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DESIGN AND CALIBRATION OF A TWO-CHANNEL LOW-NOI5E 
HETERODYNE RECEIVER FOR USE IN A C02 LASER THOMSON SCATTERING 

ALPHA PARTICLE DIAGNOSTIC 

C. A. Bennett,* R. K. Richards, and D. P. Hutchinson 

ABSTRACT 

A dual channel low noise heterodyne receiver has been constructed 

as part of a development effort to build a carbon dioxide laser based 

Thomson scattering alpha particle diagnostic for a burning plasma 

experiment. The receiver employs two wide bandwidth (>1 GHz) HgCdTe 

photovoltaic mixers followed by low noise IF amplifiers. A noise 

equivalent power of less than 3.0 * 10~20 W/Hz has been demonstrated. 

Design details and calibration methods are described. 

INTRODUCTION 

It has been established that heterodyne spectroscopy of Doppler 

shifted Thomson scattered CO2 laser radiation can provide a promising 

method for determining the kinetics of fusion produced alpha particles.1"3 

A crucial component of such a diagnostic is the heterodyne receiver; 

this system must exhibit low internal noise along with a detection band-

width large enough to ensure an adequate post detection signal to noise 

ratio. In what follows, we describe a receiver system utilizing a 

HgCdTe photovoltaic photomixer with noise and bandwidth capabilities 

necessary to provide data for alpha particle densities equal to or 

greater than 1011 cm"3.3 We also describe a method for producing an 

absolute broadband sensitivity calibration by referencing the output 

of the receiver to a blackbody standard; this will provide a real time 
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check for photomixer sensitivity changes, system alignment drift, and 

neutron damage to the optical train. 

HETERODYNE DETECTION 

The heterodyne signal results from intensity fluctuations as two 

electromagnetic waves of different frequencies interfere at the surface 

of a linear power detector. Consider two identically polarized plane 

electromagnetic waves incident normally on a photomixer, giving a total 

electric field of 

E t = Eji co8 u)i t + E2 cos W2t (1) 

Power fluctuations at the intermediate frequency (IF) wi - C02 produce 

the signal current 

is = I?5- S V ^ cos (o)i - o)2)t (2) 

where Pj and P2 are the powers of the incident electromagnetic waves, hv 

is the incident photon energy, and tj is the d.c. quantum efficiency. 

Amplification of this signal by IF amplifiers and subsequent signal pro-

cessing give an integrated receiver output proportional to <ig
2> and 

hence proportional to the product of the incident beam powers. In prac-

tice, one of the beams is produced by a local oscillator (LO) with beam 

power P^q, and the other beam contains the signal power Ps. For a given 

Ps, the signal is enhanced by increasing PLQ until the point where ther-

mal input into the photomixer begins to produce excessive noise. Under 

ideal circumstances, P^q » Pg, and the system noise consists mainly of 

quantum mechanical or shot noise with a contribution due to thermal 
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noise generated within the photomixer and within the IF amplifiers. For 

a reversed bias photovoltaic photomixer, the noise equivalent power per 

unit frequency interval (NEP) is:1* 

where k = Boltzman's constant, Tm = photomixer temperature, T'IF = 

effective input noise temperature of the IF amplifiers, Gjj = reverse 

shunt conductance of the photodiode, I0 = LO induced photocurrent, e = 

elementary charge, ri • d.c. quantum efficiency, r)1 ** heterodyne quantum 

efficiency, and fc = 3 dB cutoff frequency of the photodiode. The first 

term in Eq. (3) represents the shot noise contribution while the second 

term accounts for thermal noise. 

Contributions from the signal power and from the noise power appear 

at the output of the amplifier; this signal is subsequently rectified, 

averaged, and amplified to give a d.c. output linearly proportional to 

the signal power. The post detection signal to noise ratio accounts for 

this signal averaging, and is given by5 

where B = IF bandwidth, x = signal integration time, Ps = signal power, 

and Pfj = noise power with 

hv (3) 

SNRpd " P lS
 Pm 

(4) 

PM = (NEP)B (5) 
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Note that the SNRp^ becomes independent of the signal power when 

Ps » PN. 

SYSTEM DESIGN AND CALIBRATION 

Figure 1 shows the optical layout of the two-receiver system. The 

output of a pulsed CO2 laser produces the scattered signal. Since it 

will be necessary to utilize small forward scattering angles,1'3 a hot 

cell filled with CO2 will be used to protect the detectors from stray 

radiation at the scattering laser frequency.6 The local oscillator 

beams are prepared from the attenuated fundamental mode outputs of small 

waveguide lasers operating at frequencies appropriately shifted from the 

scattering laser frequency.1 Two percent beam splitters are used to 

colinearly combine the LO and signal beams, while the focal lengths of 

the ZnSe objective lenses are carefully chosen to give an optimum spot 

size to detector dimension relationship.7 Three different HgCdTe photo-

diodes were utilized in this study: a 125-pm-diam detector from Santa 

Barbara Research Center (SBRC) and two 100-pjn-diam detectors from 

Societe-Anonyme de Telecommunications (SATC). Each detector was 

equipped with a Dewar capable of maintaining an operating temperature 

of around 77 K. In the optical train illustrated in Fig. 1, a 50-50 

beamsplitter divides the incoming light so that the two detectors share 

the same signal beam; this would be appropriate for the case where the 

signal power was large enough to saturate the SNRp<j. For smaller signal 

powers, an additional hot cell could be added. 

Figure 2 shows the calibration setup. The chopper wheel is covered 

with an absorbing layer of high emissivity material and is maintained at 
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room temperature. A variable temperature blackbody source produces the 

signal power. An additional ZnSe lens forms a reverse projection of the 

LO beam which fits entirely within the aperture of the blackbody 

source.0 Amplification is achieved with dual Miteq AM-3A-00110 ampli-

fiers equipped with an attenuator between the amplifier stages to pre-

vent saturation of the second amplification stage. Each amplifier has 

33 dB of gain, a noise figure of 1.3 and a 1-GHz bandwidth. An RF diode 

rectifies the amplified signal and this voltage is measured with a digi-

tal voltmeter. The a.c. component of the rectified signal is analyzed 

by a lock-in amplifier which is referenced by the chopper. 

Figure 3 illustrates the signal at the input of the lock-in ampli-

fier. The rectified IF signal is modulated beneath an approximately 

square wave envelope oscillating between V^ and V2 at the chopping fre-

quency. These voltages are given by 

Vi - C[PnBA + PR (2B) A] 

V2 - C[PNBA + PB (2B) A] (6) 

where A = amplification, PR = blackbody power signal per unit frequency 

interval from the chopper wheel, PB = blackbody power signal per unit 

frequency interval from the elevated temperature source, C = constant, 

and B = IF amplifier bandwidth. Note that the heterodyne signal is 

generated over a double-side band whereas the noise is generated within 

a single bandwidth only [see Eq. (5)]. Solving for PN in terms of V 

and V2 and then recasting in terms of the measured voltages Vac and V^g, 

we obtain 
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Fig. 3. Representation of the signal voltages at the input of the 
lock-in amplifier. 

NEP = 2 Vdc/a Vac - I (PB - PR) - 2PR (7) 

where o accounts for the fact that the lock-in amplifier measures only 

the fundamental component of the modulating envelope; our chopper wheel 

aperture and LO beam shape gave a = 2.26. The blackbody signals are 

calculated according to8 

hv 
,hv/kT _ ! (8) 

Under broadband conditions, the observed voltage levels consisted 

of an a.c. component of around 0.5 mv and a d.c. component of about 10 

to 20 mv; these voltages were conveniently monitored on an oscilloscope 

placed across the RF diode as the system alignment and LO power were 
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adjusted for optimum receiver performance. The system noise levels and 

quantum efficiencies were easily optimized to the values indicated in 

Table 1. 

Table 1. Optimum performance for the 
three photomixers investigated 

Detector NEP Heterodyne Quantum Efficiency 

SBRC 5.0 x 10"20 38% 
SATC1 2.7 x 10~2° 70% 
SATC2 4.7 x 10-20 40% 

It should be noted that this method measures the integrated sensi-

tivity' of the entire receiver system. An optical layout which would 

allow the field of view of the receiver to be filled with a blackbody 

source upon demand will result in a system with the capability to be 

accurately calibrated at regular intervals. This capability will be 

important for the above mentioned alpha particle experiment since the 

neutron flux may degrade the transmission of the optical elements and 

since vacuum vessel excursions may perturb the system alignment. 

By using a spectrum analyzer as a tunable filter, the frequency response 

of the system could be determined. Figure 4 shows the NEP vs IF fre-

quency for the SBRC and the SATC1 photomixers when the bandpass of the 

spectrum analyzer was set to 3 MHz. The lowest frequency data were 

fairly close to the centerburst of the spectrum analyzer while the 

structure in the SATC data was probably due to a VSWR resonance. 
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Fig. 4. System NEP vs IF frequency. 

The linearity of the receiver to changes in signal power is illus-

trated in Fig. 5. These data represent the change in system response as 

the temperature of the blackbody was changed between 45°C and 254°C. 

The signal power levels were calculated according to Eq. (8). 

CONCLUSIONS 

A low noise, large bandwidth two channel heterodyne receiver has 

been developed with sensitivity more than adequate for a proposed CO2 

laser based Thomson scattering alpha particle diagnostic. An absolute 

broadband calibration procedure has been designed which references the 
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Fig. 5. System linearity as a function of changes in signal power. 

system noise to the output of a blackbody standard. This calibration 

procedure can be easily integrated into the alpha particle experiment so 

that system sensitivity checks can routinely be made. 
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