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DESIGN AND CALIBRATION OF A TWO-CHANNEL LOW-NOISE
HETERODYNE RECEIVER FOR USE IN A CO, LASER THOMSON SCATTERING
ALPHA PARTICLE DIAGNOSTIC

C. A. Bennett,* R. K. Richards, and D. P, Hutchinson

ABSTRACT
A dual channel low noise heterodyne recelver has been constructed
as part of a development effort to build a carbon dioxide laser based
Thomson scattering alpha particle diagnostic for a burning plasma
experiment. The receiver employs two wide bandwidth (>1 GHz) HgCdTe
photovoltaic mixers followed by low noise IF amplifiers, A noise
equivalent power of less than 3,0 x 10720 W/Hz has been demonstrated.

Design details and calibration methods are described.

INTRODUCTION

It has been established that heterodyne spectroscopy of Doppler
shifted Thomson scattered CO, laser radiation can provide a promising
method for determining the kinetics of fusion produced alpha particles.l™3
A crucial component of such a diagnostic is the heterodyne receiver;
this system must exhibit low internal nolse along with a detection band-
width large enough to ensure an adequate post detection signal to woise
ratio. In what follows, we describe a receiver system utilizing a
HgCdTe photovoltaic photomixer with noise and bandwidth capabilities
necessary to provide data for alpha particle densities equal to or
greater than 10!! em™3.3 We also describe a method for producing an
absolute broadband sensitivity calibration by referencing the output

of the receiver to a blackbody standard; this will provide a real time



check for photumixer sensitivity changes, system alignment drift, and

neutron damage to the optical train.

HETERODYNE DETECTION
The heterodyne signal results from intensity fluctuations as two
electromagnetic waves of different frequencies interfere at the surface
of a linear power detector. Consider two 1identically polarized plane
electromagnetic waves lacident normally on a photomixer, giving a total

electric field of
Er = Ej cos w)t + Ej cos wpt (1)

Power fluctuations at the intermediate frequency (IF) w] - wy produce

the signal current
ig =-%es YP1Py; cos (w) - w2t (2)

where P; and P; are the powers of the incident electromagnetic waves, hy
is the incident photon energy, and n is the d.c. quantum efficlency.
Amplification of this signal by IF amplifiers and subsequent signal pro-
cessiag glve an integrated receiver output proportional to <152> and
hence proportional to the product of the incident beam powers. In prac-
tice, one of the beams is produced by a local oscillator (LO) with beam
power P;., and the other beam contains the signal power Pg. For a given
Pg, the aignai is enhanced by increasing Py, until the point where ther-
mal input 1into the photomixer begins to produce excessive noise. Under
ideal circumstances, Ppg >> Pg, and the system noise consists mainly of

quantum mechanical or shot noise with a contribution due to thermal



noise generated within the photomixer and within the IF amplifiers., For
a reversed bias photovoltaic photomixer, the noise equivalent power per

unit frequency interval (NEP) is:%

(T, + T'1f) '
NEP = ¥ D1+ o2k B IF7 o by 4 ()2
n el fe
hv
= 3

U (3)
where k = Boltzman's constant, T, = Pphotomixer temperature, T'y;p =
effective input noise temperature of the IF amplifiers, Gp = reverse

shunt conductance of the photodiode, I, = LO induced photocurrent, e =
elementary charge, n = d.c. quantum efficlency, n' = heterodyne quantum
efficiency, and f, = 3 dB cutoff frequency of the photodiode. The first
term in Eq. (3) represents the shot noise contribution while the second
term accounts for thermal noise.

Contributions from the signal power and from the noise power appear
at the output of the amplifier; this signal is subsequently rectified,
averaged, and amplified to give a d.c. output linearly proportional to
the signal power. The post detection signal to noise ratio accounts for

this signal averaging, and is given by>

P
SNde = TS—_’_EPN— vB1+l (4)

where B = IF bandwidth, t = signal integration time, Pg = signal power,

and Py = noise power with



Note that the SNde becomes independent of the signal power when

Pg >> Py.

SYSTEM DESIGN AND CALIBRATION

Figure 1 shows the optical layout of the two-receiver system. The
output of a pulsed CO, laser produces the scattered signal. Since it
will be necessary to utilize small forward scattering angles,l>3 a hot
cell filled with CO; will be used to protect the detectors from stray
radiation at the scattering 1laser frequency.6 The 1local oscillator
beams are prepared from the attenuated fundamental mode outputs of small
waveguide lasers operating at frequencies appropriately shifted from the
scattering laser frequency.! Two percent beam splitters are used to
colinearly combine the LO and signal beams, while the focal lengths of
the ZnSe objective lenses are carefully chosen to give an optimum spot
size to detector dimension relationship.” Three different HgCdTe photo-
diodes were utilized in this study: a 125-um—diam detector from Santa
Barbara Research Center (SBRC) and two 100-pm-diam detectors from
Societe-Anonyme de Telecommunications (SAIC). Each detector was
equipped wita a Dewar capable of maintaining an operating temperature
of around 77 K. In the optical train illustrated in Fig. 1, a 50-50
beamsplitter divides the incoming light so that the two detectors share
the same signal beam; this would be appropriate for the case where the
signal power was large enough to saturate the SNde. For smaller signal
powers, an additional hot cell could be added.

Figure 2 shows the calibration setup. The chopper wheel is covered

with an absorbing layer of high emissivity material and 1s maintained at
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Fig. 1. Optical layout of the two-receiver system.
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room temperature, A variable temperature blackbody source produces the
signal power. An additional ZnSe lens forms a reverse projection of the
LO beam which fits entirely within the aperture of the blackbody
source.? Amplification 1is achieved with dual Miteq AM-3A~00110 ampli-
fiers equipped with an attenuator between the amplifier stages to pre-—
vent saturation of the second amplification stage. Each amplifier has
33 dB of gain, a noise figure of 1.3 and a 1-GHz bandwidth. An RF diode
rectifies the amplified signal and this voltage 15 measured with a digi-
tal voltmeter. The a.c. component of the rectified signal is analyzed
by a lock-in amplifier which is referenced by the chopper.

Figure 3 1llustrates the signal at the input of the lock-in ampli-
fier. The rectified IF signal is modulated beneath an approximately
square wave envelope oscillating between V; and V, at the chopping fre—

quency. These voltages are given by

V] = C[PgBA + Py (2B) A]

Vo = C[PNBA + PB (2B) A] (6)

where A = amplification, Pp = blackbody power signal per unit frequency
interval from the chopper wheel, Pgp = blackbody power signal per unit
frequency interval from the elevated temperature source, C = constant,
and B = IF amplifier bandwidth. Note that the heterodyne signal is
generated over a double-side band whereas the noise is generated within
a single bandwidth only [see Eq. (5)]. Solving for Py in terms of V1
and v2 and then recasting in terms of the measured voltages V,. and V4.,

we obtain
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Fig. 3. Representation of the signal voltages at the input of the
lock-in amplifier.

NEP = 2 Vgo/a@ Ve --;- (Pg - PR) - 2Py (7)

where a accounts for the fact that the lock-in amplifier measures only
the fundamental component of the modulating envelope; our chopper wheel

aperture and LO beam shape gave a = 2,26, The blackbody signals are

calculated according to®

hv
P = :HU7ET_:_I (8)

Under broadband conditions, the observed voltage levels consisted
of an a.c. component of around 0.5 mv and a d.c. component of about 10
to 20 mv; these voltages were conveniently monitored on an oscilloscope

placed across the RF diode as the system alignment and LO power were



adjusted for optimum receiver performance. The system noise levels and

quantum efficiencies were easily optimized to the values 1indicated in

Table 1.
Table 1., Optimum performance for the
three photomixers investigated
Detector NEP Heterodyne Quantum Efficiency
SBRC 5.0 x 10720 38%
SATCI 2.7 x 10720 70%
SATC2 4,7 x 10720 40%

It should be noted that this method measures the integrated sensi-
tivit:r of the entire receiver system. An optical layout which would
allow the field of view of the receiver to be filled with a blackbody
source upon demand will result in a system with the capability to be
accurately calibrated at regular intervals. This capability will be
important for the above mentioned alpha particle experiment since the
neutron flux may degrade the tramsmission of the optical elements and
since vacuum vessel excursions may perturb the system alignment,
By using a spectrum analyzer as a tunable filter, the frequency response
of the system could be determined. Figure 4 shows the NEP vs IF fre-
quency for the SBRC and the SATCl photomixers when the bandpass of the
spectrum analyzer was set to 3 MHz., The lowest frequency data were
fairly close to the centerburst of the spectrum analyzer while the

structure in the SATC data was probably due to a VSWR resonance.
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Fig. 4. System NEP vs IF frequency.

The linearity of the receiver to changes in signal power is illus-
trated in Fig. 5. These data represent the change in system response as
the temperature of the blackbody was changed between 45°C and 254°C.

The signal power levels were calculated according to Eq. (8).

CONCLUSIONS
A low noise, large bandwidth two channel heterodyne receiver has
been developed with sensitivity more than adequate for a proposed CO,
laser based Thomson scattering alpha particle diagnostic. An absolute

broadband calibration procedure has been designed which references the
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Fig. 5. System linearity as a function of changes in signal power.

system noise to the output of a blackbody standard. This calibration
procedure can be easily integrated into the alpha particle experiment so

that system sensitivity checks can routinely be made.
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