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Introductory Overview*#

Problems of technological Interest can verv cften be described bw
partial differential equations (PDEs) with one dependent and two indepen-
dent variables (call them ¢, z, and t, respectivelv), Table 1 shows a
few such nonlinear equations and some of the contexts in which they

arise.

Table 1. Some typical norlinear PDEs and some of the contexts
in whick they arise.

c. = (c) Plasma physics; groundwater hydrology; gas flow in
t 2z . .
porous media; current distribution in type 11
superconductors
cc, =c, . Thermal expulsion of fluid from a long, slender,
heated pipe; heat conduction in metals at crvogenic
temperatures
1/3 .
¢ = (cz )z Beat transport in superfluid He-1I

]
c = % szJg cidz Motion of a shock-loaded elastic membrane
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Many such PDEs (including all of those in Table 1) are invariant to

one-parameter families of one-parameter affine groups of the form

c' = ¢
t' = \fe 0<\< « (1)
z' = \z

where \ is the group parameter that labels the individual affine trans-
formations and o and £ are parameters that label grcups of the family.

The parameters 2 and R are connected by a linear relation
Ma+ NR =1 (2)

where M, N, and L are numbers determined by the structure of the PDE.
Because of the relation (2), only one of the two parameters a and & may

be chosen freelv.

Similarity solutions are solutions of the PDE that are invariant to

lv ~ 'y hich = nd = .
ore group of the family sav, that for which o o an R Bo Such
solutions most generally have the form

Q
R (3)

x5 /8
¢ o/ Oy(
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where y 1s a function of the single variable x = z/tl/ °.  When sub-

stituted into the PDE, (3) yields an ordinarv differential equation
(ODEY for the function of one variable, y(x). 1 call this ODE the

principal ODE.

The great utility cof similarity solutions is that they may be
calculated by solving an ODE rather than a PDE and are thus much more
easily accessible than other solutions. The form of the principal ODE
depends, of course, on the form of the PDE, but it can be proved guite
generally that the principal ODE 1is itself invariant to the one-

parameter affine group



0 <u< « (4)

I call this group the associated group.

If the PDE 1is of the second order, as is often the case, so, too,
is the principal ODE. According to a theorem cf Lie, 1f we use an
~L/M . . . -L/M+1

invariant u = yx and a first differential dirvariant v = yx
(v = dy/dx) of the associated group as new independent and dependent
variables, we reduce the second~order principal ODE in y and x to a
first-order ODE in v and u. I call this first-order ODE the associated
ODE. So the computational task for problems of this kind reduces to the

solution of a first-order ODE.

Sometimes the principal ODE is soluble in terms of simple
functions. When it 1is not, the associated first-order ODE can be
studied graphically by means of its direction field. Two substantial
benefits arise from such a study. First, the singular points sometimes
provide the asvmptotic behavior of similaritv sclutions without exten-
sive calculation. Second, when the sclution v(x) of the principal ODE
is determined by two-point boundarv conditions, study of the direction
field in the (u,v)-plane mav enable us to determine both the stable

direction of numerical integration and the missing boundary condition.

Because of the invariance of the principal ODE to the associated
group, the dependence on the boundary and initial conditions of certain
special values of the function y(x), e.g., v(0), y(=), y(0), J%m y dx,
etc., may be predicted a priori without solving the principal ODE.

The nonlinear PDE of heat transport in superfluid He-I1 (Table 1,

line 3) is used as an illustration of these ideas in this review.



The Associated Group

Invariance of any differential equation to a grour of transforma-
tions means that the image of a solution 1s also a sclution. A sclution
of the PDE, ¢ = g(z,t), can be viewed as a surface ir three-dimensional
(c,z,t)~space. Each point (c,z,t) of the surface transforms into an
image (c',z',t"') under the transformation of a group (1) (\ varies, n
and B are fixed). The surface c = g(z,t) then trarsforms into an image
surface ¢’ = g'(z',t'). Invariance of the PDE to thte groups (1) means
that if we substitute from (1) for the unprimed variables in the PDE we
recover the same PDE in the primed variables. Thus the image surface

¢' = g'(2',t") is also a solution of the PDE.

If a solution 1s its own image, 1i.,e., 1f it is invariant to trans-
formation bv a group of the family, then g' and ¢ are'the same function.
Thus c¢' = g(z',t') or, from (1), XOOC = g(\z,\:ot). Now since
c = g(z,t), we have Xcog(z,t) = g(\z,\got). If we differentiate this
last equation with respect to \ 2nd then set A= 1, we get the first-order

linear PDE Qog = zgz + Botgt, the most general solution of which is (3).

If we transform (3) bv the group (1) belonging tc the values oy and
Bo of a and B we recover (3) again. What happers if we transform it by
a group for which a # o and 3 # BO? We obtain another solution

c'(z',t') of the PDE related to that of (3) as follows:

c'(z',t") = ﬁlc(z,t) = \ac(z'/x,t'/\llg) (5a)

8o g8y /8 8 »
\(0Fo-%0%) /F0  1yFolBo  (((B-30)/Bo o\ iy 1/ B0y gy

where the passage from (5a) to (5b) has been achieved by substituting

from (3) for ¢ in the last term of (5a). Now because Moo + NBO = 1 and

Mo + N8 =1, it follows that aB - o 8 = (L/M)(B8.-8). If we introduce
(B-—Bo)/Bo °© °©

=X , (5b) becomes

% /Bo -L/M
u

c'(z',t") = (t") y{ux") (6)



The meaning of (6) is that 1f the function v(x) makes ¢ given by (3) a
-1/M

solution of the PDE, then its transform u / y(ux) uveed in place of it

will also make c given by (3) a solution of the PDE. Or, more succinct-

ly, if y(x) 1s a solution of the principal ODE, so is its transform

H—L/My(ux).

The familv of transforms y—L/MyQIX), 0 < g < =, of y(x) is the
same as the family of images of v(x) under the associated group (4).
Now v'(x') = uL/My(x) = pL/My(x'/u), which means that the imape of y(x)
under the transformation (4) with parameter yu is the transform of y(x)
with the parameter 1/u. Sc there is a one-to-one correspondence between
the images under (4) and the transforms u-L/MyQJx). But this means that
if y(x) is a solution of the principal GDE, so is arv image of it under

the associated group (4). Therefore, the principal ODE itself must be

invariant to the associated group (4).

Illustrative Example

At very low temperatures ({>2.17 K), helium has a second liquid
phase (called He~II or the superfluid phase) with some unusual prop-
erties. The one that interests us here is this: when the heat flux is
large (20.1 W/cm?), it is proportional to the cube root of the tempera-
ture gradient, rather than to the temperature gradiert, as in Fourier's
law. A heat balance then leads to the nonlinear PDEI ct = (ci/B)Z rather
than the ordinary diffusion equation. This PDE is invariant to the
family of affine groups (1) with M =2, N = -3, and L = -4, as the

reader can easily verify,

I1f we substitute (3) into the PDE, we find the following principal
ODE for y(x):

d d d _
Ba(ﬁ) +xa§(—uy-—0 (7

”

which is invariant to the associated group y' =pu “v, x' = pyx, as

expected. If we introduce the invariant u = xyl/2 and the first differ-~



.1/3
ential invariant v = xy / into (7), it becomes the first-order associ-

ated ODE
3 2
dv _ 2u(8v - v~ +au’) (8)
du 2 3

2Bu” + 8v

Different choices 00’80 of o ard R correspond to different phvsical
problems. For example, o_= O, Bo = 4/3 gives similarity solutions of
3/4

the form ¢ = y(z/t }. Such similarity solutions can be used to solve
the PDE under the boundary and initial conditions (BIC) c(0,t) = c,
t >0; c(z,0) =0, z >0; c(w=,t) =0, t > 0. When written in terms of
y, these BIC become y(0) = . y(<) = 0. The physical interpretation of
these BIC 1is a half-space initially at zero temperature whose front face

is suddenly clamped at temperature <, at time t = 0.

tllzy(z/tllz), which can be used with

When o = 1 and38O =2, ¢ =
the BIC ¢ (0,t) = -g7, t > 0; ¢c(z2,0) =0, z > 0; 2(=,t) =0, t >0 (or
y(0) = -q7, y(«) = 0). The physical interpretation of these BIC 1is a
half-space initially at =zero temperature, the heat flux through the
front face of which 1is suddenly clamped at the value q at time t = O.
t—3/2 3/2), which can be used with

When a = -1 and 8 = 2/3, ¢ = viz/t

o
the BIC.I. cdz =0, t >0; c(2,0) =0, z > 0: c(2o,t) = 0, t >0 (o1
Jrapy dx = Q, y(=») = 0). The physical interpretation of these BIC is a
full space 1initially at =zero temperature subjected to a sudden heat

pulse Q per unit arez in the plane z = 0.

In the clamped temperature problem (ao = 0, 80 = 4/3) and in the
pulsed source problem (no = -1, 80 = 2/3), the principal ODF is directly
integrable in terms of simple functions, and analytic solutions to these
problems are known. More interesting from the point of view of this
review is the clamped flux problem (oo =1, 80 = 2). For it, no simple
analytic solution to (7) 1is known, so we must solve (7) numerically,

using the two-point boundary conditions y(0) = —q3and v(x) = 0,



The simplest method of solving two-point boundarv value problems is
the so-called shooting method, in which we guess the missing boundarv
condition at one point, iIntegrate across the interval to the second
point, check to see how well the boundary condition at the second point
is fulfilled, correct our guess of the missing boundary condition at the
first point, and so proceed until sufficient accuracy is obtained. 1In
the case at hand, we would guess v(0) and together with y(0) = -q3 we
would integrate to large x, testing to see 1f vy - 0 as x becomes very
large. Numerical experience shows that if we guess y(0) too large, v -«
as X » =, whereas 1f we guess y(0) too small, y - -~ as X - ». This
makes it difficult to decide 1if a2 given value of v(0) 1s the correct
value, for as we try to advance numericallv along a given integral
curve, roundoff and truncation errors will throw us off to one side or
the other, and ultimately y will approach either +« or ~«. In spite of
this, the forward shooting method can be made to work, but it is

extremely time-~consuming and laborious to achieve high accuracy with 1it.

Direction Field of the Associated ODE

We shall find a way out of this difficulty when we study the
direction field of the assoclated ODE, Eq. (8). We shall need only the
fourth quadrart of it because we expect v > 0 and ¥y < 0 for the solution
we are looking for. Since x > 0, this means u = xyl/z > 0 and

= x§1/3 < 0., Figure 1 shows thié direction field when a = 1 and
B = 2. 1Its general features can be understood by first considering the
curves C1 and C,, or which the slope dv/du is 0 and «~, respectively.

2
(The curves C, and C, are described by the respective equations

u2 = v3 - 2v anz 2u2 + ;3 = 0, obtained by equating to zero the numera-
tor and the denominator on the right-hand side of Eq. (8).) The special
significance of curves C1 and C2, as well as the curve u = 0, is that
they divide the direction field into regions in each of which the slope
dv/du has one sign only. The intersections of the curves C,» C2, and
u=0 are the singular points of the ODE (8), aund they occur at the

origin 0 and the point P: (2/33/4, —2/\r§).



The solution of (7) that we seek must have finite y and y at x = 0,
so that the curve in the (u,v)-plane that correspends to it must pass
through the origin of the (u,v)-plane. Of the farilv of curves that do
s0, some eventuallv intersect Cl’ others eventually intersect CZ’ and
one, the separatrix S between these two sub~families, passes through the

singular point P. It 1is the separatrix S that we wart, for, as we shall

see in a moment, as we move along S from 0 to P, x =+ o, In the

neighborhood of P, where x is large and changing rapidly, u is nearly
4

constant at the value wu,. Thus xy1/2 ~ up = ?/33/ or y ~,u§/x2

=4 1E;/9x2 for x >>1. This behavior 1s sufficient to satisfy the
boundary condition yf{w) = 0, so the separatrix £ provides us with a
solution satisfying the BIC., As a by-product of this analyvsis we obtain

the asvmptotic behavior of the solution y(x) without extensive calcula-

tion.

{It remains to be seen that as we approach P along S from 0, x - =,

We can obtain the slope m of the separatrix at P by "application of

1'Hospital's rule: m = —(31/4/2)(1 + V17/3) = -1.562422, From the
definition u = xyl/2 we obtain by differentiation dx/x =

2u du/(2u2 + v3). The denominator of this last expression vanishes at
F; along S in the vicinity of P, 2u2 + v3 can be written to first order
o]

in u - g as (4uP + 3va)(u - uP). So near P on s,
dx/x = =2 du/(V¥V17 - D(u - up =2/(V¥17 - 1)

), which means x ~f(uP - u)
and so must become infinite as v - up from below.)

It is now easy tu see why forward integration in x 1s unstable, for
it corresponds to forward Iintegration along the separatrix from O to P.
Since the integral curves of (8) separate at the saddle singularity P, a
small error (such as a roundoff or finite-difference truncation error)
will throw us off the separatrix and we will eventually diverge to one
side or the other. On the other hand, if we integrate numerically from
P to 0, the 1integration will be stable because the integral curves
converge. It 1is easy to get starting values for this integration bv
stepping slightly away from the singularity P using the slope m:
u=u, - €, v=v_ - me, The rest of the separatrix can then be found

P P
by a single, stable, backward integration from P to O.



The Separatrix and the Missing Boundarv (Ccndition

Near the origin of the <(u,v)-plane (u,!vi << 1), the integral
curves shown in Fig. 1 behave linearly. A quick wawr to see this is to
note that near the origin at a fixed value of u, !vc > > Ivsl >> |vC | .

2 1

Using the equations for C, and C, given in the previSus section, we find

that this is equivalentlto jv]m << u << ivl on &, Then, to leading
order (8) becomes simply dv/du = v/u, for which the general solution is
u = ~Av, Now if we substitute into this last equation the definitions
of u and v, we get y1/2(0) = -A&l/B(O) = Ag (since the origin in the
(u,v)-plane corresponds to x = 0). This 1s the missing boundary

condition at the origin x = 0!

Numerical integration of (9) from P to O gives A = 0.912582. With
this value of A it is possible to iIntegrate (7) forward. Even though
the forward direction of integration is unstable, it turns out that the
integration behaves sufficiently well that we can reach values of x for
which y is very close to its asymptotic limit é‘VE?sz. Figure 2 shows

v(x) determined in this wav for the case in which ¢ = 1.

To find y(x) for other values of g, it is not necessary to repeat
the numerical integrations. TIncstead, we merely transform the solution
of Fig. 2 with the transformations of the associated group. The image
v'(x"), where y' = u—zy, x' = ux, is also a solution of the principal
ODE (8) and furthermore .atisfies the BIC ¥'(0) = u-3§(0) = -pﬁB and
y'(2) = u-zy(m) = 0. So if we choose pu = q-l, the image y'(x') of the
solution y(x) shown in Fig. 2 corresponds to the value of q of the flux.

Thus all the solutions are transforms of one another.

This last fact can be used to formulate a methed of integrating (7)
backward from large x to x = 0, i,e., iIn thc stable direction. We
proceed by (i) choosing a point (u,v) on S close te P, (1i) guessing a
value of x, say X1 (11i1i) calculating y(xl) and i(xl) from the chosen
values of u and v, and (iv) using them as starting values for a backward
integration from X, to 0. This procedure works for the folloging
reason. Any image point of X5 Yoo &1, say x' = HX) s y' = u_“yl,

y' = u-3§, has the same values of v and v as the point xl, yl, yl



itself, because u and v are invariants of the asscciated group. Thus
any value of x can be made to correspond to azv u and v on the
separatrix. In general, the backward integraticr will not give the
curve for which 9(0) has some specified value. But once th2 curve v(x)
has been calculated, it can be scaled with the assoclated group to a

curve with any desired y(0).

Scaling With the Associated Grour

Since all the curves y(x) corresponding to different values of ¢
are images of one another under the associated grouvas (4), all hase the
2 .1/3
same value A = 0.912582 of —yl/ (0)Y/y /

invariant to the transformations of (4). (Note that v'(0) = u-zy(O) and

(C) becavse this quantity 1is

v'(0) = u”3§(0) because the point x = 0 transferms into the point
22

x' = 0.) Thus, v(0) = A2§2/3(0) = A"q", from which 1t follows that
c(0,t) = A2q2t1/L.

on the front face in the clamped flux problem on the time and on the

This formula gives the dependence of the temperature

clamped flux, which are the onlv two parameters in the problem on which
it can depend. To obtain this formula we only reed to know of the
existence of the associated group. With that infermation alone we can
obtain a formula for c¢(0,t) correct up to a sinpgle undetermined comn-
stant. To find the value of the constant we must perform further

calculations, in this case the numerical integraticn of the associated

ODE.

A similar result can be obtained in the clamped temperzture case.
Suppose we ask what 1s the the dependence of the flux q through the
front face on the time t and the clamped temperature . Now
c = y(z/t3/4), v(0) = c(0,t) = o and q = »ci/B(C,t) = ~t-1/4§1/3(0).
Again all the curves y(x) corresponding to different values of ¢ are
images of one another, and again the ratio —yI/Q{O)/ﬁl/B(O) = B is a
group Invariant. (It 1s dimportant to realize that {ts value B is
different in the clamped temperature problem from 1ts value A in the
clamped flux problem because a and 80 are different in the two problems

and therefore so are the forms of the ODEs (7) and (8).) Thus

q= t'l/aci/Z/B.



Concluding Remarks

The method outlired above does not depend on the PDE being linear.
On the other hand, it does depend on the PDE being invarfant to a
one-parameter facily of one-parameter affine groups. This is a high
degree of algebraic svmmetry that is found only in the simplest equa-
tions. However, such equations arise in a great variety of technologi-
cal problems, as Table 1 attempts to show. So the method presented here
should be of widespread use; indeed, in my book I expressed the gope
that it would become a practical workhorse for dealing with nonlinear

partial differential equations.
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Fig. 2 The solution y(x) of (7) for which
y(0) =

-1 and y(e) = 0, when a = 1

and g = 2



