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EQUILIBRIUM POLOIDAL FIELD DISTRIBUTIONS IN 

REVERSED FIELD PINCH TOROIDAL DISCHARGES 

by 

Don A. Baker, Lawry W. Mann, and Kurt F. Schoenberg 

ABSTRACT 

A comparison between the analytic formulae of 
S'.̂ afranov for equilibrium In axisymmetric toroidal 
reversed field pinch (RFP) systems and fully toroidal 
numerical solutions of the Grad-Shafranov equation is 
presented as a function of pololdal beta, internal plasma 
inductance, and aspect ratio. The Shafranov formula for 
the equilibrium poloidal field distribution is accurate 
to within 5% for aspect ratios greater than 2, pololdal 
betas less than 50%, and for plasma current channels that 
exceed one-third of the minor toroidal radius. The 
analytic description for the center shift of the 
innermost flux surface that encloses the plasma current 
(the Shafranov shift) is accurate to within 15% for 
aspect ratios greater than 2 and poloidal betas below 
50%, provided the shift does not exceed one-tenth of the 
minor conducting boundary radius. The behavior of the 
magnetic axis shift as a function of plasma parameters is 
included. The Shafranov formulae provide a convenient 
method for describing the equilibrium behavior of an RFP 
discharge. Examples illustrating the application of the 
analytic formulae to the Los Alamos ZT-40M RFP experiment 
are given. 

I. INTRODUCTION 

The pololdal field system in a toroidal discharge provides two important 

functions. It induces the toroidal electric field that drives the plasma 

current over the duration of the discharge, and it provides the magnetic 

boundary conditions necessary for plasma equilibrium. In typical reversed 

field pinch (RFP) experiments, the plasma is contained inside a vacuum vessel, 



which comprises or is nested within a conducting shell. External to the shell 

are the poloidal and toroidal field windings. 

For time scales less than a characteristic diffusion time (T <* uod^, 

where p, a, and d are defined as the shell permeability, conductivity, and 

thickness, respectively), the shell stabilizes the plasma against MHD 

instabilities and holds the plasma in equilibrium via a distribution of 

induced current on the inner shell surface. For time scales longer than T, 

the plasma equilibrium position will change as the internal field diffuses 

through the shell. This effect may be partially mitigated by the initial 

introduction of a vertical magnetic field. However, for time scales 

comparable to the vertical field diffusion time of the shell, an equilibrium 

plasma configuration requires a proper time-dependent internal-external field 

match. 

A more severe constraint is imposed by minimizing field errors due to 

shell gaps and ports. A field mismatch at a gap or port will drive large 

field perturbations into the plasma column, which can distort equilibrium flux 

surfaces. The perturbation magnitude, initially determined by the gap or port 

dimension, grows in time as field diffuses into the gap faces. This effect 

demonstrates the necessity of proper field matching in the vicinity of a gap 

or port over the duration of the discharge. 

In designing a poloidal field system, an expeditious approach is to use 

the approximate Shafranov formulae to compute the poloidal field at the shell 

for a desired plasma equilibrium.1'2 From this field, the required winding 

distribution is determined. However, because the Shafranov formulae use 

expansions in e, the inverse toroidal aspect ratio, questions arise regarding 

their accuracy as a function of plasma beta, plasma inductance, and toroidal 

aspect ratio. The purpose of this report is, therefore, to compare the 

Shafranov formulae with the results of fully toroidal numerical solutions of 

the Grad-Shafranov equation for a wide range of plasma configurations. In 

addition, the report addresses the use of external field measurements to 

deduce plasma properties such as the asymmetry factor A and presents specific 

equilibrium results for the Los Alamos ZT-40M experiment. 



II. ANALYTIC FORMULATION 

An analytic description of equilibrium field distributions applicable to 

a wide range of experimental configurations was initially proposed by 

Shafranov.*»^ The description employed the macroscopic equations of pressure 

balance for axlsymmetric toroidal systems and resulted in, to first order in 

e, the magnetic field distribution at the plasma—vacuum interface required for 

equilibrium. Although, in general, the equilibrium distribution is a function 

of internal plasma parameters, the Shafranov results are insensitive to 

internal plasma structure and hence depend only on the macroscopic 

characteristics of the plasma column. 

For a toroidal plasma discharge of major radius R, with a perfectly 

conducting shell of minor radius a, and minor plasma radius a' which denotes 

the innermost flux surface enclosing the total plasma current (Fig. 1), the 

equilibrium poloidal field distribution at the shell is given by 

B (a,9) = B0(a)[l + eA* Cos(6)] + 0(e
2) , (2.1) 

where 

, 2 
(2.2) + J va 

Jti(a) 
A(a') = the asymmetry factor = 8 (a') + —-= 1 , (2.3) 

2uo[<p>-P(a)] 
3 (a') - _ 2 , (2.A) 

2 

Bp
2(r) r dr 

, and (2.5) 

a'2B0(a')
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<p> denotes plasma pressure averaged over the plasma cross section; P(a) 

denotes pressure at the vacuum vessel wall; I. represents the toroidal plasma 

current; r, the integration variable, is the minor radial coordinate; and e, 

the Inverse toroidal aspect ratio, is equal to the ratio of minor to major 

radius of the shell. For a' » a, B defines the poloidal beta in cylindrical 

geometry. The dimensionless quantity Ĵ , defined by Eq. (2.5), is the 

poloidal inductance per unit length inside the radius a' in electromagnetic 

units (emu). The corresponding internal inductance in MKS units (L.) is given 

by 

Li = T|-? h (H/M) • (2-7) 

To first order in e, the equilibrium magnetic surfaces have nonconcentric 

circular cross sections. The center displacement of the plasma surface at 

radius a' with respect to the geometric minor toroidal axis is given by 

(2.8) 

where Bv denotes an externally applied uniform vertical field and 0(e ) 

indicates correction terms of order e . Equation (2.8) is valid for shifts 

much less than the minor toroidal radius (Ag « a). In practice, \ can be 

used to fine tune plasma position such that the plasma surface and vacuum 

chamber are concentric. 

Formulae (2.1) and (2.8) are valid for any magnetic flux surface of 

radius a', which encloses the total toroidal plasma current. For a « a', 

Eq. (2.1) reduces to 

B (6) - Bo(a)[l + eA(a) Cos(6)] . (2.9) 



Thus, in the design of a particular experiment, It is only necessary to 

specify the aspect ratio and range of plasma beta and internal inductance to 

obtain the toroidal image current distribution in the shell, and thereby 

estimate the poloidal winding distribution or field control necessary for 

equilibrium operation. The accuracy of this estimation will be addressed in 

Section IV. 

III. THE EQUILIBRIUM CODE 

The Baker-Mann code used to assess the accuracy of the Shafranov formulae 

was developed in the 1960s to design and study multipole equilibria3 and 

adapted to RFP equilibria and stability*• in the early 1970s. It was also 

employed for belt pinch5 and high beta tokamak studies6 in 1978 and is 

currently used to support the ZT-40M RFP experiment. The code's long history 

of successful application to many numerical and analytijal problems attests to 

its accuracy. The equilibrium calculation was run for ideal MHD conditions in 

toroidal geometry with a diffuse plasma profile. 

A. Mathematical Model for the Equilibrium Calculation 

The ideal MHD equilibrium equations in rationalized MKS units are given 

by 

j x B = Vp , (3.1) 

V x B « |(jj , and (3.2) 

V • B - 0 , (3.3) 

where j is the plasma current density, B the magnetic field, and p denotes the 

plasma pressure. Using the cylindrical coordinate system shown in Fig. 1, 

where p represents the major radial coordinate and if is defined as (2n)~* 

times the poloidal magnetic flux function, Eqs. (3.1) through (3.3) yield the 

familiar Grad-Shafranov equation: 



(3.4) 

where f is P0/2ir times the poloidal current flux function and a prime denotes 

differentiation w'.th respect to ij>. Equation (3.A), together with the 

specification of the p(^) and f(t|>) functions and the value of i|> on the 

boundary, poses a boundary value problem. For pulsed fields produced inside 

perfectly conducting walls, the condition that the normal component of B 

vanish at the wall corresponds to the boundary condition that ifi is a constant. 

Once i|) is obtained, all other equilibrium quantities of interest are readily 

computed. In particular, for comparison with Shafranov, the poloidal (B ) and 

toroidal (BJ fields are computed from the following relationships 

I v , X ; = I ( - p H + ; - g ) and (3.5) 

(f/p) I , (3.6) 

where $ is the unit vector in the $ direction. 

Pressure and current profiles are represented by functions that allow 

shapes characteristic of those observed experimentally and are discussed in 

the Appendix. Unless otherwise noted, the pressure profiles used in this 

study were peaked on the magnetic axis and dropped smoothly to zero at the 

conducting boundary. The maximum pressure value was used to control the 

poloidal beta. The poloidal current profile was varied in width to change the 

internal plasma inductance and simulate current pinch effects. 



B. Method of Solution 

Equation (3.A) Is an elliptic differential equation with source fjrtns 

that can be nonlinear. Because exact analytic solutions are obtainable for 

only very special (for example, linear) source functions and for simple 

boundaries, general solutions require numerical techniques. The Baker-Mann 

code uses the method of successive over-relaxation to solve the finite 

difference equations on a discrete mesh with rectangular elements. 

Nonrectangular regions are treated using an algorithm that generates special 

difference equations at the boundary. A rectangular mesh in (p,z) avoids the 

artificial singularities introduced by the use of toroidal coordinates. 

Care rsust be exercised in the choice of starting values of the if/ 

function, which is loaded on the finite difference mesh before the relaxation 

iterations begin. The nonlinearity of the problem leads to nonconvergence for 

certain choices of starting values. Another complication is that, during the 

iteration procedure, the magnetic axis shifts for each iteration as the 

procedure converges on the equilibrium solution. This causes the source term, 

which is a function of the position of the magnetic axis, to change relative 

to the finite mesh on each iteration. Despite these complications, this code 

has obtained solutions for circular, racetrack, D-shaped, and rectangular 

conducting boundaries for rather crude starting guesses provided one starts at 

a relatively low beta. The low beta solutions can then be used as an initial 

guess for high beta solutions. 

IV. COMPARISON OF THE ANALYTIC AND NUMERICAL RESULTS 

This section defines the validity range of the Shafranov formulae since 

they use expansions in the inverse aspect ratio e. For comparison purposes, 

as is normally done in practice, we will assume that the input quantities 2^ 

and g are obtained directly from a cylindrical model without toroidal 

corrections. However, it is interesting to compare the values of 0 and Z^ 

obtained from the cylindrical model with the toroidally correct values 

obtained from the Baker-Mann code (Figs. 2 and 3). For toroidal geometry, the 

generalized definitions of 6 and £^ are given by 



8Tr2a2<p> 

<B (a)>2 
ft t , , n W o P 8 T r a < p > 
Bp (toroidal) = -> -i— , (4.1) 

2 2 

where <B (a)> denotes an average over circumference and <p> Is computed by 

averaging over the total toroidal cross section, and 

*i (toroidal) = t v r " 1 " 1 " ° 1 ^ c t " e n e r8y ) . (4.2) 

In both cases, the deviation of the cylindrical formulae from their 

toroidal counterparts is greatest at lo« aspect ratio- and high betas. In 

addition, the cylindrical formulae always underestimate their corresponding 

toroidal values. 

A. Equilibrium Dependence of the Poloidal Field 

Using Eq. (2.9), the ratio of the poloidal field values at the maximum 

[Rjjgjj) and minimum (R^n) major radial positions on the toroidal mldplane is 

given by 

[1 + eA] ,, 

rn^AT ' 

where A, the asymmetry factor, is defined by Eq. (2.3). As previously 

mentioned, in applying the Shafranov formulae, the cylindrical values for both 

poloidal beta and inductance are used. 

A comparison of Eq. (4.3) with the results obtained from the Baker-Mann 

code is shown in Fig. 4. Figure 4a shows the difference quantity 

[•y(Shafranov)-Y(Code)/-Y(Code)] as a function of g . Figure 4b shows this 

difference as a function of aspect ratio. In both cases, the internal 

inductance parameter (£^) is held constant at 1.5. Both figures show good 

accuracy for the Shafranov formulae, except at low aspect ratios (<2) and high 

poloidal betas (>0.5). 

8 



A comparison of Eq. (4.3) for different values of SL^ is shown in Fig. 5 

for an aspect ratio of 3. The accuracy decreases as Z^ increases, which 

physically relates to a pinching of the plasma current column. 

It is interesting to note that, if the toroidal values of ij and 0 in 

the Shafranov formulae are used, the results are less accurate than if the 

cylindrical values are employed (Fig. 6). 

B. Magnetic Axis and Flux Surface Shift 

To first order in e, the equilibrium magnetic flux surfaces of a plasma 

enclosed within a perfectly conducting toroidal shell have nonconcentric 

circular cross sections. An analytic description of the center displacement 

(Ag) of the plasma surface at radius a', which defines the circular flux line 

enclosing the total plasma current, is gi"en by Eq. (2.8). Figures 7 and 8 

show a comparison of Ag with both the plasma center shift (Ac) and the 

magnetic axis shift (Am) as calculated by the Baker-Mann code as a function of 

plasma profile and & . 

Figure 7a shows the comparison for an aspect ratio of 3 and a diffuse 

plasma profile where the plasma surface lies close to the conducting boundary. 

As expected, the center shift of the plasma surface is small and differs 

substantially from the larger magnetic axis shift. The Shafranov formula (Ag) 

accurately predicts the code calculated shift (Ac) to within 13% for Bp values 

up to 0«5. 

Figure 7c shows the comparison for a pinched plasma profile where the 

plasma surface is approximately at one-half the conducting boundary radius. 

For this case, the code calculated shift (Ac) is comparable to the magnetic 

axis shift. The error in the Shafranov formula (Ag) is apparent because it 

predicts a shift greater than ^ for Bp values less than 0.1. This result is 

clearly nonphysical and is due to a violation of the validity condition for 

Eq. (2.8), which requires Ag « a. ri^ure 7b shows the comparison for the 

intermediate case where the plasma surface is approximately at three-quarters 

of the conducting boundary radius. Equation (2.8) remains accurate to within 

15% for Bp values up to 0.5. For all cases illustrated in Figs. 7 through 9, 

the cylindrically defined internal inductance per unit length (is) was held 

fixed at 1.5. 



Figure 8 shows the comparison for an aspect ratio of 5.2, whereas Fig. 9 

illustrates the dependence of Ac and ^ on aspect ratio 8p and plasma profile. 

Based on this study, the Shafranov shift formula [Eq. (2.8)] is generally 

valid for shifts less than one-tenth of the toroidal minor radius 

(As/a < 0.1). 

V. APPLICATIONS TO ZT-40M 

The ZT-40M reversed field pinch uses an Inconel toroidal vacuum vessel 

with a major radius of 114 cm and minor radius of 19.7 cm, surrounded by a 

close-fitting conducting shell (Fig. 10). The poloidal field windings consist 

of 36 toroidally wound coils with approximately uniform azlniuthal spacing. To 

initiate a plasma discharge, the shell incorporates an insulated gap 

positioned in a olane perpendicular to the toroidal direction. During the 

discharge, the plasma is held in equilibrium by image currents on the inside 

surface of the shell. For regions away from the gap, the image currents set 

up an interior equilibrium poloidal field distribution chat is essentially 

unaffected by the external windings for time scales less than the shell 

poloidal field diffusion time (T « 3 ms for ZT-40M). However, at the minor 

gap, the internal-external field mismatch drives field perturbations that can 

distort the plasma's magnetic surfaces. It is, therefore, important _o 

externally match the equilibrium field distribution in the vicinity of the gap 

during the entire discharge. 

A. Design of the Poloidal Field Winding Distribution 

Because the poloidal field windings on ZT-40M cannot be individually 

controlled, a given winding distribution can only provide a correct 

equilibrium field distribution for a specific set of values for plasma beta 

and internal inductance. Thus, for design purposes, it is necessary to 

estimate plasma beta and internal inductance for nominal machine operation. 

Initially, this was accomplished by using the Shafranov formulae to 

determine the equilibrium poloidal field distribution for the expected range 

of operation (0 < 0 <; 0.2, 1.0 < % < 1.8). Fortuitously, this design 

criterion predicted a nearly uniform B (a) distribution, since the Shafranov 

asymmetry factor (A) was close to zero. The analytic calculation was 

subsequently checked with the Baker-Mann Code for the field and pressure 

profiles described in the Appendix. Both approaches yielded similar results, 

10 



as shown in Fig. 11, which plots the equilibrium field ratio y for ZT-40M 

[Eq. (4.3)] as a function of (J and &±. 

For times longer than the vertical field diffusion time of the shell, 

plasma equilibrium is strongly dependent on the external poloidal field 

distribution. The external windings must provide the full equilibrium 

vertical field necessary to balance the hoop stress of the discharge column. 

For e « 1, the equilibrium vertical field is approximately given by1 

where R and a' represent the major and minor radius of the discharge column, 

respectively. A plot of the poloidal winding vacuum field for ZT-40 under 

full 600-kA operation is illustrated in Figs. 12 through 14.* The vertical 

field magnitude agrees with Eq. (5.1) for the A = 0 design condition. 

However, to the extent that A deviates from zero during a discharge, an 

additional vertical field correction is necessary to minimize plasma drift. 

B. Calculation of Internal Inductance 

For predicting and interpreting some equilibrium aspects of an RFP, it is 

necessary to know the behavior of l^, the internal inductance, as a function 

of discharge conditions. In the absence of experimental magnetic field 

measurements, i.^ is computed from a modsl that describes the RFP equilibrium 

magnetic fields. A brief description of the methodology follows. 

The RFP is characterized by a high shear magnetic field configuration 

where the toroidal field is reversed on the plasma exterior with respect to 

its value on axis. This field configuration is postulated to be a consequence 

of plasma relaxation by a process involving field line reconnection.7 The 

relaxed states are independent of initial conditions and can be described by 

the dimensionless parameters F and 0, where 

The asymmetric effects of the discrete iron cores are not explicitly 
included. 

11 



F • Field Reversal Parameter 

(2/a2) / \ ( r ) r dr 

(5.2) 

BD(a) Bo(a) 
0 - Pinch Parameter « -£• = £ , (5.3) 

*' (2/a2) jV(r) r dr 
o ™ 

and Bx denotes the toroidal magnetic field. 

For the force-free ($ = 0) case, Taylor suggested the relaxed fields are 

eigenfunctions of the equation7 

V x B = pB , (5.A) 

where u is a constant (p = 20/a). In cylindrical geometry, the solution of 

Eq. (5.4) yields the Bessel function field profiles 

B^r) = BtJo(pr) and (5.5) 

Bp(r) = Bt-Jjdir) , (5.6) 

where Bfc denotes the toroidal field on axis. In practice, a modification of 

Eq. (5.4) is necessary to accurately match the observed behavior of F and 0 in 

ZT-40M. Using the approximation that cross field current flow is small in low 

beta plasmas, the modified force-free equation is given by 

V x B = u(r)B , (5.7) 

where vi(r) is a spatially dependent parameter that specifies the plasma 

current profile. The functional dependence of u(r) for a given pinch 

discharge Is obtained by iterating Eq. (5.7) such that the calculated values 

of F [Eq. (5.2)] and 0 [Eq. (5.3)] agree with experimental measurements. The 

12 



Modified Bessel Function Model (MBFM),* in essence, modifies Taylor's relaxed 

field profiles to allow for zero plasma current density at the liner wall. A 

zero-dimensional plasma simulation code using the MBFM has successfully 

simulated the electrical and magnetic properties of RFP behavior.8"11 

Figure 15 shows a comparison between the Bessel Function Model (BFM) and MBFM 

field and current density profiles for the nominal ZT-AOM operating condition 

of 0 » 1.6. 

Using the MBFM field profiles and Eq. (2.5), the nominal emu internal 

Inductance per unit length (A^) of ZT-40M as a function of 0 can be 

approximated in the range (0 < 0 < 1.9) by the polynomial 

IA0) = [0.5 + O.11302 - O.19403 + O.55604 - O.19805] (5.8) 

and is illustrated in Fig. 16a. For comparison, l^Q) for the BFM profiles is 

illustrated in Fig. 16b. It is important to note that relationship between i^ 

and 0 is not unique but is rather dependent on the assumed field model. 

The MBFM profiles, used to calculate 1^(0), are derived from a force-free 

( 6 = 0 ) model. Thus, in principle, the functional dependence of l^ on 0 is 

not consistent for describing a finite 0 plasma. In practice, however, the 

correction to £^(@) for poloidal betas less than 0.2 on ZT-40M are less than 

20%. This correctior results from the dependence of 0 on poloidal beta as 

shown in Fig. 17, which plots 0 vs (3 for fixed S.^ as calculated by the Baker-

Mann code. For large aspect ratios (>5) and realistic RFP poloidal betas 

(<0.2), the finite beta correction to £^(6) is comparable to errors resulting 

from uncertainties in field or pressure profiles in an ideal MHD derivation of 

internal inductance. 

The MBFM is not related to the raathematically defined Modified Bessel 
Functions. 

13 



C. The Use of External Field Measurements to Determine the Asymmetry Factor 

Equation (4.3) can be solved to give the asymmetry factor A in terns of 

the field ratio y and the Inverse aspect ratio e giving 

A - e(Y - D/(Y + 1) • (5.9) 

Thus a two point measurement of the poloidal field gives the asymmetry factor. 

Alternatively, A can be expressed in terms of the first two coefficients 

of a Fourier expression of the field. If one assumes symmetry about the 

midplane of the torus, the poloidal field at R = a can be expanded in a 

Fourier cosine series as follows. 

+ ? anCos(n6) , (5.10) 
n—1 

with 

a = I / V(6)Cos(ne)d8 . (5.11) 
TT e\ r 

Keeping only the first two terms of Eq. (5.10) yields 

Bp(e) = ~+ ajCos^) =^1 [l +-p- Cose] . (5.12) 
u 

Comparing this expression with Eq. (2.1) for a = a' gives 

A - 2ai/(aoe) , (5.13) 

and BQ(a) - ao/2 is the average poloidal field at the wall. 

14 



Further making use of Eqs. (2.3) and (5.10) yields 

,2v 
Bn(e)Cos6d9 

. (5.U) 

(6)d9 
o K 

Thus to first order in e, the asymmetry factor is obtainable in terms of 

the first two Fourier components of the poloidal field at the wall. These 

components are measured in ZT-40M with external pickup loops.*" The field ratio 

Y is related to the Fourier components as follows. 

Y = [1 + (2ai/a)]/[l - (23l/a)] . (5.15) 

Note that only a linear combination of B and SL^ is obtainable from a 

measurement of A. Further assumptions or measurements are needed to obtain B 

or 9,^ individually. 

D. Sample Bp Estimate 

If Eq. (5.8) is used to estimate i^ from experimental measurements of 0, 

we can use the external loop measurements of the Fourier components to get a 

corresponding estimate of B vs time. Sample plots of A and B for Shot 

No. 7106 (flat-top current operation) are shown in Fig. 18. 

The Shafranov formulae are valid for a single perfectly conducting shell, 

and the presence of the resistive liner inside the aluminum shell in ZT-40M 

can affect the validity of this approach. The diffusion of the fields into 

the aluminum shell also affects the measured value of A. For example, if the 

current in and/or pressure at the liner is non-negligible, the results of both 

the Shafranov formulae and the computer calculations can be rendered invalid 

for the actual experiment. Similarly, appreciable non-axisymmetrlc 

perturbations in the discharge from field errors, for example, can also 

invalidate this approach. 

Courtesy of C. J. Buchenauer. 
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VI. CONCLUSIONS 

The Shafranov analytic formulae for equilibrium poloidal field 

distributions give accurate results (within 5%) for aspect ratios above 2.0, 

poloidal betas below 50%, and for current channels exceeding one-third the 

minor radius of the conducting boundary. The analytic description for the 

center displacement of the plasma surface is accurate (within 15%) for aspect 

ratios above 2 and poloidal betas below 50%, provided the center shift Is less 

than one-tenth of the minor boundary radius. The Shafranov formulae provide a 

convenient method for utilizing external field measurements to determine the 

equilibrium behavior of an axisymmetric toroidal RFP discharge over a wide 

range of plasma conditions. 
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Fig. 1. 
The spatial coordinate systems employed in the analytic and numerical poloidal 
field equilibrium calculations. 
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Fig. 2. 
0p for a torus vs B_ for a cylinder as a 
function aspect ratio. 

0.5 

Fig. 3. 
Percentage of difference 
torus with respect to I. 
as a function of g for 

ratios. p 

in ^ for a 
for a cylinder 

various aspect 

0.5 
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Percentage of difference in y as a function of fl for Z^ » 1.5 and an aspect 
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(cylindrical); (B)K6 (cylindrical), lt (toroidal); (G) & (toroidal), l± 
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The ZT-40M experiment. 
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Fig. 12. 
Vacuum pololdal field flux plot for ZT-40M under 600-kA operation. 
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Vacuum vertical field magnitude for 600-kA operation. 
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Fig. 15. 
Toroidal and poloidal spatial profiles from the BFM and MBFM for 
(a) magnetic field and (b) current density. 
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Fig. 16. 
ZT-AOM internal inductance per unit length (JL) as a function of the pinch 
parameter 0 for various field profiles, (a) MBFM; (b) BFM. 
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Fig. 17. 
The variation of © with poloidal beta as a function of aspect ratio. 
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Fig. 18. 
The measured time history of A and the estimated time 
history of Bp for a 190-kA ZT-40M discharge. 
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APPENDIX 

CHOICE OF p(i)») AND f(i(>) ~ FUNCTIONS USED IN THE NUMERICAL ANALYSIS 

The choice of source functions, used to obtain the curves given in this 

report, came from a subroutine that has proved very versatile for numerous RFP 

applications. For completeness we document the scheme here. 

It is convenient for the user to input the source functions in terms of 

p(r), Bz(r), and Be(r) for a straight cylindrical model, rather than try to 

input directly the more abstract p(<|0 and f(i|>) functions. Any pair of the set 

p(r), Bz(r), or Be(r) is sufficient, since the third Is obtainable from the 

pressure balance equation 7p - J x B = 0 which, for a cylinder with no 9 and z 

dependence, is 

dp/dr + (Be/r]d(rBe)/dr + BzdB2/dr = 0 . (A-l) 

This scheme has been implemented for two cases, where p(r) and Bz(r) are 

supplied in tabular form that the code fits with cubic splines and p(r) and 

Bg(r) are given as specific functions. The second case, used exclusively in 

this report, Is detailed below. 

The pressure is defined in three radial intervals as follows. 

p(r) - ajr3 + a2r
2 + a3r + a^ 0 < r < rm , (A-2) 

p(r) - bxr
3 + b2r

2 + b3r + bA rm < r < rcl, and (A-3) 

p(r) - 0 rcl < r < rw . (A-4) 

The coefficients are determined so that p(0) • pQ, p(rm) = pm, and p(rcj) • 0, 

with zero slopes at r » 0, rTO and rc^ (see Fig. A-l). The choice of two piece 

cubics, for an appropriate choice of the input parameters rm, rcj, p 0, and pm, 

allows the pressure profile to be hollow or peaked on axis and to have a zero 

pressure annulus for r > rci. 
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The Bg(r) field is defined over two intervals as 

/ 1 \ O 

Be (r) - 2B6max(I--l-)r/[(r/A) - 2r/rc2 + l] 0 < r < rc2 , (A-5) 
A rc2 

(2) (1) 
Be (r) = B6 (rc2)(rc2/r) rc2 < r < rw . (A-6) 

This choice of Bg gives a diffuse field that approaches a linear radial 

dependence near the origin, peaks at r = A, and connects with a continuous 

first derivative at r = rc2 to a 1/r Bg field. To obtain a vacuum annulus 

rc < r < rw with zero current density, set rc^ = rc2 * rc« The code 

integrates Eq. (A-l), using the above expressions for p and Bg, to determine 

Bz(r). The flux function, defined as ty(r) = Pm/r Bgdr, is then computed on a 
w 

radial grid (pm is the mean major radius for the toroidal problem). The 

inverse function r » r(̂ /) is then obtained from a spline interpolation from 

the grid. The final source functions are defined as 

p(i|>) - p(r(i|0) and (A-7) 

(A-8) 

The source functions are input to the code by way of the Grad-Shafranov 

equation (3.4) and solved by over-relaxation to give a toroidal solution 

corresponding to the cylindrical input model. The #(r) function is used as~a 

starting guess and loaded on the mesh before the iterations begin. There is 

one further subtlety that appears in this scheme; namely, the range of the if* 

function (Oj^ax) over the solution mesh changes during the over-relaxation 

Iterations. Since the full range of the initial p(r) and Bg(r) functions are 

desired, the value of i|i inputed to the arguments of r(>|i) in Eqs. (A-7) and 

(A-8) is renormalized during the iterative process by multiplying + by the 

factor /̂ifimax. The maximum value ^ a x is updated after each complete 

iteration of the mesh. The quantity tyQ is the initial ^ a x before the 

iterations begin. 
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Noting Fig. A-l, A is the minor radius to the peak of BQ(r) in the 

straight cylindrical model used to generate the p( i|0 and f(i|i) functions. For 

the resulting toroidal solution, the equilibrium shift distorts the flux 

surfaces from circles, and A is a measure of the width of the current profile 

since it is approximately the mean radius from the magnetic axis to the peak 

poloidal field. For the calculations in this report, rm was set to zero, 

giving broad pressure profiles peaked on axis; and In all cases, rcj was set 

equal to rc2 (Fig. A-2). 
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Fig. A- l . 
A general schematic of the pressure and poloidal magnetic field 
profiles used in the numerical analysis. 
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Fig. A-2. 
Sample plots of the cylindrical input pressure and field profiles and the 
corresponding plots along the toroidal mldplane obtained from the equlibrium 
code for the same value of peak pressure, p . 
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