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FINITE ELEMENT INVESTIGATIONS OF THERMO-ELASTIC
AKD THERMO-PLASTIC CONSOLIDATION
By

Baher Labeeb Aboustit, Ph.D.

The Ohio State University, 1983

The transient resoonse of saturated continua due to
thermal as well as mechanical loads is investigated in
both elastic and plasiic ranges.

When the two Dhase saturated media are subjected to
thermomechanical loacing, the energy eqguation is coupled
with the mass flow anc sclid deformation eguations re-
sulting in the initiel boundary value problem of thermal
consolidation. The solid behavior may be assumed to be
either elastic or elastoplastic leading to the associated
theoricc of thermoelestitc and thermoelastoplastic consoli-
dation. Numerous sclutions to isothermal consolidation
problems are avalléable 1in the.literature, but_thermal con-
solidation response solutions are not available.

The governing ecuations for the guasi-static infini-
tesimal theory of thermoelastic consolidation are developed
by using the theory cf mixtures. An equivalent variational

principle is develczes along with associated finite element

Xi



formulations. Two isoparametric elements of the com-
posite type are employed for the spatial discretization.
The formulation is extenced to the plastic ranges by
modeling the solid phase as an elastic work hardening
material with an associated flow rule. An incrermental
iterative scheme is developed to solve this nonlinear
transient problem. Several special purpose computer codes
are developed for evaluating the isothermal, thermal, elas-
tic and elastoplastic plane strain consolidation responses.
These codes have been evaluated against limiting cases
available in the literature. The effects of temporal and
spatial interpolation schemes are investigated for onc-
dimensional thermoelastic consolidation problems. An ap-
plication dealing with a plane strain undergyround coal
gasification problem is also presented.

Although the analysis 1is restricted to: the infinitesi-
mal theory of deformations, second ordér geometric effects
can be included in the anelysis; Fluid compressibility and
a direct coupling between mass and fluid flow can alsu be
considered. The incorporation of the effects of stress and
temperature dependent permeabilities, conductivities and
yield functions is recommended for future work. Although
only geotechnical applications have been investigated, the
analysis is also generally applicable to polymer and com-

posite hygrothermal material response evaluation.
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CHAPTER I

INTRODUCTION

1.1 General Remarks

The problem'of fluid flow through porous media has re-
ceived considerable attention in many engineering applica-
tions including foundation analysis,.reservoir flow/depletion,
energy resource extraction, and nuclear waste interaction.

When saturated clay is subjected to an external loading;
water drains gradually out of the pores and the solid skele-
ﬁon deforms instantanecously. This transient coupled pheno-
menon is known as consolidation.

In some situations, saturated soils are subjected to
mechanical as well as thermal loading such as in situ coal
gasification, geothermal energy recovery, hydraulic frac-
turing, and nuclear waste managemént. This increases the
complexity of the problem, since the transient thermal flow
problem is coupled with the consolidation problem. This pheno-
menon is cailed thermal consolidation.

Generalization of Biot's isothermal theory of consolida-
tion to include thermal effects is difficult becauege it is
based on phenomenoclogical assumptions. The theory of mix-

tures provides an excellent basis for deriving thermal and
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isothermal theories of consolidation. For thermoelastic
consolidation, the soil or rock medium is assumed to be elas-
tic. However, experiments have demonstrated that geotechnical
materials are strongly nonlinear and can be modeled as elasto-
plastic materials. This constitutive characterization leads
to thermo-elasto-plastic consolidation theories.

Analytical solutions for this complex phenomenon, even
for s1mple thermoelastlc one-dimensional problems, are not
avallable 1n the ]1terature. For thelmu—plactic problems,

closed form analytlcal representatlon of the solutlons is
1mp0551ble because of the 1nherent non—llnearltles. This
‘ suggests the use of the flnlte element method for solv1ng
such nonllnear and trans1ent problems with complex geometrles,

layerlng condltlons ‘and boundary condltlons.

1.2 Review of Literature

' The subject of flow through porous media has been fre-~
quently dealt with in the literature. Scheidegger [54] and
Polubarinova-Kochina [41] have given an excellent review on
this subject. Far a one-dimcnsional' [luw of fluid through
an undeformable porous solid, Darcy observed a linear rela-
"tionship between fluid velocity and the. potential causing
the flow, where the constant of proportionality .is the. per-
meability coefficient of the porous media. In general, the
permeability coefficient depends on the size, shape, distri-
bution 6f the pores, temperature and fluid velocity. For

three-dimensional flow through porous media Darcy's law is

-2-



also used by extending the permeability coefficient to a
third order tensor. Analytical and numerical solutions to
the problem of flow through a incompressible porous media,
which use Darcy's law as a basic equation can be found in
many publications, e.g. Scheidegger [54], Pluborinova-Kochina
[41] and Desai [17].

Terzaghi [64] used both experimental and analytical
methods to consider the deformation of the solid skeleton.
In 1923, Terzaghi developed the one-dimensional theory of
consolidation with the followiné assumptions: (1) the soil
is completely saturated with water; (2) the soil particles
and the pore water are incompressible; k3) the flow of fluid
obeys Darcy's law; (4) the solid skeleton is linearly elastic
in terms of effective stresses; (5) homogeneous soil proper-
ties; (6) small strains and small displacements. For a column
of soil subjected to constant vertical loading, the equation
governing the transient phenomenon of consolidation, is the
same as the well known diffusion equation in engineering me-
chanics. The definition of Terzaghi for the effective stress
agrees with the modern theory of consolidation [48]. The
effective stress is defined as the difference between the
total stress acting on the soil sample and the pore pressure.
Thisﬂtheofy is limited to cases where the <o0il is subjected
to constant loading extended over a relatively large area.
Subsequent generalizations and exfensions of the theory can

be'found in the literature (cf. [56] for a review).



Biot [2,3,4,5,6] assuming the existence of strain energy
for the fluid solid mixture, postulated constitutive rela-
tions for the three-dimensional theory of consolidation. The
solid is assumed to be linearly elastlc and lSOtrOplC. VThe
fluid flow obeys Darcy's law and the fluid pressure is assumed
to act only over the pore space. Generalizations to aniso-
tropic and viscoelastic solids are aiso considered. Biot's
consolidation theory has been criticized by Sandhu [48]. The
theory involves the.dependency of.the pore pressure on the
solid deformation which contr'adict-s Darcy's law.

Green and Naghdi [23] proposed a dynamical theory of
interacting continua, based:on tne enerqgy balanoe equation
employlng 1nvar1ance conditions under superposed rigid body
motion and entropy productlon 1nequallty. Crochet and Nagdhi
[15] used the dynamlcal theory of interacting continua to
present governlng equatlons for fluld flow through a porous
elastlc solid. |

Sandhu [48] used the work of Green and Naghdi [231 and
Crochet and Nagdh1 [15] to derlve the field equations for the
initial boundary value problem of linearielaStic”quasi—static
1sothermal consolldatlon. Sandhu [48] and Sandhu and Wilson
[49] presented a varlatlonal pr1n01p1e and associated finite
element formulatlon. A comp051te six noded triangular ele-
ment is developed for the spatial dlscretlzatlon, wherein the

dlsplacement is a551gned at all the nodes (i.e., quadratlc



displacement), while the pore pressure is assigned to the
corner_nodes only (i.e., linear pressure). A linear inter-
polation as well as logarthmic interpolation is used in the
time domain discretization.

Hwang et al. [25] proposed é different logarthmic inter-
polation for the temporal discretization. 1In this scheme, the
time integration factor, o, depends on the current value of
the time variable, which results in an expensive equation
solving process for constant time increments. Yooko et al.
[67,68,69] employed eight noded isoparametric elements with
a discontinuous pressure field to allow for the jump condi-
tions on boundaries with specified tractions, which resulted
in good solutions to the undrained problem. However, at sub-
sequent time steps it gave péor approximations.

Iﬁ the displacement interpolation, Christian and Boehmer
[14] used a gquadrilateral element composed of four constant
strain triangles with the displacement of the central hdde
eliminated by static condensation. The pressure is assumed
to be constant throughout the element, and the value of the
pressure at the center of the element and its four surrounding
elements was used to evaluate the quadratic variation of the
pore pressure. This procedure is based on equating the rate
of outflow and the reduction in the solid volume. The scheme
is explicit and is subjected to stability conditions.

Ghaboussi and Wilson [21] extended the formulation by

Sandhu and Wilson [49] to account for fluid compressibility

-5~



using Biot's assumption [4] of the éxiéténce of the strain
energy function for the mixture. Four noded isoparametric
elements were used for both the displacement and pore pres-
sure. However, an additional incompatible mode was'iﬁcluded
in the disblacementhiﬁtefpolation. Smith and Hobbs [63]
used the same element of Ghaboussi and Wilson [21] but with-
out the incompatible displacement modes. Inaccurate results
were observed especially near the impervious sﬁrata.

Booker and Small [8] investigated the stahj1ify‘of the
time domain discretization for the consolidation equations.
It was found that for the integration factor, a > .5, the
scheme is unconditionally stable. " Krause [28] used the
virtual work principle to formulate the finite element equa-
tions for the isothermal consolidation problem. Two aiffér—
ent schemes were suggested to reduce the number of degrees
of freedom, either by eliminating the pressure or the dis-
placement. However, the resulting matrices are no longer
banded as they were in the complete formulation.

Sandhu [51] presented general variational principles
equivalent to the direct, the complementary and the mixed
- forms for the field equations governing the isothermal con-’
solidation. Generalizations to nonlinear constitutive laws
were also proposed. Sandhu [53] presented an eight noded
isoparametric element in which the displacements are assigned
to all the nodes and the pore pressure is assiyned at the

corner nodes only. This element is referred to as the 8-4
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element. Numerical comparisons were conducted using this
element, and the element proposed by Yooko et al. (8-8.
element) and Sandhu and Wilson's [49] element (6-3 element).
The 6-3 element exhibits a directional bias, although for a
symmetric mesh it gives good results. The 8-4 element was
found to be superior to the 8-8 element. Oscillatory pressure
responses were obtained when the 8-8 element is used with
@=0.5.

Sharabi [59] used the theory of mixtures [15,23] to
write the governing: equations for the isothermal consolida-
tion problem allowing for finite deformations, nonlinear
elastic soil properties and variable permeability. The
Galerkin method .is used to derive finite element equations
in a linearized incremental form. A five noded quadrilateral
element is used for the displacement with constant shear
strain and the pore pressure is assignéd at the corner nodes
only. Reasonably good results are obtained in the linear
analysis.

Small, Booker and Davis [62] used the initial stress
method in‘plastic analysis [70] to obtain an incremental it-
erative scheme for the isothermal elastoplastic consolidation
for a solid skeleton obeying the Mohr-Coulomb yield criterion
with a non-associated flow rule. Carter, Small and Booker
[10] presented the theory and finite element formulations for
finite elastic isothermal consolidation, using an Eulerian

description. These authors [11] combined their previous work
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[10,62] to present an elastoplastic analysis with finite
deformation. |

Prevost [43,44] used an incremental scheme for solving
the isothermal consolidation problem using the four noded
element of Smith et al. [63] but with A différent numbcr of
Gaussian points for the solid and the coupling matrices.
Siriwardan and Desai [61] presented two numerical schemes
for isothermal elastoplastic consolidation. The two schemes
are of an incremental nature, the first one uses the residual
load approach and the second one utilizes the tangential
stiffness approach.’

Schiffman [55] used the theory of mixtures [15,23] along
with Biot's theory [4] to write the field equations for the
thermoelastic consolidation theory. Onsager's principle
[20] is used to define the coupling between hcat and fluid
flow. Witherspoon et al. [65] have presented field eguations
for the thermvelastic consolidation similar to those pre-
viously presented by Schiffman [55]. 1In their Galerkin-type
finite element formulation, the temperature was added "physi-
cally" to the functional developed earlier by Ghaboussi and
Wilson [22] for the poroelastic component of the hydrothermo-
elastic phenomenon.

It is worth noting that Biot's theory, with its draw-
back listed earlier, has been the primary basis for formula-
ting the thermoelastic consolidation equations in Refs. [55,

65].



1.3 Objectives and Scope

The purpose of this work is to study the transient
behavior of saturated soils subjected to both thermal and
mechanical loads in both elastic and plastic ranges.

In this study, the governing equations for the quasi-
static, infinitesimal theory of thermoelastic consolidation
are developed using the theory of mixtures [15,23] and the
isothermal consolidation theory [48]. A variational principle
equivalent to the thermoelastic consolidation field equations,
initial and boundary conditions is developed, along with as-
sociated finite element formulation. Two different isopara-
metric elements are suggested. The work is then extended to
the elastoplastic case. An incremental iterative scheme is
used to obtain the solution.

In Chapter II, the governing equations for thermoelastic
consolidation are obtained following the approach of Green
and Nagdhi (23] and Crochet and Naghdi [15] for the theory
of mixtures and Sandhu [48] for the isothermal consolidation.
A general variational principle is obtained based on the ap-
proach of Sandhu and Pister [50]. The finite elemeﬁt method
is used to develop numerical procedures for the solution.

Two types of isoparametric elements are utilized.

In Chapter I1I, the formulation is extended to the
plastic range by adopting several isothermal yield criteria
with an associated flow fule. An incremental iterative

scheme is used for the solution.

-9y-



Applications are demonstrated in Chapter IV. Thermo-
elastic and thermoelastoplastic conslidation of a bounded
column of saturated clay are first considered. Results for
the elastic analysis are compared with the analytical solu-
tion of Terzaghi and numerical solutions of Sandhu [53] for
the isothermal consolidation problem and the temperature
profile is compared with the analytical solution of Carslaw
" and Jaeger ([9]. Computationgl efficiencies of the two ele-
ments are discussed. Field simulation pertaining to under-
;ground coal conversion site are also conducted.

Conclusions and a summary of the investigations are
presented in Chapter V. Future research recommendations
are also discussed. Detailed computational procedures and

supporting theories are discussed in the Appendices.
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CHAPTER 11

THERMAL CONSOLIDATION - AN ELASTIC ANALYSIS

2.1 Introduction

In this chapter, the field equations for flow of an
incompressible fluid through a linearly elastic solid
subjected to both thermal and mechanical loads (thermo-
elastic consolidation), are obtained from the theory of
mixtures within the framework of the theories advanced by
Green and Nagdhi [23] and Crochet and Nagdhi [15]. A
general variational principle equivalent to the field
equations and boundary conditions is developed using the
approach of Sandhu and Pister [50] in constructing variational
principles for initial boundary value problems. A finite
element formulation in space and time is presented. 1In
the spatial discretization two isoparametric elements of
the composite type are presented.

Throughout the development, the usual index notation
is employed with the implied summation on repeated indices and

the comma denoting spatial derivatives.

2.2 Balance Equations

Green and Nadghi [23] considered a mixture of two con-

tinua s, and S, occupying a volume V bounded by an area A.

1
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An energy balance equation was postulated in their work for
the whole continuum.mixture by suitable combinations of the
equations deduced fpr each constituént. The invariance con-
ditions under superimposed figid body motions Wére applied
to the energy balance equation and the resulting equations

for non chemically reacting continuua are as follows:

2.2.1 Conservation'of Mass .

'he mdss conservation cquation for each constituent

is
ap : U ‘ ' i :
n n — =
T + (pn $k;'k =0 for n 1,2 | (2.1)
where pn and vén) are mass density and components of velocity

vector for nth constituent respectively. The combined mass

density is defined as

2.22 Conservation of Linear Momentum

The eguations for conservation of linear momentum can

be expressed as:

_ 2 5
oé?ik + E Pn (fin?é Fin)) =0
n=1

[ e S

(2.3)

n=1

where Eé?), fén) and Fén) are the components of the partial

-12-



stress tensor, body force and acceleration vectors for the
th
n

constituent, respectively.

2.2.3 Total Stress Tensor:

The conservation of angular momentum for the mixture

guarantees the symmetry of the total stress, i.e.,

2

=(n)_ 2 =(n)
ngl Opi = nf1 %ik (2.4)
Along the boundary, we have
2 _ 2
(% oég)) n = I e {m) (2.5)
n=1 n=1

where tfn)

are the components of surface traction
vectors for the nth constituent.

2.2.4 Diffusive Resistance

The diffusive resistance represents the interaction betwen
the two continuua and is defined by

= _ 1,=-(1)_=(2) 1 (1) (1), _ 1 (2) _(2)
M= 50 kiT0ki Nk g PalEyTISFTT) - g e (B SF )

(2.6)
which can be reduced to, in view of Eg (2.3),
= _ o e(2).(2), _ =(2)
™y =p, (Fi fi ) oki,k (2.7)
and
- _ (1) (1), _ =)
- w = ey (B - £ - 0y (2.8)
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2.3 Constitutive Equations

The material behavior needs to be spééified in order
to apply the balance equations disgﬁssed in the previous
section. This behavior is defined by the constitutive equa-
tions for stress, entropy, energy, heat flux and flow flux.

Crochet and Naghdi [15] started by admitting fairly
general constitutive assumptions prior to placing restric-
tions by using the Clausius-Duhem inequality. Their re-
sults are further specialized to the case of infinitesi-
mal theory of fluid flow through a linearly elastic iso-
tropic solid. The continuum is asshmed to be initially at
rest with’constant temperature and zero initial stress.

For infinitesimal deformations the solid strain eij is

e .= % (,usa+uj . ) ‘ (2.9)

where u; are the solid displacements.
We let s, be the solid and s, be the fluid. Then at
the equilibrium state when the relative velocity and veloci-

ty gradients are zero, the constitutive relations are given as

—-(1) _ - - ‘
9 ij = 2 My eij + Al €1k Gij Y P, 6ij BTGij (2.10a)
"(2) — - — - . »)

G2l i = T-Keyt v ey - 11 6y (2.10b)
T . =0 (2.10c)
o 1
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where the subscript o is used to denote the equilibrium.
values. T is the current temperature and u,X,yv,B,K,C
are material constants. ‘Furthermore, the anti-symmetric

part of partial stresses must vanish at equilibrium,

that is,

- (n)

Oo[ij] =0 forn=1,2 (2.11)

The "extra" values of the partial stresses and diffusive

resistance are given by

- 2
oé%;j) - B (") p® 54+2 p i) D{?) ) (2.12a)
n=

52 2 (n) - (n) (n) (n)
e‘lj) n=1 (2, Dy x Gij + 2 u3 Dij ) (2.12b)
(1) |

- _ _ =(2) -

'oe[ij] e [ij] c1Aij (2.12c)

T . = C V. ‘ (2.124)
el 3 1

where (.) denotes the symmetric part and [.] denotes the

antisymmetric part, Dé?)are the deformation rates, Aij
and v, are relative vorticities and relative velocities,

(n) (n) _ (n) (n)
17C3723 r Ay avg 2

constants. The heat flux is given by

respectively, c and u are material

h., = -k T,

- 2.1
3 ! Cg V. (2.13)

J J

where k and cg are material constants.
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For 1sothermal consolidation, Sandhu [48] assumed that
the solid stress is 1ndependent of the deformatlon rates
of the solid and fluigqg, the fluid partial stress is in-
dependent of the deformation rate of the solid and vortic-
ity effect is negligible. Thus,combination of Egs (2:11)

and (2.12) yields

(1)

1] = 2 u, eij + A]ekk 6ij - BT 6ij - Y P2 Glj (2.14a)
(2)
g = |- - _ 2) (2)
(2) .
+ A, Dy x ‘Sij (2.14Db)

2.3.1 Darcy's Law

Crochet and Nagdhi [15] discussed the possibility
of deriving Darcy's law from Eq (2.12). Sandhu [48] used
- Eg (2.14c) and the definition of Aiffusive resistance;
Eq (2.7) to obtain Darcy's law for the quasi-static case,

namely

£(2) 4 =(2)

cyv; == (o £+ 5T ) | (2.15)

s (1) _ -(2) _ . . . -1
By setting ti = fi = [i aud replacing Cy by Kij' then

v. = =K.. ( s(2)

i ij ckj k +

by £5) (2.16)

(2)

<< v, then

. _ L) (2) (1)
noting that v, T vy A and vy
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véz) = K (Eﬁ?{k + oy £3) | (2.17)

Furthermore, Sandhu [48] set vy = 0 in Eg (2.14Db)

-since it contradicts with Darcy's law which postulates

that fluid stresses depend only on Py and v{z) and are
independent of the solid deformations. Viscosity effects
were also ignored by setting uéZ) = A(z) = 0 in Eg (2.14b).

The resulting equations are

—=(1) _ -

Olj = 2 'S elj + )\1 ekk 61] BT 61] (2.186.)
=(2)_ _ _

053 = [-K py rT] Gij (2.18b)
T, = C3 vy (2.18c)

2.3.2 Continuity Equation

The divergence of the relative velocify yields, in

view of Eq (2.16),

. - _ —(2)
ii €54 Kij (G,j + py fj),i (2.19)
i _ o _ (2) =(2) _ =(2)
where e;; = vy i, €53 = Vi3, and o °ii /3-
For an incompressible fluid, Py = 0, and by virtue of

Eq (2.1), the continuity equation can be expressed as

- (2) _ 2
ii + KlJ (O,j + po fj) -0 (2.20)
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2.3.3 Fourier's Law

In the present analysis, the effect of velocity on
heat flux is ignored, since the process is quasi-static,

by setting Cy = 0-in Eq (2.13). By writing k as a sym-

metric tensor of the second order in Eq (2.11) gives

h, = - k.. T . ' .
P% kg T (2.21)

2.3.4 Energy Equation

According to Crochet and Nagdhi [15], the entropy

per unit mwass of the mixture can be written as

s=s5s +So74+ 8 e.. - & P2 ‘ (2.22)
O T P 11 P 020 .

where So is the reference value of the entropy, c, 8 and

{ are material constants and T is the reference tempera-

ture. The rate of changé of entrupy is given by, [20]
n
39S _ 1 0 e e e
PosE- " TP, it TT (2.23)

where r is the heat supply function. Thus, for an incom-
pressiblé fluid, substituting from Fq (2.22) into Eq (2.23)

yields

Ccp .
—2 74+
T

o

1 1 _ ‘
+Th. .-Tp r—O (2024)

Substituting for hi from Eq (2.21) and after linearization

Yields
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s CT+ Bro e ~ kij T'ji-i-po Y (2.25)

As mentioned earlier, Crochet and Nagdhi [15] assumed
that the solid is isotropic. The mechanical anisotropy
can be introduced by a fourth order tensor Eijkl in lieu
of X and y in Eqg.(2.18). Hydraulic and thermal anisotropy
can be noted in the two second order tensors Kij and kij'
respectively. It is also worth mentioning that the three
types of anisotropy are mutually independent.

Before closing this section, the notations for solid
and fluid partial stresses will be changed to be in line
with the commonly used notation in the isothermal theory
of consolidation t48,49]. The effective stress in the

—(1)

solid will be denoted by Eij instead of o33

replaced by “ij to denote the pore pressure. That is,

and 8‘?) will be
1)

Gij = Eijkl ekl is the effective isothermal

stress tensor

.. =o0.. = BT §.. is the effective stress tensor
13 1] 1]

.. = 0.. + 7 8., is the total stress tensor
, 1] 1] 13

al
|

2.4 Variational Formulation

2.4.1 General

Finite element formulations often rely on variational

principles. In this section, a variational principle for the
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problem of thermoelastic consolidation will be developed.
Sandhu and Pister [50] extended Mikhlin's variational

problem [34] to the case of coupled problems which in-
volve several dependent variables. The set of variables
are treated as a single vector Qariable and the set of
operators are replaced by a single generalized symmetric
operator.

fSandhu and Salaam 152J.included the non houmuvyeneous
boundary ronditions in the variational formulation by
writing the boundary operator in a "consistent" form
with the field operator. As an example, consider the

boundary value problem expressed by
Au=f on R . (2.26)
with Cu = b on B3R (2.27)

where A 1is a self adjoint operator with respect to a sym-
metric nondegenerate bilinear map, and c‘is a boundary
operator consistent with A, l.e., il should satiofy
f uAvdR = /fvAudR | [ (uCv-vCu)ds (2.28)
R R 3R
The variational principle equivalent to the problem is
given by

J[ul] = S (uAu-2uf) drR + S (uCu-2ub) d4as (2.29)
R oR
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The vanishing of the variation of J[u] among all kinemati-

cally admissible functions implies Egs (2:26) and (2.27).
For an initial boundary value problem, Gurtin [24]

proposed a bilinear map defined as the spatial integral

of the con&olution product, to include initial conditions

explicitly in the variaticnal principle,

w,v> = % w(x,t)vix,t-1)drdR (2. 30)

: R 0
It was shown that the vanishing of the variation of J[u]
is equivalent to vanishing of its Gateaux differential,
defined by

A JMu) = 2 T+ av]| (2.31)
v dx o o
=0

The above approach will be used in constructing a
variational principle for the initial boundary value problem
of thermoelastic consolidation. Extended variational prin-
ciples together with some specializations are also presented.

2.4.2 The Initial Boundary Value Problem of
Thermoelastic Consolidation

The field eguations governing the flow of an incom-
pressible fluid through a linearly elastic homogenous solid
subjected to both thermal and mechanical loads were

presented in Section 2.3, and will formally be restated here.
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We let R be an open connected region occupied by the
fluid-solid mixture, 3R its boundary and R, its closure.
The domain of definition of all the variables is Rx[0,«]
is the non-negative interval of time. The field equations
are:

(i) stress-strain and strain displacement relations for a

linear elastic solid matrix

o35 = Eiik1 k1 (2.32)
e = l(u. Lo+ ouL L) (2.33)
ij 2 71,3 j, i y
(ii) equilibrium equations for the solid-fluid mixture
(oij + nsij - e'raij)’j +pf, =0 (2.34)
(iii) Darcy's law for irrotational fluid flow
= 2.
q Kij ej | (2.35)
where ej is given by
8. = .+ f. 2.36
j = T3 T P2ty ( )

(iv) +the cunlinuity equation for a non-chemically reacting
continuum with the solid skeleton fully saturated by
an incompressible fluid

9;,i T "&ii | (2.37)
(v) Fourier's law of heat condition

h, = - k.. ¢. (2.38)
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where ¢j is given by

. =T .
¢J .5 | (2.39)

(vi) an energy equation for the solid-fluid mixture with

convection ignored

hi,i + pch + BT €y T PT (2.40)

The boundary conditions associated with the problem are

(a) displacement boundary conditions

ui(¥,t) = ui(g,t) on S1 x[0,=) (2.41)

where Sl C B3R

(b) traction boundary conditions
ti(f’t) = ti(g,t) on 52 x[0,=) (2.42)

where ti(f’t) = (cij + ndij - BTdij)nj (2.43)

where nj is the outward unit normal to S, and S, C 8R
such that

s;Ns, = ¢ and 's'u§2 = 3R
(c) pore pressure boundary conditions

m(X,t) = T(X,t) on S3x[0,w) (2.44)
where S3 C 3R

(d) Fluid flow boundary conditions

Q(x,t) = Q(x,t) on S,x[0,=) (2.45)
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where '
Q = q;n4 (2.46)

where n, is the outward unit normal to S4 and S4CZ R

such that
SBHS4=¢ and S3US4= 3R
(e) temperature boundary conditions
T(x,L) = f(g,L) vl Ssx[O,w) 4 T (2.47)
where SSCZaR

(f) heat .flux boundary conditions
H(x,t) = H(x,t) on S¢x[0,x) , (2.48)

where H = h.n (2.49)

it

where n, is the outward unit normal to SG and SGCIBR

such that

Ssrﬁ 56 = ¢ and SSL) S6 = 3R

The initial conditions for the temperature and displace-

ment are
T(x,0) = T_(¥) and uy(x,0) = d;(x) (2.50)

2.4.3 Alternative Forms for Continuity and Energy
Equations

Following Gurtin [24], an integral form for both of
the continuity and energy equations is required to include
the initial conditions explicitly in the variational prin-
ciple. This can be done by ILaplace transformation followed
by an inversion. For the continuity equation, considering

Laplace transformation of Eq (2.20), we have
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di,i =8 Y; 3 =9 3 (2.51)
where a superposed bar denotes the transformed function
and s is the transformation parameter. Dividing
Eq (2.51) by s and inverting back after use of the con-
volution theorem:

- = LI .

di,i "9, =9 * 9 (2.52)
where

g'(t) =1 Vite (0,°) (2.53)

and * denotes the convolution integral. The equivalence
of Eq 2.52 with Egqg 2.20 can be shown as follows.

Assuming Eq (2.20) to hold,

L 3 - %* = = -
g' *aqy, 3 =1*a; 3= Jgy;dr A S

conversely, assuming (2.52) to hold. The right hand side

of Eq (2.52) is

" X =
g a3 /Say g an (2.55)

while the left hand side is
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y. . + 4, .)d1=0 ' (2.57)

thereby yielding Egq (2.20).

For the energy equation, we consider Laplace transfor-

mation for Eq (2.25), namely

Hi,i + p CV(ST - To) + B ro(s u; g di,i) =pr (2.58)

We divide Eq (2.58) by s and invert back using the convolu-

tion theorem to obtain

LI 3 - - = LI
gt *hy g e e (T-T)) + 8 t (uy y =4 4) =9 *or

(2.59)

The equivalence of Egs (2.59) and (2.25) can be proved in
a manner similar to that demonstrated for the continuity

equation.

2.4.4 Variational Principle

In order to transform the initial boundary value problem
of thermoelastic consolidation into an equivalent varia-
tional principle, an admissible state, denoted by

w = {u,e,o,7,q,9,T,h,$} is defined on Rx(0,~) and t,Q,H are
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defined on 3Rx[0,»). The set of all w is a linear vector
space. The solution to the problem is defined as an admis-
sible state_wo, which satisfies the field equations as well
as initial and boundary conditions. t, Q and H are not con-
sidered separately in the admissible state and are assumed
in the form ti = (o,. + wé,. - sTGij)n., Q = q;n; and

1] 1] J
H = h.n.. '

ivi
The bilinear mapping used in constructing the varia-
tional principle is the one proposed by Gurtin [24], Eq (2.30).
The field equations are presented by an operator A of
9x9 matrix. The boundary operators are written in a 'con-
sistent' form with the field equations in the sense of

Sandhu and Salaam [52]. The field Egs (2.32) through (2.40)

along with Egs (2.52) and (2.59) can be rewritten as
Aw = v on Rx[0,«) (2.60)

where A, w and v are as follows.

T

- 1 '
w = {ui'ekl'oij'qi'ej’ ’_Fo ¢jlhilT}
vl = (p£,,0,0,9"*0,£,,0,0,0,0,0,} (2.62)
Aij = 0 except the following entries:
1 ] d 9
A, =-=(8 2+6.. %) , A, =-223,.
13 2 U %y Cik By 16 5; ki
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Plo =3, B r By = By
= - = _l_ 3 a
By = -1 v B3 = 500 3o+ 8y )
1 X
o BTl v Bgg =97
A = g'* .i A = g'*
46 3 v Bgy
A._ = -K..* A = 2 g, (2.63)
55 ij © Pe1 T 7, ik -
A = g'* _i. A - T v
64 al ! 77 o'ij
= =g'* = LR
Asg g r Bgg =9
1 3 3
A, = L grx 2 , AL = -2 gs,
89 To Bj 91 Bk ik
A= -1 g'*_a_ ' Bgg = _p('v
98 To ai 9 Te

Similarly, the boundary conditions can be written as

cw = v | (2.64)
where
w! = {u.,o..,0,7,H,T} (2.65)
i’ ijl AL R .
T ~ ~ -~ -~ ~ ~
v o= {ti,-njui,g'*n,-g'*Q,gf*T/To,-g'*H/Td} (2.66)
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Cij = 0 except the following entries:

€12 =714 r Gy = 71y

C34 = g'* ’ C43 = -g'%* (2.§7)
Cs6 = %; g r Ce5 = - %: g

where Oij is the total stress tensor, i.e.,

oij = Oij + néij - BTﬁiJ. .
In this coupled problem, the uncoupled operators are sym-
metric, while the couplinngperators constitute a pair of
adjoint operators with respect to the bilinear map. Green's
theorem can be employed to represent the boundary terms
associated with the coupling operators (non-zero off

diagonal terms of A), i.e.,

£ ui*gij,j drR = -é.ui’j*o?de +a£ ui*oijnjds (2.68)
éﬂ*uiidR= -é ﬂ’i*uidR +a£ n*uinidS (2.69)
én*é'*qiidR = —én’i*g'*qidR + an*g'*qinidS (2.70)
1_f{T*Bui'idR = — é BT,i*uidR +ai{< BT*uinidS (2.71)
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h | by h.h
JT*g'*_ i dR= - J T ;*g'*=dR + [ T*g'*i i as
R T R ' o 3R T
o o)
(2.72)
Starting from the initial undeformed state, i.e.,
di = 0, and To = 0, and following the approach presented by

Eq (2.29), the following variational principle is presented.
THEOREM I

ILet w be the oet of all admisgible states. Leal
w= {u,e,,7,9,9,T,h,9}cH, and definec a tunctional Jl(w) on

W by

Jl(w) S ou.* -[(o,. + w8,. - BTS..) . + 2pfi]dR

R & ij ij i3’.3

* i 1) -
olj]dR + f oij [u(i,3) ei.]dR

* -
€54 [Ej4k1%k1 2 3

*g' % - - . * LK - *
+ f q;*9 [ei “,i szfi]dR+ é ei [g q; Kij ej]dR

¢.
- 1 x * "
+ 'rr*[ui i+g'*qi i]dR I = [k ¢ +g'*h, 14R

R ’ ! R o
¢ T i) ] pC T
+ [ h, *g'*( ——+ t—"dR - JT *lBu .+—q"' *h, 1dR
T i T 1,1
R To o R o o

- . .- ..)*(n.u.-2n.4, +
é (olj+"61] STGIj) (njul ZnJul)dS

+ougr(ty -2t. j)as + s Q*g'*(n-27)dS -
82 S3
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| A A ' A
- f w*g'*(0-20)ds - s H*‘g—' *(r-2F)as + s T*E* (H-201)ds

S4 _ 85 (o] S6 o]
(2.73)

where t,Q, and H are defined by Egs.(2.43),(2.46) and (2.49),
respectively.

It can be shown that the Gateaux differential of Jl(w)
along an arbitrary path w e W Vanisﬁes, if and only if the
field equations together with the boundary conditions are

satisfied. The proof of this theorem is given in Appendix F.

2.4.5 Extended Variational Principles

As mentioned'earlier, Green's theorem can be used to
represent the relations between the coupling operators. Thus,
one or more of the adjoint operators can be eliminated from
the basic variational principle resulting in many alternative
forms. This will induce an extension in the domain of defini-

tion of Jl(w). For example, the term oij 5 can be eliminated
!

from Jl(w) by using Eq.(2.68).

Then, by eliminating o..s .; w

LI 2 . ; !
13,37 DT’n, g qi,i and

,17 i

l—g'*hi i from Jl(w), the following variational principle is
14 .

To
obtained:

J2(W) -21f2 ui*pfidR + fReij*EijklekldR + 2f o,.*[u, .-e..]dR

R 13 1, 13
+ -’1; qi*g'*lei-Z(n’i+p2fi]dR + £ Gi*[g'*qi—Kijej]dR
.
* —_k LI 5 *
+ 2/ n*u; .dR + [ p [g hi+kij ¢j]dR

R ! R "o
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pCv . ¢i 2T i
* [ —_— Xy * ] __— !
+ S T*] 28ui’i+ < T]1dR + é hi g'*| - +

R (o] O (o]

JdrR

- *t.ds - kTS, . —BTS..)* -n.u.
2f uy tlds 2/ (o "61 BTGlJ) (njul n ul)dS

ij 3 j
Sy S1
+ 2f Q*g'*(m-1)dS + 2/ m*g'*Qds
S3 : S4
gl ~ gl A
- 27 a*d#(1-T)as - 25 T*d-*fias (2.74)
S5 o} 56 (o)

2.4.6 Specializations

One of the interesting specializations is to require the

adiissible slLale in J2(w) Lo ideintically salisfy,

_ 1
eij = -2_(u 4u. L)

13 = Bijk1®k1

6. =71 . + p,f,

i r 1 271 _

on Rx[0,») (2.75)

q; = Kijej
¢.‘L = l,i
f1 = TRugty
u;, = uy on §;x10,=)

T ='?T on S3X[Ol°°)

T =T o1 Ssx[O,w)

i.e., the admissible étate is completely defined by {u,n,T}.

The resulting variational functional is
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Jo(u,n,T) = =27 u.*f.+/ e..
3= R i 1 R 1

- '
3 *Oi . dR Jl; qi*g *6 idR

J

¢ .
i
kgt k _— -
+J h;*g —dR + 2/ m*u, .dR 2/ BT*uy ;4R

R o R 11 R ’
pC, ) )
=/ T*—— TdR - 2/ u;*t;dS + 2/ m*g'*Qds
R (o) 82 S4,
-2 T*g'*H—dS (2.76)
Se To

It is worth noting that the variational principle above
is a generalization of the one proposed by Sandhu and Wilson
[49] for isothermal consolidation, and the one proposed by
Nickell and Sackman [39] for linear coupled thermoelasticity.
This functional forms the basis of the finite element discre-

tization in the next section.

2.5 Finite Element Formulations

The element displacement, pore pressure and temperature
are defined in terms of a set of generalized coordinates.
Vanishing of the variation of the spatial discretization.
results in a set of the first order linear differential equa-
tions in time. Further discretization in the time domain

yields a set of linear algebraic equations.

2.5.1 Spatial Discretization

For a typical element m, the displacement, pressure and

temperature are expressed in terms of its nodal values as,

ul(x,t) = [N "(x)1{u(t)} | (2.77)
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™ (x,t)

{Nﬂm(x)}{w(t)} (2.78)

™(x,t) = {Nim(x)}{T(t)} ' (2.79)

The strains, volumetric strains, pressure and temperature

gradients, are obtained from the above relations as

eM(x,t) = N (x)1{u(t)} (2.80)
AT(x,t) = [N,"(x)1{u(t)} (2.81)
onT(x,t) = [qu(g)l{n(t)} (2.82)
vr(x,t) = [N MO0 1T (8)) (2.83)

By considering M elements, and substituting from Egs.
. (2.77) through (2.83) into Eq.(2.76) yields a discrete form
of the functional,
M
m,T

N,y = T 20w T M e £
m-1 R

+ 1w ™ E™ ) * (N ™ fu)
= TN 1T+ £ *g KT (NS {n ) +p 5 £™))
m]T

] 1 m | m
SRR URIUSRICY

+ {T}T[Nh
+ 20m3tN ™M M)

- ZBm{T}T{NTm}*{NAm}{u}
pcV I m. T, m;
- —?;{T} {NT } *fNT }{T})dRm

- 2r {u}T[Num]T*{tm}dS

S, 3Ry

34—



+ S{mITN_ 1 g '*0_ds

S4 aR
- 25 (TN }T*g'*——ds ' (2.84)
86 aR
We define
M

m m,T _ m m, T
-1 SINSTETT N TR, 1k ) = ) sy g™ TaR
M m,T M m m- m,T

N =
=} JBiN, }{T }d%I,[%m] anh}[K]Uh} dr_ ,
% rin ™ KT/ 10w M ar

o) h m ’

M 3 m,T M m m,T
= Y/ (pCv/T )N MNP TAR (Mg} =} SN "M TaR

M

M M .
My} = ) SN TVIRT e, £ ™Ry, (Mg} = ] SN TIE Yash
? rin ™Q asy , Mgy = § sin, " as?®

Q ’ 5 = : NT m/TO S

{M,} (2.85)

4 6

Using the matrices and vectors defined in (2.85), we can

write the discrete functional in the matrix form,

M, = —20wTiM b+ TR 1) -2g" * (3 Tim,)
* [ T | ] [ T |
~g'*{rn} [Kpp][n}+g *{T} [KTT][T}
T T CpaT
{T} [CTT]{T}+2{U} [Kpu]{ﬂ} 2{u} [KTu]{T}

—2{u}T{M3}+29'*{n}T{M4}—Zg'*{T}T{M5} (2.86)

Applying the variational principle with respect to u,r, and

T, respectively, yields
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(K l{u} + (K, (N} = [Rp J{T = (M} + (M3} (2.87)
(K 1 {u} = g'*IK__1{n} = g'*{My} - g'*{M;}  (2.88)
-[Kp 1T{u) = [Cpp + g'*Kpo JH{T) = g'*{M) (2.89)

It is worth noting that Egs.(2.89),(2.90) and (2.91) repre-
sent discrete forms of the equilibrium, continuity and energy

equations, respectively.

2.5.2 Temporal Discretization

Egs. (2.88) and (2.89) contain convalution products. A
step forward integration scheme will be adopted by using an
interpolation function for the displacement, pressure and
temperature with the end conditions as the generalized coor-
dinates.

The logarithmic¢ interpolation schemes proposed by
Sandhu [48] are utilized herein, which begins by expressing
a time dependent function

Ln(t+1)

f(z) = f(tn_l) + [f(tn)—f(tn_l)] In(atr1) (2.90)
within a time interval 1 &€ [tn_l,tn]. Then
q'*f(1) = (l-a)Atf(t ;) + adtf(t)) . (2.91)
where

=1+ -1 : (2.92)
¢ At Ln(at+1) . )

Note that various conventional time stepping methods can be

identified from (2.91) by properly selecting a.
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Substituting from Eq.(2.91) into Egs.(2.88) and (2.89)

gives
PKuu Kby Koy ] ru(tn)\ rRu(tg)\
Kgu iﬂAthp 0 w(tn)} =ﬁ R, (t)} (2.93)
_-K$u 0 -(CTT+aAtKTTL kT(tn)J LRT(tn))
where
Ry(t) = {M;} + (M) (2.94)
R (t ) = [Kpu]{u(tn_l)} + (l—a)At[Kpp]{w(tn_l)} +
abt{M,(t )} + (l-a)at{My(t, 1)} - adt{M,(t )} -
(1-a)at{M, (t__)) (2.95)

Rp ()

'2.5.3

= - [Kp, Jult, 1))

+ aAt{MS(tn)} + (l—a)At{MS(tn_l)}

Choice of Finite Elements

([Cppl + (L=w) 8t [Kpp]){T(t, 1)}

(2.96)

Since the composite elements are preferable in the iso-

thermal consolidation analysis, Sandhu [53], this approach

is extended by presenting two isoparametric composite ele-

ments for plane strain thermoelastic consolidation. The

first element which will be referred to as the 8-4-4 element

has displacements assigned at all nodes, while the pressure

and temperature are assigned at the corner nodes only, Fig.

(2.1).

The second element, which will be referred to as the

8-8-8, has displacements, pressure and temperature assigned
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at all the nodes, Fig. (2.2). A numerical comparison re-
vealing the performance of the two elements is presented

in Chapter 1IV.
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o Nodes with (u,v,,T)
e Nodes with (u,v)

Figure 2.1. The 8-4-4 Isoparametric Element
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o Nodes with (u,v,=,T)

Pigure 2.2. The 8-8-8 Isuparametric Element
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CHAPTER III

THERMAL CONSOLIDATION - AN ELASTOPLASTIC ANALYSIS

3.1 Introduction

In this chapter, the plastic strain increment due to
thermomechanical loading is obtained according to Prager's
theory of nonisothermal plastic deformations [42]. The total
strain increment is written according to Nadghi [35], and
the inverse incremental relation for stress in terms of
strain is obtained. The result is specialized to the case
of nonisothermal yield surfaces. The incremental form of
the field equations is listed and incrémental as well as
iterative solution schemes are studied. Supplementary infor-
mation is presented in Appendices A through E. 1In Appendix
A, seme classicAal yield ariteria and alternative forms are
discussed. In Appendix B, the yield surface consisting of
the Druckcr—Praéer line with an expanding elliptic cap is
discussed. Appendix C deals with the incremental elasto-
plastic stress-strain matrix in plane strain and Appendix D
discussed the hardening rules and the hardening functions.

In Appendix E, numerical methods to obtain the stress incre-

ment are discussed.
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3.2 Plastic Strain Increment

The effective stress, o.

iy is responsible for all defor-

mations, linear or nonlinear, and failure conditions. For
nonisothermal plastic deformations, Prager [42] assumed the
yield function in the form

- p _
F(555.e85,Tk) =0 (3.1)

which equivalently can be written as

= p -
f(oijleij) = oo(le) (3.2)

where 9% is the uniaxial yield stress of the material, T is
the temperature, egj is the accumulated plastic strain, and

k is a hardening parameter, which can be postulated

to be the total plastic work, wp, i.e.
k = 3.
w0y (3.3)
where Wy is given by
w_ = J g, deP (3.4)

p ij ij

For the above, thé material will be termed as work hardening.
Alternatively, k can be related to the measure of the total

plastic deformations, termed the equivalent plastic strain,

k =e (3.5)
wvhere

= P 4P 1/2 ~ '
dep = C(deijdeij) . (3-6)

and ¢ is a constant depending on the yield criterion (see

Appendix D), and the material in this case will be classified
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as a strain hardening material. The work hardening hypothe-
sis will be assumed throughout this study.
For developing plastic deformations, the consistency

condition can be obtained from Eq.(3.1) as

_ 3F - aF o) dF dF _
4ar _180..d°ij + _"ﬁ_deij + deT + 5Edk =0 (3.7)
1] se’ .
©i5
We also define
tma _ OF _-= OF
d'F = a—al—de'lJ + ﬁdT (3.8)

Upon unloading.from a given plastié state, the stress
state moves inwards from the yield surface, i.e. d4dF<0,
de§j=0, dk=0. Thus in this case

F=0 , d'F<0 : (3.9)

If the stress state moves along the yield surface, dF=0,
then some components of stress increase while others decrease
at a constant temperature, keeping the so0lid in a plastic
state without undergoing any plastic deformation. Suéh'a
state is terﬁed the neutral change of state. For this case

F=0 , d4'F=0 ‘ (3.10)

If the stress state moves along the yield surface for
all times then dF=0, and plastic loading corresponds to

F=0- , 4d'F>0 (3.11)

For the isothermal case Prager [42], Boley [7]1 and

Kachanov [26] assumed that de?j is proportional to d'F which

characterizes the transition from loading to unloading, i.e.
P _ 1 = '

deij = Aijd F when F=0 , 4d'F>0 - (3.12)
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The associated flow rule (Appendix A) is assumed to be
valid. Consequently, deli)j must be directed along the normal
to the loading surface. This condition may be fulfilled by

setting

[+ %)

F
ij

(3.13)

)

o
al

A, .
1]
where h is a positive scalar; a consequence of the Drucker
stability postulate,
P - '
dcijdeij>0 when F=0 and d4'F>0. (3.14)
By substituting Eq.(3;l3) into Eq.(3.12), the plastic

strain increment can be given by

1 F
daeP. = 2 a'r =
ij h acij

when F=0 (3.15)

The scalar h in Eq.(3.15) is known as the hardening
function which expresses the amount of hardening and can be
obtained by substituting Eq.(3.15) into the consistency

condition, Eg.(3.7), to give

h=-(2E 4 2F 2k, 8F (3.16)
5P 9k 5 aP 3017
Mij ”ij 17
By using the work hardening hypothesis, Eq.(3.4),
Eq.(3.6) gives
o F 9F = oF
h = —( + 5 0.s) == (3.17)
‘ -aegj 3k "1j 3°ij

Calculations of h for isotropic and mixed hardening are given

in Appendices B and D. By letting

S da = %d'F . : . (3.18)

-



Eq. (3.15) becomes

aF

deP. = ax
13 9G . .
ij

(3.19)

3.3 Stress Strain Relation

The total strain increments are assumed to be the sum of

the elastic and plastic strain increments.

= de€ b
deij deij + deij (3.20)

According to Nagdhi [35], the elastic strain increment can

be expressed as

e -1

deij =D do + a Gi. aT (3.21)

i3k1%%k1 i

where o is the coefficient of linear thermal expansion, Dijkl
is the elasticity tensor. Substituting from Egs.(3.15) and
(3.21) into Eg.(3.20) gives

_ - - 1., 3F
de.. = D.. do + a Gl-dT +Hd'Fa—.6—‘— (3.22)

J i3

Sulviny fur the incremental effective stress,

1 OF

k1 = Px1i39i3 T ¥ P1is®i39T T R Praigem ;) 4°F (3423

which can be used in the consistency condition, Eq.(3.8) to

obtain

[+%]

- oF

QF = (3.24)
1l »3F D aF

h 35 mn 3
%mn Pd 90,4

and insertion of Eq.(3.24) into Eq.(3.23) yields
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- - n€P _= _ nT _—_—
dokl Dklij[deij aaide] DkldT (3.25)
where
ep = - pP
Px1iy = Pk1ij ~ Pxiij (3.26)
9F 3F
D am——— z==—— D .
P _ kluv aouv aost stij
Dy,.. = (3.27)
k113 b4 F 3F :
+ = —
Bomn mnpqg aopq
and
b AF_OF
" kluv 90, T o
D - (3.28)
kl
OF dF . -
h + 30 Dmnpq 0G
mn

pPq

It should be noted that Dil reflects the dependency of
the yield surface on temperature. Unfortunétely, however,
a yield function that depends explicitly on the temperature
is not available in the literature. It is recommended for
future research to perform experimental work to derivevthe
relation between the yield stress and temperature. Thus,
although the derived stress-strain relation is written in a
general form it is specialized to the case of isothermal
yield functions in the sequel. The yield criteria listed
in Appendices A and B will be uséd in the ahalysis. This
assumption had been used in metal thermoplastic analysis

Ref.[27]. For an isothermal yield criterion, the last term

in Eg.(3.25) is neglected to yield

pos = p°P _ &P _
dokl Dklijdeij Byl daT (3.29)
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where

ep _ _ b
Bl = Px1 ~ Pka
in which
By = @ 944
and
P . - P
Bl = @ 815 Dy1ig
For an isotropic material,
Dklij = 2 U éik Glj + A Gij le
Hence
Bx1 = Bdxa1
and
0 oF °oF
gP. =B % oy BF L, 23F,
kl Y 93T s ackl aouu .
where
B = a(2 +3r)
and
oF oF
'Y=h+— =
aomn mnpgq Bopq

It should be noted that Eq.(3.35) implies that 8

P
kl

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

are

zero for the case where in yield surfaces are independent

on the first stress invariant,

Ii' e.g., Tresca and Von

‘Mises. This, however, is not the case for Drucker -Prager,

Mohr-Coulomb and the cap yield criteria freguently used in

geotechnical applications.
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Eg. (3.29) can be put into a more suitable computa-

ticnal form, viz.,

s = - - oF
dokl = Dklijdeij BkldT d A Dkluv_§3uv (3.38)
- _ .€P .
where
= p&P
dokl Dklijdeij (3.40)
and
_ 314 . B _AF
dx = d'x Y 5. (3.41)
ii

in which dx ' is the isothermal plastic multiplier which can

be obtained from Egs.(3.18), (3.24) and (3.37) as

a =1 3F p de. . (3.42)

Y 33k1 kKlij="1ij
The second term in Eqg.(3.41l) represents the effect of thermo-
plastic strains and vanishes when the yield surface is in-

dependent of pressure or in the isothermal analysis.

3.4 Field Equations in Incremental Form

The field equations for thermoelastic consolidation,
listed in Chapter II, will be rewritten here in an incremen-
tal form for the thermoelastoplastic consolidation problem.
They are (i) Stress-strain and strain displacement relations

for an elastoplastic homngeneous eolid

= n¢P

dcij = Dijkldekl (3.43)
= 13

deij = Z(dui,j+dgj,i) (3.44)
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(ii) Equilibrium Equations for the solid fluid mixture

- p€P =

(iii) Darcy's law for irrotational fluid flow

dqi = kijdej
where

de. = 4d .+ f.
%5 (m 5 * paty)

(iv) Continuity equation

daj, i = "9€y;

(v) Fourier's law of heat condition
dhi = -kijd 3
where

de. = 4T .
¢J rJ

(vi) Energy equation

. ep o _
dhi,i + pCVdT + B Todeii = dpr
The boundary conditions are as follows:
(a) Displacement boundary conditions

duj (x,t) = du; (x,t) on S;x[0,=)
(b) Traction boundary conditions
dt, = dt;(x,t) on SZX[O,“)

1

(c) Pore pressure boundary conditions

dr (x,t) = dan (x,t) on S3x[0,w)
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(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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(d) Fluid flow boundary conditions

do(x,t) = do(x,t) on  5,x[0,) » (3.55)

(e) Temperature boundary conditions
aT(x,t) = aT(x,t) on  8.x[0,%) (3.56)
(f) Heat flux boundary conditions

H(x,t) = H(x,t) on Sgx[0,%) (3.57)

It is worth emphasizing that in the present analysis no
nonlinearity has been assumed either in Darcy's law or in

Fourier's law.

3.5 Finite Element Formulation

The incremental scheme and an iterative incremental
scheme are presented in this section.

3.5.1 Incremental scheme

Following the thermo-elastic analysis in Chapter 11,
the incremental form of the equilibrium, continuity and

energy equations are

& K % T fouce)) [ar (6]
‘uu Pu Tu T u
T _ .
Kbu aAthP 0 1An(tn) b ={AR (t )} (3.58)
=T
X1, 0 = (Gt A EK ) AT (t) AR, (t )
L. - . 7/ Y y

where the above matrix coefficients are the same as given by

Eg.(2.85) with the exceptions
R =1 8% D%P n_ av (3.59)
uu e e :

and
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= _ T _ep
KTu = f Ne B NT dv (3.60)

The incremental scheme is the same as the one proposed
by Siriwardane and Desai [51] and Prevost [44] for the iso-
thermal elastoplastic consolidation. In this method, the
loads are applied incrementally and the matrices Ruu and RTu
are assumed to be constant throughout each increment. Essen-
tially, the incremental procedure approximates the nonlinear
problem as a series of linear problems, i.e., the nonlinearity
is treated as piecewise linear. The method had been used ex-
tensively in elastoplastic analysis, Refs.[30,32,33,66]. The
accuracy of the method can be improved by taking smaller in-
crements of load and time or by scaling the load increment'to
produce plastic flow in one element per increment. Either
approach requires longer computational time. The main dis-
advantage of the method is that the error in the solution is
created at the end of each increment and accumulates as the
elapsed time is increased. An incremental iterative scheme
will be presented in the next section to overcome this prob-

lem.

3.5.2 Incremental iterative scheme

Here, the heat condition equation is decoupled from the
equilibrium and continuity equations since the effect of the
displacement on the temperature is negligible. For each in=
crement, the temperature solution is obtained by solving

Eq.(3.62c) and dropping the RguAu(tn) term, i.e.
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—(CTT + aAtKTT)AT(tn) = ART(tn) ‘ (3.61)

Then the temperature contribution to the right hand side of

the equilibrium equation is considered, i.e.

Kuu Kpu Au(tn) ARu(tn)+KTuAT(tn)

= , (3.62)
T
Kpu aAthp Aﬂ(tn) ARn(tn)

So far the scheme is still incremental and iterations are

performed during each increment using

K ault, )y 9, ()

uu a3t} n’ i
= (3.63)
T
Kpu aAthp An(tn)i ¢w(tn)i

where i=1,2,... 1is the number of iterations and

Ml(tn)+M3(tl’1)- 4 NZ(U (tn)i+" (tn)i)dv+RTuT(tn)

¢ (tn)i =
v
(3.64)
T
¢ (tn)i = Kpuu(tn_l)+(l-a)Athpﬂ(tn_l)
+ ant(My(t _1)-M, (£ ) + (l-a)At(My(t _ )M, (£ )
T )
- Kop ult))g )+ altK mle )y (3.65)
Iterations Are stopped when
LU 100 3.66
Toce m * 100 = 3-66)
where Um(tn) = {u(tn),n(tn)} (3.67)

and ¢ is an allowable tolerance.
Finally, stiffnesses are allowed to change during each

increment. It is advisable to keep stiffness constant at the
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onset of loading as well as prior to failure if a perfectly
plastic model is adopted to avoid ill conditioning. XKeeping
Eg.(3.63) with constant stiffness throughout the loading pro-
gram requires many iterations. The number of these iterations
can be reduced by modifying the load vector to account for
plastic loading, e.g. the initial stress method in elasto-

plastic analysis [1,37,38,70].



CHAPTER IV
NUMERICAL RESULTS

4.1 Introduction

Based on the preceding finite element formulations,
several special. purpose computer codes were developed for
evaluating the isothermal, thermal, elastic and elastoplastic
consolidation responses. 1In this Chapter, validation of the
developed codes is presented along with applications to a

field problem applicable to underground coal conversion.

4.2 Code Vvalidation

Ihe computer codes developed in this study are vali-
dated for both the thermo-elastic and thermo-elastoplastic

analysis.

4.2.1 Elastic analysis

In the early stages of this study, the code CONSOL was
developed using the formulation of S8andhu and Wilson [492] to
investigate isothermal plane strain consolidation problems
and the R-4 and 8-8 isoparametric elements, Ref.[53]. An
extension of this program, TCONSL, was then applied to solve
thermoelastic plane strain consolidation problems using the
formulation Eq.(2.93) and the 8-4-4 and the 8-8-8 isopara=

metric elements in Figs.(2.1,2.2).
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To validate the finite element programs, a problem
with known analytical solution has to be selected and com-
pared. Unfortunately, there are no available analytical
or numerical solutions even for a simple thermoelastic'con-
solidation problem. Analytical and finite element solutions
to Terzaghi's one-dimensional isotherﬁal consolidation problem
can be found in Ref.[53]. These solutions were used to vali-
date the programs CONSOL and TCONSL. The closed form solution
for a simple one-dimensional heat conduction problem, found
in Ref.[9]), was used to validate TCONSL. As an additional
step, the solutions associated with thermoelastic qonsolida-
tion (displacement, pressure and temperature) from TCONSL are
compared qualitatively with the solutions for isothermal con-
solidation (displacement and pressure) and heat conduction
(temperature). The problem selected is a generalization of
Terzaghi's one-dimensional isdthermal consolidation problem
subjected to thermal loading in addition to the tradionally
applied surface tractions. ''he selected problem is a linear
elastic saturated soil column under constant surface tractions
and constant surface temperature, Fig.(4.1). The problem is
solved with the following numerical values: L=7, E=6000, v=.4,

6 6

K=4x10 °, k=.2, pCV=40, ro=100, %=.3x10 °. A surface traction

of unity ie applied together with a surface temperature T=50
and initial temperature To=0’ The so0il column is assumed to

be insulated and sealed everywhere, except at the top surface.

From this data the following problems are analyzed:,



(1) Thermoelastic consolidation problem (TCONSL)

(ii) Isothermal consolidation problem (TCONSL, CONSOL,
analytical énd numerical solutions from Ref.[53])

(iii) Heat conduction problem (TCONSL and analytical solu-
tion of Ref.[9]).

It should be noted TCONSL is used in problem (ii) by
prescribing the temperature to be zero at-all nodes and is
used in (iii) by prescribing the displacement and pore pressure
to be zero at all nodes. The two special interpolation
schemes mentioned earlier are used inAthe analysis, but the
presented results are obtained by using the 8-4-4 element.
The mesh used in the analysis is shown in Fig.(4.2). Fig.
(4.3) illustrates pressure and temperature proflles at two
different time steps A and B. In this figure, the finite
element profiles for the thermoelastic consovlidation problem
(using TCONSL) and the heat conduction problem (using TCONSL)
almost concide and arec in youod agreement with Llie analytical
solution for the heat conduction problem in Ref.[9]. This
indicates Lliat the energy equation can be decbupled from the
cquilibrium and continuity equations, similar to the clasasical
uncoupled thermoelastic theory, Ref.[7]. The finite element
pressure profiles for the thermoelastic consolidation problem
(using TCONSI) are slightly less than the isothermal pressure
response values (using TCONSL and CONSOQL) which are in good
agreement with Sandhu's solution [53]. This difference is

due to thermal expansion which acts as an unloading mechanism
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for the surface tractions. The surface settlement history
for the thermal and isothermal consolidation is illustratéd
in Fig.(4.4). 1In this figure, the thermal expansipn reduces
the thermoelastic consolidation settlement (using TCONSL)

in comparison with the isothermal consolidation settlement
(using TCONSL and CONSOL) which are in very good agreement
with the results of Sandhu [53]. Furthermore, the steady
state response with thermal effects is reached after a longer

elapsed time.

4.2.2 Efficiency of the Discretization Schemes

The effect of spatial and temporal discretizations on
the solution of the thermoelastic consolidation problem is
investigated by analyzing the same one-dimensional problem
in Fig.(4.1]). The responses obtained from the two element
schemeé in Figs.(2.lj and (2.2) are compared for different
values of a. For both the elements, the following temporal
partitiéning I is nsed; 10 steps of At=.01 over [0,.1]; 10
steps of At=.1 over [.1,1.1]; 10 steps of At=10 over [1l.1,
101.1]); 10 stepc of At=100 nver [101.1,1101.1); 20 steps of
At=1000 over [1101.1,21101.1]. This same temporal discreti-
zation gave good agreement with the analytical solution to
the isothermal consolidation [53].

Comparing the solutions of the aforementioned problem
(Fig.(4.1)), using the two spatial interpolation schemes, it
was found that when a=.5, and for small values of the time

variable, the 8-4-4 element  gave larger oscillations in

57~



pressure and temperature profiles in a region very close to
the loading surface. Also, the 8-8-8 element showed an os-
cillatory pressure response throughout the vertical domain
for all times, with no oscillations in the temperature profile.
When o is increased to .875, the oscillations in the .pore
pressure associated with the 8-8-8 element vanish without a
significant effect on the temperature distribution. The
initial oscillations associated with the 8-4-4 element are
reduced. Upon incrcasing the time variable, the two spatial
interpolation schemes yield almost identical dislributiens
for both the pressure and temperature profiles, Fig. (4.5a)
through Fig. (4.5h).

The solution of the problem, in fact, depends not only
on the choice of a but also on the size and the change in aAt.
The sensitivity of the solution tuv the sudden change in At
is examined. It should be noted that, for the previous com-
parison, At had heen changed from .01 to 1000'in five stages,
willi a rativ ol change equal to 1:10, except the ratio is
1:100 at t=1.1. To illustrate the effect of this sudden
change in At, another time partitien II is used. 1In this new
time paftition. the ratio 1:100 is eliminated as follows:

10 steps of At=.01 over [0,.1]; 10 steps of at=.1 over [.1,
1.1]}; 10 sleps ofbAt=1 over [1.1,11.1]); 9 steps of At=10
over [11.1,101.1]}; 10 steps of At=100 over (101.1,1101.11];
20 steps of At=1000 over [1101.1,21101.1]. A comparison

between the two time partitions is performed using the 8-8-8

.
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element with a«=.5. It is found that the error associated
with the sudden change in At in scheme I dies out in a few
steps. As a increases to .875, the sudden change in At
causes no difficulty, Figs.(4.6a) through (4.6c). Finally,
it is found that the pore pressure is more significantly af-
fected by the sudden chaﬁge in At than the temperature.

Increasing a from .5 to .875, for the same spatial dis-
crétization and the same temporal partitioning, is found to
have a negligible effect 6n the surface settlement. In addi-
tion, the settlement is slightly affected by the sudden
change in At. However, the two spatial interpolation schemes
yield slight differences in the surface settlement especially
when t .1, (Table 4.1). |

To increase the efficiency of the program TCONSL, a
modified version, HCONSL, has been developed. In this pro-
gram, the energy equation is decoupled from the equilibrium
and continuity equations. As mentioned earlier, this de-
coupling is desirable since the temperature solution for
thermoelastic consolidation and heat conduction are identical
for this problem, Fig.(4.1l). The approach is very similar
to the one discussed in Chapter III. When HCONSL is used to
solve the problem in Fig. (4.1l), the same results as those
from TCONSL are obtained, However, a tremendous saving iﬁ
CPU time (19.43 sec for HCONSL versus 29.78 sec for TCONSL

on the OSU AMDAHL 470 system) is evident.
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4.2.3 Elastoplastic Analysis

The program PCONSL is an extension of HCONSL to solve

elastoplastic plane strain thermal consolidation problems,

using the developed formulation, Eq.(3.63) and the 8-8-8 and

8~4-4 elements. Again, there are no available solutions

even for simple thermoelastoplastic consolidations. The code

is checked by solving the following problems:

(1)

(ii)

A steady state plane strain thick circular cylinder sub-
jected to internal pressure, Fig.(4.7). The material is
modeled as an elastic-perfectly plastic material obeying
the von Mises yield criterion. The code PCONSL is used
in this problem by prescribing the pressure and tempera-
ture to be zero at all nodes. The load is applied in-
cremently and the inner surface displacement versus

the applied loading is shown in Fig,(4.8). Good agree-
ment can be observed between the solutions using PCONSL
and the analytical and numerical sclulions in Ref. [40].
Thermoelastic consolidétion problem: the continuum in
problem ¥ig.(4.1) is remodeled as an elastic-work har-
dening material obeying the cap yield criteria in Ap-
pendix B. To obtain the elastic response using PCONSL,
the yield stress is assumed to be relatively large. The
previoutc elastic, thermal and flow properlies are as-
sumed together with cohesion, c=30, internal friction
angle, ¢=30°, capuratka ., R=3.5, cap:hardening constant,

G=.0007 (see Appendix B). The response is the same as
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(iii)

that obtained by TCONSL and HCONSL, Figs. (4.3) and
(4.4).

Thermoelastic-plastic consolidation problem: This
problem is identical to (ii) except the yield stress
is lower. Four different cases are analyzed.

A. Elastic analysis

B. Elastoplastic analysis with c¢=.9

C. Elastoplastic analysis with c=.85

D. Elastoplastic analysis with c=.7.

The surface settlement history and progression of

plastic zone are illustrated in Fig.(4.9). As the

elapsed time is increased, plastic flow accounts for

an increasing surface settlement which increases dras-
tically for case D. The temperature unloading is elas-
tic in the context of the theory of plasticity. This
causes the unloading portion of curves B and C to be
almost parallel to curve A. In case D, plastic flow
occurs very edrly aind Lemperature unloading can not
resist plastification. The surface displacement,
therefore, increases in an exponential fashion. Re-
garding the progress of plastic flow, it should be
noted thét plastification starts from the bottom in
case B and from the top surface in case D. This is
mainly due to the critical value of the deviatoric

stress, which is reached at an earlier time in the
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upper element, for case D, while it reaches the lower 4
element at a later stage in case B. Pore pressure

and temperature prdfiles for cases A and C are illus-
trated in Fig.(4.10a-h). The elastoplastic analysis
yields larger pressure response due to the increase in
the volumetric strain over the elastic analysis.
However, temperature profile is the same in the two

caps due to decoupling the heat equation.

4.3 Field Application

klastic and elastoplastic thermal consolidation analyses
are conducted for the Centralia Coal gasification site. Figure
(4.11) illustrates the stratification and the finite element
»mesh used in the analysis. The material properties are listed
in Table 4.2. These materials were modeled as elastic work
hardening materials obeying the elliptic cap yield criteria
in Appendix B. The cavity temperature history is shown in
ig.(4.12). The selllewment history and the progreéession ot
plastic zones are illustrated in Fig.(4.13). In this figure,
the temperature rise accounts for reducing the settlement:
in both elastic and plastic cases during the first 13 months.
However, gravity loading dominates the settlement in the
elastic and elastoplastic problems. Upon reducing cavity
temperature, the settlements start increasing with thé nota-
ble difference between the elastic and elastoplastic analysis.
Progression of plastic zones is aléo illustrated in Fig.

(4.13). Plastification starts as early as t=.40 month, and
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increases with time till t=1 month, with plastic zones
propagated around the cavity. When the cavity temperature

is reducing, the plastic zones start to propagate again.
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TABLE 4.1 Vertical Surface Settlement History Using
a=.875 for the 8-8-8 and the 8-4-4 Element

Time the 8-8-8 element the 8-4-4 element
.02 .20252x10° .30899x10">
.1 .53216x107° .53273x107°
.5 .12327x107% .12037x10™*

21.1 .78613x10" % .791401x10"4

1101.1 .17709x10™> ,17802x10"°

3101.1 .29569x10™° .29713x10™>

17100.1 .30271x10™° ,30334x10™°>

21101.1 .30106x10™°> .30095x10>
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TABLE 4.2 Material Properties for the Centralia Coal Gasification Problem

Material , Moderately Stiff Soft

Property Units Siltstone Sandstone Sandstone Coal
E t/m? .1x10’ .6x10" .2x10" .2x10
v - .2 .2 .2 .2
a /c® .5%x107° .8x10” .8x10" .5x10”
k cal/c%m.sec .05 .0463 .0463 .05
C, cal/cC.qm .13 .2 .2 .134
o t/m3 2.2 2.2 2.2 2.2
K r/sec-t-m S 2x107 1x10~7 1x10”/ 2x10~
¢ cegree 30 40 30 25
c t/m? .1x10% .25x10% .15x10%  .15x10
R - 3.5 3.5 3.5 3.5
G - .0013 .0013 .0013 .0013
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Elastic modulus, E=2.1x10%dN/mn?
Poisson's ratio, v=0.3
Uniaxial yield stress, oo=24 dN/mm
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Strain hardening parameter H=0
Von Mises yield criteria
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Figure 4.7. Thick Circular Cylinder Subjected to Internal
Pressure
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CHAPTER V

CONCLUSIONS

5.1 Preliminary Remarks

Governing equations and finite element forﬁulations for
the quasi-static infinitesimal theories of thermoelastic and
thermoelastoplastic consolidation have been presented in this .
dissertation. Since there are no available solutions for
such complex problems, the developed finite element- codes
have been validated against limiting cases available in the
literature. The application of these investigations to

underground coal gasification problems is also revealed.

5.2 Concluding Remarks

The major contributions of this dissertation are as
follows: |

1. Using the theory of mixtures [23,15] and the
isothermal consolidation theory [48], the field egualions
for the quasi-static infinitesimal theory of thermoelastic
consolidation are developed.

2. A variational principle equivalent to the field
equations, initial and boundary conditions is developed using

the approach in Refs.[50 ,51]. Extended variational principles
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as well as some specializations are also presented.

3. Finite element formulations based on the variational
principle are presented. Two isoparametric elements are sug-
gested in thg spatial discretization.

4. The formulation is extended in order to account for
plasticity effects. The rock medium is modeled as an elastic-
work hardening material with an associated flow rule. Clas-
sical and recent yield criteria are included in the formula-
tions.

5. The developed finite element codes are checked by
solving available analytical and numerical solutions for iso-
thermal consolidation, heat conduction, and elastoplastic
analysis. Good agreements are observed between the results
from developed codes and the available solutions.

6. Numerical efficiencies of the temporal and spatial
interpolation schemes are investigated for a one-dimensional
thermoelastic consolidation problem. It is found that for
a=.5, the 8-8-8 element gives an oscillatory pressure reg—
ponse. However, by increasing a, the 8-8-8 and the 8—4—4
elements gave identical results. The pressure is moré in-
fluenced by the sudden change in the time increment thah the
Lemperatbure. Howevey, the error associated with a sudden
change in At dies out in a few steps; Spaﬁial aﬁd temporal
discretization schemes have a negligible effect on the sﬁrface

settlement.
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7. The excessive settlements observed in the thermo-
elastoplastic problem illustrate the importance of modeling
the soil as an elastoplastic material and the need for con-

ducting parameter sensitivity studies.

5.3 Applications

The presented formulation is applicable to problems
of saturated continuum subjected to both thermal and me-
chanical loads. The continuum can be modeled as an elastic
material or as an elastoplastic material with an associated
flow rule. Geotechnical examples utilizing this formula-
tion include problems dealing with underground coal gasifi-
cation, geothermal energy recovery, hydraulic fracturing
and nuclear waste management. Additionally, responses associ-
ated with polymer or composite structures éubjected to hy-

grothermal loading can also be studied.
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5.4 Research Recommendations

The folldwing research isirecommended as a sequel to
this study:

1. Inclusion of the coupling between heat and mass
flow.

2. Inclusion of the effects of fluid compressibility.

3. Development and use of temperature dependent yield
functions and material properties for the geotechnical ma-
terials.

4. Consideration of effects of nonlinearity and
anisotropy.

5. Extension to thermo-visco-elasto-plastic consolida-
tion formulations.

6. Consideration of temperature and stress dependent
permeabilities, conductivites and thermal expansion coeffi-
cients.

7. Incourporation of the effects on joint/fracture

systems and bi-material interfaces.
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APPENDIX A
Classical Yield Criteria and Alternative Forms

A.l1) General
The yield criterion determines the stress level at

which plastic deformations begin and can be expressed as

£(o; 5) = K(k) (A.1)

or equivalently

.F(Oij'k) =0 | (A.2)
where f is an invariant function of the state of stress,
K is a material parameter to be determined experimentally
and k is a hardening parameter. Among the classical yield
criteria we cite Tresca, Von Mises, Mohr-Coulomb and
Drucker-Prager. In the following a compact summary of
these criteria is presented.  The reader is referred to
Refs [12,13] for additional information. An illustration

of these yield criteria is given in Figs A.1l and A.2.

A.2) Tresca Yield Criterion

The Tresca Yield Criterion states that yielding of a
material begins when the maximum shearing stress at a point
reaches the value of the maximum shear stress occurring

under simple tension. For o > 02 > 03, Tresca's criterion
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can be expressed as 1/2 (03;-03) = 1/2 o5 (A. 3)

where O is the uniaxial yield stress in simple tension. It
should be noted that the yield stress in pure shear, k, is

given by

K=1/2 o_. (7. 4)

A.3) Von Mises Yield Criterion
The Von Mises Yield Criterion states that yielding of the
material begins when the distortional energy equals the dis-

tortional energy at yield in simplé tension, i.e.

1 _ 1 1
26 72 726 3°

G (A.5)

2
o
where J, is the second invariant of the deviatoric stress

tensor defined by
J, = 1/2 Si5 855 : A(A_.6)

It should be noted that the yield stress in pure shear,

K, is given by

. (A.7)

A.4) Mohr-Coulomb Yield Criterion

The Mohr-Coulomb Yield Criterion states thal yielding
of the material begins when the maximum shear stress at a
point is given by

T=0C = o tan ¢ (A. 8)
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where 1 is the magnitude of the shearing stress, on is the
normal stress, C is the cohesion and ¢ is the angle of

internal friction. For o; > o, > 03, Eq (A.8) can be

2

rewritten as

1/2 (01-03) = C cos ¢ - 1/2 (01+03) sin ¢. (A.9)

For the case of a frictionless material, ¢ = 0, the Mohr-
Coulomb yield criterion reduces to the Tresca yield cri-

terion with C = K.

A.5) Drucker-Prager Yield Criterion

The Drucker-Prager Yield Criterion is an approximation
to the Mohr-Coulomb yield criterion and a modification of
the Von Mises yield criterion. The influence of the hydro-
static stress component on yielding is introduced by in-
clusion of an additional term in the Von Mises Yield Cri-

terion to give

a'I;, | /Jy = K' (A.10)
where I, is the first stress invariant, i.e.

I, = Oii ' (A.11)

o' and K' are material constants that can be related to C and
¢ by

sin ¢ 6 C cos ¢

_ 2 v -
-~ V3 (3-sin ¢) K= 75 (3sin ) (A.12)

-93-



In this case the Drucker-Pragef circle coincides with the
outer apices of the Mohr-Coulomb hexagon. Coincidence with
the inner apices of the Mohr-Coulomb hexagon is provided
by

2 sin ¢
/3(3+sin ¢) '

6C cos ¢
Y3(3+s1in ¢)

a' = K' (A.13)

A.6) Alternative Form of the Yield Criterion for Numerical
Computation

This formulation is due to Nayak and Zienkiewicz [36],
and its main advantage is that it permits the computer
coding of the yield function and the flow rule in a general
form and requires only the specification of three constants
for any individual criterion.

The principal deviatoric stresses Si are given as the

roots of the cubic equation

§* - 3, 82 - J, = 0. (A.14)

Substituting S = r sin 6 in Eq (A.14) gives

SPE J,
sin?® 6 - — sin 6 - =0 (A.15)

3
r
r

NOting the trigonometric identity

sin® 6 - 3 sin 6 + 7 sin 3 6 = 0 (A.16)
and comparing (A.15) and (A.l16) gives

r = 2/3;//3 (A.17)
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. _ _43ds _ _3/3 J3
sin 3 6 = rd - 2 Jz/Jz

(A.18)

The first root of Eq (A.18) with 3 6 in the range + % was
chosen as an alternative to J3;. Noting the cyclic nature

of sin(36+2nn), the principal stresses are

o sin (e+31) ' 1
3
oy | = %%zl sin © + %%— 1
P sin (e+i‘§’l 1 (A.19)
with 0, > g, > 03 and - % <6 E—% .

A.6.1) Yield Criteria

The four yield criteria considered in sections (A.2)

through (A.5) can be rewritten in terms of

I,, J2, 6 as follows:

(i) Tresca Yield Criterion:

Substituting for o; and o3 from Eq (A.19) into Eq (A.3)

gives

2/3; Cos 6 = 9g (A.20)

(ii) Von Mises Yield Criterion:

‘There is no change from the conventional form since the

yield function depends on J; only,
Y3/T, = a (A.21)

(iii) Mohr-Coulomb Yield Criterion:

Substituting for ¢; and o; from Eq (A.19) into Eq (A.9) gives
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1l . 1 . .
3 I, sin ¢ + V/J, (cos 6§ - 73 sin 8 sin ¢)

= ¢ cos ¢ (A.22)

(iv) Drucker-Prager Yield Criterion:

There is no change from the conventional form, i.e.,
a'Il; + vJ, = K ' (A.23)

Fig (A.3) illustrates the intersection of these four yield

criteria with the IlI-plane.

A.6,2) Flow Rule

The flow rule speéifies the direction of the plastic-
strain inérement vector. The associated flow rule means
that the plastic strain increment vector is normal to the
yield surface at the current state of stress. Thus for
purpose of elostoplastic analysis with the associated flow
rule, it is necessary to evaluate the normal vector, or the

derivative of the yield function with respect to stresses.

(o34
D

OF _ 3F 3I, + JdF 3/J, + 9F

a= 30 31,730 573, 36 T 38 30 (A.24)
where

" = {o of o o o, } (A.25)

~ xx' “yy’' “zz' “xy' "xz, “yz .
Noting from Eq (A.18) that

906 _ __ -v3 . 1 _ 3J; _ 3Jd3 3/J,

90 2 cos 36 [Jz/Ja g 312 Ao ] (a.26)
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Eq (A.24) can be rewritten as

a= ¢ ay + c, a; + c3 aj

where
al = 211 = {1,1,1,0,0,0}
a0
T _ 9V/J, _ 1
a2 0 2V0, { xx' Syy’
T___ aJa — - 2 .
a3 50 {(Syy S,, syz +
(S.. S -8% +
XX YY Xy
(s S -
Xy Yz Yy x
and
)
€1 = 31,
c, = 9F tan 306 9F
2 7 9/3, T I3, 986
c. = =3 1__ 3F
3 2 cos 38 J,vJ, 06
Only the constants c¢,,

define the yield surface.

(A.27)
ZAZI X ’ s
: y' “xz, “yz}
Ja - g2
3)' (Sxx 2z S + %%)'
Ja _
3 ) (sxz Xy Sxx yz)’
)y (Syz sx - Szz xy)}
(A.28)
(A.29)

c, and c¢j3; are then necessary to

Thus simplicity of programming

can be achieved as only these three constants have to be

varied between one yield surface and another.

These three

constants are given in theAfollowing table for the four

yield criteria mentioned earlier.
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Table A-I. Definition of C Constants

Yield Criteria ¢, c, C,
Tresca 0 2 cos 9 (1 + tan 6 tan 3 9) /3 sin ©
‘ , J; cos 3 0
Von Mises 0 /3 0
Mohr-Coulomb % sin € cosf[{l+tan O tan 3 60) (v3 sin 6 + cos O sin 6)

sin6 .
+ ~73 {fan 36 tan 0)]

Drucker-Prager a' o 1

2 J, cos 3 6




Mohr-Coulomb ¢>0 ' 9179279%

Figure (A.1): Mohr-Coulomb and Tresca Yield Criteria

g

ﬁ 3

Drucker-Prager ¢>0

Figure (A.2): Drucker-Prager and Von Mises Yield Criteria
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APPENDIX B
Yield Surface With an Expanding Cap

B.1) General
The volumetric plastic strain increment, using the
Drucker-Prager yield criterion Eq (A.10) with the associated

flow rule Eqg (3.19), is given by

aeP =ardL-ar o (B.1)

11 11

Since a"i 0, the volumetric plastic strain is always non-
negative. This createé what is known as the dilatancy,
i.e., an increase in plastic volume change under hydrostatic
compression. To control this dilatancy, a volume dependent
cap surface under hydrostatic compression is introduced.
Drucker [19] was the first to introduce a spherical cap

to control dilatancy of soils. Since then several plasticity
models using the critical state concept have been developed,
Ref [57] and a specific Cam clay model was suggested by
Roscoe, et al. [46], fornormallyconsolidated clays. Re-
cently, the cap model has been modified by DiMaggio and
Sandler [18], Singh [60] and Ghaboussi,et al. [22]. 1In
Section (B-2) the cap modifications introduced by Singh [66]
are discussed.
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B.2) Modified Cap Model [60]

Fig (B.1l) illustrates the model which consists of two
parts:
a) Failure envelope in the form of a perfectly plastic
Drucker-Prager 1line.
b) Yield surface consists of infinitely many elliptic caps
each possessing a certain plastic volumetric strain.

Mathmatically, the model can be expressed as

o' I; + YJ2 = K! I, 5 pn (B..Z)
I,-Pg, 2 J

_l_-—g _2 -—

(==0) + B = 1 P, < I <P, (B.3)

where Po < 0 is the cap center, a and b are the major and
minor axis of the ellipse and related by

a=RDb

and P_ is given by

c
Pc = Po— a (B.5)

B.2.1) Cap Geometry:

Given the location of a certain point (I,,vJ;) in
the stress space, the cap center, Po’ can be determined by

solving Egs (B.2) and (B.3), i.e.,

-B + /B2-4Ac

Po = (B.6)
21
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where A = 1l-a'? R? (B.7)

B = 2a'R2K' - 2I, (B.8)
2 2 2 2
C=1I+RJ, - RK' (B.9)

Thus the dimension of the cap can be obtained by

- ‘A - ] .
b X o Po : (B.10)

B.2.2) Cap Hardening

Following Roscoe, et al. [47], the plastic volumetric

strain is

P _ 1 A-¢
e.. = - (
1+eO

c
ii . 53 ) Ln (=) | (B.12)
where e, is the initial void ratios, A and ¢ are the slopes
of the compression and rebound curves for an idealized soil,
Fig (B.2).

The hardening function h can be written as

_ _ 9F aF
h = 30. dep
J i3

(B.13)

which is zero for the Drucker-Prager line and except for

the cap regyion will be given by

12b3

h = s@wR

(I,-P ) [(1,-P) { b+a(11—po)+aR2(J2—zb2»
(B.14)
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where

G = 1. A%

1
2.3 1+eo

B.2.3 Flow Vector

(B.15)

Using the approach of Nayak and Zienkiewicz [36],

presented in Appendix A, the flow vector for the

where

C;] = o= = 2b2(11—Po)

_ — 2.2 /
Cz—T—ZRb Js

0J
* Cs 35

B.2.4) Subsequent Yield Caps

cap is

(B.16)

(B.17)

(B.18)

(B.19)

In plastic loading, both initial and subsequent stress

states must satisfy the yield condition.

knowledge of both initial and subsequent yield surfaces. - The

This requires the

initial yield surface is very easy to locate by knowing the

stress state at the beginning of an increment as described

in Seotion (B.2.1).

as follows, Ref.[12].
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Differentiating Eq (B.12) gives

= - P
ch 1/G Pc d ey (B.20)

The point(Pc+ch,0) lies on the new cap and the approach

presented in Section (B.2.1) can be used to locate that

I3

cap. o
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Figure (B.1): Elliptic Cap Model
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Figure (B.2): Response of Idealized Soil to Hydrostatic
Stress
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APPENDIX C
Incremental Stress Strain Relations in Plane Strain

For plane strain, the general expressions for incre-
mental stress strain relation, derived in Chapter IIT,
have to be modified. Primarily the main alteration re-
quired is the deletion of the strain and stress components
which vanish under the condition of plane strain.
(e = e = e __. = 0) Thus the effective stress vector will

zz X2z vz

be - . . _ _
o = {cxx’ o _, o0, 0 .} (C.1)

and the flow vector a in Egq (A.24) will be

T_ (O QP , OF 3F |
DBX ' 3o’ 90/ 00

a - (C.2)
X YY Xy 2z

which corresponds to plastic strain increment given by

~ XX Yy xy zz2 (C.3)
Eq (3.33) can be rewritten as

a5 = [D°P] a e - B°F ar (c.4)

~
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where

- KEP - - nP
Dijk1 T Pijx1 T Pijxa (C.5)
. = . .. A '
Dijr1 = %M %3k %51 % * Sx1 844 (C.6)
D 2L of
pP _ _ijgr 3ost 30gt stkl c.7)
ijk1 9f  oF D :
h + ﬁ —3—0'; mnuv
mn uv
From Eq (A.24) §£ = a
3G, b
1]
We let
D; 5k1 % =p] a=4d (C.8)
k1l T -
and obtain from Eq (C.7)
[DP] = —= (C.9)
«h+ a d
We let
T
y=h+ a d « (C.10)
and rewrite Eq (C.5) in the form
%P] = [p] - % a dT (C.11)
. ep
We define Bij
Bij Bij Bij (C.12)
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where

eij = ecij = (2u+3)) a aij - (C.13)
df of
D.. L
P - g_i39r 39gy 30sg (C.14)
Bij n 4 OF “9f
—— D =
o0 mnuv da0
mn uv

Then Bp can be written as

Ci

P =8 1 g (C.15)
Y

where c; = %g'i is defined in Table (A.l) for different
"

yield criteria.

The matrix [D] is defined by

[T] =[ 2u+a A 0 I 7
|
2u+X 0 : A (C.16)
|
_SYM. u____1 0
| 2pu+)

where the dashed lines identify the usual plane strain

matrix for elastic problems.

The vector d from Eq (C.8) is given by
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a=( dlw
d: py

ds

L9

.

(2u+)) a; + A(a2+a4)

a; + (2u+)) ax+xa,

uas

la; +xra, + (2u+x)au_

where M = ) (aj;+aj+ay)

Hence Eq (C.10

Y =h+ 2u(a1+a1+% astas) + M(a;+a,+a,)

and Eq (C.4) 1is

) yields

2 2 2 2

given by

faﬂ

) (C.17) -

(C.19)

(C.20)



-Z11-

.

N\ i
- 1 .» -1 1 1 -
2p+r) -= A==4d -=d,4, 'r*-=d,d *
do_ . F( H+) y dr =« ~ 1d2 7 d1ds 17y 1dy fde
|
- 2 b1
2u+A) == dp-= A== d.d
djyy (2 3 d. - d.d; ! g dad, de
>= |
_ 2 |
do -=d -= d
Xy ‘U ¥ ds E 3 dady dy
sym. . TTTTTTTTTTTT
- o 1 .2
dOZZJ i :.u+)\)-? dz.J ide
Using dezz = zero for plane strain Eq (C.21) becomas
N ~- r \
- . 1 ! 11 4
C Qu+A) - = d, >~§ did: Y did; dexx
do \ = (Zu+i) - L d: -1 d2d; { de >
YY Y Y Yy
1 .2 .
doxy sym. u-g ds A
J 4\ J
and
do = (:\-l dldu}dé + ()\—l d.d;) de --]:- dsds d v -g(1-
2z v CxXX [ YY Y Xy

3\
XX
YY
) "BdT
xy
ZZJ
-B8dT
c;d
1 L')dT
Y

O

o}

N
-~

(C.22)

(c.23)



APPENDIX D

THE HARDENING FUNCTION, h

D.l1) Hardening Rule

The hardening rule defines the motion of subsequent
yield surfaces during plastic loading. For a perfectly
plastic material, the yield stress does not depend on the
degree of plastification. If the subsequent yield surfaces
are a uniform expansion of the original yield curve, without
translation, then the hardening rule is said to be isotropic.
On the other hand, if the subsequent yield surfaces preserve
their shape and orientation but translate in the stress space
as a rigid body, the model is said to exhibit kinematic har;
dening. A combination of these two types of hardening re-
sults in the mixed hardening rule.

In this investigation, isotropic hardening is assumed
with the four yield criteria cited in Appendix A. The yield
criteria of Singh [60], (Appendix B), in which the elliptic
cap moves and expands exhibits by definition mixed hardening.

In this Appendix, calculations of the hardening function, 
h, for an isotropic hardening model are presented. The cal-
culation for h ueing the modcl by Singh (60] i3 precsented in

Appendix B.
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D.2) The Hardening Function

The hardening function, h, can be obtained by assuming
that the slope of the stress-plastic strain curve for a uni-
axial state of stress is the same as that for the multiaxial
state case. This assumption can be achieved by appropriate
definition of the equivalent stress and equivalent plastic
strain, which reduces to the uniaxial case. The assumption

is
— = H (D.1)

where Oe is the equivalent stress, ep is the equivalent

plastic strain and H is the slope of the uniaxial stress-

plastic strain, i.e.

do
H= X , (D, 2)

dep
XX

where subscripts xx refer to the uniaxial state of stress.
The quantity f(oij) in Eq.(A.2) is commonly used to

define 0o [13,31])] in the form

£(o;5) = c oo , (D.3)
ar oL
cg=[1f 1/ (D.4)

The definition of equivalent plastic strain, however, is
not that simple since there are two definitions for k, Egs.
(3.3) and (3.5) using either the strain hardening or work

hardening hypotheses.
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The strain hardening hypothesis leads to Eq.(3.6), i.e.

- p ,.p,1/2
dep = c(deijdeij) (D.5)

The work hardening hypothesis, Eq.(3.4), can be written as

- = P
dwp = Uijdeij ' (D.6)

Substituting from Eq.(3.19) into Egq.(D.6) gives

- £
de_ = 0,.dx ==
P 1j 3oij

Since f is homogeneous of degree n in the stress, then by

Euler's theorem

d = danf D.7
wh n ( )
By rewriting Eq.(D.6) as .

dwp = cedep | (D.8)

the equivalent plastic increment can be defined as

(o]

de = Bf 4, (D.9)
P e

For isotropic hardening Egs.(3.1) and (3.2) reduce to

Flog5,k,T) = £(0;5) = oo(k,T) = 0 (D.10)

ij’

and hence Eq.(3.17) reduces to

3F - oF
h=-:%0.. — (D.11)
3k 13 3°ij
l.e.
_ _3F 1
h = % ax dk (D.12)

Assuming an isothermal yield surface, Eg.(D.10) gives
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== -2 (D.13)

Hence Eq. (D.12) reduces to

O

h = 35 (D.14)

Substituting Egs.(D.9) and (D.10) into Eq.(D.14), we have

_af %
h = Se- nf (D-13)
- P
Eq.(D.1l5) can be rewritten as
do_ o
af e e
h = =— —F (D.16)
doe dep nf
Substituting from Eq.(D.l) into Eq.(D.16) gives
'
_df . %
h = 55; H —= (D.17)

For f=op i.e., n=1, we have h=H,.
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APPENDIX E
Numerical Procedure for Evaluating Stress Increment

E.1 Introduction

In this Appendix, the steps of using the incremental

iterative scheme discussed in Chapter III are illustrated.

E.2 Stress Increment

For each element, stresses are assigned at its Gaussian
points. During load application, plastic flow may commence
at some Gaussian points, creating partially yielded or to-
tally yielded elements. A procedure is designed in Ref.
[37,40] and is used in the code PCONSL, to determine the
plastic‘portions and uses the appropriate éonstitutive rela-
tions to evaluate stress increment and corresponding resi-
dual loads. 1In this procedure, the following steps are re-
peated for every rth iteration and at every Gaussian point.
(1) Incrémental displacement and pore pressure are obtained
by solving Eq.(3.63) in terms of the applied residual loads.
Accordingly, the incremental strains are given by

Ae” = N_ Au (E.1)

(2) Assuming elastic behavior, the elastic stress incre-

ment is
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agt = [D] ne® (E.2)

Hence the elastic stress vector

-r _ =r-1 -r
op = ¢ + bgg (E.3)

(3) The uniaxial yield stress is updated according to the
hardening rule used. For the cap model, the procedure in
Appendix B is used. While, for the isotropic model, the
yield stress is given by

r _ . r-1
uo = ¢ + H ep

o (E.4)

where H and e, are given in Appendix D.

(4) Check the yield condition. The following flow chart
is used to check whether yield starts this iteration or the

point is previously yielded.

NO: The behavior is still elastic, i.e.
rYES: Fl>0 g = EE and go to step 5
YES: Yield starts at this iteration,
calculate F1 F
Fotl R=r=r_* 7=
° l "o a AQL
E
NO: Elastic unlovading, i.e. o = of
- ~E
{ and go to step 5
NO: F,>0

YES: Plastic flow continues, set R=1
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F_o= £(3" 1 - o571 (E.5)

Foo= £(3) - ot (E.6)

F=£(1) - ol (E.7)

SR -6

a" = 2 (E.9)
317 »

in which F is the yield function. The condi;ion F <0 and
Fl>0 indicates a transition from elastic to plastic states
occufs during this iteration. The reduction factor (1-R)

is obtained above from the condition that F=0 at the con-
tact state. Thus the trial elastic stress increment is sub-

divided into two parts. A stress state where the yield

r

surface is contacted 1~ given by
F = 77+ (1-R) 5% | (E.10)

. and a remaining part RAgr'outside the yield surface. This

E
part has to be eliminated by allowing plastic deformation

to occur,

Ag™ = agp - dr[pla® (E.11)
where gr = aFr and d)x is given by Eq.(3.41). Figures
9T

(E.1) and (E.2) illustrate the incremental stress change

in an already yielded point and a point at initial yield.
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It can be seen from these figures that even for a finite
sized stress increment, the final stress point, D, may
depart from the yield surface. This error can be eliminated

by scaling the point, D, back to the yield surface, i.e.

3t = 3% x ( current ylelg stress ) (E.12)
d
e
where o; is the equivalent stress, (Appendix D). This

method is known as the tangent stiffness method with radial
return, Ref.[29,58]. The effective plaetic strain is ob-

tained using the work hardening hypothesis, as

o r -r
ef =l 22 g (E.13)
de

(5) The residual loads are obtained using Egs. (3.64) and

(3.65).

E.3 Refined Process for Scaling Stress Point to the Yield
surface

For relatively large stress increment, the scaling
process, illustrated in Figs.(E.l) and (E.2), can lead to
inaccurate results particularly if the point D lies in the
vicinity of a region of largé curvature, Ref.[40].

In Refs.[45,29] a secant stiffness method is presented
for perfectly plastic von Mises material ip lieu of the
tangent stiffness method with radial return. The method is
illustrated in Fig.(E.3), in which an intermediate state

r

S® is found as
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st =2 (GL + 1D (E.14)

and the flow vector is given as

@
!

a® = (E.15)

@
tn
a}

then Eq.(E.11l) is used to find the stress increment. It
has been proved in Ref.[45] that the final state is exacti§
on the yield surface. However this method is not used in
the present analysis since it is applicable only to per-
fectly plastic solids.

In Refs.[37,40] a refined process is developed in
using the tangent stiffness method with radial returns by
relaxing the excess stress to the yield surface in several
stages. The stress scaling can be performed after each
stage or after the final stage only, Fig.(E.4). As the
number of steps- increases, the accuracy increased and also

the cost.

E.4 Stiffness Update

It was mentioned in Chapter III that the stiffness
matrix has to be updated, otherwise excessive iterations
are required. The stiffness is changed whenever ep>0.
This change can be performed in any iteration during the
increment. It is recommended in Ret.[40] to re-evaluate
the stiffness at the second iteration to increase the rate

of convergence.
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Figure (E.1): Incremental Stress Changes at a Point
in an Elasto-Plastic Continuum at
Initial Yield
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Figure (E.2): Incremental Stress Changes in an Already
Yielded Point in an Elasto-Plastic Continuum



Figure (E.3): Sccant Stiffness Method
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%

Figure (E.4): Multi-step Tangent Stiffness Method with Scaling
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APPENDIX F

PROOF OF THEOREM I

To prove this theorem we let
w = {u,

Then

o -0 . *
Ale(w) J uy [(cij+w6i

- s .+ .
= i BTél]), 2pfl]dR

J

+ f o..*u(i,j)dR + g "*ui,idR - ; T*Bui'idR

+ f u.*[(o..+n6ij-BTGij)nj—2ti]dS

- - * b
é (o..+n6i--BT6ij) njuidS

©33* [B33k1®k17%1419R < g ug*o, 4 ydR - é .

o..*% e + f u.*c..n.
£ olJ (u(llj) elj)dR é uy cljnjds
2

! 1
s ]

’
1 R

+ £ "*[ui,i+g'*qi,i]dR f ézui*ﬂdijnjds

g. . * - - *or - kgt R '
o.. nj(ui Zui)ds f uy *n ldR £ q;%9 n’ldR

- [ W6, .*n.(u;-2u;)dS + S Q*g'*TdS - [ 7w*g'*(Q-20)ds
J 1 1 S S

ij
S 3 4

-127-



+ é q;*g'*(8-m ;=20,,)AR + g m*g'*g; ;dR

+ f &ini*g'*(ﬂ-Zﬂ)dS - J w*g'*q.n.4ds + [ qi*g'*gidR
S

1]
3 S4 R
- , _ - - 1
+ £ §%g"*(q;-2K; 40 ) AR + g u;*8T ;AR + / h;*g'*T ;=-4R
R o
_ 1 2.p.cv _
- * = g'*x - *
éT _[Bui,i+rog hi,i+ T, 1dR é uy BTaijnjds
2 R
- ~ _l
+ f BTGij*nj(ui—Zui)dS - H*g'*T;—ds
e S, O
1l : 5
+ 5 R.*g"*(T .=~¢:)2-dR - [ ¢.*g'*h.1aR -~ f T*g'*h, .1-dR
i 9 ,i7%i7 i’ 9 "0iT 9 "84 ,4i7
R o R e} R o
-/ B.n,*g'*(T-2T)1-dS + f T*g'*h.n.1ds - sh.*g'* .1 ar
iti’9 T itiT i i
S 0 S o R e}
5 6 '
- 1 :
- %* * "%
';(bl (Zkij ¢1-+g hi)idR (F.1)
Substitution of Egs.(2.68) through (2.72) into Eq.(F.1l)
'fyields
- _ — *-— . - .
Ale(w) = 2£ uy; [(gij+ﬂ6ij BTaij),j+ptinR,
-— * ) _ _. .
: 2 [ .
e..]dR

1

+ 2£ eij*[E-jklekl-oij]dR + 2£ oij*[u

(i,3) 713

- 2é gij*nj(ui—ﬁi)ds + 2£ F*(ui'i+g'*qi,i)dR
1
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- 27 FGi.*nj(ui-&i)dS - 2é F*g'*(Q;é)dS

j
S1 4

- ., o - s
+ 2; qi*g'*(0;-m ;-0,f;)AR + 2é q;n;*g'*(n-7)ds
3

_-* '* . - LK) " - -* . . . »
+ 2; 8,%9 (ql Kljej)dR 2; T [Bu1,1+(g'*h1,1+pch/To]dR

+ 2f BTGij*nj(ui—ui)dS + 2é

f*g'*(H-ﬁ)%—dS
Sl (o)

6

- l - ~
] - - -

- 1
- *q! _—
2f $;%9 *(hi+ki.¢j)T

drR (F.2)
] (o]

If the field equations (2.32) through (2.40) together
with the boundary conditions (2.41l) through (2.48) are satis-
fied, the right hand side of Eq.(F.2) vanishes as one of the
arguments of the bilinear map vanishes at the solution state.
Conversely, if A;Jl(w) vanishes for every smooth function w,
we chodse, for example, & = {5,0,0,0;0,0,0,0,0} with u=0 on
Szx[O,w), then by the non-degenerate property of the bilinear
map, for arbitrary u implies that Eq.(2.38) is obtained.
Following the same procedure for the choice of w such that
all but one term on the right hand side of Eq.(F.2) identi-
cally vanishes, implies the satisfaction of a field or boun-
dary equation. Thus vanishing of A;Jl(w) weW implies the
field Egs.(2.32-2.40) together with the boundary conditions

(2.41-2.48).
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