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EQUILIBRIUM POLOIDAL FIELD DISTRIBUTIONS IN

REVERSED FIELD PINCH TOROIDAL DISCHARGES

by

Don A. Baker, Lawry W. Mann, and Kurt F. Schoenberg

ABSTRACT

A comparison between the analytic formulae of
Sl.afranov for equilibrium in axisymmetric toroidal
reversed field pinch (RFP) systems and fully toroidal
numerical solutions of the Grad-Shafranov equation is
presented as a function of poloidal beta, internal plasma
induciance, and aspect ratio., The Shafranov formula for
the equilibrium poloidal field distribution 1is accurate
to within 5% for aspect ratios greater than 2, poloidal
betas less than 50%, and for plasma current channels that
exceed one-third of the minor toroidal radius. The
analytic description for the center shift of the
innermost flux surface that encloses the plasma current
(the Shafranov shift) 1s accurate to within 15% for
aspect ratios greater than 2 and poloidal betas below
50%, provided the shift does not exceed one-tenth of the
minor conducting boundary radius. The behavior of the
magnetic axis shift as a fun~otion of plasma parameters is
included. The Shafranov formulae provide a convenient
method for describing the equilibrium behavior of an RFP
discharge. Examples 1llustrating the application of the
analytic formulae to the Los Alamos ZT-40M RFP experiment

are given.

I. INTRODUCTION
The poloidal field system in a toroidal discharge provides two important

functions. It induces the toroidal electric field that drives the plasma
current over the duration of the discharge, and it provides the magnetic
boundary conditions necessary for plasma equilibrium. In typical reversed

field pinch (RFP) experiments, the plasma 1s contained inside a vacuum vessel,



which comprises or is nested within a conducting shell. External to the shell
are the poloidal and toroidal field windings.

For time scales 1less than a characteristic diffusion time 1 = nod?2,
where y, g, and d are defined as the shell permeability, conductivity, and
thickness, respectively), the shell stabilizes the plasma against MHD
instabilities and holds the plasma 1in equilibrium via a distribution of
induced current on the inner shell surface. For time scales longer than T,
the plasma equilibrium position will change as the 1internal field diffuses
through the shell. This effect may be partially mitigated by the initial
introduction of a vertical magnetic field. However, for time scales
comparable to the vertical field diffusion time of the shell, an equilibrium
plasma configuration requires a proper time-dependent internal-external field
match.

A more severe constraint is imposed by minimizing field errors due to
shell gaps and ports. A field mismatch at a gap or port will drive large
field perturbations into the plasma column, which can distort equilibrium flux
surfaces., The perturbation magnitude, initially determined by the gap or port
dimension, grows in time as field diffuses into the gap faces. This effect
demonstrates the necessity of proper field matching in the vicinity of a gap
or port over the duration of the discharge.

In designing a poloidal field system, an expeditious approach 1s to use
the approximate Shafranov formulae to compute the poloidal field at the shell
for a desired plasma equilibrium.l'2 From thls field, the required winding
distribution is determined. However, because the Shafranov formulae use
expansions 1in e, the inverse toroidal aspect ratifo, questions arise regarding
their accuracy as a function of plasma beta, plasma inductance, and toroidal
aspect ratio. The purpose of this report 1s, therefore, to compare the
Shafranov formulae with the results of fully toroidal numerical solutions of
the Grad-Shafranov equation for a wide range of plasma configurations. In
addition, the report addresses the use of external field measurements to
deduce plasma properties such as the asymmetry factor A and presents specific

equilibrium results for the Los Alamos ZT-40M experiment.



II. ANALYTIC FORMULATION

An analytic description of equilibrium field distributions applicable to
a wide range of experimental configurations was initially proposed by
Shafranov. }»2 The description employed the macroscopic equations of pressure
balance for axisymmetric toroidal systems and resulted in, to first order in
€, the magnetic field distribution at the plasma-vacuum interface required for
equilibrium. Although, in general, the equilibrium distribution is a function
of internal plasma parameters, the Shafranov results are 1Insensitive to
internal plasma structure and hence depend only on the macroscopic
characterigstics of the plasma column.

For a toroidal plasma discharge of major radius R, with a perfectly
conducting shell of minor radius a, and minor plasma radius a’ which denotes
the innermost flux surface enclosing the total plasma current (Fig. 1), the

1
equilibrium poloidal field distribution at the shell is given by

B,(a,0) = Bo(a)[1 + en® Cos(8)] + 0Ce?) (2.1)

where

2 2
A , ’ 1 ’ 1
A = (a)[1+_a;2_)‘z_(1_fa_2_J+_2_1n(_af,_) . (2.2)
li(a')
A(a’) = the asymmetry factor = Bp(a') +-——7—- -1 (2.3)
2y, [<p>-P(a)]
Bp(a') =-—————————E——— , (2.4)
B,(a")
a'
2
Zfo B,*(r) t dr
2i(a’) = , and (2.5)
B (a%) =2t (1) (2.6)
o' 2na ' .



<{p> denotes plasma pressure averaged over the plasma cross section; P(a)
denotes pressure at the vacuum vessel wallj; I¢ represents the toroidal plasma
current; r, the integration variable, is the minor radial coordinate; and ¢,
the inverse toroidal aspect ratio, is equal to the ratio of minor to major
radius of the shell. For a’ = a, Bp defines the poloidal beta in cylindrical
geometry. The dimensionlesz quantity £&;, defined by Eq. (2.5), 1is the
poloidal 1inductance per unit length inside the radius a’ in electromagnetic

units (emu). The corresponding internal inductance in MKS units (Li) is given

by

M
L, = 4_: 2 (H/M) . (2.7)

To first order in €, the equilibrium magnetic surfaces have nonconcentric
circular cross sections. The center displacement of the plasma surface at

radius a’ with respect to the geometric minor toroidal axis is given by

2 12 1 aB 2 R
bg = %{ [1n (-aér) + (1 'éa"z')(/\(a') +§-)] ‘ngry"’ oCe) (2.8)

where B, denotes an externally agplied uniform vertical field and 0(52)
indicates correction terms of order ¢ . Equation (2.8) is wvalid for shifts
much less than the minor toroidal radius (45 << a). 1In practice, B, can be
used to fine tune plasma position such that the plasma surface and vacuum

chamber are concentric.
Formulae (2.1) and (2.8) are valid for any magnetic flux surface of

radius a’, which encloses the total toroidal plasma current, For a = a’,

Eq. (2.1) reduces to

Bp(e) = Bo(a)[l + ehA(a) Cos(e)] . (2.9)



Thus, in the design of a particular experiment, it is only necessary to
specify the aspect ratio and range of plasma beta and internal inductance to
obtain the toroidal image current distribution 1in the shell, and thereby
estimate the poloidal winding distribution or field control necessary for
equllibrium operation. The accuracy of this estimation will be addressed in

Section 1IV.

III. THE EQUILIBRIUM CODE
The Baker-Mann code used to assess the accuracy of the Shafranov formulae

was developed in the 1960s to design and study multipole equilibriad and
adapted to RFP equilibria and stability" in the early 1970s. It was also
employed for belt pinch® and high beta tokamak studies® in 1978 and is
currently used to support the ZT-40M RFP experiment. The code’s long history
of successful application to many numerical and analyti_.al problems attests to
its accuracy. The equilibrium calculation was run for ideal MHD conditions in

toroidal geometry with a diffuse plasma profile.

A, Mathematical Mcdel for the Equilibrium Calculation

The ideal MHD equilibrium equations in rationalized MKS units are given

by
> >
ixB=Vp |, (3.1)
> >
VxB= 1,5 » and (3.2)
>
VeB=0 , (3.3)

where 3 is the plasma current density, ; the magnetic field, and p denotes the
plasma pressure. Using the cylindrical coordinate system shown 1In Fig. I,
where p represents the major radial coordinate and ¢ is defined as (21r)"l
times the poloidal magnetic flux function, Eqs. (3.1) through (3.3) yield the

familiar Grad-Shafranov equation:
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where f is p /2m times the poloidal current flux function and a prime denotes
differentiation with respect to 1. Equation (3.4), together with the
specification of the p(y) and £(y¥) functions and the value of ¢ on the
boundary, poses a boundary value problem. For pulsed fields produced inside
perfectly conducting walls, the condition that the normal component of B
vanish at the wall corresponds to the boundary condition that ¢ i{s a constant.
Once ¢ is obtained, all other equilibrium quantities of interest are readily
computed. In particular, for comparison with Shafranov, the poloidal (B ) and

toroidal (B¢) flelds are computed from the following relationships

l a
N

> 1 ~ 1 - ~ 3y
B == WWx =_ (- + z ——) and 3.5

By = (£/0) b » (3.6)

where E is the unit vector in the ¢ direction.

Pressure and current profiles are represented by functions that allow
shapes characteristic of those observed experimentally and are discussed in
the Appendix. Unless otherwise noted, the pressure profiles wused in this
study were peaked on the magnetic axis and dropped smoothly to zero at the
conducting boundary. The maximum pressure value was used to control the
poloidal beta. The poloidal current profile was varied in width to change the

internal plasma inductance and simulate current pinch effects.
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B. Method of Solution
Equation (3.4) is an ellipcic differential equation with source t:rms

that can be nonlinear. Because exact analytic solutions are obtainable for
only very special (for example, linear) source functions and for simple
boundaries, general solutions require numerical techniques. The Baker-Mann
code uses the method of successive over-relaxation to solve the finite
difference equations on a discrete mesh with rectangular elements.
Nonrectangular regions are treated using an algorithm that generates special
difference equations at the boundary. A rectangular mesh in (p,z) avoids the
artificial singularities introduced by the use of toroidal coordinates.

Care zust be exercised in the cholce of starting values of the ¢
function, which is loaded on the finlte difference mesh before the relaxation
iterations begin. The nonlinearity of the problem leads to nonconvergence for
certain cholces of starting values. Another complication is that, during the
iteration procedure, the magnetic axis shifts for each 1iteration as the
procedure converges on the equilibrium solution. This causes the source term,
which is a function of the position of the magnetic axis, to change relative
to the finite mesh on each iteration. Despite these complications, this code
has obtained solutions for circular, racetrack, D-shaped, and rectangular
conducting boundaries for rather crude starting guesses provided one starts at
a relatively low beta. The low beta solutions can then be used as an 1initial

guess for high beta solutions.

IV. COMPARISON OF THE ANALYTIC AND NUMERICAL RESULTS

This section defines the validity range of the Shafranov formulae since
they use expansions Iin the Inverse aspect ratio e. For comparisor purposes,
as 1s normally done in practice, we will assume that the input quantities 24
and Bp are obtained directly from a cylindrical model without toroidal
corrections. However, 1t 1s interesting to compare the values of Bp and £;
obtained from the cylindrical model with the toroidally correct values
obtained from the Baker-Mann code (Figs. 2 and 3). For toroidal geometry, the

generalized definitions of Bp and 2; are given by



2uy<p> 8n232<p>

2 2
<B,(a)> boI5

(4.1)

Sp (toroidal) =

where (Bp(a)> denotes an average over circumference and <p> 1s computed by

averaging over the total toroidal cross section, and

%; (torcidal) = 2(poloidal field energy) . (4.2)

2
2'nRI¢

In both cases, the deviation of the cylindrical formulae from their
toroidal counterparts is greatest at lo« aspect ratio. and high betas. In

addition, the cylindrical formulae always underestimate their corresponding

toroidal values.

A. Equilibrium Dependence of the Poloidal Field
Using Eq. (2.9), the ratio of the poloidal field values at the maximum

(Rmax) and minimum (Rmin) major radial positions on the toroidal midplane is

given by

B [Rmax) + gl
Y = P ! ed]
B_(R 1 ) [T -¢€AT ° (4.3)

where A, the asymmetry factor, is defined by Eq. (2.3). As previously
mentioned, in applying the Shafranov formulae, the cylindrical values for both
poloidal beta and inductance are used.

A comparison of Eq. (4.3) with the results obtained from the Baker-Mann
code is shown in Fig. 4. Figure 4a shows the difference quantity
[Y(Shafranov)-y(Code)/y(Code)] as a function of Bp’ Figure &b shows this
difference as a function of aspect ratio. In both cases, the internal
inductance parameter (Ei) is held constént at 1.5, Both figures show good
accuracy for the Shafranov formulae, except at low aspect ratios (£2) and high

poloidal betas (20.5).
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A comparison of Eq. (4.3) for different values of li is shown 1in Fig. 5
for an aspect ratio of 3. The accuracy decreases as £; {increases, which

physically relates to a pinching of the plasma current column.

It 1{s interesting to note that, 1f the toroidal values of 21 and sp in
the Shafranov formulae are wused, the results are less accurate than if the

cylindrical values are employed (Fig. 6).

B. Magnetic Axis and Flux Surface Shift

To first order in e, the equilibrium magnetic flux surfaces of a plasma

enclosed within a perfectly conducting toroldal shell have nonconcentric
circular cross sections. An analytic description of the center displacement
(8;) of the plasma surface at radius a’, which defines the circular flux line
enclosing the total plasma current, is given by Eq. (2.8). Figures 7 and 8
show a comparison of A, with both the plasma center shift (A.) and the
magnetic axis shift (4 ) as calculated by the Baker-Mann code as a function of
plasma profile and Bp.

Figure 7a shows the comparison for an aspect ratio of 3 and a diffuse
plasma profile where the plasma surface lies close to the conducting boundary.
As expected, the center shift of the plasma surface is small and differs
substantially from the larger magnetic axils shift. The Shafranov formula (As)
accurately predicts the code calculated shift (Ac) to within 13% for Bp values

up to 0.5.
Figure 7¢ shows the comparison for a pinched plasma profile where the

plasma surface 1s approximately at one-half the conducting boundary radius.
For thils case, the code calculated shift (Ac) 1s comparable to the magnetic
axis shift. The error in the Shafranov formula (AS) is apparent because it
predicts a shift greater than A, for Bp values less than 0.1, This result 1is
clearly nonphysical and 1s due to a violation of the validity condition for
Eq. (2.8), which requires 4, << a. rigure 7b shows the comparison for the
intermediate case where the plasma surface 1s approximately at three—quarters
of the conducting boundary radius. Equation (2.8) remains accurate to within
15% for Bp values up to 0.5. For all cases illustrated in Figs. 7 through 9,
the cylindrically defined internal inductance per unit length (li) was held

fixed at 1.5.



Figure 8 shows the ccmparison for an aspect ratio of 5.2, whereas Fig. 9
illustrates the dependence of A, and Ay on aspect ratio 8p and plasma profile.
Based on this study, the Shafranov shift formula [Eq. (2.8)] is generally
valid for shifts less than one-tenth of the toroldal minor radius

(As/a < Otl)c

V. APPLICATIONS TO ZT-40M

The 2ZT-40M reversed field pinch uses an Tnconel toroidal vacuum vessel
with a major radius of 114 cm and minor radius of 19.7 cm, surrounded by a
close~fitting conducting shell (Fig. 10). The poloidal field windings consist
of 36 toroidally wound coils with approximately uniform azimuthal spacing. To
initfate a plasma discharge, the shell incorporates an 1insulated gap
positioned in a nlane perpendicular to the toroidal direction. During the
discharge, the plasma is held irn equilibrium by image currents on the inside
surface of the shell. For regions away from the gap, the image currents set
up an interior equilibrium poloidal field distribution cthat is essentially
unaffected by the external windings for time scales 1less than the shell
poloidal field diffusion time (1 « 3 ms for ZT-40M). However, at the minor
gap, the internal-external field mismatch drives field perturbations that can
distort the plasma’s magnetic surfaces. It 1is, therefore, important .o
externally match the equilibrium field distribution in the vicinity of the gap

during the entire discharge.

A. Design of the Poloidal Field Winding Distribution
Because the poloidal field windings on ZT-40M cannot be individually

controirled, a given winding distribution can only provide a correct
equilibrium field distribution for a specific set of values for plasma beta
and internal inductance. Thus, for design purposes, it 1is n=cessary to
estimate plasma beta and internal inductance for nominal machine operation.
Initially, this was accomplished by using the Shafranov formulae to
determine the equilibrium poloidal field distribution for the expected range
of operation (0 <« By < 0.2, 1.0 < & < 1.8). Fortultously, this design
criterion predicted a nearly uniform Bp(a) distribution, since the Shafranov
asymmetry factor (A) was close to zero. The analytic calculation was
subsequernitly checked with the Baker-Mann Code for the field and pressure
profiles described in the Appendix. Both approaches yielded similar results,

10



as shown in Fig. 11, which plots the equilibrium field ratioc y for ZT-40M
[Eq. (4.3)] as a function of Bp and 24.

For times 1longer than the vertical field diffusion time of the shell,
plasma equilibrium is strongly dependent on the external poloidal field
distribution. The external windings must provide the full equilibriunm
vertical field necessary to balance the hoop stress of the discharge column.

For € << 1, the equilibrium vertical field is approximately given by*

Holy PR 1
1Bl = g2 [1n ‘a") + A -7] . (5.1)

where R and 2’ represent the major and minor radius of the discharge column,
respectively. A plot of the poloidal winding vacuum field for ZT-40 under
full 690-kA operation 1s 1illustrated in Figs. 12 through l4.* The vertical
field magnitude agrees with Eq. (5.1) for the A =0 design condition.
However, to the extent that A deviates from zero during a discharge, an

additional vertical field correction is necessary to minimize plasma drifc.

B. Calculation of Internal Inductance

For predicting and interpreting some equilibrium aspects of an R¥P, it is
necessary to know the behavior of %£;, the internal inductance, as a function
of discharge conditlons. In the absence of experimental magnetic field
measurements, £; 1is computed from a mod=l that describes the RFP equilibrium
magnetic fields. A brief description of the methodology follows.

The RFP is characterized by a high shear magnetic field configuration
where the toroidal fileld is reversed on the plasma exterior with resgect to
its value on axis. This field configuration is postulated to be a consequence
of plasma relaxation by a process involving field line reconnection.’ The
relaxed states are independent of initial conditions and can be described by

the dimensionless parameters F and O, where

= .
The asymmetric effects of the discrete iron cores are not explicitly
included.

11



By(a) _ Bg(a)

F = Field Reversal Parameter = . (5.2)
<B.> 2
¢ (2/a2) faB¢(r) r dr
o
Bp(a) Bp(a)
6 = Pinch Parameter = = s (5.3)
(B¢>

(2/a2) faB¢(r) r dr
(o}

and B¢ denotes the toroidal magnetic field.
For the force-free (8 = 0) case, Taylor suggested the relaxed fields are

eigenfunctions of the equation’

> +
VxB=up |, (5.4)

where u 1is a constant (u = 20/a). In cylindrical geometry, the solution of
Eq. (5.4) yleids the Bessel function field profiles

B¢{r) = BJ,{ur) and (5.5)

B,(r) = ByJy(ur) (5.6)

where B, denotes the toroidal field on axis. In practice, a modification of
Eg. (5.4) is necessary to accurately match the observed behavior of F and © in
ZT-40M. Using the approximation that cross field current flow is small in low

beta plasmas, the modified force-free equation is given by

v x g = u(r)g , (5.7)

where u(r) 1is a spatially dependent parameter that specifies the plasma
current profile. The functional dependence of u(r) for a given pinch
discharge 1s obtained by iterating Eq. (5.7) such that the calculated values
of F [Eq. (5.2)) and © [Eq. (5.3)] agree with experimental measurements. The

12



Modified Bessel Function Model (MBFM),* in essence, modifies Taylor’s relaxed
field profiles to allow for zero plasma current density at the liner wall. A
zero—dimensional plisma simulation code using the MBFM has successfully
simulated the electrical and magnetic properties of RFP behavior. 8”11
Figure 15 shows a comparison between the Bessel Function Model (BFM) and MBFM
field and current density profiles for the nominal ZT-40M operating condition
of O = 1,6.

Using the MBFM field profiles and Eq. (2.5), the nominal emu internal
inductance per unit length (4y) of ZT-40M as a function of © can be
approximated in the range (0 < © < 1.9) by the polynomial

2;(0) = [0.5 + 0.11307 - 0.19403 + 0.5560% - 0.1980°] (5.8)

and is 1l1lustrated in Fig. 16a. For comparison, 21(6) for the BFM profiles 1is
illustrated in Fig. 16b. It 1is important to note that relationship between £,
and © is not unique but is rather dependent on the assumed field model.

The MBFM profiles, used to calculate £;(0), are derived from a force-free
(B = 0) model. Thus, in principle, the functional dependence of £ om 0O is
not consistent for describing a finite B plasma. In practice, however, the
correction to zi(e) for poloidal betas less than 0.2 on ZT-40M are less than
20%. This correctior results from the dependence of © on poloidal beta as
shown in Fig. 17, which plots © vs Bp for fixed £; as calculated by the Baker-
Mann code. For large aspect ratios (>5) and realistic RFP poloidal betas
(£0.2), the finite beta correction to £;(6) is comparable to errors resulting
from uncertainties in field or pressure profiles in an ideal MHD derivation of

internal inductance.

%
The MBFM is not related to the mathematically defined Modified Bessel
Functions.

13



C. The Use of External Field Measurements to Determine the Asymmetry Factor
Equation (4.3) can be solved to give the asymmetry factor A in terms of

the field ratio y and the inverse aspect ratio € giving

Thus a two point measurement of the poloidal field gives the asymmetry factor.

Alternatively, A can be expressed in terms of the first two coefficlents
of a Fourier expression of the field. If one assumes symmetry about the
midplane of the torus, the poloidal field at R = a can be expanded in a

Fourier cosine series as follows.

ag o
B,(8) -+ nzl a,Cos(nd) , (5.10)
with
1 27
a, = = fo B,(8)Cos(nt)de . (5.11)
Keeping only the first two terms of Eq. (5.10) ylelds
B 2 20 %o 1y 4 22 o] (5.12)
p(B) = -T+ ajCos(0) = - [ -;‘-)— Cos . .
Comparing this expression with Eq. (2.1) for a = a” gives
(5.13)

A = Zall(aoe) ]

and B_(a) = a,/2 is the average poloidal field at the wall.

14




Further making use of Eqs. (2.3) and (5.10) yields

2n
2 J B,(8)Cos6de
= -1 =2(2)_0

Az, + -1 2(R) . (5.14)

*™s_(8)do
o P

Thus to first order in €, the asymmetry factor is obtainable in terms of
the first two Fourier components of the poleidal field at the wall. These
components are measured in ZT-40M with external pickup loops.* The field ratio

Y is related to the Fourier components as follows.

v = [1 + (2a,/2)]/[1 - (23,/a)] . (5.15)

Note that only a 1linear combination of Bp and £y is obtainable from a

measurement of A, Further assumptions or measurements are needed to obtain Bp

or £; individually.

D. Sample BD Estimate
If Eq. (5.8) is used to estimate %; from experimental measurements of O,

we can use the external loop measurements of the Fourier components to get a
corresponding estimate of Bp vs time. Sample plots of A and Bp for Shot
No. 7106 (flat-top current operation) are shown in Fig. 18.

The Shafranov formulae are valid for a single perfectly conducting shell,
and the presence of the resistive liner inside the aluminum shell in ZT-40M
can affect the validity of this approach. The diffusion of the fields into
the aluminum shell also affects the measured value of A. For example, 1f the
current in and/or pressure at the liner is non-negligible, the results of both
the Shafranov formulae and the computer calculations can be rendered invalid
for the actual experiment., Similarly, appreciable non-axisymmetric

perturbations in the discharge from field errors, for example, can also

invalidate this approach.

*
Courtesy of C. J. Buchenauer.
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VI. CONCLUSIONS

The Shafranov analytic formulae for equilibrium poloidal fielqd
distributions give accurate results (within 5%) for aspect ratios above 2.0,
poloidal betas below 50%, and for current channels exceeding one-third the
minor radius of the conducting boundary. The analytic description for the
center displacement of the plasma surface 1s accurate (within 15%) for aspeét
ratios above 2 and ﬁoloidal betas below 50%, provided the center shift is less
than one-tenth of the minor boundary radius. The Shafranov formulae provide a
convenient method for utilizing external field measurements to determine the
equilibrium behavior of an axisymmetric toroidal RFP discharge over a wide

range of plasma conditions.
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Fig. 1.
The spatial coordinate systems employed in the analytic and numerical poloidal
field equilibrium calculations.
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APPENDIX

CHOICE OF p(y) AND f(y) -- FUNCTIONS USED IN THE NUMERICAL ANALYSIS

The choice of source functions, used to obtain the curves given in this
report, came from a subroutine that has proved very versatile for numerous RFP
applications. For completeness we document the scheme here.

It 1s convenlent for the user to input the source functions in terms of
p(r), B,(r), and By(r) for a straight cylindrical model, rather than try to
input directly the more abstract p(y) and f(y) functions. Any pair of the set
p(r), B,(r), or Bg(r) is sufficient; since the third is obtainable from the

pressure balance equation Vp ~ J x B = 0 which, for a cylinder with no © and z

dependence, 1s

dp/dr + (By/r)d(rBg)/dr + B,dB,/dr = 0 . (a-1)

This scheme has been implemented for two cases, where p(r) and Bz(r) are
supplied in tabular form that the code fits with cubic splines and p(r) and
Bo(r) are given as specific functions. The second case, used exclusively in

this report, is detailed below.
The pressure is defined in three radial intervals as follows.

p(r) = alr3 + a2r2 + a3r + ay 0<r<ry , (A-2)
p(r) = b1r3 + b2r2 + b3r + by rpy € r < re.j, and (A-3)
p(r) =0 r.y Sr <y . (A~4)

The coefficients are determined so that p(0) = p_, p(ry) = py, and p(rey) =0,

with zero slopes at r = 0, r, and rey (see Fig. A~1). The choice of two piece

cubics, for an appropriate choice of the input parameters r;, r.y, Py» and pp,
allows the pressure profile to be hollow or peaked on axis and to have a zero

pressure annulus for r > r.j.
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The Bg(r) field is defined over two intervals as

1 2
8 (e - Bomax(y = =1/ [(/8) = 2/rp +1]  0<r < , (a5)
c2
2 1)
Bé )(r) = Bg (re2)(rea/r) tep < r<ry . (A-6)

This choice of By glves a diffuse field that approaches a linear radial
dependence near the origin, peaks at r = A, and connects with a continuous
first derivative at r =r., to a l/r By field. To obtain a vacuum annulus
ro. <r<r, with zero current density, set r. ] = r.o = I, The code
integrates Eq. (A~1), wusing the above expressions for p and By, to determine
Bz(r). The flux function, defined as Y(r) = pmf:wBedr, is then computed on a
radial grid (pm is the mean major radius for the toroidal problem). The
inverse function r = r(y) is then obtained from a spline interpolation from

the grid. The final source functions are defined as
p(¥) = p(r(y)) and (A=7)

£(¥) = o B, (r(¥))/uy - (4-8)

The source functions are input to the code by way of the Grad-Shafranov
equation (3.4) and solved by over-relaxation to give a toroidal solution
corresponding to the cylindrical input model. The ¥(r) function is used as a
starting guess and loaded on the mesh before the iterations begin. There 1is
one further subtlety that appears in this scheme; namely, the range of the ¥
function (O'Wmax) over the solution mesh changes during the over~relaxation
iterations. Since the full range of the initial p(r) and Bg(r) functions are
desired, the value of ¥ inputed to the arguments of r(y) 1in Eqs. (A~7) and
(A-8) 1s renormalized during the iterative process by multiplying ¥ by the
factor Y /¢p.y. The maximum value {p,, 1s updated after each complete

iteration of the mesh. The quantity ¢, is the initial Y ., before the

iterations begin,.
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Noting Fig. A-1, A is the minor radius to the peak of Be(r) in the
straight cylindrical model used to generate the p(y) and f(y) functions. For
the resulting toroidal solution, the equilibriuu shift distorts the flux
surfaces from circles, and A is a measure of the width of the current profile
since it is approximately the mean radius from the magnetic axis to the peak
poloidal field. For the calculations in this report, r, was set to zero,

giving broad pressure profiles peaked on axis; and in all cases, r,; was set

equal to r,, (Fig. A-2).
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