pinning s t a t e .  
. .  . 

. . .  

. . 
. . . . . . . . 
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F i g u r e  15. Besse l  f u n c t i o n  model showing va rLa t ion  of t h e  
f l u x o i d '   itch a n g l e  w i t h .  r a d i u s ,  a v e r s u s  = p / a ,  
f o r  s e v e r a l  va lues  of t h e  parameter k 

v\ 
t-' 



RADIUS 
Figure  16. H(p)/H(O) versus = p/a f o r  Bessel  func t ion  

model, f o r  severa l  values of t h e  parameter k 



RADIUS. 
Figure  17. .B(~) /B(O)  versus 'j = p/a f o r  Bessel  f u n c t i o n  

model, f o r  seve ra l  va lues  of t h e  parameter' k 



11. . SPIRAL FLUX LINES 

A: In t roduc to ry  Remarks 
. . 

An e x c e l l e n t  ' review of t h e  l i t e r a t u r e  of cur rent -car ry-  

ing type-I1 superconducting c y l i n d e r s  has  . . been g iven  by 
I 

T i m m s  and Walmsley ( 3 9 ) .  We wish t o p r o p o s e  h e r e  a formal 

statement,  of t h e  problem of i n f i n i t e  c y l i n d e r s  and a model 

t o  d e s c r i b e  t h i s  behavior.  We assum.e an  i n f i n i t e  cy l inder  

of some type-11 m a t e r i a l ,  with dimensions l a r g e  compared 

with t h e  f l u x  p e n e t r a t i o n  depth A. For t h e  p r e s e n t ,  we as -  

sume t h a t  t h e  cy l inder  i s  o r i g i n a l l y  i n  t h e  v i r g i n  s t a t e  

conta in ing  no v o r t i c e s ,  and t h a t  a t r a n s p o r t  c u r r e n t  I and 

uniform a x i a l  f i e l d  Ha a r e  s lowly app l i ed ,  u n t i l  some f i n a l  

va lues  Haf and If a r e  reached. During t h i s  time, w e  r e q u i r e  

t h a t  t h e  r a t i o  I/Ha . be maintained cons tant .  We c h a r a c t e r i z e  

t h e  m a t e r i a l  i n  t h e  fol lowing way: t h e  Ginzburg-Landau param- 

e t e r  K i s  known, along with t h e  upper and lower c r i t i c a l  

f i e l d s  Hc2 a n d  Hcl. I n  a d d i t i o n ,  we assume t h a t  t h e  bulk 

, 
pinning p r o p e r t i e s  a r e  wel l  descr ibed  by two parameters ,  

J c ( 0 )  a n d  Boy 'whose. p r e c i s e  d e f i n i t i o n s  w i l l  be made c l e a r  

l a t e r .  , F i n a l l y ,  we assume t h a t  s u r f a c e  pinning i s  well  
. . 

descr ibed  by one parameter, HS, a l s o  t o  be d , i s c u s s e d l a t e r .  

We s h a l l ,  demonstrate tha l; t h e  above informat ion  i s  s u f f i c i e n t  

t o  unambiguously d e s c r i b e  t h e  r e s u l t a n t  s t a t e  of t h e  sgs tern 

a t  equilibrium. 



B. Q u a l i t a t i v e  Phys ica l  Desc r ip t ion  

We expect f l u x  t o  en te r  t h e  cy l inder  i n  t h e  form of 

quant ized f l u x o i d s ,  each ca r ry ing  t h e  f l u x  quantum 6, of 

magnetic f lux .  F lux  e n t e r s  a t  t h e  s u r f a c e  only,  and , the  shape 

of each f luxo id  i s  a s p i r a l .  We d e s c r i b e  t h e  f luxo id  ac-  

cording t o  i t s  r a d i a l  coordina te  and i t s  p i t c h  a n g l e  with t h e  

z-axis .  A t  nuc lea t ion ,  t h e  p i t c h  ang le  of t h e  f l u x o i d  must  

correspond t o  t h e  ang le  of t h e  r e s u l t a n t  s u r f a c e  f i e l d ,  de- 

termined by t h e  r a t i o  of t r a n s p o r t  curr .ent  t o  appl ied  a x i a l  

f i e l d .  
. . 

We def ine  magnetic f l u x  d e n s i t y  according t o  our p r i o r  

d i s c u s s i o n  of average and l o c a l  f l u x  d e n s i t i e s .  Accordingly, 

when we r e f e r  t o  t h e  magnetic f l u x  d e n s i t y ,  we mean' . t he  aver- 
+ 

age f l u x  d e n s i t y ,  which , is given t h e  symbol B. 

C y l i n d r i c a l  coordina tes  a r e  most s u i t a b l e ,  and we use  

t h e  n o t a t i o n  descr ibed  e a r l i e r .  The .vector d , i r e c t i o n  .of .a  
A 

f luxoid  , do, i s  g iven  by 

where the  p i t c h  ang le  with respec t  to t h e  z-axis ,  a ,  i~ 

given by 



3 

The thermodynamic f i e l d  H p o i n t s  i n  t h e  same d i r e c t i o n  as ,. 
. . 

-+ 
t h e  f l u x  d e n s i t y  B, so  t h a t  

The var ious  t r igonometr ic  r e l a t i o n s  desc r ib ing  t h e  geometry 

of a f luxo id  may be  obtained by ffunwrappingff t h e  f l u x o i d ,  

a s  i n  F igure  18,. We s e e  t h a t  t h e  p i t c h  L of a  f l u x o i d  i s  

r e l a t e d  t o  t h e  f luxo id  r a d i u s  and p i t c h  ang le  v i a  
, , 

tana = BPI/BZ = HPI/HZ 

and 

1 tana 1 = 27rp/L . (2.4) 

I 

Late r  , we s h a l l  r e c o n s t r u c t  t h i s  diagram using reduced 

q u a n t i t i e s .  

C. D i f f e r e n t i a l  Equation Between H and p 

1. Geometrical de l - iva t iu~r  . 
3 

We d e r i v e  h e r e  a d i f f e r e n t i a l  equat ion l i n k i n g  H and p. 

We s tar t  with Amperef s l a w ,  

3 3 

and. w r i t e  t h e  f i e 1 d s : H  and B as a magnitud,e, t imes. .a  u n i t  
. . 

vector.:, . . 



F i g u r e  18. Geometry d e s c r i b i n g  unwrapped f l u x  s p i r a l .  
Lower f i g u r e  i s  congruent  t o  upper f i g u r e ,  and . , 

shows reduced dimensions ,  a l l  l e n g t h s  being 
normal ized t o  P a .  = 1 , . 
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. . 

3 '. 

Then t h e  c u r l  of H becomes 

A a H  = - - cosa + B[U s ina  + s i n a ]  . (2.7)  
a p  a p  

3 

Next, we w r i t e  t h e ~ o r e n t z  f o r c e ,  FL, according t o  

and s u b s t i t u t e  1 / 4 ~  times t h e  r i g h t  s i d e  of Equation 2.7 i n  
3 

p l a c e  of. J /c .  The r e s u l t  i s  

B aH+ 2 = - a p  s i n  

a f t e r  some a lgebra . ,  
, 

We next  employ' a f o r c e  balance condi t ion ,  wherein t h e .  

Lorentz ' forces  on .a f luxoid  a r e  balanced by t h e  



forces .  The c r i t i c a l  pinning fo rce  dens i ty  F a  funct ion of .  
P '  

B; can be reexpressed i n  terms of a  corresponding c r i t i c a l  

cur ren t  densi ty  Jc(B) v i a  t h e  expression 

which should be regarded a s  t he  def in ing equation f o r  Jc. 

' s i n c e  i n  th,e ,present  geometry the  pinning fo rce  a c t s  only 

i n  a r a d i a l  d i r ec t ion ,  

I 

When the  Lorentz fo rce  i s  balanced by the  pinning fo rce ,  

which i n  the  pres'ent geometry a c t s  only i n  the  r a d i a l  d i rec -  

3 3. . 

Since F a c t s  opposite t o  F i ,  t he  upper s ign i n  Equa,tion 
P 

2.12 . app l ies  when vor t i ces  a r e  entering the  wire,  and the  
. . 

lower s ign app l ies  i n  the  f lux-exi t ing case. Combining Equa- 
. . 

t ions  2.9 and 2.12 y ie lds  

2  + J , (B)B/CF = p^[$ BH 8~ + s i n  a ]  - 

aH we ob ta in  so t h a t  dividing by B and so lv ing  f o r  - 0' 



This l a s t  r e s u l t  may. be rewri t ten as  . . 

- .  2 where R c ( p )  ( =  ;/sin a) may be shown to be'. the l o c a l  f l u x  

l i n e  radius ,of curvature (see Appendix A) .' 
~ ~ u a t i o n  2.14 i s  our fundamental r e s u l t .  To obtain 

. . 

H ( p )  by numerical i ,n tegrat ion,  we needonly  the  functional  

r e l a t ions  fo r  J c ( B )  , H(B)  , and Re(  p) . . Later, i t  w i l l  be 

shown tha t  Rc(  p )  obtains from the i n i t i a l  surface pi tch , , 

angle, and the way i n  which f l u x . l i n e  s p i r a l s  change shape 

as they move i n  toward the cylinder axis.  .The form for  H(B) 

i s  obtained from an approximation to  the ~ i n z b u r ~ : - ~ a n d a u  

theory, and J c ( B )  follows from Urban's model. 

2. . ~hermodmamic connection 

Equation 2.14 i s  closely r e l a t e d  t o  t h e  conkept of vor- 

tex pressure', which a r i s e s  because of the '  gradient  i n  the:'. 

density of f lux  vort ices.  Following D e G e ~ e s  (10, pp. 8 3 -  
. 

84) ,  we 'consider an array of N vor t ices  in te rsec t ing  per- 

pendicularly to  a plane of area S. Let G and F be the Gibbs 

and Helmholtz f r e e  energy dens i t ies  associated with each 

vortex, and l e t  Yrepresent  the Gibbs f r e e  energy per c m  of 

length,  associated with a l l  N vor t ices .  Thus, 



and 

The average magnetic f l u x  d e n s i t y  throughout t h e  a r e a  S i s  

where (6, i s  t h e  f l u x  quantum.' Then 

2 dB/dS = - N%,/S = - B/S 

and t h e  magnetic p ressu re  on t h e  v o r t e x  a r r a y  i s  

BG = - G +  B(=) . (2.16) 

ec '  A t  equi l ibr ium, = 0, so  t h a t  Equation 2.16 reduces t o  

We can use  t h i s  r e s u l t  t o  show t h a t  t h e  g r a d i e n t  i n  magnetic 

i s  p ropor t iona l  t o  t h e  g r a d i e n t  i n  H. That i s ,  

where 



so  t h a t  

Thus, Equation 2.18 could a l s o  be expressed as 

f z dp(a ) /dp  = + - J ~ ( B ) B / C  - B H / ~ ~ R ~ (  p) 

where f i s . i n t e r p r e t e d  a s  t h e  f o r c e  per  u n i t  volume on a' 

f l u x  vor tex  a r ray .  , Late r ,  i n  Chapter 111, we s h a l l  use t h i s  
. . 

r e s u l t  t o  demonstrate t h e  p o s s i b i l i t y  of a n  i r r e v e r s i b l e  

v o r t e x  col lapse .  

D .  Flux Line Models 

1. Constant p i t c h  model 

Before proceeding f u r t h e r ,  we need t o  e s t a b l i s h  an  

a n a l y t i c  form f o r  ~ , ( p ) .  That i s ,  we must p r e c i s e l y  d e f i n e  

t h e  changes which a  f l u x  l i n e  undergoes a s  i t  moves a c r o s s  

t h e  cyl inder  c r o s s  sec t ion .  

111 Lhe cons tan t  p i t c h  model we assume t h a t  t h e  p i t c h  

l e n g t h  of a VOP Lex never changes a s  t h e  vor tex  moves from 

t h e  su r face  'toward t h e  axis,.  The argument f o r  t h i s  

model i s  t h a t  t h e  Lorentz  f o r c e s  and pinning f o r c e s  a c t  only  



r a d i a l l y .  . Ref e r r i n g  t o  F igure  18, we denote t h e  v o r t e x  

p i t c h  ang le  a t  t h e  su r face  as a s ,  where -r ( as  ( r. Then 

. . 

and, f o r  p ( a ,  

where L i s  t h e  p i t c h  of t h e  s p i r a l ,  and - a  i s  t h e  cy l inder  

r a d i u s .  Thus, a (p )  and as a r e  r e l a t e d  through 

The f l u x  l i n e  r a d i u s  of cu rva tu re  may now be obtained 

d i r e c t l y  from 

so t h a t  

I n  reduced u n i t s ,  t h e  r a d i u s  of cu rva tu re  becomes 

' 1 2 g c ( p )  = p  + ,?  c o t  as . (2.22) 

W; s e e  from Equation 2.21 o r  2.22 t h a t  f o r  c e r t a i n  

spec i a l  cases ,  t h e  radiuo o f  cu rva tu re  takes  a s i u p l e  fwru. 

In the  s i t u a t i o n  where t h e r e  i s  no t r a n s p o r t  c u r r e n t ,  a, i s  



zero and t h e  v o r t i c e s  a r e  s t r a i g h t  with an i n f i n i t e  r a d i u s  

of curvature .  When t h e  c u r r e n t  i s  nonzero and t h e  app l i ed  . ' 

f i e l d  i s  zero,  as = 90' and t h e  v o r t i c e s  a r e  c losed  r i n g s  o f  

r a d i u s  p = R c (  p )  . Figure  1 9  e x h i b i t s  Rc/a versus  p = p/a 

f o r  s e v e r a l v a l u e s  of as. 

2. Constant angle  model 

I n  t h e  cons tan t  angle  model, one assumes t h a t  a Flux 

l i n e  r e t a i n s  t h e  same p i t c h  ang le  (wi th  r e s p e c t  t o  t h e  z- 

a x i s )  a t  a l l  r a d i a l  pos i t ions .  The b a s i c  f l a w  i n  t h i s  model 

i s  t h e  i m p l i c i t  need f o r  v o r t i c e s  t o  have an a x i a l  component 

o r  v e l o c i t y ,  a l though a l l  f o r c e s  on the'se v o r t i c e s  a r e  pure ly  

r a d i a l .  We t h e r e f o r e  regard  t h i s  model with g r e a t  s k e p t i -  

cism and w i l l  make no f u r t h e r  r e f e r e n c e s  t o  it.  

E.' Model f o r  t h e  Equilibrium F i e l d  

1. Algebraic .form - .  

The Ginzburg-Landau theory  and' more s o p h i s t i c a t e d  the-  

' o r i e s  f o r  the'mixed s t a t e . , y i e l d  r e s u l t s  f o r  H (B) . t h a t  a r e  
eq 

n o t  express ib le  i n  terms of elementary func t i 'ons.  I n  order  

t o  s h o w , q u a l i t a t i v e l y  t h e  behavior of H ( B ) ,  . i t  i s  s u f f i c i e n t  . 
eq 

t o  use  a  s i m p &  model f o r  H (B) which has t h e  fol lowing 
eq 

p r o p e r t i e s  i n .  common with t h e  exact  r e s u l t s  of theory: 



F i g u r e  19. . Fluxoid r a d i u s '  of c u r v a t u r e  f o r  s e v e r a l  v a l u e s  .. 

of t h e  s u r f a c e  p i t c h  a n g l e  a s  (Equa t ion  2.22). 

When p / a  exceeds u n i t y ,  r a d i u s  of  c u r v a t u r e  i s  
v i r t u a l  concep t , .  s i n c e  f l u x o i d  does  n o t  e x i s t '  
t h e r e  
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The f u n c t i o n  which we chose was 

2 2 where t h e  choice k = 1 - (Hcl/Hc2) guarantees  compliance 

with t h e  requi red  boundary cond i t ions ,  Equation 2.23. I n  
. . 

reduced u n i t s ,  where a l l  f i e l d s  a r e  normalized t o  Hc2 = 1, 

Equation 2.24 has  the  very convenient form 

where . 

2. Helmholtz f r e e  energy d e n s i t y  

Simple thermod.ynamics may be used t o  s e e  how t h i s  choice 

of model f o r  H (B) a f f e c t s  t h e  r e l a t i o n s h i p s  among Hc ,  Hcl, 
eq 

and Hc2. Independent of any s p e c i f i c  choice f o r  H , ( B ) ,  a eq 



thermodynamic a n a l y s i s  shows t h a t  t h e  Helmholtz, f r e e  energy 

d e n s i t y  F(B) has  t h e  s p e c i f i c  va lues  

and . . 
. . 

2 2  
F(Hc2) = H c 2 / 8 r  + H C / 8 r  . . (2.26b) 

The l a t t e r  expression r e p r e s e n t s  t h e  sum of t h e  f i e l d  energy 

d e n s i t y  a t  Hc2 and the  condensation energy d e n s i t y  d i f f e r e n c e  

between t h e  normal and superconducting s t a t e s .  I n t e g r a t i o n  

of our . spec i f i c .mode1  f o r  H (B) y i e l d s  
eq 

. . . . 

= B H / 8 r +  ( ~ : ~ / 8 r k ) l n [ ( ~ +  kB)/Hcl]. ( 2 . 2 7 )  

. so  t h a t  F(Hc2) i s  

. 2 2 
Hc2 Hcl I n  ( 1  + k) J F(HC2) =.F + g 7rk 

H c l  



Comparing Equation 2.28 with 2.26b shows t h a t  

I n  the  Ginzburg-Landau theory ,  Hc2 i s  r e l a t e d  t o  K .  and 

H, v i a  

so  t h a t  one may. use Equation 2.30 together  with Equation 

2.29 t o  show t h a t  K and p a r e  r e l a t e d  i n  t h i s  model accord- 

ing '  t o  
. . 

The Ginzburg-Landau theory ,  on t h e  con t ra ry ,  p r e d i c t s  

a much more complicated, nonalgebraic  ~ q e l a t i o n s h i ~  between 

K and p.  Recent ly,  Clem (40) has  demonstrated a modified . . 

Bessel  func t ion  model f o r  t h e  r e l a t i o n s h i p  between K and P , 
which a g r e e s  very w e l l  with ~ e u m a n n  and Tewordtt s (41) exact  

rlumerlcal solut io ,ns  or t h e  Ginzburg-Landau equat ions.  F igure  

20 shows a comparison .between Equation 2.31'. and Clem1 s Bessel  
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Figure  20. = HCl/Hc2 versus  t h e  Ginzburg-Landau parameter 
K .  Upper. curve d e ~ i v e s  from Equatlon 2.31, and 

Clem model i s  descr ibed  i n  Reference 39 



f u n c t i o n  model f o r  P versus  K .  The important  p o i n t  i s  t h a t  

Equations 2.31 and 2.24 should n o t  be taken too  s e r i o u s l y ,  

a s  a c t u a l  d iscrepancies .  with t h e  t r u e  form of H (B) and 
eq 

~ ( $ 1  a r e  n o t  important  t o  t h e  main t h r u s t  of t h i s  study. 

F. Models f o ~  Surface  Pinning 

To incorpora te  t h e  e f f e c t s  of s u r f a c e   inning i n t o  our 

model, we consider  a c y l i n d r i c a l  specimen with an i d e a l  su r -  

f a c e  immersea i n  a uniform axial f i e l d .  A s  t h e  f i e l d  i s  

slowly increased  from zero,  t h e  f i r s t  p e n e t r a t i o n  of f l u x  

i n t o  t h e  cyl ' inder occurs when t h e  app l i ed  f i e l d  reaches  'a 

c r i t i c a l  . . value  HS, termed t h e  c r i t i c a l  e n t r y  f i ' e ld .  In 

genera l ,  t h e  c r i t i c a l  e n t r y  f i e l d  i s  a  f u n c t i o n  of t h e  aver-  

age magnetic i n d u c t i o n  near t h e  su r face  of t h e  sample; thus 

where H ( R )  denotes the c r i t i c a l  e n t r y  f i e l d  as a f u n c t i o n  en. 
of .B. .In genera l ,  . H s  i s  a  material-dependent parameter 

thanHcl.  

DeGennes (42) and Bean and Livingston (43) have con- 

s ide red  t h e  problem' of c a l c u l a t i n g  HS ; t h e i r  r e s u l t s  show 

t h a t  



where 6, i s  the  f l u x  quantum. Clem (44) .has shown t h a t  f o r  

high kappa mate r ia l s ,  

In  the s'ame sense t h a t  the re  e x i s t s  a  c r i t i c a l  en t ry  

f i e l d ,  there  a l s o  e x i s t s  a  c r i t i c a l  e x i t  f i e l d ,  Hex(B) ,  

which represents  t he  value of the  ' surface  f i e l d  below which 

f l u x  vor t i ces  w i l l  spontaneously pop ou t  of the  mater ia l .  

The c r i t i c a l  e x i t  f i e l d  has meaning i n ' t h e  f ie ld-decreas ing 

s i tuat i .on ,  and the  c r i . t i c a1  en t ry  f i e l d  has meaning i n  the  

f ie ld- increas ing case. Clem (44) has a l s o  shown t h a t  

In  order t o  contr ive  a simple model f o r  Hkn(B) t h a t  i s  
' 

reasonably r e a l i s t i c ,  y e t  easy t o  use i n  a  numerical cornpi- 

t a t i o n ,  we note t h a t  the  following boundary condit ions must  

be s a t i s f i e d :  

and 

To t h i s  end, we def ine  the  parameter b accord ing  t o  



. . 

b 2  = 1 - ( H ~ / H ~ ~ ) ~ ;  t h u s  i f  we express  HeA(B) a3  

. .  . 

i t  i s  c l e a r '  t h a t  t h e  r e q u i s i t e  boundary condi t ions  . a r e  . ' sat-  . . 
. . 

' i s f i e d .  This form f o r  Hen(B) i s  s i m i l a r  t o  t h e  model which , , 

. . 

we chose f o r  t h e  equi l ibr ium f i e l d  H (B) , ,and l ends  i t s e l f  
eq 

n i c e l y  t o  numerical c a l c u l a t i o n s  i n  a one-parameter ' theory.  

G. Weak Pinning ~ i m i ' t  . 
. ,. 

. . 

1. F i e l d s  . .  . 

. Before examining d e t a i l e d  s o l u t i o n s  t o  t h e  fundamental , . , . . . . 

dH i t  i s  i n t e r e s t i n g  t o  consider  t h e  s p e c i a l  equat ion f o r  - 0' 
case  of t h e  weak pinning l i m i t .   ere, i t  i s  assumed . . t h a t  

. , 

. : the c r i t i c a l  cu r ren t .  i s  small  enough s o .  t h a t  Equation 2..12 
. . may be approximated a s  . . 

d ~ / d p  = - , H / R , ( ~ )  ' (2.38) 

. . 

o r ,  , i n  reduced u n i t s ,  . . 

,., 
where we have  def indd f i  = H/Hc2, p" = p/a, and R, = R,/a. 

I n  t h e  cons tant  p i t c h  model,, Equation 2.39 becomes 

' 2  dff/dp = - i ip/ [p2 + c o t  . . as.] 



where as : i s  the  f l u x  l i n e  p i t ch  angle a t  the  cyl inder  s u r - ' .  

face.  . . 

A s  mentioned e a r l i e r  ( see  p. 48) ,  the  general  so lu t ion  . '  

t o  Equation 2.38 i s  
\ 

P 
H(p) = H(0) - exp{- 1 ' d r  sin2a ( r )  1 

r 7 ,. 
(2.41) 

0 

where we emphasize here t h a t  the  weak pinning l i m i t  and' the  

force-f ree  model a r e  e s s e n t i a l l y  i den t i ca l .  When we impose 

the  addi t ional .  cons t ra in t  of the  constant  p i t ch  model, so 

t h a t  Rc(p) has t h e s p e c i f i c  form shown i n  Equation 2.40, 

Equation 2.41 reduces t o  

where 

, Notice t h a t  a(O)= 0, and a(l) = a s ,  a n d  t h a t  Equation 2.42 

i s .  e a s i l y .  obtained from 2.40. 

The de t a i l ed  behavior i m p l i c i t  i n  the  . r e s u l t  2.42 con- 

t a i n s  many i n t e r e s t i n g  s u b t l e t i e s  which a r e  n i ce ly  systema- 

t i zed  v i a  the  phase diagram shown i n  Figure 21. The phase 

diagram i s  cbnstructed i n  the  following way: ' We consider a  

pai  r of orthogonal sxoci, : corresponding. t o  . the a x i a l  arld 

c i rcumferent ia l  components of the  f i e l d ,  labeled Z and ZI 
. . 



Figure  21. Phase diagram f o r  cons tan t  p i t c h  model with 

fIcl = 0.25, under t h e  weak pinni.ng. assumption. 

Region i n s i d e  v e r t i c a l l y  s t r ipped  c i r c l e  r ep re -  

s e n t s  Meissner s t a t e ;  r eg ion  def ined  by angled ' 

', s t r i p e s  d e f i n e s  mixed s t a t e ,  and white  r eg ion  

marks the .  breakdown of mixed s t a t e  i n t o  e i t h e r  

flux-flow. regime o r  normal s t a t e .  See t e x t  f o r  

f u l l  d e s c r i p t i o n  
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[II] MEISSNER STATE - 1  , ,  I . .  , . 

' W FORCE-FREE . . 1 ' .  
STATE 



r e s p e c t i v e l y .  . A l l  f i e l d  q u a n t i t i e s  a r e  normalize& t o  Hc2, 

s o  t h a t  

= H/Hc2 , gz =. Hz/Hc2 and Gfl =.  Hpl/Hc2 . 

. . The l a r g e  o u t e r  c i r c l e  of r a d i u s  one corresponds t o  

having t h e  magnitude of t h e  f i e l d  a t  t h e  s u r f a c e  of t h e  cy l -  

i n d e r ,  H s ,  equal t o  t h e  upper c r i t i c a l  f i e l d  Hc2; a t  any 

p o i n t  on t h a t  c i r c l e ,  i n  reduced u n i t s ,  gS = 1, so t h a t  

I'g0 + 1'3; = 1 ( 2 .'44) ;4@ ; 

I 

where t h e  s u b s c r i p t  s denotes  s u r f a c e  ( i j  =I).  

I f  we l e t  Z = Hs, and = Hs, then Equation 2.44 i s  ,' 

t h e  same a s  

Next, consider  t h e  phys ica l  s i t u a t i o n  a r i s i n g  when t h e  

f i e l d  on t h e  : a x i s  of t h e  c y l i n d e r ,  i s  exac t ly  equal t o  Hc2: 

This would corr.espond t o  t h e  maximum p o s s i b l e  va lue  of H 

throughout t h e  cyl inder .  Then i n r e d u c e d  u n i t s ,  g ( 0 )  = 1, 

so t h a t .  Equation 2.42 becomes 

8 ( ~ )  = I cosa ( p)  1 (2.46) 

and t h e  orthogonal components of :( p )  a r e  



On t h e ' s u r f a c e , ' j j  = l , . a ( p )  = a  S 9 and wehave  

I n  t h i s  case ,  however, t h e  magnitude of t h e  su r face  

f i e l d ,  f is ,  i s  simply lcosas l ,  s o  t h a t  

I f  we momentarily r e s t r i c t  ourse lves  t o  t h e  f i r s t  

quadrant  where 6 ,  Z a r e  both p o s i t i v e ,  Equation 2.50 becomes 

which desc r ibes  a c i r c l e  of r a d i u s  one-half centered  a t  th,e 
. . 

p o i n t  8 = 0,  Z = g. I n  t h e  f o u r t h  quadrant ,  where Z < 0 ,  

Equation 2.50 would, y i e l d  

which desc r ibes  a c i r c i e  of r a d i u s  one-half centered  a t  t h e  

p o i n t  & = 0,  Z = -%. Thus, t h e s e  two c i r c l e s  i n  t h e  phase 



d iagram ' represen t  t h e  magnitude of t h e  s u r f a c e  f i e l d  f o r  

var ious .  combinations. of 8 ,  Z ,  when t h e  f i e l d  on t h e  a x i s  i s  

a  maximum. 

Next, we consider  t h e  l i n e s  l abe led  a ,  b ,  c ,  and d which 

r e p r e s e n t  four  a r b i t r a r i l y  s e l e c t e d  pa ths  of cons tan t  su r face  

p i t c h  ang le i  as .  (The p a r t i c u l a r  choice  of ang les  f o r  t h e  

ske tch ,  i . e . ,  0, 22.5, 45, 67.5 degrees,serves only  f o r  il- 

l u s t r a t i v e  purposes,.) Line e  i s  a t  t h e  c r i t i c a l  ' a n g l e ,  which 

we denote a,, , and passes  through t h e  i n t e r s e c t i o n  po in t  of 

t h e  inner  c i r c l e  with t h e  curve descr ibed  by Equation 2.51. 

For ease  of r e f e r e n c e ,  we w i l l  c a l l  t h e  curve of 2.51 t h e  

Itupper loopl1. Thus, one may i n t e r p r e t  t h e  i n t e r s e c t i o n s  of 

t h e s e  r a y s  with t h e  upper loop ( p o i n t s  A ,  B ,  C ,  D ,  and E) a s  

y i e l h i n g  t h e  coordina tes  H s a ,  H S z  which g i v e  t h e  maximum , , 

f l u x  d e n s i t y  a t  t h e  a x i s .  S ince  t h e  $-coordinate r e p r e s e n t s  

Hs% 9 
and hence i s  propor t ional  t o  t h e  c u r r e n t  through t h e  

c y l i n d e r ,  we. s e e  t h a t  t h e  45' p i t c h  ang le  y i e l d s  a  ma@mq 

i n  the t r a n s p o r t  ci~.rrent .  

The small inne r  c i r c l e ,  whose r a d i u s  i s  equal  t o  Hcl, 
N 

r e p r e s e n t s t h e  p a i r s  .. . of va lues  of Hsb and gsz which combine 
, 

N 

t o  y i e l d  a  r e s u l t a n t  f i e l d  of magnitude Hcl o n  t h e  sur face .  
. . 

The l i n e ,  e , .  which goes through t h e  i n t e r s e c t i o n  of t h e  inner  

c i r c l e  and t h e  upper loop,  r e p r e s e n t s  t h e .  s u r f a c e  p i t c h  
, . 

N ' & 

angle which s i r n u l t a n e ~ u , ~ l y  givoo Hc2 on the  a x i s  and IIcl 011 

t h e  sur face .  That ' is ,  l i n e  e  i s  a t  t h e  c r i t i c a l  angle .  



Since  t h e  inner  c i r c l e  i s  d e s c r i b e d  a n a l y t i c a l l y  by 

. . 

and the  upper loop i s  descr ibed  by Equa t ion2 .51 ,  t h e  simul- 

taneous s o l u t i o n  of Equations 2.51 and 2.53 y i e l d s  

a s  t h e  coordina tes  of p o i n t  E, and y i e l d s  f o r  t h e c r i t i c a l  

. angl  e  

N 

I n  t h e  sketch o f  F igure  21 ,  as, i s  75.5', and IIcl was 

a r b i t r a r i l y  given t h e  va lue  0.25. So long a s  a  exceeds 
S C  

4P, corresponding t o  8 . < l/J?, t h e  luaxi~uum p o s s i b l e  c l  - 
. t r a n s p o r t  c u r r e n t  w i l l  occur a t  a s  = 45'. If Hc, 2 l/n, 

. . . . 

t h e  c r i t i c a l  ang le  w i l l  be l e s s  than 45' and t h e  maximum pos- 
. . 

s i b l e  t r a n s p o r t  c u r r e n t  w i l l  occur  a t  t h e  c r i t i c a l  angle .  

Using Equation 2.54a and Ampere' s law, t h i s  l a t t e r  s i t u a t i o n ' .  

would imply t h a t  t h e  maximum t r a n s p o r t  c u r r e n t  would be 

"2 . 8 
I c = ~ ~ a ~ c 2 ~ c l [ l - H c l l  (fi ~ 1 -  > 1 / J T )  



whereas, when as, < 4 5 O ,  t h e  maximum c u r r e n t  p o s s i b l e  i s  

and .the,maximum a v e r a g e . c u r r e n t  densi ty 'would be 
. . 

m 

Figure  22 shows Ic/Imax p l o t t e d  a s  a f u n c t i o n  of t h e  Ginzburg- 

Landau parameter K .  

' 

. Thus, i f  one were seeking a ,  weak pinning m a t e r i a l  which 

could c a r r y  t h e  h i g h e s t  p o s s i b l e  c u r r e n t ,  one would s e l e c t  a 

substance f o r  which Hc1/Hc2 1/n; t h e  b e s t  
. . .. . 

being defined by Equation 2.57. Using Figure  20, we s e e  t h a t  

such a m a t e r i a l  would have a Ginzburg-Landau parameter K i n  

excess of 0.88. 

I t  i s  a l s o  i n t e r e s t i n g  t o  look a t  some numerical  va lues .  

A s  an example, suppose t h a t  we have a weak pinning m a t e r i a l  

with a K i n  excess of 0.88, s o  t h a t  Hcl/Hc2 < 0.707. Operat- 

ing a t  a su r face  p i t c h  angle  of 4P,  we s e e  t h a t  a t  maximum 

c u r r e n t ,  

and 



F i g u r e  22. T ranspor t  cur ren ' t  i n w e a k  pinning model as a f u n k t i o n  of t h e  . . 

Ginzburg-Landau parameter K; n o r a a l i z e d  t o  t h e  m a l d m u m  pos- 
s i b l e  c u r r e n t  Lax = h c a ~ ~ ~ .  hben K exceeds 0.856, cor respond-  . . 

: i n g  t o  RC1 < 0.707, maximum c u r r e n t  remains equal  t o  I,,,. The 
. . ze ro  i n  Ic occurs  a t  t h e  K corresponding t o  H c l  = Hc2 . .'/ 
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5 I f  the  upper c r i t i c a l  f i e l d  Hc2 were 10 G and i f  t h e  

r a d i u s  of t h e  wire  were 100 pm (=  0.01 cm) , Equation, 2.57 

would show t h a t  t h e  maxtmum t r a n s p o r t  c u r r e n t  would be about 

6  2 2500 A ,  with a  mean c u r r e n t  d e n s i t y  o f .  about 8 x 1 0  A/cm . 
Equations 2.56 and 2.57 show t h a t  t h e  t o t a l  c u r r e n t  i s  

p ropor t iona l  t o  t h e  wire ra ,dius ,  while  t h e  c u r r e n t  d e n s i t y  

i s  i n v e r s e l y  p ropor t iona l  t o  t h e  r a d i u s .  The c u r r e n t  d e n s i t y  

i s  t h e r e f o r e  l i m i t e d  t o  t h e  minimum p o s s i b l e  r a d i u s  of t h e  

wire ,  whi'ch can be est imated by not ing  t h a t  t h e  depa i r ing  cur- 

r e n t  d e n s i t y ,  i s  a  probable upper bound on Jmaxo This i s  t h e  
. . 

c u r r e n t  d e n s i t y  a t  which Cooper p a i r s  would begin t o  break 

up, .des t roying  superconduct ivi ty .  . . " Since t h e  depa i r ing  cur-  

r e n t  d e n s i t y  i s  approximately 

where X i s  t h e  magnetic p e n e t r a t i o n  depth ,  and B, i s  r e l a t e d  

Equations 2.58 through 2.62 show t h a t  t h e  minimum va lue  of 

t h e  r a d i u s ,  amin, i s  approximately . , 



Fur ther  understanding of t h e  weak pinning. l i m i t  may be 

obtained from F igures  23-26.. In F igures  23 and 24, w e  p l o t .  

I?(o) and B(0) on t h e  a x i s  as a  f u n c t i o n  of t h e  reduced su r -  

f a c e  f i e l d  Hs,  f o r  a  specimen assumed t o  have f,, = 0.25. 

The d i f f e r e n t  curves l abe led  a,  b, c ,  d  and t h e  p o i n t  e ,  

correspond t o  t h e  f i v e  l i n e s  of cons tan t   itch a n g l e  shown 

i n  ,F igure  21. We s e e  t h a t  a s  t h e  su r face  p i t c h  ang le  i s  i n -  

c reased ,  t h e r e  i s  a  g r e a t e r  d i f f e r e n c e  between t h e  sur face ,  

f i e l d  and t h e  f i e l d  on t h e  a x i s .  A t  t h e  c r i t i c a l  ang le  

t h e s e  curves s h r i n k  t o  t h e  p o i n t  E, i n d i c a t i n g  t h a t  a t  t h a t  

angle',  . t h e .  s u r f a c e  f i e l d  i s  HC1 and t h e  f i e l d  on t h e  a x i s  i s  

.Hc2* 

I n  Figures  2 5  and 26 a r e  p l o t t e d  t h e  f i e l d s  as func t ions  

of , the  r a d i u s ,  f o r  each of f i v e  l i n e s  of cons tan t  su r face  . . 

p i t c h  angle.  . In t h i s  case ,  t h e  f i e l d  a t  t h e  s u r f a c e  i s  f ixed  . . 

a t  Hcl. F igures  2 7  and 28 show t h e  same kind of p-dependence; 

however, h e r e  t h e  f i e l d  on t h e  axis i s  f i x e d  a t  Hc2. 

I n  F igures .  29 and 30 a r e  f i v e  curves of i ( p )  versus  p ,  
a l l  a t  t h e  same s u r f a c e  p i t c h  a n g l e  of 67 .P ' .  I l l u s t r a t e d  

. . 

h e r e  i s  t h e  way i n  which t h e  f l u x  p r o f i l e s  change as one 

p rogress ive ly  moves out  along t h e  67.5' l i n e  of ~ i ~ u r e  21. 



Figure  23. Reduced f i e l d  on t h e  a x i s  G(o) a s  a func t ion  of t h e  reduced 
su r face  f i e l d  I?, for .  t h e  cons tant  p i t c h  model i n  t h e  weak 
pinning l i m i t .  f iC1 = 0.25, .  and su r face  p i t c h  angels  a s  a r e  
(8) 0°, ib) 22.S0, ( c )  450j (d l  67.5O, and ( e l  as, = 75.50. 
Also' s e e  Figure  21' 







F i g u r e  24. Reduced f l u x d e n s i t y  6(0) on t h e  axis as a f u n c t i o n  of t h e  
reduced s u r f a c e  f i e l d  8, f o r  t h e  c o n s t a n t  p i t c h  model. i n  t h e  
weak. p inn ing ,  l i m i t  , under . the  same condi t ions .  as i n  F i g u r e .  
23. Also s e e  F i g u r e  21  





2.403:20 4.00 4.80 5.60 6.40 7.20 8.0 8.80 9.60 
FI (A) (do-' ) .  



. .. . . F i g u r e  25 .  Reduced f i e l d  ve r sus  i j  f o r  t h e  c o n s t a n t  p i t c h  model i n  t h e  

weak p inn ing  l i m i t ,  w i th  reduced s u r f a c e  f i e l d  fis = Gc1 = 0.25, 
. . f o r  t h e  s u r f a c e  p i t c h  ange ls .  as shown. Also s e e  F i g u r e  21 

. . . . 
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Figure  27. Reduced f i e l d  fi v e r s u s  f o r  t h e  c o n s t a n t  p i t c h  model w i t h  
ff(0) = 1 and .RC1 = 0.25, and f o r  t h e  s u r f a c e  p i t c h  a n g l e s  
a s  shown. , The c o n d i t i o n s  correspond t o  p o i n t s  A ,  B ,  C ,  D ,  
and E on F i g u r e  21  
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Figure  28; Reduced: f l u x  d e n s i t y  B" versus P f o r  t h e  same 
. , e'onditions a s  F igure .  27. Also see  Figure  21  



Figure  29. Reduced f i e l d  6 versus  P f o r  t h e  cons tant  p i t c h  model a t -  
f i x e d  su r face  p i t c h  angle-  as : 67.5O f o r  inc reas ing  values 
of t h e  reduced su r face  f i e l d  Hs. For curve 1, gs = 0.25 = 
gel; .and f o r  curve 5, g ( 0 )  = 1. See Figure 21 
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Figure  30.  educed f l u x  d e n s i t y  6 versus p" . f o r  t h e  same 
.zonditions a s  Figure 29. Also s e e  Figure  21 



2. Currents  

The thermodynamic c u r r e n t  d e n s i t y  i s  ' ca lcu la ted  from 

~ m ~ e r e l s  law, 

which i n  component form i s  . . 

Using ~ ~ u a t i o n k  2.42 and 2.46 t h i s  becomes 

where t h e  upper s i g n  a p p l i e s  when 0 < a < ~ / 2 ,  and t h e  lower 
T 

, s i g n  a p p l i e s  when 7 < a < a. Taking t h e  d e r i v a t i v e s  i n  Equa- 

t i o n 2 . 6 6  y i e l d s  . . 

a f t e r  some algebra. I n  dc r iv ing  2.G7 we make use  o r  



.., 
which follows from Equation 2*43. I n  reduced u n i t s  f@,, JZ, . 

, . d.ef ined by 

we obta in  
I 

.-2 Y as  the  f i n a l  r e s u l t .  One may show' t h a t  j = [j$ + JZ] ? i s  
. . 

I 

given by 

. . 

The maximum magnitude of the  c u r r e n t  dens i ty  occurs on 
. . 

the a x i s  where p = 0 ,  and has the  value i n  reduced u n i t s ,  

' j ( 0 )  = 2c(0) 1 tanasl ' .. . (2.72) 

Figures 31-36 show the  r e s u l t s  of Equations 2.70 and.  

. . 



Figure 31. Reduced a x i a l  current  densi ty  f versus fo r  the  same , 
Z 

conditions a s  i n  Figure 25. Current  densi ty  i s  normalized 
t o  c~~~1'4x-a = 1 
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Figure  32. Reduced azimuthal c u r r e n t  d e n s i t y  j versus f o r  the  same ar 
condi t ions  a s  F igure .25 .  Current d e n s i t y  i s  normalized t o  . 

c~,~/)+?ra = 1 
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Figure  33. Magnitude of t h e  reduced c u r r e n t  d e n s i t y  J versus ' p  f o r  t h e  
N N 

same cond'tions a s  F igure  2.5. Here J = [J": + fglY where JZ 

and J a r e  i n  F igures  31 and 32 r e s p e c t i v e l y  % . 
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~ i g u r e  34. Reduced a x i a l  c u r r e n t  dens i ty  5, versus  i j  f o r  a  su r face  p i t c h  
ang le  of 67. so, under the  same condi t ions  a s  F igure  29. 
Curve l a b e l s  1 ,. 2 ,  . . . ,. 5, correspond t o  t h e  f i e l d  p r o f i l e s  
of t h e  same numbers i n  F igure  29 
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F i g u r e  35. . Reduced azimuthal  c u r r e n t  d e n s i t y  5% ve r sus  P f o r  a s u r f a c e  
p i t c h  a n g l e  .of  67.50, under. t h e  sam'e cond t t i ons  .as i n  F i g u r e  
29. Curve l a b e l s  1, 2,  . . . , 5 correspond t o  t h e  same l a b e l s  
i n  F i g u r e  29 





RADIUS , : 



~ . ~ g u b e  3 6 .  ~ a ~ n i t u d e  of the reduced current  dens i ty  3 versus f o r  a 
. . 

surfacg p i tch  angle of 67.50 under the  same conditions a s  
i n  Figure 29. J = [J$ + where 3, and jpl a r e  p lot ted  
i n  Figures 34 and 35 respectiveZy 
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2.71. F igures  31-33 show t h e  v a r i a t i o n s  i n  jZ, fg,and J 
. . 

with t h e  su r face  p i t c h  angle ,  and Figures  34-36 show t h e  

v a r i a t i o n  of t h e  c u r r e n t  d e n s i t i e s  a s  t h e  magnitude of t h e  

f i e l d s  inc rease .  ' . .  

H. F i n i t e ,  Nonzero Pinning 

. . 

1. Descr ip t ive  
. . 

We descr, ibe h e r e  our i n v e s t i g a t i o n s  of t h e  s o l u t i o n s  t o  

i n  t h e  very genera l  case  where J c ( B )  i s  nonzero. We r e s t r i c t  

ourse lves  t o  t h e  cons tan t  p i t c h  assumption mentioned e a r l i e r ,  

'so t h a t  the  v o r t e x  p i t c h  ang le  a s ,  a  f u n c t i o n  of rad.ius i s  

known through 

We a l s o  use  t h e  r e l a t i o n s h i p  f o r  H (B) (HCB) f o r  s h o r t )  a s  
eq 

previous ly  d e s c r i b e d  i n  Equation 2.24; t h a t  i s ,  



The a n a l y t i c a l  form f o r  t h e  c r i t i c a l  c u r r e n t  J,(B) i s  

based on Urban's model (22) which we have d iscussed  e a r l i e r ;  

t h a t  i s ,  we use  

For, ease of numerical computation, w e  have reduced these  

r e l a t i o n s h i p s  t o  dimensionless form, c o n s i s t e n t  w i t h  e a r l i e r  

d e f i n i t i o n s .  S p e c i f i c a l l y ,  t h e  reduced q u a n t i t i e s  g, fi,  j, 
. . 

fit, and p a r e  def ined  by 
. , . . 

Our. working equat ions i n  reduced form are 



2 c o t  a s  + p2 
riC(p") = N 

n 

,u 

where = Hcl/Hc2 = Hcl , and p 2 +  k2 = 1. 

We a l s o  have a s i x t h  equat ion t o  account f o r  t h e  e f f e c t s  

of s u r f a c e  pinning,  descr ibed e a r l i e r  i n  Sec t ion  F;  t h a t  i s ,  

i n  t h e  f l u x  en te r ing  case ,  and 

i n  the. f l u x  e x i t i n g  case.  I n  reduced form t h e s e  a r e  

2-2 y fi (B) = [I?; + i B I 
en 

where b i s  r e l a t e d  t o  HS according t o  i 

One should n o t  confuse t h e  s u r f a c e  b a r r i e r  f i e l d  HS used i n  

t h i s  expression with th,c magnitude H of bhhe ne t  magnetic 
S 

f i e l d ,  produced a t  the '  speciment s ou te r  su r face  by t h e  appl ied  
. . 

l o n g i t u d i n a l '  f i e l d  and t h e  s e l f  - f i e l d  of t h e  current. .  

I f  we l e t  y = HS/Hc2, then  



and 

2  y 2 + b  = 1 ,  e t2.78 ) 
. . 

' 

F i g u r e  37 shows q u a l i t a t i v e l y  t h e  r e l a t i o n s h i p  between 

. . H ( B )  and Hen(B). Notice tha tHen(B)  i s  always a t  l e a s t  as 

. l a r g e  a s  H(B), a n d  tha t ,  y =.gS i s  a l w a y s , a t  l e a s t  as l a r g e  . . 

,., 
a s  /3 = Hcl. ' The u t i l i t y  of Equation 2.75 l i e s  i n  r e l a t i n g  

t h e  f i e l d s  j u s t  . i n s i d e  the  s u r f a c e  of the  specimen t o  t h e  

f i e l d s  j u s t  o u t s i d e  the  sur face .  

F igure  38 shows q u a l i t a t i v e l y  t h e  r e l a t i o n s h i p  between 

Hen(B) or  Hex(B) and H(B) a t  t h e  su r face ,  f o r  t h r e e  s i t u a -  

t i o n s :  a)  where B i s  r e l a t i v e l y  small, b) where B i s  l a r g e ,  

and c )  where B = Hc2 i s  a t  i t s  maximum. 

2. Numerical methods 

a .  General method So lu t ions  t o  Equation 2.73a were 
. . 

obtained by mi.mnrical i n t e g r a t i o n  on a dig1 La1 computer, 

using a Runge-Kutta (RK) technique. We have used t h e  fol low- 
. . 

ing RK method, discussed by Scarborough (45). The equat ion  
. . 

which we a r e  so lv ing  i s  a  f i r s t - o r d e r  d i f f e r e n t i a l  equat ion 
. . 

of t h e  genera l  form 

We l e t  (xo,yo) denote a  known s t a r t i n g  p o i n t ,  and l e t  AX 

, . 





Figure 38. I l l u s t r a t i o n  of the way the surface f i e l d  Hen(B) 

or Hex(B) leads the in te rna l  f i e l d  H ( B ) .  Upper 
eq 

f igure  applies i n  the 'flux-entering case, and 
' .  lower f igure  applies i n  the flux-exiting c'ase 
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denote t h e  in te rva l  between the s e r i e s  of points xo, xl, 

x2, . . . , 5, a t  which we seek the corresponding ordinates 

y,, yl, y2, . . . , y :. We compute four quant i t ies  kl, k2, n 

k ,  and k4 via  ,3 

and obtain by averaging kl . . . k4 through the weighting 

scheme 

so tha t  the new point  (xl ,yl) i s  given by 

3 = o ' ." 4Y (2.82) 

The next point,  (x2 ,y2) i s  obtained i n  exactly the same way, 

by replacing (xo,y0) by (x1,y1) i n  Equation 2.80, and so on. 

Thus, by proceeding i n  t h i s  manner, one may eventually obtain. 

a l l  the points (xl,yl),  . . . , y as the desired solu- 

tion. 



I n  so lv ing  f o r  I? as a  f u n c t i o n  o f  p " ,  we have used t h i s  

r o u t i n e  with A x  .= 0.02, s o  t h a t  the '  r a d i u s  i s  d iv ided  i n t o  

50 equal i n t e r v a l s  i n '  t h e  range from 0.0 t o  1.0.' The e r r o r s  

wi th ,  t h i s  RK method a r e  p ropor t iona l  t o  (ax)  ', s o  t h a t  i n '  

t h e s e  circumsta.kes, a  AX of 0.02 i s  more than s u f f i c i e n t l y  
. . 

accura te  when compared with t h e  o the r  approximations used i n  

t h e  o v e r a l l  method. Eventual ly ,  we came t o  r e l y  upon two 

computer programs, depending upon whether one wished t o  

i n t e g r a t e  from t h e  . sur face  inwards, o r  from t h e  axis out -  

wards. 

An a d d i t i o n a l  complication, which preclud.ed t h e  use of 

a  canned RK r o u t i n e ,  was t h e  ' f a c t  t h a t  s p e c i a l  cons ide ra t ion  , 

was necessary ' a t  t h e  ze ro ( s )  of B(p) .' A s  w i l l .  be  shown i n  

t h e  nex t  chapter ,  t h e  s lope  of t h e  H versus  p curve a t  t h e  
N f l u x  f r o n t  i .  e . ,  where H - Hcl and B -"O) determines t h e  

d i r e c t i o n  of t h e  bulk f o r c e  per  u n i t  volume on t h e  vor tex  

a r r a y .  If t h e  s l o p e  of t h e  H versus  p curve becomes nega- 

t i v e  a t  t h e  f l u x  f r o n t ,  then t h e s e  bulk f o r c e s  a c t  inwards, 

p r e c i p i t a t i n g  a  dramatic and i r r e v e r s i b l e  c o l l a p s e  of f l u x  

s p i r a l s .  (This s t a r t l i n g  r e s u l t ,  which we have c a l l e d  t h e  

s p i r a l  c o l l a p s e  i n s t a b i l i t y ,  i s  d iscussed  i n  d e t a i l  i n  t h e  

nex t  chapter .  ) Thus, i t  was necessary  t o ,  examine t h e  de r iva -  

t i v e  a H / a p .  a t  t h e  ze ro ( s )  of B t o  determine i f  t h e  i n t e g r a -  

t i o n  should be allowed. t o  proceed, o r  be terminated. In 

a c t u a l  p r a c t i c e ,  a  zero i n  t h e  s lope  8H/8p was v e r i f i e d  by 



2 2 examining t h e  second d e r i v a t i v e  8 H / a p  numerical ly ,  s i n c e  

t h e  e n t i r e  procedure was l i m i t e d  by t h e  accuracy of t h e  

numerical  method. .. 

b. Magnetization The a r e a  under t h e  curve of B( p) 

versus  p i s  r e l a t e d :  t o  t h e  magnet izat ion of t h e  cy l inder .  

From t h e  usual  e l e c t r o m a g n e t i c r e s u l t s ,  

we have f o r  t h e  - axi .a l  d i r e c t i o n  i n  t h e  cy l inder  

where Hsz i s  t h e  magnitude of t h e  appl ied  l o n g i t u d i n a l  f i e l d  

a t  t h e  s u r f a c e ,  and aZ> i s  t h e  mean a x i a l  f i e l d  throughout 

t h e  cy l inder ,  defined a s  , , 

The magnetiza,tion i s  s a i d  t o  be paramagnetic. o r  diamagnetic 

according t o  whether < - 4 ~ , >  i s  n e g a t i v e  o r  p o s i t i v e ,  r e -  

spec t ive ly .  One could a l s o  d e f i n e  a mean c i rcumferen t i a l  

magnet izat ion per  mil; l e n g t h ,  < - 4 ? ' ~ ~ > ,  where 



and 

Equation 2.84 i s  most u s e f u l ,  s i n c e  t h i s  i s  what t h e  

exper imen ta l i s t  can measure d i r e c t l y .  We obtained numerical 

va lues  f o r  < - ~ T M ~ >  by performing t h e  i n t e g r a t i o n  of Equation 

2.85 numerical ly  . . using Simpson's r u l e .  . Simpson's r u l e  i s  

appropr ia t e  when t h e  f u n c t i o n  t o  be i n t e g r a t e d  do,es n o t  have 

excessive cu rva tu re ,  and t h e  number of o r d i n a t e s  i n  t h e  in- 

t e g r a t i o n  i s  an odd'number. The most genera l  Simpsonls r u l e  

formula i s  

where n i s  a n  odd i n t e g e r ,  f i  denotes  t h e  i t h  o r d i n a t e ,  and 

a l l  of t h e  xi a r e  evenly spaced. I n  genera l ,  t h e  m u l t i p l i e r s  
. . 

on t h e  right-hand s i d e  above fo l low t h e  p a t t e r n  



where i n  t h e  s p e c i a l  case  of on1.y t h r e e  o r d i n a t e s ,  t h e  mul- .' 

. . 

t i p l i e r s  a r e  . , simply 1, 4, and 1. 

Any zeros of B( p)  , which introduced an  oddly spaced 

p'oint ,  were accommodated by approximating t h e  a r e a  ab0u.t 

t h e  ze ro '  p o i n t  a s  a  t rapezoid.  I t  i s  est imated t h a t  neg- 
. . 

l i g i b l e  e r r o r  was introduced by t h i s  approximation. 

3. Phase diagrams 

We begin t h e  a n a l y s i s  of t h e  nonzero pinning case  by . 

examining phase diagrams analogous . t o  F igure  21 f o r  t h e  weak 

pinning l i m i t  . 
I n  order  ' t o  make a  comparison with t h e  weak pinning 

l i m i t ,  we s e l e c t e d  a  hypo the t i ca l  m a t e r i a l  'w i th  t h e  same 

lower c r i t i c a l  f i e l d  va lue ,  i. e. , Hcl = 0. 25Hc2. One such 

r e a l  substance would be: vanadium. Using t h e  Urban model 

f o r  Zc(B), 

we a r b i t r a r i l y  s e l e c t e d  a va lue  f o r  io of 0.2Oj and pro-  

ceeded t o  vary j C ( 0 )  through a wide range of va lues .  Sur- 

f a c e  pinning was i n i t i a l l y  discounted f o r  s i m p l i c i t y .  This 

was e f f e c t e d  by s e t t i n g  t h e  s u r f a c e  pinning parameter HS 

equal t o  HCln 

F igures  39 through 44 show t h e  in f luence  of inc reas ing  

t h e  pinning s t r e n g t h ,  while F igure  45 shows t h e  e f f e c t  of a  



modest amount of su r face  pinning. S ince  t h e  curves have a  

v e r t i c a l  tangent  a t  t h e  maximum v a l u e ,  o f  HsB, we s e e  ' t h a t  

inc reas ing  pinning, s t r e n g t h  tends  t o  i n c r e a s e  t h e  su r face  

p i t c h  ang le  a t  which t h e  t o t a l  cu r ren t '  i s  a maximum, and 

a l s o  t h e  . magnitude . of t h e  maximum cur ren t .  Also n o t e  t h a t  

as . t h e  pinning s t r e n g t h  incr .eases ,  t h e  su r face  f i e l d  needed 

, to  produce a  given H(0) . i n c r e a s e s  i n  magnitude ,- as evidenced 

by t h e  merger of t h e  two curves ( 0 . 5 ~ ~ ~  and H , ~ )  a t  zero  

p i t c h  angle .  A l l  curves i n  t h i s  s e r i e s  show a missing por- 

t i o n  i n  t h e  r eg ion  where HsZ - 0 ,  corresponding t o  p i t c h  

angles  near  90'. The 90' case  i s  r a d i c a l l y  d i f f e r e n t  from 

t h e  s i t u a t i o n s  with l e s s e r  s u r f a c e  p i t c h  ang les ,  s i n c e  f l u x  

s p i r a l s  h e r e  degenerate  i n t o  f l u x  r i n g s .  A s  a  r e s u l t ,  i t  

becomes . i n c r e a s i n g l y  more d i f f i c u l t  t o  o b t a i n  va lues  of HsO 

corresponding t o  a  given f i e l d  on t h e  a x i s  H(0) , because t h e  

i n t e g r a t i o n  may no longer  be performed from t h e  a x i s  out -  

wards, b u t  r a t h e r ,  must be performed from t h e  s u r f a c e  i n -  

wards. T h u s , o n e  m u ~ t  6 ~ ~ 3 3  a t  a n  a p p r o p r i a t e  HsB, ad see 

what a c t u a l l y  r e s u l t s  by t r i a l  and e r r o r .  A s  an  a d d i t i o n a l  

complication, t h e  s e n s i t i v i t y  dH(0)/dHsB becomes enormous ' 

near  90°, making t h e  guess f o r  HS0 t h a t  much more d i f f i c u l t .  

F i n a l l y , . ,  t h e  s p i r a l  co l l apse  i n s t a b i l i t y  ( s e e  nex t  chapter )  

q u i t e  o f t e n  a s s u r e s  t h a t  i t  i s  impossible  t o  r e a l i z e  a  given 

H ( 0 )  ; i. e. , t h e  c o l l a p s e  d r i v e s  t h e  f i e l d  on t h e  a x i s  above 

Hc2'. causing d e s t r u c t i o n  of t h e  mixed s t a t e .  



What i s  t h e r e f o r e  missing from ' t h i s  survey a r e  t h e  de- 

t a i l s  of the  r e g i o n  of t h e  phase diagram near  a s  = 90'. B e -  

1-iminary a n a l y s i s  i n d i c a t e s  t h a t  t h e  .behavior near  90' i s  

q u i t e  ,complex, , and .war thy of a  d e t a i l e d  i n v e s t i g a t i o n  i n  t h e  

f u t u r e .  An' i n h e r e n t  f e a t u r e  of such' a  phase diagram would be 

a  s p i r a l  c o l l a p s e  l i n e  d .e l inea t ing  those  regions  s u b j e c t  t o  

c o l l a p s e  from t h e  noncol lapse regions  of t h e  mixed s t a t e .  

F igure  46 shows t h e  in f luence  of inc reas ing  pinning on 

the  magnet iza t ion  of t h e  c y l i n d e r ,  while F igure  47 shows t h e  

change i n  t h e  f i e l d  p r o f i l e s  as t h e . p i n n i n g  s t r e n g t h  i s  

va r i ed ,  a l l  a t  a su r face  . p i t c h  ang le  of 15'. Figur,es 48 . 

through 52 . . show similar f i e l d  p r o f i l e s  a t  inc reas ing  s u r f a c e  

p i t c h  angles  ,through 8P. Figure  52 r e v e a l s  a n .  i n t e r e s t i n g  

s i t u a t i o n  wher.e por t ions  of t h e  curves of fi versus  ' fo r  
. . . . 

(0)  = 1 . 0  and 2.0 l i e  below gel. This i n d i c a t e s  t h a t ,  be- 
. C 

cause of t h e  s p i r a l  co l l apse  i n s t a b i l i t y ,  no s t a t i c '  s o l u t i o n s  
. . 

a r e  p o s s i b l e  under , these condi t ions .  

F,i-gures 53-55 ahow t h e  pruduc L o f ,  t h e  f l u x  d e n s i t y  B 

with t h e  two orthogonal components of t h e  c u r r e n t  d e n s i t y  
3 3 -+ 

< j > ,  and with t h e  magnitude of <j>. Recal l ing  t h a t  <j> i s  
3 3 

derived from t h e  c u r l  of B r a t h e r  t h a n  t h e  c u r l o f  H ,  we s e e  
3 

t h a t  s i n g u l a r i t i e s  i n  < j >  a r e  t o  be expected wherever 0 ~ / a p  

changes ab rup t ly ,  t y p i c a l l y  a t  t h e  f lux  f ront . ,  A smooth 
. . 

curve i s  obtained by p l o t t i n g  t h e  of B with < j > ,  a l -  

though t h e r e .  i s  a  s a c r i f i c e  i n  t h e  phys ica l  i n t u i t i o n  f o r  (3). 



N 

Figure .  39. Reduced su r face  f i e l d  components gslb and H,, reqil ired t o  y i e l d  

a f i e l d  on t h e  a x i s  equal t o f i c 2  and 0. sc2. Outer dashed 

l i n e s  d e f i n e  the  minimum value of a s  ( =  63.44O) necessary l o r  

s p i r a l  c,ollapse.  (See d i scuss ion  i n  Chapter 111.) Inner  

dashed l i n e s  d e f i n e  sec to r  where behavior i s  unknown, cor-  

responding t o  as  >87.5O. f c ( 0 )  = 0.25 corresponds t o  weak 

pinning mate r i a l  
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Figure  40. Reduced su r face  f i e l d  components Hsb and H i z  r equ i red  t o  y i e l d  
. . 

. . a  f i e l d  on t h e  a x i s  equal t o  Gc2 and 0 . g C 2 .  Dashed l i n e s  de-. .' 

f i n e  t h e  minimum, value of as ( =  82.87O) necessary f o r  s p i r a l  

co l lapse .  ( s e e  disc ,ussion i n  c h a p t e r  111.) Missing por t ions  
. ,of the .  two curves  i n d i c a t e  region  where behavior i s  unknown 

(as .>87..s0) . . 
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N : 
' Figure 41..  educed surface f i e l d  compon&nti l?,@ and Hi, required t o  .y ie ld  

. " a.  f i e l d  on t h e  ax i s  of Ec2 and 0 .  fiC2. Dashed l i n e s  def ine  

the  minimum value of as ( =  86.42O) necessary for .  s p i r a l  col-  

lapse .  (See discussion i n  Chapter 111.) ~ i s i i n ~  port ions of 

. the .two zurves indi.cate regSon where behavior i s  unknown 

(a, >8?. 5 0 ) .  Zd(0): = 2.0 ind ica tes  a material  with moderate 

pi 'ming s t rength  . 
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Figure  42. Reduced su r face  f i e l d  compondnts fisl and Hsz requi red  t o  y i e l d  

a  f i e l d  on t h e  a x i s  of fic2 and 0.9,~. Missing s e c t i o n  o f .  
u 

curve a t  H,, " 0 i n d i c a t e s  region  where behavior i s  unknown 

(0 ,>87.50) .  . zc (0 )  = 5.0 i n d i c a t e s  a  mater ia l .  with moder- . 

a t e l y  s t ~ o n g  pinning s t r e n g t h  







N '  

. . Figure  43. Reduced su r face  f i e l d  components Esgl and Hsz r e q u i r e d .  t o  .., 
y i e l d  a  f i e l d  on t h e a x i s  between 0.5Gc2 and Hc2. Two 

. . . . cuTves a r e  ind i s t ingu i shab le  wi th in  t h e  width of an ink  
. . l i n e .  M i s s i n g  s e c t i o n  a t  gs, " 0 i n d i c a t e s  r e g i o n w h e r e  

behavior i s  unknown. ( a s  >87.5O). z c ( 0 )  = 25.0 i n d i c a t e s  a  

very s t rong pinning mate r i a l  
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F i g u r e  44. Summary of F igu res  39-43, showing reduced s u r f a c e  f i e l d  corn- 

p0nent.s. r e q u i r e d  t o  y i e l d  a  f i e l d  on t h e  'axis of %*. 
Missing p o r t i o n s  o f  each curve  a t  BsZ 0 i n d i c a t e  r e g i o n  

where behavior  i s  unknown 







Figure 45. Inf luence  of surface pinning on the reduced sur- 

' face f i e l d  components necessary t o  yield  a  f i e l d  
' N N N 

. . 
on the axis  of Hc2. . J c (0 )  =1.0, Bo = 0.20, fi = 
0.25, and.gS = 0.40. ,.Inner dashed c i r c l e  repre- 

sents  ..a value of the surface f i e l d  equal t o  

( =  0.25). Outer sol id  c i r c l e  represents  a  c l  N 

value of : the  surface f i e l d  equal t o ,  HS, the r e -  

duced surface bar r ie r  f i e l d  ( =  0.40). With the 

postulated amount of surface pinning, sample r e -  

mains i n  Meissner s t a t e  u n t i l  [ H ; ~  + ~ ' $ 1 ~  ex- 
N 

ceeds HS. Region between l i n e s  a ,  b  ind ica te  

region where behavior i s  unknown (a >87.s0) 
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Figure 46. Reduced a x i a l  magnetization <-&G,> versus su r face  p i t c h  

angle  a s ,  f o r  varying amounts of pinning s t r eng th .  A l l  
N 

curves apply t o  case  where f i e l d  on the  a x i s  i s  Hc2 and 

the re f  ore  show g r e a t e s t  poss ib le  paramagnetic a x i a l  moment. 

Sur face  pinning was ignored. Relevant parameters a r e  

6, = 0.20, and = 0.25 
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PITCH ANGLE 



~ i ~ u r e  4?. F i e l d  p r o f i l e s  fi v e r s u s  p a t  a s u r f a c e  p i t c h  ang le  of 150, 
and a t  s u r f a c e  f i e l d s  ,such t h a t  t h e  f i e l d  on t h e  a x i s  i s  

%2* F i v e  s e p a r a t e  curves  show t h e  i n f l u e n c e  of vary ing  
amounts o f  bulk  pinnlng s t r e n g t h .  S u r f a c e  p inn ing  has  .been 

ignored ,  and = Ifcl = 0.25. These curves  a r e  t h e  analog 

of .F igu re  27 f o r  t h e  weak pinning i i m i t  
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Figure  48. , Reduced f i e l d  p r o f i l e s  versus 8 a t  a sur face  p i t c h  angle  of 

. 30°, and a t  su r face  f i e l d s  such t h a t  t h e  f i e l d  on .  t h e  a x i s  i s  

gc2. F ive .  s e p a r a t e  c u r v e s  show t h e  in f luence  of varying 

amounts of bulk pinning s t rength .  Surface pinning has been 

ignored,  and. P = gCl = '0.25.  These curves a r e  analogous t o  

F igure  27 which descr, ibes the  weak pinning l i m i t .  Also s e e  

Figure  1;-7 
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Figure  49. Reduced f i e l d  p r o f i l e s  fi versus a t  a  su r face .  p i t c h a n g l e  of 

4s0, and a t  su r face  f i e l d s  such t h a t  t h e  f i e l d  on t h e  a x i s  i s  .., 
Hc2- F ive  separa te  curves show t h e  inf luence  of varying . . 

amounts -of bulk pinning s t r eng th .  Surface pinning h a s .  been 

ignored,  2nd P .  = HC1 = 0;25. Also see  Figures  47  and . 
. 48 
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Figure  50. Reduced-f ie ld  p r o f i l e s . H  versus a t  a su r face  p i t c h  angle  of ' . ' 

60°, and a t  s u r f a c e f i e l d s  such t h a t  t h e  f i e l d  on t h e  a x i s  is' . '  
N 

Hc2* F ive  separa te  .curves show t h e  in f luence  of varying 

amounts of bulk pinning s t r eng th .  Surface p inning  has been 
N 

ignored,  and =. H c l  = 0.25. Also see  Figures  47-49 







Figure  51. Reduced f i e l d p r o f i l e s  G v e r s u s  a t  a  surfac-e p i t c h  ang le  of 

75O, and a t  su r face  f i e l d s  such t h a t  t h e  f i e l d  en t h e  a x i s  i s  

GC2. Five  s e p a r a t e  curves shGw t h e  in f luence  of varying 
amounts of bulk pinning s t r eng th .  Surface pinning has been 

N 

i g n o r e d ,  and = Hcl = 0.25. Also see  Figures  47-50 
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Figure  52. Hypothet ical  f i e l d  p r o f i l e s  H versus  a t  a  s u r f a c e  p i t c h  ang le  

of 8 5 O ,  analogous t o  Figures  47-31. Since por t ions  of t h e  
N 

curves f o r  f c ( 0 )  = 1.0  and 2.0 l i e  below Hcl, they  i n d i c a t e  

t h a t  because of s p i r a l  co l l apse  ( s e e  Chapter 1111, no s t a t i c  

' s o l u t i o r ~ s  a r e  poss ib le .  That i s ,  s p i r a l  co l l apse  T n s t a b i l i t y  

would cause f i e l d  t o  exceed H e p ,  d r i v i n g  t h e  sample i n t o  

e i t h e r .  t.he normal s t a t e ,  or i n t o  a f lux-f low regime 
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E'igure 53. .Reduced c u r r e n t  d e n s i t y  p r o f i l e s  showing t h e  
N U  

produc t  B<jZ> v e r s u s  a t  two d i f f e r e n t  ' su r f ace  
p i t c h  a n g l e s ,  and a t  f i e l d s  .such t h a t  on t h e  

u . 
a x i s ,  6(0) = Hc2 = 1. The f i v e  s e p a r a t e  curves"  
show i n f l u e n c e  o f  va ry ing  amounts of b u l k ,  p inn ing  
s t r e n g t h .  Cur ren t  d e n s i t y  h e r e  i s  p r o p o r t i o n a l  

-k -k -+ -k 

t o  V x B  r a t h e r  t h a n  VxH.  s i n c e  a i / a p "  i s  d i scon-  
t i nuous  a t  t h e  f l u x  f r o n t ,  <Jz shows sha rp  

N  

s p i k e s  where B m O .  By p l o t t i n g  t h e  p roduc t  
g < j > ,  such s i n g u l a r i  t i e s  a r e  removed, a l t hough  
a t  a s a c r i f i c e  t o  t h e  r e a l i z a t i o n  of  t h e  a c t u a l  
form of  < j>  
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~ i ~ u r e  55'.  educed c u r r e n t  d e n s i t y  p r o f i l e s  showing t h e  , 

p-oduc t of and t h e  ,magnitude of < j  >, a t  two 

d i f f e r e n t  su r face  p i t c h  angles ,  and at f i e l d s  
N 

s u c h t h a t  on the  a x i s ,  g ( 0 )  = Hb2 = 1. See 

F igures  5'3 and '54 
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The sharper  cu rva tu re  exhib i ted  i n  t h e  7P case  compared y i t h  
, 

t h e  45' case  i s  i n d i c a t i v e  of t h e  s t eeper  f l u x  g r a d i e n t s  en- 

countered i n  t h e  former s i t u a t i o n .  

I. Comparison wi th  Experiment 

1. Magnetization 

We compared our model t o  t h e  published d a t a  of Tirnms and 

Walmsley (39) , who obtained magnet izat ion curves f o r  two 

lead-bismuth c y l i n d e r s  under varying condi t ions  of appl ied  

f i e l d  and t r a n s p o r t  cu r ren t .  Their  samples were ~ b - 5 6 g ~ i  

c a s t  under vacuum i n  3 rnm i n s i d e  diameter g l a s s  tubes.  Axial  

f i e l d  was suppl ied by a 0-6000 Oe superconducting so lenoid ,  

and a t r a n s p o r t  c u r r e n t  was ramped from 0 t o  1000 Amperes i n  

synchronizat ion wi'th t h e  source of t h e  f i e l d .  Sur face  p i t c h  

ang le  could be s e t  t o  2% accuracy i n  t h e  r a t i o  of Hgl/Hz. 

F igures  56 and 57 con ta in  reproduct ions  .of t h e i r  d a t a  f o r  

two samples w i t h  d i f f e r e n t  h i s t o r i e s  of anneal ,  under .condi- 

t i o n s  of zero t r a n s p o r t  c u r r e n t .  We have l a b e l e d  t h e s e  Speci-  

men #l and 'specimen #2. F igures  59 and 59 a r e  reproduct ions  

of t h e i r  da ta  f o r  t h e  same two samples, under cond i t ions  of 

. nonzero t r a n s p o r t  c u r r e n t .  The symbol C on t h e s e  curves rep-  

r e s e n t s  t h e  tangent  of t h e  s u r f a c e  p i t c h  ang le  (Hs6/HSz). We 

have superimposed our r e s u l t s ,  on t h e  above p l o t s  i n  order  t o  
. . 

compare t h e i r  d a t a  and our model. 



. . 

Figure  56. Reproduction of Timms and Walmsley ( 3 9 )  mag- 
n e t i z a t i o n  d a t a  f o r  Specimen .#l, toge the r  with 
ca lcu la ted  magnet izat ion curve der ived  from 
two-parameter l eas t - squares  f i t t i n g  of T i m m s  
and Walmsley d a t a  

. . 







~ i g u r e . 5 7 .  Reproduction of Timm's and whmsley (39) mag- 
n e t i z a t i o n  d a t a  , f o r  Specimen #2, toge the r  with 
c a l c u l a t e d  magnet izat ion curve der ived  from 
two-parameter l eas t - squares  f i t t i n g  of Timms 
and Walmsley d a t a  
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F i g u r e  59. Reproduct ion of Tirnms and Walmsley (39) magne t i za t ion  d a t a  
f o r  Specimen #2, t oge the r  wi th  c a l c u l a t e d  magne t i za t ion  
curve  de r ived  from three-parameter  l e a s t - s q u a r e s  f i t t i n g  of 
d a t a  i n  F igu re  57. Various C va lues  denote  t angen t  of t h e  
s u r f a c e  p i t c h  a n g l e  







: Timms and Walmsley (39) g i v e  no measured value '  f o r  t h e  . . 

lower c r i t i c a l  f i e l d s  Hcl of t h e  two samples, a l though Hc2 

was measured t o  be 5650 Oe, presumably f o r  both samples. .  , 

Voight (46) c i t e s  values f o r  K i n  lead-bismuth averaging 

about 14, which sugges t s  a va lue  f o r  $ (= Hcl/H ) of about c2 
0.024, using our model f o r  B ( K ) .  

I n  at tempting t o  model t h e i r  experimental  r e s u l t s ,  our 

approach was t o  employ a f i t t i n g  program t o  o b t a i n  appro- 

p r i a t e  v a l u e s  of j c ( 0 )  and go f o r  t h e  c r i t i c a l  c u r r e n t ,  using 

t h e i r  zero c u r r e n t  magnet izat ion d a t a  (F igures  56 and 57) .  
.., 

Late r ,  we var ied  t h e  t h i r d  parameter ,  HE, t o  account f o r  sur -  

f a c e  pinning. Tables 2 and 3 show t h e  magnet izat ion va lues  

a s  read from Timms andWalmsleyls (39) curves using a m i l l i -  

meter r u l e  and appropr ia t e  sca l ing .  The f i t t i n g  program 

var i ed  %(0)  and 'go, u n t i l  t h e  mean square d i f f e r e n c e  between 

t h e  ca lcu la ted  magnet izat ion curves and t h e  experimental  mag- 

n e t i z a t i o n  curves were a minimum. The f i t t i n g  was accom- 

p l i shed  by rnga.rding t h e  f lux-en te r ing  luap~le t iza t ion  curve '  

and t h e  f l u x - e x i t i n g  curve a s  one fo lded  curve. Tables 4 and 

5 show t h e  r e s u l t s  of t h e  f i t t i n g ,  assuming zero  su r face  p i n -  

ning.  I n  e f f e c t i n g  t h e  f i t t i n g ,  t h e  su r face  f i e l d  H,, was 

modeled. by Equation 2.34 i n  t h e  f lux-enter ing  p o r t i o n s ,  and 

by Equation 2.35 i n  the,  f lux-ex i t ing  por t ion .  
m, 

After  t h e  parameters J c ( 0 )  and io were obta ined ,  com- 

pa r i son  was made with t h e  Timms and Walmsleyls (39) nonzero 



c u r r e n t  magnet izat ion curves.  Prel iminary comparisons with 

t h e i r  magnet izat ion curves i n d i c a t e d  a poor agreement wi th  

t h e i r  r e s u l t s  ; i t  was t h e r e f o r e  hypothesized t h a t  t h e  d i s -  

c repancies  were due t o  su r face  pinning. We then  attempted a 

three-parameter f i t  t o  t h e  zero-current  magnet izat ion d a t a ,  

where now the  su r face  pinning parameter fiS was a v a r i a b l e ,  

a long with Zc(0) and 6,. Tables 6 and 7 show t h e , r e s b l t s  of 

t h e  three-parameter f i t t i n g s ,  and .F igures  58 and 59 sum- 

marize our model comparison with T i m m s  and Walmsleyts d a t a  

Under condi t ions  of nonzero c u r r e n t ,  our model p r e d i c t s  a . 

s i g n i f i c . a n t l y  ' g r e a t e r  va lue  of - 4 n ~ ~  than i s  a c t u a l l y  meas- 

ured. The .Walmsley and Timms theory  r e f  e r red  t o  i n  Figures  

58 and 59 i s  based on a d t f f e r e n t i a l  equat ion of t h e  form 
I 

where w i s  a pinning f o r c e  densi . ty  parameter a.n.d R i s  t h e  

cy l inder  r ad ius .  They assume a pinning f o r c e  d e n s i t y  r e l a -  

t i o n  .of t h e  form 

and t h e i r  model ignores  su r face  b a r r i e r s .  The model of Equa- 

t i o n  2.92 cannot be. v a l i d  i n  t h e  l i m i t  as 6 approaches zero,  

because i t  y i e l d s  a pinning f o r c e  per  u n i t  l e n g t h  which d i -  
- -& verges a s  B i n  t h i s  l i m i t .  



Table 2. Tims and Walmsleyls (39) d a t a  f o r  Specimen #l 

Point  Reduced -4rrM/Hc2 . -4w/HC2 
no. . appl ied  

f b.eld f l u x  f l u x  
en te r ing  e x i t i n g  

Hs dHC2 



- 
Table 3. Timms and Walmsleyls (39) data for  Specimen #2 . . '  

Point 
no. 

Reduced . 
applied 
f i e l d  

Hsz'Hc2 

- ~ T M / H ~ ~  - 4 r W ~ .  C2. ' .  . . 

f l u x  f l u x  . , 

entering exit ing 

13  0.450 0.0266 -0.0232 

14 0. 500 0.0228 -0.0200 



Table 4. Results of f i t t i n g  theoret ical  curve t o  Timrns and 
Walmsley' s data Specimen #1, no surface pinninga 

Point Applied Exp er imen t a l  Calculated 
no. f i e l d  m:agnetization magnetization 

xi. 'i 
'i 

0.500 

0.600 

0.700 ; 

0.800 

0.  goo' 
0.975 

- -- 

%ina l  values of va r i ab l e  parameters: 
8, = 0.1663 

f,(0) = 0.6253 . 
Values of fixed parameters: 

= 0.024 
Hs = 0.024 

Average of squared ' deviations: 

4 1 0.0313 x10- = 
38 2 
i$l(Yi - 'i) 



Table 4 (Continued) 

Point  Appli ed. Experimental Calculated 
no. f i e l d  magnetizati.on magnetization 

x; Y, Z: 



Table 5. -Results  o f  f i t t i n g  theore t ica l  curve t o  Timrns and 
Walmsley's data Specimen #2, no surface pinninga 

Point Applied Experimental Calculated 
no. f i e l d  magnetization magnetization 

, '  Xi Yi ' , zi 

' ~ i n a l  values of var iable  parameters: 
B, = 0.2274 

U 

i C ( O )  =0.3916 . 
Values of fixed parameters: 

p =.0.024 
= 0.024 . . s 

Average of squared deviations : 



Table 5 (Continued) 

. . 
Point Appl i ed. Experimental' . Calculated . . 

no. f i e l d '  magnetization magnetization 
xi 'i zi 



Table 6. Resu l t s  of f i t t i n g  t h e o r e t i c a l  curve t o  T i m m s  and 
Walmsley ' s d a t a  Specimen #1, with s u r f a c e  pinninga 

Po in t  Appli ed Experimental c a l c u l a t e d  . . 
no. f i e l d  magnet izat ion magnet izat ion 

'i 'i 'i 

a ~ i n a l  va lues  of v a r i a b l e  parameters: 
B o = 0.1651 

Value o r  fixed parameter: 
p '  = 0.024 . 

Average of squared d e v i a t i o n s  : 



Table 6 (Continued) 

Point Applied, Experimental Calculated 
no. f i e l d  magnetization magnetization 

*i 'i zi 



Table 7. Results of f i t t i n g  theoret ical  curve t o  Timms and, 
Walmsley' s data Specimen #2, with surface pinning 

Point . Applied Experimental Calculated 
no. f i e l d  magnetization magnetization 

< .  

'i 'i ' 'i 

0.050 

0.075 

0.100 

0.125 

0.150 

0.175 

0.200 

0.250 

0.300 

o* 350 
0.400 - 
0.450 

0.500 

0.600 

0.700 

0.800 

0. goo 
0.975 

?Final  values of variable parameters: 
B = 0.2235 
-0 
Jc(0) = 0.3946 
8, = 0.02446 . 

Value of fixed parameter: 
p = 0.024 . 

Average of squared devialions: 



Table 7 (Continued) 

Point Applied Experimental Calculated 
no. f i eld magnetization magnetization 

'i . 'i 'i 

19 0.975 '-0.0009 -0.0006 
I 

20 0.900' -0.0032 -0.0026 

21 0.800 -0.0070 -0.0056 
22 . 0. '700 -0.0112 -0.0093 

23' 0.600 . -0.0163 -0.0138 
24 0.500 -0.0200 -0.0194 
25 0.450 -0.0232 -0.0227 
26 0. 400 -0.0271 -0 0266 
27 0.350 -0.0313 ' -0.0310 
28 0.300 -0.0'362 -0.. 0361 

29 .  . . 0.250 -0.0418 -0.0420 

30 0.200 .! -0.0482 -0.0491 

31 0.175 -0.0525 -0.0532 
'3 2 0.150 -0.0575 . -0.0576 

33 0.125 -0.. 0622 ' -0.0626 

-. 34 0.100 -0.0683 -0.0681. 

35 0.075 -0.0758 --0.0744 

' 36 0.050 -0.0851 ' -0.0817 

37 0.0 -0.1095 -0.1087 



2. Current  

~ i r n m s  '.and Walmsley (39) measured, f o r  each specimen', 

th.e normalizat ion c u r r e n t ,  def ined  t o  be t h e  c u r r e n t  a t  which 

t h e  sample r e v e r t s  t o  t h e  normal s t a t e .  ~ i ~ u r e  60 shows, a 

comparison between t h e i r  experimental  normal iza t ion  . c u r r e n t s  . ' . 

and t h e  o f  our model, where . . both curves a r e  

riormalized according t o . a  u n i t  of c u r r e n t  def ined  t o ' b e  , . 

. . 

With a n  Hc2 of 5650 Oe and a sample r a d i u s  of 1 .5  mm, . . t h e  

u n i t  of c u r r e n t  If i s  2119 A. We c a l c u l a t e  t h e  normal iza t ion  

c u r r e n t  by determining t h e  magnitude of t h e  s u r f a c e  f i e l d ,  

Hs ,  a t  which t h e '  f i e l d  i n s i d e  t h e  cy l inder  f i r s t  reaches  H,~.,  

Thenormal iza t ion  c u r r e n t  i s  r e l a t e d  t o  Hs v i a  . . 

t h a t  i n  reduced form, 

Figure  60 shows t h a t  t h e  p red ic ted  va lues  f o r  t h e  nor- 

ma l i za t ion  c u r r e n t  does n o t  compare wel i  with t h e  measured. 



values.  A t  p r e s e n t  we have no reasonable  explanat ion  f o r  

t h e  l a r g e  d i sc repanc ies .  However, one would expect  reduced 

normal iza t ion  curr .ents  i f  t h e  app l i ed  c u r r e n t  and f i e l d  were 

brought t o  f i n a l  va lues  too  qu ick ly  f o r  t h e  sample t o  remain 

a t  one temperature. 



Figure 60. Experimental and theo re t i ca l  reduced normalization 
cur ren ts  versus tangent of the surface  p i t ch  
angle,  f o r  the two specimens of Tirnms a-nd 
Walm s.1 ey C 39 
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SPIRAL COLLAPSE INSTABILITY 

A. . In t roduc t ion  

Our bas ic  d i f f e r e n t i a l  Equation 2.14 r e l a t i n g  H (B) 
eq 

and'  t h e  r a d i u s  p d i s p l a y s  an  unusual f e a t u r e  when w r i t t e n  

i n  t h e  form 

where pc(B), def ined  a s  

may be c a l l e d  t h e  f ie ld-dependent  c r i t i c a l  r a d i u s .  We s e e  

; immediately t h a t  a  f o r t u i t o u s  combination of parameters 

might l ead  t o  t h e  cond i t ion  where pc(B) > Rc(p) ,  r e s u l t i n g  

f n  a H / a p  l e s s  than  zero.  This i s '  i n  marked c o n t r a s t  t o  t h e  

c r i t i c a l  s t a t e  model f o r  s t r a i g h t  v o r t e x  l i n e s ,  which pre- 

d i c  ts  t h a t  aH/a p i s  always p o s i t i v e  In  t h e  f lux- .enter ing 

case.  A s  one may. e a s i l y  demonstrate,  a  nega t ive  a H / a p  i s  

u s u a l l y  a s soc ia ted  with a  paramagnetic l o n g i t u d i n a l  moment, 
. . 

and can a l s o  l ead  t o  a  sudden c a t a s t r o p h i c  c o l l a p s e  of f l u x  

s p i r a l s .  

Before d i scuss ing  t h e  phys ica l  arguments desc r ib ing  t h e  

co l l apse ,  we f i r s t  d e f i n e  two q u a n t i t i e s ,  p+ and p - , which 

w i l l  be needed i n  t h a t  d iscuss ion .  p+ and p - a r e  those  r a d i i  



where pc(B) and ~ , ( p )  a r e  equal ;  i . e . ,  where a ~ / a p  i s  zero.  

Because we a r e  &oncerned with t h e  behavior a t  t h e  l ead ing  

edge of t h e  f l u x  f r o n t ,  we eva lua te  Equation 3.2 with B = 0,  
. . 

r e s u l t i n g  i n  

s o  t h a t  from Equation 2.21 we have 

a 2 
P, = Rc(p) = p + p c o t  as  

The two s o l u t i o n s  t o  Equation 3.4 a r e  c a l l e d  p+ and p : - 

2 2 2 %  
p+ = %pc + [(&pc) - a c o t  a s ]  

P -  = YP, - - a2cot2as]% . - ( 3 -  5 )  

We see  t h a t  p+ and p a r e  r e a l  only  i f  - 

and t h a t  

when tanas = 2a/pc. ' Figure  61 shows q u a l i t a t i v e l y  t h e  



Figure  61. Comparison of f l u x o i d  r a d i u s  .of cu rva tu re  Rc( p) 

and t h e  f luxo id  c r i t i c a l  r a d i u s  pc(B), f o r  f o u r  

hypo the t i ca l  va lues  of pc. Minimum i n  R;( p) f a l l s  

i n s i d e  t h e  cy l inder ,  i n d i c a t i n g  t h a t  t h e  s u r f a c e  

p i t c h  angle  i n  t h i s  example exceeds 45' 
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Figure 62. Typical behavior of pc(B"), pc "-'(E), and .?,(B"), 
N 

here  i l l u s t r a t e d  f o r  $ = 0.024, Bo = 0.20, and 

f c ( 0 )  = 2.50, such t h a t  pc(0) = 0.0096 and 

0 = 104 
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geometr ical  i n t e r p r e t a t i o n  of Equation 3.5, and Figure  62 

( ,  and . Both pi1(;) shows t h e  behavior of P c ( ~ ) ,  pc 
N 

and f;(B") remain f i n i t e  a s  B approaches zero. 

B. Physical  Argument 

1. . Force balance 

I n  Equation 2.18 we had a n  express ion  f o r  t h e  f o r c e  per 

u n i t  volume f a c t i n g  on a v o r t e x  a r ray .  This could a l s o  have 

been w r i t t e n  as 

where we see  immediately t h a t  t h e  d i r e c t i o n  of f i s  determined 

by t h e  a l g e b r a i c  s i g n  of aH/ap. I f  f .is zero ,  v o r t i c e s  n'ear 

t h e  f l u x  f r o n t  ( p+) a r e  i n  a m e t a s t a b l e  equi l ibr ium,  and if 

aH/ap i s  nega t ive ,  t h e  n e t  f o r c e  per u n i t  volume a c t s  i n -  

wards, r e s u l t i n g  i n  an i n s t a b i l i t y .  Under t h i s  l a t t e r  con- 

d i t i o n ,  v o r t i c e s  near  t h e  f l u x  f r o n t  w i l l  spontaneously co l -  

1aps.e t o  t h e  vicinity of p - .  A t  p-, aH/ap hecnmes pnsi,t.i_ve 

again ,  so  t h a t  a n  a c c r e t i o n  of f l u x  occurs  i n  t h e  neighbor- 

hood o f  p - . F i g u r a t i v e l y  speaking, p+ r e p r e s e n t s  t h e  c r e s t  

of a f r e e  energy h i l l ,  and p - r e p r e s e n t s  t h e  bottom, of t h e  

trough. 
# 



2. C o l l a ~ s e  sequence 

We at tempt  t o  c l a r i f y  t h e  above d i s c u s s i o n  by n a r r a t i n g  

a  p o s s i b l e  ' co l lapse  sequence ( s e e  Figure  63) .  We imagine a 

type-I1 cy l inder  i n  t h e  v i r g i n  s t a t e  (F igure  63A) and con- 

nected t o  some apparatus  which a n  supply a  t r a n s p o r t  . c u r r e n t  

I, and a n  a x i a l  s u r f a c e  f i e l d  Ha. The r e s u l t a n t  f i e l d  a t  t h e  

. su r face  w i l l  have magnitude Hs = [H: + HZ]', where Ha i s  t h e  

f i e l d  due t o  t h e  cu r ren t .  We f u r t h e r  assume t h a t  I, and Ha 

may be regula ted  so a s  t o  mainta in  t h e  r a t i o  Ha/HZ cons tant .  

This guarantees  t h a t  t h e  su r face  p i t c h  ang le  a, i s  always t h e  

same. 

A s  Ha and IZ a r e  slowly increased  from zero ,  t h e  sample 

remains f l u x - f r e e  u n t i l  Hs reaches  t h e  lower c r i t i c a l  f i e l d  

Hcl. A s  Hs then slowly exceeds Hcl, f l u x  s p i r a l s  s t a r t  t o  

p e n e t r a t e  t h e  c y l i n d e r ,  r e s u l t i n g  i n  a  f i e l d  p r o f i l e  similar 

t o  t h a t  of F igure  63B. For s i m p l i c i t y ,  we w i l l  assume t h a t  

a  su r face  b a r r i e r  f i e l d  does n o t  e x i s t .  A s  Hs now i n c r e a s e s ,  

the p o s i t i o n  of t h e  f l u x  f r o n t ,  pp ,  moves inwards, and more 

f l u x  s p i r a l s  p e n e t r a t e  t h e  s u r f a c e  of t h e  cy l inder .  A t  t h e  
. . . 

. same time, a H / a p  a t  t h e  f l u x  f r o n t  grows smaller  and smal ler ,  

u n t i l  a t  some c r i t i c a l  value of Hs, say  Hsc,  aH /ap  a t  pp ap- 

proaches z e r o ,  and p reaches  t h e p o i n t  p+ (F igure  63C). The 
P 

sample i s  now a t  t h e  p o i n t  where a n  i n s t a b i l i t y  i s  about t o  

occur. We now i n c r e a s e  Hs a  minute amount E above Hsc, and 

a f l u x  c o l l a p s e  occurs.  Flux s p i r a l s  a t  t h e  f l u x  f r o n t  



Figure 63. Sequence of events leading up t o  s p i r a l  col lapse  
i n s t a b i l i t y .  Hs i s  the  magnitude of the  surface  
f i e l d ,  and Hs, i s  the  c r i t i c a l  value o f  the  sur- 
f ace  f i e l d ,  beyond which col lapse  occurs. & i s  

an in f in i t e s ima l  increment i n  Hs 
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c o l l a p s e  t o  t h e  v i c i n i t y  of p - ' (where once aga in  a ~ / a p  be- 

comes p o s i t i v e )  , and a t  the  same time . add i t iona l  f l u x  pene- 

t r a t e s  ' t h e  c y l i n d e r ,  so t h a t  t h e  r eg ion  between p+ and t h e  

su r face  maintains  the  same f l u x  p r o f i l e  (F igure  63D). With 

Hs h e l d  f i x e d ,  a d d i t i o n a l  f l u x  cascades inwards, so  t h a t  the. 

. cy l inder  assumes t h e  sequence of f i e l d  p r o f i l e s  shown i n  

Figure  63D. Eventua l ly  t h e  r e g i o n  between p+ and p - f i l l s  

completely with f l u x .  With ' f u r t h e r  i n c r e a s e s  of Hs, we s e e  

p r o f i l e s  a s  i n  F igures  63E and 'F, 
. . 

C.  Energy and Heat 

We may apply t h e  f i r s t  l a w  of thermodynamics t o  de- 

termine t h e  h e a t  r e l e a s e d  during t h e  collap'se.  process .  We 

w r i t e  t h e  f i r s t  l a w . i n  t h e  form 

where . . t h e  primes denote  Itper u n i t  l e n g t h  of c y l i n d e r t t ,  Q i s  

t h e .  h e a t  r e l e a s e d ,  AW i s  t h e  work done by the e x t e r n a l  cur- 

r e n t s  and. f i e l d s ,  and @ i s  t h e  change i n  t h e  Helmholtz 

f r e e  energy of t h e  cyl inder .  

I n  F igure  64 we have a  ske tch  of B versus, p immediately 

before ,  and immediately a f t e r  c o l l a p s e  has  occurred. Notice 

t h a t  i n ,  t h e  r e g i o n  p < p  < a ,  t h e  f l u x  d e n s i t y  i s  t h e  same 
P  

be fo re  and a f t e r  co l l apse ,  and i n  t h e  r e g i o n  O < p < p  B i s  
P '  

zero before  c o l l a p s e  occurs.  We may now c a l c u l a t e  t h e  change 



Figure  64. Crude sketch of f l u x  p r o f i l e s  be fo re  and a f t e r  
' 

s p i r a l  c o l l a p s e  i n s t a b i l i t y  occurs ,  a s  used t o  
c a l c u l a t e  change i n  Helmholtz . f r e e  . energy during 
t h e  c o l l a p s e  process  
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. . 

i n  t h e  : ~ e i m h o l t z  f r e e  energy, a s  fol lows.  

Let  Fa denote t h e  f r e e  energy d e n s i t y  a f t e r  c o l l a p s e ,  

and l e t  Fb denote t h e  f r e e  energy d e n s i t y  be fo re  co l l apse .  
. . 

Then t h e  change i n  f r e e  e n e r g y  per  u n i t  l e n g t h  of cy l inder  

The t h i r d  i n t e g r a l ,  i s  zero s i n c e  B = 0 f o r  p < p  before  co l -  
P  

l a p s e ,  and t h e  second and Earth i n t e g r a l s  have equal  msgni- 

tudes because the  before  and a f t e r  f l u x  p r o f i l e s  a r e  i d e n t i -  

c'al. i n  t h e  r eg ion  p. < p '<a. We are l e f t  wit11 
P  

where t h e  . e x p l i c i t  dependencies of F upon B,  and B upon p 
\ 

have been i n s e r t e d .  Although B( p)  versus  p i s  ob,tained from 

numerical i n t e g r a t i o n ,  F(B) may be obtained a n a l y t i c a l l y  v i a  



Equation 2.27. A p l o t  of F(B) i s  shown i n  ~ i ~ u k e  1.5 f o r  

severa l  values of the  r a t i o  Hcl/Hc2 ( =  1'); b a s e c  on Equa- 

t i o n  2.27. Knowledge of the f l u x  p r o f i l e  B ( p )  t h u s e n a b l e s  

the  i n t eg ra t ion  of Equation 3.11 t o  be performed numerically. 

Next ,  we consider the  work done by the  cur ren ts  and 

f i e l d s .  Using a fami l ia r  r e s u l t  from electromagnetism, we 

have t h a t  the  energy crossing a u n i t  area  of cyl inder sur- 

f ace  per u n i t .  time i s  

--f 3 . . 

where E, and Hs a r e  the  e l e c t r i c  and  magnetic f i e l d  vectors  

a t  the  surface  of the cylinder.  In  cy l ind r i ca l  coordinates,  

~ o y n t i n g  s vector becomes. 

where the u n i t  vector - i nd i ca t e s  t h a t  energy i s  flowing 

i n t o  the cylinder i n  a r a d i a l  d i r ec t ion .  Next, we i n t e g r a t e  
-b 

S over time t o  obta in  the  energy per u n i t  o i  surface  a r ea ,  
-+ 
sst : 

. - b 4  3 - 
From Faradayt law, vxl = -c ' d ~ / d t ,  we obta in  



2 Figure  65. Helmholtz f r e e  energy d e n s i t y ,  normalized t o  , Curves 

a r e  d e r i v e d  from Equation 2.27. = Hc1/Hc2 
. . 
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J Also from Figure  66 we s e e  t h a t  

S u b s t i t u t i n g  Equations 3.15 and 3.16 i n t o  '3.14 we o b t a i n  - -  

Since  Hsb = Hssinas and Hsz = Hscosas, Equation 3.17 reduces 

t o  

2 2 
+ -..  s in  as ,  cos as 
Sit = ( - P I  [H s cosaS, + Hs .cosas 

HSAmZ ,= (-PI 2 (3.18) 
8r acosa, 

The work per u n i t  l e n g t h  of cy l inder  is, 



Figure  66. ,Vector diagram i l l u s t r a t i n g  d i r e c t i o n s  of t h e  
components of t h e  e l e c t r i c  and magnetic f i e l d  

-+ 3 

v e c t o r s  E and H,  a t  t h e  su r face  of t h e  cy l inder  
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Equation 3.18 ,shows t h a t  t h e  f r a c t i o n  of the  work con- 

2  t r i b u t e d  by t h e  sources of t h e  t r a n s p o r t  c u r r e n t  i s  s in  as ,  

' and the  f r a c t i o n  contr ibuted '  by t h e  sources of t h e  a x i a l  

2 f i e l d  i s  cos as .  . . 

: Thus, t h e  h e a t  r e l eased  during t h e :  c o l l a p s e  i s  
C 

Q can be r e a d i l y  obtained by numerical  methods. We n o t e  

t h a t  A6;represents the  change i n  a x i a l  f l u x  dur ing  c o l l a p s e ,  

and would be obtained by i n t e g r a t i o n  of Bz( p) from p = 0 
. . 

t o  p = pp;  i. e . ,  

am, = 2r 1 ' dppB( p) cosa( p). . 

Hence, Equation 3.20 could be w r i t t e n  as 



D. Experimental V e r i f i c a t i o n  of Col lapse  Modes 

The ex i s t ence  of a c o l l a p s e  p o s s i b i l i t y  depends upon 

t h e  r e l a t i v e  magnitudes of Rc(p) and p , ( ~ ) ,  and t h e  su r face  

p i t c h  ang le  as. S p e c i f i c a l l y ,  we must have pc(0) exceed t h e  

I minimum i n  Rd ( p) , , wi th in  t h e  boundary of t h e  cy l inder  

( 0  < p < a ) .  D i f f e r e n t i a t i n g  Equation 2.21 with r e s p e c t  t o  p 

and equating the  r e s u l t  t o  zero ,  we f i n d  t h e  m i n i m u m  of 

Rc( p) occurr ing  where 

with a corresponding va lue  of Rc ( pmin) equal t o  

From ~ ~ u a t i o n '  3.23 we s e e  t h a t  t h e  minimum i n  Rc(p) 

w i l l  l i e  wi th in  t h e  cyl inder  whenever c o t a s  < 1; i. e. , when- 

ever as exceeds . 45'. . I f  as < 4P, t h e  minimum i n R c ( p )  f a l l ' s  

'ou ts ide  t h e  cy l inder .  In t h i s  l a t t e r  s i t u a t i o n ,  we must com- 

pare  pc(0) w i t h , R c ( a ) , s i n c e  Rc(a) r e p r e s e n t s  t h e  s m a l l e s t  

phys ica l ly  r e a l i z a b l e  va lue  of R,(p). From Equation 2.21, 

2  Rc(a) i s  ' j u s t  a / s i n  a,, so  t h a t  i n  checking f o r  a c o l l a p s e  
2 p o s s i b i l i t y ,  we compare pc(0) with a/sin as. Thus i f  



then  co l l apse  i s  poss ib le .  I n  reduced u n i t s  Equation 3.25 

i s  equiva lent  t o  

We n o t e  t h a t  i n  t h i s  case  (as < 45O), p+ l i e s  o u t s i d e  t h e  

cyl inder , :  so t h a t  c.ollapse begins immediately when t h e  sur- 

f a c e  f i e l d  exceeds Hcl. 

For s i t u a t i o n s  where a s  > 4 5 O ,  t h e  minimum i n  Rc( p) 

occurs w i t h i n .  t h e  cy l inder ,  s o  t h a t  we need t o  compare pc(0) 

with Rc( pmin). Thus, f r o m  Equations 3.3. and 3.24 we have 

t h a t ,  i f  

cHcl tana 

8 r a ~ ~  ( 0) > 1 

c o l l a p s e  i s  poss ib le .  In reduced u n i t s  Equation 3.27 i s  

equiva lent  t o  



The r e s u l t s  expressed i n  Equations 3.27 and 3.28 indi -  

bate tha t  the following conditions 'favor a collapse possi- 

1 
b i l i t y :  

1. la rge  surface pi tch angle as 

2. low K )  implying high r a t i o  Hc1/Hc2 

3.. low pinning material ,  implying low Jc.(0) 

4. small diameter sample. 

It i s  interest ing tha t  requirements 2 and 3 a r e  not d i f f i c u l t  

to simultaneously sa t i s fy ,  since low pinning and low K qu i te  

often occur together .  For example, i n  the Pb-Bi material. 

used i n  Timrns and Walmsleyts (39) experiments, where K - "  14 

i s  r e l a t ive ly  high, we may ca lcu la te  tha t  

2 where a = 1.5mm, J,(O) = 185 ~ / c m  , and Hcl 2 135 G. Thus, 

i n  order for  col lapse t o  be possible,  tanas would have t o  

exceed 50, implying tha t  aE would need  t o  be i n  excess of 89'. 

On the other hand, hlollan e t  a l .  (47) repor t  data o n  

vanadium and niobium which suggests tha t  samples of these 
. . _.  

materials  could, show the collapse. Their vanadium measure- 
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occurred. We have a  numerical procedure t o  obta in  t he  mag- 

n e t i z a t i o n o f  the, cyl inder v i a  t h e  i n t eg ra t ion  of B( p) over 

the  cylinder cross-section. Thus, we may est imate A&,. I n  

t he  following sec t ion ,  we w i l l  show a  pred ic t ion  f o r  A&, f o r  

the  .vanadium samples of Wollan e t  a l .  (47) r e f  err'ed t o  on 
. . 

the  previous page. To obta in  AT f o r  the  co l l apse , ,  we s t a r t  

with the  magnetic d i f f u s i v i t y  (48) 
..- 

which depends s t rongly  upon B. Here, pf(B) i s  the  super- 

conductor r e s i s t i v i t y  i n  the  flux-flow regime, and i s  r e -  

l a t e d  t o  the  normal s t a t e  r e s i s t i v i t y  pn by (49) 

, For a  specimen of radius  ' a v ,  the  cha rac t e r i s t i c '  d i f fu s ion  

time AT i s  approximately 

which i s  in te rpre ted  a s  the  r e l axa t ion  time required f o r  

the  specimen t o  respond t o  a f i e l d  or  currcnt  change. The 

vanadium .sample of Wall* e t  a l .  (47) had a r e s i s t i v i t y  . 

r a t i o  ( p /p4  2 )  of 1500, and Weast (50)' gives a  vanadium 300 . 



r e s i s t i v i t y  a t  2 0 ' ~  of 24.8-26 pQ-cm. ~ a k i n g  p300 a t  2.5 

. . ~ n - c m ,  P4.2 = pn should b e  approximately 1.67 x Q-cm. 

With a sample r a d i u s  of 0.115 cm, t h i s  g ives  a d i f f u s i o n  

time of approximately 

.AT 5 10-3 tk d ~ / d ~  1 sec  . 
B 

As a f u r t h e r  . . approximation, we use  our model r e l a t i o n  

f o r  c a l c u l a t i n g  dB/dH. a t  t h e  s u r f a c e  of t h e  c y l i n d e r ,  where 

H = Hsc i s  t h e  magnitude of t h e  s u r f a c e  f i e l d  a t  which co l -  

l a p s e  f i r s t  occurs.  From Equation 3.37 dB/dH = H / ~ ~ B  and 

k2 1, so t h a t  a t  t h e  su r face  of t h e  cy l inder  

CIB/~H = H~,/B,, : 1 . 

Thus, t h e  d i f f u s i o n  t ime f o r  c o l l a p s e  i n  Wollant s vanadium 

sample should be approximately 

-3 " AT 1 5 x 1 0  . /Hsc % sec  

o r  roughly 5' mi l l i seconds .  



... . E. Modeling Vanadium . ' , 

1. Sample properties'  

We make a  calculation here which' predicts  a  s p i r a l  

collapse poss ib i l i ty  for  the vanadium sample used by Wollan 

e t  al. (47). The relevant data a s  reported i n  '(47) a r e  

sample diameter: 0023 cm 
. . 

. Hcl: 489 Oe @ 4.18 K 

2  This implies t h a t  Jc (0 )  = 3570 A/cm and a  = 0.115 cm. Haas 

(51) reports  tha tHC2 f o r  t h i s  sample was measured to  be 751 

Oe a t  4.18 K, the relevant temperature i n  the above experi- 

ments. The reduced quant i t ies  derived from the  above a re  

There i s  some l i b e r t y  i n  the select ion of p+ and p , as  we - 
need only insure tha t ,  fo r  collapse to  be possible,  



- as > 64.7O. . . . . (3.40) 
4 

. . 

A r b i t r a r i l y ,  we se lec ted  a s =  65' s o  t h a t  from Equation 3.5 

Because t h e  shape of t h e  c r i t i c a l  c u r r e n t  curve i s  unknown, 
N 

a guess f o r  t h e  parameter Bo of 0.20 was made. F i n a l l y ,  we 

assume n e g l i g i b l e  s u r f a c e  pinning,  s o  t h a t  t h e  parameter fiS 

of Equation 2.34 i s  equal t o  p.. . . 

2. ' Resu l t s  . .  . . . . . .  

The, choice of vanadium f o r  i l l u s t r a t i n g  t h e  s p i r a l  co l -  

l a p s e  i n s t a b i l i t y  was ' e s p e c i a l l y  f o r t u i t o u s . .  AS i n  t h e  case  

of F igure  52, a  s t a b l e  mixed s t a t e  conf igura t ion ,  wherein 

t h e  e n t i r e  cy l inder  was f i l l e d  with f l u x  ( p  = 0) , proved 
P 

impossible  t o  achieve a t  t h e  chosen'  s u r f a c e .  p i t c h  angle  o f  . 

6 P .  A s t h e  magnitude of t h e  s u r f a c e  ~ i ' e l d  was increased  

beyond t h e  c r i t i c a l  e n t r y  f i e l d '  ( h e r e  equal t o  o r  0 .65) ,  

s p i r a l  c o l i a p s e  occurred a t  a '  p e n e t r a t i o n  r a d i u s  of 0.865, 

with a pos tco l l apse  f i e l d  on t h e  a x i s  of 1. 35Hc2. Thus, t h e  
. . 

mixed . s t a t e  was destroyed be fo re  t h e  e n t i r e  cy l inder  . could . 

f i l l ,  wi,th f l u x .  . . 



We can., t h e r  $f o r  e p r e d i c t  t h e  fol lowing behavior for '  

t h e  vanadium sample of Haas (9): When t h e  app l i ed  longi-. 

t q d i n a l  f i e l d  and  a x i a l  t r a n s p o r t  c u r r e n t  a r e  g radua l ly  i n -  

creased from zero,  such t h a t  t h e  s u r f a c e  p i t c h  a n g l e  i s  
. .  

maintained a t  a 'constant  65" s p i r a l  c o l l a p s e  and subsequent 

d e s t r u c t i o n  of t h e  mixed s t a t e  ,should occur when t h e  magni- 

tude of t h e  su r face  f i e l d  (= [ H : ~  + H2 1') reaches  0.650 
s z  

Hc2 9 
o r  488 G. This. 'corresponds t o  an  appl ied  l o n g i t u d i n a l  

f i e l d  of 207 G and a t r a n s p o r t  c u r r e n t  of 255 A. .  

Figures  67 through 70 d e p i c t  t h e  f l u x  and c u r r e n t ,  pro- 

f i l e s  p red ic ted  immediately ' a f t e r  co l l apse .  Since th'e mixed 

s t a t e  i s  destroyed by t h e  c o l l a p s e ,  t h e s e  f i g u r e s  do n o t  

r e p r e s e n t  phys ica l  r e a l i t y .  

F. .  S p i r a l  Collapse i n  Hypothet ical  Mate r i a l  

1. General . . 

We n e x t  d i s c u s s  t h e  c o l l a p s e  sequences 'of s e v e r a l  hy- 

. , 
p o t h e t i c a l  type-I1 m a t e r i a l s  operated under varying s u r f a c e  

p i t c h  angles .  Our. aim i s  t o  ca tegor . ize  t h e  va r ious  p o s s i b l e  

ways i n  which c o l l a p s e d  f l u x  may agglomerate a s  a f u n c t i o n  

of t h e  r ad ius .  . . 

2. Surface  t itch angle  > 45' 

We begin with ' t h e  case  where t h e  s u r f a c e  p i t c h ,  ang le  

exceeds 4 5 O .  I n  Sec t ion  D we argued t h a t  t h i s  impl ie s  ' t h a t  



. . 

., Figure  67. . Flux.  p r o f i l e  ' for  .vanadium sample descr ibed i n  Sec t ion  E of 

- . Chapter ,111. P r o f i l e  i l l u s t r a t e s  co l l apse .  Parameters used 

were , ? c ( ~ ~ i  = 0.688, go = 0.20, and P, = G C 1  = 0.650 
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Figure  68. Reduced c u r r e n t  d e n s i t y  p r o f i l e  f o r  vanadium sample' de- - ... 
sc r ibed  i n  Sect ion  E of Chapter 111. Product B<J,) versus  

L1 

reduced rad ius  i s  shown, corresponding t o  reduced f i e l d  

p r o f i l e  shown i n  Figure  67. Current  d e n s i t y  he re  i s  pro- 
+ + + --+ 

p o r t i o n a l  t o  .vxB r a t h e r  than VxH. See Figure 53 
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Figure  69. Reduced c u r r e n t  d e n s i t y  p r o f i l e  f o r  vanadium sample de- ,., 
sc r ibed  i n  Sec t ion  E of Chapter 111. Product B < j @ >  versus  

reduced r a d i u s  fj i s '  shown, corresponding t o  reduced f i e l d  

p r o f i l e  of  F igure  6 7 .  Current d e n s i t y  he re  i s  propor t ional  
4 4 

t o  r a t h e r  than .VxH. See Figure  68 
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Figure  70. Reduced c u r r e n t  d e n s i t y  . p r o f i l e  f o r  vanadium sample de- 

s c r i b e d  i n  S e c t i o n E o f  Chapter 111. Product of and t h e  

magnitude of < j > . v e r s u s  t h e  reduced r a d i u s  p". i s  shown, 
N .  -7 -2 y 

where < j>  = Lj.; + j61 
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t h e  minimum i n  Rc( p )  'occurs wi th in  t h e  cyl inder .  Accordingly, . 

t n e r e  a r e  four  d i s t i n c t  p o s s i b i l i t i e s  .regarding t h e  magnitude, 

of pc(0) pc with r e s p e c t  t o  Rc( p) . These, p o s s i b i l i t i e s  a r e :  ' 

1. PC < R c ( prnin) , implying t h a t  r o l l a p s e  cannot 

,occur. 

- 2.  PC - Rc(pmin), implying t h a t  p+ = p- = 

Collapse f s  p o s s i b l e  here. .  

3. pc > Rc(pmin) bu t  pc < R$a). Col lapse  i s  
. . 

, . p o s s i b l e ,  here ,  and p+ and p- a r e  ' r e a l  and 

d i s t i n c t .  Because pc < Rc(a) ,  c o l l a p s e  does 
. . 

n o t  immediately occur with t h e  f i r s t  .penetra-  

t i o n  of f l u x  i n t o  t h e  cy l inder .  

4. pc > Rc(pmin) and pc 9 Rc(a).  Col lapse  i s  . . 

immediate with t h e  f i r s t  p e n e t r a t i o n  of f l u x  

i n t o  t h e  cy l inder .  Also, ;+ i s  g r e a t e r  than 

1, so  ' t h a t  'ij, i s  a v i r t u a l  po in t  l y i n g  ou t s ide  

t h e  cylind:er. 

~ h e s e  f o u r  p o s s i b i l i t i e s  correspond t o  t h e  l i n e s  l abe led  1, 

2, 3, and 4 i n  F igure ,  61. 

3. Surface  p i t c h  a n g l e .  < 45' 
. -. - - -. . - - . - 

When t h e  s u r f a c e  p i t c h  angle  i S  l e s s  than  45', t h e  mini- 
. . 

mumin R ~ (  p )  l i e s  ' o u t s i d e  t h e  cyl inder .  That i s  everywhere 

wi th in  t h e  c y l i n d e r ,  dR,( p)/dp < 0. Accordingly, t h e r e  a r e  - 



only two d i s t i n c t  p o s s i b i l i t i e s  of i n t e r e s t  regarding the 

relat ivemagnitudes of p i  and ~ , ( a ) .  These a r e  

5. p C  < Rc ( a)  , implying tha t  collapse i s  not pos- 

s ib le .  

6. pc 2. Rc(a),  implying tha t  collapse i s  possible . 

and immediate with. the f i r s t  entry  of . f l u x  in to  . . 

the cylinder. 

4. Hypothetical ma%erial 

We i l l u . s t r a t e  ' the above p o s s i b i l i t i e s  by assuming the 

existence of a  hypothetical type-I1 material  with a l l  the 

required propert ies.  We seek. values of PC,  p ,  j c ( 0 ) ,  and. . 

a which w i l l  i l l u s t r a t e  a l l  of the above s i x  poss ib i l i t i e s .  
S 

We s t a r t  with case #3, where as > 4 5 O ,  and a r b i t r a r i l y  

se l ec t  &PC = 0.50, ij, = 0.75, and p" - =.0.,25. Using Equa-' . 

t i on  3.5 we obtain the necessary surface pi tch angle as  

according to  

1 .  

Noting tha t  from Equation 3.3, PC = p / jC(0) ,  we se.e tha t ,  i n  

t h i s  ' case 



Arbi t ra r i ly  we l e t  fi = j c (0)  = 0.024, so t h i s  represents a  

weak pinning, high K material.  

- ' -  N '  

To i l l u s t r a t e  case #2, where %PC = p+ - p-, (and ar -  

b i t r a r i l y  keep the  same pitch angle as = 66.587'1, we solve 

fo r  &PC subject  t o  the condition which.'will make the rad ica l  

i n  Equation 3.42 disappear: 

%PC = cota 
S 

To i l l u s t r a t e  case #1, where the surface pi tch angle i s  

s t i l l  the same, we require PC < 0.866, 8 

Final ly ,  to  i l l u s t r a t e  case #b, where P+ l i e s  outside 

the cylinder,  we require PC to  exceed iic(a).  A t  the same 

pi tch angle of 66.587', %(a )  = csc2a = 1.18750 from Equa- 
S 

t i on  3.4a, so t h a t  we require  PC > 1.18750, or 

We may summarize $he above quant i t ies  i n  Table 8. 

Figure 71 i l l u s t r a t e s  the f lux '  p rof i les  obtained. from 

operating the above hypothetical material  under . conditions 

favoring ,case #2. Relevant parameters a re  



Table 8. Mater ia l  parameters needed to  es tabl ish a  given 
collapse modea 

Parameter Case #1 Case .#2 Case #3 , . Case .#4 
. . 

Type of No Verge of Collapse Immediate 
.action . ' collapse collapse collapse 

P+ imaginary 0.433 0.433-1.0 >1.0 

- 
P, imaginary 0.433 0.1875-0.433 <O. 1875 

.., 
a ~ u r f a c e  p i t ch  angle = 66.587°ip/,? (0) = pc where 

j3 =.H /Hc2.  . . c c l  

a = 66.587' 
S 

H"s =0.024 (no surfacepinning)  . 
. . . . 

Figure  72 i l l u s t r a t e s  the f l ux  prof i les  obtained from 

operating a' hypothetical material under conditions favoring 

case #3. Relevant parameters .are 



' . Figure 71. Field prof i le  fo r  hypothetical material i l l u s t r a t i n g  case #2, 

s p i r a l  collapse. Reduced f i e l d  i s  plotted versus the r e -  
- .  . .., 

duced .radius. j3 = Hcl = 0.024, ic ( 0 )  = 0.02771, Bo = 0.20, 

and .as = 66.. 587'. Surface pinning was ignored. With ' these 
- parameters, pc - RC(pmin) ,  SO t ha t  p+ = p- = &pc ,  and the 

rad ica l  i n  Equation 3.5 vanishes 
. - 
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1 I 
CASE #2 I 

I I .  - 
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Figure  72. Reduced f i e l d  p r o f i l e  f o r  m a t e r i a l  i l l u s t r a t i n g  case  #3, 
s p i r a l  co l l apse ,  where p+ f a l l s  i n s i d e t h e  cyl inder .  . 

=.0.024, J",(o) = 0.024, go = 0.20, and a s  = 66.587'. 

I n  t h i s  example, PC = 1 . 0  
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CASE #3 I 



HS = 0.024 (no s u r f a c e  pinning) 

F igure  73 i l l u s t r a t e s  t h e  f l u x  p r o f i l e  obtained from 

opera t ing  a hypo the t i ca l  m a t e r i a l  under cond i t ions  favor ing  

case  &. Relevant parameters a r e  

yijc = 0.6316 

PC = 1.2632 

#w 

Hs. = 0 . 0 2 4  (no s u r f a c e  pinning)  . 



. . 

Figure 73. Reduced f i e l d  p r o f i l e  f o r  material  i l l u s t r a t i n g  case #4, 
immediate s p i r a l  collapse. Here, p+ f a l l s  outside the 

cyl inder ,  so t h a t  f l u x  s p i r a l s  col lapse  immediatdy upon 

nucleat ion a t  the  surface. : $ = 0.024, j c (0)  = 0.019, 
N 

Bo = 0.20, and a s  =66.587O . . 
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gS = 0.024 (no. surface pinning) ' . 
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Figure 75. Reduced f i e l d  p r o f i l e  fo r  mater ia l  i l l u s t r a t i n g  case #6, 

where c3l lapse  i s  immediate with f i r s t  nucleat ion of 

vor t i ces  a t  the  surface of the  cylinder.  P = 0.024, 
N 

a = 40', J",(o) = 0.008, and Bo = 0.20. In  t h i s  case,  
S 

the  minimum i n  ,R,( p)  l i e s  outside the  cyl inder ,  and 

pc(0) exceeds Rc(a) 



WAS ;I,N'TENTm,.NALLY 
LEFT BLANK 

ascott
Blank Stamp

ascott
Blank Stamp



I . &. . I I I I I I 

- CASE #6 
N 

- 
us = 40°‘ Jc (0) ~0.008 

. . 
N 

' B0=0.20 

0.30 0.50 0.70 0.90 . 

RADIUS 



IV .  PROGRAMMED CURRENT AND FIELD 

A. In t roduc to ry  Remarks 

Our previous c a l c u l a t i o n s  of t h e  magnetic cha rac te r -  

i s t i c s  of type-I1 c y l i n d e r s  were based on t h e  assumption- t h a t  

t h e  s u r f a c e  p i t c h  angle  of nuc lea t ing  v o r t i c e s .  was always . .  

cons tant .  That i s ,  t h e  appl ied  l o n g i t u d i n a l  f i e l d  HsZ and 

t h e  azimuthal f i e l d  Hsld (due t o  t h e  t r a n s p o r t  c u r r e n t )  were 

always i n  a  f ixed  r a t i o  as the  t o t a l  s u r f a c e  f i e l d  Hs var ied  

i n  magnitude. 

. . We wish t o  genera l i ze  t h i s  procedure t o  a l low f o r  a  

v a r i a t i o n  i n  t h e  s u r f a c e  p i t c h  angle .  S p e c i f i c a l l y ,  we 

s h a l l  only  r e q u i r e  t h a t  t h e  magnitude of t h e  s u r f a c e  f i e l d ,  

Hs,  be a  monotonically inc reas ing  f u n c t i o n  of time. Within 
. . 

t h a t  r e s . t r i c  t i o n ,  th'e su r face  p i t c h  angle  may vary a r b i -  

t r a r i l y .  between zero  and 90'. The zero of t i m e  i s  taken t o  

be t h e  p o i n t  a t  which f l u x  f i r s t  p e n e t r a t e s  t h e  sample. A 

sketch  of t h i s  behav io r  i s  shown i n  Figure  76. The alg 'ebraic  

analys i ' s  ..which fo l lows i s  due t o  J. R. C l e m .  

B. The F i e l d s  

I n  c y l i n d r i c a l  coordina tes ,  t h e  su r face  f i e l d  i s  char-. 

' a c t e r i z e d  a s  . ., 



Figure 76. Sketch i l l u s t r a t i n g  monotonically increasing 

. . magnitude of the surface f ie ld , .  and an arbi-  

t r a r i l y  changing surface .p i t ch  angle. Pitch 

angle i s  r e s t r i c t ed  t o  the range O t a s  (r, 

and Hi must not exceed Hc2 
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-+ 
and t h e  u n i t  vec to r  i n  t h e  d i r e c t i o n  of H ~ (  t )  i s  

We regard  t h e  time t as merely a  parameter r e l a t e d  t o  t h e  

amount of f l u x  t h a t  has  entered t h e  cy l inder .  That i s ,  we 

a r e  n o t  concerned .with t h e  time..dependence of f l u x  en t ry ,  

b u t  ra ther . ,  we so lve  f o r  t h e  c u r r e n t  and f l u x  d i s t r i b u t i o n  

q u a s i s t a t i c a l l y .  Here, time al lows us  t o  account f o r  t h e  

order  i n  which f l u x  l i n e s ,  a t  va r ious  p i t c h  ang les ,  entered 

t h e  cyl inder .  

It i s  s t i l l  necessary,  however, t o  r e l a t e  time with 

f l u x  ent ry .  Thus,, we s h a l l  assume the' magnitude of t h e  
3 

e l e c t r i c  f i e l d  vec to r  a t  t h e  s u r f a c e ,  E s ( t ) ,  t o  be cons tan t ,  
. . 

no mat ter  how t h e  f i e l d ' i s  va r i ed .  Then 

where v f  i s  t h e  ra te  per  cm a t  w h i c h v q r t i c e s ,  i n  t h e  d i -  

r e c t i o n  $,(t), e n t e r  t h e  c y l i n d e r ,  c u t t i n g  through a  l i n e  

on t h e  su r face  perpendicular  t o  'bs. 

Refer r ing  t o  t h e  vec tor  diagram i n  Figure  66, we may 

a l s o  r e l a t e  t h e  e l ec ' t r i c  f i e l d  a t  t h e  s u r f a c e  t o  t h e  f l u x  
-4 

l i n e  v e l o c i t y  f; and ' the  va lue  of t h e  f i e l d  B j u s t  i n s i d e  t h e  
3 - + .  -+ 

surface .  Josephson (52) has  demonstrated t h a t  E, B; and v 



a r e  r e l a t e d  v i a  

3 3 

Thus, i f  B(a,  t )  and v ( a ,  t) denote t h e  f l u x  d e n s i t y  and f l u x  

. . l i n e  v e l o c i t y  j u s t  i n s i d e  t h e  s u r f a c e  of t h e  superconductor,  ' 

we may w r i t e  

and 

s o  t h a t  Equation 4.4 becomes 

where 

= - cosa ( t )  + 2 s i n a s ( t )  
S 

A s  t h e  f'lux f r o n t  moves i n  towards t h e  cy l inder  axis . ,  t h e  

e l e c t r i c  f i e l d  a t  t h e  p e n e t r a t i o n  r a d i u s  p 
P'  

i s  always zero,  s i n c e  e i t h e r  B(p , t)  o r  v ( p p , t )  must be zero. 
P 

If pp > 0, then  B ( p  t )  = 0, o r  if t h e  f l u x  f r o n t  reaches t h e  
P S  



c e n t e r ,  we have p = Oand v ( 0 , t )  = 0. 
P  

We nex t  consider  t h e  long i tud ina l ,  f l u x ,  a,. S t a r t i n g  

with Faradayv s 'law, 

we i n t e g r a t e  both s i d e s  over t h e  c r o s s .  s e c t i o n .  of t h e  c y l -  

i n d e r ,  and apply Stokes1 theorem. . The r e s u l t  g ives  

. . 

o r ,  with t h e  he lp '  of Equations 4.3 and 4.6,  

We n e x t c o n s i d e r  t h e  aximuthal component of f l u x ,  if$. 

Again from Faraday l s  law, 

+ + 
we compute t h e  i n t e g r a l  of VxE over t h e  pa th  shown i n  F igure  

77. 'Thus,  



F i g u r e  77. Ske tch  i l l u s t r a t i n g  t h e  i n t e g r a t i o n  p a t h  f o r  
+ -b 

e v a l u a t i n g  t h e  s u r f a c e  i n t e g r a l  of VxE i n  

Equat ion 4 .12 ,  
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-+ 
Since  B = 0 f o r  p 5 p and s i n c e  E = 0 everywhere, we 

P'  P 
o b t a i n  

where 

From Equations 4.3 and 4.5 we ob ta in '  . ,  

We 'next  d e f i n e  a parameter t l ,  which denotes  t h e  time 

of e n t r y  of a  f l u x  vortex.  Let p ( t , t l )  deno.te t h e  r a d i a l  

coordina te  of t h e  vor tex  a t  some time t ,  where t 2 t l .  . Thus, 

t 1  i d e n t i f i e s  a p a r t i c u l a r  vortex.  Also, l e t  L ( t l )  'denote 

t h e  p i t c h  l e n g t h  of t h e  vor tex  which was nuclea ted  a t  time 

t'. Then t h e p i t c h  ang le  a ( p , t ) ,  where p = p ( t , t l ) ,  caul& 

a l s o  be denoted a 1  ( t ,  t1  ) , and i s  r e l a t e d  t o  t h e  su r face  

p i t c h  angle  a s ( t t  ) a t  t h e  t i m e  of en t ry .  Note t h a t  a t  t h e  

time of en t ry ,  t = t1  and p = a.  Also, 

~ e f  e r r i n g  t o  t h e  geometry of F igure  18 j ,  we may make t h e  

i d e n t i f i c a t i o n s  



a '4 ' a .  ( ' t f )  
S S 

Thus, using t h e  t r igonometr ic  i d e n t i f i c a t i o n s  developed 

e a r l i e r ,  we have 

Thus, using t h i s  nomenclature and  t h e  f o r c e  balance equat ion 

developed e a r l i e r  , we have 

Note t h a t  J c ( p , t )  i s  r e l a t e d  t o  Jc,(B) once we o b t a i n  a  se'cond 

d i f f e r e n t i a l  equat ion r e l a t i n g  p and t l .  

We began t h i s  d e s c r i p t i o n  by assuming t h a t  t h e , s u r f a c e  

p i t c h  ang le  i s  some s p e c i f i e d  f u n c t i o n  of time. A t  some . t ime 

t ,  when t h e  f lux  f r o n t  has  pene t ra ted  t o  some r a d i u s  p ( t )  , 
P 

the t i m e  OP nuc lea t ion  of t h e  v o r t i c e s  a t  p i s  t f ( p p , t )  = 0, 
. .  P 

s i n c e  t h e s e  were t h e  f i r s t  v o r t i c e s  t o  be nuc lea ted .  For any 

o t h e r  p > p t h e  time of nuc lea t ion  of t h e  v o r t i c e s  a t  t h i s  - P'  



p i s  some f u n c t i o n  t l ( p , t ) .  Thus, we may p l o t  t l ( p , t )  

versus  p and o b t a i n  something l i k e  t h e  i l l u s t r a t i o n .  i n  Fig-  

u r e  78a. Note- t h a t  a t  t h e  su r face ,  t l ( p , t )  = t l ( a , t )  = t ,  

s i n c e  t h e s e  v o r t i c e s  were t h e  l a s t  ones nucleated.  

E a r l i e r  we d iscussed  t h e  meaning of p( t ,  t' ) as t h e  

r a d i a l  coordina te ,  a t  time t ,  of a vort.ex t h a t  was nucleated 

a t  time t l .  For example, i f  t1  = 0,  p(t,O) r e p r e s e n t s  t h e  

r a d i a l  coordina te  of t h e  vor tex  a t  t h e  f l u x  f r o n t ,  i. e.. , 
p(t,O) = p p ( t ) .  S imi la r ly ,  i f  t1  = t ,  we a r e  d i s c u s s i n g  t h e  

ve ry  l a t e s t  vor t ex ,  so  t h a t  p ( t , t )  = a .  Thus, i f  , p ( t , t l )  i s  

p l o t t e d  a g a i n s t  t' (holding t f i x e d ) ,  we might o b t a i n  some- 

th ing  l i k e  t h e  f i g u r e  sketched i n  Figure  78b. We s e e  t h a t  

F igure  7 8 b  i s  j u s t  t h e  mir ror  image of F igure  78a, r o t a t e d  

90'. I n  f a c t ,  

= .  P (4.20a).  

t . 1  = t l ( p , t )  

and 

s o  t h a t  p ( t , t l )  may be regarded a s  ' t h e  s o l u t i o n  o f ,  t l ( p , t )  

= t l ,  and t l ( p , t )  as t h e  s o l u t i o n  of p ( t , t l )  = p. Hence, 



RADIUS, p 

Figure .  78. Ske tch  i l l u s t r a t i n g  r e l a t i o n s h i p  of t f  (p,  t )  t o  
p, and t h e  r e l a t i o n s h i p  of  r(  t, t c )  t o  t f  ( s e e  
Equat ion 4.21) 



2. Rela t ing  t l ,  p;and H 

We now seek t o  develop a r e l a t i o n s h i p  among t , p ,  and 

H. We' s t a r t  by considering t h e  a x i a l  ' f l u x  contained i n  t h e  
,- . 

r eg ion  between p and p + dp a t  a t i m e t .  Then 

This f l u x  i s  r e l a t e d  t o  t h e  f l u x  introduced i n t o  t h e  speci-  

men during t h e '  time i n t e r v a l  t I ( p ,  t )  t o  t1 ( p + dp, t )  . This 

time i n t e r v a l  has  'magnitude 

. . 

From Equation 4 .10 ,  we s e e  t h a t  t h e '  f l u x  dm, introduced during 

t h e  time i n t e r v a l  t1  t o  t1  + d t l  i s  

~ombinirig. Equations 4.22, 4.23, and 4.24, we o b t a i n  

We may do a s i m i l a r  opera t ion  on B(  p ,  t )  , ob ta in ing  

We hay now take  Equations.  4.25 and 4.26 and s o l v e  f o r  

, . The r e s u l t  i s  



Note t h a t  

as..was shown e a r l i e r .  
. . . . 

Next, we use Equation 4.27 t o  express  ~ @ ( p , t )  a s  . . 

and then o b t a i n  

The f a c t o r  s i n a ( p , t )  may be  removed from Equation 4.30 

by use of t h e  fol lowing t r igonometr ic  i d e n t i t y ,  which can be 

der ived  from Figure  18: 



yielding 

. , 

a t l ( p , t )  - B( p , t ) ,  P 

a P - s 0 .  , "  

. 
2 2  2 . 2  J p s in ,  a s ( t l )  + a  cos a s ( t l )  

Similarly, using Equation 4.31 we may also reexpressEquation 

4.19, the fundamental d i f f e r en t i a l  equation re la t ing  H and p ,  

2 
a H ( p , t )  H(p , t ) s in  a s ( t l )  

a P c a s ( t l )  + a  2  cos 2  a s ( t l )  

(4.33) 

. . 

where i t  i s  understood tha t  t1  = t l ( p , t ) .  Suppressing the 

time t t o  simplify the notation,  we end up with the pair  of 

simultaneous d i f fe ren t i a l  equations 

a H ( p )  4n p ~ ( p ) s i n 2 a s ( t 1 )  

a P 
= - c J c [ B ( p ) ] -  2  2 

p s in  a s ( t l )  + a  cos a s ( t l )  

(4.34b) 
. . 

which may be numerically integrated to  obtain H( p )  and t 1  ( p )  . 
See Figure 79. 



I H S B  . FLUX VS. RADIUS 

Figure  79. 'Sketch t o  i l l u s t r a t e  hy o t h e t i c a l  p r o f i l e s  o f :  
H ( p )  versus p , a n d  t t ( p  versus  p ,  obtained from P 
simultaneous i n t e g r a t i o n  of Equations 4.34 



C . I n s t a b i l i t i e s  

A t  the f l u x f r o n t  with p > 0, where B = 0 and H = Hcl, 
3 -- P 
OH a s t ab le  solution requires > 0.   hat i s ,  a s  seen from 

P 
Equation 4.34, we must have 

- JcCO) > L A  v 3 

C 2 2 2 2 9 
P s i n  a. + a cos as, 
P S O  

where aso denotes the pi tch angle of t h e  very f i r s t  vortices'  

wh5ch had penetrated the sample. With p c  = CH,,/~~J~(O), 
the above inequal i ty  may be rewri t ten as  ,- 

For p decreasing toward ie ro ,  the left-hand s ide of th i s '  
P 

l a s t  inequal i ty  experiences a minimum a t  

, . , , 

Thus, the inequal i ty  required f o r  s t a b i l i t y  w i l l  be s a t i s -  

f ied  f o r  a l l  va lues ,o f ,  p o n l y i f  
P 

Typically, p c  i s  very small, and f o r  such cases the inequal- 

i t y  w i l l  be violated and an i n s t a b i l i t y  w i l l  occur only 
, . 0 

where l a i o ] -  ~ / 2 .  . 
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Then Equations 4.34 may be expressed i n  reduced form. as  

I n  solving . ~ ~ u a t i o n  4.44 simultaneously, we s t a r t  with some 

. . assumed penetration radius , pp. A t  t h i s  point ,  f 1  = 0 and 
N .., 
H = Hcl. . Integration proceeds via  a Runge-Kutta numerical 

method (4.51, advancing p from p on out to  = 1. Along 
P 

the way, we r e l y  on tabulated values or funct ional ly  derived 

values of as(;' 1. When the outer edge i s  reached, 8 = 1, , 

Z 5  = E ,  so tha t  the choice of p impl ic i t ly  d i c t a t e s  2: 
P 

Figure 79 i l l u s t r a t e s  a possible integrat ion path i n  the fi 

versus p plane, and i n  the f versus p plane. 



V. CONCLUSIONS AND PROBLPlS FOR FURTHER RESEARCH 

A. Standardized. Res,earch Procedure 

I n  a l l  of t h e  we have neglec ted  end e f f e c t s  

i n  o rde r  t o  o b t a i n  a s i m p l i f i e d  model with no z-dependencies. * 

Within t h a t  l i m i t a t i o n  our model r e p r e s e n t s  t h e  b e s t  phys- 

i c a l l y  j u s t i f i a b l e  'means of computing t h e  macroscopic prop- 

e r . t i e s  of a cur rent -car ry ing  type-I1  cy l inder  i n  an  a x i a l  

f i e l d .  

The prograrnmedcurrent and f i e l d  model (PCAF) i s  s t i l l  
. . 

i n  i t s  infancy and remains t o  be proven. One d i f f i c u l t y  i n  

applying t h e  PCAF -model i s  t h a t  organized and c o l l a t e d  d a t a  

does n o t  e x i s t .  ,It would be u s e f u l ,  then ,  t o  develop and 

r a t i f y  'among a consensus o f  a c t i v e  . experimenters . a s tandard-  

i.zed.' experimental  procedure f o r  per,f orming and recording  

magneti'zation experiments on type-I1 cy l inder s .  Such a 

s tandard would fo l low i n  . s p i r i t  t h e  ASTM book of s tandard  

t e s t  procedures,  a s  an example. I n  such a s tandardized  pro- 

cedure one.  might inc lude  t h e  requirement . f o r  measurement of 
Y 

a l l  t h e  important  m a t e r i a l  parameters ,  such a s  Hcl, H c 2 ,  K ,  

c r i t i c a l  c u r r e n t ,  and su r face  pinning q u a l i t i e s .  I n  a d d i t i o n ,  

t h i s  procedure would s p e c i f y  t h e .  s u r f a c e  f i e l d  components Hsd 

and Hsz a t  a l l  phas-es of t h e  experiment, s i n c e  we a r e  dea l ing  
. , 

with a h i s  tory-dependent . . phenomenon. Also, t h e  f i e l d - i n c r e a s -  

ing s i t u a t i o n  ought t o .  be' c a r e f u l l y  separa ted  from t h e  f i e l d -  



decreas ing  case ,  s i n c e  t h e  behavior of t h e  specimen i s  very  

much , d i f f e r e n t  i n  each case.  

B. - The. Boundary c o n d i t i o n  Problem 

The f l u x  e x i t i n g  s i t u a t i o n  g ives  r i s e  t o  a  vexing prob- 

lem with regard  t o  the  appropr ia t e  boundary cond i t ions  a t  

t h e  cy l inder  su r face .  To s e e  t h i s ,  suppose t h a t  a .sample i s  

f i l l e d  with f l u x  s p i r a l s ,  a l l  of which entered a t  some well- 
. . 

def ined  su r face  p i t c h .  angle ,  as.. Now change.  t h e  c u r r e n t  and 

a x i a l  f i e l d  t o  produce a d i f f e r e n t  su r face  p i t c h  ang le ,  and 

a t  t h e  same time, reduce . . slowly t h e  magnitude of . t h e  s u r f a c e  

f i e l d .  A s  t h e  magnitude o f  t h e  su r face ' . f i e ld  i s  reduced, 

f l u x  s p i r a l s  w i l l  begin to .  e x i t  from t h e  sample. However, 

t h e  e x i t i n g  f l u x  s p i r a l s  w i l l  have a  d i f f e r e n t  p i t c h  a n g l e '  

than  t h e  ex tan t  su r face  f i e l d ,  r a i s i n g  t h e  ques t ion  of how 

t o  r e s o l v e ,  t h e  d i s c o n t i n u i t y  i n  t h e  t a n g e n t i a l  component of 
-b 

H t h a t  would. occur.  C lea r ly ,  t h e r e  can be no . d i s c o n t i n u i t y  
+ 

i n  t h e  t a n g e n t i a l  components of H ,  suggest ing t h a t  e i t h e r . ,  
,, 

f l u x  c u t t i n g ,  f l u x  ' r o t a t i o n ,  o r  some y e t  unpostulated mech- 

anism of f l u x  r e o r i e n t a t i o n . m u s t  occur very near  t o  t h e  s u r -  

f ace .  

C .  The C r i t i c a l  C u r r e n t '  Problem 

From an experimental  viewpoint,  t h e  c r i t i c a l  c u r r e n t .  i s  

t h a t  . c u r r e n t  a t  which a  s t a b l e  mixed s t a t e  undergoes break- 



down i n t o  e i ther  a flux-flow regime or the normal s t a t e .  As 

was discussed i n  Chapter. 111, the present c r i t e r i o n  f o r  de- 

f ining the c r i t i c a l  current ( i . e . ,  when HC2 i s  f i r s t  exceeded 

somewhere i n  the sampie) , when applied to  the data  of Timms 

and Walmsley (39) ,  y ie lds  a c r i t i c a l  current  la rger  than tha t  

measured experimentally by a fac tor  of approximately two. 

We do not a t .  present und'erstand the reason f o r  t h i s  d is -  . . 

cr  epancy. 

Timms and Walmsley (39) used a modified form of the 

present theory i n  an .attempt to  calculate  the c r i t i c a l  cur- 

r en t ,  and found a similar  discrepancy with the measured 

values. They thus adopted the d i f f e r e n t  theore t ica l  c r i -  

t e r ion  tha t  . the  c r i t i c a l  current  i s  achieved when f l u x  pen,e- 

t r a t e s  t o  the ,axis: They noted, however, t h a t  penetration 

to  t h e a x i s  i s  not necessarily. a su f f i c i en t  c r i t e r i o n , f o r  

. . n0,rmalization. I t  appears . t h a t  T i m m s  and Walmsleyfs calcu- 

l a t i o n  . . of the penetration current  i s  motivated by the i r  f ee l -  

ing tha t  t h e ,  constant . . pi tch model loses  i t s  , app l i cab i l i ty  . 

beyond t h i s  point. However, as  we have shown i n  t h i s  work, 

the constant  pi tch model does r e t a i n  i t s  v a l i d i t y  beyond the 

point where the, f l u x  f ron t  f i r s t  reaches the cylinder axis.  

We thus s e e  no physical ju s t i f i ca t ion  fo r  T i m m s  and Walmsleyl s 
. . 

c r i t e r i o n  fo r  the c r i t i c a l  current.  
. . 

Gauthier (53, p. 4-23) has applied a cons tant-pi  tch 

model t o  h i s  experimental conditions, and has found , tha t '  our 



c r i t e r i o n  defining the c r i t i c a l  current  (i. e . ,  when Hc2 i s  

f i rs t  exceeded somewhere i n  the sample) yielded higher cal-  

culated c r i t i c a l  current  values than he .observed experi- 

mentally. 

Additional work remains before we may discover the 

reason f o r  the discrepancy between the calculated and meas- 

ured c r i t i c a l  current  values. Possibly f r u i t f u l  areas fo r  

study a r e  end e f fec t s ,  intermediate s t a t e  s t ruc tures ,  f lux  

cut t ing,  f lux  ro ta t ion ,  and i n s t a b i l i t i e s .  
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V I I I  . APPENDIX A. RADIUS OF CURVATURE 

OF A FLUX SPIML 

We compute t h e  r a d i u s  of cu rva tu re  of a  s p i r a l  of r a d i u s  

p , p i t c h  L ,  and p i t c h  angle  w i t h  r e s p e c t  t o  t h e  z-axis of a. 
3 

Let R be a  vec to r '  from t h e  o r i g i n  of coordina tes  t o  any 
A 

p o i n t  on t h e  s p i r a l .  Then i n  r ec tangu la r  coordina tes  I, j ,  
A 

I n  one t u r n  about t h e  s p i r a l ,  t h e  coordina te  must change 

by an  amount equal t o  t h e  p i t c h  l e n g t h  L ,  and t h e  az.imutha1 

coordina te .changes  by 2* r ad ians .  . Thus,, 

so  t h a t  . . 

A 

Now l e t  T be a  u n i t  vec tor  tangent  t o  t h e  s p i r a l  a t  t h e  p o i n t  
' -+ 

R. Then 

where ds  i s  an  i n f i n i t e s i m a l  l e n g t h  of a rch  along t h e  s p i r a l .  

Thus, 



where c  i s  t h e  p r o j e c t i o n  of t h e  s p i r a l  onto t h e  XY plane.  

-I Clear ly ,  d%/dc = p , and d c / d s  = s i n a ,  so t h a t  dd/ds = 
A .  

sina/p. Then we may wr i te  T. as. 

A ksina ; !? = . ( - s i d s i n a )  2 + ( c o s b s i n a )  j + 
P 

. (A.7) 

However, 

A 

so  t h a t  T becomes 

A A 

T = ( - s i d s i n a )  2 + ( c o s d s i n a ) ~  + cosa k (A.9) 

and t h e r e f o r e  . . 
I 

2 s in  rl. A 2 = .( - ~ 0 3 % )  i - ( s i n  a s i d )  A 

P P j 

where ( - p ^ )  i s  a vec tor  l y i n g  i n  . the XY plane  po in t ing  from 

t h e  s p i r a l  towards t h e  a x i s .  We recognize d'?/ds a s  t h e  r a t e  



of change of t h e  u n i t  tangent ,  . p e r  u n i t  change i n  a r c ,  whose 

magnitude i s  t h e  i n v e r s e '  of t h e  r a d i u s  of curvature .  Thus, 



IX.  APPENDIX B. LINE TENSION I N  VORTEX R I N G  

. . 

We compute h e r e  t h e  f o r c e  per  u n i t  1 e n g t h . o n  a  quantized 

v o r t e x  r i n g  a r i s i n g  from l i n e  tension.  Thermodynamics r e -  

l a t e s  the  energy per'  u n i t  l e n g t h  E of an  i s o l a t e d ,  s i n g l y  
. . 

quantized f luxo id  , t o  t h e  lower c r i t i c a l  f i e l d  HC1 v i a  

where ldo i s  t h e  f l u x  quantum. Thus, f o r  a  f l u x o i d  i n  t h e  

shape of . a  r i n g  of r a d i u s  p ,  . t h e  t o t a l  energy i n  t h e  r i n g  i s  

. . . .  .. 

-t 
A n e t  f o r c e  T a r l s i n g  from l i n e  t ens ion  i n  t h e  r i n g ;  which 

tends t o  c o l l a p s e  t h e  r i n g ,  i s  r e l a t e d  t o  t h e  energy v i a  

. . 

where t h e  minus s i g n  i n d i c a t e s  an inward-direc t ed  .force.  
3 

Thus, t h e  corresponding fo rce  p,er u n i t  l e n g t h  of v o r t e x  t i s  



The r i n g  i s  s t a b l e ,  a g a i n s t  c o l l a p s e  whenever t h i s  f o r c e  per 
, ' 

u n i t  l e n g t h  does n o t  exceed t h e '  pinning f o r c e s  per- u n i t  

l e n g t h ,  which tend t o  oppose t h e  col lapse .  Thus, f o r  s t a -  

b i l i  ty a g a i n s t  c o l l a p s e ,  we r e q u i r e  

. . 

where  t h e  q u a n t i t y  Jcd0/c r e p r e s e n t s  t h e  pinning f o r c e  den- 

, . s i t y  per  u n i t  length .  We s e e  t h a t  t h e  c r i t i c a l  r a d i u s  p,, 

. . which i s  t h e  s m a l l e s t  r a d i u s  which t h e  r i n g  may have b e f o r e  
. . 

c o l l a p s e ,  i s  



X. APPENDIX C. DERIVATION OF BESSEL 

FUNCTION SOLUTION 

' Deriva t ion  of t h e  Bessel  f u n c t i o n  s o l u t i o n  from Equa- 
-+ 

t i o n  1.56..  I n  t h e  fo rce - f ree  s t a t e ,  we have t h a t  J i s  par- 
+ 

a l l e l  t o  H,, s o  t h a t  we may w r i t e  

However, from &npere1 s law, 

Combining Equations C.  1 and C .2 we ' o b t a i n  

ck( p )  
J@ = Hsina 

. . . . 

Thus, 

- .aH a, - - - cosa + Hsina - 
a P  a f' 

. 



I n  ' the f o r c e - f r e e  l i m i t ,  however, 

2 aH/ap = - Hsin a/p 

so' t h a t  we o b t a i n  Equation 1.55: 

In t h e  'case where k(p)  = k ,  a cons tan t ,  Equation C.6 y i e l d s  

aa( p) sins( p)cosa( p) . = k  
a p  

, a  cons t .  
' P  

(C.7) 

A s o l u t i o n  t o  Equation ~ . , 7  i s  

a s  may be seen from t h e  fol lowing argument. D i f f e r e n t i a t e  

a (  p) t o  o b t a i n  

, , . . 

using the  var ious  r e l a t i o n s h i p s  between Bessel  f u n c t i o n  

der iva t ives , .  Noting t h a t  

2 s i n a  = j l (kp)/ l~:(kp)  + .J1(kp)I 8 

and 

2 cosa = J (kp)/~J; ikp)  + J ~ ( ~ P ) I '  
0 



. . 

we have t h a t  

2 2 sinacosa = J ~ J ~ / L J ~  + J1] . 

Thus, 

which v e r i f i e s  t h e  so lu t ion .  

We may now show. t h a t  Equation 1.58 i s  equ iva len t  t o  

Equation 1.56,  i n  t h e  fol lowing way: Let r = kp, s o  t h a t  t h e  

i n t e g r a l  of Equation 1.56 becomes 
. . 

. . 

P 2 
s i n  a ( p )  1:- 1 dr,  , ,  

- d r  J+) 
.r 2 2 - - J - , ~ ~ ( r )  + Jl(r) 

a f t e r  making use of Equation C.lO. Now change v a r i a b l e s :  

Let 

Then 



and' t h e  i n t e g r a l  becomes 

Taking . t h e  logari thm of both s i d e s  of Equation 1.56 g ives  

as des i red .  




