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Problems of technological interest can very cften be described by

partial differential equations (PDEs) with one dependent and two indepen-

dent variables (call them c, z, and t, respectively). Table 1 shows a

few such nonlinear equations and some of the contexts in which they

arise.

Table 1. Some typical nonlinear PDEs and some of the contexts
in which they arise.

c = (c ) Plasma physics; groundwater hydrology; gas flow in
porous media; current distribution in type II
superconductors

cc = c

c = (c )

Thermal expulsion of fluid from a long, slender,
heated pipe; heat conduction in metals at cryogenic
temperatures

Heat transport in superfluid He-II

1 CJ 2
TT c /
2 ZZ-'Q

2
c = TT c / c dz Motion of a shock-loaded elastic membrane
tt 2 ZZ-'Q z
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Many puch PDF.s (including all of those in Table 1) are invariant to

one-parameter families of one-parameter affine groups of the form

\Qc

(i)

\z

where \ is the group parameter that labels the individual affine trans-

formations and a and 6 are parameters that label groups of the family.

The parameters a and 8 are connected by a linear relation

Ma + N6 = L (2)

where M, N, and L are numbers determined by the structure of the PDE.

Because of the relation (2), only one of the two parameters a and 8 may

be chosen freely.

Similarity solutions are solutions of the PDE that are invariant to

one group of the family - say, that for which a = a and 8 = 8 - Such

solutions rcost generally have the form

c , t / %

where y is a function of the single variable x = z/t . When sub-

stituted into the PDE, (3) yields an ordinary differential equation

(ODE) for the function of one variable, y(x). I call this ODE the

principal ODE.

The great utility cf similarity solutions is that they may be

calculated by solving an ODE rather than a PDE and are thus much more

easily accessible than other solutions. The form of the principal ODE

depends, of course, on the form of the PDE, but it can be proved quite

generally that the principal ODE is itself invariant to the one-

parameter affine group



L/M
y « \i v

0 < jd < or (A)

X* = (J X

I call this group the associated group.

If the PDE is of the second order, as is often the case, so, too,

is the principal ODE. According to a theorem rf Lie, if we use an
-L/M . -L/M+l

invariant u = yx and a first differential irvariant v = yx

(y = dy/dx) of the associated group as new independent and dependent

variables, we reduce the second-order principal ODE in y and x to a

first-order ODE in v and u. I call this first-order ODE the associated

ODE. So the computational task for problems of this kind reduces to the

solution of a first-order ODE.

Sometimes the principal ODE is soluble in terms of simple

functions. When it is not, the associated first-order ODE can be

studied graphically by means of its direction field. Two substantial

benefits arise from such a study. First, the singular points sometimes

provide the asymptotic behavior of similarity solutions without exten-

sive calculation. Second, when the solution y(x") of the principal ODE

is determined by two-point boundary conditions, study of the direction

field in the (u,v)-plane may enable us to determine both the stable

direction of numerical integration and the missing boundary condition.

Because of the invariance of the principal ODE to the associated

group, the dependence on the boundary and initial conditions of certain

special values of the function y(x), e.g., y(0), y(°°), y(0), / y dx,

etc., may be predicted a priori without solving the principal ODE.

The nonlinear PDE of heat transport in superfluid He-11 (Table 1,

line 3) is used as an illustration of these ideas in this review.



The Associated Group

Invariance of any differential equation to a group of transforma-

tions means that the image of a solution is also a solution. A solution

of the PDE, c •= g(z,t), can be viewed as a surface in three-dimensional

(c,z,t)-space. Each point (c,z,t) of the surface Transforms into an

image (c',z',t') under the transformation of a group (1) (\ varies, a

and 6 are fixed). The surface c = g(z,t) then transforms into an image

surface c' = g'(zf,t'). Invariance of the PDE to the groups (1) means

that if we substitute from (1) for the unprimed variables in the PDE we

recover the same PDE in the primed variables. Thus the image surface

c1 = g'(z'.t') is also a solution of the PDE.

If a solution is its own image, i.e., if it is invariant to trans-

formation by a group of the family, then gf and g are the same function.

Thus c' = g(z',t') or, from (]), \ c = g(\z,^. t) . Now since

c •- g(z,t), we have \ g(z,t) >= g(\z,\ t) . Tf we differentiate this

last equation with respect to \ end then set \= 1, we get the first-order

linear PDE a g = zg + B tg . the most general solution of which is (3).
o z o t

If we transform (3) by the group (1) belonging to the values a and

8 of a and 8 we recover (3) again. What happens if we transform it by

a group for which a 4 a and g 4 8 ? We obtain another solution

c'(z',tf) of the PDE related to that of (3) as follows:

c'(z',t') =\ac(z,t) = \ac(z'/X,t'/\1/B) (5a)

where the passage from (5a) to (5b) has been achieved by substituting

from (3) for c in the last term of (5a). Now because Ma + NB "1- and
o o

Ma + NB = L, it follows that a 6 - a 6 = (L/M)(6r - 5). If we introduce
, (6-Bo)/6o ,... . o o

/.i = \ , (5b) becomes

c'(z\t') = (t')°/VL/My(^') (6)



The meaning of (6) is that if the function v(x) makes c given by (3) a
-L/M

solution of the PDE, then its transform p yf/ix) used in place of it

will also make c given by (3) a solution of the PDE. Or, more succinct-

ly, if y(x) is a solution of the principal ODE, so is its transform
-L/M . ,

U (jx)

-L/M
The family of transforms fj. y(/;x), 0 < u < « , of y(x) is the

same as the family of images of y(x) under the associated group (4).

Now y'(x') •= ,u y(x) = ji y(x'/p), which means that the image of y(x)

under the transformation (4) with parameter fj. is the transform of y(x)

with the parameter Up,. So there is a one-to-one correspondence between
-L/M

the images under (4) and the transforms /u y(/ix) . But this means that

if y(x) is a solution of the principal GDE, so is ary image of it under

the associated group (4). Therefore, the principal ODE itself must be

invariant to the associated group (A).

Illustrative Example

At very low temperatures (>2.17 K) , helium has a second liquid

phase (called He-II or the superfluid phase) with some unusual prop-

erties. The one that interests us here is this: when the heat flux is

large (-S0.1 W/cm2), it is proportional to the cube root of the tempera-

ture gradient, rather than to the temperature gradient, as in Fourier's
1/3

law. A heat balance then leads to the nonlinear PDE c = (c ' ) rather
t z z

than the ordinary diffusion equation. This PDE is invariant to the

family of affine groups (1) with M = ?, N = -3, and L = -4, as the

reader can easily verify.

If we substitute (3) into the PDE, we find the following principal

ODE for y(x):

, 1 / 3
6 ^ ( J I + X J - Q V = O C7)

dx I dx J dx
which is invariant to the associated group y1 = fx "y, x' = px, as

1/2
expected. If we introduce the invariant u = xy and the first differ-



ential invariant v *= xy " into (7), it becomes the first-order associ-

ated ODE

3 ">
dv 2u(i?v - v + au ) ,Q.

d u 26u2 + Sv3

Different choices a ,8 of 0 and 6 correspond to different physical

problems. For example, a •= 0, 8 = 4/3 gives similarity solutions of

the form c = y(z/t ). Such similarity solutions can be used to solve

the PDE under the boundary and initial conditions (BIC) c(O,t) = c ,
o

t > 0; c(z,0) = 0 , z > 0; c(<=°,t) = 0, t > 0. When written in terms of

y, these BIC become y(0) = c , yC"*) •= 0. The physical interpretation of

these BIC is a half-space initially at zero temperature whose front face

is suddenly clamped at temperature c at time t = 0.

When a = 1 and g = 2, c = t v(z/t ), which can be used with
0 - 0

the BIC c (0,t) = -q , t > 0; c(z,0) = 0 , z > 0; c(»,t) = 0 , t > 0 (or
•f

y(0) = -q , y(°0 = 0) . The physical interpretation of these BIC is a

half-space initially at zero temperature, the heat flux through the

front face of which is suddenly clamped at the value q at time t * 0.
-3/2 3/2

When a = -1 and 8 = 2/3, c = t v(z/t ), which can be used with

the BIC J c dz = Q, t > 0; c(z,0) = 0, z > 0; c(±°°,t) = 0, t > 0 (or
y dx = Q, y(°°) = 0). The physical interpretation of these BIC is a

— 00

full space initially at zero temperature subjected to a sudden heat

pulse Q per unit area in the plane z = 0.

In the clamped temperature problem (a = 0, & = 4/3) and in the

pulsed source problem (a = - 1 , 8 = 2/3), the principal ODF is directly

integrable in terms of simple functions, and analytic solutions to these

problems are known. More interesting from the point of view of this

review is the clamped flux problem (a = 1 , 6 = 2 ) . For it, no simple

analytic solution to (7) is known, so we must solve (7) numerically,

using the two-point boundary conditions y(0) = -q and y(») = 0.



The simplest method of solving two-point boundary value problems is

the so-called shooting method, in which we guess the missing boundary

condition at one point, integrate across the interval to the second

point, check to see how well the boundary condition at the second point

is fulfilled, correct our guess of the missing boundary condition at the

first point, and so proceed until sufficient accuracy is obtained. In

the case at hand, we would guess y(0) and together with y(0) = -q we

would integrate to large x, testing to see if y -+ 0 as x becomes very

large. Numerical experience shows that if we guess y(0) too large, y ->°°

as x -" «•, whereas if we guess y(0) too small, y -» -°° as x -• <*>. This

makes it difficult to decide if ?. given value of y(0) is the correct

value, for as we try to advance numerically along a given integral

curve, roundoff and truncation errors will throw us off to one side or

the other, and ultimately y will approach either +<= or -<*>. In spite of

this, the forward shooting method can be made to work, but it is

extremely time-consuming and laborious to achieve high accuracy with it.

Direction Field of the Associated ODE

We shall find a way out of this difficulty when we study the

direction field of the associated ODE, Eq. (8). Ve shall need only the

fourth quadrant of it because we expect y > 0 and y < 0 for the solution
1/2

we are looking for. Since x > 0, this means u = xy > 0 and

v = xy < 0. Figure 1 shows this direction field when a = 1 and

8 = 2 . Its general features can be understood by first considering the

curves C and C , or which the slope dv/du is 0 and », respectively.

(The curves C and C? are described by the respective equations
2 3 2 "3

u = v - 2v and 2u + v = 0 , obtained by equating to zero the numera-

tor and the denominator on the right-hand side of Eq. (8).) The special

significance of curves C and C , as well as the curve u •= 0, is that

they divide the direction field into regions in each of which the slope

dv/du has one sign only. The intersections of the curves Cj , C , and

u = 0 are the singular points of the ODE (8), and they occur at the
3/4 .—

origin 0 and the point P: (2/3 , -2/V7).



The solution of (7) that we seek must have finite y and y at x = 0,

so that the curve in the (u,v)-plane that corresponds to it must pass

through the origin of the (u,v)-plane. Of the family of curves that do

so, some eventually intersect C. , others eventually intersect C-, and

one, the separatrix S between these two sub-families, passes through the

singular point P. It is the separatrix S that we wart, for, as we shall

see in a moment, as we move along S from 0 to P, x -• «. In the

neighborhood of P, where x is large and changing rapidly, u is nearly
I / O 1 / / *?O

constant at the value up. Thus xy -̂  u = 2/3 or y ~ u /x

= 4 VT/9x for x >> 1. This behavior is sufficient to satisfy the

boundary condition y(°°) = 0, so the separatrix ? provides us with a

solution satisfying the BIC. As a by-product of this analysis we obtain

the asvmptotic behavior of the solution y(x) without extensive calcula-

tion .

(It remains to be seen that as we approach P along S from 0, x -» °°.

We can obtain the slope m of the separatrix at P by "application of

l'Hospitai's rule: m « -(31/4/2)(l + VT7/3) - -1.562422. From the

definition u = xy we obtain by differentiation dx/x =
2 3

2u du/(2u + v ). The denominator of this last expression vanishes at
2 3

F; along S in the vicinity of P, 2u + v can be written to first order

in u - IL as (4up + 3vpm)(u - up) . So near P on S,

dx/x = -2 du/( VTT - 1) (u - u p ) , which means x ~ (u^ - u ) ~ 2 / ( ~ I}

and so must become infinite as u - m from below.)

It is now easy to see why forward Integration in x is unstable, for

it corresponds to forward integration along the separatrix from 0 to P.

Since the integral curves of (8) separate at the saddle singularity P, a

small error (such as a roundoff or finite-difference truncation error)

will throw us off the separatrix and we will eventually diverge to one

side or the other. On the other hand, if we integrate numerically from

P to 0, the integration will be stable because the integral curves

converge. It is easy to get starting values for this integration by

stepping slightly away from the singularity P using the slope m:

u = u - e, v = v - me. The rest of the separatrix can then be found

by a single, stable, backward integration from P to 0.



The Separatriy and the Missing Boundary Condition

Near the origin of the (u,v)-plane (u,!v1 << 1), the integral

curves shown in Fig. 1 behave linearly. A quick wav to see this is to

note that near the origin at a fixed value of u, lv_ >> lv_l >> I v_ | .
2 1

Using the equations for C and C given in the previous section, we find

that this is equivalent to |vl << u << Ivl on S. Then, to leading

order (8) becotres simply dv/du = v/u, for which the general solution is

u = -Av. Now if we substitute into this last equation the definitions
1 /2 1/3

of u and v, we get y (0) = -Ay (0) = Aq (since the origin in the

(u.v)-plane corresponds to x = 0). This is the missing boundary

condition at the origin x = 0!

Numerical integration of (9) from P to 0 gives A = 0.912582. With

this value of A it is possible to integrate (7) forward. Even though

the forward direction of integration is unstable, It turns out that the

integration behaves sufficiently well that we can reach values of x for

which y is very close to its asymptotic limit 4 V3/9x . Figure 2 shows

v(x) determined in this way for the case in which c = 1.

To find y(x) for other values of q, it is not necessary to repeat

the numerical integrations. Instead, we merely transform the solution

of Fig. 2 with the transformations of the associated group. The image
_2

y'(x'), where y1 = JU y, x' = /jx, is also a solution of the principal

ODE (8) and furthermore satisfies the BIC y' (0) = M~ >'(0) •= -fT and
-2 -1

y1 (°°) = ̂  y(°°) « 0. So if we choose \x = q , the image y'(x') of the

solution y(x) shown in Fig. 2 corresponds to the value of q of the flux.

Thus all the solutions are transforms of one another.

This last fact can be used to formulate a method of integrating (7)

backward from large x to x = 0, i.e., in the stable direction. We

proceed by (i) choosing a point (u,v) on S close to P, (ii) guessing a

value of x, say x^ , (iii) calculating y(x^ and y(x.) from the chosen

values of u and v, and (iv) using them as starting values for a backward

integration from x. to 0. This procedure works for the following

reason. Any image point of x , y., y., say x' = M*., y1 = \i *"y. ,

y' •= \x y, has the same values of u and v as the point x , y , y



Itself, because u and v are invariants of the assrciated group. Thus

any value of x can be tnade to correspond to ar.y u and v on the

separatrix. In general, the backward integratior will not give th-=

curve for which y(0) has fccrae specified value. But once th? curve y(x)

has been calculated, it can be scaled vlth the associated group to a

curve with any desired y(0).

Scaling With the Associated Group

Since all the curves y(x) corresponding to different values of q

are images of one another under the associated group (4), all haie the

same value A = 0.912582 of -y (0)/y~ (0) because this quantity is

invariant to the transformations of (4). (Note that y1 (0) = [i. y(0) and

y'(0) = \x yCO) because the point x = 0 transforms into the point
? ? l"\ 11

x' = 0.) Thus, y(0) = A y (0) = A q , from which it follows that
2 2 1 /°

c(0,t) = A q t . This formula gives the dependence of the temperature

on the front face in the clamped flux problem on the time and on the

clamped flux, which are the only two parameters in the problem on which

it can depend. To obtain this formula we only r.eed to know of the

existence of the associated group. Vith that information alone we can

obtain a formula for c(0,t) correct up to a single undetermined con-

stant. To find the value of the constant we irast perform further

calculations, in this case the numerical integraticn of the associated

ODE.

A similar result can be obtained in the clamped temperature case.

Suppose we ask what is the the dependence of the flux q through the

front face on the time t and the clamp«d temperature c . Now

c = y(z/t 3 / 4), y(0) = c(0,t) - co, and q = ~c*/3(C,t) = -t" 1 / 4y 1 / 3(0).

Again all the curves y(x) corresponding to different values of c are
1/^ •1/3 °

images of one another, and again the ratio -y ~(0)/y (0) = B is a

group invariant. (It is important to realize that Its value B is

different in the clamped temperature problem froir its value A in the

clamped flux problem because a and 8 are different in the two problems

and therefore so are the forms of the ODEs (7) and (8).) Thus
-1/4 l/2._

q = t c /B.



Concluding Remarks

The method outlined above does not depend on the PDE being linear.

On the other hand, it does depend on the PDE being invariant to a

one-parameter farr.ily of one-parameter affine groups. This is a high

degree of algebraic symmetry that is found only in the simplest equa-

tions. However, such equations arise in a great variety of technologi-

cal problems, as Table 1 attempts to show. So the method presented here

should be of widespread use; indeed, in my hook I expressed the hope

that it would become a practical workhorse for dealing with nonlinear

partial differential equations.
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Fig. 1 A sketch of the direction field
of (8) when a « 1 and 6 - 2.
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Fig. 2 The solution y(x) of (7) for which
y(0) « -1 and y(«>) « 0, when a - 1
and 8 " 2.


