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Magnetic behavior of current-carrying'typesII

" superconducting cylinders®
‘Michael Lawrence Silber

Undéf the supérvision of John R. Clem
From the Department of Physics
" Iowa State University

The theoretical magnetic behavior of current-carrying
superconducting cylinders in the presence bf applied axial
fiélds is investigatedf AnAattempt is made to systematize
fhe complex behavior by carefully éccounting fér cfitical
current, surface pinning3 and surface pitch anglé, and by
stressing the importance'of,the_magnetic'history of the
sample. ‘ | |

A differentiélfequationlis developed relating the
" thermodymamic field'H(B) to the cylinder radius p. This
equation, of -the form dH(B)/%p = F(p,B,H) is readily inte-
gfated numerically-using_a Runge-Kutta technique on a dig-
itél~computer, The resultant flux profiles are further
integfated numericéllj to thain the'mean‘magnetization of
the cylinder, <-1+1er.>.. Careful dis/ti_nction is maintained be-

tween the magnetic.flux dénsity B and the magnetic field H

USERDA Rppnrt I1S-T-751. This work was performed under
Contract W-7405-eng-82 with the Energy Research and Develop-
ment Administration.
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-ipside the cylindér. Results afe displayed using a phase-
diagraﬁmatic technique, wﬁich shows the relative amounts of
AaXial and azimuthal,field needed to produce a given field
within the cylinder, as a function of the bulk’pinning |
strength and the'surface pitch angle.

A- lnaorder to incorporate the magnetic history of a sam-
ple, a pair of simultaneous differential equations is daf
veloped, relating the field H and time, and fhe radius p and
the time, in a quasistatic manner. Whén<simultaneously
integrated, these equatlons yield a flux profile H(p) which
accounts for any arbitrary variations ln the aurfént_and
axial field'experiehced_by the sample in progressing from.
the virgin state to the final flux configuration, provided
the surfacé magnetic field increases with time. This should
enable ceftain laboratory sequences in the application of

current and field to be modeled analytically.



I. INTRODUCTION
A. Introductory Remarks

‘We are concerned here with the magnetic properties of a
specific class of superconductors in a special geometry} The
‘complexity of nonideel superconductors on both microscopic
“and macroscopic'letels requires a deliberately narrow area of
study. On a microscopic scale, one looks at the details of
flux vortices and their interactions w1th the defects and ir-
'regularltles in the metal, while on a larger scale, the aver-
age electrodynamie properties of the sample become Iimportant.
In the end, one hopes to predict the gross magnetic behavior
without recourse to microscopic details. |

For simplicity, we choose an infinite, round wire of
type-I1 supercondﬁctor in a longitudinal field. The wire
carries a transport current IO, which is regulated inde=
peﬁdently of the applied field, Ha' After the current and
field follow a'preseribed.path to some final assigned values,
we seek to know the resultant flux,and current distributions
in the wire. In an actual experiment, there are two meas-
urements whieh are most convenient for this situation. These
.are the magnetic moment,of the specimen and the critical cur-
rent. The magnetization measurement reveals the nature of
the flux dlstrlbutlon, and .the crltlcal current measurement

reveals the onset of flux line motion, thus 1ndlcat1ng the



stability of a given configuration. ‘As a complication,~one
must‘carefully define what conetitutes a critical current;
eince the breakdown of euperconductivityhand the appearance
of a longitudinal voltage are not necessarily 51multaneous.

In the remainder of this chapter we present a very -
terse review of the essential features of superconductivity
for the reader who is mot very familiar with the field. In
_particuiar, we discuss‘force-free confiéurations and 1ongi5
 tudinal fieids in Section D.3}.'Force-free configurations
were first suggested by Bergeron.(l) after the‘eiperiments of
Bergeron et al. (2) and others:revealed that longitudinal
critical currents are found to be'mUCh greater-than.those
,measured‘in traneverse fields. The.fOrce free configuration
is so named because the 1oca1 transport current den31ty J lS:
bparallel to the magnetic flux den51ty B, caus1ng the Lorentz
force dens1ty JxB/c to be zero or nearly zZero. One of our
"~ conclusions shows that the existence of}force-free flow de-
'pends upon the reversibility of the material and the relative
amounts of current and applied field (i.e., the pitch angle
of'the resultant magnetio field vector at the surface of
the sample)..‘ |

For the most part, however, we concentrate on a nonforce=
free model which allows for any arbitrary amount of 1rre- ‘
V.versihi1ity in the material. In our model, irreversibility

is accounted for'througn the description of the critical.
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current, ana the discontinuity between B and H at the surface
of the sample. In Chapter;IV we generalize the model to ac-
count for a more general magnetic history which the specimen
has expérienced; That ié, we give a quési-static formulation
that‘accommodatés any arbitrary sequence in the application
of current and longitudinal field up ﬁo the final configura-
tion, provided the surface,magnetic‘field increases with

time.
B. Historical Review of Superconductivity

l. Zero resistance

The field of knowledge included in the realm of supef-
conductivity is'very broad; for a complete and concisé»suf-
vey. of the early experiments and phenoménonological theoriés,
the reader is referred to the review article by Chandrasekhar
(3). Additional backgroﬁnd may -be obtained from texts de-
voted exclusively to superconductivity (4-13), It would be
useful to réview a .few of the more important properties of
supercohductivity here. | |

ThelDutch-physicist H. Kamerlingh Onnes discovered super-
conductivity in 19111(14) while investigating the electrical
resistivity of mercury. Onnes found ﬁhat,thé resistance of
‘the sample dropped abruptly to'zero-at ébout 4°K and called

the phenomenon superconductivity. Since that time, many more



elements and compounds have been found to be superconductors.
The characteristic, although not-fﬁndamentai, feature of
a superconductor is'the-sudden disappearance of dc electrical
resistance below some well-defined temperature, denoted T,.
At this time, most physicists belicVe that the resistance cf
a superconductor is truly zero, and not‘merely some very small
finite number. Recent experiments (15) have confirmed that '
it is no larger thcn lO—23 ohm-cm. Superconductors'also re-
spond to magnetic .fields, a sufficiently high field being
capable of quenching a superconductor back into the normal
statc} Becauée magnétic effects vary greatly with sample
gecmefry and the direction of‘thc'applied field, we confine
our attention_tc long cylindrical samples immersed in uniform
magnetic fields,.applied parallel to the cylinder axis. 1In
this situation, there ére two basic types of superconductor,
defined by their magnetic behavior. For a type-I supercon-
ductor at a temperature T below T,, the critical value of the

quenching field, H_, approximates the following rule:

o)
B, = By[1-(1/T)%) | (1.1)

where H, is the critical field at zero degrees Kelvin. The
other kind of superconductor, called type-II, has a gradual
transition to the normal state occurring over a finite span

of field intensity; The upper and lower limits of the transi-



tion fields are called ch and Hcl’ respectively. Type-I1
Suberconductors will be discussed in more detail later.

Understanding of superconductivity is further compii-
cated by the existence of so-called nonideal materials..
These substances exhibit irreversible behavior in the
presence of changing magnetic fields, so that the state of
a sample is history-dependent. Ifreversible effects are at-
tributed to the phenomenon of pinning, whereby inhomogene-
ities, point defects,'impurities, and other metallurgical
irregularities impede the motion of flux lines through the
material.

The thermodynamic nature of the superconducting transi-
tion is obscured_in nonideal materials. However, in 1933
Meissner and Ochsenfeld (16)‘discovered that an ideal type-I
superconducfor tetally excludes magnetic flux, with the :
:exception of a thin.surface layer. That is, such supercon-
ductors behave like perfect diamagnets. In ideal_type-I
materials, ﬁhe onset of diamagnetic bchavior is indopcndont
of the order in which the temperature and field are varied.
Thus, .for a sample alreedy immersed in a magnetic field,
-iowering the temperature below TC will cause the sudden ex-
clusiQnAof flux from the sample. Similarly,‘lowering the
applied fie,ld.belowAHc for a.sample already below the zefo-
field critical temperature would cause'the sudden expulsion

of flux. Interestingly enough, one can show that the property



of zero<resistancé alone is insufficient to guarantee a
Meissner effect. It appéars that a Meiésner effect implies
supérconductiﬁity, and not conversely. The behavior of B~
versus H for an ideal type-I cylinder in a longitudinal
field is shown in Figure 1. |

| For type-I1 cylindrical specimens in transverse fields,-
and for bulky shapés‘suéh.as'spheres and ellipsoids, higher

magnetic fields lead to the formation of the intermediate

state. This phasé is characterized by intermixed zones of
superconducting and:normal material, wherein all flux passing
through the sample iélconfined to the normal zones, and all
superconducting regions remain flux-free. The intermediate
state results frbm_the'demagnetizing effect of the sample
shape,’whichvdéuses an énhancemént of the magnetic flux den-
siﬁy around the equatorial zones. Thus, while the applied
field may be less than H,, the local field in certain'placés

may exceed H driving those'regions'into‘the,normal state.

c?

A type-1 qylluder in a longitudinal field exhibits a
Meissner effect up to the critical field H,. Above H,, the
sample reverts to the normal_staté. In Contrast, a type-I1
material exhibits a Meissner phase only up to a field H,, < |
Hc' Above Hcl’ magnetic flux penetraﬁes the cylinder, but at
a lower denéity than thé applied field.

vThe penetration of flux becomes complele vuly al a

higher field H022>HC. For fields above ch, a mgcroscopic_
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Figure 1. Magnetic flux density B inside an ideal type-1
: ‘ superconducting cyllnder as a function of the
applied field H



~sample does not show any flux expulsion, and the internal
flux_density B is equal to the applied field H. While the
bulk‘bf the material no longer.shows zero dec resistance above
ch, there does exist a thih surface sheath which is super-
conductive up to an applied field denoted H 03" Typically,
Hc3 is abéﬁt 70% greater than Héz, while H,, can véry from

, HCl up to several orders of magnitude above Hcl’ depending
upon- the material. In much of what follows, we will be con-
cerned with the region between Hoq and H,,, Which is called

the vortex state. (Sometimes the vortex state is called

the Shubnikov phase, after the Russian experimentalist who

first'discovered evidence for its existence.) The behavior
~of B versus H for an ideal_type-II cylinder in a longitudi-
nal field is shown in Figure 2.

The precise way.in which a superconductor breaks down
into normal. and superconductiﬁg éones ié related to the free
energy cosf of thelzoneAboundaries. For type-II materials
the ihterface energy is negativé, favoring the creation of a
finély divided mixture of normal’and superconducting zones,

- with a maximum of interface érea. The size of the smalleét
,pQSSible uhit must be consistent with quantum mechanics, and
what actuélly appears (in the vortex state) is an array of

isolated bundles of flux, called flux vortiCes; or fluxoids,

each containing one quantum of magnetic finx. The experi-

ments of Deaver and Fairbank (17) énd Doll and Nabauer (18)
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have shown that the flux quantum g, is equal to hc/2e,
where h is Planck's constant, ¢ is the speed of light, and
e 1s the magnitude of the electronic charge. In the cgs |
lsystem of units, this is equivalent to 2.07 x lO'7 gauss-cmz.
The phenomenological theory of Ginzburg and Landau (19)

and its extension by Abrikosov (20) were great'advanceé in-
ourAunderstanding of type-II superconductors. In briefly
describing the vortex state, we uée some terminology.from
these theories.

' Referring,to‘the flux vortex model illustrated in Fig-
ure 3, the-apprdximate magnetic radius of the vortex is
4 given by the parameter A\, and the zone of reduced éuper-
electron density has a radius approximétely equal to é. The
Ginzburg-Landau theory defines a parameter « (képpa) as'ﬁhe
ratio,)J% ) and shows ﬁhat Kk is of critical importance in
describing the,properties of a superconductor. One of the
resﬁlts of their theory is that‘when K exceeds l/J—§, the
ﬁaterial has a negative surface energy, and‘so is of the
type-iI variety. Kappas'less than 1/ 2 indicate a positive
surface énergy,Aand so describe a type-I superconductor.
The parameter.k is called the penetration depth, and is ah
approximate measure-of the depth bf penetration of magnetic
flux into a Supercohductor. Typically; A is on the order of
hundreds of Angotroms. The paremeter { is called.the co-

herence'length. The coherence length is difficult to define



11

MODEL OF A FLUXOID

- .,‘

N ¢b

+-

\FLUXOID

AXIS

SUPERELECTRON
DENSITY

 MAGNETIC. -
FIELD

' ‘Figure_ 3. Model of a. quantlzed flux01d, show1ng the rela-
- tive magnltudes of N\ and: g
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without going into the details of the microscopic theory}
For our purposes, we need only consider the Ginzburg-Landau-
parameter x, rather than A\ and £ explicitly.

| Figure 4 shows an ideal magnetlzatlon curve for a long
cyllndrlcal type -II superconductor with an applied field
parallel to the axis. The slope in the Meissner phase is

. unity, which derives from the electromagnetic relation,
B=H+ 4 | - (1.2)

with B identically éero_in the bulk of the cylinder. The
area under thelmagnetiéation curve, divided by 4#, is eqﬁal
to H§/8v,-the free energy difference per‘unit volume betweén
thelsupercqnducting and normal states. For a type-II ma-
'terial,‘this éerves as a .definition of the thermodynamic
critical field H,, which is intermediate in value between
"H and H

cl c2*

C. Thermodynamics and Magnetic Quantities

" In defining the électromagnetic quantities as they will
be used here; we{follow the convention of DeGennes (10) and
others and, except where explicitly noted, employ Gaussian
units.-
| “On a local level, we define the local magnetic flux
density E, which is related to the ldcal.cufrenf density 3

through Ampere's law,
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MAGNETIZATION VS APPLIED FIELD
TYPE - II SUPERCONDUCTING
CYLINDER
-
/S
/S
/ )
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= | J
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/
|
\ |
| |
| | »
| | N
. | o
450 | B . i
Hel He = | Hc2

 APPLIED FIELD

Figure 4. Magnetization curve for an ideal type-II super-
' ‘ conducting cylinder in an applied field parallel
" Yo the cylinder axis
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axg :.&cz—.* . . (1-3).

Here, the word local iﬁplies a quantity which has meaning on
_a<sca1e_small in comparison with the penetration depth A.
Thus, over the space of one flux vortex,,we'expect wide var-
iations in g and 3. |

When dealing with the macroscopic properties of a super-
conductOr, it is more useful to consider averages in the flux
density and current dehsity. That is, we are interested in
the aﬁeragc flux: density over the space of séveral flux vor-
tices, and call the relevant quantities B and <j>. If g, is
the magnitude of one flux quantum, and if there are N flux
vortices perpendicularl& intersecting an area S, the average:

flux density is simply
B=N/5 , - _ o (1.4)
' o ' -+ —
andvthevaverage current density <j> is related to B through
> LTt

Vx§=—c—<j> . : A (1.5)

Following Campbell and Evetts (21, p. 15) we next de-

o
fine the thermodynamic magnetic field H as

H o= |H] =4 EBL | - (1.6)

_+
where the direction of H is the same as the direction of
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- ﬁ/H = ﬁ/B .

The fieldhﬁ defined in this Way has all the usual elec-
tromagnetlc propertles normally as3001ated with the quantlty
H. In fact, if the Gibbs free energy density is related to
the Helmholtz free energy den31ty through the Legendre trans-

formatlon

G =F, - BH/4T : | : (1.7)

then one can show that the equilibrium condition (a ) =0
T,H
is equlvalent to Equatlon 1.7. ’
Associated with H is the thermodynamlc current den51ty

—
J where

v =T f 1.8

London (12, p. 102) referred to this as the "coarse-grained
current density",'ahd Campbell and Evetts (21, p. 19) call

it the "transpoft‘current density". Actually, it 1s not in
general the dens1ty of current fed into the specimen by ex-
ternal sources. Note also that J is not in general equal to .
<3 >; Al though J is difficult to explain in a physical sense,
iﬁ may be roughiy'thought ef as the current density needed to

. —
maintain the gradients in H.
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D. Critical Currents and Hard Superconductors

1. Critical currents

The magnetic behavior of type—II materials is‘intimately
connected with the,behavior of critical currents in these'
materials. In fact, the topic of critical currents alone '
eomprises an extensive literature; for a thorough review of
this subject, the reader is referred to Campbell and Evetts'
recent monograph (21). |

.For our purposes, we shall regard a critical current as
the magnitude of current density which is Just sufficlent tq
bring aboutithe onset of flux flow. Experimehtally»flux flow
is detected'in a cylindrical sample by'the appearahce of a.
longitudinal voltage, indicative of a nonzero electric field.
*Typically, about one microvolt is detectable in the labora-
tory and is an acceptable standard for the ex1stence of flux
flow. ' , |
Part_ef.the eariy difficulties in understanding type-iI
superconduetivity'arose because'many type-I1 materials ex-
hibit irreversiblefbehavior in changing magnetic'fieldsf Ir-
reversibility means thatithese materiels cannot be explained
: thermodynamically, beceuse the final state of the material is
. history-dependent. Materials of this sort were called "hard
superconduetors", because usually they were mechanically hard

substances. Quite often, irreversible materials are.alloys
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N MAGNETIZATION VS APPLIED FIELD

TYPE-1 SUPERCONDUCTING
CYLINDER

1
MEISSNER| NORMAL
 PHASE PHASE
450\ | |
Ho Hc

_Figure 5. Magnetization curve for an ideal type-I super-
: - conducting cylinder in an applied field parallel
- to the cylinder axis -
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or otherwise impure metals with short mean free paths, such

as Nb,Sn, NbZr, and V,Si. In fact, the only known ideal type-

3 3
IT materials are Nb, V, and Tec. In contrast, ideal type-I
Superconductofé are usually very pure substances, such as
mefcgry5 tin and leéd, and are mechanically soft. Hence,
the names soft and hard become syndnymous'with ideal and non-
ideal, respectively. }As will be shown, the nonideality of
most type-II materials has greatly complicated recent‘efforts
" to understand the current and field distributions in cylin-
drical samples. Later, we will propose a model whereby the
AhistoryAqf,a éample may be incorporated into a calculation
- for the magnetic state of the méterial.

| Figur§,6_is.characteristic of most critical current be-
havior, when plotted as a function of’the magnetic flux den-
sity B. As will be;made clear later, the‘eXacf form of fhis
curve is not primary to our model. That is, JC(B) appears as
an unspecified function which presumably would be known for a
specific material. All we reduife of J,(B) is that it be
single-valued and everywhefe_finite. Urban (22) has compared
various critical current models, and hasvproposed'a new model
which better agrees with existing data on Nb-ZS%Zr wire.
Urban gives the empirical.expression; in MKSA units,

(1.9)

. . : -B
. Ko 02



" Figure 6.

Example of idealized critical current behavior
according to the Urban model, for a material with
moderately strong pinning. fc is the reduced
current density, defined by 5c‘= {c/(chz/#Wa),
where a is the cylinder radius. B = B/Hc2 is

the reduced magnetic flux density, and BO =
Bo/Hc2 is an adjustable parameter which is
responsible for the convexity in the shape of

the curve
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where a, is a field independent, temperatﬁre dependént con-
stant pequliar to a given material, and B  is a correction
which becomes important at small B. 1In cgs units, this éx—
pression may be written as
. 1 -B/Hc2 o
T (B) = 3.(0) - [ﬁ‘13‘/'§(')'~"3 (1.10)

and has the properties that J,(0) defines the maximum, and
«Jc(ch)'is zero. Table 1, from Urban's (22) paper, shows
some other recent models for JC(B).' Later we will use Equa-
- tion l;lO in'obtaining nuﬁericél solutions for the flux pro-

file across a cylindrical wire.

2. Critical state model

The critical state model due to Bean (23) was a sig-

nificant breakthrough in'explaining the magnetization of
nard superconductors. In the discussion which follows, we
. will take some liberties with Bean's formaiism,.and maintain
a more careful distinction}betweén the flelds H and B. |
Bean assumed that 1) the'critical'current.density is

independent of the magnetic flux density B, and 2) as flux
accumulated in the specimen, shielding currents are induced
' to fiow at é maximum value JC, up to whatever depth is re-
quired fo shield out thé applied field. The field inside a
cylindrical superconductor of radiﬁé a is obtained from

Ampere's law, .
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Table 1. Critical current models

Source

Functional Form
for J_(B)
MKSA units

Bean.(23); London (2%)
Kim et al. (25)

Anderson (26); Friedel (27); Silcox and
Rollins (28)

Yasukochi et al. (29)
Irie ana Yaﬁafuji (30)
. Fietz ét ai.‘(3l) |
Goédemqed et él. (32)‘

Alden and Livingston (33); Campbell et al.
(34); Coffey (35) ‘

* Urban (22)

Const. = a

a/(Bo-+B)

a/B
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- =+ -+ ' ) :
v = %g,J o ' (1.11)
which simplifies to

and the boundary condition

~H(a) = H (1.13)

a Y

where Ha is'the applied field. Straight-forﬁard integration

yields the field as a function of radius,

Hp) = H, + LI (p-a) . (1w

The penetration radius Py marks the position of the flux

- front, where the field H must be equal to Hcl' Thus,
S Ty (g, -H,,1 - ,(;'15)

When the flux front reaches the cylinder axis, Ny = 0 and

the applied field has magnitude H , so that

r Lr | | | 4
H = 7;.Jc + H,q oo . , (1.16)

Then Equation 1.15 can be written as \
S 1-m/E | -

Pp-T @ - [————=]) . ‘ (1.127)

1 "Hcl/H
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Kim et al. (36) extended Bean's (23) approach by assum-
" ing that J_ depended upon the flux density B. In cylindri-
cal shell specimens of Nb;Zr, they found that the critical

state model, altered to the form

J, = const./(B_j+B) - (1.18)

yielded screening fields in agreement with their experi-
mental resulté. Thus; Equation 1.12 yields, in general,
' a
H(p) = H(a) - ECE y E J [B(p*)]dp" (1.19)
P ' '

It is useful to examine the critical state model fof a
current-carrying type-1I material in the absence of a longi-
‘tudinal field. We assume that the longitudinal thermodynamic
current density J is equal té the critical current density
within the region of flux penetration. Thén, from Amperefs

-+ = —+
law, VxH = %gﬁJ, we have
. e 9 ! : :
which integrates to

Hg(p) '=27T oJ

2T o5, + %[aHg(a) 2l a5 (1.21)

where we have assumed J. to be independent of B.

We define the total transport current through the
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2'be the average current

cylinder,'io, and let J, = IO/Wa
density. Then'Ampere's law relates ‘the field at the surface
-to Io vig |

b I_ = 2maH,(a) o - (1.22)
c "o @ , )

so that Equation 1.21 becomes

2
2T 2T,
Bylp) = 55 pTg - 555

S T SIS B o (1.23)

Dropping.the subséript # and introducing the reduced quanti-

tiés H, J, and § defined by

ﬁ = H/H

en 3 9 = J/(cH /HTa)

and
B=pla , - (1.24)
" we obtain the reduced form of Equation 1.23:

‘ﬁ(g)'= KpS, - BT, - T VB . - (1.29)

‘Next5 we define the penetration radius pp'as the inner edge.

of the flux front. - That is, at p=p_ , H=H and B = O.

» p’ cl
Thus, the relationship between 5p and H,; is )

~ __.|~~ ~ . ~ ~ ’
Hyp = 4pPJC_- plIs - IVB, (1.26)

or
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s B 5w T /52 5 5 1

Pp = Hcl/Jc'+ [(Hcl/Jc) 1= Jo/Jc]

We use the plus sign for the radical, as the negative root'
would yield a negative pp‘or a solution where dH/dp would be

nggative. Letting m = ﬁcl/Jc and q =~JO/5C, Equation 1.26

becomes

=m + [m2 + 1 = q]é (1.27)

Pp

and Eqﬁation 1.25 becomes

el P ‘
[p + 33—] - -  (1..28)

14
N
alﬂ

H(p) =

Clearly, the]penetration radius is a~décreasing function of
q and has a minimum value of m, which occurs at q =1 + m?.
Thus, for stable solutions we require |

30 < 3c[l'+ m2] ' (l.29a)

and

o

>m = o | (1.29b)

These latter results may also be obtained by differentiation
of Equation 1.28 anﬁ réquiring that dH/dp be'nonnegative'ét
the_peﬁetration radius. |

:Aé will be explained in the nextAparagfaph, the largesﬁ
physically’meaningful value for ﬁp is unity. The correspond-

ing value for q, i.e., q = 2m; is then proportional to the
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minimum possible current density consistent with a mixed
state conditien. Hence, q must lie in. the region defined
by 2m <q <1-km2. in addition, we must now limit q in order
to keep H(p) everywhere less than or equal: to unity it is
easy to show that this requirement is met if q <2m/H
Thus,~the permissible values of q are confined to the crossé
hatched region of Figure 7, corresponding to
1+ m2

om < q < hin of { . 1 . | (1.30) .
2m/H

The point where 1 + m2

= (1 - k)/B, where

is equal to 2m/Hcl is given by

Hep o -

1

and k is related to B through
B2+ k° =1 .

| The above result may in part be verified by considering’

the notion of the critical radius of a vortex ring. . The

critical radius Po is defined to be the smallest radius pos-
sible before‘a vortex ring collapses under its own line ten-

sion. In Appendix C it is shown that
po = cH /41T, (1.3

Referring to Figure 8, we let. p, be the radius of the inner-




Figure 7.

Cross-hatched region defines values of m and q
necessary to obtain the static mixed state con-
dition, for a current-carrying cylinder in the

_abéence of an applied- longitudinal field. m =

ﬁcl/ic and q = J_/J,, where J  is the mean cur-
rent density and Jc is the critical current den-
sity. Below the line g = 2m, the sample is in

the Meissner state. Above the lines q = 2m/fIcl
2

and qQ = m° + 1, sample reverts to either.a flux-

flow state or the normal state
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Figure 8. Cross section of type-II cylinder in th',ep current-
only situation, showing location of flux front
and the distribution of currents. p, Tepresents
the flux front, and a is the cylinder radius
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most vortex ring. That is, pp’= Pe and H(pc) = Hcl' In the
region where()ﬁp)ﬁpc,‘the thermodynamic current density is
denoted I;, and in thé‘region where pélgp_ﬁa, the current is

denoted I,. Thus, the total current I_ is

2%
I, =1, + 1, - (1.32a)
and- . _
I; = %Cchcl ) (1.32b)
o T (a2 o 2 | oy
PR ACEY SN (1.320)
 so that
I = %c H + v[a2 _ 2]J ' | (1 335
. o Pefel Pe e L |
and - )
. sl 2 '
Jo = Io/ﬂg
- 2 ¢ 2
= cp H, /2ma” + [1 - (pc/a) 17,
: , D, D < '
= I 11+ p2/a"] . o (1.3W)
In redu¢ed form, this is simply
Jo=d el - (1.35).

which is the same as Equation 1.29 with m equal to 50.

- In summary, one may describe the critical state model

£
e
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by'ccnsidering the flux profiles which obtain as the magni-
tude of the sﬁrface field is progressively increased from
zero. 'Starting with a sample in the virgin state, subjected
to a_parallel magnetic field but no current, we observe no
flux penetratioh until the surface field reaches Hcl' As
the surface field climbs above Hcl’ flux penetrates pro-
gressively-deeper into the specimen, with profiles similar
to those sketched in Figure 9.

In the cﬁrrent—only case (Figure 7), however, static
='ma,‘where m =

flux penetration. goes no further than Pp

ﬁcl/gc = P, is a‘material-dependeht factor, which must be
less than one to guarantee a stable mixed state. Should
the cufrent ‘density 5 then exceed the value (1 + mz)fc,

the 1nnermost flux rlngs collapse under thelr own line ten-
sion, and the sample enters a flux-flow state or reverts to
the normal state. We note that the critical current J, is
pfoportioﬁal to the pinning strength of the material. Hence,
strong p1nn1ng materlals would have smaller minimum penetra-
.-tlon radll m, and would allow a deeper penetratlon of flux
before breakdown of the mixed state occurred. Figures 10
and 11 are typical H and B profiles for the current-only
critical state'model in a specimen for"which ﬁcl = 0.25,
Selected for the maiimum possible current densities allowed
at‘fcur values of'the paramctcr m. The~flux density B ob-

tains from'the'intrinsic Abrikosov diamagnetism as illustrated

.g



Figure 9. Simplified diagram of Bean-London critical
: state model, for a material with no surface
barrier. H, <H, <... _<H6
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BEAN-LONDON MODEL

Jeo IS CONSTANT

iy



Figure 10, Magnetic field profiles, H versus p, for 'typef-iI'
cylinder with H,; = 0.25 under the conditions
corresponding to A, B, C, and D in Figure 7
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in Figure 2. The precise form of B(H) used in Figure 11 is
not important herej; a more complete explanation is'given in

Section E of Chapter II.

3. Force-free model

In 1963 Bergeron et al. (2) presehted measurements of
critical currents invcommercially available cold—dfawn NbZr
alloy wires, subjected to longitudinal fields. Their re-
sults shéwed'an énomalous hump in the curve of critical cur-
~rent Ic veréus applied field, as reproduced in Figure 12.
To explain this hump, Bergeron (1) postulated the existence
of a helical current flow, which wouldAgiﬁe rise to a para-
magnetic moment, The helical current response was regarded 1
as necessary to mihimize the Loréntz forces on the currents.
LeBlanc ef al;.(37) reported paramagnetic moments in cold-
worked,Nb-25%Zr wire and high purity annealed Nb-50%Ta wire,
under experimental’ponditions similar to those used by -
Bergerdn et al. (2). LeBlanc et al. (37) found rather poor
guantitallve agreement wiﬁh Bergeron's force-free model, and
regarded forceffree;fields as probéble only'in nearly ideal
type-II-supgrbonducfors. ‘

We review hére_the theory of forCe;free fields, begin-
ning with an infinite flat slab of type-I1I superconductor im-
mersed iﬁ a'fieid pérailel to the surface of the slab. The

coordinatés deScribing the geometry are shown ianigure'13.
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We assume that allicurrents.and fields are parallel to the

| face of the slab, so that the components normal to the faces,

i.e., J and H_, are zero. Thevforce free requirement is ex-
-+ = =

pressed as. JXB/C‘O, or , since H is parallel to B, JxH = O

We begln with Ampere s law,

— c T
J EFVXH
cr o By, A aHy
= Wt-y —a-x— + Z a—x— . ' (1-36)

where ?, 2 are unit vectors in those respécfive directions.
The force-free requirement, giﬁ==0, implies that T and H are
paréllel,gor_ |

-+ . BRI A ' .

J=f(x)-H | (1.37)
where f(x) is some function of x, to be determined. Arbi-

trarily, let -
£(x) = ck(x)/lm -
SO that k(x) has units of inverse length. By combining Equa-

tlon 1. 36 and 1. 37 we obtaln

oH, . oH

which yields 4 '

) ! CL oH
H —L = . g —2
4yavx o z 0x
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or

2
y

(] [

3r2 | 127 - | -
o[BS + H;l =0 . - (139

Since H® = H§ + Hi, Equation 1.39 becomes
H 5z(H) =0 ' _ (1.%0)

which demands that either H = O or that H is everywhere the
same. Rejecting the former as trivial, the latter solution

allows us to express the components of H parametrically as

Yy

H

H * sino(x)

H

, = H . cosa(x) ' A (1.41)

where a(x)'is3some arbitrary function of X, subject only to
the boundary conditibn that Hy and Hz be continuous at the

surfaces.' Using Equation 1.38 together with 1.41 we obtain

H, .= =k~T(x)oH /ox

y
¥lE%§7 sina(x) 2%§§l
so that
80, (x) ; k(x) . | N (1.4%2)

We see that the magnitude of k(x) determines the amount of
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twist whieh the field und ergoes in traversing the thicknese
of the slab. If k(x) is‘sufficientiy large, it appears pos-
sible for the field and'eurrentvtolreverse directions'one”or
ﬁofe'times_within the span of the slab thicknese., |
The flat infinite slab calculation above is‘easily'mode‘
ified to accommodateé. the case of a thin cylindfical shell in
an axial fleld That 1s, we regard the flat slab as a cyl-.-
<1nder w1th an 1nf1n1te radlus. Referrlng to Figure 2 we
‘deflne-the word "thln" to mean that.the thickness of the
cylinder wall'is small compared with the radius. It is con-

) |
venlent to switeh to cyllndrlcal coordlnates p = (x2-+y2)é,

2

)
‘ the cylinder axis. (See Figure 1l ) We shall aesnme that‘ﬁ

tan l(y/x), and z, with unit vectors p = fcosd + ¥sing,

ycosﬂ - xs1nﬁ, and Z, where the z-axis is coincident with

has no @- dependence and no z-dependence, but only p-dependence.
Thus, Equation 1.37 guarantees that J will have p-dependence

‘only, so that J and H may be written

T(p) = B1g0e) + 23,0p0)

I}

Hp) = BHy(p) + BH(p) . (L3

In ¢ylindrical coordinates the curl of H is

[ .\aH " H oH I I
vxi = - #5524 Z[—¢'+ a_pQ] o (1.44)



 CYLINDRICAL COORDINATES -

" Figure 14. Cylindrical coordinates



46

so that from Ampere's law we obtain

. . 0H -
J'ﬁ = - %a—pz-

O
Jg = E_[ '—Jé ﬁ% 532 :
Jp =.0

(1:%5a)

_ ,('l'-45'1_5)'

(1.4%5¢)

where the approximation used in Equatlon 1. 45b 1s valid in

H OH,
the case of a thin shell where 7? << —EQ .'.As before, we

may write

| ck(

3 = H(p)

from the force-free requirement, which yields.

= EééﬂlAHﬂ -7 ﬁ% 0p

: I oH
o= ck(p) o = g
T, = H, = 5% 75

or
'Hﬂ~= -.k'l(p? ;%Z.
H, = 'l(p) 6H¢

(1.46)

(1.47) o
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Then,‘as beforé, we'maY'define a parametric angle a = a(p)

‘such that

1}

| Hg(p) Hé;ha(px

H (p) = Heosa(p) O aam

and where H is constént.' Using‘arguments presented above, it

'is easy to show that g%%ﬂl = k(p), or

ap) = | KGpapr .

- Bquations 1.48 deécribe.a flux spiral'whose ﬁitchlanglé Wifh
respect:to tﬁe-z-axis i$ alp). | | | | | |
We consider nexf the case of the thick-walled chin@éﬁ}
where the thickness of the wall isvonmthé same order of mag-
ﬁitude‘as the radius of the cylinder,i The analysis proceeds
.és before;,althbugh the term Hg/b may no‘lohger be neglééted
. iﬁ Equation l.%ﬁ.. Thus, ‘ -

| o
k .
I Tk

. H, -°H | | =
T, = S, =g ¢ wt) = o TRy - (149)

z T Tz

Just as above, there is a wide variety of different
force-frée configurations possible, cOrresponding;to differ-

ent radial dependencies of the pitch angle a.- An’intefesting‘~
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example to consider is that for which k is constant. Then
we may substitute the dimeﬁsionless'quantity w'in place ef‘

pk, giving k'ld/dp‘=,d/dw5 éo’that'Equatiohs'l.H?‘becemé

end
Hyos ey . | | - A(l;SOb)

_ Substituting Equation 1.50a into 1.50b yields

. : 3H -
.. la., B
Hz,_ - w'dw(W ow )
or
- 1 dp,.. TZq _ L .
1HZ + v a—;[W o ] =0 o (1-51)

and substituting Equation 1.50b into 1.50a gives -

_ 4.1 4
or
g & EeEpi=0 . @)

- Equations 1.51 and 1.52 are Bessels equations of Qrdei
zero and one respecti&ely. A Bessel_equation of integfal |
order v has for solutions the Bessei funetions'ef the first
and second kinds, Jy(w) and Y(w), respectively. Thus,'a |

linear combination of Jy(w) and Yy(w) also represehts a



'49

solution, and we obtain:

| Hz(w)' a;b(W)'+ bY_(w) = : | L _K1753)‘

1}

Hﬁ(w)Av aJy (w) + DYy (w) S o (1.58)
where the constants a, b may be evaluated from the boﬁndary ,
conditions. - A o
Récently Clem (38) has shown that for any arbitrary
functional dependence of the pitch angle a(p) upon p, one |

" may determine H(p) and k(p) explicitly, according to

Kk(p) = p sina(pleosalp) + ZERL (1.5
and -
| . 2 L2 .
H(p) = H(a) »exp {| ar Sifzalr); (1.56)

- - o L L I
where, as in Equation 1.46, H, J; and k are related through
=Sk .y . | (1.5

In.the'special case where k(p) is a constant, one may show

‘that

a(p) = tan™l (3 (kp)/T (kp)] o a.s®)

“and

H(p) = H(O) » [T2(kp) + J2(kp) 1%~ (1.59)
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"which is'the wellfknewn Bessel'fuhctioh solutioh (39);
‘For_details of theAabove‘eolution,_See Appendix‘C.

Figﬁre 15<Shows alp) versus p(= b/a) foriseveral'arbi;A
trary values of k (Equatlon 1.58). Figures 16 and 17 show
. H and B proflles correspondlng to Equation 1.59, where k(p)
has been 3351gned several arbitrary values. As was the case
With Figure 11, the flux density B ebtains from the intrinsic
- Abrlkosov dlamagnetlsm of the mixed state, the model for
Wthh appears in Sectlon E of Chapter II. |

We will return to the force- free model in the next ,
chapter, after f;rst-dlscuss1ng some general{features of
| spiral flux lines.-‘The origihs of Equations 1.55'and 1.56
. will be shown there, as well as a phese diagrammatie methed‘

to charaeterize the force-free, or weak pinning state.
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IT. . SPIRAL FLUX LINES

A, Introductory Remarks

An excellent'reviéw of the liferatﬁre of current-éarryf
ing type-II superconducting cylinders has been given by
Timms and walmsléy (39). We wish to propose Here a formal
statement of the problem of infinite cylinders and a model
to deécribe this behavior. We aséume an infinite cylinder
of some type-II material, with dimensions large compared
with the flux penetration depth A. For the present, we as-
sumé that the cylinder is originally in the virgin state
containing no vortices, and that a transport current‘I and
uniform axial field H, are slowly applied, uptil some finél
| values‘Haf and If are reached. During this time, we require
that the ratiO'I/HaAbe maintained constant. We characterize
the matérial in the following way: the Ginzburg-Landgu parém—
eter x is known, along with the upper and lower critical
fieids H,, and H ;. In addition, we assume that the bulk
pinning propertiesiare well described by two parameters,
J,(0) .and Bo,‘whose4preciée definitions will be médeAclear
later. Finally, we assume that surface pinning is well
described by one parameter, HS’ also to be discussed later.
We shall demonstrate that the above information is sufficient

to unambiguously describe the resultant state of the system

at equilibrium.
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. B. Qualitative Physical Description

We expeCt flux to enter the cylinder in the form of
quantized fluxoids, each carrylng the flux quantum ﬂ
magnetic flux. Flux enters at the surface only, and the shape
of each fluxoid is a spiral. We describe the fluxoid ac- |
cording'to its radial coordinate and its pitch angle with the
z-axis. 'At'nucleation,‘the pitch angle of the fluioid must
correspona to the angle of the resultant surface field, de-
' termined'by the ratio of transport current to applied axial
field. |

We define magnetic flux density according to our brior
AdiScussion of average and local flux densities. Accordingly,
when we refer to the magnetic flux den51ty, we mean the aver-
age flux density, which is given the symbol B.

Cylindrical coordinates are most suitable, and we use
the notation described earlier.l The,vector»directicn.of,a
fluxoid, B, is given by

‘- B " By
- 2 2 Q

A

Zcosqg + Psina - o ‘ (2.1)

l

where the pitch angle with respect tao the z-axis, a, it

glven by

¢ = tan_;(Bg/Bz) : @



56

The thermodynamlc fleld H p01nts in the same direction as
the flux density B, so that

-

H/H = E/B =450 . | - (2.3)

The various trigonometric reldtions describing the geometry
of a fluxoid may be obtained by "unwrapping" the flUxoid,‘
as in Figure 18. We see that the pitch L of a fluxoid is

related to the fluxoid radius and pitch angle via
| " tgna ¥ Bg/B; = Hﬁ/Hz
and . .  |
jpanal = ZWp/L . | | ' (25&)
Later,:we sﬁaiifreconstruct,this diagram using reduced
quanﬁities. B |
C. Differential Equation Between H and p

-

1. Geometrical derivation

. — .
We derive here a differential equation linking H and p.
We start with Amperéfs.law;‘

-+—>

= /el (2.5)

- - : ,
and write the fields 'H and B as a magnitude times-a unit

vector, -



Figure 18. Geometry descrlblng unwrapped flux spiral.

Lower figure is congruent to upper figure, and‘
shows reduced dimensions, all lengths being
normalized to 2ma = 1
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—r A

H=‘Hﬂo'
- "\
B =Bf, .. (2.6)
_ » .
Then the curl of H becomes
- - — A
yxH = Vx(Hﬂo)
N d ~ - A
= (VH)xﬁQ + H(vxd )
=-f %% cosa + 2[%% sina + % sina] . (2.7)
L. L d
Next, we write the Lorentz force, FL’ according to
- -+ = : 4
P, = JxB/c - : - (2.8)

L

and substltute l/#v tlmes the rlght side of Equatlon 2.7 in
place of J/c. The result is

—

. 1—4——)._ -
| Fp = ;;(VxH) ; B

}

l__*_* T A
;;(va) x Bf,

1}

- B _ﬂ BH .. .2 ~ . :
= f]_‘_—' 5p ]+_Tr_5 sin“a] ~(2»-9)
after some algebréy

We next employ a fdrce balance condition, wherein the-

Lorentz forces on a fluxoid are balanced by the piﬁning
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forces. The critical pinning force density'Fp, a function of
B, can be reexpressed in terms of a corresponding critical

current density JC(B)'via the expression

Fp, = J.(B)B/e | - (2.10)
which should be regarded as the defining equation for S
‘Since in the present geometry the pinning force acts only
in a radial direction,

-
F =+F

p

N = +[J, (B)B/c]f . : (2.;1).

When the Lorentz force:is balanced by the pinning force,
which in the present geometry acts only in the radial direc-

tion,

or

EL =% [J,(B)B/c]p . ’ (2.12)

- -

Since Fp'acts opposite to Fy, the upper sign in Equétion
2.12.épplies when vortices are.entering the wire, and the
lower sigﬁ applies in the fiux-exiting case. Combihing Equa-
tions 2.9 and 2.12 yields

' a._ ar B BH BH . 2
+ JC(B,,)B/Cp. = p[]ﬁ 5p + E,rr—p' Sl?l a ]

so that dividing by B and solving for 2%, we obﬁain
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qv

@
jas]

|
]
1+

7,(B) - % sin®a . - (2.13)

<»
"O

This last result may be rewritten as

SH _ uv H(B) ‘ SRR
5p - + = J (B) - ﬁZTBT L (2.14)

where Rc(p) ( p/51n o) may be shown to be ‘the local flux
line radius:of curvature (see Appendlx A) .

EQdation 2.14% is our fundamental result. »To obtain
H(p) by numerical integration;'we need<only‘the functional
relations for.J .(B), H(B), and R,(p). Later, it will be
shown that R (p) obtalns from the initial surface pltch
angle, and the way 1n whlch flux. llne spirals change shape
as they move in toward the cyllnder ax1s. The form for H(B)

is obtained from an approx1mat10n to the G1nzburg Landau

theory, and J (B) follows from Urban's model.

2. .Thermodxgam1c connectlon
| Equation 2 14 lb LlObely related to the concept of vor-

tex pressure, whlch.arlses because of the gradlent in the;
density of flux vOrtiCes, Following DeGennes (lQ, pp.-83;"
84), we consider an array of N vortices intersecting per- .
pendicularly to a plane of area S. Let G and F be the Gibbs
and Helmholtz free energy densities associated with each ) ‘
vortex and let Y represent the Gibbs free energy per cm of

length associated with all N vortlces.' Thus,
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and
G(B) = F(B) - BH/YT - (2.15)
‘The average‘magnétic flux density throughout the area S is‘
B = Ng_/S
where @ is the flux quantum. Then

dB/dS = - N¢0/32 = - B/S

and the magneétic pressure on the vortex array is

p(B) = - <g—g>N
= -6 -s@d
- -+ B(ED . (2.16)
At equiliﬁrium, %Q = b, so that Equation 2.16 reduces to
b(B)'=“- G(B? : - | .' (2.17)

We can use this result to show that the gradient in magnetic

‘preSSure is proportional to the gradient in H. That is,

ap(B)/ap = Sp{B) . B . 3

~ where
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dp(B)/dB = - dG(B)/dB
28
so that |
] ap(B)/dp = ;— B aH . | (2.18)

Thus; Equation 2.18 could also be expressed as

£ = ap(B)/dp = + J (B)B/c - BH/WTR (p)

where f is interpreted as the force per unit volume on a
flux vortex array. Later, in Chapter III, we shall use this
result to-demonstrate the_possibility of an irreversible

vortex collapse.

D. Flux Line Models

l. Constant pltch model

Before proceedlng further, we need to establlsh an’
analytic form for Rc(p). That is, we must precisely define )
the changes which a flux line undefgoes as it.moves‘across
the'c&linder cross section.

Tn Lhe constant pitch model we assume that the pitch

length of a vorlex never changes as the vortex moves from
the surface toward the axis. The physical argument for this

model is that the Lorentz forces and pinning forces act only
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radially.  Referring to'Figure 18, we denote the vortex

pitch angle at the sufface as ag, where -7 < ag < 7. Then

| tana | = 27a/L
éhd, forAp'S a,
| tana(p)| = 27p/L (2919)

where L is the pitch of the spiral, and a is the cylinder

radius. Thus, a(p) and a, are related through

~

‘tana(p) =L tana, . | - (2.20)

The flux line radius of curvature may now be obtained

difectly from‘
“sin%a(p)/p = p/[p° + (39)°]
so that

. - , o
'_Rc(p)l= n o+ E(EF =p+ 5 cotqs . (2.21)

In reduced uhits; the radius of curvature becomes

Bp) =5+ Loeot?e .

R, (p) = ﬁ'+‘5 cota_ . (2.22)
' We see from Equation 2.21 or 2.22 that for certain

special cases, the radius of curvature takes a simple forw.

In the situation where there is no transport current, ag is
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Zérb and the vortices are étraight with an infinite radius
‘of curvature. When fhe current is nonzero-and the applied -
field is 2erd, as = 90° and the vortices are closed rings'of
radius p = Rc(p). Figure(l9\exhibits R, /a versus p = p/a

for several values of age

2. Constant angle model

In the constant angle model, one assumes that a flux

‘line retains the same pitch angle (with respect to the z-
axis) at all radial positions. The basic flaw in this model
is the implicit need for vortices to have an axial component
of velocity; although all forces on these vorticeé aré purely
radial. We therefore regard this model with great skepti-

cism and will make no further referenCes to it.

E. Model for the Equilibrium Field

1. Algebraic form-s

The Ginzburg-Landau theory and more sophisticated the-
‘ories for the mixed state yield results for Heq(B)‘that are
not expressible in terms of elementary functions. In order

to show‘qualitatively the behavior of Hy (B), it is sufficient

q
to use a simple model for.Heq(B) which has the following

properties in common with the exact results of theory:

Heq(o) = H,; | | ‘ (2.23a)



Figure 19. . Fluxoid radius of curvature for éeveral values
"of the surface pitch angle o (Equation 2.22).
When p/a exceeds unity, radius of curvature is

virtual concept, since fluxoid does not exist’
there
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d U - |
-(E(Heq(B)) - =0 . (2.23c)
B=0
'The funetion which we chose was
- 2R L w2 B _
Heq_(B) = _fk B + Hf ] (2.24)

2

221 - (Hcl/HCZ)' guarantees compliance

where the choice k
-with the required boundary cgnditions, Equation 2.23. In
reduced units, where all fields are normalized to H,, =1,

Equation 2.2% has the very convenient form

fogB) = B (B, = (52 + 2827 (2.25)
~ where
B '%‘HCI/HCQ = ﬁcl' ’
k2 =1 - Bz ’
and'_ ‘ |
§ = B/H

c2 '

2. Helmholtz free energy density
| Simple thermodynamics may be used to see how this choice
of model for Heq(B) affects the relationships among H,, H,j,

and HCZ,A'Independent of any specific choice for Heq(B)’ a
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vthermbdynamic arialysis shows that the Helmholtz free energy
density F(B) has the specific values

F(0) = 0 | (2.26a)
and

F(H,,) = HS,/8T + HA/8T . | (2.26D)

02)

The latter expression represents the sum of the field energy
density at Hc2 and the condensation energy density difference
between the normal and superconducting states. Integration

Qonur»specific4model for Heq(B) yields

..B ')dB'
| Heq(B
F(B) = | o=
(0]
=& | 2+ k®32Vas
0
= BH/87 + (HS,/8mk)1n[(H + kB)/H 1 (2.27)
.so that F(ch) is -
H H 4
: C.Te2 cl - c2
F(ch) =gt grR ln[HCl(l-kk)]
2 2 -
H H < :
=2+ & 1n[1—”[§£] . (2.28).
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Comparing Equation 2.28 with 2.26b shows that

« H2..
w2 _ el - fl+k
HC = Tk 1n[ B ]
2
H
_ _cl- l+k
= 2% i
or
(H/B )% = k- tamn ™t 0) . (2.29)
In the Ginzburg-Landau theory, H,, 1s related to x and
Hc vig |
'HCZ =W 2 K_HC : (2.30)

so that one méy.use Equation 2.30 together with Equation
2.29 to show that « and B are related in this model accord-
ing to

Kk
282 tanh ™ (k)

. | (2;31)

The,Ginzburg-Landau theory, on the contrary, predicts
a much more cqmpliéated, nonalgebraic relationship between
kK and f. Recently, Clem (40) has demonstrated a modified
Bessel function model for the relationship between « and‘B,
4which'agrées very well with Neumann and Tewordt's'(hl) exact
numerical solutions of the Ginzbufg-Landaﬁ equations. Figure

20 shows a comparison between Equation 2.31.and Clem's Bessel

’
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Figure 20. B = H,y/H,, versus the Ginzburg-Landau parameter

K. TUpper curve derives from Equation 2.31, and
Clem model is described in Reference 39
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function model for P versus «x. The important point is that
Equations 2.31 and 2.2% should not be taken too seriously,
as actual discrepancies with the true form of Heq(B) and

k(B) are not important to the main thrust of this study.

"F. Models for Surface Pinning

To incorporate the effects of surface pinning into our

model, we consider a cylindrical specimen with an ideal sur-
face immersed in a uniform axial field. As the field is
slowly increased from zero, the firsﬁ'penétrationvof flux

into the cylinder occurs when the applied field reaches a

critical value Hg, termed the critical entry field. In
general, the critical entry field is a function of the aver-
age magnetiC'induction near the surface of the sample; thus

S Hg = Hen(B)% o (2.32)

B?O
‘where Hen(B) denotes the eritical entry field as a function
of B. 'In general, Hg is a material-dependént parameter - |
gréater}than~Hcl. ’
DeGenﬁes (42) and Bean and Livingston (%3) have con-
sidered the‘problemfof calculating HS; their results show

that

- (@] ~ .
Hy = mmam - Ee | | - (2.33)
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where.ﬁo is the flux quantum. Clem (44) has shown that for

‘high kappa materials,’

Ho,(B) = (B2 + B21% . (2.3%)

In the same sense that there exists a critical entry
field, there also exists a critical exit field, H_,(B),
which represents the value of the surface field below which
flux vortices will spontaneously pop out of‘the material.
The critical eiit field has meaning in the field-decreasing
Situation, and the cfitical entry field has meaning in the

field-increasing case. Clem (4%) has also shown that

. /1 g' ) " o
H «B) ® B + P B . | (2.35)

In order to contrive a simple model for_Hén(B) that is
reasonably realistic, yet easy to use in a numerical comqu
tatién, we note that the following boundary conditions must
be satisfied: |

H,(B)| = Hg ‘ , (2.36a)
- B=0
and
H ,(B) =H,., . | (2.36Db)

B= c2

. To this end, we define the parameterlb:according to
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52'= 1 -(H /H'-)2° thus'if We express H.;(B) As"
C 8 Fe2” ? - P en"°

(B = [Hs + 5282 7% (2.37)
it 1s clear that the requlslte boundary conditlons are sat- g
1sf1ed. This form for H, (B) is 51m11ar to the model whlch

we chose for the equ111br1um fleld H q(B), and lends itself -

nlcely to numerlcal calculatlons in a one-parameter theory

G. Weak Pinning Limit

1. Fields

'Before examining detailed solutions to‘the fundamental .
eduation for %%, it is interesting to consider the speoial'

case of the weak plnnlng limit. Here, it is assumed that
ithe cr1t1cal current is small enough so that Equatlon 2.12

may be approx1mated as-’

dH/dp = - W/R,(p)" o o (2.38)
or, in reduced units,

afi/ap = - B/R(B) ., (239

where we have defined H = H/HC2,>5 =.p/a, and R, = Rq/a.

In the constant pitch model, Equation 2}39 becomes

aB/ap = - Bp/(F% + cotPa ] (2.40)
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where a_is the flux line pitch angle at the cylinder sur-
face. | |
As mentioned earlier (see p. 48), the general solution .

to Equation 2.38 is

b . 2
H(p) = H(O)"exp{-j) dr §l§;ﬁiﬁl} , o (2.1)
. o »

whefe we.emphasize herelthat thé weak pinning limit ahd'the
force-free model are essentially identical. When we impose
the additidnal constraint of the constant pitch model, so
that'Rc(p) has the specific form shown in Equation 2.%0,

Equation 2.41 reduces to
H(p) = H(0) « |cosa(p) ] | - (2.42)
whére

cosa(p) =A[i + 521:an2cnﬁs]"l/2 . (2.43)

Notice thét a(0)= 0 and a(l) = as,,andvthat Equation 2.42
is easily obtained from 2.40. | | |

The detailed behavior implicit in the result 2.4%2 con-
tains ﬁany-intéresting subtleties which are nicely systema-
tized via the phase diagram shown in Figure 21. The bhase
diagrém is'cénstrﬁcted in the following way:' We consider a
pair nf orthogonal axos,:éorrespondingAfo_the axial and

circumferential cdmppnents of the field, labeled Z and &



Figure 21. Phase diagram for constant pitch model with
‘ ﬁél = 0.25, under the weak pinning. assumption.
Region inside vertically stripped circle repre- -
sents Meissner states region defined by angled
~ stripes defines mixed state, and white region
marks the breakdown of mixed state into either
flux-flow regime or normal state. See text for

full description
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.respectinly. A1l field quantities are noﬁmalized to HC2,

'so that

f=HH,, H =H/H, ,and By = Hy/H , .

: Thevlarge oufer circle of radius one corresponds to
having the magnitude of the field at the surface of the cyl-
inder, Hs, ééual.to the upper critical field ch;‘at any

point oh that circle, in reduced units, A = 1, so that

2 A =

D ' | .
sz 1 - | (2.44)

H

lsg + H

where the subscript s denotes surface (§ =1).

If we let Z = H_, and & = H,, then Equation 2.4 is
the same as

72+ 82 =1 . (2.45)

Next, consider the physical situation arising when the
field on théjaxié of the cylinder is exactly equal to‘Hsz
This would correspond to the maximum possible value of H
throughout the cylinder. Then in reduced units, H(0) = 1,
SO that.EQuation 2.42 becomes

B(F) = [cosa(P)| | (2.46)
and the brthogonal components of H(P) are

ﬁg =‘ﬁ(ﬁ)sina(5) T (2.47a)

A
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H, = H(p)cosa(p) . | (2.47D)

On the surface, § = 1, a(f) = a_, and we have

]
I

-;ﬁsﬁ |cosa |sina, = & o . (2.48a)

(2.48b)

]
N

HSZ

|cosa |cosa

In this case, however, the magnitude of the surface
field, fi_, is simply |cosa |, so that

5

2 = |cosa

5° + 2 = z| . | (2.49)

S|
Thus, . ."
82+ 22 - jz] =0 . | ~ (2.50)

If we momentarily restrict ourselves to the first

quadrant where &, Z are both positive, Equation 2.50 becomes
N L ¢ L (s

which describes a circle of radius one-half centered at the
point & = 0, Z = %. 1In the fourth quadrant, where Z < O,
Equation'Z,SO would yield

2

2 (zr 9?2y (2.52)

which describes a circle of radius one-half centered at the

point & = O, Z =-)4. Thus, these two circles in the phase
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diagram‘represent the nagnitude of the surface field for
various,combinations of &, Z, when the field on the axis is.
e maximum. | |

Next, we cons1der the lines labeled a, b, ¢, and d which
represent four arbitrarily selected paths of constant surface
pitch angle, age (The particular choice of angles for the
sketch, i.e., 0, 22.5, 45, 67.5 degrees, serves only for il-

lustrative purposes.) Line e is at the critical angle, which

we denote GSC5 and passes through the intersection point of
the inner circle with the curve described by Equation 2.51.
For ease of reference, we will call the curve of 2.51 the
"upper loop". Thus, one may interpret the intersections of
these rays with theiupper loop (points A, B, C, D, and E) as
.yielding the_coordinates.Hsﬁ,__HSz which give the maximum
flux den31ty at the ax1s. Since the m-coordinate represents
H <39 and hence is proportional to the current through the
"cylinder, we.see that thev45 pitch angle yields a maximum -
in the transpart current.

The small inner circle; whose radius is-equal to ﬁcl?
representstthe pairs of values of ﬁsé and ﬁsz which combine
to.Yield a,resultant field of megnitude ﬁcl{on the surface.
The line _e, which goes.through the intersection of the inner
circle and the upper loop, represents the surface pitch

ang e whioh s1multaneoucly givoeo H ch on the axis and H ol On

the sqrface. That is, line e is at the critical angle.
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Since the inner circle is described analytically by

52 + 72

-2 ‘ . '
= £, (2:53)
and the upper loop is described by Equation 2.51, the simul-

‘taneous solution of Equations 2.51 and 2.53 yields

I
B, = H, [1-H

: C.l]'/2 = ‘ (2.51ia)

_ 2 S | |
Z, = Hy . (2.54b)

as the coordinates of point E, and yields for the-critical |

‘angle

a ..
1]

sc = tan [EC/Zc]

tan"fv 1 -B2, /A1 . (2.5%)

o

. . o -~
In the sketch of Figure 21, a_, is 75.5 , and H,; was

arbitrarily given the value 0;25. So long as %o exceeds
#50, corresponding to i ol £ 1/ 2, the maximum possible
vtransport current w1ll occur at ag = 459, If H cl 2 1/v”"
the crltlcal angle will be less than 450 and the maximum pos—
51ble transport current will occur at the critical angle.
Using Equation 2.54%a and Ampere's law, fhis"latter situation-
would imply that the maximum transport current would be

I_ = %caH

% ~ A
c c2 01[1 H ]2 (Hélnzl/d 2) (2.56)
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whereas, when o < 450, the maximum current possible is

sc
| I g = Yeal,, (2.57)
, and-the‘maiimum averag?-curfent density would beA
Tnax = Toa/ ™"
= cH,,/!Ta L  (2.58)

Figure 22 shows‘Ic/ImaxAplotted as a function of the Ginzburg-
Landau parameter «.

- Thus, if one were seeking a weak pinning matériai which
COuld_carr& the'highést possibie current, one WOuld select a
substance for which H,1/H., < 1/J2; the best ﬁerformanée'
being defined by Equation 2.57. Using Figure 20, we see that
such a material wdﬁid have a Ginzburg-Landau parameter K in
excess of 0.88. | |

It ié also interesting to look at‘some numerical values.
As an example, suppqse that we have a weak pinning material
with a « in excess of 0.88, so that H ,/H,, < 0.707. Operat-
ing at a surface_pitéh angle of 45°, we sece that at ﬁaximum

cufrent,
A Hog = Hgp = AHoo : (2.59)

'and



Figufe 22.

Transport current in weak pinning model as a functioh of the
Ginzburg-Landau parameter k, normalized to the maximum pos-
sible current I .. = Y4caH,»>. When Kk exceeds 0.876, correspond-
ing to Hcl~<OL7O7, maximum current remains equal to I ... The
zero in I, occurs at the x corresponding to H,; = Hpo

v
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H =L g = 0.707H, (2.60)

S J3 c2 2 :
- - If the upper critical field H, were 10° G and if‘the
radius of the wire were 100 pm (= 0.0l cm), Equation 2.57
would show that the maXimum-transport current wouldvbe aboﬁt
2500 A, with a mean current density of about 8 x10° A/cmzf
Equations 2.56 and 2.57 show that the total current is
’proportional to tﬁe'wire radius, while‘the current density
is inversely'proporfional to the radius. The current density
is therefore limited to the minimum possible radius of the
wire, which can be estimated by noting that the depairing cur-
rent density_is a probable.upper bound on Jmax’ This is the
cqrrent‘density at which Coopef,pairs would begih to break
up,‘destfoying superqonduqtivity."Since ﬁhe depairing cuf—

- rent density is approximately

Ty = cH /4T - (260

where A i$ the magnetic penetration depth, and Hc is related

to H,p via
Hyp =W 2KH, - « - (2.62)
Equations 2.58 through 2.62 show that the minimum value of

theAiadius, a

nin? is approximately

ai. s_J‘é XK . | . (2.63)
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Further understanding of the weak pinning limit may be
obtained from Figures 23-26. In Figures 23 and 24, we plot:
H(0) and B(O) on the axis as a function of the reduced'sur;
face field Hs, for a specimeh aséumed to have ﬁcl = 0.25;
The different curves labeled a, b, ¢, d and the point e,
correspond to the five lines of cbnstant pitch angle shown
in,Figufe 21. We see that as the surface pitch angle is in-
creaéed, there is a greater difference between the surface
fiéld and the'fiéld on the axis. At the critical angle
these curves shrink to the point E, indicating that at that
angle,. the surface field is H,, and the field on the axis is
.HCZ' :
In Figures 25 and 26 are plotted fhe fields as functions
of the radius, for,each‘of five lines of consﬁgnﬁ surface
pitch angle. In this case, the field at the surface is fixed
at H,q- Figures‘27.and 28 show the same kind of p-dependénce;
however, here the field on the axis is fixed at Hy,. |

In Figures 29 and 30 are five curves of H(J) versus B,
all at the same surface pitch angle of 67.5°. Illustrated
here is the way ih which the flux profiles change as one.

progreSéively moves out along the 67.5° line of Figure 21.



. Pigure 23. Reduced field on the axis H(O) as a functlon of the reduced
T ' surface field H _for the constant pitch model in the weak
pinning limit. H,; = 0.25, and surface pitch angels ag are

(a) 00, (b) 22.59, (c) 459, (d4) 67.5°, and (e) age = 75.59.
Also see Figure 21 ‘
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Figure 24%. Reduced flux density B(0) on the axis as a function of the
‘reduced surface field H for the constant pitch model in the
weak pinning limit, under the same conditions as in Flgure
23. Also see Flgure 21
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Figure 25. Reduced field H versus p for the constant pltch model in the
- weak pinning 1limit, with reduced surface field H = f c1 = 0.25,
for the surface pltch angels ag shown. Also see Flgure 21
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Figure 26. Reduced flux density B versus § for the same
- conditions as in Figure 25. Also see Figure 21
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Figure 27.

Reduced field H versus p for the constant pitch model with
f(0) =1 and H,; = 0.25, and for the surface pitch angles

as shown. The conditions correspond to points A, B, C, D,
and E on Figure 21 ‘

.1
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Figure 28. Reduced flux density B versus p for the same
: conditions as Figure 27. Also see Figure 21
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Figure 29. Reduced 7ield H versus p for the constant pitch model at™
fixed surface pitch angle ag = 67.5° for increasing values
of the reduced surface field Hg. For curve 1, Hg = 0.25 =
Hny,.and for curve 5, H(0) = 1. See Figure 21
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2. - Currents

The thermodynamic current density is calculated from

Ampere's law,
- e - = - . .

which in component form is

CBH )
Ig = - o= 332 o | (2.65a)
T, = ¢§5'§%<pnﬁ> . : ' - (2.65b)

Using Equations 2.42 and 2.46 this becomes

By = l-ﬁ% g%[H(O)cos2a(p)] , (2.66a)
J, = E%E‘é%[pH(O)cosa(p)sina(p)]_ 5 (2.66b)

where the upper sign applies when O < g < T/2, and the lower

sign applies when g < g < m, Taking the derivatives in Equa-

tion 2.66 yields

Jg =+ EE%Ql[2sin20(p)cosga(p)] - (2.67a)
J, =.EE%%%EZSina(p)cos3a(p)] A B (2.6?b)

after some algebra. In deriving 2.67 we make use of
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; .2 : | | | '
aaég? _ s1n22(p) : | (2.68)

~

which follows from Equation 2.43. In reduced units fg, P

‘.defiped by
| 5¢'= Jg/(chz/kﬁé) . (2.69a)
5= 1 /(H fma) (2.69)
we obtain '
Jg = + 26(0)sin%a(p)eosZa(p) | o (2.70a)
| sz = 2ﬁ(o)sinq(5)cos3q(5)/5 B ' (2f70b)

as the final result. One may show that J = [5¢ +'5§ is
given by - ‘
8 N2, 2 ' '
J —‘2H(O)|tanasl/[l + ptan®a,] (2.71a)
or
_ cH(O) ‘ 5, 2 & ’
S J = ——z—ﬁ—l;tanasl/[l + (p/a)“tan (Is] . (2.7lb)

' The maximum magnitude of the current density occurs on

the axis where p = O, and has the value in reduced units,
J(0) = 2H(0)|tana ] | L (2.72)

. Figures 31-36 show the results of Equations 2.70 and-



Figure 31. Reduced axial current density 5z versus p for the same
' conditions as in Figure 25. <Current density is normalized
to chz/#va =1
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Figure 32. Reduced azimuthal current density fﬁ versus p for the same
conditions as Figure 25. Current density is normalized to
chz/hwa =1

“1
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-Figure 33.

Magnitude of the redﬁced current density J versus p for the

~ ~ ~ !
same conditions as Figure 25. Here J = [Ji + J%]é where
and Jﬁ,are plotted in Figurés 31 and 32 respectively

~

J

Z



109

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



Cch)
4a

IJI/(

- 3.00

- 6.00,

8.00

.00

5.00

4.00 -

2.00

.00

0.00 1 I". |

lt | l | 1 1

000 Q.10 0.20 0.30 O

40 0.50 0.60 0.70 0.80 0.90
RADIUS |

0Tt



Figure 34%. Reduced axial current density'jz versus p for a surfacé pitch
angle of 67.5°, under the same conditions as Figure 29.

Curve labels 1, 2, ..., 5, correspond to the field profiles
of the same numbers in Figure 29
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Figure  35. - Reduced azimuthal current dénsity 5¢ versus P for a surface
: pitch angle of 67.59, under the same conditions as in Figure

29. Curve labels 1, 2, ..., 5 correspond to the same labels
in Figure 29
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Figure,36._'Magni£ude of the reduced current density J versus p for a
S surface pitch angle of 67.5°, under the same conditions as

~

in Figure 29. J = [Jg + § 12 where J, and 3¢ are plotted
in Figures 3% and 35 respectively '
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2.71. Figures 31-33>show the variations in 52, jg,and J
with the surface pitch angle, and Figures 3%-36 show the
variation of the current densities as the magnitude of the
fields increase.

H. Finite, Nonzero Pinning

1. Descriptive"

We deSCﬁiBe here our investigatiohs of the solutions to
Equation 2.1k, |

RO R (2.18)

in the very generailcase where JC(B) is nonzero. We restrict
ourselves to thé constant pitch assumption mentioned earlier,
'so that the vortex pitch angle as a function of radius is

known through

-a<p)»= tan'l[(p/a)tanas] . | (2.68) .

We also use the relationship for Heq(B) (H(B) for short) as

previously described - in Equation 2.24%; that is,
= - 1252 2 4%
H(B) 2Hg(B) = [kB" + He, ] . (2.69)

where

K2 =1 - [Hcl/chj2 R  (2.70)



118

that is, we use

| | 1 - B/H,,
J.(B) = Jc(O)[T*:—§7§;—J .

R apd 5'are defined by

oy

ﬁ_%_B/Hc2

i = B/H,,

R, = R/a

P % b/a
:AJ/(¢HC2/4wa) .

Our working equations in reduced form are

75 =+ 3.5 - HEV/E (B
a(p) = tan™[Ftana ]
(B = (k282 + p27

J,(B) = 5,00 - [(1-B)/(1+B/B))]

The analytical form for the critical current JC(B),is,

based on Urban's model (22) which we have discussed earlier;

(2.71)

For ease of numerical computation, we have reduced these
relationships to dimensionless form, consistent with earlier

definitions. Specifically, the reduced quantities B, H, J,

(2.72)

(2.73a)
(2.73b)

(2.73¢)

(2.73d)
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2 ~2

o cot a + P A ‘ o
R, (p) = , ' - (2.73e)
o P _ ' -

| - = a2 12
where f = Hcl/Hc2 = H,;, and Be + k° = lf

' We also have é sixth equation to account for the effegts

éf surface pinning, described earlier in Section F; that is,
‘ﬁén(s),= [HZ + 52B2]2 . - (é.?ha)‘

in the flﬁx enﬁéring case, and |
Hop(® =B - - (2.74b)

in the flux exifing case. In reduced form these are

ﬁen(gj - (82 4 52§2j5 (2.75a)
~ﬁex(§)'= B - : | | - (2.75b)
where 5 is related to Hy according to
52 = 1 -;ﬁHS/Hcé)2 . (2.76)

One should not confuse the surface barrier field.HS used in

this expression with thc mognitude H, of the net magnetic
field produced at the specimen's outer surface by the applied
longitudinal field and the self-field of the current.. -

If we let y = Hg/H,,, then
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(RY = [.2 5 82R27% _
Hop(B) = [y° + B2 | | (2.77)

Aand
N 5? =1 . (2.78)

-Figure 37‘Shows‘qua1itatively the relationship between
H(B) and H_ (B). Notice that'Hen(B)_is always at least as
- large as H(B);-and»that Y =‘ﬁs is always . at least as large
1as B = ~cl' The utlllty of Equation 2. 75 lies in relatlng
the flelds just inside the surface of the specimen to the
flelds Just outside the surface. '

Figure 38 shows‘qualitatively the relationship between
Heﬁ(B) or Hex(B) and H(B) at the sﬁrface, for three situa-

tions: a) where B is relatively small, b) where B is large,

and c) where B = ch is at its maximum.

2. Numerlcal methods

a. General method Solutions to Equation 2.73a were

obtained by numerlcal integration on a digltlal COmputef,
<using'a Runge—Kutta (RK) techniqﬁe. We have used‘the follow-
ing RKvmethod,‘discussed by Scerborough (45). The equation
which we ere'solving is a first-ordef differential equatien
of the generallforﬁ |

dy/dx = £(x,y) . - (2.79)

We let (xo,yo) denote a known starting point, and let Ax
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Figure 38.

Illustration of the way the surface field H_, (B)
or Hex(B) leads the internal field Heq(B). Upper
figure applies in the flux-entering case, and
lower figure applies in the flux-exiting Case
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denote the interval between the series of points x,, X;,
xé, . + s X,, at which we seek the corresponding ordinates
yo,vyl, Yoy = =« 5 Yp* WQ compute fqur quantities kl’ k2,‘

ky, and k, via

Ky 'f(XO%YO)AX'

f(xo + %A, Yo *+ %kl)Ax'

R
1\V)
1

ky = £(x, + %ax, v, + ) ax

f(xo~+ DX, Yo+ k3)AX o (2.80) -

o
Neg
i

and obtain Ay by averaging k; . . . k, through the weighting

scheme
so that the new point (xy,y;) is given by
X = Xg o+ ax

n
~
o
%
&

The next point, (x2,y2) is obtained in exacfly the same way,
by replacing.(xo,yo) by (xl,yl) in Equation 2.80, and so on.
- Thus, by proceeding in this manner, one may eventually obtain
all thé points (xi,yi), C e (xn,&n) as the desired solu-

tion.
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In solving for f as a function of §, we have used this
routine with Ax = 0.02, so that the radius is divided into
'50 equal intefvals ih‘the range from 0.0 to‘l.O; The errors
with this RK method are proportional to (Ax)s, so that in’
these circumstances, a ax of 0.02 is more than sufficiently
accurate ﬁheﬁlcomparéd with the other approximations used in
_the overall method. Eventually, we came to rely upon two
combuter programs; dependihg upon whether one wished to
integrate from the surface inwards, or‘from the axis out-
wards.

- An additional complication, which precluded the use of
a canned RK routine, was the'fact that special consideration
Qas'necessary‘at_the'Zero(s)‘of_B(p){ As will be shown in.
tﬁeAnext'chapter,'the'slope of the H versus p curve at the
flux'front_(i.e;, where H 2 H,y and B * 0) determines the
direction'of‘the bulk force per unit volume on the.voftex
array.. If‘the slope of the H versus p curve beéomes nega-
tive at the flux front, then these bulk forces act inwards,
precipitating a draﬁatic and irreversible collapse of'flui
spirals. A(This stérﬁling result, which we have called the

spiral collapse instability, is discussed in detail in the

next chapter.) Thus, it was necessary'to'examine the deriva-
tive aH/ap.at the zero(s) of B to determine if the integra-
tion should be ailowed to procéed, or be terminated. In

actual practice, a zero in thq slope 8H/8p was verified by
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2 numerically, since

examining the second derivative BZH/Bp
the entire procedure was limited by the accuracy of the .
numericél method. .

b. Magnetization The area under the curve of B(p)

versus p isvrelated:to the magnetization of the cylinder.
From the usual electromagnetinresulté, |
s - -+ .
-4t = H - B ’ (2.83)

we have for the axial direction in the cylinder

<- &WMZ> =H,, - B> | (2.8%)
where H_, is the magnitude of the applied longitudinal field
at the surface, and <B,> is the mean axial field throughout

the cylinder, defined as

| .
_ 11 ‘
B 7 5 J O ap 27pB,(p)
=£2..j dp pB(p)cosalp) - (2.85)
a.- o .

The magnetiZation is said to be paramagnetic or diamagnetic
according'to whether <-#WMZ> is negative or positive, re-
spectiVely. One could also define a mean circumferential

magnetization per unit length, <-4WM¢>, where
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<;4WM¢> = Hyy - <By> o | - (2.36)
'and
- - a -
B> = %4.[ dap By(p)
: I
;"a. '
=1 | dp B(p)sina(p) . (2.87)
o - ' ‘

Equation 2.8% is most useful, since this is what the
éxperimentaliét can measure directly. We obtained numerical
values fpr <—#WMZ> by performing ﬁhe integration of Equation
2.85 numerically using Simpson's rule. - Simpson's rule 1s
appropriate wheh the function to be integrated does not have
~excessive curvature, and the number of ordinates in the in-

. tegration is an odd number. The most general Simpson's rule

formula is
‘Yf(x)dx = %Ax[fl + 4f2'+ gf3 + hrh + 2f5 + 4f6

I R . (2:88)

nJ

where n is.an odd'intéger, f; denotes the ith ordinéte, and
all of ﬁhe'xi are evenly spaced. In general, the multipliers

on the right-hand side above follow the pattern

1y Ry 2,0 8, 2, %, 2, k2, 0 00 0, b, 1, (2.89)
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where in the spe01a1 case of only three ordlnates, the mul -~ -
tlpllers are s1mp1y 1, 4%, and 1.

Any zeros of B(p), which introduced an oddly spaced
point, were accommodated by approx1mat1ng the area about
_the zero’point as a trapezoid. It is estimated that neg-

ligible error was introduced by this approx1mat10n.

- 3. Phase diagramsi

We begin the analyeis of the nonzero pinning case by
examining phase diagrams analogous,to.Figure 21 for the weak
pinning limit.

In order to makeda'comparison with the weak pinning
limit, we selected a hypothetical material with the same
iower critical field value, i.e., Hy; = 0.25H,,. One such
real substance would be vanadium. Using the Urban model
for § (8), ‘

~

J,(B) = J,(0)[(1-B)/(1+B/B )] (2.90)

]

we arbitrarily selected a value for ﬁo of 0.20, and pro-
ceeded to vary EC(Q)~through a wide range of values. Sur-
face pinning was initially discounted for simplicity This
was effected by settlng the surface plnnlng parameter HS
equal to H ol -

Figures 39 through 4 show the influence of increasing

the pinning strength, while Figure 45 shows the effect of a
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modest amount of surface pinning. Since the curves have a .
vertical tangent aﬁ the maximum Value.olesg, we see that
increasing pinning Stfength tends to increase thé surface
 pitch angle at which the totai current is a maximum; and
also the magnitude of the maximum current. Also note that
as -the pinning strength increases, the surface field needed
"to produce é givén.H(O),increases in magnitude, as evidenced
by the mergér of the two curves (O.5’Hc2 and ch) at zZero -
pitch angle. All curves in this series show a missing por-
~tion in the region where Hy, “_d, corrésponding to pitch
angles near 90°. The 90° case is radically different from
the situations with lesser surface pitch angles, since flux
spirals here degenerate into flux rings. As a result, it
becomes increasingly more difficult to obtain values of Hs¢
corresponding to a givén field on the axis H(O), because the
integratibn'may noAlonger be performed_ffom the axis out-
wards, but rather, must be'performed,from the surface in-
wards. Thus, one must gucss at an appropriate Hsﬂ’ and see
what actually results by trial and error. As an additional
cOmplicafion, the sensitivity dH(O)/dHSﬂ.becomes'enqrmous 
near_90°, making the gueés.for Hsﬁ that much more difficult.
Finally,. the spiral coliapse instability (see next chapter)
'quitevoften assures that it is impossible to realize a giVen
H(C); i.e., theAcoliapse drives the field on the axis abové

Hoos causing destruction of the mixed state.
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Wwhat is therefore missing from this survey are the'de-
tails of the region of the phase diagram near a, = 900. Pre-
 liminary analysis indicates that}the'beh‘avior near 90° is
quite‘chplex,vand'worthy of a detailed investigation in the
fﬁture. An'inhereﬁt feature of such a phase diagram would be
a épiral collapse line delineating those regions subject‘tO"A
collapse from the nanollapSe regions of the mixed.state;

Figure 46 shéws the influence of increasing pinning on
the magnetization of the cylinder, while Figure 47 shows the
change in the fiéld profiles as the pinning strength is
varied, all at a surface pitch angle of 15°. Figures 48‘.'
thfough 52 show similar field profiles at increasing surface
pitch angles through 850. Figure 52 reveals an interesting
sifuatién‘wherélportions of the curves of H versus p for
30(6),=,150 and 2.0.lie belowlﬁél. This indicates that, be-
cauée_of the spiral collapse instability, no static solutions
are possible.under these cohditions.

Figures 53-55 showvthe'producL of" the flux'density B

with the two orthogonal components of the current density

- . : - —
<j>, and with the magnitude of <j>. Recalling that <j> is
—+ : ' e
derived from the curl of B rather than the curl of H, we see

that singularities in <j> are to be expected wherever 8B/dp

changes abfuptly, typiqally at the flux front. A smooth
cﬁrve is obtained by plotting the product of B with <j>, al-

thbugh there is a sacrifice in the physical intuition for‘<j>.



Figure,39.'

Reduced surface field componenté ﬁsﬁ and ﬁsz required to yield
a field on the axis equal to'ﬁcz and O'Sﬁc2' Outer dashed
lines define the minimum value of ag (= 63.44°) necessary for
spiral collapse. (See discussion in Chapter III.) Inner

dashed lines define sector where behavior is unknown, cor-

responding to ag >87.50. 50(0) = 0.25 corresponds to weak
pinning material -
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Figure 40.

Reduced surface field components ﬁsﬂ and ﬁsz required to yield
a field on the axis equal to ﬁc2 and 0'5ﬁ02- Dashed lines de- -
fine the minimum value of agy (= 82.87°) necessary for spiral
collapée.' (See discussion in Chapter'III.) Missing portions

. of the two curves indicate region where behavior is unknown

(as P 87.59)
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‘Figure 41. -

Reduced surface field components H s and H réquired to yield
a field on the axis of ch -and O. 5HC2 Dashed lines define
the minimum value of ag (= 86.42°) necessary for spiral col-
lapse. (See discussion in Chapter III.) Mlss1ng portions of

the .two curves indicate region where behavior is unknown

(ag >87.59): JF;(0) = 2.0 indicates a material with moderate
pinning strength. ' : o
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Figure 42. Reduced surface field components ﬁsﬁ and Hy, required to yield

a field on the axis of ﬁc2 and 0.5H,5. Missing section of.
curve at ﬁsz % 0 indicates region where behavior is unknown

(24 >87.59). Jo(0) = 5.0 indicates a material with moder-
ately strong pinning strength
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Fizure 43.

Reduced surface field components ﬁsﬂ and ﬁéz reqUiréd.to
yield a field on the axis between O.Sﬁcg and ﬁc2' Two

curves are indistinguishable within the width of an ink

line. Missing section at Hy, ® 0 indicates region where

~ behavior is unknbwn,(as >87.59). 5C(O) = 25.0 indicates a

very strong pinning material
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‘Figure 44. Summary of Figures 39-%3, showing reduced surface field com-
ponents. required to yield a field on the axis of ﬁcg.
Missing portions of each curve at Hg, % 0 indicate region
where behavior is unknown
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‘Figure 45. .
'~ 'face field components necessary to yield a field

Influence of surface'pinning_bn the reduced sur-

. on the axis of H,,. J,(0) =1.0, B) = 0.20, B =

0.25, and-ﬁs'=‘0.h0. .Inner dashed circle repre-
sents-a value of the surface field equal to

ﬁél (= 0.25). Outer solid circle regresents a.
value of .the surface field equal to Hg, the re-

duced surface barrier field (= 0.40). With the

postulated amount 6f surface pinning, sample re-

. - |
- mains in Meissner state until [ng +_H§¢]6-ex-

~

ceeds HS‘ Region between lines a, b indicate

region where behavior is unknown (a >87.5°)
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Figure 46.

Reduced axial magnetization <—4Wﬁz> versus surface pitch
angle ag, for varying amounts of pinning'strength. All
curves apply to case where field on the axis is ﬁcgvand
therefore show greatest possible paramagnetic axial moment.
Surface pinning was ignored. Relevant parameters are

B, = 0.20, and B = 0.25
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Figure 47.

Field profiles H versus § at a surface pitch angle df'lSO,

~and at surface fields such that the field on the axis is

~

Hoo. Five separate curves show the influence of varying
amounts of bulk pinning strength. Surface pinning has been
ignored, and B = ﬁcl = 0.25. These curves are the analog
of Figure 27 for the weak pinning limit '

w
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Figure 48,

Reduced4field<profiles'ﬁ versus p at a surface pitch angle bf

309, and at surface fields such that the field on the axis is

~

Hoo. Five separate curves show the influence of varying
amounts of bulk pinning strength. Surface pinning has been

ignored, and B = ﬁcl = 0.25. These curves are analogous to

Figure 27 which describes the weak pinning limit. Also see
Figure L7
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Figure 49} Reduced field profiles H versus p at a surface pitch angle of
4509, and at surface fields such that the field on the axis is
‘ ﬁc2' Five separate curves shcw the influence of varying
amounts -of bulk pinning strength. Surface pinning has been:
ignored, gnd B = ﬁcl = 0.25. Also see Figures 47 and 48
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Figure 50. Reduced field profiles'ﬁ versus p at a surface pitch angle of
v 600, and at surface fields such that the field on the axis is
~ﬁc2. Five separate curves show the influence of varying

amounts of bulk pinning strength.‘ Surface pinning has been
ignored, and p = Hey = 0.25. Also see Figures 47-49
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Figure 51.

Reduced field profiles H versus p at a surface pitch angle of

: 750, and at surface fields such that the field ¢n the axis is

~

Hop. Five separate curves shcw the influence of varying
amounts of bulk pinning strength. Surface pinning has been

ignored, and p = ﬁcl = 0.25. Also see Eigures 47-50
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Figure 52.

Hypothetical field profiles ﬁ versus p at a surface'pitqh angle
of 85°, analogous to Figures 47-51. Since portions of the
curves for 30(0) = 1.0 and 2.0 lie below ﬁcl? they indicate
that because of spiral collapse (see Chapter III), no static

" solutions are possible. That is, spiral collapse instability

would cause field to exceed H;o, driving the sample into
either the normal state, or into a flux-flow regime
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"Figuré-53.

-Reduced current density profiles showing the

product §<52> versus p at two different surface
pitch angles, and at fields»§uch that on the
axis, H(0) = ﬁc2 = 1. The five separate curves
show influence of varying amounts of bulk pinning
strength. Current density here is proportional

-+ = . . -+ = . ~
to VxB rather than VxH. Since 0B/2p is discon-
tinuous at the flux front, <5> shows sharp

spikes where B ®0. By plotting the product
§<j>; such singuldrities are removed, although
at a sacrifice to the realizétion of the actual
form of <j> |
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v

Figure 54. Reduced current density profiles showing the
product B<J¢> versus p at two different surface
‘piteh angles, and at fields such that on the
axis, H(O) = H c2 = 1. See caption for Figure

53



161

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK



[so}d

?

- 048

0.24

.OLIGE

162

2.40
2.00
.60}
.20
0.80
0.40

0.00

064 |

056f

0.40

T

032

008k

-
-

N
o
O

e .
S w

W

n "n u
S
ooc 9

T
(2]
NN

1 1 | 1 i

20
<2.0

{

0.00
0.00

l -
040 060

. RADIUS

- 0.20

0.80

1.00



'Figure 55.

Y

‘Reduced current density profiles showing the

product of B and the magnitude of <j>, at two
different surface pitch angles, and at fields
such that on the axis, H(O) = ﬁc2 = 1. See
Figures 53 and 54
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The sharper curvature exhibited in the 75° case compared with
the 45° case is indicative of the steeper flux gradients en-

countered in the former situation.

I. Comparison with Experiment

1. Magnetization ‘

We.compared 6ﬁr model to the published data of Timms énd_
Walmsley (39), who obtained magnetization curves for two
lead-biémuth cylinders under varying conditions of applied
~fiéld and‘transportAcurrent. Their samples were Pb—56%Bi.-
cast under vaéuum in 3 mm inside diameter glass tubes. Axial
field was supplied by a 0-6000 Oe superconducting solenoid,
and a trahsport current was ramped from O to 1000 Amperes in
synchronization with the source of the field. Surface pitch -
angle could be set to 2% accuracy in the ratio of Hg/Hz.
Figures 56 and 57 contain reproductions of their data for
fwo samples with different histories of anneal, under .condi-
tionsAof zero transport current. We have labeled these Speci-
men #1 and Specimen #2. Figures 59 and 59 are reproductions
of their data for the same two samples, undef cdndition; of
. nonzero tranéport current. The symbol C on these curves rep-
'resents the tangent of the surface pitch angle (Hsﬂ/Hsz)' We
have superimposed our results on the abéve plots in order to

compare their data and our modsel.



V%
1

Figure 56. Reproductibn'of Timms and Walmsley (39) mag-
‘netization data for Specimen #l, together with
calculated magnetization curve derived from

. two-parameter least-squares fitting of Timms
and Walmsley data
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Figure 57. Réproductibn of Timms and wélmsléy (39) mag-
netization data for Specimen #2, together with
calculated magnetization curve derived from

two-parameter least-squares fitting of Timms
and Walmsley data
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Figurs 5&. Reproduction of Timms and walmsleyv(39) magnetization~data'~
o for Specimen #l, together with calculated magnetization
curve -derived from three-parameter least-squares fitting of

data in Figure 56. Various C values denote tangent of the
surface »nitch angle :
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Figure 59. Reproduction of Timms and Walmsley (39) magnetization data

for Specimen #2, together with calculated magnetization
curve derived from three-parameter least-squares fitting of

data in Figure 57. Various C values denote tangent of the
surface pitch angle :
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B T4 mms and‘walmsley (39) give no measured value for the .
lower critical fields Hcl of the two samples, although Héz»'
was measured to be 5650 Oe, presumably for both samples.
Voight (#6)‘cites values for k in 1lead-bismuth averaging'
about 1%, which Suggesfs a value for B (= Hcl/chj of ébout»
0.024, using our model for B(x).

- In attempting to model their expefimental results, our
approach was to employ a fitting program to obtain appro-
priate values of 50(0) and ﬁo fér the critical current, usihg
their zero current magnetization data (Figures 56 and 57).
Latgr, we varied the third parameter, ﬁs, to account for sur-
. face pinning. Tables 2 and 3 show the magnetization valués
as read from Timms and Walmsley's (39) cufves using a milli—
meﬁer fule.and appropriate'scaling. The fitting.program
varied 30(0) and'ﬁovuntil the mean square difference between
the calculated magnetization curves and the experimental mag-
netization curves were a minimum. TheAfitting was accom-
piished by fegarding the flux-entering magnetization curve
and the flux-exiting curve as one folded curve. Tables 4 and
5 show thélresults of the fitting, assuming zero surface pin-
ﬁing, In effecting the fitting, the surface field Hsz was
modeled,by Equation 2.3% in the flux-entering portions, and
by Equation 2.35 iﬁ the flux-exiting portion.

After the parameters EC(O)Aand ﬁo were obtained, com-

parison was madeAWith the Timms and Walmsley's (39) nonzero
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current magnetization curves; Preliminary comparisons with
their magnetiZation curves indicated a_poor agreement with
their results; it was therefore hypothesized-that the dis-
crepancies were due to surface pinning. We then attempted a
three-paraméter fit to the zero-current magnetization data,
where now the surface pinning parameter ﬁs was a variable,
'  along with 50(0) and ﬁo. Tables 6 and 7 show the results of
.the.three-parameter fittings, and'Figures 58 and 59 sum-
marize our model comparison with Timms and Walmsley's data
Under conditions of nonzerd current, our model predicts a
significantly'greater value of ;4ﬂMZ than is-actually meas-
ufed. The Walms1ey and Timms' theory referred to in Figures

58 and 59 is based on a differential equation of the form

1

" BdB/dp = + «RBZ[1 - B] ; . (2.91)

where @ is a pinning force density parameter and R is the
cylinder radius. They assume a pinning force'density rela-

tion of the form
~ 'NI/ ~ ‘
F (B) = wB?[1 - B] (2.92)

and their model ignores surface barriers. The model of Equa-
tion 2.92 cannot be4vaiid in the limit as B approaches zero,
because it yields a pinning force per unit length which di-

~_| ' )
verges as 5™ in this limit.



176

Table 2. Timms and Walmsley's (39) data for Specimeﬁ #1

Point Reduced 4TWH, -WTM/H,
ne: “Paa flux flux
Hsz/ch entering exiting
1 0.0 0.0 -0.1415
2 0.05 0. 0446 -0.1089
3 0.100 0.0787 ~0.0890
N 0.125 0.0912 ~0.0801
5 © 0.150 . 0.0993 -0.0730
6 0.175 0.1010 -0.0665
7 10.200 ' 0.0976 -0.0612
8 ©0.250 0.0796 -0.0525
9 - 0.300 0.0628 -0.0458
10 - 0.350 ' 0.0510 ~0.0400
11 0.400 0.0%28 -0.0348
12 0.450 0.0360 -0.0299.
13 0. 500 0.0307 -0.0257
4 0.600 0.0221 -0.0187
155' 0.700 o.oish -0.6130
16 0.800 0.0097 © -0.0081
17 0.900 0.0046 ~0.0039
18 0.975 0.0012 -0.0009
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Table 3. Timms and Walmsley's (39) data for Specimén #2

Point Redﬁc_: ed -LI-TTM/HC 5 LM/ H,,
o s flux - flux
Hsz/HCZ enterlng ‘ exiting
1 0.0 0.0 | ~0.1095
2 0.05 0. 0443 ~0.0851
3 0.075. 0.0618 - -0.0758
L4 0.100 0.0735 . -6.0683
5 0.125 0.0793 ~0.0622
6 - 0.150 0.0801 - - -0.0575
'_ 7 0.175 ©0.0767 . -0.0525 -
8 - 0.200 0.0700 ~ -0.0482
9 0.250 0.0535 -0.0418
10 0. 300 0.0435 ;0,0362
11 0.350 - 0.0365 -0.0313
12 0.%00 0.0310 ~0.0271
13 0.450 0.0266 .0.0232
1k 0. 500 0.0228 -0.0200
15 0.600 0.0162" ~0.0163
16 0.700 0.0112 - -0.0112
17 0.800 0.0070 ~0. 0070
18 0.900 0.0032 -0.0032.
'19 0.975 ~ 0,0008 -0. 0009




178

Table L. Resuits of fitting theoretical curve to Timms and
Walmsley's data Specimen #l, no surface pinning2

Point Applied Experimental ~ Calculated

no. fiel magnetization magnetization
e - b 23
1 0.024% . 0.024 0.024%
2 0.050 0.0446 0. 0474
3 0.075 0.0630 0.0669
4 - 0.100 0.0787 0.0809
5 0.125 - 0.0912 0.0916
6 0.150 0.0993 0.0979
7 0.175 0.1010 0.1001
8 © 0.200 0.0976 0.0972
9 0.250 0.0796 0.0823
10 0.300 0.0628 " 0.0637
11 0.350 ' 0.0510 0.0510
12 0.400 0.0428 0.0417.
13 0.450 0.0360 0.034k%
14 0.500 0.0307 0.0285
15 0.600 0.0221 0.0195
16 0.700 - 0.015% 0.0128
17 0.800 - 0.0097 0.0076
18 0.900 0.0046 0.003%
19 0.975 0.0012 0.0008

®Final values of variable parameters:
B, = 0.1663 '

J,(0) = 0.6253 .
Values of fixed parameters:

g = 0.024
HS = 0.024%
Average of squared deviations:

38
0.0313;x10‘l+ = é% £ (Y, - Zi)2

i=l
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Table L4 (Continued)

Point Applied  Experimental - Calculated

no. : field magnetization magnetization
% X ' Z5
20 0.975 -0.0009 -0.0007
21 0.900 -0.0039 -0.0032
22 0.800 " -0.0081 : -0.0070
23 0.700 -0.0130 -0.0116
ol 0.600 -0.0187 . _0.0172
25 0.500 -0.0257 -0. 0244
26 - 0.450 - =0.0299 -0.0288
27 0.400 . 20.0348 -0.0338
28 © 0.350 -0. 0400 ~ -0.0395
29 0.300 . . -0.0458 | ~0. 0462
.30 0.250 © -0.0525 -0.054%2
31 0.200 | -0.0612 - -0.0635
32 0.175 -0.0665 -0.0690
33 0.150 ° ~0.0730 | -0.0750
34 0.125 -0.0801 -0.0817
35 0.100 -0.0890 -0.0891
36 0.075 -0.0983 -0.0974
37 0.050 -0.1089 | -0.1071
38 0.0 -0.1415 -0.1377
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Table 5. Results of fitting theoretical curve to Timms and
Walmsley's data Specimen #2, no surface pinning?

Point  Applied - Experimental Calculated
no. field magnetization : magnetization
| Xy Yy Sty
1 0.02% '0.02k4 0.02%
2 0.050 0. 0443 0. 0467
3 0.075 ; 0.0618 0.0619
L . 0.100 - 0.0735 0.0728
5 0.125 0.0793 0.0788
6 0.150 0.0801 .~ 0.0800
7 0.175 : 0.0767 0.0769
8 0.200 0.0700 0.0708
9. 0.250 , 0.0535 0.0558
10 0. 300 0.0435 0. 045%
11 0.350 - 0.0365 0.0376
12 0.400 - 0.0310 0.031k -
13 0.450 0. 0266 0.0263
14 0.500 © 0.0228 0.0220
15 0.600 0.0162 0.0153
16 0.700 . 0.0112 -0.0102
17 0.800 0.0070 0.0061
18 0.900 0.0032 0.0028
19 0.975 | 0.0008 0.0006
aF1na1 values of variable parameters.
= 0.2274%
c(O) '0.3916
Values of fixed parameters:
B =.0.02
ﬁs = 0.024
Average of squared deviations%
Y _ o1 3 7P

0.0135 x10~ = T Y-
) ) i=
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Table 5 (Continued)

Point  Applied  Experimental Calculated

no. field magnetization "magnetization
: X, Y, ~ Zs
20 - 0.975 | -0.0009 ' -0.0006
21 0.900 -0.0032 -0.0026
22 0.800 - -0.0070 -0.0056
23 0.700 ~0.0112 -0.0093
ok 0.600 -0.0163 . -0.0138 -
25 0.500 - -0.0200 -0.019%
26 0.450 -0.0232 -0.0228
27 - 0.400 -0.0271 -0.0267
28 0. 350 . -0.0313 -0.0311
29 10.300 | -0.0362 - -0:0362"
30 0.250 ~0.0418 . -0.0421
31 ~ 0.200 -0.0482 C -0.0492
32 0.175 -0.0525 . -0.0532
33 0.150 -0.0575 . -0.0576
34 0.125 -0.0622 -0.0626 -
35 0.100 - ~0.0683 -0.0680
36 0.075 -0.0758 -0.0743
37 0.050 ' -0.0851 - -0.0816
38 0.0 ~0,1095 - - -0.108k%
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Table 6. Results of fitting theoretical curve to Timms and
Walmsley's data Specimen #1, with surface pinning2

Point Applied Experimental Calculated

no. field - magnetization magnetization
X5 Y5 2
1 0.050 0.0446 0. 047
2 0.075 0.0630 0. 0669
3 0.100 " 0.0787 0.0810
4 0.125 0.0912 0.0917
5 0.150 0.0993 0.0980
6 - 0.175 0.1010 0.1002
7 0.200 0.0976 0.0973
8 ©0.250 0.0796 0.0824
9 1 0.300 - 0.0628 0.0638
10 0.350 0.0510 0.0510
11 0.400 0.0428 0.0417
12 0.450 0.0360 0.0344
13 0.500 - 0.0307 0.0285
14 0.600 0.0221 0.0194%
15 0.700 0.015% 0.0127
16 0.800 0.0097 0.0076
17 0.900 0.0046 ~ 0.003k
18 0.975 0.0012 0. 0008
8Final values of variable parameters:
BO = 0.1651 .
Afc(o) = 0.6283 |
ﬁs = 0.02415 . i
Value of fixed parameter:
B = 0.024
AVeldge of squared deviations:
ST SO 2
0.0322 x10 L > [Y - Z.]

1

37



Table 6 (Continued)
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Applied

Calculated

Point Experimental
no. field magnetization magnetization
X3 | Y5 2y
19 0.975 ~0. 0009 -0.0007
20 - 0.900 ~0.0039 -0.0032
21 0.800 ~0.0081 -0.0070
22 0.700 -0.0130 -0.0115
23 0.600 -0.0187 -0.0172
o - ~ 0.500 -0.0257 ~0.0244
25 © 0.450 -0.0299 -0.0288
26 0.400 -0.0348 -0.0337
27 - 0.350 -0. 0400 -0.0395
28 0.300 --0.0458 -0.0462
29 -0.250 -0.0525 -0.054%2 -
30 0.200 -0.0612 -0.0636
31 0.175 -0.0665 -0.0691
32 0.150 -0.0730 -0.0751
33 0.125 -0.0801 -0.0817
34 0.100 -0.0890 -0.0891
35 0.075 -0.0983 -0.0975
36 -+0.050 - -0.1089 -0.1072
37 0.0 -0.1415 -0.1379
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- Table 7. Results of flttlng theoretical curve to Timms and
' Walmsley's data Specimen #2, with surface pinning®

Point : Applied - . Experimental Calculated
no. field magnetization magnetization
X Y, 2y
1  0.050 0. 0443 0.0468
2 . 0.075 0.0618 0.0620
3 0.100 0.0735 0.0730
L 0.125 0.0793 0.0790
5 0.150 0.0801 0.0805
6 0.175 . 0.0767 0.0771
7 0.200 0.0700 - 0.0710
8- 0.250 0.0535 0.0558
9 0.300 0.0435 0.0453
10 -0.350 0.0365 - 0.0375
11 0.400 0.0310 0.0313
12 0.450 0.0266 0.0262
13 0. 500 0.0228 0.0220
1k 0.600 0.0162 0.0152
15" 0.700 0.0112 0.0101
16 - 0.800 0.0070 0.0060
17 0.900 0.0032 0.0027
18 0.975 ~ 0.0008 0.0006
%Final values of varlable parameterb
o = 0.2235 .
F (0) = 0.3946
B = 0.02446
Value of fixed parameter:
B = 0.024
Avcrage of squared deviations:
£ 0.0138 x107F = é-?n‘-zf
37 i
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Table 7 (Continued)

Point Applied - Experimental Calculated

no. field magnetization magnetization
X ¥, Z <

19 0.975 -0.0009 A ~0.0006
20 0.900 -0.0032 -0.0026
21 0.800 -0.0070 -0.0056
22 0.700 -0.0112 ~ -0.0093
23 '0.600 -0.0163 -0.0138

ook 0. 500 -0.0200 -0.019%

25 0.%50 -0.0232 -0.0227
26 0.400 -0.0271 -~ -0.0266
27 0.350 -0.0313° . -0.0310

.28 0.300 - -0.0362 ~0.0361
29 . 0.250 -0.0418 , -0.0420
30 0.200 - -0.0482 -0.0491
31 0.175 -0.0525 -0.0532
32 0.150 . -0.0575 -0.0576
33 0.125 -0.0622 - -0.0626
3k 0.100 -0.0683 -0.0681.
35 0.075 -0.0758 -0. 074k
36 0.050 -0.0851 -0.0817
37 0.0 )

.1095 ~ -0.1087
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2. Current

Timms ‘and Walmsley (39) measured, for each specimengA

the normallzatlon current, deflned to be the current at whlch‘

the sample reverts to the normal state. FLgure 60 shows a -
comparlson between their experlmental normallzatlon currents
and the predlctlons of our model, where both curves are

normallzed accordlng to a unit of current defined to be

_1" .
Ip = leaH,, . (2.93)
‘With an H,o Of 5650 Oe and a sample radius of 1.5 mm the
unit of Current IfAls:2119‘A. We calculate the normallzatlon.'
current by determining the magnitude of~the surface fleld
Hs’ at which the fleld inside the cyllnder flrst reaches H c2° |

The- normallzatlon current is related to H via

2iz/cé;=:Hsﬂ = Hssinas 3
}Iz,='zcaHssinas s , | :‘v | (é}é%?'t
’_santhat in reduced form,
i, - ;é/szi
_;'Zﬁgsinasrj . | | L | "(2;95)-

. Figure 60 shows that the predicted values for the nor-

malization current does not compare weli with the measured
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values. At present we have no reasonable explanation f’o‘r

the large aiscrej)anéies. HoWever, one would expect reduéed'
normalization currents if the applied 4current and field were
‘brought to final values too quickly for the sample to remain

at one temperature.



. Figure 60. Experimental and theoretical réduced normalization
" currents versus tangent of the surface pitch
angle, for the two specimens of Timms and

Walmsley (39)
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III. SPIRAL COLLAPSE INSTABILITY
Af. Introduction

Our basic differential Equation 2.14 relating Heq(B)
and the radius p displays an unusual feéature when written

in the form

<l3

= H(B) - [p;t(® - B;Hp] (3.1)

where p (B), defined as

po(B) = cH(B)/4TJ (B) (3.2)

may be called the field-dependent critical radius. We see

immediately that a fortuitous combination of parameters
might lead to the condition where Po(B) > Rc(p), resulting
in 9H/d%p less than zero. This is in marked contrast to the
critical staté model for straight vortex lines, which pre-
dicts that OH/0p is always positive in the flux-entering
case. As 6ne may~eésily demonstrate, é negative 8H/%p is
usually associated with a paramagnetic longitﬁdinal moment,
and can‘also‘lead to é sudden catastrophic collapse of flux
spirals. . '
Before discussing the physical arguments describing the
collapse, we first define two quantities; Py and p_, which.

will be needed in that discussion. p, and p_ are those radii
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where'pC(B) and Rc(p) are equal; i.e., where 9H/8p is zero.

Because we are concerned with the behavior at the leading

edgé of the flux front, we évaluate Equation 3.2 with B = 0,
~resulting in
Po(0) = cH, /4T (0) = pc , (3.3)
so that from Equation‘2.2l we have
o =R (p) = p+ B oot | (3.ka)
~or
p2-+ Pop * azcotzas_¥ o . © (3.4p)
The two solutions to Equation 3.4 are called p, and p_:
. |
Py T Bp, [('/2pc)2 - a200’020t~,\;]/2
p_ = %p, - [Usp)2 - acot?a 12 . (3.5)
We see that p_ and p_ are real only if-
tapas 3 2a/p,, - _ (3.6)
and that
‘p+ = p_ : pc/2 . (3-7)

when tanas.= 2a/pc.' Figure 61 shows qualitatively the



Figure 61.

Comparison of fluxoid radius . of curvature R,(p)
and the fluxoid critical radius pc(B), for four

_hypothetical values of o+ Minimum in R,(p) falls

inside the cylinder, indicating that the surface
pitch angle in this example exceeds 4+5° '
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. Figure 62. Typical behavior of 50(]§), 5;1(152, and Ec(ﬁ),
here illustrated for § = 0.024%, B = 0.20, and
J,(0) = 2.50, such that _(0) = 0.0096 and
pzl(0) = 104 Co |
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geometrical interpretation of Equation 3.5, and Figure 62

shows the behavior of p.(B), 5gl(§), and jc(ﬁ)‘ Both p'l(B),

“and fé(ﬁ) remain finite as B approaches zero.
'B. Physical Argument

1. Force balance
In Equation 2.18 we had an expression for the force per
unit volume f acting on a vortex array. This could also have

beeh written as
= (B/4meE/op O (3.8)

where we'see immediately that the direction of f is determined
by the algebraic sign of 9H/%p. If f is zero, vortices near
the flux front (p+) are in a metastable equilibrium, and if
0H/3p 1s negatlve, the net force per unit volume acts in-
wards, resultlng in an 1nstab111ty. Under thls latter con-
dition, vortlces near the flux front will spontaneously col-
:1apse to the VlClnltY of p_. At p_, 8H/%p hecomes pnsitive
again, so that an accretion of flux oocurs in the neighbor-
hood of p_. Figuratively speaking, p, represents the crest

of a free'energy nill, and p_ represents the bottom of the

troughf'
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2. Collapse sequence

We attempt to clarify the above discussion by narrating

a possible collapse sequence (see Figufe 63). We imagine a
type-II c&iindef in the virgin state (Figure 63A) and con-
nected to some épparatus Which an suppiy a transpoft.current
Iz and an axial surface field H,. The resultant field at the
surface will have magnitude H, = [Hi + H%]%, where Hy is the
field due to the current. We further assume that I, and H_
may be regulated so as to maintain the ratio Hﬂ/Hz constant.
This guarantees that the surface pitch angle aq is always the
same. '

As H, and Iz'are slowly increased from zero, the sample
remains flux-frée until Hs reaches the lower critical field

H As H, then slowly exceeds H,;, flux spirals start to

cl®
penetrate the cylinder, resulting in a field profile similar
to that of Figure 63B. For simplicity, we will assume that
a surface barrier field does not exist. As H, now increases,
the position of the flux front, Ppy mOVEs inwards, and more
flux spirals penetrate the surface of the cylinder. At the
. same time, 9H/3p at the flux front grows smaller and smaller,
until at some critical value of H,, say H.,, 0H/3p at pp ap-
proaches zero, and Pp reaches the point p_ (Figure 63C). The
sample'is now at thenpoint where an instability is about to

occur. We now increase H, a minute amount e above H. ., and

a flux collapse occurs. Flux spirals at the flux front



Figure 63.

Sequence of events leading up to spiral collapse
instability. HS is the magnitude of the surface
field, and H,, is the critical value of the sur-
face field, beyond which collapse occurs. € is

an infinitesimal increment in Hy

>
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collapse to the vicinity of p‘ (where once again 9H/9p be-
comes pos1t1ve), and at the same time additional flux pene-
.trates the cyllnder, so that the reglon between p+ and the
surface malntalne the same flux profile (Flgure 63D). With
Hy held fixed, additional flux cascades inwards, so that the
-cylinder assumes the'sequence‘of field profiles shown in
Figure 63D. Eventually the region between Py ann p_.fills
completely_with flux. With further increases of Hy, we see

profiles as in Figures 63E and F.

C. Energy and Heat

We nmay apply the first law of thermodynamics to de-
termine the heat released durlng the collapse process. ' We

write the first law in the form
Q' = AW""- & 3.9

where the primes denote "per unit length of cylinder", Q is.
the heat released, AW is the work done by the external cur-
rents and'fields, and AF is the change in the Helmholtz
. free energy of the cyllnder. |

In Flgure 64 we have a sketch of B versus p 1mmed1ately
before, and immediately after collapse has occurred. Notice
that.in,thelregion.pp <p <a, the flux density is the‘same
before and after collapse, and in the region 0< p<py, B is

Zero before collapse occurs. We may now calculate the change



Figure 64. Crude sketch of flux profiles before and after
: spiral collapse instability occurs, as used to

calculate change in Helmholtz free energy durlng :
the collapse process
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in the:Heimhoité free energy, as follows.

Let Fa‘denote the free energy density éfter_éollapse,
and let Fb denote the freé energy‘dénsity before collapse.
Then the chénge in free energy per unit length of cylinder

" is

a
- o 2
AF' = j- A%p[F, - Fy]
o)
p . a P
P2 | 2 [P 2 _
= | Ta%F, + | d%F, - | d%Fy
o Qp. o) '
_~j a%pF, . ' © (3.10)

The third integral is zero since B = O for é <pp before col-
lapse, and the second and‘fbrth integrals have equal magni-
tudes becausé the before and after flux pfofiles are identi-

cal in the region - <p<a. We are left with
pp p R

. . P P :
[ P .2 P

ARt = | d%pF, =27 dppF[B(p)] (3.11)

(o] - 0

where the expiicit-dependencies of F upon B, and B upon p
\ : ;
have been inserted. Although B(p) versus p is obtained from

numerical integration, F(B) may be obtained analytically via
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‘Equation 2.27. A plot of F(B) is shown in Figure G5 for
several_Values-of the ratio H, /H (= B, ‘bésed on Equa-
tion 2 27. Knowledge of the flux proflle B(p) thus. enables
the integration of Equation 3.11 to be performed numerlcally.
Next, we conslder the work done by the currents and
fields. 'Using'a familiar result from electromagnetism, we
have that thé energy crossing a unit area of cylinder sur-

face per unit time is
- ‘C - - ’

— - Lo
where ES and Hs are the electric and magnetic field vectors

at the surface o0f the cylinder. In cylindfical coordinates,

Poynting's vector becomes
§ = (-p) ﬁf[Esszﬂ - EsﬂHsz] ' (3.13)

where the unit vector (-§) indicates that energy is flowing
~into the cylinder in a radial direction. Next, we integrate
—* : .

S over time to obtain the energy per unit ot surface area,

§";
g.. = (- f”?ﬁ'f (B Heg- By, lat . o Gaw

o s 1. :
From Faraday's law, VxE = -c¢c ~dB/dt, we obtain



Figure 65. Helmholtz free energy'density, normalized to %WHE

5 Curves
are derived from Equation 2.27. B = Ho1/H, '



205

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK


ascott
Blank Stamp


FREE ENERGY DENSITY

| T | T l I T
1.60 F(B)/ ch Vs B/Hca -1
1.20F -

> 075" 7

0.40} - -

024
OO o e : _ | [} | | I} i
0 0.20 040 | 0.80

060

.00

90¢



 207

) ‘ e T o _l’—r'—r -1
2TaE_y ‘}dA - PxE = -c J dA - pB/at = -cTdd,/dt

- [2mcal ™ dB /dt .  (3.19)

1.

Esg
Also from Figure 66 we see that
E = e Esg.#anas

tana_d&_/dt . . ' A '
= S _Z. . (3.16)

2Tca

. Substituting Equations 3.15 and 3.16 into 3.14% we obtain

* tan
s

an o= (_A 1
St = g-p)[8n23 "[Hsﬂdaz + 8124 szzdaz:I
AN Fopo s Adsz
= (-p)[tanqusg + H,, ] - - (3.17)

Since‘HS¢.= H551nas and HSZ = Hscosa Equation 3.17 reducgs

s,
to
-gn_f : “)t sin2as-' H- cosZaS] Aéz
L (-p)[H LT
- s cosag, S cosag - gr2,

o H Ad

= (-p) 25 2 (3.18)

8w acosag

The work per unit length of cylinder is

 AW' = 2MaS" = HSAEZ/HWcosaS . (3.19)



Figure 66. Vector diagram illustrating directions of the
components of the electric and magnetic field
— — )
vectors E and H, at the surface of the cylinder
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Equation 3.18 shows that the fraction of the work con-

tributed by the sources of the transport current is_sinzas,'

"and the fraction contributed'by the sources of the axial .

field is coszaé.“

Thus, the heat released.during the collapse is

Q= Frcosag 2 J dppF[B(p)] . (3.20)
. lo) ’

Q! can'be readily obtained by numerical methods. We note .
that Aﬁz—represents the change in axial flux during collapse,
and would be obtained by integration of Bé(p) from p = O
to P = Py i.e., | )

. . ;

a6, = 27 .[ k dppB(p)cosalp) . ‘ (3.215

o

Hence, Equation 3.20 could be written as

H - Pp
Qr 536%5— J dppB(p)cosalp)
1g .
E .
- om j dppF[B(p)] - | (3.22)
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D. Experimental Verification of Collapse Modes

The'éxistehce of a collapse possibility depends upon
the rélative magnitudes of R (p) and p (B), and fhe surface
pitch anglelas.' Specifically, we must have po(0) exceed the
minimum in R;(p), within the boundary of the éylinder
(O <p <a). Differentiating Equation 2.21 with respect to p
and équating the result to zero, we find the minimum of

R,(p) occurring where

P = Ppip = acotag (3.23)
with a corresponding value of Rc(pmin)‘equal to
(Rc?min = 2acotag . | | . (3.2&)

From Equation 3.23 we see that the minimum in Rc(p)
will lie within the cylinder whenever'cotocS <1ls i.e., whén-
ev'er.as exceeds HSog If ag < 450, the minimum in Rc(p) falls
outside the cylinder. In this latter situation, we must com-
pare‘pc(O) with(Rc(a),-since Rc(a) represents the smallest
physically realizable vaiue of Rc(p). From Equation 2.21,

2

Rc(a) is'just a/sin agy SO that in checking for a collapse

possibility, we compare pc(O) with a/sinzas. Thus if

A 2
cH0151n a

uWaJé(O)

=51 ) - (3.25)

2
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then collapse is‘possibl'e° In reduced units Equation 3.25

is equivalent to

Bsina,
> 1
F o
QI'
a. > sin-lu/ o (3.26)

We note that'in this case (a < 45°), p, lies outside the
iqyiinder,:so that collapse begins immediately when the sur-
face field exceeds Hél' |

For situations where a > 45°, the minimum in Rc(p)

occurs within the cylinder, so that we need to compare pC(Q)

with Rc(pmin)' Thus, .from Equations 3.3 and 3.24% we have -
that, if
cH,qtana . : ( 0y '
> 1 : . 3.27
BWaJCZOS |

collapse‘is possible. In reduced units Equation 3.27 is
equiValént to | |
tanas

—— D 1
700

or -
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a > tan-l[250(0)/ﬁj . o o (3.28)

The results expressed in Equations 3.27 and 3;28 indi-
cate that the following conditions favor a collapse possi-
" bilitys:
1. large surface pitch angle o
2. low k, implying high ratio Hcl/H02
3. low pinning material, implying low J,(0)

b, small diameter sample.

It is interesting that requirements 2 and 3 are not difficult
‘to simul taneously satisfy, sihce low pinning and low « quite
often occur together. For exémple, in the Pb-Bi material
used in Timms and Walmsley's (39) expériments, where x= 1k

is relatively high, we may calculate that

Hop

Bmal (0) " 0.02. | (3.29)

where a = 1.5 mm, J_(0) = 185 A/cn®, and H ; % 135 G. Thus,
in ofder for,coilapse to be possible, tanaé would have to
exceed 50, implying that a, would need to be invexcess of 890.
On the other hand, Wollan et al. (47) report data,oh
vanadium and niobium which suggests that samples of these

materials could show the collapse. Their vanadium measure-
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ments*show th‘ath(O)/Hcl Z 7.3 A/cm20e on 0.23 diameter
cylindrical samples. This gives
CHyy | . |
m Z 047k ' _ A - (3.30) :
suggesting that cylinders of this material would show the
collapse as surface pitch angles in excess- of 650. The
niobium sample was 3.0 mm in diameter with J_ (0)/H,; = 21
A/cm®0e. This yields | | |

. .cH,; . i : - - _
BTraJc(Os‘ _-0'126 ' o (3.31)

requiring a surface'pitch angle in excess of 82@80 for‘col;
» lapse. | o | | o

The sudden collapse of vortlces, ‘and the accompanylhg
rapld increase in axial flux Ad , ought to be detectable in
" the laboratory. Slnce a common method of measuring magnetl-‘
zatlon in cyllndrlcal samples employs a small plck up c01l
wrapped around the sample near the m1dp01nt, one would: ex-
pect a sharp voltage splke in the c011 output at the moment
of collapse. For each turn in the pick up coil, the voltage
4generated by‘a collapse should,be}approxlmately

1 A8,

= AT (3.32)

v(per turn) = -

where AT is the time interval over which the collapse |
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.Qccurred."We have a numerical procedure to obtain the mag-
netization.of thé cylinder via the integration of B(p) over .
fhé'cylindef crqés-section. Thus, we may estimate Aﬁz. In |
the following section, we will éhow a prediction for AEZ for-
the.vanadium.sémples‘of Wollan et al. %7) referred to on

the previous péée. 'To obtain AT for the coilapse,‘we start‘

with the magnetic diffusivity (48)

D(B) '=‘c2pf(B)/¥+1r(dB/dH) (3.33)

which depends strongly upon B. Here, pf(B) is the super-
~conductor resistivity in the fluxfflow regime, and is re-

lated to the normal state resistivity Py bY (49)
pp = PpB/Boy = ppB . " | 3.3

For a specimen of radius 'a', the characteristic diffusion
time AT is approximately
- g2
AT .= a“/2D(B)

c Bpn
which is interpreted as the relaxation time required for .
the specimen to respond'to a field or currcnt change. The
vanadium sample of Wollan et al. (47) had a resistivity-

ratio (p300/p4.2) of 1500, and Weast (50) gives a vanadium
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resistivity at 20°C of 24.8-26 pQ-cm. Taking Py00 2t 25
pQ-dm, p4;2 = pﬁ should be approximately l.67¢xlO'8 Q-cm.
‘With a sample'radiué of 0.115 cn, this'gives a diffusion

time of approximately
| = 2103 . Ll | ~
. AT = 5x107° - EE - dB/dH] sec . (3.36)
As a fufther approximation, we use our model relation
H(B) = [k°B% + p°] (3.37)
for calculating dB/dH at the surface of the cylinder, where

scC

. H =H_, is the magnitude of the surface field at which col-

- lapse first occurs. From Equation 3.37 dB/dH = H/k°B and

k?;"

1, so that at the surface of the cylinder
dB/dH = HSC/BSc -1 .

Thus, the,diffusion time for collapse in Wollan's vanadium

sample should be'approximately

AT = 5x1073/H | sec (3.38)

or roughly S'millisécdnds.
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E. Modeling Vanadium

1. Sample properties

We makéfé calculation here which predicts a spiral
collapse possibility for the vanadium sample used by Wollan

et al. (47). The relevant data as reported in (47) are

Sample diameter: 0.23 cm

Hcl: : ‘ : &89 Oe @ 4.18 K.

;c(o)/Hcl: 7.3 A/cm20e @418 K .

This implies,thét JC(O)'= 3570 A/cm® and a = 0.115 cm. Haas
(51) réports that H,, for this sample was measured to be 751
Oe at 4.18AK, the relevant temperature in the above experi-

ments. The reduced;quantities'derivedffrom the above are

J,(0) = Jc(o)/(chz/AWa)'= 0.688
B,(0) = cH_,/¥maJ (0) = £ /5 (0) = 0.9448
%B,(0) = 0.7k, o (3.39)

There is some liberty in the selection of Py and p_, as we

need only insure that, for collapse to be possible,
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tana, > [87aJ (0)/cH ;] = 2.1169

= g L - (3.140)

4

Arbitrarily, we selected ag 65 so that from Equation 3.5

A§+ = 0.54%79

0.3969 . B T (3.41)

— . L4

N

Because the shape of the critical current curve is unknown,
a guess for the parameter B of 0.20 was made. Finally, we
assume negllglble surface pinning, so that the parameter HS

of Equation 2.34 is equal to B.

2. Results |

The choice of vanadium for illustrating the spirai col-
lapse 1nstab111ty was especlally fortuitous.. As in the case
of Figure 52 a stable mixed state conflguratlon, wherein
the entire cyllmder was filled with flux (pp = 0), proved
impossible to aehiete at the chosen surface pitch angle of _
650. As the maghitude of the surface fiield was increased:m
beyond the critical entry field (here equal to H,ps or 0.65),
spiral eollapse-OCCurred at a penetration radius of 0.869,
with & postcollapse field on the axis of 1.35H_,. Thus, the
mixed state was destroyed befqrelthe entire cylinder:cquld

fill with flux.
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We oenitherefore predict the following behavior for.
‘the vanadium sample of Heas (51): When the applied longi-
tudinal field.and'eXial‘transport current are gradually in-
B creased from zero, such that the surface pitch angle is
maintained at.afconStant’659, spiral collapse and subsequent
. destruction of the mixed state ‘should oceur ihen the magni-
tude of the surfece.field (= [Hsﬂ + H ]2) reaches 0.650

H ,, or 488 G. Thls corresponds to an applied longltudlnal

c2
field of 207 G and a transport current of 255 A.

Figures 67 through 70 depict the_flux and current pro-
'flles predlcted 1mmed1ately after collapse. Since the mixed
state is destroyed by the collapse, these figures do not

represent«physlcal reallty.
F.. Spiral Collapse in Hypothetical Material

1. General

We next discuss the collapse sequences of several hy;
potheticel type-II materials operated under varYing surface
pitch angles; Our-eim‘is to categorize»the various possible
ways in which .collapsed flux may agglomerete as a function

of the radius{

2. Surface pitch angle-S L 50

- We begin_with'the case where the surface pitch'angle

exceeds 45°. In Section D we argued that this implies that



- Figure 67. Flux,profiie‘for vanadium sampie described in Section E of
Chapter III. Profile illustrates collapse. Parameters used

were J (0} = 0.688, B, = 0.20, and B ='H; = 0.650
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Figure 68.

Reduced current density profile for vanadium sample de-
scribed in Section E of Chapter III. Product §<3Z> versus
reduced radius p is shown, corresponding to reduced field
profile shown in Figure 67. Current density here is pro- -
portional to‘akﬁ rather than ?iﬁ. See Figure 53
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| Figure 69.

Reduced curfent-density profile for vanadium sample de-
scribed in Section‘E of Chapter III. Product §<j¢> versus
reduced radius p is'shown, corresponding to reduced field
profile of Figure 67.  Current density here is proportional

-
to VxB rather than Vxﬁ. See Figure 68
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Figure 70.

Reduced current density profile for vanadium samplé de-
scribed in Section E of Chapter III. Product of B and the
magnitude of <j> versus the reduced radius p is shown,

~

~ o TD L Toan
where <Jj> = [j; + 3512

%
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.the minimum in Rc(p)'occurs within the cylinder. Accordingly, -

tnere are four distinct possibilities regarding the magnitude

of 3,(0) = p, with respect to R (p). These possibilities are:’

1.

Pe T Rc(pmin

Po < Rc(pmin), implying that collapse cannot

oceur.

), implying that p_ = p_ = %p_.

Collapse is possible here.:
Pe > Ro(pyip) but p, < R,(a). Collapse is

possible here, and p, and p_ are real and

.distinct. Because p, < R,(a), collapse does

not immediately occur with the first.penetra-

tion of flux into the cylinder.

pc:> Rc(pmin) and p, > Rc(é). Coliapse is
immediate with the first penétrétion of flux
into the cylinder. Also, p, 1s greater than
1, so that B, is a virtual point lying outside

the cylinder.

Théée four possibilities correspond to the lines.labeled 1,

2, 3, and 4 in Figure 61.

3. Surface pitch angle < 45°

When the surface pitch angle is less than‘45°, the mini-

- mum ‘in Rc(p) lies outside the cylinder.j_That is, everywhere

within the cylinder,“dRc(p)/dp < 0. Accordingly, there are
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only two distinct possibilities of interest regarding the

‘relative'magnitudes.of pé and Rc(a)s These are
5. p, <R (a), implying that collapse is not pos-
sible. '
6. ‘pc > R,(a), implying that collapse is possible

and immediate with the first entry of flux into

the cylinder.

4. Hypothetical material

We illustrate the above possibilifies by assuming the
existence of a hypothetical type-II material with all the
required,propertiés. We seek values of §,, B, 5c(0), and
ds which will illustrate all of the above six possibilities.
We start with case #3, where ag > 45°, and arbitrarily =~
select %ﬁc = 0;50, P, = 0.75; and §_ =.0.25. Using Equa-‘A
tion 3.5'we obtain the necessary surface ﬁitch angle a

according to

[(45,)2 - cot?a 1% = §, = 44p, = 0.25
— @, =66.587° . (3.42)

Noting that from Equation 3.3, B, = B/J,(0), we see that in

this case . ,

=i . (3.3
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Arbitrarily we let B = 50(0) = 0.024, so this represents a
weak‘pinning, high « materiai.

~

To illustrate case #2, where )5, = f, = p_, (and ar-
bitrarily keep'the same pitch angle a = 66.5870), we solve
for )4p, subject to the condition which will make the radical

in Equation 3.42 disappear:

s = '
4pc cotaS

= 50 = 0.866

= P/3,(0) = 0.866 . G
To illustrate case #1, where the surface pitch angle ié
still the same, we require j, < 0.866. . |
| Finally; to illustrate case #+, where §_lies outside
the cylinder, we require Bc to exceed ﬁc(a). At the samé
pitch angle of 66.587°, ﬁc(a) = csc2as = 1.18750 from Equa-

tion 3.4a, so that we require o > 1.18750, or

B/3,(0) > 1.18750 (3.45)

We may summarize the above quantities in Table 8.
Figure 71 illustrates the flux:profiles obtained from
operating the above hypothetlcal material under conditions -

favoring case #2. Relevant parameters‘are

p = 0.024
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Table 8. Materlal parameters needed to establlsh a given
collapse mod e : .

Parsmeter Case #  Case #2  Case #3 ,-- Caee #+
Type of ' No . | Verge of Collapse | Immediate
-action_ . collapse collapse | collapse
50 o <0.866  0.866 © 0.866-1.18750 >1.18750
BT <Q.43jﬂ - 0.433 0.433-0.59375  >0.59375
5% 'imaginary 0.433 6.433-1.0 >1.0
P imaginary_ 0.433 0.1875-6.433 {0.1875
3, (0) >p/0.866  B/0.866 gfézéggs- | <B/1;1875

@surface pitch angle = 66.5870;'3/50(0) = Ec where

50(0) = 0.02771

B, = 0.866

BO' = 0.20

a, = 66.587°

H, = 0;024 (no surface pinning) .

S
Figure 72 illustrates the flux profiles obtained from

operating a hypothetical material under conditions favoring

case #3. Relevarnt parameters are



Figure 71. Field proflle for hypothetlcal material 1llustrat1ng case #2
o spiral collapse. Reduced field is plotted versus the re-
duced ‘radius. B = H o1 = 0.02k, J (0) = 0.02771, B = 0.20,
and‘as = 66,5870. Surface plnnlng was ignored. Wlth these
parameters, p, = Rc(pmln)’ so that p, = p_ = 6pc, and the
radical ig Equation 3.5 vanishes »
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Figure 72. Reduced field profile for material illustrating case #3,
- spiral collapse, where Py falls inside the cylinder} 4
B =.0.02%, J (0) = 0.024, B = 0.20, and a_ = 66.587°.

In this example, 50 = 1.0 ’ ’ ‘
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'_B = 0.024% |

. 50(0) = 0.024

.ﬁo = 0.20

a; =-66.587°
5§+ = 0.75

f_ =0.25 -
%p, = 0.50

HS = 0.02% (no surface pinning) .

Figure 73 illustrates the flux profile obtained from
operating é hypothetical material under conditions favoring

case #+. Relevant parameters are
B = 0.024

5, (0) = 0.019

B, = 0.20"
a, = 66.587°
5+'> i;o |
5 - 0.1718

- %P, = 0.6316
B, = 1.2632

ﬁs = 0.02% (no surface pinning)



- Figure 73. ;Reduced field profile for material illustrating case #H,
' immediate spiral collapse. Here, p, falls outside the
cylinder, so that flux spirals collapse immediately upon
nucleation at the surface.. B = 0.02k4, EC(O) = 0.019,
B, = 0.20, and o = 66.587° ' -
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' Next, we consider cases #5 and #6, where ag < 450.: Ar-

bitrarily, we let a = 40°. Then.

ﬁc(a) = cscu0° = 2.4203 .

To insure.againstlcollapse, Po < ﬁc(é), so-that we require
Po = ﬁ/fc(o) < 2;4203

or
SC(O) > 0.41328 .

If B = 0.02%, then J (0) > 0.00992.
To illustrate case #6, where collapse is immediate, we
require p, > Rc(a). Thus; We need 50(0) < 0.00992.
"Figure 74 illustrates the flux profiles obtained from
'operétiné.a hypothetical'material under dénditions‘févoring

case #5. Relevant parameters are

B = 0.024.
a, = 4o°
J,(0) = 0.015
By =0.20
HS'= 0.02% (no surface pinning)

Figure 75 illustrates flux profiles obtained from
operating a hypothetical'maferial under conditions.favoring

case # . Relevant parameters are
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B = 0.004

a

J

e

ju st

g

(0) = 0,008

c

H

40°

0.20

0.02% (no. surface pinning)



Figure '74. Reduced field profile for material illustrating case #5,

' ' where spiral collapse does not occur. Here a = 4o% -
‘arbitrarily, p = 0.024, B = 0.20, and J,(0) =70.015.
The minimum in R, () occurs outside the cylinder
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‘Figure 75. Reduced field profile for material illustrating case #6,F
" where collapse is immediate with first nucleation of
vortices at the surface of the cylinder. P = 0.024,
a, = 40°, J,(0) = 0.008, and B, = 0.20. In this case,
the minimum in R, (p) lies outside the cylinder, and
p.(0) exceeds R (a)
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~ IV. PROGRAMMED CURRENT AND FIELD

A. Introductory Remarks

.Our previous calculations of the ﬁagnetic character-
istics of type-II cylinders were based on the assumption  that
the surface pitch ahgle of nucleating'vortices~was always
constant. That is, the applied iongitudinal field HSz and
the azimuthal fieid Hsﬁ (due to.thé transport current) were .
always in'a fixed ratiO‘as the total surface field Hs varied
in magnitude. |

. We wish fo genefalize this pfdcedure to allow for a
variaiion in the surface pitch angle. Specificélly, we
shall only require that the magnitude of the surface field,

H

S’
that restriction, the surface pitch angle may vary arbi-

be a monotonically increasing function of time. Within

trarily between zero and 90°. The zero of time is taken to
be the point at which flux first penetrates the_samplef A
sketch of this behavior is shown in Figure 76.. The algébraic

analysis which follows is due to J. R. Clem.

B. The Fields

In cylindrical cbordinates, the surface field is char-
acterized as

i%w);%¥w2+kuM | SR (4.1)



Figure 76.

v

Sketch illustrating monotoniéally increasing
magnitude of the surface field, and an arbi-.
tfarily changingAsurfaQeApitch angle. Pitch
angle is restricted to the range O-Sds <,
and Hé must not exceed ch ‘
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. ] —
and the unit vector in the direction of Hs(t)‘is

B,(t) = H_(£)/H,(t)

z cosas(t) + g sinas(t) . (4.2)

We regard the time t aé merely a parameter reiated to the
amount of flux that has entered the cylinder. That:is, we
‘are not concerned with the time.dependence of flux entry,
but rather, we solve for the current and flux distribution
quasistatically. Here, time alldws us to account for the
order in which flux linés, at various pitch éngles,Aentered
" the cylinder. o

It is still necessary, however, to relate time with
flux entry. Thus, we shail assume the magnitude of the
electric.field vector at the surface, Es(t), to be constant,
no matter how the field is varied. Then

g,v'

ES :»T = h'\)'/ée | B | (L*'.3)

“where v' is the rate per cm af which vortices, in the di-‘
rection 5S(t),'entéf the cylinder, cuttfng through a line
on the surface perpendicular to'as.
Referring to the vector diagram in Figure 66, we may
also relate the electric field at the surface to the flux
line velocity % and the value of the field B just inside the

‘ _ . - > >
surface.  Josephson (52) has demonstrated that E, B, and v
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are related via
. a5
E = Bxv/c . ' : (bW
: - - . _
Thus, if B(a,t) and v(a,t) denote the flux density and flux
line velocity Jjust inside the surface of the superconductor,

we may write

B(a,t) = Bla,t)d(t) - (4. 5a)

and ‘
(a,t) = v(a,t)p .  (4.5b)

so that Equation 4.4 becomes

> . B(a,t)via,t) . ;.. '
DB (8) = - 22 TEaY g () L (ke
wheré
8,(t) = B_(£)/E (1)
- _ 5 cosaskt) + fsina (8) . (4. 7)

As the flux front moves in towards the cylinder axis, the

electric field at the penetration radidé pp,‘

CE(py,t) = Blpy,t) x vip,t)/c (4.8)

is always zero, since either B(pp,t) or v(pb,t) must be zero.

If pp‘> 0, then B(p,,t) = O, or if the flux front reaches the
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. center we have Pp = O ‘and v(O,t) = O.
We next con51der the longltudlnal.flux, 52. Startihg

with Faraday's law,

V = -

o=
=

we ihtegraté bothlsides over the cross. section. of the cyl-

inder, and épply_Stokes' theorem. The result gives

ad B ~ -
- 1 Z : '
Bsg = = 2Fca at - : | (4'9),

Aor, with the help"of Equations 4.3 and h.6,
48, /dt 2Wa¢ v'cosag (t) . (4.10)

We next,consider'the_aximuthal component of flux, ﬁﬁq

Again from Faraday's law;

- .
 Dvm - _ 1 8B ‘
VxE = - = 3t (4.11)

' - =
we compute the integral of VxE over the path shown in Flgure

77. Thus,
J* ‘—> -+ = “—r‘—-r'

ds * VxE éM,E

I

=‘&Ez(pp,t> - 1E,(a,1)

&%j~d@¢mw L (k12)
' p

o

B



Figure 77. Sketch illustrating the integration path for
: = =
' evaluating the surface integral of VxE in
Equation 4.12
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) — : .
Since B = 0 for p < Pp and since Ep = 0 everywhere, we
obtain

E,(a,t) =

Tt Byt ) S (313)
where

‘ a . ) .
Gy = | amBsCe,t) . - (4.1%)
.0 ’

From EQuations 4.3 and 4.5 we obtain

25y = g visina (1) . s
We next define a parameter t', which denoteé the time
of entry of a fiux'ﬁortex. Let p(t,t') denote the radial
coordinaté of the vortex at some time t, where t > t'.. Thus,
t' identifies a particular vortex. Also, let L(t') denote
the pitch length of the vortex which was ﬁucleated at time
t'. Then the pitch angle a(p,t), where p = p(t,t'), could
also'beldenoted a'(t,t'), and is related to the surface
pitch angle as(t') ét theAtime of entry. Note thatlat the

time of entry, t = t' and p = a. Also,

]

a(a,t) =ai(t,t) sa () .. - - - (%16

Referring to the geometry of Figure 18, we may make the

identifications



o5
L - L(f‘)‘
a ‘v'—r 'a‘s(‘t')

S

a o ar(t,t) . - ‘ ' (4-17)

Thus, using the trigonometric identifications developed
earlier, we have
I tana'(t,t') = 2mp(t,tt)/L(t")
tana _(t') = 2ma/L(t')

tana'(t,t') = Eﬁfézll tana _(t') . (4.18)

Thus, using this nomenclature and the force balance equation

developed earlier, we have

s | . B
8H(p,t) =,%g 5 .(pyt) - H(pit)szn ale® - (y.19)

op
Note that Jc(p,t) is related to Jc(B) once we obtain a second

differential equation relating p and t'.

l. Relating p, t, and t!

'We begah this description by assuming that the surface
pitch angie is some specified function of time. At sqmeetime
t, when.the flux front has penetrated to some radius pp(t)3
the time of nucleation of the vortices at Po is t'(pp,t)'i 0,
since these were the first vortices to be nucleated. For any

other p 2> Pp> the time of nucleation of the vortices at this
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p is some function t'(p,t). Thus, we may plot tr(p,t)
versus p and obtain something like the illustration in Fig-
- ure 78a. Note-that at the surface, t'(p,t) = t'(a,t) = ¢,
since these vortices were the last ones nucleated.

Earlier we discussed the meaning of p(t,t') as the
- radial coordinate, at time t, of a vortex that was nucleated
at time t'. For example, if t' = O, p(t,0) represents the
radial coordinate of the vortex at the flux front, i.e.,
p(t,0) = pp(t). Similarly, if t' = t, we are discussing the
very latest vortex, so that p(t,t) = a. Thus, if p(t,t') is
plotted against t! (holding t,fixed), we might obtain some-
thing like the figure sketched in Figure 78b. We see that
Figure 78b is just the mirror image of Figure 78a, rotated

90°., In fact,

ekt - = - | © (4.20a)
g o= t1(p,t) |
and
tv(é,t) ” =t (4.20b)
p = b(t,t') |

so that p(t,t') may be regarded as the solution of t'(p,t)
= t', and t'(p,t) as the solution of p(t,t') = p. Hence, -

0t (p,t). op(t,tr). -1 '
: ag’ = pgt:< )] o« o (%.21)




RADIUS, p

}(t,t') 1

- e e e . e s o - e ———

Figure. 78. Sketch illuétrating relationship of t'(p,t) to
. p, and the relationship of p(t,t') to t' (see
Equation 4.21) .
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2. Relatlng 41, p, and H.

~ We now seek to develop a relationship among t', p, and
H. We start by considering the axial flux contained in the |

region between p and p+ dp at a time t. Then

ab, = 2mp dp B (p,t) . | | (4.22)

This flux is related to the flux introduced into the speci-
men during the time interval t'(p,t) to t'(p+dp,t). This

" time interval has'magnitude '
dtr = tf(p;+dp,,t) - t'(p, t)

'att(p,t)'b : - - g
—_a—b_— . (4%.23)
From Equation 4.10 we see that the"flux'daZ introduced during

the time interval t' to t'+dt' is

dmzlé 2Faﬁoy‘005as(t‘)dt; N (4.24)

Combining Equations 4.22, 4.23, and L4.24, we obtain

sz(p,t) = aﬁoy;dOSas(tﬂ) Ezlé%lil . (4.25)

We may do a similar operation on B(p,t), obtaining

Bylpy®) S 25 visina (1) e (h6)

We may now take EquatioﬁsA#.ZS and h.26 and solve for

Bt'(p t) . The result is
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3t (p,t) _" pBZ(p,t)4 |
8p . aﬁov’cosasgt)
B(p,t) :
T‘ﬁov'sinas(t') o v (%.27)
Note fhat

Bg(P,t) R pﬁov'sinas(t')

'Bzfp,t)'f‘aﬂbv'COSas(tTY
- -g- tépas(t')
= tana(b5t) o . ' | } (4.28)

- as-was shown earlier.

Next, we use Equation %.27 to express By(p,t) as
: Bﬁ(p,t) = B(p,t)sina(p,t) : (4.29)

and then obtain

3t'(p,t) _ B(p,t)sina(p,t); o
5p,4 T_goyzsinas(p,%) y (4. 30)

The factor'éina(p,t) may be removéd from EQuatioﬁ 4.30
by use of the‘following trigonometric identity, which éan be
derived from Figure 18: -

sina(p,tf‘z péinqs(t')/[pzsinzas(t')

i

+ a%cos®a (£1) 17 (4.31)
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yielding

381 (p,t) _ B(p,t)- | P - »
T T , .
: ' N, p2sin2ds(t')-+a2coszas(t‘)

(4.32)

Slmllarly, u51ng Equation 4%.31 we may also reexpress Equatlon

4.19, the fundamental differential equatlon relating H and p,

‘as
l : » . H(p,t)sinq_(t')
BH(p,t) _ k4w T (pit) - Py s
dp ¢ “c'Ps 2. 5.2 2

p“sin as(t')-+a coszas(t')

(%.33)

where it is understood that t' = t'(p,t). Suppress1ng the
_tlme t to 31mp11fy the notatlon, we end up with the pair of

,51multaneous dlfferentlal equatlons

ot (p) _ pB(p) 2 . 2 2 2 5
T v [p=sina (') +a“cosTa (t')]

(4.34a)

H(p)sin®a_(t')
"J[B()- : _ S
] pzsinzas(t')-fa2

OH(p) 4
8p

cos2aé(t')
(4. 34Db) |

which.may‘be numerically integrated to obtain H(p)_and't'(p).
See Figure 79. ' o
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HB  ELuX vs. RADIUS

1H(p)

'l )

Figure 79. 'Sketch to illustrate hypothetical profiles of:
H(p) versus p,-and t'(p) versus p, obtained from
simul taneous integration of Equations 4.3k
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C. Instabilities:
At the flux front with Pp > 0, where B = 0 and H = H,,,

. 3 ‘
a stable solution requires 3% > 0. That is, as seen from

Equation 4.34%, we must have

. .o _
: H . p.sin™a
J,(0) > —L P 5 , (439
pp31n Cio * acosTa

L

c -

where %0 denotes the pitch angle of the very first vortices
which had penetrated the sample. With Po = chl/%WJC(O),
the above inequality may be rewritten as : I
- a2cot2aSO - '

b Py ¢ : . '
For pp decreasing toward zero, the left-hand side of this
last inequality éxperiences'a minimum at |
='alcotas- . (4.37)

Thus, the inequality required for stability will be satis-
fied for allvvaluesxofvpp only if

2alcotasol-2 Pe ' 0 (4.38)
Typically, pé';s very small, and for such cases the inequal-

ity will be violated and an instability will occur only

where‘[aso]w=ﬂ/2.
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D. Flux Accumulation and Reduced Quantities
~ The total axial flux ,(t) and azimuthal flux Eﬁ(f)'éfei <

‘easily éompﬁted by integrating Equations 4.10 and 4.15%

: ' t : S o : . o
5,(t) = 2rap vt | dticosa(t) - (%.39)
and
Bg(6) = By | atisine (s L (ko)
: o : . o |

These integrais-arg attaihable, since ﬁe'presumab1y~know thé
Zvarlatlon of as with time. -

- To obtain reduced quantities, we consider the case where -
oy = O and denote t as.the time at whlch_the’axlal flux
is at the largest value of interest, pa2ﬁcz. Thén Equation

»#;39 yields

oo - iy
8, ch2 =0, ax T o Tal, V'tﬁax . B C RO
so that
tlox =@ H o/ 2maB v = ch2/2¢ v L (4.42)

Next, we define the reduced time ' as

‘%|<= t'/t' ° » ' | >". - . ‘(h.43)

max
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Then Equations 4.3% may be expressed in reduced form.as

~ ~ " " - ~ -l
22 = 2pB(p) [FPsinay(E1) + cosPa (£1)]7*

op

of ‘_Sﬁ(ﬁ)sinZaS(E')

- = Jc - 2 2 ~ 2 ‘~ ’ . (Ll..)-*-)-}-)
6p p°sin“a (t') + cos®a (%)

In solving'Equation'4.44 simul taneously, we start with some
assumed penetrétion radius, 5p' At this point, ' = 0 and
g = ﬁcl‘ Integration proceeds vié a Runge-Kutta numerical
method (%5),:advanéing B from 5? on out to § = 1. Along

the way, we rely On.tabulated‘vélues 6r functionally derived
" values of'as(E').‘ When thé outer edge is reached, p = 1,

tr = %, so that the choice of 5p implicitly dictates £,
Figﬁre 79 illustratesia'poséible integration path in the H

versus § piane, and in the ¥' versus § plane.
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V. CONCLUSIONS AND PROBLEMS FOR FURTHER RESEARCH

'A A. Standardized Research Procedure

In éil of the preéeding,,we have neglected end effects
in brder to obtain a simplified model with no z;dependencies.
Within that limitation our model represents the best phys-
ically justifiable'meéns of computing the macroscopic prop-
efties of a cﬁrrent-carryiné type-1I cylinder in an axial
field. | | | ”

The programméd‘current and field model (PCAF) is still
in its infancy‘and feﬁains to be pro&en.l Oﬁe difficﬁlty'in
applying the PCAchodei is that organized and collated déta
does nét exist. It would be useful, then, to dévelop and
ratifyfamong a consensus-Qf‘activéAexperimenters a standard-
ized'experimehtai_procedure for performing and recording .
magnetization experiments on type-II cylindersL Such a
standérd would follow in spirit the ASTM book bf standard -
test procedures, as an examble."In such a standardized pro-
cedure one might include the requiremeht-for measurement of
‘ ali thé impdrtant material parameters, such as.Hcl,'ch, K,
:critical current, and surface pinning qualities. In addition,
ﬁhis procedure would‘specify the surface field cbmpOnents Hsﬁ
- and HSZ at allAphasgs of -the experiment, éince we are dealing
with a historyédependent‘phenomenon,v Also, the field-inéreas—

ing situation ought to - be carefully separated from the field-
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decreasing case, since the behavior of the specimen is very

much‘différent in each case.

"B. - The Boundary Condition Problem

The flux exiting situation givés rise to a vexing pfoba '
lem with regard to the appropriate boundary coﬁditions'at
the cylihder'sufface.. To seeAthis, suppose that a sample is
filled with flux spirals, all of which entered at some well-
defined surface pitch angle, age Now change the current and
axial field to produce a different surface pitch angle, and
at the same time, reduce slowly the magnitude of the surface
field. As the magnitude of the surface.field ié reduced,
flux spirals will begin to exit from the sample. However,
the exiting flux épirals will have a differenf pitch ahgle 
than the extént surface field, faising the question of how
fo resolve,the discontinuity in the tangential component of
E that wduld_dccur. ‘Clearly, there can be no 'discontinuity
in the tangential'components of ﬁ, suggesting that either‘;
flux cutting, flux rotation, or some yet unpostulated méchf
anism of flux reorientation,must occur very near tQ the sur-

face.

C. The Critical Current Problem

From an experimental viewpoint, the critical current is

that current at which a stable mixed Statevundergoes~break-
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down into either a flux-flow regime or the normal staté. As
vwas discussed in Chapter III, the present critefion for de-
fining the critical current (i.e., when H_, is first exceeded
soméwhere in the sample), when applied to the data of Timms
and-wélmsley (39), yields a critical currént larger than thatll
measured experimentally by a factor of approximately two.
We do not at present understand the reason for this dis-
_crepancy. ' | _ |

 Timms and Walmsley (39) used a modified form of the
present theory inhan,attempt to calculate thevéritical cur-
rent, and found a similar discrepancy with the measured
values. They thus adopted the different theoretical cri-
terion t‘h'at‘the critical current is achieved when flux pene-
: trates to the axis. They hpted, however, that penetration
to theiaxis is not necessarily a sufficient criterion for
nqrmalization.__Itbappears,that Timmsiand Walmsley's calcu-
'lation_of the pehetration current is motivated by their feel-
ing that the.constant pitch model loses its applicability |
beyond this point. However, as we have shown in this work, -
the constant.pitch model does retain its Validity béyond the
point where thé,f;ui front first reaches the cyiinder.axis.
Wekthus see no physical justification.for Timms and Walmsley's
criterion for thé critical current. _

Gauthier (53, p. 4-23) has applied a constant-pitch

model.to his experimental conditions, and has found.thatlour
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criterion defining'thé critical current (i.e.; when H¢2 is
first exceeded somewhérg in the samplé) yieided higher cal;
culated critical current values than hglobserved experi-
’ mentally. | B |

' Additional work remains before we may discover the
reason for the discrepancy between the calculated and meas-
ured éritical current values. Poséibly fruitful areaé for
study are end effects, intermediate state structures, flux

cutting, flux rotation, and instabilities.
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VIII. APPENDIX A. RADIUS OF CURVATURE
OF A FLUX SPIRAL

We compute the radius of curvature of a spiral of radius-

p, pitch L, and pitch angle with respect ﬁo the z-axis of a.
o 4

Let R be a vector from the origin of coordinates to any

point on ‘the spiral. Then in rectangular coordinates f, 5,
ky - | . \

— A ~ -~
R = pcos@i + psingdj + kgk . (4.1)

In one turn about the Spiral,-thé k coordinate mist change
by an amount equal to the pitch length L, and the azimuthal

coordinate changes by 27 radians. - Thus,

ok = L | . | ; ” | . _ fA.z)
so that = | |
| k= L/2T =:pcota . ‘ | o (4.3)
Néw let f be a unit'vector tangent to the splral at the point -
'R. Then | |

f:= dR/ds | o (A
where ds is an infinitesimai'lenéth of arch along tﬁe‘spifél.‘
P, _ v 4 S ,

‘di{/d; N dﬁ“- ‘ i R . dﬁA
= s = (-psing a5 1+ (pcosPag/ds)j + k I K-

L=

(A.5)
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- wa : ‘ S ' . _
dg/ds = (d@g/dc) * (de/ds). o o (A,6X
‘where ¢ is the projection of the spiral onto the XY plane.
Clearly, df/dc = p'l, and de¢/ds = sina, so that d@/ds =
sina/p. Then we may write T,és_ |

ksina 2 (4.7)

= (-sin@sina) i +-(cos¢sina)3 + 3

However,

ksina/p = cotasina = cosa (A.8)

A

so that T becomes

T = (-sinﬁsiha)i + (cosﬂsina)g + cosa K (A.9)
and therefore
aT/ds = (- s1nacos¢ )1 - (s1na51nﬁ gg)j

02y - 20 aind. A
= (- Sl% L cos@) 1 - (2in 231n¢)j

- 51n [(cos¢)1~+ (51n¢)J]

il

= (-p) 2= S - (4.10)

where (-§) is a vector lying in the XY plane pointing from

the spiral towards the axis. We recognize df/ds as the rate
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of change of the unit tangent, per unit change in arc, whose

magnitude is the inverse of the radius of curvature. Thus,

/R, = sin®a/p . - (A.11)
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IX. AP?ENDIX B.' LINE TENSION IN VORTEX RING

We compute here the force per unit length-on a quantlzed
vortex ring arlslng from llne tension. Thermodynamics re-
lates the energy‘per unit length ¢ of an isolated, singly
Quéntized fluxoid, to the lower critical field H,; via

. ogE.
e =L, S (B.1)

where # is the flux quantum. Thﬁs, for a fluxoid in the

‘ Shape of .a ring of radius p, the total energy in the ring is

g_H
E‘=-{%4;L (Zﬁp)

1}

WP H P B - - (B.2)

. ~+ : ‘
A net force T arising from line tension in the ring, which

tends to collapse the ring, is related to the energy via
— ' 4

—
T =-VE

=@ 8F o B

where the minus‘sign indicates an inward-directed force.
_ ‘ N
Thus, the corresponding force per unit length of vortex t is

-

t

]

- éﬁ Hclp/Zﬂp

| ‘ﬁ H. R
= ;,ng%L 5. L ~ (B.W)
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The ring is stable against collapse whenever this force per
unit length does not exceed the pinning forces per unit
length, which tend to oppose the collapse. Thus, for sta-

bility against collapse, we fequire

J B/ c >¢o_-Hc1/L”P_‘ - - B

‘Wwhere the duantity Jcﬂo/c represents the pinning force den-
siﬁy~per unit length. We see that the eritical radius Pos
which is the smallest radius which the ring may'have"béfore :

| collapse, is |
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X. APPENDIX C. DERIVATION OF BESSEL
FUNCTION SOLUTION

. "Derivation of the Bessel function solution from Equa-
: : . -+
tion 1.56. In the force-free state, we have that J is par-

~¥ .
allel to H, so that we may write '
'However, from Ampere's law,
2 o o - ”
Jd = e VxH . : : (c.2)

Combining Equatlons C. l and C.2 we obtaln

Jg vséiﬂl H51na
J, = Sﬁéﬂl Hcosa . | (C.3)
. Thus,

' . , oH,,
k(p)H81nq.= e
PV N PR,
k(p)Hcosd = p‘ap(pHg)

or
k(p)Hsina = - 3%(Hcosa)
= - %% cosa + Hsing %% . (.
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In the force-free 1limit, however,
oH/0p = - Hsin%a/p ) (c.5)

so that we obtain Equation 1.55:

k(p) = sinacosa/p + a%;p) . | (C.6)

In the case where k(p) = k, a constant, Equation C.6 yields

8a(p) , sina(p)cosa(p) _

30 5 =k, a const. ,(0'7)
A solution to Equation C.7 is
a = tan™TlT (kp)/T (k)] T, (C.8)

4as may be seen from the following argument. Differentiate
a(p) to obtain |

9p B - 2 2 '

‘ pLIS(kp) + I3 (kp)]

| (C.9)

using the various relationships between Bessel function

derivatives. Noting that

1}

sina = 3 (kp)/L32(kp) + T2(kp) 12 (¢.10)

-and‘

cosa = T (kp)/LT2(kp) + Jf(kp)]y2 ' (c.11)
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we héve that
éindcosa =JJ,/l3% + 321 ' (C.12)
, _ “o'1 o “1° ) : '

Thus,

aqée> - sina(bgcosa(p) '  | . L

— }agf()p) . sina(pz)cosa(p) -k (C.13)

which verifies the solution.
We may now show that Equation 1.58 is equivalent to
Equation 1.56, in the following way: Let r = kp, so that the

integral of Equation 1.56 becomes

N o
:o [ o Sie®
Y,
2
X J5(r) :
= - fd_r 1 ‘ (C.14%)

: 2 2
T Igr) + I3

after making uée of.Equation Cc.10. Now change variables:
Let |

u=J5(r) +I5) L (C.15)
Then

du's - 272 dar/r - (C.16)
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and the integral becomes

I=+"/2f'du/u

% ln[Jg(r) +’J%(r)] . ' (C.17)
Taking ‘the logarithm of both sides of Equation 1.56 gives

In[H(p)/HO)] = + 41nl32 + 321 (C.18)

or

H(p) = HO) * [02(kp) + P2(kp)% (C.19)

as desired.





