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ABSTRACT

This thesis examines the use of sound to present data. Computer
graphics currently offers a vast array of techniques for communicating
data to analysts. Graphics is limited, however, by the number of
dimensions that can be perceived at one time, by the types of data
that lend themselves to visual representation, and by the necessary
eye focus on the output. Sound offers an enhancement and an
alternative to graphic tools.

Multivariate, logarithmic, and time-varying data provide examples for
aural representation. For each of these three types of data, the
thesis suggests a method of encoding the information into sound and
presents various applications. Data values were mapped to sound
characteristics such as pitch and volume so that information was
presented as sets or sequences of notes. In all cases, the resulting
sounds conveyed information in a manner consistent with prior
knowledge of the data.

Experiments showed that sound does convey information accurately and
that sound can enhance graphic presentations. Subjects were tested on
their ability to distinguish between two sources of test items. In
the first phase of the experiments, subjects discriminated between two
6-dimensional data sets represented in sound. In the second phase of
the experiment, 75 subjects were selected and assigned to one of three
groups. The first group of 25 heard test items, the second group saw
test items, and the third group both heard and saw the test items.
The average percentage correct was 64.5% for the sound-only group, 62%
for the graphics—-only group, and 89% for the sound and graphics group.
In the third phase, additional experiments focused on the mapping
between data values and sound characteristics and on the training
me thods.

As the use of computers spreads, the need for methods of conveying
information from the computer to humans grows. Computer—generated
sound offers an alternative that has not been widely utilized. This
thesis suggests areas of future exploration in both applications and
techniques for aural data representation. The results of the work
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described in this thesis and the many questions to be studied indicate

the broad range of use for sound.

KEYWORDS: Human/computer interface Computer graphics Data
analysis techniques Information presentation Human
factors Interactive systems Sound synthesis Computer
sound '
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INTRODUCTION

With the advent of computers, the ability to perform data calculations
has increased tremendously. Much of the data analysis, however, still
depends on humans to find patterns and extract information. These
analysts are faced with the problems of an ever-increasing number of
numeric results and with the desire to comprehend these results easily
and quickly. A need exists to understand large amounts of data and to

present this computer data to humans in a readily-understood form.

In the past few years, computer graphics has revolutionized the
ability to obtain information from computers. Output far more various
than printed words and numbers is now available. From bar graphs to
three—dimensional color displays, computer graphics involves vision as
an active aid in data interpretation. Plots enhance analysis, a
computer paintbrush expands art, designer plans emerge almost as they
are envisioned, and simulations help explore a range of alternatives.

If visual feedback improves the use of computer calculations, why not
use other senses as well? Our perception of the world around us comes
from hearing. touching, smelling, and tasting, as well as from seeing.
Although experiments have been done with touch [32], most computer
research for output other than graphics has been with sound. Sound

technology already exists for mass reproduction and playback.
Additionally, sound has a well-defined structure that taste, smell,
and touch lack. A vocabulary exists to talk about sounds, and the
relationships among sounds can be <categorized. Sound is a natural

choice for further study of ways to convey computer data.

This thesis explores the use of sound output to examine data from
computers. It includes the problems of information presentation, the
existing methods of sound generation, and the alternatives for using
sound. An experiment shows that listeners can classify data values
encoded into sound. Chapter 1 outlines the current ways of
communicating information from the computer to a human and looks at
the associated problems. Chapters 2 and 3 depart from the discussion
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of presenting information in sound to provide background material.
Techniques for computer-synthesized sound are described in Chapter 2.
Facilities and desired tools are recorded in Chapter 3. Chapter 4
refocuses on information presentation and suggests a variety of ways
to use sound. Chapter 5 presents the results from an experiment in
which subjects used sound output for data discrimination. Chapter 6
summar izes the conclusions and outlines further areas of exploration.

A recording provides examples of several methods of using sound to
present computer-generated information. Appendix A describes the
recording in detail. Just as graphic illustrations help in clarifying
text, the recording 1is most useful in illustrating the material in
Chapters 4 and 5. The reader will benefit by listening to the
recording while reading.
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1: INFORMATION PRESENTATION

Information presentation is important. The more rapidly we can obtain
information, the more quickly we <can question and expand our
knowledge. Techniques for presenting computer-generated information
are particularly interesting. A computer is extremely fast and

provides quantities of data at a rate far too rapid for human
comprehension. However, the computer’s strength in providing
information does not compensate for its weakness in presenting that
information to humans in an easily understandable manner. Tools for
computer data presentation are <crucial for making adequate use of

computer information.

This chapter concentrates on me thods of presenting computer
information. Computer graphics offers a variety of ways to deal with
the flow of information; however, there 1is data which can not be
absorbed by graphics alone. It is appropriate to expand the methods
for computer information presentation. Consider the ways in which
humans process information, the computer output which supports these
skills, the limitations of this information flow, and some

alternatives using sound.

1.1: Human Information Processing

In order to increase the understanding of information presentation, it
is necessary to understand how humans deal with information. In the
work that follows, a few general skills are significant for gaining
information from data, particularly from large sets of data. Four
such skills are the ability to note specific features in the data, the
ability to recognize patterns or groupings in the data, the ability to
assimilate overall structure and properties of the data, and the
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ability to perceive the data in more than one way. This section
elaborates on each of these skills.

The most common means of dealing with large amounts of data is to note
those events which have particular significance or stand out in some
way from the remaining information. A summary or outline of a subject
is often sufficient to point out the important topics. An experiment
in which only the occurrence of a particularly large value s
important may record only a few of the many facts observed. A graph
quickly indicates one or two points that lie far away from the others.
These features (or errors!) of the data often become the focus of
further work.

Many times, however, it is not sufficient to observe only a few facts
regarding the data. The significant information may lie in the
patterns or groupings of the data. Even though an isolated value is
important, the events leading to the noted occurrence are often more
enlightening. For example, restricting experiment output to large
data values might' hide the fact that a particularly low value always
preceded a particularly high value. Data wusually is classified by
noting relationships and similarities which correspond to known
information. This categorization can be helpful in simplifying a
complex set of information.

When nothing is known in advance about the data, even patterns or
groupings are difficult to determine. It is important to be able to
comprehend the entire body of data in some way. All the information
should be considered before structuring the data into patterns or
specific events. A two-dimensional projection of n-dimensional data
may hide a natural division of the data in another plane. Being
mindful of the overall structure of the data may prevent isolated
events or groupings from falsely dominating any conclusions.

Most important is the ability to consider data from a variety of
viewpoints. What 'may appear as ordinary in one context may be quite
significant in another. What may have no meaning from one viewpoint
may take on useful structure from another. For example, a graph of
eight-dimensional data may appear as random points when projected onto
the first two axes but may show distinct separation into sets in a
different projection. Often data plotted linearly appears scattered
but shows definite patterns when plotted logarithmically. Figures 1.1
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and 1.2 illustrate two equally important views of one such data set

when the x-axis is a linear scale and when the x-axis is a logarithmic

1

scale.  Analysis involving several methods of examining data increases

the understanding of the data, its properties and structure.
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Figure 1.1: Linear Axis Figure 1.2: Logarithmic Axis

These human skills for analyzing data should be supported by computer
methods for presenting the data. Many such computer tools do exist.
Current forms of computer output and suggestions for alternatives
should be examined by considering how well they contribute to human
understanding of data information.

1.2: Visual Computer Data Presentation

A computer can be especially powerful in aiding the human ability to
comprehend and manipulate large bodies of information. Given
algorithms for extracting, grouping, and summarizing information, the
computer offers a wide variety of tools for presenting the results.
Currently, this digital output is primarily visual; in particular,
text and graphics are extensively used to communicate from a computer

1. Figures 1.1 and 1.2 were provided by the Applied Technology Group of the
Engineering Research Division at Lawrence Livermore National Laboratory.
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to a human user.?

Text output falls into two main categories: messages and computed
results. Messages may be merely status information or more in-depth
reports of program states. Calculational results may be as few as a
final value or as complex as tables of data. Figures 1.3 and 1.4 are
examples of text information for three sets of four-dimensional data.

Transformed Values

RESULTS OF PRINCIPAL COMPONENT ANALYSIS %1 x2 x3 x4

.7330e+00 ~1.1035e+00 ~4.1251e~02
.0532¢+00 ~1.4068e+00 8.7141e-02
.0971e+00 ~-1.0208¢+00 ~1.7758e~02
.8597e400 ~=1.0040¢+00 ~1.4453¢-01
.7431e400 ~9.06811e~01 ~-1.2553e~-01
.3109e+00 =7.7468e=0! ~7.8384e~02
.1731e+00 ~8.2545e¢-01 ~1.0813e=01
.5193e+00 ~1.0034e400 ~1.0438e¢-01
.5035¢+00 ~1.0220e¢+00 ~7.9740e-02
. 1398400 ~1.3673e+00 ~1.1895¢~01
-1790e+00 ~i.1827e+00 ~8.4183e~02
.3158e+00 -8.8592e-01 -2.517%5¢-01
.9738e+00 ~1.4027e+00 =5.4719e-02
.5952¢+00 -9.5424¢=01 ~7.3019¢-02
-9100e+00 ~1.3104e+00 .68700e~01
. 12810400 =5.9219e~01 ~3.5580e-02
.4059¢+00 ~8.2568e-01 .7831e-01
.7227¢+00 -1.0122¢+00 .8749e=02
.4910e+00 ~1.2580e+00 ~8.3590¢~03
.996899+00 -8.9941e~01 ~1,3218¢-01
.83160+00 ~1.4572¢+00 .4250e-02
.3686e+00 -7.0812e-01 .023%5e-02
.4784¢+00 -5.8774e~01 .8308e-02
.4308e+00 -0.9133¢-01 .5259e-01
.2448¢+00 -8.4787¢-01 .4275¢=01
-0956e+00 ~1.4808e+00 .6882¢~03

ten highest eigenvalues
4,228 0.243 0.078 0.024
corresponding eigenvectors

xt 0.4219  0.8992 -0.97%4
x2 -0.0087  1.0000  1.0000
1.0000 -0.2374¢  0.1275
0.4182 -0.103¢  0.9129

~ddo

g8ks

[

%var.expln= 92.462 5.307 1.710 0.521

IO QO 3

cum.%exp o= 92.462 97.769  99.479 100.000

WOLRNLWWWWLLRWLONWLLLLLLWLWLLLWLL
[
g (-]
NNANANNNOVNPOROARIBNONNBIOINN

Figure 1.3: Analysis Output Figure 1.4: Data Vectors

Notice that although computer text output can provide comprehensive
and complete information, such output provides little aid to the
reader in extracting information. Text is most useful for describing
particular features of data rather than patterns or overall
structures.

Graphical output is an especially effective means of presenting data
[24, 49]. A picture can be visualized at a glance and can contain
more information' in a limited space than text alone. Therefore,
graphics usually offers a faster and broader view of the information.

2. In generaf. all computer output is visual with two notable exceptions.
First, speech and music outputs are rapidly gaining in use. Second, computer
output can take the form of actions controlling peripheral equipment.
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Plots, bar graphs, pseudo-color images, contour maps, and movies are
but a few of the graphic tools in use. Because graphics provides the
major medium for computer information presentation, it is worth

considering some of the methods in more detail.
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Figure 1.5: Three—dimensional Perspective Plot

Plots appear constantly in computer graphics applications. Plots
include an x-y representation of points, a bar graph of several groups
of data, or a three-dimensional perspective of an object. A graphical
plot is a two~- or three-dimensional representation of data in which
the data variable values are mapped to locations on the visual
display. Figure 1.5 presents a graphical view of the raw data
referenced in Figures 1.3 and 1.4. In this instance, variables 2, 3,
and 4 of the four-dimensional data sets are plotted in a
two-dimensional rendering of three-dimensions. Notice that one set is
clearly separated from the other two. Analysis methods reduce
n-dimensional data to fewer components by mathematically determining
linear transformations of the original variables. The transformed
variables are such that the first has maximum variance, the second has
maximum variance subject to being uncorrelated with the first, and so
on [24]. An alternative view of the data shown before in Figure 1.5
results from plotting the transformed data after a principal
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components analysis. In Figure 1.6, the first two principal
components are plotted. Notice again that Set 1 is easily
distinguished from Sets 2 and 3. These are only two examples of
graphical plots; other plots for data representation include

probability plots, logarithmic plots, histograms, and curves.
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Figure 1.6: Two-dimensional Plot

Several especially interesting methods of graphical representation
attempt to present all dimensions of the data to aid the human view of
the gestalt in the subsequent analysis. Two examples are Andrews’
function plots [4] and Chernoff‘s FACES [13]. Both of these
imaginative methods accept multi-dimensional data and present a view
of that data to the human user. Figures 1.7 and 1.8 plot ten samples
from each of the three sets displayed in Figures 1.5 and 1.6. For
each data sample, Andrews plots a curve which is based on a function
whose coefficients are the values of the data sample variables.

(Eq. 1.1)
f,(t) = vl/'V 2 + v,sint + vg,cost

+ v4sin2t + v5c052t +

where -t < ¢t < 7
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Figure 1.7: Andrews’ Functions

Chernoff{ depends on the ability of the human to assimilate the face as
a chunk of information and thus group similar samples. In both of
these figures, one is able to separate the data clearly into the three
known sets.

Image analysis and simulations are other outstanding examples of
computer graphical output. Given an image divided into small cells,
each with an associated data value, image analysis uses grey scaling
or color to emphasize areas (and thus value levels) which might
otherwise be hidden. This is an objective interpretation of numerical
information inherent in the data but the method enhances subtle
changes. Figure 1.93 shows a picture before and after image

3. Figure 1.9 was provided by-the Signal and Image Processing Research Group
of the Engineering Research Division at Lawrence Livermore National Laboratory.
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Figure 1.8: Chernoff’s FACES

enhancement. Adjusting the mean and variance of picture cell values
in each small region of the first picture creates more distinct edges
in the second. Image analysis not only offers a varied perspective of

the data but allows specific occurrences and patterns in the data to
be observed as well as providing an overall view of the data.

Movies or simulations are significant output for time-varying data as
well as a means of providing different views of static data. By
observing the change of information from one state to another, one
better understands the structure of that information. For example,
Figure 1.10 shows nine successive rotations of two sets of data. By
observing more than one view of the data, it can be seen that one set
of data moves diagonally through the other set. Imagine how the view:"
of that three-dimensional data would improve given a constantly
rotating figure. The relative positions of all the data points would
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Figure 1.9: Image Enhancement

become much clearer. An ability to animate the data provides a
powerful analysis tool.

Other graphic techniques for presenting data include color and stereo.
In all cases, color can be used to highlight particular information or
to provide another dimension for discriminating among types of data.
Stereo output is easily generated by creating two images, one shown to
each eye from a viewpoint appropriate to that eye. The resulting
depth perception provides a good representation of three-dimensional
data when no other clues are present.

Graphics, and specifically the power of computer graphics. gets
information to users more quickly than text output alone. Visual
methods aid those skills necessary for extracting, grouping, and

summarizing data information. Many graphical techniques are available
so that various perspectives of the data are offered. Analysts using
the power of computer graphics have the advantage of exploring their
data by many methods.
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Figure 1.10: Rotating Data
1.3: Limitations

Despite the multitude of output from a computer, there is still
information not being presented in a meaningful or useful manner.
The limitations may be technical limitations based on the properties
of graphical output or they may be perceptual limitations based on the
characteristics of vision. Large data bases and multivariate data
bases are particularly difficult to present. Current technical
methods are restricted in the number of dimensions available, limited
by the cost and speed of output, and confined primarily to visual
attention on the output. Perceptually, not all data problems lend
themselves to graphical representation. Understanding the limits of
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current information presentation methods can be helpful in seeking
alternate techniques.

Restrictions on the number of output dimensions available limits the
presentation of multivariate information. . By reducing an
n-dimensional problem to an m-dimensional problem ( m<n ), one may
lose information. Despite the work of Andrews, Chernoff, and others,
n—dimensional output techniques do not include many satisfactory
representations. In complex simulations, with many events occurring
simultaneously, static approaches are not even applicable. Increasing
the bandwidth between computer and human is necessary.

The widespread use of graphics is still costly, particularly for
flexibility in working with large amounts of data.® A display is
updated at most 60 times a second. The resolution and update speed
place an upper limit on the actual number of bits of information which
can be presented graphically (ignoring for the moment the number of
bits of information which can be comprehended). An easy availability
of output media for large amounts of data is needed.

Visual output requires that the observer‘s eyes be on the graphic
output in order to obtain the information being presented. In a
simulation, attention to one event may cause another simultaneous
event to go wunnoticed. The ability to provide more than one form of
sensory input would be helpful.

The perceptual limitations are as significant as the technical
» constraints. Our vision 1is accustomed to a three-dimensional space
that consists of distances related linearly. We have no model for
visualizing an n—-dimensional space or non-Euclidean geometries. Data

4. Despite an impressive array of hardware at ever decreasing costs, a typical
512x512x1 display costs approximately $10,000. Such a display allows 262,144
bits of information, assuming each bit of information is simply in one of two
states (on or off). The number of pieces of data will be greatly reduced if the
display is used for more complex representations of the data. The cost will
increase if color is added to differentiate among data points.
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which does not fit into the constraints imposed by visual familiarity
is difficult to present and comprehend graphically.

1.4: Alternatives Using Sound

Computer—generated sound offers another option for information
presentation. Sound is already a familiar means of obtaining everyday
information (consider an alarm c¢lock, the news, or a well-known
melody). Furthermore, audio output may help overcome some of the
graphical limitations described above [72]. Sound provides both an
enhancement to graphic output and an alternative to data presentation.

Motivation

Technically, sound offers a much different medium than graphics. The
dimensionality of sounds, though not as familiar as x-y axes, consists
of several components (such as pitch, volume, and duration). Sound
equipment is available and relatively inexpensivé.5 The data rate can
be extremely high since thousands of samples a second constitute a
sound. And, unlike visual output, sound can be heard regardless of
the physical orientation of the listener‘s attention.

Perceptually, sound offers a structure that is already familiar (as
smell, taste and touch do not). We have a language for discussing
sounds. It has meaning to say that one sound has higher pitch or
lower volume than another. Because perception of sound is different
than visual perception, sound can offer a different intuitive view of
the information it presents. For example, musical octaves are
familiar to most people and provide a natural expression of
logarithmic variance.

5. For many micro-computers, sound boards are available in the $300-$500 range
and will output frequencies from 50 Hz to 20,000 Hz with volume and waveshape
control.
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Sound output is not without limitations as well. First 1is the
necessity for an environment in which distracting noises can be
minimized. Second, sounds are transient, unlike graphical output
which can be static. Third, the static attribute of graphics also
makes reference points, such as grids or time lines, readily
available.

The advantages and limitations of both sight and sound serve as a
reminder that a variety of tools is desirable for presenting
information. Furthermore, graphics and sound combine naturally and
can be presented simultaneously. The possibility of utilizing sound
with graphics will strengthen the best capabilities of each.

Current Research Efforts

Research has begun to consider the wuse of computer sound for
information presentation. Natural sounds have been recorded and used
successfully for data discrimination [84]. More recently, Mathews
[58]. Yeung [99]. and Wilson [97] have tried encoding data in sound.
Their work shows positive results.

Mathews used both graphics and sound to present up to five dimensions
of data. Two variables provided a visual x-y scatter plot, while
frequency, timbre and amplitude modulation provided a corresponding
note of three dimensions for each point. A wuser interactively
selected a sequence of points to hear. Using real data which had been
analyzed by other means as well, Mathews showed that auditory
representations did reveal structure in the data.

Yeung maps multivariate data vectors to properties of sound such as
pitch, volume, direction, timbre and duration. He drives the sound
output directly and thus utilizes complex waveshape functions such as
damping. Furthermore, Yeung feels that it is possible to use at least
nine dimensions in sound and perhaps as many as twenty. For ‘instance,
Yeung repeats a note with a rest period between repetitions. This
rest period is one of his dimensions. Four analysts heard 40 samples
from four data sets and were subsequently able to achieve 90% to 100%

correct classification when hearing a data item again.



SOUND and COMPUTER INFORMATION PRESENTATION Page 186

In a third approach, Wilson relies heavily on the musical aspects of
sound. She suggests a unique representation of data by playing
sequential tones for each data vector. Instead of a single note
corresponding to an ordered set of values, an ordered set of notes (or
melody) results. Wilson also suggests that tables of data may be
encoded into a set of notes so that patterns in the table data are
readily apparent. Wilson emphasizes the value of interactively using
sound to explore data sets. She reports positive results when
comparing her methods to traditional methods of exploratory data
analysis.

The research of Mathews, Yeung, and Wilson represents only a beginning
of the potential wuse for sound and information presentation. All
three concentrate on data which 1is represented by n-dimensional
vectors. In addition, Wilson uses sound for problems involving
contingency tables. They do not suggest other types of data which
might be advantageously represented by sound. Only Mathews combines
sound with a graphic presentation. There are no formal studies to
verify that sound does compare favorably with traditional methods of
data discrimination. Mathews, Yeung, and Wilson have provided good
initial findings on which to broaden the scope and understanding of
sound and information presentation.
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2: SOUND

This chapter provides a brief review of techniques for computer
generation of sound in order to consider sound as an alternative for
presenting information. The material is not critical to the
understanding of later chapters but provides background information.
Much of the discussion is based on material from The Physics of
Musical Sounds [88] and The Technology of Computer Music [57]. This
chapter first describes the nature of sound. There is a discussion of
computer sound generation and a brief explanation of the perception of
sound. The chapter concludes by reviewing a few of the current
research efforts in computer—generated sound.

2.1: Description

A sound is a wave which causes pressure variations to be transmitted
to, and thus heard by, the ear. Physically a sound wave is
characterized by its frequency and amplitude as a function of time.
The resulting waves are interpreted by the ear in terms of pitch,
timbre, and loudness. The relationships between the physical and
physiological attributes of sound are not well understood and are a
significant area of research.

A wave which is a continuous function of time can be represented
mathematically as an infinite sum of sine functions.® Furthermore, two
or more waves passing through a given point simultaneously have no

8. A theorem of real analysis demonstrates that any continuous function may be
built from a countable sum of appropriately chosen basis functions. Fourier
analysis uses trigonometric functions. ’
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effect on each other; the result in sound is the algebraic sum of the
component sounds. Therefore any sound or combination of sounds heard

by the ear may be expressed as an infinite sum of various sine waves.

Since sound is a continuous function of time, the following equation
represents any sound wave:

(Eq. 2.1) =)
£(t) = 2 A, sin(2nf,t + o ).
k=1

amplitude of the k'" component
K frequency of the k'® component
phase shift of the k'P component

<
=
"

Frequency determines the number of <cycles in a given unit of time.

Figure 2.1 illustrates these components. Since the sine function
repeats every 27 radians, the phase component shifts one sine wave
relative to another. Adding any combination of these will yield a

continuous function of time.

CYCLE \

-

AMPL { TUDE

Figure 2.1: Waveform

Pure and musical tones are characterized by periodic functions,
f(t) = f(t+p). Not only does the function repeat itself at a regular
interval but also the function components are organized in some way.
Other sounds may consist of periodic functions with dissonant
frequencies or random non-periodic functions with no perception of
regularity. Because periodic functions are amenable to digital
computation, current sound generation techniques have usually assumed
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periodicity in the wunderlying formulas. This does not exclude other
possibilities, particularly when producing sound from a set of data
values rather than from a function equation.

A simple sine function (i.e. y = A-sin(2nft)) produces a pure tone.’
That is, the output tone has the frequency and amplitude of the sine
function. Any other sound consists of several sine waves, each with a

particular amplitude and f{requency. When higher and lower frequency
sine waves are included (called partials), the tone becomes fuller and
more complex. These resident frequencies combine by adding and
subtracting to produce a wide spectrum of perceived f{requencies.
Musical tones are a subset of such functions in which the partials are
integral multiples (i.e. harmonics) of the fundamental frequency.
When inharmonic partials (those which are not small integral
multiples) are present, the pitch is musically ill-defined, much like
a bell or gong.

The equation for musical tones is derived from the general equation
(Equation 2.1) by restricting component sine waves to be integral
multiples of the fixed fundamental frequency f. That is, instead of
adding sine waves of various frequencies, f,, each kth component is a
multiple of the fundamental (k-f).

(Eq. 2.2) -
£(t) = 2 A -sin(2nkit + o)
k=1

In addition to the sine wave, other simple functions which produce
musical tones are the square, triangle, and sawtooth waves. A square
waveform is theoretically an infinite sum of sine functions, each of
which is an odd harmonic of the fundamental frequency. In Equation
2.3 below, a square wave is a sum of sine waves with frequencies that
are odd multiples (2k~1) of the fundamental frequency f with
proportionately smaller amplitudes. Figure 2.2 shows 300 odd
harmonics and the sum as it approaches a square wave. Because the
square wave consists only of odd harmonics, it is like the wave set up

7. A pure tone is a musical term for the tone produced by an idealized
vibrating string.
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Figure 2.2: Square Wave

by a closed-end pipe. Three odd harmonics are shown in the pipe of
Figure 2.3. Clarinets and organs are instruments which are examples
of variations of closed-end pipes. Thus a square wave produces a

sound which is hollow and somewhat woody, much like a clarinet [1].

—————————— —

Figure 2.3: Closed-end Pipe
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The sawtooth wave consists of frequencies inversely proportional to
their ampiitudes. Equation 2.4 shows that for each integral multiple
of the frequency f, the amplitude 4 is proportionately smaller. The
sound is more like that of a stringed instrument or English horn [1].
A triangle waveform also falls in this set of functions which contain
a complete overtone series, but the triangle waveform has a different
distribution than the sawtooth.

Square wave
(Eq. 2.3)

t(t) = 2, (A/(2k-1))- sin[2n(2k=-1)1t]
k=1

Sawtooth wave

(Eq. 2.4) =
t(t) = 2 (A/k)- sin(2nkft)
k=1

Table 2.1: Equations for Musical Tones

2.2: Techniques of Sound Synthesis

The current results in sound synthesis techniques are those which are
a side-effect of the research in computer speech and music. Our
experiences with sound fall primarily into four categories: speech,
music, auditory cues such as bells or alarms, and effects of natural
events. All of these forms convey information to the listener., but
speech and music have been the main areas for human creation and
control. It is not surprising that computer—generated sound has
concentrated also on the fields of music and speech.

The goal of speech synthesis is duplication of spoken language. The
sounds are generally of short duration with frequencies in a fairly
narrow bandwidth. In addition, the phonemes of speech form a
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relatively limited set of data for reproduction. Because speech
synthesis is strictly directed toward particular types of sounds, the
techniques are not applicable for general use.

Musical sounds include a wide range of frequencies and a wide variety
of waveforms. Musicians are interested in new sounds, as well as
those produced by traditional musical instruments, so that exploration
of new techniques is important. Much of the effort has focused on
instrumental tones which are periodic, contain a complex combination
of harmonics, and have definite attack, steady-state, and decay
phases. The research in computer music has created a wide base of
techniques which can be extended to other areas of sound research.

Synthesis of sound concerns itself with producing waveforms which,
when converted to an analog signal, can be heard by the human ear.

Techniques include combining various frequency and ampl i tude
components to produce a composite waveform, reducing a complex
waveform by removing some of its components, and modulating the

waveform by some (usually non-linear) formula. These techniques are
realizable by signal processing systems ranging from an all analog
electronic synthesizer to a computer with a digital-to—analog
converter and amplifier/loudspeaker. Flexibility makes digital
computers the basis for the rest of this discussion.

In his survey of signal processing aspects of computer music, Moorer

[62] distinguishes three methods for synthesizing sound: direct
synthesis, analysis—-based synthesis, and musique concrete. In direct
synthesis, the computer constructs wave samples using only
mathematical functions. In both analysis—~based synthesis and musigue

concrete, the waveform samples come from digitized natural sounds.
Analysis-based synthesis includes functions which modify the digitized
samples. Musique concrete essentially replays the digitized sounds
without change. These latter two methods are data driven and thus not
as general for wide application of sound production; they are not
considered further in this paper.

Direct Synthesis

Direct synthesis endeavors to use a mathematical model to calculate a
sound waveform. Equation 2.1 (described earlier) is an example of a
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mathematical model in which various frequency and amplitude componenté
are added to produce a desired waveform. This method of direct
synthesis is called additive synthestis. Another frequently wused
method, called subtractive synthesis, models a filtering function and
reduces a wide spectrum of frequencies to a desired waveform.® In
either method, results are not based on analysis of existing sounds
but on construction from function parameters. Because additive
synthesis is most commonly used to produce a wide variety of general

sounds, it will be explained in some detail.

To eliminate wunnecessary computation, direct synthesis of a waveform
is often table-driven. Mathews [57] particularly exploited this
concept by wusing modules to produce tables for later computational
use. Typically, a module produces a table for a specific function
such as the square or sawtooth function. A resulting table consists

of equally spaced amplitude values for one cycle of the waveform.

TABLE(1) = 0 TABLE(501) = 500
TABLE(2) = 1 TABLE(502) = =500
TABLE(3) = 2 TABLE(503) = -499
TABLE(4) = 3 TABLE(504) = -498
TABLE(499) = 498 TABLE(1000) = -2
TABLE(500) = 499 TABLE(1001) = -1

Table 2.2: Sawtooth Function

Table 2.2 shows the sawtooth function discussed earlier with 1001
table entries and a peak amplitude value of 500. For synthesis, the
time for developing tables is part of the preprocessing and therefore
does not affect the run—-time cost.

8. White noise is often the basis for subtractive synthesis. 1[It is a random
sound composed of many different frequencies uniformly distributed over a wide
range and not harmonically related [92].
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These table values represent one cycle of a periodic wave. The number
of times the table values are output per second is the number of
cycles per second or frequency. Typically, a computer sound system
will output a specific number of samples or table values per second,
usually 20,000 to 30,000. This number is the sampling rate, S. Thus
to obtain a desired frequency (number of cycles per second), the table
length is dependent on that frequency and on the sampling rate. That
is, if the sampling rate is S samples per second and the desired
frequency is C cycles per second, then the table must contain exactly
S/C entries to describe one cycle of the desired waveform. Obviously
this is the fastest output method and certainly allows real-time
generation given that memory access rates exceed the sampling rate.®

In the situation above, a different table would have to exist for each
possible frequency. In practice, a single table is used by simply
choosing from that table the necessary number of entries for a
particular frequency. If € is the desired frequency in cycles per
second, then NUM = S/C is the number of output samples per cycle. If
EF is the number of entries in a table describing one cycle of a given
waveform, the output consists of incrementing an appropriate amount
(E/NUM) through the table. Combining output from several tables
representing different waveshapes builds more complex waveshapes.

Problems arise because the table increment must be an integer value in
order to index into a table of discrete values. Three methods are
used to determine the proper sample output [57]: truncation,
rounding, and interpolation. Truncation and rounding are the simplest
(and therefore the fastest for a computer), but they lead to obvious
distortion in the output. Because output samples differ from actual
waveform values, the resulting waveform approximation also differs
from the actual waveform. The dotted line in Figure 2.4 represents a
sine wave defined by 100 values. The solid line shows the waveshape
which results when an increment of 13.7 is used to pick values from
the table using truncation. When this difference is audible, the ear

9. Given a sampling rate of 25,000, the memory access time must be at most
1/25,000 = 40 usec. This t ime is easily met by almost all modern
mini-computers. :
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hears distortion. For the same length table, interpolation has been
shown to give better results. !0

Figure 2.4: Table Truncation

Generating more complex natural sounds, particularly for music,
requires significantly more complex waveforms. - These sounds are
characterized not only by their individual sinusoidal combinations but
also by their attack and decay periods. Chowning [16] has developed
another model, digital frequency modulation, which has proved quite
successful in music synthesis. His work includes consideration of the
attack and decay periods, harmonics, and modulations of Dbasic
waveshapes for realizing various instrumental tone qualities.

Chowning’s equation
(Eq. 2.5) f(t) = A(t)-sinf@nf_t + I(t)sin(2nf t)]

represents a frequency—modulated waveform. The fundamental (or
carrier) frequency f. is sinusoidal but modulated by a second sinusoid

10. Mathews [57] states that in general, rounding is about twice as accurate
as truncation. While doubling the table length doubles the accuracy for
truncation or rounding, it quadruples the accuracy for interpolation.
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of frequency f . The modulation index, [/, is the amplitude of the
side frequencies. The amplitude is also a function of time. For many
tones, this synthesis formula yields a complex wave spectrum without
the necessity of adding a multitude of component waveforms or of
obtaining a spectrally rich waveform and passing it through a
time-varying filter. Changing the ratio of the carrier frequency to
the modulating frequency controls the spectral partials; changing the
modulation index controls the contributions of the partials by
determining their amplitudes.

Problems

The first problem of sound synthesis is that, unlike the continuous
sinusoidal waveform models described in Section 2.1, the corresponding
digital approximations are finite discrete sequences. A waveform is
well-represented by a discrete sequence if interpolation between terms
yields a smooth curve which has a small error relative to the desired
continuous function. Thus to represent a waveform digitally, it is
necessary to choose carefully the minimum number of samples. The
three primary problems in representing a continuous function digitally
are aliasing, quantization, and windowing [96].

Aliasing (or foldover) 1is caused by an insufficient number of samples
for accurate reproduction of the waveform.!! It introduces incorrect
frequencies which then combine with existing frequencies to produce
additional sums and differences. When a curve is drawn through the
wave by interpolating between samples, a very different wave is
generated. Using the Sampling Theorem of Fourier analysis, it can be
shown that a frequency, F, must be sampled at a rate of at least 2F to
reproduce the waveform. If the frequency of the wave is F and
sampling rate is R such that R < 2F, then the waveform generated has a
frequency F1 = R - F,. F1 will add unexpected and, very likely,
inharmonic frequencies to the waveform.!? Figure 2.5 shows a waveshape
of frequency 9 (F=9). |[If sixteen samples (R=16) of this waveshape are

11. A common example of aliasing in video is the wheel which turns backwards
when its rotational frequency exceeds 12 revolutions a second in a standard 24
frames per second movie.
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taken, the resulting curve has frequency 7 (R-F=F1=7). Note that
although 64 samples produce a more accurate reproduction of the

original waveshape, 18 samples are sufficient to produce a frequency
of 9.

T
LUV |
ARARANR

Figure 2.5: Sampling

Quantization introduces noise distortion and 1is caused not by the
sampling rate but by the accuracy of the sampled values. For each
sample value S(t), the error S(t) - f(t) depends on the computer word
size. This error results in a signal-to-noise ratio of approximately
6 times the number of bits used per value.!3 Most audio equipment has

12. Hearing ranges from 20 Hz to 18,000 Hz so that a sampling rate of

36,000 Hz is desirable; most music software uses about 25,000 samples per
second.

13. The signal—-to-noise ratio is doubled for each additional bit of accuracy.
Expressed in decibels, this is an additive component of 6 (i.e. 20log 2 = 6).
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a signal-to-noise ratio of 66-72dB so that 11 or 12 bits is a
reasonable degree of digital accuracy.

Windowing occurs when a sample set consists of less than a complete

cycle. Because it arises when real data driyes the synthesis,
windowing is not a serious problem for most sound synthesis. I[If a set
of data exists with an wunknown <cycle time, the number of samples

needed can be determined by Fourier analysis.

A second major problem in sound synthesis is computation time. Even a
simple tone with high frequency components requires about 25,000
samples each second. Any musical sound consists of several
instruments or voices, each requiring the generation of 25,000 samples
every second. For real-time sound generation, time is especially
critical. Even the fastest hardware is limited in the number of
operations which can be performed in 40usec. With the increase of
micro—computers and distributed processing, most sound synthesis
systems now drive the actual sample generation with an independent
processor.

A third major difficulty of sound synthesis arises from the lack of
understanding of the relationships between physical and physiological
aspects of hearing. in generating an arbitrary sound from a
mathematical model, it is difficult to predict the perceived effects.
If synthesized sound is to be used to convey meaningful information,
it is particularly important to know what effects the equation
parameters have on hearing.

2.3: Psycho-acoustics

Having described the generation of sound, it is important to note some
facts regarding the human sensations produced by sound. Various
combinations of sound characteristics have different effects on the
perceived sounds. Both music and psychology have concentrated
research in this area, for example by comparing human responses to a
variety of differences in sound characteristics and by analyzing
instrumental sounds. The perception probliem is, in some ways, more
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serious than the problem of producing sound since one would like to

predict in advance the effects of the produced sound.

Studies suggest that the human ear can discriminate between any two of
400,000 different sounds presented in rapid succession and that most
people can remember and correctly identify 49 different sounds at one

time [68]. In fact, reaction time to auditory stimuli is faster than
to visual stimuli [8]. However, the perception of the sound one hears
is dependent on the context of that sound -- that is, on the
combination of parameters describing the particular sound and on the
notes preceding and following the sound. To represent data using
sound, it is important to understand how the various sound

characteristics are perceived.

Most notable, perhaps, are the interrelationships among
characteristics of sound. Sounds in the middle range of frequencies
seem more varied, and are therefore easier to separate, than high
range sounds. Not only are the frequency changes more difficult to
perceive but the volume of a high note appears softer than for a
corresponding note at lower frequency. Duration also affects the
perception of a note. For example, a shorter duration note appears to
be lower in pitch and a louder note appears to lengthen the duration
(50, 98].

Timbre, "the multidimensional wastebasket category for everything
that’s not pitch nor loudness” [50]. affects perceived pitch,
loudness, and duration! Varying the number and relative intensities

of existing overtones makes the same fundamental frequency sound
differently. The attack and decay periods heavily influence sound,
particularly those of short duration. Listening to a trumpet and a
violin is an example of the importance of timbre. Two notes, each at
the same frequency and amplitude, sound completely different.

Fully utilizing sound output. for presenting data will require an
understanding of the relationships and effects of sound parameters.
The observations discussed above are only a few of the facts regarding
perception of sound. Further studies must consider the effects on
data representation.
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2.4: Sound Synthesis Research

Music and speech are the current focus for research in sound
synthesis. Digital music supports music analysis, music performance,
and music composition. Researchers are exploring the perception of
sounds using the computer to generate a variety of waveforms under
controlled conditions not previously possible with conventional
instruments. Speech is being used to further the study of
human/machine communication.

Two examples of computer music research are the efforts at Bell
Laboratories and at Stanford University. Max Mathews is considered by
many to be the father of computer music. His book, The Technology of
Computer Music [57], is a basic guide for the understanding of digital
music. His software FORTRAN program, MUSIC V, has been extensively
used for studies of timbre. Work at Stanford involves a frequency
modulation equation as the synthesis technique to produce more complex
and natural musical sounds. Chowning [15] has achieved the synthesis
necessary for a perceived sound location which varies dynamically.
Both of these studies are especially relevant to the perceptions of
sound and the further use of sound.

Given the methods and equipment for computer—-generated sound, it is
appropriate that 1its wuse has extended to areas other than music and
speech. The tools for producing sounds are available and the need for
additional methods of presenting information exists. Initial studies
indicate that data values can be encoded into sounds so that data
relationships are preserved. The next chapters expand the use of
sound for information presentation by explaining tools for using sound
to represent data, applications for a wide variety of data types, and
results of experiments in which subjects classified data based on
sound representations.
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3: FACILITIES AND TOOLS

Research in the wuse of sound for information presentation requires
both hardware and software capabilities. The system must support
sound generation that can be based on data values and that allows
control of a number of sound parameters (dimensions). Four
requirements provide a minimum -capability for the variety of sounds
needed for the work described in this thesis:

1: Capability for at least two simultaneous notes or voices,

2: Control of envelope and waveshape for timbre variations,

3: Control of pitch and volume, and

4: Control of note duration.
A sampling rate of 20,000 samples per second allows a maximum

frequency range of 10,000 Hz; this encompasses the normal hearing
range. To be generally useful, all components must be easy to use and

inexpensive. Fortunately, the computer music field provides extensive
resources.

Two additional resources are helpful in examining the potential of
sound output for data: a computer graphics capability and traditional
data analysis tools. Since most computer information presentation is
visual, graphics can provide a basis for comparison and for
experiments in combined visual and aural output. Traditional combuter

tools provide the <capability for generation and analysis of complex
data sets. Although neither of these functions are required for
presenting computer information in sound, they add valuable support

for sound experiments.
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The research in this thesis was carried out on an interactive
four-voice system and on a large time-sharing system with a great deal
of compute power and batch output. The equipment often determined
specific features of the studies so a description of the facilities
and tools is helpful in understanding later chapters. Additionally,
these two very different facilities provide good examples of useful
computer sound systems.

3.1: Interactive System

The interactive system simultaneously produced color graphics and
sound output.!* The facility did not provide tools for creating nor

manipulating large data sets, so all data was preprocessed on other
computer systems. Sound output varied with respect to pitch, volume,
duration, envelope, and waveshape for four notes. Sound could not be

preserved except by recording the analog output in the usual manner on
cassette tape.

Hardware

Most projects described in Chapters 5 and 6 ran on a Varian (V73)
minicomputer with an Imsai (8080) microcomputer and four Solid State
Music synthesizer ©boards. Al]l data computations ran entirely on the
Varian while the synthesizer boards generated the actual sound output.
The Imsai provided an easy interface between the Varian and the music
synthesizer boards; the music boards could not interface directly to
the Varian bus. In addition, an Aydin 5214 frame buffer display
system provided graphic output with capabilites for interactive input.

A synthesizer board computed the necessary wave samples which drove an

analog output signal. Input for each music synthesizer board included
14. This facility is a special purpose system for interactive battlefield
simulations and no longer includes the sound output capability. The sound

equipment is being moved to another computer for continued work on information
presentation.
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a 128 byte waveform definition, a 16 byte envelope definition, 15
levels of volume, and a frequency range of 15 Hz to 25K Hz. The 128
byte waveshape determined one cycle of the periodic wave; the
synthesizer board automatically repeated the wave as necessary for the
desired. frequency and duration. The frequency was determined by a
frequency value ranging from O to 255 combined with an octave value
ranging from 0 to 7.18

(Eq. 3.1) 20,000,000
Frequency output =

(256 = fv):(128)-(28-9°v)

fv

board frequency value

ov board octave value

Not only were the synthesizer boards easy to use by merely specifying
the necessary inputs, the total cost of the four boards was less than
$600.

Each synthesizer board outpﬁt an analog signal which had to be
amplified. The four signals (from the four synthesizer boards) were
combined in a preamp mixer and fed into a stereo system comparable to
a home sound system. The sound output peripherals consisted of the
preamp mixer with four stereo inputs (Numark DM 1100), an amplifier
(Technics SU-8055), two speakers (Electrovoice Interface, Line Series
2), and a headphone (Koss Pro 4AA). This peripheral equipment cost
was also less than $600. :

Software

Two types of software provided valuable support: routines for
generating the sound output and programs to control dynamically
various sound characteristics. Access to the synthesizer boards was
through a set of subroutines which specified each of the sound

15. For data sounds, a frequency expressed in hertz would be more appropriate.
The configuration of the sound boards was probably due to the fact that they
were intended for music output.
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attributes (such as volume and frequency). The two most useful
programs interactively controlled the music synthesizer boards and
interactively manipulated the mapping between data sets and sound
characteristics.

A FORTRAN-callable set of routines interfaced computer programs to the
sound boards. These routines allowed the various synthesizer inputs
to be set and controlled the on and off states of each board. To
generate sound output, a program set up a waveshape, envelope,
frequency, and volume for each board to be played. The program then
had to send the signals to turn the board on or off. The time
interval between turning the board on and turning the board off
determined the note duration.

The sound control program graphically displayed a control panel for
the four synthesizer boards. The frequency, octave, volume, and
envelope duration controls corresponded directly to the synthesizer
board inputs. A drawing area allowed the user to modify predefined
envelopes and waveshapes and store them for listening or for input to
subsequent software development. At any time, any of the four boards
could be turned on or off.

The control program was particularly valuable for comparing the
effects of various sound characteristics, for waveshape definition,
and for diagnostics. Changing a sound pérameter such as volume
immediately changed the output sound. By turning on and off two sound
boards with different settings, the different effects could be
compared. Since waveshape determines the timbre of the sound, the
ability to try interactively a variety of waveshapes was extremely
useful. Finally the control program provided a diagnostic tool for
checking all aspects of the sound boards.

The mapping program presented data as discrete sounds. Given a data
sample as an n-tuple

S= (v, vy, Vgu «.oh V),

each v, determined the level of a sound parameter (such as volume) for
a specified board. Thus, each data sample S was encoded into a single
sound. The mapping control program permitted dynamic manipulation of
the mapping between v, variables and sound characteristics.
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The mapping program allowed up to four sets of data with up to 15
variables per sample as input. This interactive program was
particularly helpful in determining the effect of various sound
characteristics and the significance of individual data variables by
providing a means for setting up a data-to—sound mapping. Varying
only one sound characteristic at a time quickly illustrated how well
that characteristic discriminated among data values. Conversely,
holding only one sound parameter constant indicated how important that
characterisitic was in the overall note definition. One easily
obtained a good indication of whether a variable was helpful in
discriminating among sets by mapping one data variable (v,) to all
sound parameters and then listening to the samples in two or more
sets.

3.2: Batch Sound System

For batch output of sound, | used an extremely powerful timesharing
computer network with a high precision output film recorder [45]. The
sound is generated by drawing the soundtrack onto fiim. Thus, the
system simultaneously generates both graphics and sound. Since the
computer network is used for many types of computation and analysis, a
wide selection of data creation and manipulation tools are available.
For sound output, up to sixteen notes may be generated at a time,
thereby allowing control of tones which can be used as overtones for
timbre control. Unfortunately, the waveshape itself is not under
program control. Because feedback is not immediate, the system is
most useful for generating precise sound (and graphics) that can be
preserved for playback at a later time.

Hardware

The calculations and soundtrack definitions are produced from programs
executing on a Control Data Corporation 7600 mainframe computer. The
results go to a magnetic tape which is read by an Information
International, Inc. FR80 film recorder. This film recorder draws the
soundtrack on 35mm film. These soundtracks are generated a frame at a
time by drawing horizontal lines across the width of the soundtrack.
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To hear the sound requires a 35mm playback facility or conversion to
the more commonly used 16mm film.

Software

Software support includes FORTRAN~-callable routines for generating the
soundtracks and executable programs for manipulating large data sets.
These latter programs were used for sound output on the timesharing
system and for preprocessing data for input to the interactive sound
system.

Software routines allow the frequency and amplitude to be set for up
to 16 tones. The waveshapes for the tones are added to create a final
output wave. Frequencies range from 10 Hz to 5000 Hz. The amplitude
of the combined tones has a fixed maximum. Note duration was

controlled by specifying an integral number of frames for each tone.!®

The most useful data manipulation tools were those for creating random
distributions, for traditional discriminant analysis of data sets, and

for graphical representation of multivariate data. A random
distribution generator creates complex data sets that differ in
well-defined ways. Principal component, linear regressijon, and
quadratic regression analysis programs are available as a basis for
determining the difficulty of discriminating data sets. Finally,
programs for graphical data presentation include two- and

three—~dimensional scatter plots and Chernoff’s FACES.

16. Film is shown at 24 frames per second so the shortest note duration is
1/24 second (42 msec).
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4: PRESENTING DATA IN SOUND

The past chapters suggest that computer sound can be used to present
data. Two questions now must be addressed: first, what data is to be
presented and second, how is this data to be encoded in sound? The
literature does not yet provide a well-defined set of problems which
best adapt themselves to sound presentation nor a well-defined method
of mapping data to sound. My preliminary studies examine a variety of
data types and techniques for using sound to represent data.

A general consideration of what data 1is to be presented in sound
includes several data problems that are difficult to present
graphically. In addition to multivariate data sets, logarithmic data
and time-varying data are two such areas. Although logarithmic plots
are familiar, the graphical relationships are nevertheless hard to
grasp. The eye reponds to postion in a linear way: in sound, pitch
and loudness are logarithmically related to frequency and amplitude.l7
Since sound is created by waves which are a function of time, sound

offers interesting possibilities for time-varying data as well.

Having identified data analysis problems for audio output, the next
task is to discover a straightforward method of relating data to
sounds. Just as color, location, size, and shape are characteristics
of visual presentations, several sound parameters are fundamental to
audio presentations. The most obvious are pitch, volume, and
duration. Another significant characteristic is timbre. The timbre
of a note is affected by attack, decay. harmonics, and the waveshape
itself. The relationships among notes also contribute to the sound

17. The intensity of color is logarithmically related to energy; however,
humans have a more well-organized stucture for considering.pitch relationships
than for considering color relationships.
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output. Consider varying sequences of notes (for example, melodies)
and combinations of notes (for example, chords). Given these several
characteristics of sound, the question then is how best to use them to
represent data.

To explore the wuses of sound for information presentation, both the
data type and the data encoding in sound must be considered. The
three data types outlined above provide a broad and varied basis for
examination. Although multivariate, logarithmic, and time-varying
data are not independent classes, specific features of each data type
suggest various representations in sound. For each of the three
classes of data, this chapter proposes a method for representing the
information in sound and discusses my observations after presentation
of that data in sound.

4.1: Muiltivariate Data

New methods for examiniﬁg multivariate data are welcome because there
is no universal technique for finding patterns and structures within a
set of data or for assigning an wunknown sample to one of several
possible sets. Traditional lechniques often throw away some of the
data information so multivariate data lends itself to the possibility
of increasing the information presented. Multivariate data is readily
available from a variety of disciplines. A typical problem of
exploratory analysis is to determine what, if any, factors distinguish
one set of data from another. Specifically, given two or more sets of
data, can an unknown sample be assigned to one of the sets? These
problems are interesting because there is no predetermined algorithm
for separating the sets of data. A specific data discrimination
problem will often be interesting because there is no criterion for
choosing the best method of assigning an unknown sample to a set.

The next two sections describe one method for data-to-sound encoding
and two applications of real data. The encoding technique is the
basis for the encoding used for logarithmic and time-varying data so
it is described in great detail. This encoding method is also the one
used for the experiments in Chapter 5. The positive results of
‘applying sound representations to two groups of real data provide the
motivation for later experiments.
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Encoding Data In Sound

A set of data consists of individual data samples. I[f the data is
n~dimensional, then each sample 1is an n-dimensional data vector or
n-tuple. Thus, a data sample vector <consists of n variable values.
Each of the n variables maps to one of the n characteristics of sound.
For a particular data sample, the specific n values associated with it
produced a corresponding discrete sound (note).

Seven characteristics of an individual note were chosen for
representing data values. These were pitch, volume, duration,

5% harmonic, and gth

fundamental waveshape, attack envelope,
harmonic. Pitch, volume, and duration are necessary attributes of a
note and easily varied. Initial attempts at producing a variety of
distinguishable sounds indicated that timbre is one of the most
noticeable characteristics. Thus, the fundamental waveshape, attack
envelope, and harmonics were included as significant parameters.
These seven parameters, then, were each varied over a specific range
in a predetermined manner. (Listen to the parameter variations in
Appendix A). Since four tones could be played simultaneously on the
available equipment and seven sound parameters were chosen to vary for

each note, 28 dimensions were technically possible.18

The actual variation of each of these seven characteristics s
described in more detail. My intent was to vary each characteristic
over a range which provided noticeable extremes, was easily audible
throughout, and was computationally straightforward. An integer code,
from 1 to m, corresponded to each variation throughout the range of a
characteristic. The number of output levels available for each of the
note characteristics varied widely. For example, only fifteen
increments of volume were available but 48 values of pitch were used.
Unfortunately, this affects the precision of the data value being

encoded.
18. I did not attempt to determine an upper limit on the number of dimensions
that are useful or a hierarchy of the sound characteristics. In fact, only

4 to 8 dimensions seemed to add information. Most users of the system said that
pitch and duration were most valuable in distinguishing one note from another.
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Several sound characteristics were not used and these deserve
attention in the future. Certainly location is an easily detectable
attribute of sounds. Harmony, dissonance, chords, and melodies are so
familiar in music that they should be considered as potential
parameters for presenting data. I chose the characteristics used
because they vary easily and provide a wide range of distinct sounds.

Pitch

Because many people lose the ability to hear high frequencies, the
fundamental frequency was limited to the range 130 Hz to 2000 Hz.
Although musical ability is not common to all analysts, the musical
scale provides a familiar set of sounds. Frequency increments were
based on the piano scale. Thus, pitch varied over 48 values, twelve
notes in four octaves.

Volume

The volume range was controlled by the output of the equipment. It is
questionable how valuable volume is as a discriminant among sounds.
Small differences are often difficult to detect, and the perceived
intensity is strongly related not only to volume but also to the other
characteristics of the note. Nevertheless, 1 wused twelve of the
fifteen values of volume available for variation, from very soft to
very loud.

Duration
The length of a note varied from 50 msec to 1050 msec. This range was
chosen arbitrarily with the intent that no note be so short as to be

inaudible or so long as to cause the user to stop listening. Duration
varied in 5 msec steps so there were 201 levels of duration.

Yaveshape

A buzz and a pure tone are quite distinguishable, so the waveshape
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variation was based on a sine wave and a random waveshape.19 The sound
synthesis equipment allowed a waveform of 128 values. Thus, a sine
wave was composed of 128 values ranging between -1.0 and 1.0. To
begin altering the sine wave to a waveform that would produce a
buzzing sound, one of the 128 values was randomly selected and
randomly changed to a value between -1.0 and 1.0. For each subsequent
change, one of the 128 values not already selected was randomly
changed to a value between =-1.0 and 1.0. 1In this manner a set of 128
waveshapes, varying from a pure sine function to a random waveshape,
were defined (see Figure 4.1).

WAVESHAPE VALUE 0.0 WAVESHAPE VALUE 0.2 WAVESHAPE VALUE 0.4

WAVESHAPE VALUE Q.6 WAVESHAPE VALUE 0.8 WAVESHAPE VALUE 1.0
1 &

Figure 4.1: Waveshape Variations

19. In an earlier attempt in creating a range of waveshapes, | varied the
waveshape among computationally simple but aurally different functions. As
noted earlier, a simple sine function produces a pure tone, a square wave

function produces a sum of odd harmonics, and a triangle function produces a
complete overtone series. Since these functions are straightforward but produce
very different sounds, interpolation between any two seemed like an obvious
method for varying the waveshape. In fact, it was found that more complex
waveforms offer greater aural differences.
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Attack

The attack envelope affects the shape of the note and thus its overall
timbre. A long attack makes the start of a note sound softer; a sharp
attack causes the note to begin crisply, much like a pop from a gun.
To have affected the end of a note instead, decay might just as well
have been chosen. 1In all cases, the envelope affected the entire note
regardless of total duration, volume or waveshape. Fifteen values
were chosen which ranged from a long attack to a constant amplitude
envelope (see Figure 4.2).

ENVELOPE VALUE 0.0 ENVELOPE VALUE 0.2 ENVELOPE VALUE 0.4

ENVELOPE VALUE 0.6 ENVELOPE VALUE O .8 ENVELOPE VALUE ' O

_/—/_/_/_//__/———/——/

Figure 4.2: Attack Variations

Harmonics
O0dd harmonics, the hollow~like sounds, seemed more noticeable than
even harmonics, so the fifth and ninth harmonics were added as
overtones (Figure 4.3). Each harmonic waveshape varied over a range
between a pure sine function and ‘a random shape, just as the
fundamental waveshape varied.?2° The resulting overtone was
20. Harmonics might have been heard more effectively as a sound parameter if

the amplitude of the harmonic waveshape added to the fundamental was varied
instead of varying the harmonic waveshape itself.
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algebraically added to the desired fundamental waveshape to provide a
final waveshape for output. If no variable value was mapped to
overtone, then no overtone was included. As with fundamental
waveshape, there were 128 variations of overtone waveshape.

STH HARMONIC VALUE 0.0 9TH HARMONIC VALUE 0.0
4 ﬂ]
2 2 4
LA -4
L L -
» »
. v - . " > > v
L . 2 - “ - - - L - 2 - - -» » L J

Figure 4.3: Harmonic Waveshapes

Example

A data set was encoded into sound by first, normalizing the data

values to a [0.0, 1.0] range; second, determining a mapping of data
variables to the sound parameters; and third, producing the note for a
specified data sample. The range of a particular dimension throughout

all sets in the problem was found and then mapped to [0.0, 1.0].
Thus, all data values were between 0.0 and 1.0. A different sound
characteristic was chosen to correspond to each of the n dimensions.
Finally, the values of a particular data sample were used to determine
the levels of the appropriate sound characteristics. A given data
sample then corresponded to a well—-defined note.

For example, consider a four-dimensional data set including these
three samples:

s, = ( 3.0, 5.0, 150.0, 3.0 )
s, = ( 7.4, 2.0, 152.0, -1.2 )
s, = ( 14.0, 8.0, 153.0, -4.0 )

Assume that in the complete data set variable 1 ranges between 3.0 and
14.0, variable 2 between 0.0 and 10.0, variable 3 between 150.0 and
155.0, and variable 4 between -4.0 and 10.0. After normalizing these
values to a [0.0, 1.0] range, the transformed samples become
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s, =(0.0, 0.5, 0.0, 0.5)
S, =(0.4, 0.2, 0.4, 0.2 )
S =(1.0, 0.8, 0.6, 0.0 )
The next step is to choose a data-to—-sound mapping. Assume that

variable 1 is represented by pitch, variable 2 by duration, variable 3
by volume, and variable 4 by waveshape. Since 48 levels of pitch are
used, a data value of 0.0 will <correspond to a pitch level of 1
(130 Hz) and a data value of 1.0 will correspond to a level of 48
(2000 Hz). Likewise, values for the other three dimensions will map
to levels of duration, volume, and waveshape.

Each sample now produces a note. S1 would be represented as a very
soft, low note of medium duration with a slightly buzzy sound. S2
would have a mid-range pitch and volume in a less buzzy note of short
duration. S3 would produce a very high, long note with a pure sound
at mid-range volume.

A change in the data-to-sound mapping will change the resulting notes.
If variable 1 is mapped to waveshape, variable 2 to pitch, variable 3

to duration, and variable 4 to volume, then S, would be very pure and
short compared to S,; which would sound buzzy and longer.

Applications

Through the interest of Dr. Stanley Grotch [37]., several multivariate

data sets were available for sound encoding. Several different
applications of data show that the sound encoding is a wuseful
discriminant. Two of these applications are iris data from three
different plant species and spectra data from four different
materials. Listeners were able to discriminate among the sets with

much the same success as with traditional discrimination methods. ,

Iris Data

Perhaps the most widely recognized data in the field of discriminant
analysis is the Fisher iris data ([28]. Using data collected by Dr.
E. Anderson, Fisher examined the differences among three species of
flowers, /ris setosa, Iris wversicolor, and [ris virginica, with 50
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plants of each species. For each plant, sepal length, sepal width,
petal length and petal width were recorded. The problem is to use the
measurements of an arbitrary plant to classify it as one of the three
species.

The four variables (sepal length and width, petal length and width)
were mapped to pitch, volume, duration, and fundamental waveshape.
The resulting notes yield results that appear similar to traditional

methods of discriminant analysis. The first set, Iris setosa, is
quite distinct and easily identified. The remaining two sets are
distinguishable in most instances but seem to have some overlap.

(Listen to the examples in Section 4 of Appendix A). Most casual
observers who attempted to place an unknown note into one of the three
sets only missed an occasional one or two which belonged to sets 2 or
3. In fact, it is possible in four-space to separate the three sets
so that all but one of the 150 samples are correctly classified.

y—ray spectira

Recently, scientists at Lawrence Livermore National Laboratory
measured the energy emissions of four different materials. Each
spectrum consisted of seventeen channels of counts versus energy.
Thirty y-ray spectra were obtained for each material. This data was
preprocessed using the statistical technique of principal components.
Grotch [36] encoded the resulting transformed data into several
graphical outputs, including Chernoff‘s FACES. Figure 4.4 shows
twenty samples from each of the four data sets. Next he randomly
selected another twenty from the remaining samples in the four groups
of spectra data. These became the unknowns to be classified and are
shown in Figure 4.5. In an informal study, a number of individuals of
various ages and skill levels were able to identify the correct group
for an average of 94% of the unknowns.

The same set of data was encoded into sound. (Listen to the examples
in Section 5 of Appendix A). Five individuals, familiar with the
sound testing procedures, were able to correctly identify an average.
of 94% of the unknowns. Table 4.1 shows the raw data for both
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exercises. The score shows the number of correctly identified samples

over the number of samples given as unknowns . 2! :

4.2: Logarithmic Data

Logarithmic data seems particularly appropriate for sound encoding
since frequency and pitch are logarithmically related. A perceived
linear pitch difference naturally corresponds to an exﬁonential
frequency difference. 1 examined two types of problems involving
logarithmic data for sound representation. One type was discrete
n—tuples much like the multivariate data described in Section 4.1 but
which contained at least one dimension that varied exponentially.
Another type was two-dimensional data typically represented
graphically on a log/linear or log/log plot.

Encoding Data In Sound

In both examples of logarithmic data, frequency represented the
dimension which varied exponentially. In the case of the n-tuples,
the data samples were encoded in the same manner as the multivariate
samples. However, frequency was always wused to represent the
logarithmic value with a mapping that preserved the power function.
Instead of using the 48 levels of the piano scale, the frequency was
mapped directly from the data value.

(Eq. 4.1) Output frequency = a-2b'Data Value
Equation 4.1 calculates the frequency for a given data value. The

range of the data values determined constants a and b so that the
frequency range was audible.

21. I used the transformed spectra data in a slightly different manner.
First, the data was normalized differently. Second, each subject was given a
random selection from each data set as training and a different additional
random group of unknowns from all four sets. ‘
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FACES Sound
Subject Score % correct Subject Score % correct

1 20/20 1007 1 18/20 95%
2 18/20 907 2 19/20 95%
3 19/20 95% 3 27/30 907
4 19/20 95% 4 29/30 97%
5 18/20 907 5 30/30 1007
6 20/20 100%

7 17/20 85%

8 20/20 100%

9 19/20 95%

10 19/20 957%

11 19/20 95%

12 17/20 857

13 18/20 90%

14 18/20 907

15 18/20 907

16 19/20 957

17 19/20 957

18 19/20 957

19 19/20 95%

20 19/20 957

21 18/20 907

22 20/20 1007

23 19/20 957%

24 18/20 907Z

25 20/20 100%

26 20/20 100%

Average 7 correct: 947 Average 7% correct: 947

Table 4.1: Informal y-ray Spectra Study

In the case of the two-dimensional plots, | defined two modes of audio
output. A chirp designated a sound plot in which the x-value was
encoded as time and the y-value provided the frequency. Thus, as the
y-value increased with increasing x, the sound increased in frequency.
A warble designated a sound plot in which the slope (y/x) provided the
frequency base. For example, a linear plot has a constant warble. In
general, a log/linear plot was represented by a sequence of notes



SOUND and COMPUTER INFORMATION PRESENTATION Page 49

which varied only in frequency. These representations used constant
sound characteristics with the exception of the changing frequency. A
two-dimensional plot is then a sequence of notes varying in time with
the increasing x-value.

Applications

Although | did very little experimentation with either of these two
methods, I was encouraged by the resulting sounds. Seismic
information provided the data for the multivariate logarithmic data
trials. Computer—generated data produced log/linear plots for the
two-dimensional trials. In all cases, the sequences of notes differed
as expected.

Seismic data

Sound and graphics are wuseful in illustrating a time history of the
earthquakes which occurred in California in the year 1979 [52]. The
information for each earthquake is longitude, latitude, depth,
magnitude, and start time. The longitude and latitude were used to
update a display map with a dot each time an event happened. As the
dot appeared, an accompanying sound represented the magnitude. The
pitch of a sound was such that a low note (rumble!) indicated a high
magnitude quake. A magnitude of 0.0 mapped to 5120 Hz; 8.0 mapped to
20.8 Hz. Magnitude also controlled the volume and duration of the
note.

At most, four events (four notes) could be heard simultaneously.
Patterns and extremely large events were easily observable. Variables
such as depth were not used but could add more information if included
in the graphical or sound representation. The trials were positive
indications that sound be used to highlight features that are most
relevant to seismologists. '

Two-dimensional plots

Differences in plots of logarithmic data often appear to be visually
the same, when in fact, the relative differences are quite
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significant. For illustrating this point, plots consisted of scatter
points and the corresponding best fit line of the form

y = AeBx,

By varying the values of A and B, different plots were obtained which
appeared visually quite similar.

The work consisted of comparing four different aural outputs for each
of the plots: a chirp of each scatter plot, a chirp of each best fit
line, a warble of each scatter plot, and a warble of each best fit
line. For the warble of a scatter plot, the slope at a point (x2,y2)
was

( In(y2) - In(y1) )

( x2 - x1 )
where x1 was x2 less the increment in x and yl was Ae®(x1)  The
resulting warble for a scatter plot varied up or down in frequency as
the scatter plot points deviated above or below the best fit line.
The slope of a best fit line was taken to be B (in y = AeB‘). The
warble was constant for a given line but varied from one plot to
another.

y = 99139983 y = .9943e1-0013x y = 1.0051e!-0010x

Figure 4.6: Logarithmic Plots

Plots of the data and the corresponding output waveforms are shown in
Figure 4.86. Although the two-dimensional plots look alike, the audio
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output varies significantly as seen by the three different waveshapes.
The chirps, either for the best fit lines or for the scatter plots
themselves, were distinguishable. As might be expected, the warbles
for the scatter plots varied so much within a single plot that it is
difficult to make any distinctions from one plot to the next. The
most interesting are the warbles for the best fit lines. They are
most illustrative of the differences among the actual best fit lines.

4.3: Time-varying Data

Intuitively sound seems particularly appropriate for use with
time-varying data despite the success in using sound to discriminate
among sets of discrete multivariate data. Given an application in
which events vary over time, sound can help highlight changes and
relationships.

Encoding Data In Sound

The basic method of encoding the data was that wused for the

multivariate data work. The values of all variables at a given time
step comprised a data sample. The duration was constant from time
step to time step. Because time-varying data often involves two or

more simultaneous events, a different note represented each event at
every time step. However, it is difficult to track simultaneously
several different notes if only pitch and volume are varying. Here
the waveforms themselves appear to have the most potential for
distinguishing among events. If two very distinect waveforms are
chosen, then each note can be more easily followed and other sound
characteristics noted.

Applications

Professor Sam Parry of the Naval Postgraduate School [67] suggested a
time-varying application. Computer battlefield simulations which run
from start to finish without human interaction provide information
about the state of the battle at each time step. To an analyst
interested in the results of the simulated battle, this information is
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often an overwhelming collection of statistics. Nevertheless, it is
important to note the battle <characteristics which yield various
results. Thus the information at each time step encoded into sound
results in a song for each battle. Listening to the songs provides a
quick view of the battle in progress and draws attention to critical
points during the battle.

For simplicity, only four variables of a two-sided battlefield
simulation were used [81]. At every time step, the simulation
recorded the number of wunits at the front and the number of units in
transit to the front for sides A and B. Side A of the battle was
encoded into a pure tone (a sine wave). Side B of the battle was
encoded into a note with very noisy timbre (a randomly defined wave).
The number of units at the front mapped into pitch and the number of
units in transit mapped into volume. Thus, a high and loud note
represents a very strong battlefield position. Because the Side A
note did not have the overtones of the Side B note, it was necessary
to adjust the volume so that the Side A volume range was somewhat
“higher than the Side B volume range.

It was possible to listen to both notes simultaneously and therefore
follow the progress of each side in the battle. Battles which have
similar outcomes do not necessarily produce similar songs. (Listen to
the examples in Section 6 of Appendix A).

4.4: Observations

Listeners were enthusiastic and successful in discriminating among
different data sets throughout the variety of data applications and
sound encoding techniques. The multivariate data applications
particularly appealed to users. Those who attempted to distinguish
among data sets based on sound representations quickly became adept at
the procedures and improved their skills rapidly.

In the battle songs, listeners had no trouble distinguishing one song
from another. However, listeners had some difficulty tracking one
side relative to the other. This difficulty in hearing the two sides
independently did not impair the ability to recognize battles in which
significant events occurred. It did make it hard to identify the
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characteristics (greater front line forces, for example) of the
significant events.

The encoding techniques were satisfactory for initial applications of
sound presentation. Several combinations of sound characteristics
were also tried and subsequently abolished. Combining two or more
notes for one discrete data sample seemed an obvious possibility.
When eight or more variables were presented, two notes were played

simultaneously each with its own frequency, volume, waveshape, and
overtones. The resulting chord represented a single data sample but
the sound became noisy and much more difficult to classify. Fewer

variables might also wutilize two or more notes if each variable
controls several sound characteristics. For example, one variable
might control frequency, volume, and waveshape of one note while a
second variable controls frequency, volume, and waveshape of another.
Again., the presence of more than one note heard at a time seemed
distracting rather than helpful. This may be due to the limited
resolution of the sound board waveshapes, the method of varying the
timbre, and the serial nature of turning one note on after another.

The interactive system was definitively preferable to the timesharing
system with batch output. The turn—around time of the batch system
simply did not allow enough experimentation. The sound output could
not be varied dynamically so that a wide range of comparisons among
notes and sound characteristics was difficult. The inability to vary
the waveshape on the batch system (each of the 18 notes was based on a
sine wave) was also a hindrance. With either system, | found that
intense listening could become tiring after a period of time (30 to 45
minutes).

All the applications of sound encoding for data representation
described here indicate the value of sound as a means of information
presentation. Each of the three data types offers potential for
further study. These positive indications support the desirability of
a formal experiment to substantiate the validity of sound
representations. Chapter 5 describes the subsequent experiments and
their results.
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5: EXPERIMENTS

Having explored types of data appropriate for sound representation and
ways of encoding .that data into sound, | wanted to demonstrate more
concretely the feasibility of using sound to present data information.
I ran a set of experiments for two reasons: first, to determine that
sound does convey accurate information about the data and second, to
examine the potential of using sound to convey more information than
the usual means of data analysis. The problems of multivariate data
provided a good basis for the experiments because it was possible to
construct a straightforward task for volunteers and because other
methods of analysis exist for comparison.

Eight separate experiments covered a variety of data set differences
and a few alternatives for sound presentation. Phase 1 consisted of
three experiments in which one data set was translated, scaled, or
contained greater variable correlation relative to a second data set.
The positive results of Phase 1 led to a more formal set of

experiments in Phase 2. Three experiments made up Phase 2; two data
sets were presented with sound only, with graphics only, and with the
combination of sound and graphics. Finally, Phase 3 included two

additional experiments based on the sound-only experiment of Phase 2.
The first changed the mapping of data values to sound characteristics;:
the second changed the training methods for sound comparisons. Each
subject participated in only one of the éight experiments.

For each one of the experiments, two sets of data differed from each
other in a well-defined way. The task for each subject was to
determine whether each unknown test sample belonged to Set 1 or to Set
2. Since discriminant analysis offers a variety of computational
tools, I was able to compare the results with traditional methods of
discrimination. The procedures for each phase of the experiment were
the same. The following section describes the general procedure for

°




SOUND and COMPUTER INFORMATION PRESENTATION Page 55

an experiment, followed by detailed explanations of each phase and its
results.

5.1: Procedures

The experiment data bases were generated in well-defined ways. Using
a multivariate normal random deviate generator, [ created two sets of
data for each experiment. Each set of data was six-dimensional and
contained fifty samples. Following the procedures described for
multivariate data in Chapter 4 (Section 4.1), the data for both sets
of an experiment was encoded into sound. The sound characteristics
corresponding to the six dimensions were pitch, volume, duration,
attack, fundamental waveshape, and a fifth harmonic waveshape.

For a particular trial, a subject was told that the task involved
listening to sounds which were grouped into two sets. The objective,
after listening to a few sounds from each set, was to decide for each
subsequent sound whether it belonged in Set 1 or in Set 2. First the
subject spent about five minutes learning the mechanics of ‘the
facility —— adjusting volume and earphones and learning to wuse a
cursor for interactive input. Left alone, the subject was then
presented with ten samples randomly selected from Set 1 and ten from
Set 2. These were considered training samples and could be replayed
as many times as desired before proceeding to the testing. However,
once the training was completed, it could not be repeated later. Note
that because the training samples were chosen randomly, they varied
from subject to subject.

When satisfied with the training, a subject indicated testing was to
begin. Samples were played one at a time with no Set 1 or Set 2
identification. The subject’s task was to determine for each sample
whether it belonged in Set 1 or in Set 2. The subject could repeat
the current test sound as many times as desired before making a
choice. After the choice was made, the correct set for that sample
was displayed. Via this feedback, the subject was further trained.
Finally, a group of samples was played, one at a time, with the
subject choosing Set 1 or Set 2 for each but receiving no feedback on

the correct answer.
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For a given trial, the goal of the experiment was for the subject to
identify correctly those samples which were in Set 1 and those which
were in Set 2. Note that the subjects were given no information about
the ways in which the two sets differed. The subjects were not
familiar with the sound output; they knew nothing of the data set
relationshipé: and they had no previous experience in using sound for
categorizing data in this way. In order to separate samples into the
two groups, each subject had to rely on patterns derived solely from
listening to the training samples.

For each pair of data sets, results were produced from traditional
methods for discriminating sets of data. These results provided a
known standard for comparison. One ©program calculated the principal
components of the data, the variance accounted for by considering a
subset of the variables, and a plot of any two dimensions of the
transformed data (from the principal components). A second
discriminant analysis program (linear or quadratic regression)
indicated the percentage of unknowns correctly identified given a
known training set.

Table 5.1 summarizes the eight experiments. For- each trial of an
experiment, the variables were 1) the subjects participating, 2) the
training samples presented, and 3) the test items presented. The
recorded results were 1) the number of test items from Set 1 and the
number from Set 2, 2) which samples from each set were incorrectly
identified by the subject, and 3) where these samples occurred in the
testing sequence. Thus a phase of the experiment consisted of n
subjects, each of whom was tested on m items. A subject received
twenty training items, ten drawn randomly from each of the two sets of
data. The m test items were then drawn randomly from the remaining
eighty items in the combined sets.

5.2: Phase 1

To establish a basis for the fact that sound does convey information,
six-dimensional data bases were generated in which Set 2 variables
were translated relative to Set 1; scaled relative to Set 1, and had
weak correlation (whereas Set 1 had strong correlation) among the
variables. | chose this basis for defining two sets because they
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Experiments # subjects # training # test items
per set

Phase 1

Translation (3 trials) 7 10 40 per trial
Scaling (3 trials) 7 10 40 per trial
Correlation 4 10 60
Phase 2

Graphics only 25 10 40

Sound only 25 10 40

Graphics with sound 25 10 40

Mapping change 20 10 20

Training change 10 10 40

Table 5.1: Experiment Characteristics

could be separated easily by varying amounts (although any two data
sets were not necessarily distinct). For simplicity, all variables
were equivalent; that 1is, each dimension in Set 2 was translated,
scaled, or correlated by the same amount. Figure 5.1 shows an example
of each in which only two of the six dimensions are used for an x-y

plot. (Listen to the data set differences in Section 2 of Appendix
A).
Translation

Seven subjects used data bases in which Set 2 was translated relative
to Set 1. Given two sets of multivariate normal random data with a
standard deviation of 1, all sample values in the second set were
increased by n. Each subject participated in three different trials:
a) Set 2 transiated by n = 3, b) Set 2 translated by n = 1, and c) Set
2 translated by n = 0.5. In general, the sounds in Set 2 were higher,
louder, longer, and more buzzy than the sounds in Set 1.

The average percentage of correct responses (for twenty samples with
and twenty without feedback) was 92% for translation by 3, 70% for -
translation by 1, and 53% for translation by 0.5. The computer
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Figure 5.1: Phase 1 Data

discriminant analysis program was given 15 samples identified as Set 1

and 15

identified

Set 2 for known training samples.

The program

correctly identified 100%Z of the 40 unknowns for translation by 3, 95%

of 20 unknowns for
translation by 0.5.

(though not nearly so successful
As the separation

of

translation by 1,
As

and 70% of 70 unknowns for

hoped, the subjects performed in a consistent

the data sets

distinguish the sets by sound diminished.

a) manner as the traditional method.
decreased, the ability to
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Scaling

Seven subjects used data bases in which Set 2 was scaled relative to
Set 1. Given a set of multivariate normal random data, for all
samples in Set 2, each value was multiplied by n. Each subject
participated in two or three different trials: a) Set 2 scaled by
n =08, b)) Set 2 scaled by n =4, and ¢) Set 2 scaled by n = 2. In
general, the sounds in Set 2 were higher or lower, louder or softer,
longer or shorter, and more or less buzzy than sounds in Set 1. The
Set 1 sounds had mid-range characteristics and all sounded very much
alike.

The average percentage of correct responses (for twenty samples with
and twenty without feedback) was 69% for scaling by 8, 74% for scaling
by 4, and 55% for scaling by 2 ( only 2 subjects ). For five of the
subjects, the third trial was again scaled by 8 instead of 2. In this
case, the average was 76.5%. The discriminant analysis program, given
30 knowns, correctly identified 96% of the 70 unknowns for scaling by
8, 90% of 70 wunknowns for scaling by 4, and 56% of 70 unknowns for
scaling by 2.

In this set of trials, there are two likely implications of the
results. One is that scaled data is more difficult to distinguish
than translated data, particularly since the subjects had no prior
information about the data or the patterns to expect. This is
somewhat intuitive, recognizing that Set 1 lies within Set 2 and thus
does not have quite so clear a separation. Secondly, there seems to
be an effect of training, particularly from scaling by 8 to scaling by
4. The five who did a set scaled by 8, then by 4, and then by 8 again
seemed to improve consistently indicating that the differences between
scaling by 8 and scaling by 4 were not so great as the differences
between first attempting the experiment and attempting the experiment

after some practice.

Correlation

Four subjects used data bases in which the variables of Set 1 were
strongly correlated. In generating the usual data bases, the
covariance matrix for the multivariate normal random generator
contained 1°s on the diagonal with zeroes elsewhere. For this last
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part of Phase 1 experiments, the data base for Set 1 was created using

a covariance matrix in which all values off the diagonal were .99.
Thus, the variables in Set 2 had no strong correlation, while those in

set 1 did. In general, the sounds in Set 1 were high, loud, long, and
buzzy or low, soft, short, and pure or mid-range pitch, volume,
duration and timbre. Set 2 sounds might have any combination of

characteristics.

The average percentage of correct responses was 60% for 60 unknowns
(all with feedback). The discfiminant analysis program, given 30
knowns, correctly identified 967% of the 70 unknowns. This
relationship among data seems particularly difficult to distinguish
using sound, at least without further training.

#subjects #test average analysis program
items 7% correct % correct

Translation

by 3 7 40 92% 1007

by 1 7 40 70% 957

by 0.5 7 40 53% 70%
Scaling

by 8 7 40 697% 96%

by 4 7 40 74% 907%

by 2 2 40 55% 56%

repeat by 8 5 40 76 .57% -
Correlation

.99 4 60 607 967%

Table 5.2: Experiment Results

Results

The results were consistent with my expectations and are summarized in
Table 5.2. Although there were not enough subjects in each group to
confirm that the results were significant, the responses are positive.
When the two sets are widely separated (and thus easier to
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1.22 Figure 5.2 shows several plots of two of the six dimensions.

For sound output, x1 was mapped to waveshape, x2 to overtone
waveshape, x3 to pitch, x4 to envelope, x5 to duration, and x6 to
volume. This mapping was determined arbitrarily by listening to a

variety of mappings and subjectively picking that which seemed to
distinguish Set 1 from Set 2 most clearly. The sounds in Set 2 were
generally shorter and softer than Set 1 sounds because variables x4,
x5, and x6 were always less than 1.5. 1[If a Set 2 note was buzzy, then
it was low in pitch. When a Set 2 note was high in pitch, it could
not be very buzzy.

To establish the visual portion of the experiment, two-dimensional

plots were generated for each pair, {(xi.xj), of the 100 samples in
Sets 1 and 2. (Examples are given in Figure 5.2). | chose, as the
graph for visual information, the plot in which Set 1 points seemed

most distinct from Set 2 points. As a result, the horizontal axis
represented variable x1 and the vertical axis represented variable x5.
For graphic experiments, the identification of each point as belonging
to Set 1 or to Set 2 was removed and the entire plot was always
displayed. Figure 5.3 shows the plot of variable x1 versus variabie
x5 for the graphic display, and Figure 5.4 shows the plot as presented
to the subjects. A particular sample for training or testing was
indicated by highlighting the appropriate point.

Seventy-five subjects participated in Phase 2, 25 in each of three
groups. Each trial consisted of ten training samples from Set 1 and
ten from Set 2. The subject then had forty test samples to identify,
twenty samples with feedback and twenty without feedback. The first
group of 25 heard each sample, the second group both heard and saw
each sample, and the third group only saw each sample.

22. Variables x1, x2, and x3 of Set 2 lie within three cylinders, each of
radius 1.5 about the (first three axes. Variables x4, x5, and x6 of Set 2 lie
within a sphere of radius 1.5 about the origin of the last three axes. A Set 1
sample may overlap into either of those two three-space containers but not both.
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Results

Figure 5.5 shows the raw data which has been rank ordered so that
shbject 1 is the subject who had the fewest number of correctly
identified samples and subject 25 is the subject who had the greatest
number of <correctly identified samples.23 The average percentage of
samples correctly identified was 64 .57 for the sound-only
presentation, 62% for the graphics—-only presentation, and 69% for the
presentation combining sound and graphics. Discriminant analysis
using quadratic regression offered much better results. of 60
unknowns, 87% were correctly identified after a training set of 40

knowns .

In order to support the inference that sound was wuseful in
discriminating between data sets, several hypotheses about the
experiment results were checked statisically (see Appendix C). The
23. The curve representing random choice was determined by a psuedo experiment

in which the response for each test item was a random draw of Set | or Set 2.

This psuedo-experiment randomly drew 40 test items for each of 100 trials.
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EXPERIMENT DATA, PHASE 2
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Figure 5.5: Results
experiment results are positive, but it was worth questioning whether

the results could have occurred by chance and whether the results did
differ among the three experiments. The.calculations show at a 99.9%
confidence level that the participants were not responding by
guessing.. The second hypothesis was that the performance in each of
the three groups did not differ from group to group. This hypothesis
was rejected at a 95%Z confidence level. The performance scores of
participants in the group receiving the combined graphics and sound
presentation were higher than those in the graphics—-only presentation.
The sound-only results were not significantly different than the
graphics—-only results. Overall these results verify that sound indeed
provides information about multivariate data when it is presented to
human analysts.

The results support two observations. First, it seems that poor
performance was equivalent in any one of the three methods. Second, a
combination of sound and graphics provided an easier discrimination
task for subjects who did well than either sound alone or graphics
alone. Furthermore, sound alone seems to be as good a method for
discrimination as the two-dimensional graphics. This seems
particularly interesting knowing that subjects are usually familiar
with x-y plots but were totally unfamiliar with using sound for data

representation.
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As expected, the experiments suggested several wunanswered questions
which deserve further study.

l: How does one determine the mapping from data variables to
sound parameters?

2: How many sound parameters (and thus how many variables) can
be utilized?

3: Which sound parameters convey the most information?

4: How does the interaction among sound parameters affect the
information presented?

5: Does a learning curve exist? What is the best performance
that can be expected?

6: How does one provide a reference basis for comparing sounds
to a given standard or to known data?

7: What types of data are best suited for sound encoding?

8: How can sound and graphics be used together for information
presentation?

Although it is possible that sound may provide more information about
some data than traditional methods, such comparisons were not made.
In particular, no attempt was made to utilize the various graphical
methods for presenting multivariate data. The potential for combining
sound with graphics 1is exciting. However, further understanding of
the use of sound itself is «critical. Thus, the first questions to
address are those concerning sound alone.

5.4: Phase 3

Additional experiments provided initial observations in two areas
suggested above. One experiment used a different mapping between data
values and sound parameters. The other expanded the training for
subjects. In both cases, I used the same data and procedures as for
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the sound-only experiment in Phase 2. The mapping change provided no
noticeable change in responses; the training change increased the
subjects’ scores.

Mapping Change

Twenty subjects (who had not participated in Phase 1 or Phase 2
experiments) were tested with a different mapping of variables to
sound parameters. The mapping from data values to sound
characteristics determines the nature of the sounds. If one or two
data variables provide more of the data set variance than other
variables, then it would be wise to incorporate that knowledge in
defining the mapping. The task of data discrimination based on sound
presentation would be more straightforward if a procedure could be
found for selecting the optimal mapping from data values to sound.

A new mapping was chosen based on the output of a traditional
discriminant analysis program. The Phase 2 data sets described in
Section 5.3 were processed using a principal components analysis.
This offered some basis for ranking the importance of the contribution
of each variable as x2, x1, x3, x6, x4, and x5. VLikewise, listening
to sound variations offers some basis for ranking the characteristics
in importance as pitch, duration, waveshape, volume, envelope, and
overtone. Thus, for a change of mapping, x2 was mapped to pitch, x1
to duration, x3 to waveshape, x6 to volume, x4 to envelope, and x5 to
overtone.

The experiment procedures were like those of Phase 2 except that only
twenty subjects participated and only twenty samples (all with
feedback) were used as test items. Of the twenty subjects who
participated in the experiment with a change of mapping. the average
number of correctly identified samples was 62%. The results do not
indicate a significant difference with this new mapping.

Training Change

A subject’s success might increase with additional training since each
participant in the original Phase 2 experiment . was exposed to both
~unfamiliar equipment and unfamiliar tasks with only 15 to 20 minutes
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learning and testing. Also, it appeared that a subject performed
better with constant feedback (based on the difference in the number
of samples correctly identified when feedback was given versus the
number of samples correctly identified when no feedback was given).
Thus, some method of providing a continuous reference base could be
helpful in improving performance.

Another short experiment was run to indicate whether increased
training and available reference sounds would increase the number of
correctly identified samples. [ used the same experiment data as used
in the Phase 2 sound-only group. Fifteen subjects were randomly
selected from the 25 who participated in the sound—-only portion of the
original Phase 2 experiment. Therefore, the participants in this
experiment had previous experience with the sound presentation. Of
these, ten subjects repeated the sound-only experiment with the same
data base and mapping but with modified training.

Training

The following changes to the experiment procedure were added to
improve the training.

1: A participant could listen to each of the six
characteristics of sound varied one at a time while the
other five were held constant. This demonstrated the range
of each parameter for the listener. (Listen to the first
section in Appendix A).

2: When the ten training samples of each of the two sets were
played, a subject could listen to any subset in any order,
rather than always playing the twenty training samples
sequentially. This prevented any grouping of notes based on
a sequence pattern.

3: A subject could refer to the training set at any time during
the experiment. This gave the subject a reference point for
review, much as an x-y plot provides a constant reference on
the axes for relative positioning.
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4: Since the data sets used in the Phase 1 experiment were ones
which varied in separation, they offered a convenient base
of data sets for providing experience in identifying data
samples as sound. [ ran short sequences of the translation,
scaling, and correlation sets with follow—up explanations of
that data. This exercise provided each subject with a
variety of experiences in using sound for discriminating
sets of data.

The testing procedure was the same as that of the Phase 2 experiment.

Results

Subjectively, the most noticeable result was the attitude of the
participants. In general, they felt successful and enjoyed the
exercise more than they had the first time. Most were enthusiastic
about their ability to separate sets of data via sound and were
willing to participate in further trials.

The ability to refer to the ‘training sets at any time during the
experiment was particularly wuseful. Since sound 1is transient by
nature, subjects were able to refresh their memories on the
differences between Set 1| and Set 2 sounds. In fact, often a subject
repeatedly cycled between listening to a test sample and listening to
one or more training samples.

The average number of correct responses was 29.5 of the 40 test items

(73.8%) compared to a 25.8 average (64.5%) originally. One can
conclude that there was a significant improvement in the scores.
Unfortunately, there was a flaw in the experment. Training items
could be repeated as test items in this particular experiment
(although the subjects believed there was no overlap between the
training set and -the test items). Thus it is possible that the
improved scores resulted in part from the occasional overlap of
training and test items. Consequently, any statistical analysis is
meaningless. In observing the participants, | do not believe that the
overlap greatly influenced their behavior. I believe that the

improved training did in fact improve performance.
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5.5: Observations

The experiments confirmed the hypothesis that sound is useful in data

presentation. Subjects were successful in identifying sounds which
belonged in one of two sets. Their performances varied consistently
with the difficulty of the task as determined by the difference in the
two sets. It is particularly important that the performance improved

as the subjects became more familiar with the procedures and with a
variety of data set differences encoded into sound. The results 1in
using a combination of sound and graphics are especially positive and
indicate a technique for improving current methods of presenting
information.

The subjects were not requested to make judgements about the nature of

the data. Generally data samples were discussed in terms of single
sound characteristics; higher or lower, louder or softer, longer or
shorter. The results of Phase | show that translation differences

were easier to recognize than other methods of separating data sets.
That is, when one group of sounds was consistently higher or louder or
longer than another, subjects discovered the pattern readily. The
correlation of sound characteristics was difficult to perceive (listen
to the data in Section 2 of Appendix A), although a visual correlation
of variables is recognizable (look again at the same correlation data
in Figures 1.10 and 5.1). With practice, subjects did improve in
hearing the variable <correlation in sound. No attempt was made with
any of the data to have subjects derive any absolute information about

that data. Even in a relative sense, subjects tended to think of only
one dimension at a time ("This note is louder than that note”, or "The
first note was shorter than the second note”), although | am convinced

they heard and discriminated on the gestalt.
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6: SUMMARY

Computer—generated sound is one -solution to the existing need for
additional methods of information presentation. The increasing use of
computers provides an abundance of data output. To be useful, this
data must be presented in ways which are easily grasped by analysts.
Computer graphics offers a variety of ways to display information but
is limited to one sensory input and in- the number of dimensions
available for encoding. Sound is useful in daily life and already has

a well-understood language. Data can be encoded into sounds so that
information is preserved. This sound encoding provides a new tool for
exploratory data analysis. The possibilities for future research are
vast. B )

The next two sections summarize the conclusions of the work described
in previous chapters and outline several topics for further
exploration.

8.1: Conclusions

This thesis demonstrates that sound is useful for computer information
presentation. The work describes successful attempts in encoding
different types of data into sound. A formal experiment verifies that
sound representation of data is useful. Finally, sound adds
information when presented in combination with graphics.

Several types of data are appropriate for sound representation. The
studies described in Chapter 4 provide a variety of data types which
are particularly natural for encoding into sound. Listeners were able
to discover differences and patterns in logarithmic, time-varying. and
discrete multivariate data. Earlier work of Yeung, Mathews, and
Wilson indicates the value of using sound to present multivariate data
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samples and patterns in table data. The studies presented here expand
that base to include other data types which are appropriate for sound.

Sound is a useful discriminant in <classifying data samples. The
experiments explained in Chapter 5 validate the hypothesis that sound
can be used for information presentation. In the Phase 2 experiments,
subjects did classify data based on sounds and sound encoding was as
good for discrimination as a two-dimensional graphics plot. These
results provide formal verification of the ideas suggested by the
initial studies in Chapter 4 and by the observations of Yeung,
Mathews, and Wilson.

A combined presentation of graphics and sound is more useful than
two~dimensional graphics alone for <classifying six-dimensional data
samples. Subjects performed better when discriminating between two
sets of six-dimensional data given information in sound combined with
a two-dimensional plot than when given graphics alone.

6.2: Future Exploration

The results thus far indicate that sound offers an exciting new means
for computer information presentation. The work that has been done is
only a small beginning. A better understanding of both applications
and techniques is needed to build a solid foundation for the use of
sound. Given the methods described already, many data problems could
be examined and encoded. At the same time, these applications and
techniques are oniy a few of the possible implementations.

This section reviews types of data that are particularly applicable
for sound encoding and describes methods that deserve further
attention for audio data presentation. A value of any technique is
its ability to aid an application. Recognition of a broad range of
applications and techniques will confirm that sound is an effective

tool for human/machine communication.
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Applications

The applications for sound presentation involve not only the type of
data to be presented but also the audience and the interface to that
audience. [ have discussed briefly a few types of problems for which
sound could be useful. However, one of the greatest difficulties I
have faced 1is the acceptance that sounds are a valid means of
presenting data. Particularly when exploring scientific data,
analysts are accustomed to visual representations. It is obvious that
sound presentation of data broadens the base of information available
to those who cannot see or who are in tasks which already require
visual attention. However, it is not so intuitive that sound can
adequately present scientific information for general use. The burden
is on the research in sound presentation to show applications in which
sound does convey useful information and to find ways of introducing
the sound presentation to listeners.

One way of demonstrating the feasibility of sound for data use is to
emphasize applications in which the sound encoding provides more
information about the data than traditional methods alone. [ have
already discussed multivariate data in great detail. [ believe that
the area is well worth pursuing. Now | would like to focus more
attention on audio cues, logarithmic data, and time-varying data. The
work described in Chapter 4 already shows the value of sound
representation for these areas of data presentation. [ would like to
suggest applications of these data types which are particularly suited
for exploring sound encoding.

Audio Cues

One of the most straightforward applications of presenting information
in sound is that of audio cues. | define an audio cue as a single
sound of short duration which is wused to focus the listener’s
attention. Computer terminals have bells which signal requests for
user input or task completion. It would be a simple matter to extend
this idea to more complex situations.

The use of audio cues seems most appropriate for interactive
applications with graphic output when the user is involved and visual
attention is captured. One such example is any application in which
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the contents of the display are very complex and rapidly changing. An
audio cue would be especially helpful every time critical events
occurred (such as explosions in a battlefield simulation). The audio
cue is essential when the application is such that the display does
not contain all the events at any one time. An audio cue can signal
those events which occur off the current display and would not be
seen. Similarly, an audio cue might be used to track a single event
such as temperature in an application of weather monitoring. These
are not technically difficult concepts but their potential helpfulness
has not been fully utilized. '

Robert Lee used audio cues in a film portraying a two-step laser

isotope separation process [48]. A gas of mixed U-235 and U-238 was
exposed to a laser that excited the U-235. A beep corresponded to
each isotope excitation. Subsequently, a second laser ionized those
isotopes in the excited state so that they were attracted to a
negative plate. For each ionization, a tone was heard which lasted
until the ionized isotope reached the negative plate. If more than
one isotope was ionized, then more than one tone was heard. Graphics

displayed the motion of all isotopes. An isotope raised to an excited
state was enlarged; an ionized isotope immediately fell toward the
negative plate. However, the many events occurring on the display
often distracted the observers’ attention away from other critical
events. The audio cues were valuable in drawing the observer’s
attention to the isotope excitation and the subsequent ionization.
Furthermore, the observer heard sequences of events without having to
scan the display for rapidly changing situations.

Logarithmic Data

The examples of logarithmic data encoded into sound were encouraging.
Although the sound encoding did not necessarily use more information

than the wusual logarithmic plots, it produced more noticeable
differences and relationships in the data. An analyst obtains
information more quickly or finds information that was not previously
obvious.

Often analysts are searching for patterns in the behavior of

logarithmic data. Such tasks almost always are aided by a different

Y
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perspective of the data. Since sound has inherent logarithmic
characteristics, [ believe it adds new insight to the data.

Time—varying Data

Like logarithmic data, time-varying data deserves additional follow-up
to the work described wearlier. In the battliefield examples with
similar outcomes, songs often varied noticeably indicating that very
different events led to the same conclusions. Sound allows a
relatively short capsule replay of information which varied over time.
In such replays, it is easy to notice critical events within a song or
vast differences among songs.

Whereas the audio cues are most suggestive of interactive data
analysis, sound for time-varying data has potential for reviewing
batch data analysis. I would like to explore further applications in
which the number of interacting variables is at least four or five and
for which the analyst involvement is one of looking back at
intermediate actions and final results. I believe that encoding the
events in sound provides a helpful tool for quick review of the entire
problem.

Techniques

Whatever the available applications for using sound, the techniques
are critical for insuring that the sound adequately describes the

data. The next sections describe five areas relating to the
techniques for using sound to present information. Two are concerned
with the mechanics of presenting the information in sound: one, the

mapping between data variables and sound parameters and two, the need
for a constant reference base of sounds. The third area touches on
the need to understand better our perception of sound. The other two
areas suggest additional characteristics of sound for encoding data.
Timbre and stereo/location are two aspects of sound which could be
utilized to provide stronger recognition of data.
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Variable-To-Sound Mapping

Several considerations arise when encoding a data set into sound. In
particular, one must determine which data variables map to which sound
characteristics. My methods were sufficient to establish sound as a
useful means of presenting data. More sophisticated methods are
needed for widespread use.

One issue to address is how many characteristics (dimensions) of sound
can be utilized. Yeung [99] suggests that up to twenty are possible.
My own experience indicates that probably only four or five will
actually add information. Discovering guidelines for the amount of
information that can be encoded into sound will help determine how
other factors of sound encoding can be optimized.

A second consideration is the data itself. In many cases, some of the
data variables may not be independent. - This fact may or may not be
known at the time of initial analysis. For example, the knowledge

that two variables vary inversely would be useful in determining which
sound characteristics to assign to those variables.

A third consideration 1is the relationship among sound parameters.

Some aspects of sound are more significant than others. Additionally,
some aspects of sound work together. Because perceived volume
decreases as pitch increases, it is not clear that two independent
variables can be meaningfully mapped into pitch and volume. One

solution is to base the volume on the value of the pitch. Using sound
for information presentation increases the need for a good
understanding of psycho-acoustics.

It would be ideal if a general algorithm existed which would find the
mapping between a data set and sound characteristics. It 1is not
likely that one such procedure will satisfy all applications. Rather,
further exploration will determine guidelines for satisfactory use of
sound to encode data.
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Sound Reference Base

One of the most significant changes reported by most subjects who
participated in the Phase 3 experiment with additional training was
the ability to refer to the training sets at any time. Just as we
often make visual decisions by comparing two or more objects,
discriminating among sounds was easier when a comparision was
available. Other reference bases should be explored.

One suggestion by an experiment subject was that the range of each
sound parameter being used in the information presentation be
constantly available. For example, if pitch, volume, duration and
waveshape are varying, then provide access to the low, median and high
values for each. That is, at any time, a user could listen to the low
volume or the median duration or the high value waveshape as a

reference for the current sound being heard.

The reference base becomes more di}ficult when the data is time
varying. Because there 1is no pause between notes, there is no
opportunity for reference to other sets énd standards of sound. It is
conceivable that a constant note could accompany the data sound and
thus provide a base much like an axis runs past plots. However, such
an approach immediately complicates the output sound.

Resolution In Sound

The resolution of sounds affects the actual information that analysts
derive from sound presentations. Graphics offers very good spatial
resolution that provides absolute distances for data value separation.
Color differences in hue, saturation, and intensity are not so easily
quantified. Two colors which are very close may look alike, and it is
difficult to determine anything other than relative data information
(i.e., one color or data item is different than another color or data

item). Sound resolution offers similar problems.

First, how different do two sounds have to be in order to be
classified by a listener as different? Many timbre differences are
noticeable only if the duration of the note exceeds some minimum time.
For example, two different attacks will not be effective if the
duration of the notes is less than the length of the attacks.
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Second, how do differences among sounds translate into information
about the data? Subjects can distinguish between data sounds and
correctly classify a sound with others of similar characteristics. In
a data plot, one can determine absolute object sizes and distances
among samples. [t is not <clear that such absolute information is
available from sound. Graphicaliy, one would expect also to notice
facts about the various sets such as their relative masses or shapes.
Sound may provide similar information (in the Phase 1 scaling
experiment, subjects did recognize a set which was within another
set), but experience is needed to understand better the methods.

Timbre

The effect of timbre 1is certainly one of the most significant
characteristics of sound. For example, note how easily one can
distinguish between a trumpet and a clarinet at the same pitch and
volume. This ability to discriminate based on the shape of the sound
needs further study'to realize its potential.

The difference between the sound of a clarinet and-that of a trumpet
can be shown by examining their respective waveshapes [87]. 1In a
clarinet, the even harmonics tend to be suppressed. The resulting
sound tends to be like that of a square wave. In a trumpet, the
higher the frequency harmonic, the later it appears in the tone. That
is, higher-numbered harmonics do not rise to their steady-state values
as quickly as lower-numbered harmonics.

The encoding methods described in Chapters 4 and 5 used the waveshape
in a very straightforward and computationally simple manner .
Beginning with a pure sine wave defined by 128 values, random values
were chosen and substituted for random positions in the sine function
until the shape of the sine was lost and a buzz resulted. This method
indeed provided a varying sound but did not address the full range of
possible discriminations based on timbre. At least two approaches are
worth consideration. The first is that of altering the waveshape
itself by changing discrete values. A second is to create the
waveshape by adding components. More control of the waveshape allows
more noticeable note differentiation.
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Varying from a sine wave to a random buzz is one example of the first

approach. Use of various functions, such as sine, square, or sawtooth
(refer to Section 2.1), is another. One possible alternative is to
move from a given waveshape (say, that of a clarinet) to some other
(say, that of a trumpet). Such interpolation needs careful thought,

especially to insure a smooth and even transition.

The second approach suggests «creating a waveshape and directly
controlling the overtones for each data value. This offers an
additional capability, particularly to users with some musical
training. Building a waveshape of chosen overtones controls the
harmony or dissonance of the sound. The amount of dissonance becomes
an additional sound parameter. If two or more notes are being used

simultaneously, harmonic variations may be a more meaningful way to
vary their respective pitches than by an absolute mapping of variable
values directly to pitch.

Stereo

Stereo sound can be achieved quite easily given at least two output
sound signals and headphones or dual speakers. Chowning [15] has gone
a step further by examining the spatial orientation of sound. Thus
another aspect of sound offers itself for use in presenting data.

For a single note encoding, stereo might be used to represent one of
the variable values. For example, in sending one note to two
speakers, the stereo value might determine the amplitudes of each
signal going to its respective speaker.

Location variation is perhaps more straightforward though less easily

implemented. The value of the variable mapped to location determines
the location of the sound. This capability has a direct
correspondence to graphical plotting. It seems particularly

applicable to three-dimensional data since location is considered in a
three-dimensional space. The comparision of three-dimensional plots
with three-dimensional sounds is intriguing.
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APPENDIX A: RECORDING

The accompanying recording contains examples of the sounds used to
present data. VListening to this recording will help understanding of
the procedures and ideas described in this paper.

The sections labeled Phase 2 Experiment, Fisher Iris Data, and Spectra
Data are arranged so that the listener can hear the training samples
and then try to select the correct set for each test item. These test
items are identified in the text for <checking the results of a
self-test or for reading while listening to the notes.

1: Parameter Variations

Each variable value was mapped to the (0.0, 1.0) range. Each sound
parameter was varied over some integral number of levels. A variable
value can be easily mapped to a corresponding level of a sound
parameter. Thus, a value of 0.0 causes the lowest pitch (130 Hz), the

softest volume, or the shortest duration (55 msec). A value of 1.0
maps to the highest pitch (2000 Hz), the loudest volume, or the
longest duration (1.05 second). For attack, a value of 0.0 will cause

a slow attack envelope and a value of 1.0 will cause a high, sharp
attack envelope. 0.0 maps to a pure sine waveshape for either the
fundamental waveshape or the overtone waveshape. 1.0 maps to a random
waveshape for either the fundamental or the overtone. Section 4.1
contains a complete description of the parameter variations.

On the recording, each sound parameter varies for data values
0.0, 0.1, 0.2, ..., 1.0 while the other five parameters are held
constant. The constant values for pitch, volume, and duration
correspond to data values of 0.5. When not being varied, the attack
is constant (1.0), the waveshape is pure (0.0), and the overtone is
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not used. The first section on the recording illustrates these

parameter variations.

LISTEN to eleven variations for each of the six sound parameters:
pitch, volume, duration, attack, fundamental waveshape, and overtone

waveshape.

2: Normalization

Pairs of data sets were used to verify that information was presented
meaningfully and consistently to listeners. First, Set 2 data was
translated relative to Set 1 data. Second, Set 2 data was scaled
relative to Set 1 data. Third, Set 1| variables had a .99 correlation
with each other while Set 2 variables had no correlation. Section 5.2
contains a complete description of the normalization (Phase 1)
experiments and Figure 5.1 illustrates the data set differences.

The data was six-dimensional with each dimension varying in the same
way. Thus, the mapping between data variables and sound parameters
was not significant.

Translation

In the first pair of data sets, Set 2 was translated by 3 standard
deviations. Note that Set 2 sounds are sharper, louder, longer,
higher, and buzzier. In the second pair, Set 2 was transl!ated only 1
standard deviation. Set 2 data and Set 1 data more frequently overlap
but Set 2 still has a noticeably sharp attack and long duration.

LISTEN to the translation pairs.

Scaling

In the first pair of scaled data sets, Set 2 was scaled by 8 standard
deviations. Note that Set 1 samples are very mid-range and all sound
very much alike. Set 2 samples seem to jump all around. They may be
high and short, soft and low, or any combination whatsoever of
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parameters. ' In the second pair, Set 2 was scaled by 4 standard
deviations. Ten values will be played from each set for each of two
scalings.

LISTEN to the scaled pairs.

Correlation

Set 1 variables had a .99 correlation while the variables in Set 2 had
no correlation. Thus., Set 1 sounds have corresponding
characteristics. A sample in Set 1 which 1is low in pitch is also
soft, short, very pure, and has a long attack. A Set 1 sample which
is loud is also long, buzzy, high—-pitched, and has a sharp attack with
buzzy overtone. A good example of the difference in Set 2 is the
fourth training sample which has low pitch (a low data value) but loud
volume and long duration (high data values). Ten values will be
played from each set of the correlation pair.

LISTEN to the correlation pair.

3: Phase 2 Experiment

These sounds are a subset of those which were wused as part of the
training and testing for Phase 2 of the experiments described in

Section 5.3. The six-dimensional experiment data was mapped into six
parameters of sound. These parameters were pitch, volume, duration,
attack, fundamental waveshape, and overtone waveshape. Each

participant was given ten samples from Set 1 and ten samples from Set
2 as training. Subsequently, forty test samples were played, one at a
time. The participant repeated the test sample as often as desired
before indicating whether the sample belonged in Set 1 or in Set 2.

Training Sets

Ten samples were randomly selected from Set 1 and ten from Set 2 for
training. Variable 1 was mapped to waveshape, 2 to overtone, 3 to
pitch, 4 to attack, 5 to duration, and 6 to volume. At most, one of
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pitch, waveshape, or overtone has a high value in Set 2. (Refer to
Section 5.3 for more details of the data sets). Note that Set 2
samples are in general soft, low, short, and pure sounding.

For reference to the actual data (Appendix B), the training sample
sequence numbers are listed. For example, the first training sample
in Set 1 is sample 43, (0.989, 0.050, 0.052, 0.209, 1.511, 0.992).
Given that variables 1, 5, and 6 were mapped to waveshape, duration,
and volume, the note is noticeably loud, long, and buzzy. Variable 3
is quite low as is the corresponding pitch of sample 43.

Set 1: 43, 49, 28, 6, 33, 37, 14, 24, 46, 21

Set 2: 50, 18, 27, 9, 4, 30, 48, 19, 10, 11

LISTEN to the ten training notes for Set 1 and the ten for Set 2.

Testing
LISTEN to twenty of the test samples.
The correct identification for the samples is as follows.

#1 is Set 2, sample 32. It is very short, soft, and
low in pitch.

#2 is Set 1, sample 39. This note 1is noticeably
longer, louder, and higher in pitch.

#3 is Set 1, sample 40. The mid=-range pitch and buzz
indicate that it is not in Set 2.

#4 is Set 2, sample 12. Although it is a higher note,
it is soft with a long attack.

#5 is Set 2, sample 25. The note is low in pitech and
short.
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#6

#7

#8

#10

#11

#12

#13

#14

#15

#16

#17

is Set 1, sample 27. The loud volume and longer
duration are indicative of Set 1.

is Set 2, sample 2. The pitch is high and slightly
long, but all else remains low as expected in Set
2.

is Set 1, sample 45. Many higher values are
represented by a sharper attack and buzzy note.

is Set 2, sample 42. Although the note is buzzy, it
is short and softer with a slow attack.

is Set 2, sample 38. The note is very low and
short.

is Set 1, sample 20. The note is loud with a sharp
attack despite being low and short.

is Set 2, sample 34. It is low and otherwise a bit
mid-range.

is Set 1, sample 15. The note is too high and long
to be in Set 2.

is Set 1, sample 3. The note is harder to place in
either Set 1 or Set 2 by listening. It is a bit
too long and loud for Set 2, given other mid-range
values.

is Set 1, sample 30. The note is low but also long
with a sharp attack.

is Set 2, sample 41. The note is only mid-range in
pitch and soft and short. '

is Set 1, sample 23. Set 1 characteristics are the
sharp attack, the high volume, and the duration.

Page 99
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#18 is Set 2, sample 23. The note is louder than usual
for Set 2, but it has a slow attack and a low
pitch.

#19 is Set 1, sample 18. The note is short but has the
louder volume and sharper attack of Set 1. The
short duration makes it difficult to hear the
buzziness.

#20 is Set 2, sample 44. A note with no outstanding
features is characteristic of Set 2 (particularly
since the attack is noticeably slow).

4: Fischer Iris Data

R. A. Fisher used measurements from fifty plants for each of three
species, /ris setosa, Iris wversicolor, and Iris wvirginica, for
discriminant analysis by linear functions during the 1930s. This data
consists of four variables for each flower: sepal length, sepal
width, petal length, and petal width. Since several studies in
discriminant analysis refer to this data, it 1is included here.
Section 4.1 also describes the iris data.

Training

There are only four variables, so no overtone was used and the attack
was a constant sharp attack. By listening to the notes, the sounds
for each set can be generalized. The notes in Set 1 are extremely low
pitched, short, and loud. Set 2 notes and Set 3 notes are higher and
longer, but Set 2 notes are midrange in pitch while Set 3 notes are
generally higher pitched, longer, and slightly buzzy.

LISTEN to ten training samples for each of the three data sets.
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Testing

LISTEN to ten of the test samples.

The correct identification for the samples is as follows.

#1 belongs to Set 1. The note is soft, low, and short.

#2 belongs to Set 3. Note the high pitch and long

duration of a very pure tone.

#3 belongs to Set 3. This note is slightly longer and

less pure but still high.

#4 belongs to Set 2. Note the mid-range of
parameters.
#5 belongs to Set 1. As usual, a Set 1 note is

short, and soft. Note that this example
especially buzzy.

#6 belongs to Set 3. The note is long and high

pitched.

#7 belongs to Set 2. It’s a pure—sounding tone with

very mid-range characteristics.

#8 belongs to Set 1. The especially low pitch

clearly indicative of Set 1.

#9 belongs to Set 3. Note that this is longer and

louder than #6.

#10 belongs to Set 2. This note is very pure,
mid-range otherwise.

Page 101
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5: Spectra Data

Actual y~ray spectra data consisted of four sets of 17-dimensional
data. After transforming the original data with a principal component
analysis, the resulting first six principal components were used as
the six variables for each sample.

Training

Like the iris data, the spectra data has no well-defined algorithm for
determining the different sets. The notes in Set 1 are low in pitch,
loud, somewhat buzzy, and mid-duration. Set 2 notes are higher,
louder, and with a sharp attack as are Set 3 notes. However, Set 3
notes differ from Set 2 notes by being shorter and a bit more buzzy.
Set 4 notes are noticeably higher in pitch than any of the others.

LISTEN to ten training samples for each of the four data sets.

Testing
LISTEN to ten of the test samples.
The correct identification for the samples is as follows.

#1 belongs to Set 2. Note the sharp attack and
midrange pitch.

#2 belongs to Set 4. Note the high pitch.

#3 belongs to Set 4. Note the high pitch and longer
duration.

#4 belongs to Set 2. Note the longer duration with

some buzziness and overtone.

#5 belongs to Set 3. Set 3 notes usually are midrange
in all parameters and shorter than Set 2 notes.
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#6 belongs to Set 2. Note again the longer duration of
Set 2 notes.

#7 belongs to Set 4. The Set 4 notes are easily
distinguished by the high pitch.

#8 belongs to Set 3. Note the shorter duration.

#9 belongs to Set 3. The short duration separates Set
3 from Set 2.

#10 belongs to Set 1. The lower pitch and longer
duration make Set | easy to identify.

6: Battle Songs

Three songs were created from the time data output of three battle

simulations. For each of two sides, units could be in any of three
states == in feserve. in transit to the front, or in combat at the
front. Losses occurred from user scheduled attacks or from mutual
attrition at the front. For a given battle at each time step, the
number of units at the Side A front lines, the number of units at the
Side B front lines, the number of Side A units in transit, and the
number of Side B wunits in transit were recorded. Two notes were

played, a pure note with sharp attack for Side A and a buzzy note with
overtone and long attack for Side B. For each note, the number of
units at the front determined the corresponding pitch for that time
step. The number of units in transit determined the volume. Thus the
pitch of a note rose as the front line units increased, and the volume
increased as the number of units moving toward the front line
increased. Section 4.3 contains additional information on battle
songs.

Battles With The Same Starting Input

Three battles were run with constant starting parameters. That is, at
the start of each battle, the number of units for Sides A and B did
not vary from one battle to the next. Also, the times of major
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attacks were specified. Probabilistic random—number-generated events
determined specific unit movements and losses.

LISTEN to Side A of the first battle. Note the sharp decrease in
pitch which signifies a decrease in the number of units at the front.

LISTEN to Side A of the second battle. Even though the battle began
with the same parameters, the front units increase to a greater number
than in the first battle.

LISTEN to both sides of the first battle. Despite Side A°s loss of
units, Side A regains strength at the end with more front units than
Side B has.

LISTEN to both sides of the second battle. Note the strong comeback
of Side A front units while the number of units at the front of Side B
stays fairly constant in the second half of the battle.

LISTEN to Side A of the third battle. Although the volume indicates
an increase in the number of units in transit about halfway through
the battle, Side A never makes a strong comeback.

LISTEN to Side B of the third battle. Note the increasing number of
units at the front for Side B.

LISTEN to both sides of the third battle. Once again, the front units

of Side A suddenly decrease. This time, however, Side B grows in
strength and ends the battle with more units at the front than Side A.

Battles With Varying Start Parameters

In this set of three battles, the start parameters for each of the
three battles differed.

LISTEN to Side A of the first battle. The number of front units for
Side A increases with only a little fluctuation.

LISTEN to Side B of the first battle. Despite some increase in the
number of units in transit for Side B, the number of units at the
front does not increase.
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LISTEN to both sides of the first battle. Note that Side A always has
more forces at the front than Side B. In fact, the number of Side B

front units stays constant or drops.

LISTEN to both sides of the second battle. Side A has a sudden
decrease in the number of units at the front and never regains enough

strength to overcome Side B.

LISTEN to both sides of the third battle. Side A loses a few units at
the front but then recovers to end with greater force than Side B.
Note that the number of front units for Side B wobbles and that Side A
has a fairly large number of units in transit.
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APPENDIX B: PHASE 2 DATA

The following data is the complete set of samples used for the

experiment, Phase 2. This is the original data before it was
normalized to the (0,1) range. Sample 1i,j is the j‘h sample of the
ith gset. The Minimum Sum is the minimum of the three values

x22 + x3% + x42 + x52% + x6%2
x12 + x32 + x42 + x5%2 + x6°2
x12 + x22 + x42 + x52 + x6%2.

Note that the minimum sum in Set 1 is always greater than 2.25 and the
minimum sum in Set 2 is always less than 2.25.

Sample x1 x2 x3 x4 x5 x6 Minimum Sum

1, 1 1.700 0.577 0.229 1.114 0.432 0.978 2.769

1, 2 0.680 0.488 1.126 1.200 0.418 0.448 2.516

1, 3 0.222 0.892 0.748 0.665 1.145 0.258 2.429

1, 4 0.906 0.169 0.991 0.334 1.562 0.838 4.103

1, § 0.904 0.669 0.487 0.783 1.6685 0.031 4.071

1, 6 2.184 0.645 0.815 1.031 0.663 0.212 2.628

1, 7 0.886 0.366 0.570 1.571 2.040 1.357 8.930

1, 8 0.117 1.143 0.590 0.465 0.246 2.900 9.049

1, 9 0.435 0.236 1.280 0.698 1.382 0.182 2.875 v
- 1,10 1.258 0.085 1.722 0.133 1.364 0.202 3.509

1,11 1.394 0.775 0.080 0.448 0.541 1.631 3.759

1,12 0.807 1.411 0.515 0.851 0.681 0.749 2.6865 N

1,13 1.355 0.099 0.235 2.054 0.656 2.127 9.238

1.14 0.498 2.482 0.370 0.743 1.580 0.415 3.606
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APPENDIX

This appendix contains more
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Section 5.3).
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The purpose of
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Three
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ability to
analysis of the results is used
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in data discrimination.
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C: ANALYSIS

detailed
xperiment

information concerning the
described in Chapter 5 (see

experiment was to

t enhance other methods of data
of subjects were tested for their
two sources of test items. The data

to verify that the subjects’ responses
conclude that sound enhances graphics

1: Experimental Data

For Phase 2 of the
assigned to one of

exper iment,

three gr
data,

data,

representations of the
representations of the

75 subjects were selected and randomly

oups. Group 1 saw two-dimensional

group 2 heard six-dimensional

and group 3 both saw two-dimensional

representations and heard six-dimensional representations of the data.

The experiment task was for a

item as belonging to one of two
with 40 test items,
identify the
correctly placed in one of

chosen at
source of each

individual ‘s score. The raw
summarized in Table C.1.

subject to identify correctly a test
data sets. Each subject was presented
random from the two sets, and asked to
test item. The number of test items
the two sets was recorded as the

scores (ordered from low to high) are
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Grou
Index 1 2 3
1 17 19 19
2 18 19 20
3 19 22 21
4 19 23 22
5 20 23 23
<] 23 24 23
7 23 24 24
8 23 25 26
9 23 25 27
10 24 25 27
11 25 25 28
12 26 26 28
13 28 26 28
14 26 26 29
15 26 26 30
16 27 27 30
17 27 27 30
18 27 27 30
19 28 28 30
20 28 28 31
21 28 29 31
22 29 30 32
23 29 30 32
24 30 30 32
25 30 31 35
Mean 24.8 25.8 27.5
Standard Deviation 3.75 3.07 4.16

Table C.1: Phase 2 Raw Scores

2: Data Analysis

The data analysis attempts to answer the following two questions:
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l: Were the subjects’ .responses better than would be expected
from guessing?

2: Did some test groups perform better than others?

Definitions

The following variables were identified for the statistical methods
used in the data analysis.

N is the number of test items presented to each subject; N = 40 for
each subject.

N(i,j) is the number of test items correctly identified by the j'"
subject in the it'h group.
i=1, 2, or 3 where
1 is the group exposed to graphics only,
2 is the group exposed to sound only, and

3 is the group exposed to both graphics and sound.
j=1,2,...,25.

X(i,j) is the proportion correctly identified by the j‘h subject in
the ith group.

. N(i.j)

X(i.j) =

N

P(i,j) is the probability of a correct response by the jth subject in
the ith group, assumed to be constant for all test items.

P(i,+) is the average probability of a correct response among subjects
in the ith group.
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Question |: Were Responses Better Than Chance?

To decide if performances were better than would be observed if
subjects identified the set of a test item by chance alone, the
hypothesis of chance selection,

Hy,: P(i,j) = 0.5 for all i, j,
was tested. The following analysis wuses a chi-square statistic to

show that one can reject Hy, and conclude that the responses were not
by chance alone.

Under the assumption that a subject has a constant probability p of
correctly identifying the set of a test item, the variable N(i,j) is a
binomial random variable with parameters N = 40 and p = P(i,j). Under
the hypothesis of chance identification, the expected number of
correct responses is pN = 0.5-40 = 20.

To test the hypothesis Hy,. an appropriate test statistic is a
chi-square statistic with 75 degrees of freedom (25 subjects in each
of three groups).

3 25 ( N(i.,j) - pN )?
;X?75 = 2 Z

isl j=i1 p(1-p)N

Using the data in Table C.1,

X? = 386.0.

Since the 99.9th percentile of the chi-square distribution with
parameter v = 75 is

X?7s..999 = 119.0,

one can reject H,, and conclude that the responses were not chance

selections.
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Question 2: Did One Group Perform Better Than Any Other Group?

The hypothesis to be tested,

Hyo: P(1,:) = P(2,-) = P(3,-),

is that the average performance (i.e. probability of correct
identification) is the same for all three groups. The following
analysis uses an F-distribution statistic and the Newman-Keuls

statistic. First, the variation between groups is compared with the
variation of individuals within a group to show that the group
performances are different. Second, the average differences among
groups are compared. The statistic shows that group 3 (sound and
graphics) performed better than group 1 (graphics only) at a .95
confidence level.

To use the method of analysis of variance for testing hypothesis Hyop
it is necessary to assume that the variance of the responses is
constant for all i, j. Since the response, N(i,j), is a binomial
random variable for which the variance 1is related to the mean, the
variances can be different among the groups. Thus, a transformed
variable was used to approximate more <closely the constant variance
assumption for the analysis of variance method. The appropriate
transformed variable is

Y(i.j) = sin "™V X(i.j)

The data in Table C.1 was transformed and analyzed. The analysis of
variance table, Table .2, summarizes the variation in the Y(i,j)
attributable to the two sources of variation: 1) the variation in the
average probability of correct identification, P(i,+), between groups;
2) the variation in the probability of correct identification, P(i,j).
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Source of Degrees of Sum of Mean
Variation Freedom Squares Square
Groups 2 229.3 114.6
Subjects/group 72 2350.3 32.6
Total 74 2579.6

Table C.2: Analysis of Variance Table

between individuals within a group.

The test statistic for testing Hy, is

Group Mean Squares

e )
(]

Subject Mean Squares

Using the data in Table C.2,
F = 3.51.

Since the 95th percentile of the F-distribution with parameters v, =2
and v, = 72 is

F2'72(0.95) = 3.13,

one can reject Hy, and conclude that group performances were
different.

Given that the hypothesis of equal performance is rejected, it is
appropriate to identify groups which performed better than others.
The Newman-Keuls statistic was wused to identify such groups. This
statistic is based on the range between the respective group averages.

Using the transformed data, Y(i,j), the group averages are
Group Index Mean, Y(i,-)
Graphics only i=1 52.12
Sound only 2 53.54
Graphics and Sound 3 56.33
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Thus comparing graphics only versus sound only involves a range of two
groups, comparing graphics only versus graphics and sound involves a

range of three groups, and comparing sound only versus graphics and
sound involves a range of two groups. The observed differences are
1¥(1.-) - ¥(2,-)] =1.42
IY(1,-) = ¥(3.,-)] = 4.21

1¥(2.,-) - ¥(3,:)] =2.79

The Newman-Keuls test compares the difference |?(i.-) - ?(k.-)l for
each pair of groups against

Subject Mean Square

q, 72(0.95
25

where q_ ,,(0.95) is the 95th percentile of the normalized difference
between groups, and

25 is the number of subjects per group,
72 is the degrees of freedom for the Subject Mean Square, and
r =2 or 3 is the number of groups per range.

For a range r = 2, the value is 3.222 and for a range r = 3, the value
is 3.873. Since 4.21 > 3.873, one can conclude that the performance
of the graphics and sound group (i=3) was better than that of the
graphics only group (i=l). It cannot be concluded that the graphics
and sound group was better than the sound-only group nor that the
sound-only group was better than the graphics—-only group.



