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F.II~ ITE ELE~·lENT IKVESTIGATIONS OF THER.!-10_: :t::IJ.>.STI C 

AI;D THER.!-~0-FL)\STIC CONSOLIDATIOi'~ 

Bv 

Baher Labeeb Aboustit, Ph.D. 

The Ohio State University, 19£3 

The transient response of saturated continua due to 

thermal as well as rnec~anical loads is investigated in 

both elastic and plas~ic ranges. 

h'hen the tv.'o p~ase saturated media are subJected to 

thermomechanical loading, the energy equation is coupled 

with the mass flow and solid deformation equations re­

sulting in the initial boundary value problem of thermal 

consolidation. The solid behavior may be assumed to be 

either elastic or elastoplastic leading to the associated 

theoricc of thcrmo~lc~Lic and thermoelastoplastic consoli-

dation. Numerous solutions to isothermal consolidation 

proble~s dL~ available ln the literature, but thermal con­

solidation response solutions are no~ available. 

The governing eq~ations for the quasi-static infini­

tesi~al theory oi t~e~moelastic consolidation arc developed 

by using the theory c~ reixtures. An equivalent variational 

principle is dcvelo?e~ along with associated finite element 

xi 



formulations. Two isopar~~etric elements of the com-

posite type are employed for the spatial discretization. 

The formulation is extended to the plastic ranges by 

modeling the solid phase as an elastic work hardening 

material with an associated flow rule. An incremental 

iterative scheme is developed to solve this nonlinear 

transient problem. Several spec-ial purpose computer codes 

are deveJoped for evaluating the isothermal, thermal, elas­

tic ~nd elastoplastic plahe strain consolidation responses. 

These codes have been evaluated against limiting cases 

available in the literature. The effects of temporal and 

spatial interpolation schemes are investigated for one­

dimensional thermoelastic consolidation problems. An ap­

plication dealing with a plane strain underground coal 

gasification problem is also presented. 

Although the analysis is restricted to· the infinite~i­

mal theory of deformations, ~econd ord6r geometric ~ffect~ 

can be included in the an~lysis~ Fluid compressibility and 

a direct coupling between mass and fluid flow can alsu Le 

considPrAd. The incorporation of the effect~ of stress and 

temperature dependent permeabilities, conductivities and 

yield functions is recommended for future work. Although 

only geotechnical applications have been investigated, thr. 

analysis is also generally applicable to polymer and com­

posite hygrothermal material response evaluation. 
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CHAPTER I 

INTRODUCTION 

1.1 General Remarks 

The problem of fluid flow through porous media has re­

ceived considerable attention in many engineering applica­

tions including foundation analysis, reservoir flow/depletion, 

energy resource extraction, and nuclear waste interaction. 

When saturated clay is subjected to an external loading, 

water drains gradually out of the pores and the sol1d skele­

ton deforms instantaneously. This transient coupled pheno­

menon is known as consolidation. 

In some situations, saturated soils are subje~ted to 

me~hnnical as well as thermal loading such as in situ coal 

9asification, geothermal energy recovery, hydraulic frac­

turing; ann nuclear waste management. This increases the 

complexity of the problem, since the transient thermal flow 

problem is coupled with the consolidation problem. This pheno­

menon is called thermal consolidation. 

Generalization of Biot's isothermal theory of consolida­

tion to include thermal effec~ is diffl~ult bec~use it js 

based on phenomenological assumptions. The theory of mix­

tures provides an excellent b?sis for deriving thermal and 
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isothermal theories of consolidation. For thermoelastic 

consolidation, the soil or rock medium is assumed to be elas-

tic. However, experiments have demonstrated that geotechnical 

materials are strongly nonlinear and can be modeled as elasto-

plastic materials. This constitutive characterization leads 

to thermo-elasto-plastic consolidation theories. 

Analytical solutions for this complex phenomenon, even 

for simple thermo~lRstic one-dimensional ~roblems·, are not 

available in the literature. For thenllO.,..?lactic problt=iu::;, 

closed form analytical representation of the solutions is 

impossible because of the inherent non-linearities. This 

suggests the use of the. finite _,element method for so_lving 

such nonlinear and transient problems. with complex geometries, 

l_ayering conditions and boundary conditions. 

1.2 Review of LiterRture 

The subject of· flow through porous nt~dia ·has been fre-

quently dealt with in the literature. Scheidegger [54] and 

PolUbarinova-Kochina [41] have·given an excellent review on 

fhis subject. For a·6ne-dimcnsidna}· fluw of flUid through 

an undefortnab.le porous· solid, Darcy observed a linear rela-

· t-ionship between ~fluid· velocity and the. potential causing 

the flow, where the constant of proportionRlit_y ·is the. pe.r-

meability coefficient-of the porous media. In general, the 

permeability coefficient depends ·on the size, shape, distri­

bution of the pores, temperature and fluid velocity. For 

fhree-dimensional flow through porous·media; Darcy's law is 
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also used by extending the permeability coefficient to a 

third order tensor. Analytical and numerical solutions to 

the problem of flow through a incompressible porous media, 

which use Darcy's law as a basic equation can be found in 

many publications, e.g. Scheidegger [54], Pluborinova-Kochina 

[41] and Desai [17]. 

Terzaghi [64] used both experimental and analytical 

methods to consider the deformation of the solid skeleton. 

In 1923, Terzaghi developed the one-dimensional theory of 

consolidation with the following assumptions: (1) the soil 

is completely saturated with water; (2) the soil particles 

and the pore water are incompressible; (3) the flow of fluid 

obeys Darcy's law; (4) the solid skeleton is linearly elastic 

in terms of effective stresses; (5) homogeneous soil proper­

ties; (6) small strains and small displacements. For a column 

of soil subjected to constant vertical loading, the equation 

governing the transient phenomenon of consolidation, is the 

same as the well known diffusion equation in engineering me­

chanics. The definition of Terzaghi for the effective stress 

agrees with the modern theory of consolidation [40]. The 

effective stress is defined as the difference between the 

total stress acting on the soil sample and the pore pressure. 

This theory is limited to cases where the E;oil is subjected 

to co~stant loading extended over a relatively large area. 

Subsequent generalizations and extensions of the theory can 

be found in the literature (cf. [56] for a review). 
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Biot [2,3,4,5,6] assuming the existence of strain energy 

for the fluid solid mixture, postulated constitutive rela-

tions for the three-dimensional theory of consolidation. The 

solid is assumed to be linearly elastic and isotropic. The 

fluid flow obeys Darcy's law and the fluid pressure is assumed 

to act only over the pore space. Generalizations to aniso-

tropic and viscoelastic solids are also considered. Biot's 

consolidation theory has been criticized by Sandhu [4S]. The 

theory involves the dependency of the pore pressure on the 

solid deformation which cciritradicts Darci's law. 

Green and Naghdi [23] proposed a dynamical theory of 

interacting contiriua, b~sed on the energ~ balance equation 

employing invariance conditions under superposed rigid body 

motion and entropy production inequality. Crochet and Nagdhi 

[15] used the dynamical theory of interactinq continua to 

present governing equations for fluid flow through a porous 

elastic solid. 
. .. 

Sandhu [48] used the work of Green and Naqhdi [231 and 
.. . . 

Crochet and Nagdhi [15] to derive the field equatinn~ for the 

initial bound~ry value problem of linear. el~~tic.quaii-static 
.. 

isothermal consolidation. Sandhu [48] and Sandhu and Wilson 

[49] presented a variationai principle and associated finite 

element formulation. A composite si~ n~ded trianguiar ele-

ment is developed for the spatial discretization, wherein the 

displacement is assigned at all the nodes (i.e., quadratic 
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displacement) , while the pore pressure is assigned to the 

corner nodes only {i.e., linear pressure). A linear inter­

polation as well as logarthmic interpolation is used in the 

time domain discretization. 

Hwang et al. [25] proposed a different logarthrnic inter­

polation for the temporal discretization. In this scheme, the 

time integration factor, a, depends on the current value of 

the time variable, which results in an expensive equation 

solving process for constant time inc~ements. Yooko et al. 

[67,68,69] employed eight noded isoparametric elements with 

a discontinuous pressure field to allow for the jump condi­

tions on boundaries with specified tractions, which resulted 

in good solutions to the undrained problem. However, at sub­

sequent time steps it gave poor approximations. 

In the displacement interpolation, Christian and Boehmer 

[14] used a quadrilateral element composed of four constant 

strain triangles with the displacement of the central node 

eliminated by static condensation. The pressure is assumed 

to be constant throughout the element, and the value of the 

pressure at the center of the element and its four surrounding 

elements was used to evaluate the quadratic variation of the 

pore pressure. This procedure is based on equating the rate 

of .outflow and the reduction in the solid volume. The scheme 

is explicit and is subjected to stability conditions. 

Ghaboussi and Wilson [21] extended the formulation by 

Sandhu and Wilson [49] to account for fluid compressibility 

-5-



using Biot Is a·ssumption [ 4] of the exi'stence of the strain 

energy function for the mixture. ·Four n'oded isoparametr ic 
. . . . 

elements were ·used for both the displacem.ent and pore pres-

sure. However, an additional incompatible mode was included 

in the displacement· interpo·latioh. Smith and Hobbs [63] 

used the same element of ·Ghaboussi and Wilson [21] but with-

out the incompa tibfei displacement modes. Inaccurate results 

were observed e·specially near the impervious· strata. 

Booker and Smali [8 ]· inve.stigated the stahj 1 i ty of the 

time domain discretization for the consolidati6n equations. 

It was found that for the integration factor,a > .?, the 

scheme is unconditionally stable. · Krause [28] used the 

virtual work principle to formulate the finite element equa­

tions for the isothermal consolidation problem. Two differ-

ent schemes were suggested to reduce the number of degrees 

of freedom, either by eliminating the pressure or the dis-

placement. However, the resulting matrices are no longer· 

banded as they ·were in the complete formulation. 

Sandhu [51] presented general variational principles 

equivalent 'to the direct, the complementary and the mixed 

· forms for the field equations governing the isothermal con-

solidation. Generalizations to nonlinear constitutive laws 

were also proposed. Sandhu [5'3] presented an eight noded 

isoparametric element in which the displacements are assigned 

to al] the nodes and the pore pressure is assi~;:J.iH:~d at the 

corner nodes only: This elem~nt is referred to as the 8-4 
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element. Numerical comparisons were conducted using this 

element, and the element proposed by Yooko et al. (8-8. 

element) and Sandhu and Wilson's [49] element (6-3 element). 

The 6-3 element exhibits a directional bias, although for a 

symmetric mesh it gives good results. The 8-4 element was 

found to be superior to the 8-8 element. Oscillatory pressu~e 

responses were obtained when the 8-8 element is used with 

~= 0. 5. 

Sharabi [59] used the theory of mixtures [15,23] to 

write the governing:equations for the isothermal consolida­

tion problem allowing for finite deformations, nonlinear 

elastic soil properties and variable permeability. The 

Galerkin method .is used to derive finite element equations 

in a linearized incremental form. A five noded quadrilateral 

element is used for the displacement with constant shear 

strain and the pore pressure is assigned at the corner nodes 

only. Reasonably good results are obtained in the linear 

analysis. 

Small, Booker and Davis [62] used the initial stress 

method in plastic analysis [70] to obtain an incremental it­

erative scheme for the isothermal elastoplastic consolidation 

for a solid skeleton obeying the Mohr-Coulomb yield criterion 

with .a non-associated flow rule. carter, Small and Booker 

[10] presented the theory and finite element formulations for 

finite elastic isothermal consolidation, using an Eulerian 

description. These authors [11] combined their previous work 
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[10,62] to present an elastoplastic analysis with finjjte 

deformation. 

Prevost [43,44] used an incre~ental scheme for solving 

the isothermal consolidation problem using the four noded 

element of Smith et al. [ 6.31 but with .=t different nl:liilbcr of 

Gaussian points for the solid and the coupling matrices. 

Siriwardan and Desai· [61]· presented two numerical schemes 

for isothermal elastoplastic consolidation. The two schemes 

are of an· incremental nature, the firs·t ·one uses the residual 

load approach and the second one utilizes the tangential 

stiffness approach.· 

Schiffman [55] used the· theory of mixtures [15,23]·along 

with Biot's theory [4] to write the field equat~ons ftir the 

thermoelastic consolidation theory. Onsager's principle 

[20] is used to define the ~nnpling between hc~t and fluid 

flow. Witherspoon et al. [65] have presented field equations 

for the thermoeitistic consolidation similar to those pre­

viously presented by Schiffman [55]. In their Galerkin-type 

finite element formulnt.ion, the temperature was added "J,Jhysi­

cally" to the functional developed earlier by Ghaboussi and 

Wilson [22] for the poroelastic component of the hydrothermo­

elastic phenomenon. 

It· is worth noting that Biot's theory, with its draw­

back listed earlier, has been the primary basis for formula­

ting· the thermoelastic consolidation equations in Refs.[55, 

65] 0 
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1.3 Objectives and Scope 

The purpose of this work is to study the transient 

behavior of saturated soils subjected to both thermal and 

mechanical loads in both elastic and plastic ranges. 

In this study, the governing equations for the quasi­

static, infinitesimal theory of thermoelastic consolidation 

are developed using the theory of mixtures [15,23] and the 

isothermal consolidation theory [48]. A variational principle 

equivalent to the thermoelastic consolidation field equations, 

initial and boundary conditions is developed, along with as­

sociated finite element formulation. Two different isopara­

metric elements are suggested. The work is then extended to 

the elastoplastic case. An incremental iterative scheme is 

used to obtain the solution. 

In Chapter II, the governing equations for thermoelastic 

consolidation are obtained following the approach of Green 

and Naqdhi [2Jl and Crochet and Naghdi [15] for the theory 

of mixtures and Sandhu [48] for the isothermal consolidation. 

A general variational principle is obtained based on the ap­

proach of Sandhu and Pister [50]. The finite element method 

is used to develop numerical procedures for the solution. 

Two types of isoparametric elements are utilized. 

In Chapter III, the formulation is extended to the 

plastic range by adopting several isothermal yield criteria 

with an associated flow rule. An incremental iterative 

scheme is used for the solution. 
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Applications are demonstrated in Chapter rv.· Thermo­

elastic and thermoelastoplastic conslidation of a bounded 

column of saturated clay are first considered. Results for 

the elastic analysis are compared with the analytical solu­

tion of Terzaghi and numerical solutions of Sandhu [53] for 

the isothermal consolidation problem and the temp.erature 

profile is compared with the analytical solution of Carslaw 

and Jaeger [9]. Computational efficiencies of the two ele­

merits are discussed. Field simulation pertainirig to under-

ground coal conversion site are also coriducted. 

Conclusions and a summary of the investigations are 

presented in Chapter V. Future research recommendations 

are also discussed. Detailed computational procedures and 

supporting theories are discussed in the Appendices . 

. I 

-10-



CHAPTER II 

THERMAL CONSOLIDATION - AN ELASTIC &~ALYSIS 

2.1 Introduction 

In this chapter, the field equations for flow of an 

incompressible fluid through a linearly elastic solid 

subjected to both thermal and mechanical loads (thermo­

elastic consolidation) , are obtained from the theory of 

mixtures within the framework of the theories advanced by 

Green and Nagdhi {23] and Crochet and Nagdhi [15]. A 

general variational principle equivalent to the field 

equations and boundary conditions is developed using the 

approach of Sandhu and Pister [50] in constructing variational 

principles for initial boundary value problems. A finite 

element formulation in space and time is presented. In 

the spatial discretization two isoparametric elements of 

the composite type are presented. 

Throughout the development, the usual index notation 

is employed with the implied summation on repeated indices and 

the cornm<3. denoting spatial deri vati vcs. 

2.2 Balance Equations 

Green and Nadghi [23] considered a mixture of two con­

tinua s
1 

and s
2 

occupying a volume V bounded by an area A. 

-11-



An energy balance equation was postulated in their work for 

the whole continuum mixture by suitable combinations of the 

equations deduced for each constituent. The invariance con-

ditions under superimposed rigid body motions were applied 

to the energy balance equation and the resulting equations 

for non chemically reacting continuua are as follows~ 

2. 2 .1 Conservation o.f Mass 

'l'hP. ffii;t:::i::;; t.:onservation equation for e~.ch ~nnst:i tuent 

is 

for n = 1,2 ( 2 .1} 

where pn and v~n} are mass density and components of velocity 

Vector for n th const1.'tuent pe ti 1 Tl mb' d res c ve y. 1e co 1ne mass 

density is defined as 

(2.2} 

2.22 Conservation of Linear Momentum 

The equations for conservation of linear momentum can 

be expressed as: 

:1. 

r 
n=l 

o(n} + 
ki,k ( 2. 3) 

where 0~~}, fin} and F~n} are the components ·Of the partial 

-12- ' 



stress tensor, body force and acceleration vectors for the 

th . . 1 n const1tuent, respect1ve y. 

2.2.3 Total Stress Tensor: 

The conservation of angular momentum for the mixture 

guarantees the symmetry of the total stress, i.e., 

~ -(n) 
n=l 0 ki 

~ - (n) 
= n~l 0 ik 

Along the boundary, we have 

2 
l: 

n=l 

where t .<·n) are the components of surface traction 
1 . 

vectors for the nth constituent. 

2.2.4 Diffusive Resistance 

( 2. 4) 

( 2. 5) 

The diffusive resistance represents the interaction betwen 

the two continuua and is defined by 

which can be reduced to, in view of Eq (2. 3) , 

and 

n. =pz 
1 

- 1T. 
1 

-(2) 
0 ki,k 

-13-
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2.3 Constitutive Equations 

The material behavior needs to be specified in order 

to apply the balance equations discussed in the previous 

section. This behavior is de.fined by the· constitutive. equa-

tions for stress, entropy, energy, heat flux and flow flux. 

Crochet and Naghdi [15] started by admitting fairly 

general constitutive assumptions prior to placing restric-

tions by using the Clausius-Duhem inequality. Their re-

sults are further specialized to the case of infinitesi-

mal theory of fluid flow through a linearly elastic iso-

tropic solid. The continuum is assumed to be initially at 

rest with constant temperature and zero initial stress. 

For infinitesimal deformations the solid strain e .. is 
~J 

e .. ""' 
~J 

1 -
2 

(u .. +u .. ) 
. ~,] ],~ 

where u. are the solid displacements. 
~ 

( 2. 9) 

We let s 1 be the solid and s 2 be the fluid. Then at 

the equilibrium state when the relative velocity and veloci-

~y gradients are· zero, the constitutive relations are given as 

-(1) = 
0 .. 

0 ~J 

{2.10b) 

= 0 (2.10c) 

-14-



where the subscript o is used to denote the equilibrium 

values. Tis the current temperature and ~,A,y,8,K,~ 

are material constants. Furthermore, the anti-symmetric 

part of partial stresses must vanish at equilibrium, 

that is, 

-(n) 
cro[ij] = 0 for n = 1,2 (2.11) 

The "extra" values of the partial stresses and diffusive 

resistance are given by 

-(1) 2 
(A ~n) D(n) (n) D~~) 0 e(ij) = I: 0 .. +2 ll3 

n=l kk 1J 1J 
(2.12a) 

-(2) 2 
0 e(ij) = I: (AJn) D(n) (n) D ~~)) 0 .. + 2 ll2 n==l kk 1J 1J 

(2.12b) 

( 1) -(2) 
a = 0 e[ij] = -c 1 A .. e[ij] 1J 

(2.12c) 

1T • = c v. e1 3 1 
(2 .12d) 

where (.) denotes the symmetric part and [.] denotes the 

antisymmetric part, n{j)are the deformation rates, Aij 

and v. are relative vorticities and relative velocities, 
1 

· 1 ~ (n) ' (n) (n) d (n) e mater1· al respect1ve y, c 1 ,c
3

,A 3 , A 2 ,l1 3 an l1 2 ar 

constants. The heat flux is given by 

h. = - k T . ~- c v. 
J ') 5 J 

(:l.l3) 

where k and c 5 are material constants. 

-15-



For isothermal consolidation, Sandhu [48] assumed that 

the solid stress is independent of the deformation rates 

of the solid and fluid, the fluid partial stress is in-

dependent of the deformation rate of the solid and vertic-

ity effect is negligible. Thus,combination of Eqs (2 711) 

and (2.12) yields 

-a.< 1.)= 2 ,, 1 e + 1 ~ 0 T ~ r- • • 1\ 1 ek,·. u • • - ~-> u • . - y 
1] 1J h ~] 1] 

p 2 0 .. 
lJ 

( 2) 
a · · = l - K p 2 + y ekk - r; T] ~ . . + 2 1-1 J 2 

) D ~ ~ ) 
1] 1J 1] 

2.3.1 Darcy's Law 

Crochet and Nagdhi [15] discussed the possibility 

(2 .14a) 

(2.14b) 

(2 .14c) 

of deriving Darcy's law from Eq (2.12). Sandhu [48] used 

Eq (2.14c) and the definition of t'l.i.ffuslve .resistance; 

Eq (2.7) to obtain Darcy's law for the quasi-static case, 

namely 

(2.15) 

By setting t~l) = £~~) 
~ 1 

-K .. 
-(2) + f.) (2~16) v. = (crkj,k p2 1 1J J 

noting that (1) ( 2) and (1) << 
( 2) 

then v. = v. - v. v. v. , 
1 1 1 1 1 
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{ 2) 
v. = 

1 

Furthermore, Sandhu [48] set y = 0 in Eq {2.14b) 

{2.17) 

since it contradicts with Darcy's law which postulates 

that fluid stresses depend only on p 2 and vl 2 ) and are 

independent of the solid deformations. Viscosity effects 

were also ignored by setting ~~ 2 ) =A {2 ) = 0 in Eq {2.14b). 

The resulting equations are 

o ~ ~ ) = 2 ~ 1 e . . + A 1 ekk o . . - 8 T o . . 1J 1J 1J 1J 
(2 .18a) 

cr~~)= [-K P2 - z;T] o .. 
1J 1J 

(2 .18b) 

{2.18c) 

2.3.2 Continuity Equation 

The divergence of the relative velocity yields, in 

view of Eq {2.16), 

e .. -
11 

where e .. 
11 

e: .. 11 
- -(2) - K .. (a . + p 2 f.) · 1J ,J J ,1 

(1) • 
= v .. , e: .. 1, J. 11 = v.< 2 ~, and 1,1 

(2.19) 

;< 2 > =a~~>;3.· 
11 

For an incompressible fluid, p 2 = 0, and by virtue of 

Eq {2.1), the continuity equation can be expressed as 

e .. + K .. (a·(~)+ P2 f.) =-0 
11 1J ,J J 

(2.20) 
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2.3.3 Fourier's Law 

In· the present analysis, the effect of velocity on 

heat flux is ignored, since the process is quasi-static, 

by setting c5 = 0· in Eq (2 .13) . By writing k as a sym­

metric tensor of the second order in Eq (2.11) gives 

' 

h. = - k .. T . 
1 1) , J (2.21) 

2.3.4 Energy Equation 

Accor~in9 t.o Crochet and Nagdhi [15], the entropy 

p~;>i"' unit l!l(::I,SS of the mixture can be wri t.ten as 

(2.22) 

where S is the reference value of the entropy, c, 8 and 
0 

r; are material constants and T is the reference tempera­o 

ture. The rate of change or entru~y is given by, [20] 

1 flo 
-h .. + -T r T 1,1 

(2.23) 

where r is the heat supply function. Thus, for an incom-

presslLle fluid, subctituting from F.q (2.22) into Eq (2.23) 

yields 

cp 
0 

T + B e .. + Tl h. · 
T

0 
11 1,1 

(2.24) 

Substituting for h. from Eq (2.21) and after linearization 
1 

Yields 
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k .. T .. + p r 
l.J ,Jl. 0 

(2.25} 

As mentioned earlier, Crochet and Nagdhi [15] assumed 

that the solid is isotropic. The mechanical anisotropy 

can be introduced by a fourth order tensor Eijkl in lieu 

of A and~ in Eq.(2.18}. Hydraulic and thermal anisotropy 

can be noted in the two second order tensors K .. and k .. , 
l.J l.J 

respectively. It is also worth mentioning that the three 

types of anisotropy are mutually independent. 

Before closing this section, the notations for solid 

and fluid partial stresses will be changed to be in line 

with the commonly used notation in the isothermal theory 

of consolidation [48,49]. The effective stress in the 

- . -(1} -(2} solid will be denoted by o .. 1.nstead of o
1 
.. and o .. will be 

l.J J l.J 

replaced by n .. to denote the pore pressure. That is, 
l.J 

0 .• is the effective isothermal 
l.J 

stress tensor 

o .. = o .. - 8T o .. 
l.J l.J l.J 

is the effective stress tensor 

~ 

0 .. = O .. + TI Q .. 
l.J l.J l.J 

is the total stress tensor 

2.4 Variational Formulation 

2.4.1 General 

Finite element formulations often rely on variational 

principles. In this section, a variational principle for the 
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problem of thermoelastic consolidation will be 'developed. 

Sandhu and Pister [50] extended Mikhlin's variational 

problem [34] to the case of coupled problems which in-

volve several dependent variables. The set of variables 

are treated as a single vector variable and the set of 

operators are replaced by a single generalized symmetric 

operator. 

Sandhu and Salaa,m lS:lJ included the non humuyeneuu~ 

boundary r.nnc'H tj.ons in the variational formulation by 

writing the boW1dary operator in a "consistent" forin 

with the field operator. As an example, consider the 

boundary value problem expressed by 

Au = f on R (2.26) 

with Cu = b on aR (2.:l7) 

where A is a self adjoint operator with L·espect to a sym-

metric nondegenerate bilinear map, and c is a boundary 

operator consistertt wieh A, l.e., iL ~hould 3ntiofy 

J uAvuR 
R 

..;; JvAudn I 
R 

f (ucv-vCu)dS 
aR 

The variational principle equivalent to the problem is 

given by 

J[u] = f (uAu-2uf) dR + I (UCu-2ub) dS 
R oR 

-20-
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The vanishing of the variation of J!li] among all kinemati-

cally admissible flinctions implies Eqs (2.26) and (2.27). 

For an initial boundary value problem, Gurtin [24] 

proposed a bilinear map defined as the spatial integral 

of the convolution prodtlct, to incllide initial conditions 

explicitly in the variational principle, 

<w,v> = J 
R 

(2.30) 

It.was shown that the vanishing of the variation of JiuJ 

is equivalent to vanishing of its Gateaux differential, 

defined by 

!J J [u] 
v 

d = df. J I u + >. v] I 
A. =0 

The above approach will be liSed in constructing a 

( 2. 31) 

variational principle for the initial boundary value problem 

of thermoelastic consolidation. Extended variational prin-

ciples together with some specializations are also presented. 

2.4.2 The Initial Boundary Value Problem of 
Thermoelastic Consolidation 

The field equations governing the flow of an incom-

pressible fluid through a linearly elastic homogenous solid 

subjected to both thermal and mechanical loads were 

presented in Section 2.3, and will formally be restated here. 

-21-



We let R be an open connected region occupied by the 

fluid-solid mixture, aR its boundary and R, its closure. 

The domain of definition of all the variables is Rx[O,oo] 

is the non-negative interval of time. The field equations 

are: 

(i) stress-strain and strain displacement relations for a 

linear elastic solid matrix 

0 . . ... 
1] 

1 e .. = -
2 

(u. . + u. . ) 
1] 1,J Ji1 

(ii) equilibrium equations for the solid-fluid mixture 

(a .. + TIO •• 
1] 1] 

BTo . . ) . + p f. = 0 
1J , J 1 

(iii) Darcy's law for irrotational fluid flow 

q. = K .. e. 
1 1J J 

where e. is given by 
J 

e.= 1r • + p
2
f. 

J 'J J 

( 2 • 32) 

(2. 33) 

(2.34) 

( 2. 35) 

(2.36) 

(iv) the cunlinuity equation for a non-~hP.mically react1nq 

continuum with the solid skeleton fully saturated by 

an incompressible fluid 

qi,i = -eii 

(v) Fourier's law of heat condition 

h. = 
1 

k. . cp. 
1] J 

-22-
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where ~- is given by 
J 

<P. = T . 
J I J 

(2.39) 

(vi) an energy equation for the solid-fluid mixture with 

convection ignored 

h. . + pc T + ~T e .. = p r 
111 v 0 11 0 

(2.40) 

The boundary conditions associated with the problem are 

(a) displacement boundary conditions 

A • 

u. (x 1 t) = u. (x 1 t) 
1 - 1 -

on s
1 

x[0 1 co) (2.41) 

where s 1 C ClR 

(b) traction boundary conditions 

A 

t . (X 1 t) = t • (X 1 t ) On S 
2 

X [ 0 1 
00 ) 

1 - 1 -
(2.42) 

where t. (x 1 t) = (a .. + 1ro •• - STo .. )n. 
1 - 1J 1J 1J J 

(2.43) 

where nj is the outward unit normal to s2 and s2 C aR 

such that 

(c) pore pressure boundary conditions 

1r (x. 1 t) = 1T (~ 1 t) 

where s3 C a R 

(d) Fluid flow boundary conditions 
A 

Q(x 1 t) = Q(x 1 t) on s 4x[0 1 co) 

-23-
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where 
( 2. 46) 

where ni is the outward unit normal to S 4 and S 4 C R 

such that 

(e) temperature boundary conditions 

T(~,L) = T(~,L) 

where s5 CaR 

(f) heat .flux boundary conditions 
A 

H(~,t) = H(~,t) 

where H = h.n. 
1 l. 

(2.47) 

(2.48) 

(2.49) 

where ni is the outward unit normal to s6 and s 6 c aR 

such that 

S n S - A. and -s 5 u s 6 = a R 5 6 - 't' 

The initial conditions for the temperature and displace-

ment are 

T( ~, o) = d. (x) 
1 -

2.4.3 Alternative Forms for Continuity and Energy 
Equations 

(2.50) 

Following Gurtin [24], an integral form for both of 

the continuity and energy equations is required to include 

the initial conditions explicitly in the variational prin-

ciple. This can be done by r,aplace trans fonltation followe~ 

by an inversion. For the continuity equation, considering 

Laplace transformation of Eq (2.20), we have 
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d .. - s u .. = q .. 
1,1 1,1 1,1 

(2.51) 

where a superposed bar denotes the transformed function 

and s is the transformation parameter. Dividing 

Eq (2.51) by s and inverting back after use of the con-

volution theorem: 

d .. - u .. = g' * q .. 
1,1 1,1 1,1 

(2.52) 

where 

g' (t) = 1 V t E (O,oo) (2.53) 

and * denotes the convolution integral. The equivalence 

of Eq 2.52 with Eq 2.20 can be shown as follows. 

Assuming Eq (2.20) to hold, 

g' * q .. = 1 * q .. = ft q .. d T = ft U. . dT 
1,1 1,1 

0 
1,1 

0 
1,1 

= -u .. 
1,1 

+ (1, . 
1,1 

(2.!j4) 

conversely, a~sumiug (2.52) to hold. The right hnnn side 

of Eq (2.52) is 

g' * q .. = 
1,1 

t f q .. d '[ 
0 1,1 

while the left. hand side is 

-25-
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d .. 
l.,l. 

u. . = u. . (o) - u. . (t) = 
l.,l. l.,l. l.,l. 

(2.56) 

Hence according to Eq (2.52) 

t !(4 . . +U .. )dT=U 
l.,l. l.,l. 

0 

(2.57) 

thereby yielding Eq (2.20). 

For the energy equation, we consider Laplace transfer-

mation for Eq (2.25), namely 

n. . + p c (sT - T ) + 8 To (s u. . - d. . ) 
l.,l. v 0 l.,l. l.,l. 

-= P r (2.58) 

We divide Eq (2.58) by s and invert back using the convolu-

tion theorem to obtain 

g' * h .. + p c (T - T ) + 8 T (u .. - d .. ) = g' * p r 
l.,l. v 0 0 l.,l. l.,l. 

(2.59) 

The equivalence of Eqs (2.59) and (2.25) can be proved in 

a manner similar to that demonstrated for the continuity 

equation. 

2.4.4 Variational Principle 

In order to transform the initial boundary value problem 

of thermoelastic consolidation into an equivalent varia-

tional principle, an admissible state, denoted by 

w = {u,e,o,~,q,e,T,h,~} is defined on Rx(O,~) and t,Q,H are - - - "" -
-26-



defined on aRxiO,~). The set of all w is a linear vector 

space. The solution to the problem is defined as an admis-

sible state w , which satisfies the field equations as well 
0 

as initial and boundary conditions. t, Q and H are not con-

sidered separately in the admissible state and are assumed 

in the form t. = (a. . + 1r o. . - 8To .. ) n. , Q = q. n. and 
1 1] 1] 1] J 1 1 

H = h.n .• 
1 1 

The bilinear mapping used in constructing the varia-

tional principle is the one proposed by Gurtin 124], Eq (2.30). 

The field equations are presented by an operator A of 

9x9 matrix. The boundary operators are written in a 'con-

sistent' form with the field equations in the sense of 

Sandhu and Salaam {52]. The field Eqs (2.32) through (2.40) 

along with Eqs (2.52) and (2.59) can be rewritten as 

Aw = v on Rx!O, co) 

where A, w and v are as :f;ollows. 

w T = { u . , ek l , a . . , q . , 9 . , l <P • , h . , T } 
1 1J 1 J To J 1 

A .. = 0 except the following entries: 
1] 

, 
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= g'* a 
a:­

J 

= -K .. * 
l.J 

a ~ g'+ a:-
l. 

A78 = -g'* 

I 

I 

I 

I 

A45 = g'* 

A54 = g'* 

A77 • -T k .. "' 
0 l.J 

I A87 = g I* 

a 
= -ak Boik 

PC v = ---

Similarly, the boundary conditions can be written as 

cw -·· v 

where 

T -w = {u. ,a . . ,Q,TI,H,T} 
l. l.J 

T v = {~. -n.~. g'*; -g'*Q• g'*~/T -g'*~/T -} 
1' J 1' ' ' . o' o 
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c .. = 0 except the following entries: 
1) 

c12 = n. c21 = -n. 
J J 

c34 = g'* I c43 = -g'* (2.67) 

c56 = 1 g'* c65 
1 g'* = 

To 
I T 

0 

= where a .. 
1J 

is the total stress tensor, i.e. , 

= a . . = a .. + 7T cS . . 8TcS. 
1) 1J 1J 1). 

In this coupled problem, the uncoupled operators are sym-

.metric, while the coupling operators constitute a pair o·f 

adjoint operators with respect to the bilinear map. Green's 

theorem can be employed to represent the boundary terms 

associated with the coupling operators (non-zero off 

diagonal terms of A), i.e., 

f u. *a. . . dR 
R 1 1J 1 J 

= -! u. . *a . . dR + f 
R 1 'J 1 J aR 

hr*u .. dR = - f 7T • *u. dR + f 7T *u. n. dS 
R 1,.1. R , 1 1 a R 1 1 

u. *a . . n .dS 
1 1) J 

fTI*g I *q .. dR 
R 1,.1. 

= -JTI .*g'*q.dR + f TI*g'*q.n.dS 
R ,1 1 aR 1 1 

fT*6u. . dR 
1 l. -R I 

=- r BT .*u.dR + f BT*u.n.dC 
R ,1 1 aR 1 1 u 
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h h. 
!T*g'*~ dR =- f T .*g'*~ dR + 
R R ' 1 

To To 

f T_*g' *hi hi dS 
()R T

0 

(2.72) 

Starting from the initial undeforrned state, i.e., 

di = 0, and T
0 

= 0, and following the approach presented by 

Eq (2.29), the following variational principle is presented. 

THEOREM I 

Let w be the oct of ~11 ~drniooible stnte~. Lel 

w by 

! u . * - [ (a . . + 7T 6 . . - S T 6 . . ) . + 2 p f . ] dR 
R 1 1J 1J 1] ,J 1 

f a . . *I u ( i, j) -e .. ] dR 
R ~J ~J 

+ f q.*g'*[8.-TI .-2p f.]dR+·f 8.*[g'*q.-K .. *8.]dR 
R -1 ~ ,1 2 1 R 1 1 1J J 

<P· 
+ f 7T * [ u. . +g' *q. . ] dR -

1,1 1,1 
( 

1 *{k .. *<P.+g'*h.]dR 
R To 1) J 1 R 

¢>. T . ) l pC __ T 
+ f h. *g' *{-~~ dR- !T *LSu .. +~'*h .. +--v-]dR 

R 1 T
0 

T
0 

R 1,1 T0 1,1 T0 

- f 
s 1 

(o .. +1rc .. -eTc .. )*(n.u.-2n.u.)ds + 
1.) l.J l..:J j 1 ] 1 
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g ' g' ~ - f TI*g'*(Q-2Q)dS - f H*-- *(T-2T)dS + f T*-.-*(H-2H)dS • • s 4 s5 o s 6 o 
(2.73) 

where t,Q, and Hare defined by Eqs.(2.43), (2.46) and (2.49), - . 

respectively. 

It can be shown that the Gateaux differential of J 1 {w) 

along an arbitrary path~ e·w ~anishes, if and only if the 

field equations together with the boundary conditions are 

satisfied. The proof of this theorem is given in Appendix F. 

2.4.5 Extended Variational Principles 

As mentioned· earlier, Green's theorem can be used to 

represent the relations between the coupling operators. Thus, 

one or more of the adjoint operators can be eliminated from 

the basic variational principle resulting in many alternative 

forms. This will induce an extension in the domain of defini-

tion of J 1 (w). For example, the term a .. . can be eliminated 
l.J I J 

from J 1 (w) by using Eq.(2.68). 

ThQn, by eliminating a I I I i l.J,J TT • , 0 T · , g ' + q ; ; and 
,1. ,1. 1.,1. 

~'*h . from J {w) the following variational principle is 
L j i 1. 1 I 

0 I 

obtu.ined: 

J 2 (w) = -2! u.*pf.dR + Je . . *E. 'klek1dR + 2! a . . *[u .. -e .. ]dR 
R 1 1 R l.J l.J R l.J l.,J l.J 

+ f q.*g'*[8 .-2(TI .+p 2 f.]dR + f 8 .*[g'*q.-K .. e .]dR 
R 1 1 ' 1 1 R 1 1 l.J J 

q,. 
+ 2 J TI*u .. dR + J ~*-[g'*h.+k .. *~.]dR 

R 1.,1. R 'o 1 l.J J 
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p C <P • 2T . 
+ f T*[-2Su .. + ~T]dR + f h.*g'*[- 1 + ~]dR 

R 1
'

1 'o R 1 'o 'o 

- 2! u.*t.ds- 2! (a . . *1ro .. -eTa .. )*(n.u.-n.u.)dS s 1 1 s 1J 1J 1J J 1 J 1 
2 1 

+ 2! Q*g'*(7r-;)dS + 2! 1r*g'*QdS 
53 54 

g' A g' A 

- 2! H*--*(T-T)dS- 2! T*--*HdS 
T T 

ss 0 56 0 

(2.74) 

2.4.6 Specializations 

One of the interesting specializations is to require the 

du1u.is~.i..Lle sLaLe in J 2 (w) Lo iuenLically. saLi.sfy, 

e .. 
1J 

0' •• 
1J 

e. 
l. 

q. 
1 

q,. 
l. 

hi 

u. 
l. 

1T 

T 

1 = -
2

(u .. +u .. ) 
1,] ],1 

= Eijklekl 

= 1T ,i + p 2fi 

:;;::; K .. e. 
l.J J 

= '1' ,i 

= -k ijlfl j 

A 

= u. 
l. 

= 1T 

A 

= T 

on Rx[O,co) 

on S 3x [ 0 ,co) 

(2.75) 

i.e., the admissible state is completely defined by {~,1r,T}. 

The resultinq ~ariational functional is 
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J3(~,1T,T) = -2! u.*pf.+ J e .. *o .. dR- J q.*g'*e.dR 
R 1 1 R 1J 1] R 1 1 

~· 
+ f h.*g'* ~dR + 2! lT*u .. dR- 2! ST*u .. dR 

R 1 T
0 

R 1,1 R 1,1 

A 

- 21 T*g'*!:!..__a.s 
T 

s6 0 

(2.76) 

It is worth noting that the variational principle above 

is a generalization of the one proposed by Sandhu and Wilson 

[49] for isothermal consolidation, and the one proposed by 

Nickell and Sackman [39] for linear coupled thermoelasticity. 

This functional forms the basis of the finite element discre-

tization in the next.section. 

2.5 Finite Element Formulations 

The element displacement, pore pressure and temperature 

are defined in terms of a set of generalized coordinates. 

Vanishing of the variation of the spatial discretization. 

results in a set of the first order linear differential equa-

tions in time. Further discretization in the time domain 

yields a set of linear algebraic equations. 

2.5.1 Spatial Discretization 

For a typical element~ the displacement, pressure and 

temperature are expressed in terms .of its nodal values as, 

(2.77) 
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m 
1r (x,t) = {N m(x)}{1T(t)} 

1T (2.78) 

(2.79) 

The strains, volumetric strains, pressure and temperature 

gradients, are obtained from the above relations as 

m [N m(x)){u(t)} (2.80) ~ (~,t) = e ~ 

llm(~,t) = [N
6 
m(~) ]{u(t)} (2.81) 

m [N m(x) H1r (t)} (2.82) 'il1T (~,t) = q ~ 

'VTm(~,t) = [ N h lit ( ~ ) ] { T ( t) } (2.83) 

By considering M elements, and substituting from Eqs . 

. (2.77) through (2.83) into Eq.(2.76) yields a discrete form 

of the functional, 
M 

J~(U,1T,T) = I 
m...,.l 

- ({1T}T[Nqm]T+{p2fm})*g'*[Km] ( [Nqm]{1T}+{p2fm}) 

+ {T}T[N m]T*- '*!_[km] [N m]{T} 
h g T h 

0 

- 2Sm{T}T{N rn}*{N m}{u} 
T 6 

pCv{T}T{N m}T*{N m}{T})dR 
•o T T m 
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(2.84) 

We define 

M 
f [N m] [Em] [N m]TdR 

M 
[K . ] = I [K ] = I f{N m}{N m}TdR uu e e m ' pu 1::!. II m 

M M 
[KTu] = I !S{N m}{N m}TdR [Kpp] = I f{N m} [Km]{N m}TdR 

1::!. T m I q q m 

M 
{M

4
} = \ f{N m}Q dSm 

!.. II m 4 (2.85) 

Using the matrices and vectors defined in (2.85), we can 

write the discrete functional in the matrix form, 

(2.86) 

Applying the variational principle with respect to ~,w, and 

T, respectively, yields 
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(2.87) 

[K ]T{u} - g'*[K ]{IT} 
pu pp = g'*{M2} - g'*{M} . 4 (2.88) 

(2.89) 

It is worth noting that Eqs. (2.89), (2.90) and (2.91) repre-

sent discrete forms of the equilibrium, continuity and energy 

equations, respectively. 

2.5.2 Temporal Discretization 

Eqs. (2.88) and (2.89) contain convolut:ion products. A 

step forward integration scheme will be adopted by using an 

interpolation function for the displacement, pressure and 

temperature with the end conditions as the generalized coor-

dinates. 

The logarithmic interpolation schemes proposed by 

Sandhu [48] are utilized herein, which begins by expressing 

a time dependent function 

(2.90) 

within a time interval T E [t
0

_ 1 ,tn]. Then 

where 

1 (2.92) 
Ln (ll t+l) 

Note that various conventional time stepping methods can be 

identified from (2.91) by properly selecting a. 
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Substituting from Eq. (2.91) into Eqs. (2.88) and (2.89) 

gives 

K Kpu uu -K Tu 

KT -at.tKPP 0 pu (2.93) '11" ( t ) 
n 

-KT 
Tu 0 -(CTT+at.tKTT) 

where 

(2.94) 

R (t) = [K ]{u(t 1 )} + (1-a)t.t[K ]{1r(t 1 )} + 
1r m pu n- pp n-

(2.95) 

(2.96) 

2.5.3 Choice of Finite Elements 

Since the composite elements are preferable in the iso-

thermal consolidation analysis, Sandhu [53], this approach 

is extended by presenting two isoparametric composite ele-

ments for plane strain thermoelastic consolidation. The 

first element which will be referred to as the 8-4-4 element 

has displacements assigned at all nodes, while the pressure 

and temperature are assigned at the corner nodes only, Fig. 

(2.1). The second element, which will be referred to as the 

8-8-8, has displacements, pressure and temperature assigned 
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at all the nodes, Fig. (2.2). A numerical comparison re­

vealing the performance of the two elements is presented 

in Chapter IV. 
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--

-
o Nodes with ( u, v, 1r, T) 
• Nodes with (u,v) 

f-igure 2.1. The 8-4-4 Isoparametric Element 
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0 0 

--
o Nodes with (u,v,?T,T) 

Pigurt! 2.2. Tht! 8-8-8 Isuparametric Elemt!nt 
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CHAPTER III 

THERMAL CONSOLIDATION - AN ELASTOPLASTIC ANALYSIS 

3.1 Introduction 

In this chapter, the plastic strain increment due to 

thermomechanical loading is obtained according to Prager's 

theory of nonisothermal plastic deformations [42]. The total 

strain increment is written according to Nadghi [35], and 

the inverse incremental relation for stress in terms of 

strain is obtained. The result is specialized to the case 

of nonisothermal yield surfaces. The incremental form of 

the field equations is listed and incremental as well as 

iterative solution schemes are studied. Supplementary infor­

mation is presented in Appendices A through E. In Appendix 

~, som~ classicnl yiP.ln r.r.iteria and a.lternative forms are 

discussed. In Appendix B, the yield surface consisting of 

the Drucker-Prager line with an expRnding elliptic cap is 

discussed. Appendix C deals with the incre~ental elasto­

plastic stress-strain matrix in plane strain and Appendix D 

discussed the hardening rules and the hardening functions. 

In Appendix E, numerical methods to obtain the stress incre­

ment are discussed. 
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3.2 Plastic Strain Increment 

The effective stress, cr .. , is responsible for all defor-
1) 

mations, linear or nonlinear, and failure conditions. For 

nonisothermal plastic deformations, Prager [42] assumed the 

yield function in the form 

- p -F(cr .. ,e .. ,T,k) -0 
1) 1) 

which equivalently can be written as 

- p f(cr .. ,e .. ) = cr
0

(k,T) 
. 1) 1) 

(3.1) 

(3.2) 

where cr
0 

is the uniaxial yield stress of the material, T is 

the temperature, e~. is the accumulated plastic strain, and 
1) 

k is a hardening parameter, which can be postulated 

to be the total plastic work, wp, i.e. 

k = wp (3.3) 

where wp is given by 

wp = f cr . . de~. 
l,.J 1) 

(3.4) 

FuL· the above, the material will be termed as work hardening. 

Alternatively, k can be related to the measure of the total 

plastic deformations, termed the equivalent plastic strain, 

i.e. 

k = 

\'There 

= c(de~.de~.)l/2 
1) 1) 

( 3. 5) 

( 3. 6) 

and c is a constant depending on the yield criterion (see 

Appendix D) , and the material in this case will be classified 
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as a strain hardening material. The work hardening hypothe-

sis will be assumed throughout this study. 

For developing plastic deformations, the consistency 

condition can be obtained from Eq. (3.1) as 

dF = ~aaF do .. + ~e~. + ~T + !!dk = o 
- cr i j 1 J a el? . 1 J a T a k 

We also define 

aF -
d'F =~cr .. + 

cr ij 1J 

1J 

(3.7) 

( 3 0 8) 

Upon unloading from a given plastic state, the stress 

state moves inwards from the yield surface, i.e. dF<O, 

de~.=O, dk=O. Thus in this case 
1J 

F=O d'F<O ( 3 0 9) 

If the stress state moves along the yield surface, dF=O, 

then some components of stress increase while others decrease 

at a constant temperature, keeping the solid in a plastic 

state without undergoing any plastic deformation. Such· a 

state is termed the neutral change of state. For this case 

F=O d'F=O (3.10) 

If the stress state moves along the yield surface for 

all times then dF=O, and plastic loading corresponds to 

F=O · , d'F>O (3.11) 

For the isothermal case Prager [42], Boley [7] and 

Kachanov [26] assumed that delj is proportional to d'F which 

characterizes the transition from loading to unloading, i.e. 

de~. = A· .d'F 
1J 1J 

when F=O , d'F>O (3.12) 
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The associated flow rule (Appendix A) is assumed to be 

valid. Consequently, de~. must be directed along the normal 
1J 

to the loading surface .. This condition may be.fulfilled by 

setting 

A .. 
1] 

= 1 aF 
i1 ao .. 

1J 
(3.13) 

where h is a positive scalar; a consequence of the Drucker 

stability postulate, 

do .. del?.> 0 
1] 1] 

when F=O and d'F>O. (3.14) 

By substituting Eq. (3.13) into Eq. (3.12), the plastic 

strain increment can be given by 

p de .. 
1] 

= !_ d'F oF 
h a a .. 

1J 
when F=O (3.15) 

The scalar h in Eq. (3.15) is known as the hardening 

function which expresses the amount of hardening and can be 

obtained by substituting Eq.(3.15) into the consistency 

condition, Eq.(3.7), to give 

(3.16) 

By using the work hardening hypothesis, Eq. (3.4), 

Bq.(3.6) gives 

h =_,_!£:_+a~ <:1 .. ) aF 
·aei?. a 1J aaij 

1J 

(3.17) 

Calculations of h for isotropic and mixed hardening are given 

in Appendices B and D. By letting 

· dt. = ~ 'F 
h 
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Eq. (3.15) becomes 

de~. = 
l.J 

aF 
d>.- a a .. 

l.J 

3.3 Stress Strain Relation 

(3.19) 

The total strain increments are assumed to be the sum of 

the elastic and plastic strain increments. 

de . . = de 7 . + de~ . l.J l.J l.J (3.20) 

According to Nagdhi [35], the elastic strain increment can 

be expressed as 

e de .. 
l.J (3.21) 

where a is the coefficient of linear thermal expansion, Dijkl 

is the elasticity tensor. Substituting from Eqs. (3.15) and 

(3.21) into Eq.(3.20) gives 

de .. 
l.J 

Sulv.iu~ fuL l:.lH:! .im..:rE:!mE:!ntal errectiv~ stress, 

(3.22) 

= D de - D ~ dT - l D . ~ d'F (3.23) klij ij -a klijuij n klJ.jClo .. 
l.J 

which can be used in the consistency condition, Eq. (3.8) to 

obtain 

d'F = 

aF - aF 
;;-=-- Dkl' . [de .. -a o .. dT] + ~T dT 
a 0' kl l.J l.J l.J a 

(3.24) 
1 aF oF 

l + h aornn °mnpq 'aopq 

and insertion of Eq. (3.24) into Eq.(3.23) yields 
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where 

and 

-- ep [d -~ d ] T Dkl . . e .. -a v • . T - D dT , 
1) 1) 1) kl 

Dep = D oP . 
klij klij - klij 

Dp = 
klij 

'1' 0 kl = 

oF oF 
0 kluv acr--~ 0 stiJ' uv 0 st 

oF oF 
h + ~ Dmnpq ~ 

ron pq 

tlF oF 
h + ocr 0mnpq aa 

ron pq 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

T It should be noted that Dkl reflects the dependency of 

the yield surface on temperature. Unfortunately, however, 

a yield function that depends explicitly on the temperature 

is not available in the literature. It is recommended for 

future research to perform experimental. work to derive the 

relation between the yield stress anCi temperature. Thusr 

although the derived stress-strain relation is written in a 

general form it is specialized to the case of isothermal 

yield functions in the sequel. The yield criteria listed 

in Appendices A and B will be used in the analysis. Thi~ 

assumption had been used in metal thermoplastic analysis 

Ref. [27]. For an isothermal yield criterion, the last term 

in Eq.(3.25) is neglected to yield 

(3.29) 
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where 

in which 

13 kl = 0. 0 .. 
l.J 

and 

p 
a. 0 ij 0klij 

For an isotropic material, 

Hence 

8kl = 8okl 

and 

8kl 
~ ~(2~ aF + A. ~) = 

acrkl y a a a a ss uu 

where 

8 = a(2 +3:>..) 

amJ. 

h + aF 
D 

aF y = au- aa-mn mnpq pq 

(3.30) 

( 3. 31) 

( 3. 32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

It should be noted that Eq.(3.35) implies that 8~1 are 

zero for the case where in yield surfaces are independent 

on the first stress invariant, I., e.g., Tresca and Von 
1. 

Mises. This, however, is not the case for D~ucker·Pragar, 

Mohr-Coulomb and the cap yield criteria frequently used in 

geotechnical applications. 
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Eq. (3.29) can be put into a more suitable computa-

ticnal form, viz., 

- aF 
dcrkl = Dklijdeij - BkldT - d A. Dkluv aduv (3.38) 

= d Bep dT 0 kl - kl (3.39) 

where 

= Dep de 
kl

.. . . 
l.J l.J 

(3.40) 

.:J.nd 

B · aF 
dA. = d I A - .,.~ 

l.l. 
(J.41) 

in which dA; is the isothermal plastic multiplier which can 

be obtained from Eqs.(3.18), (3.24) and (3.37) as 

1 aF 
dA.' =-~ Dk11 .de;. 

y kl J l.J 
(3.42) 

The second term in Eq.(3.41) represents the effect of thermo-

plastic strains and vanishes when the yield surface is in­

dependent of pressure or in the isothermal analysis. 

3. 4 ~ . .!~J9 Equations :in Increme.nt.al Form 

The field equations for thermoelastic consolidation, 

listed in Chapter II, will be rewritten here in an incremen-

tal form for the thermoelastoplastic consolidation problem. 

They are (i) Stress-strain and strain displacement relations 

for an elast.oplastic homogeneous solid 

d = Dep de 0 ij ijkl kl 
(3.43) 

de .. = ~(du .. +du .. ) 
l.J ~ 1,] J,l. 

(3.44) 
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(ii) Equilibrium Equations for the solid fluid mixture 

(do .. + dno .. - SepdTo .. ) . + dpf. = 0 
1) 1) 1) , J 1 

(iii) Darcy's law for irrotational fluid flow 

where 

dq. = k .. de. 
1 1) J 

de . = d (n . + p 2 f.) 
J , J J 

(iv) Continuity equation 

dq .. = -de .. 
1,1 11 

(v) Fourier's law of heat condition 

\'There 

dh . 
.1. 

dcj> . = dT . 
J ,J 

(vi) Energy equation 

. ep . 
dh . . + p C dT + 13 T de . . = dp r 

1,1 v 0 11 

The boundary conditions are as follows: 

(a) Displacement boundary conditions 
A 

du.(x,t) = du.(x,t) 
1 - 1 -

on 

(b) Traction boundary conditions 
A 

dt. = dt.(x,t) 
1 1 -

on 

(c) Pore pressure boundary conditions 

dn (X 1 t) = d; (X 1 t) on 
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(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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(d) Fluid flow boundary conditions 
~ 

dQ(~,t) = dQ(~,t) on (3.55) 

(e) Temperature boundary conditions 

"' 
dT(~,t) = dT(~,t) on (3.56) 

(f) Heat flux boundary conditions 

on (3.57) 

It is worth emphasizing that in the present analysis no 

nonlinearity has been assumed either in Dan.:y'o ldW or in 

Fourier's law. 

3.5 Finite Element Formulation 

The incremental scheme and an iterative incremental 

scheme are presented in this section. 

3.5.1 Incremental scheme 

Following the thermo-elastic analysis in Chapter li, 

the incremental form of the equilibrium, continuity and 

energy equations are 

-
li \1 ( t) K Kpu -K L:!Ru (tn) uu 'l'U 

KT -a.tJ.tKPP 0 !J. TI ( tn) ::. !J.R (t ) (3.58) pu 1T n 

-T 
-K'l'u 0 - ( C,1,1, +rt. fl. t KTT) !J.T(tn) ~RT (tn) 

where the above matrix coefficients are the same as given by 

Eq.(2.85) with the exceptions 

K = f NT Dep Ne dv 
uu e (3.59) 

and 
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(3.60) 

The incremental scheme is the same as the one proposed 

by Siriwardane and Desai [51] and Prevost [44] for the iso-

thermal elastoplastic consolidation. In this method, the 

loads are applied incrementally and the matrices K and K_ uu -~u 

are assumed to be constant throughout each increment. Essen-

tially, the incremental procedure approximates the nonlinear 

problem as a series of linear problems, i.e., the nonlinearity 

is treated as piecewise linear. The method had been used ex-

tensively in elastoplastic analysis, Refs. [30,32,33,66]. The 

accuracy of the method can be improved by taking smaller in-

crements of load and time or by scaling the load increment to 

produce plastic flow in one element per increment. Either 

approach requires longer computational time. The main dis-

advantage of the method is that the error in the solution is 

created at the end of each increment and accumulates as the 

elapsed time is increased. An incremental iterative scheme 

will be presented in the next section to overcome this prob-

lem. 

3.5.2 Incremental iterative scheme 

Here, the heat condition equation is decoupled from the 

equilibrium and continuity equations since the P.ffect of the 

displacement on the temperature is neqlig~ble. Fnr each in-

crement, the temperature solution is obtained by solving 

Eq.(3.62c) and dropping the KTT ~u(t) term, i.e . . u n 
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(3.61) 

Then the temperature contribution to the right hand side of 

the equilibrium equation is considered, i.e. 

K pu ! 
~ R ( t ) + KT ~ T ( t ) } u n u n 

~R ( t ) 
'IT n 

(3.62) 

So far the scheme is still incremental and iterations are 

performed during each increment using 

K uu 

where i=l,2, ... is the number of iterations and 

<P (t ) . 
'IT n 1. 

T 
= K u(t 1 )+(1-a)~tK TI(t 1 ) pu n- pp n-

- KT u(t ) . l + a~tK TI(t) · l pu n 1- pp n 1-

Iterations ~rP. stopped when 

where u·r(t) ={u(t),'JT(t)} 
n n n 

and e is an allowable tolerance. 

(3.63) 

(J.64) 

(3.65) 

(3.66) 

( 3 0 u '/) 

Finally, stiffnesses are allowed to change during each 

increment. It is advisable to keep stiffness constant at the 
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onset of loading as well as prior to failure if a perfectly 

plastic model is adopted to avoid ill conditioning •. Keeping 

Eq. (3.63) with constant stiffness throughout the loading pro­

gram requires many iterations. The number of these iterations 

can be reduced by modifying the load vector to account for 

plastic loading, e.g. the initial stress method in elasto­

plastic analysis [1,37,38,70]. 
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CHAPTER IV 

NUMERICAL RESULTS 

4.1 Introduction 

Based on the preceding finite element formulations, 

several special.purpose computer codes were developed for 

evaluating the isothermal, thel.mal, elastic and 9lastoplastic 

consolidation responses. In Lhis Chapter, validation af U1e 

developed codes is presented along with applications to a 

field problem applicable to underground coal conversion. 

4.2 Code Validation 

'l'he computer codes developed in th i R study are vali­

dated for both the thermo-elastic and thermo-elastoplastic 

analysis. 

4.2.1 Elastic analysis 

In the early stages of this study, the code CONSOL was 

developed using the formulation or Sandhu and Wilson [49] ~o 

investigate isothermal plane strain consolidation problems 

ano the R-4 and 8-8 isoparametric elements, Ref. l53]. Art 

extension of this program, TCONSL, was then applied to solve 

thermoelastic plane strain consolidation problems using the 

formulation Eq.{2.93) and the 8-4-4 and the 8-~-8 isopara­

metric elements in Figs.{2.1,2.2). 

-54-



To validate the finite element programs, a problem 

with known analytical solution has to be selected and com-

pared. Unfortunately, there are no available analytical 

or numerical solutions even for a simple thermoelastic con-

solidation problem. Analytical and finite element solutions 

to Terzaghi's one-dimensional isothermal consolidation problem 

can be found in Ref. [53]. These solutions were used to vali-

.date the programs CONSOL and TCONSL. The closed form solution 

for a simple one-dimensional heat conduction problem, found 

in Ref. [9], was used to validate TCONSL. As an additional 

step, the solutions associated with thermoelastic consolida-

tion (displacement, pressure and temperature) from TCONSL are 

compared qualitatively with the solutions for isothermal con-

solidation (displacement and pressure) and heat conduction 

(temperature) . The problem selected is a generalization of 

Terzaghi's one-dimensional isothermal consolidation problem 

subjected to thermal loading in addition to the tradionally 

applied surface tractions. '!'he l:H::!lt:cted problem is a linear 

elastic saturated soil column under constant surface tractions 

and constant surface temperature, F'ig. (4.1). The prohlem is 

solved with the 

-6 K=4xl0 , k=.2, 

following numerical values: 

- -6 pC =40, • =100, u=.3xl0 • v 0 

L=7, E~GOOO, v=.4, 

A surface traction 
A 

of unity is applied together with a surface temperature T=SO 

and initial temperature T
0

=0. The soil column is assumed to 

be insulated and sealed everywhere, except at the top surface. 

From this data the following problems are analyzed:. 

-55-



(i) Thermoelastic consolidation problem (TCONSL) 

(ii) Isothermal consolidation problem (TCONSL, CONSOL, 

analytical and numerical solutions from Ref. [53]) 

(iii) Heat conduction problem (TCONSL and analytical solu­

tion of Ref. [9]) • 

It should be noted TCONSL is used in problem (ii) by 

prescrib.ing the temperature to be zero at ·all nodes and is 

used in (iii) by prescribing the di~placement and pore pressure 

to be zero at all nodes. The two special int"erpolation 

schemes mentioned earlier are used in the analysis; but th~ 

presented results are obtained by using the 8-4-4 element. 

The mesh used in the analysis is shown in Fig. (4.2). Fig. 

(4.3) illustrates pressure and temperature profiles at two 

different time steps A and B. In this figure, the finite 

element profiles for the thA~moelastic con~olidation prbblem 

(using TCONSL) and the heat conduction problem (using TCONSL) 

almost concine and arc in (ll)Od agreement with Lln::! analytical 

solution for the heat conduction problem in Ref.[9]. This 

indicate~ Llldt the energy equation can be decoupled from the 

equilibrium and continuity equations, similar t.o the clal'lgical 

uncoupled thermoelastic theory, Ref. [7]. The finite element 

pressure profiles for the thermoelastic consolidation problem 

(using TCONSI.) are slightly less than the isothermal pressure 

response values (using TCONSL and CONSOL) which are in good 

agreement with Sandhu's solution [53]. This difference is 

due to thermal expansion which acts as an unloading mechanism 
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for the surface tractions. The surface settlement history 

for the thermal and isothermal consolidation is illustrated 

in Fig. (4.4). In this figure, the thermal expansion reduces 

the thermoelastic consolidation settlement (using TCONSL) 

in comparison with the isothermal consolidation settlement 

(using TCONSL and CONSOL) which are in very good agreement 

with the results of Sandhu [53]. Furthermore, the steady 

state response with thermal effects is reached after a longer 

elapsed time. 

4.2.2 Efficiency of the Discretization Schemes 

The effect of spatial and temporal discretizations on 

the solution of the thermoelastic consolidation problem is 

investigated by analyzing the same one-dimensional problem 

in Fig. (4.1). The responses obtained from the two element 

schemes in Figs.(2.1) and (2.2) are compared for different 

values of a. For both the elements, the following temporal 

pdrtitioning I is nsP.d; 10 steps of At=.Ol over [0,.1]; 10 

steps of At=.l over [.1,1.1]; 10 steps of At=lO over [1.1, 

101.1]; 10 stcpo of ~t~lOO over rlOl.l,llOl.l]; 20 steps of 

6t=l000 over [1101.1,21101.1]. This same temporal discreti­

zation gave good agreement with the analytical solution to 

the isothermal consolidation [53]. 

Comparing the solutions of the aforementioned problem 

(Fig. (4.1)), using the two spatial interpolation schemes, it 

was found that when a=.5, and for small values of the time 

variable, the 8-4-4 element· gave larger oscillations in 

-57-



pres~ure and temperature profiles in a region very close to 

the loading surface. Also, the 8-8-8 element showed an os­

cillatory pressure response throughout the vertical domain 

for all times, with no oscillations in the temperature profile. 

When a is increased to .875, the oscillations in the .pore 

pressure associated with the 8-8-8 element vanish without a 

significant effect on the temperature distribution. The 

initial oscillations associated with the 8-4-4 element are 

reduced. Upon inorc.J.sing the time variable, thP. two spatial 

interpolation schemes yield almost identical dis Ll·ibutions 

for both the pressure and temperature profiles, Fig.(4.5a) 

through Fig.(4.5h). 

The solution of the problem, in fact, depends not only 

on the choice of a but also on.the size and the change in ~t. 

The sensitivity of the solution tu the sudden change in ~t 

is examined. It should be noted that, for the previous com­

parison, 6t had hPen changed from .01 tu 1000 in five stages, 

wiLl! a ratiu uf change equal to 1:10, except the ratio is 

l:iOO at t=l.l. To illustrate the effect of this sudden 

change in ~t, another time partitinn II is used. In thi~ new 

time partition, the .rat.io l '1 00 is elimillated as follows: 

10 steps of ~t=.Ol over [0,.1]; 10 steps of ~t=.l over [.1, 

1.1]; 10 steps of ~t=l over [1.1,11.1]; 9 steps of ~t=lO 

over [11.1,101.1]; 10 steps of ~t=lOO over [101.1,1101.1]; 

20 steps of ~t=lOOO over [1101.1,21101.1]. A comparison 

between the two time partitions is performed using the 8-8-8 
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element with a=.5. It is found that the error associated 

with the sudden change in 6t in scheme I dies out in a few 

steps. As a increases to .875, the sudden change in 6t 

causes no difficulty, Figs. (4.6a) through (4.6c). Finally, 

it is found that the pore pressure is more significantly af­

fected by the sudden change in 6t than the temperature. 

Increasing a from .5 to .875, for the same spatial dis­

cretization and the same temporal partitioning, is found to 

have a negligible effect on the surface settlement. In addi­

tion, the settlement is slightly affected by the sudden 

change in 6t. However, the two spatial interpolation schemes 

yield slight differences in the surface settlement especially 

when t .1, (Table 4.1). 

To increase the efficiency of the program TCONSL, a 

modified version, HCONSL, has been developed. In this pro­

gram, the energy equation is decoupled from the equilibrium 

and continuity equations. As mentioned earlier, this de­

coupling is desirable since the temperature solution for 

thermoelastic consolidation and heat conduction are identical 

for this problem, Fig.(4.1). The approach is very similar 

to the one discussed in Chapter III. When HCONSL is used to 

solve the problem in Fig. (4.1), the same results as those 

from TCONSL are obtained. However, a tremendous saving in 

CPU time (19.43 sec for HCONSL versus 29.78 sec for TCONSL 

on the OSU AMDAHL 470 system) is evident. 
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4.2.3 Elastoplastic Analysis 

The program PCONSL is an extension of HCONSL to solve 

elastoplastic plane strain thermal consolidation problems, 

using the developed formulation, Eq.(3.63) and the 8-8-8 and 

8-4-4 elements. Again, there are no available solutions 

even for simple thermoelastoplastic consolidations. The code 

is checked by solving the following problems: 

(i) A steady state plane strain thick circular cylinder sub­

jected to internal pressure, Fig. (4.7). The material is 

modeled as an elastic-perfectly plastic material obeying 

the Von Mises yield criterion. The code PCONSL is used 

in this problem by prescribing· the pressure and tempera­

ture to be zero at all nodes. The load is appli~~ in­

cremently and the inner surface displacement versus 

the applied loading is shown in Fig.(4.8). Good agree­

lllt:mt can be observed between the solutions using PCONSL 

and th~ r~nal:ytical and numerical solulions in Ref. [ 40) • 

(ii) Thermoelastic consolidation problem: the continuum in 

i:JLulJlem r·ig. ( 4.1) is remodeled as an elastic-work har­

dening material obeying the cap yield c~iteria in Ap­

pendix B. To obtain the elastic response using PCONSL, 

the yield stress is assumed to be relatively large. The 

previous cln8~ic, thermal and flow properlie~ are as­

sumed together with cohesion, c=30, internal friction 

angle, ~=30°, cap ratio , R=3.5, cap hardening constant, 

G=.0007 (see Appendix B). The response is the same as 
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Elastic analysis 

Elastoplastic analysis with c=.9 

Elastoplastic analysis with c=.85 

Elastoplastic analysis with c·=.7. 
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upper element, for case D, while it reaches the lower 

element at a later stage in case B. Pore pressure 

and temperature profiles for cases A and C are illus­

trated in Fig. (4.10a-h). The elastoplastic analysis 

yields larger pressure response due to the increase in 

the volumetric strain over the elastic analysis. 

However, temperature profile is the same in the two 

caps due to decoupl ing t.he heat equation. 

4.3 Field Application 

~lastic and elastoplastic thermal consolidation analyses 

are conducted for the Centralia Coal gasification site. Figure 

(4.11) illustrates the stratification and the finite element 

mesh used in the analysis. The material properties are listed 

in Table 4.2. These materials were modeled as elastic work 

hardening materials obeying the elliptic cap yi~la criteria 

in Appendix B. The cavity temperature history is shown in 

Piq. (4.12). The seLLlt!mt!ut hll::;tory an6 t.he progression o± 

plastic zones are illustrated in Fig. (4.13). In this figure. 

the temperature rise accounts for reducing the settl~ment 

in both elastic and plastic cases during the first 13 months. 

However, gravity loading dominates the settlement in the 

elastic and elastoplastic problems. Upon reducing cavity 

temperature, the settlements start increasing with the nota­

ble difference between the elastic and elastoplastic analysis. 

Progression of plastic zones is also illustrated in Fig. 

(4.13). Plastification starts as early as t=.40 month, and 
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increases with time till t=l month, with plastic zones 

propagated around the cavity. When the cavity temperature 

is reducing, the plastic zones start to propagate again. 
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TABLE 4.1 Vertical Surface Settlement History Using 
a=.875 for the 8-8-8 and the 8-4-4 Element 

Time the 8-8-8 element the 8-4-4 element 

. 02 .20252x10 -5 -5 .30899x10 . 

.1 .53216x10 -5 
.53273x10 -5 

.5 .12327x10 -4 
.12037x10 -4 

21.1 .78613x10 -4 .791401xl0-4 

1101.1 .17709x10 -3 
,17~02xl0 

-3 

3101.1 .29569x10 -3 
. 29713x10 -3 

17100.1 . 30271x10 -3 
.30334xl0 

-3 

21101.1 .30l06x10 -3 
.30095x10 -3 
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TABLE 4.2 Material Properties for the Centralia Coal Gasification Problem 

Material f'1oderately Stiff Soft 
Property Units Siltstone Sandstone Sandstone Coal 

E t/m2 .1x10 7 .6xl0 7 .2x10 7 . 2xl0 7 

\) .2 . 2 . 2 . 2 

a /Co .5xl0- 5 .8xl0-5 .8xl0- 5 .5xl0- 5 

k caljc9m. sec .05 .0463 .0463 .05 
I a. 

cal/C0 ·gm V• cv .13 . 2 .2 .134 
I 

p t/m3 2.2 2.2 2.2 2.2 

K 
-3 rr./sec·t·m · 2xl0- 7 lxl0- 7 lxl0- 7 2xl0- 7 

cf> C.egree 30 40 30 25 

c t/m2 .1x10 4 .25xl0 4 .15xl0 4 .15xl0 
4 

R 3.5 3.5 3.5 3.5 

G . 0013 .0013 .0013 .0013 



* p=l 

Saturated soi I 

L=7 

Impervious, insulated layer 

Figure 4.1. One-Dimensional Thermoelastic Consolidation 
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Figure 4.2. Mesh for the 8-4-4 and the 8-8-8 Element 
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CHAPTER V 

CONCLUSIONS 

5.1 Preliminary Remarks 

Governing equations and finite element formulations for 

the quasi-static infinitesimal theories of thermoelastic and 

thermoelastoplastic consolidation have been presented in this · 

dissertation. Since there are no available solutions for 

such complex problems, the developed finite element·codes 

have been validated against limiting cases available in the 

literature. The application of these investigations to 

underground coal gasification problems is also revealed. 

5.2 Concluding Remarks 

The major contributions of this dissertation are as 

follows: 

1. Using the theory of mixtures [23,15] and the 

isothermal consolidation theory [48], the field equations 

for the quasi-static infinitesimal theory of thermoelastic 

consolidation are developed. 

2. A variational principle equivalent to the field 

equations, initial and boundary conditions is developed using 

the approach in Refs.[SO ,51]. Extended variational principles 
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as well as some specializations are also presented. 

3. Finite element formulations based on the variational 

principle are presented. Two isoparametric elements are sug-

gested in the spatial discretization. 

4. The formulation is extended in order to account for 

plasticity effects. The rock medium is modeled as an elastic-

work hardening material with an associated flow rule. Clas-

sica! and recent yield criteria are included in the formula-

tions. 

5. The developed finite element codes are checked by 

solving available analytical and numerical solutions for iso-

thermal consolidation, heat conduction, and elastoplastic 

analysis. Good agreements are observed between the results 

from developed codes and the available solutions. 

6. Numerical efficiencies of the temporal and spatial 

interpolation schemes are investigated for a one-dimensional 

thermoelastic consolidation problem. It is found that for 

a~.s, the 8-8-8 element gives an oscillatory pressure res-

ponse. However, by increasing a, the 8-8-8 and the 8-4-4 

elements gave identical results. The pressure is more in- ' 
I' 

fluenced by the sudden change in the time increment than the 
I 

Lem.I:-H:!Ldl:uL·e. However, the error associated with a sudden \ 
change in ~t dies out in a few steps. Spatial and temporal 

. 
discretization schemes have a negligible effect on the surface 
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7. The excessive settlements observed in the thermo­

elastoplastic problem illustrate the importance of modeling 

the soil as an elastoplastic material and the need for con­

ducting parameter sensitivity studies. 

5.3 Applications 

The presented formulation is applicable to problems 

of saturated continuum subjected to both thermal and me­

chanical loads. The continuum can be modeled as an elastic 

material or as an elastoplastic material with an associated 

flow rule. Geotechnical examples utilizing this formula­

tion include problems dealing with underground coal gasifi­

cation, geothermal energy recovery, hydraulic fracturing 

and nuclear waste management. Additionally, responses associ­

ated with polymer or composite structures subjected to hy­

grothermal loading can also be studied. 
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5.4 Research Recommendations 

The following research is recommended as a sequel to 

this study: 

1. Inclusion of the coupling between heat and mass 

flow. 

2. Inclusion of the effects of fluid compressibility. 

3. Development and use of temperature dependent yield 

functions and mat~ri~l properties for the geotechni~dl ma­

terials. 

4. Consideration of effects of nonlinearity and 

anisotropy. 

5. Extension to thermo-visco-elasto-plastic consolida­

tion formulations. 

6. Consideration of temperature and stress dependent 

permeabilities, conductivites and thermal expansion coeffi­

cients. 

7. IH~uL·poration of the. effects on joint/fracture 

sy::;t~ml:> and hi-material interfaces . 
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APPENDIX A 

Classical Yield Criteria and Alternative Forms 

A.l) General 

The yield criterion determines the stress level at 

which plastic deformations begin ·and can be expressed as 

f(o .. ) = K (k) 
~J 

or equivalently 

F(o .. ,k)=O 
. ~J 

(A.l) 

(A. 2) 

where f is an invariant function of the state of stress, 

K is a material parameter to be determined experimentally 

and k is a hardening parameter. Among the classical yield 

criteria we cite Tresca, Von Mises, Mohr-Coulomb and 

Drucker-Prager. In the following a compact summary of 

these criteria is presented. The reader is referred to 

Refs [12,13] for additional information. An illustration 

of these yield criteria is given in Figs A.l and A.2. 

A.2) Tresca Yield Criterion 

The Tresca Yield Criterion states that yielding of a 

material begins when the maximum shearing stress at ·a point 

reaches the value of the maximum shear stress occurring 

under simple tension. For 01 > 02 > 03, Tresca's criterion 
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can be expressed as 1/2 (cr1-cr3) = 1/2 a
0 

(A. 3) 

where a
0 

is the uniaxial yield stress in simple tension. It 

should be noted that the yield stress in pure shear, k, is 

given by 

K = 1/2 a
0

• (A. 4) 

A.3) Von Mises Yield Criterion 

The Von Mises Yield Criterion states that yielding of the 

material begins when the distortional energy equals the dis-

tortional energy at yield in simple tertsion, i.e. 

1 J 2 = .!_ 1 a 2 (A. 5) 
2G 2G 3 o 

where J 2 is the second invariant of the deviatoric stress 

tensor defined by 

J2 = 1/2 s .. ·s .. 
1] 1] 

(A. 6) 

It should be noted that the yield stress in pure shear; 

K, is given by 

K = 
a 

0 

A.4) Mohr-Coulomb Yield Criterion 

(A. 7) 

The Mohr-Coulomb Yield Criterion states that yielding 

of the material begins when the maximum shear stress at a 

point is given by 

(A. 8) 
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where T is the magnitude· of the shearing stress, a is the 
n 

normal stress, C is the cohesion and <t> is the angle of 

internal friction. For a 1 ~ a 2 ~ a3, Eq (A.8) can be 

rewritten as 

(A. 9) 

For the case of a frictionless material, <t> = 0, the Mohr-

Coulomb yield criterion reduces to the Tresca yield cri-

terion with C = K. 

A.S) Drucker-Prager Yield Criterion 

The Drucker-Prager Yield Criterion is an approximation 

to the Mohr-Coulomb yield criterion and a modification of 

the Von Mises yield criterion. The influence of the hydro-

static stress component on yielding is introduced by in-

elusion of an additional term in the Von Mises Yield Cri-

terion to give 

Cl. I I 1 I /J 2 - IC I (A.lO) 

where I 1 is the-first stress invariant, i.e. 

I 1 = a. . (A. 11) 
11 

a' and K' are material constants that can be related to C and 

<I> by 

a' = 2 sin <t> 

}/j' (3-sin ¢) 
K' I = 6 c cos <I> 

13' ( 3-sin <t>) 
(A.l2) 
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In this case the Drucker-Prager circle coincides with the 

outer apices of the Mohr-Coulomb hexagon. Coincidence with 

the inner apices of the Mohr-Coulomb hexagon is provided 

by 

a' = 2 sin p 
/3 ( 3+sin <P} , K' = 6C cos cp 

/3(3+sin <f>} 
(A.l3} 

A.6} Alternative Form of the Yield Criterion for Numerical 
Computation 

This formulation is due to Nayak and Zienkiewicz {36], 

and its main advantage is that it permits the computer 

coding of the yield function and the flow rule in a general 

form and requires only the specification of three constants 

for any individual criterion. 

The principal deviatoric stresses S. are given as the 
~ 

roots of the cubic equation 

(A.l4} 

Substituting s = r sin e in Eq (A.l4} gives 

J2 J3 
sin 3 8 -

~ 
sin e r3 = 0 

r 
(A.lS) 

NOting the tr~qonometric identity 

sin 3 6 - ! sin 6 + ~ sin 3 e = 0 (A.l6} 

and comparing (A.lS} and (A.16) gives 

r = 2/J2/I! (A.l7) 

-94-



sin 3 e 313 J3 
-2- J2 'IJ2 (A.l8) 

The first root of Eq (A.l8) with 3 e in the range +~was 

chosen as an alternative to J 3 • Noting the cyclic nature 

of sin(38+2nn), the principal stresses are 

a1 sin (8+27T) 1 

21J2 3 I1 .a2 = n- sin e + 3 1 

a3 sin (8+47T) 
3 1 (A. 19) 

7T < e < 7T 
with a 1 > a 2 > a 3 and - 6 - 6 · 

A.G.l) Yield Criteria 

The four yield criteria considered in sections (A.2) 

through (A.S) can be rewritten in terms of 

I1, J2, 8 as follows: 

(i) Tresca Yield Criterion: 

Substituting for a 1 and a 3 from Eq (A.l9) into Eq (A.3) 

give~ 

2/J2 Cos 8 = a 
·o 

(ii) Von Miscs Yield Criterion: 

(A. 2 0) 

There is no change from the conventional form since the 

yield function depends on J2 only, 

n.t.r; = a 
0 

(A.21) 

(iii) Mohr-Coulomb Yield Criterion: 

Substituting for a 1 and a 3 from Eq (A.l9) into Eq (A.9) gives 

-95-



sin ct> + /J2(cos e 1 
73 sin 

= c cos ct> 

(iv) Drucker-Prager Yield Criterion: 

e sin ct>) 

(A. 22) 

There is no change from the conventional form, i.e., 

a.'I1 + /J; = K' (A.23) 

Fig (A.3) illustrates the intersection of these four yield 

criteria with the IT-plane. 

A.6.2) Flow Rule 

The flow rule specifies the direction of the plastic-

strain increment vector. The associated flow rule means 

that the plastic strain increment vector is normal to the 

yield surface at the current state of stress. Thus for 

purpose of elostoplastic analysis with the associated flow 

rule, it is necessary to evaluate the normal vector, or the 

derivative of the yield function with respect to stresses. 

a = ()F 

acr 

where 

O'T = {axx' O'yy' 0' zz' 

Noting from Eq (A. 18) that 

ae -13 [ 1 ao = 2 cos 36 J2lJ2 

0' xy' 0' 

()J3 -(l(T 
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xz, 

()J3 
a.J~ 

ae 
acr 

O'yz} 

a/J 21 (lCT 

(A.24) 

(A.25) 

(A.26) 



Eq {A.24) can be rewritten as 

{A. 2 7) 

where 

and 

a Tl = ar 1 = {1 1 1 o o o} , , , , , 
dO 

= a l.f;" = aa-

= aJ3 aa s2 + ~> yz 3 ' 

{S S - S 2 + J 2 ) {S S - S S ) 
XX yy XY 3 ' X Z xy XX y Z ' 

dF 
C2 = a IJ 2 

tan 38 aF 
J2 ae 

-13 1 aF 
cos 3 e J 2 IJ 2 as 

- s zz sxy)} 

{A.28) 

{A. 2 9) 

Only the constants c 1 , c 2 and c 3 are then necessary to 

define the yield surface. Thus simplicity of programming 

can be achieved as only these three constants have to be 

varied between one yield surface and another. These three 

constants are given in the following table for the four 

yield criteria mentioned earlier. 
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Table A-I. Definition of C Constants 

Yield Criteria cl c2 c3 

Tresca 0 2 cos ·3 (1 + tan a tan 3 8) 13 sin a 
J2 cos 3 e 

Von Mises 0 n 0 

Bohr-Coulomb 1 sin e cos a [ {l+tan a tan 3 8) (/3 sin a + a sin 8) 3 cos 

+ sine 
2 J2 cos 3 a 

I {tan 38 tan a> J 1.0 73 00 
I 

Drucker-Prager a.' 1 0 



Tresca <j>=O 

Figure (A.l): Mohr-Coulomb and Tresca Yield Criteria 

Mises <j>=O 

Figure (A.2): Drucker-Prager and Von Mises Yield Criteria 
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a 
1 

Line of Pure 
Shear (8=0) 

Trese a 

Mohr-Coulomb 

Orncker~Prager 

and Von Mises 

Figure (A.3): n-plane Representation of Tresca, Von Mises 
Mohr-Coulomb and Drucker-Prager Yield Criteria 
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APPENDIX B 

Yield Surface With an Expanding Cap 

B.l) General 

The volumetric plastic strain increment, using the 

Drucker-Prager yield criterion Eq (A.lO) with the associated 

flow rule Eq (3.19), is given by 

d eP 
ii 

=d). ~ =dl. a' aa.. . 
l.l. 

(B .1) 

Since a' > 0, the volumetric plastic strain is always non-

negative. This creates what is known as the dilatancy, 

i.e., an increase in plastic volume change under hydrostatic 

compression. To control this dilatancy, a volume dependent 

cap surface under hydrostatic compression is introduced. 

Drucker [19J was the first to introduce a spherical cap 

to control dilatancy of soils. Since then several plasticity 

models using the critical state concept have been developedr 

Ref [57] and a specific Cam clay model was suggested by 

Roscoe, et al. [46], fornormallyconsolidated clays. Re-

cently, the cap model has been modified by DiMaggio and 

Sandler [ 18] , Singh [ 60] and Ghabouss i, et al. [22] . In 

Section (B-2) the cap modifications introduced by Singh [66] 

are discussed. 
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B.2} Modified Cap Model {60] 

Fig (B.l) illustrates the model which consists of two 

parts: 

a) Failure envelope in the form of a perfectly plastic 

Drucker-Prager line. 

b) Yield surface consists of infinitely many elliptic caps 

each possessing a certain plastic volumetric strain. 

Mathmatically, the model can be expressed as 

(B .• 2) 

PC < !1 < P0 (B. 3) 

where p
0 

< 0 is the cap center, a and b are the major and 

minor axis of the ellipse and related by 

a= R b 

and P is given by c 

P = P - a c 0 

B. 2 .1) Ca:e_ Geomet:ry: 

(B. 5) 

Given the location of a certain point (I 1 ,~) in 

the stress space, the cap center, P
0

, can be determined by 

solving Eqs (B.2) and (B.3), i.e., 

p = 
0 

2A 

(B. 6) 
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where A = 1-a' 2 R2 

B = 2a'R2K' 2!1 

2 2 2 2 
c = l.I + R J2 R K' 

Thus the dimension of the cap can be obtained by 

b = K' - a'P 
0 

a = R b 

B.2.2) Cap Hardening 

(B. 7) 

(B. 8) 

(B. 9) 

(B.lO) 

Following Roscoe, et al. [47], the plastic volumetric 

strain is 

e~. = 
ll. 

1 
2.3 

-P 
A- r, Ln (_____£) 

l+e ) -P 
0 0 

(B.l2) 

where e is the initial void ratios,A and r, are the slopes 
0 

of the compression and rebound curves for an idealized soil, 

Fig (B.2). 

The hardening function h can be written as 

h = aF 
aa. 

J 

aF 
aep 

ij 

(B. 13) 

which is zero for the Drucker-Prager line and except for 

the cap re~jion will be given by 

h = 12b 3 

G ( l+aR) (! 1-P ) [ (! 1-P ) { b+a(Il-P )+aR2 (J2-2b2 )} 
0 0 0 

(B.l4) 
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where 

= 1 A-r; 
G 2.3 l+e

0 

B.2.3 Flow Vector 

(B.lS) 

Using the approach of Nayak and Zienkiewicz [36], 

presented in Appendix A, the flow vector for the cap is 

(B. 16) 

where 

aF 2b 2 (!1-P } c1 = 
n~- 0 

(B.l7} 

c2 = aF 
a7J; = 2R2b 2 .fJ; (B.l8) 

c3 = aF = 0 
aJ~ 

(B .19} 

B.2.4) Subsequent Yield Caps 

In plastic loading,both initial and subsequent stress 

states must satisfy the yield condition. This requires the 

knowledge of both initial and subsequent yield surfaces. -The 

initial yield surface is very ~asy to locate by knowing the 

stress state at the beginning of an increment as described 

1.n Section (B.2.l}. The subsequent yield cap can be obtained 

as follows, Ref. [12]. 
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Differentiating Eq (B.l2) gives 

dP = -1/G P c c 
p 

d e .. 
11 

(B.20) 

The point(P +dP ,0) lies on the new cap and the approach c c 

presented in Section (B.2.1) can be used to locate that 

cap. 
,, 
' 
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Figure (B.l): Elliptic Cap Model 
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APPENDIX C 

Incremental Stress Strain Relations in Plane Strain 

For plane strain, the general expressions for incre-

mental stress strain relation, derived in Chapter IIT, 

have to be modified. Primarily the main alteration rP.-

quired is the deletion of the strain and stress components 

which vanish under the condition of plane strain. 

= 0) Thus the ef-fective stress vector will 

be -T 
(J = Io xx' cr cr a } 

yy' xy' zz 

and the flow vector a in Eq (A.24) will be 

T ~P aP aF aP 
e = { a a ' ao-' 2 ao- ' TIO } 

XX yy xy ZZ 

(C .1) 

(C. 2) 

which corresponds to plastic strain increment given by 

de = {d e~ d eP d p d eP } 
XX 1 yy ' y xy ' Z Z (C. 3) 

Eq (3.33) can be rewritten as 

(c. 4) 
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where 

- ep = 
D .. kl ' 1) 

Dp = 
ijkl 

From Eq (A.24} ~ aa . . 
1) 

We let 

p 0 ijkl 

= a 

and obtain from Eq {C. 7} 

[Dp] 
d dT 

= 
\ h + aT d -

We let 

h + T 
d y = a - -

and rewrite Eq {C.S) in the form 

[Dep] = [D] 1 d dT - y -
We define s7~ 

1] 

s7~ = f3 . . - sl? ; 
1) 1) 1) 
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{C. 5} 

{C. 6} 

{C. 7} 

{C. 8} 

{c. 9} 

{C.lO} 

{C.ll) 

{C .12} 



8 .. 
l.J 

p 
13 •• l.J 

-= 86 .. = (2lJ+3;\) a o .. l.J l.J 
0 . . a£ a£ 

= 8 l.Jqr a~qr a~ss 
h + a! o -a! aa mnuv ao mn uv 

Then 8p can be written as 

(C.l3) 

(C.l4) 

(C .15) 

where c 1 
elF = ~ is defined in Table (A.l) for different 
,_l('j" ii 

yield criteria. 

The matrix [D) is defined by 

[D] = 

2u+A. 

0 

0 

I 
I 
I 
I 
I 
I 
I 

--~Y~~----------------~----1 

(C .16) 

0 

2j.l.+). 

where the dashed lines identify the usual plane strain 

matrix for elastic problems. 

The vector d from Eq (C.8) is given by 

-llO-



d = dl (2lJ+t.) al + t.(a2+a4) 2ll al M 1 

d2 A a1 + (2lJ+I.) a2+A:a4 a2 1 
= = + (C.l7) 

d3 lla3 a3 
0 T 

d4 >-a1+>-a2 + (2lJ+!.)a4 a4 1 

(C .19) 

Hence Eq (C.lO) yields 

(C.20) 

and Eq (C.4) is given by 
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I 
t-" 
t-" 
N 
I 

diJ 
XX 

do 
xy. 

Using 

-
C:.a 

XX 

do yy 

doxy 

and 

(2p+\) 

= 

syrn. 

de = zero zz 

1 2 
(2j..i+l..)- d] 

"( 

= 

syrn. 

for 

. 1 

.\-- d td2 
y 

~lane strain 

1 >--:y dld2 

1 2: 
(2j..i+A)- - d2 y 

1 -- dldl+ 
"( 

1 2 
j..l-- d3 

y 
1 
y 

1 2 
(2J..i+A)-- da. 

y 

Eq (C.21) becomes 

1 d:td3 de 
y XX 

1 d2d3 de 
y YY 

1 2 

j..l-- d3 c:y 
y . xy 

·de 
XX 

de zz 

-8dT 

-BdT 

1
_c1dl+ 

y 

(C.22) 

(C. 2 3) 



APPENDIX D 

THE HARDENING FUNCTION, h 

D.l) Hardening Rule 

The hardening rule defines the motion of subsequent 

yield surfaces during plastic loading. For a perfectly 

plastic material, the yield stress does not depend on the 

degree of plastification. If the subsequent yield surfaces 

are a uniform expansion of the original yield curve, without 

translation, then the hardening rule is said to be isotropic. 

On the other hand, if the subsequent yield surfaces preserve 

their shape and orientation but translate in the stress space 

as a rigid body, the model is said to exhibit kinematic har­

dening. A combination of these two types of hardening re­

sults in the mixed hardening rule. 

In this investigation, isotropic hardening is assumed 

with the four yield criteria cited in Appendix A. The yield 

criteria of Singh [60), (Appendix B), in which the elliptic 

cap moves and expands exhibits by definition mixed hardening. 

In this Appendix, calculations of the hardening function, 

h, for an isotropic hardening model are presented. The cal­

culation for h using the model by Singh [60] is presented in 

Appendix B. 
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0.2) The Hardening Function 

The hardening function, h, can be obtained by assuming 

that the slope of the stress-plastic strain curve for a uni-

axial state of stress is the same as that for the multiaxial 

state case. This assumption can be achieved by appropriate 

definition of the equivalent stress and equivalent plastic 

strain, which reduces to the uniaxial case. The assumption 

is 

doe 
H = 

dcp 
(D .1) 

where oe is the equivalent stress, ep is the equivalent 

plastic strain and H is the slope of the uniaxial stress-

plastic strain, i.e. 

doxx 
H = 

dep 
XX 

(D. 2) 

where subscripts xx refer to the uniaxial state of stress. 

The quantity f{o .. ) in Eq. (A.2) is commonly used to 
~J 

define oe [13,31] ~n the form 

nr 

f ( 0 .. ) 
~] 

n = c cre 

o = [ .!. f ]1/n 
e c 

(D. 3) 

(D. 4) 

The definition of equivalent plastic strain, however, is 

not that simple since there are two definitions for k, Eqs. 

{3.3) and (3.5) using either the strain hardening or work 

hardening hypotheses. 
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The strain hardening hypothesis leads to Eq. (3.6)~ i.e. 

= c(dei:'.dei:'.) 112 
l.J l.J 

(D. 5) 

The work hardening hypothesis, Eq.(3.4), can be written as 

= - d p a .. e .. 
l.J l.J 

Substituting from Eq.(3.19) into Eq.(D.6) gives 

af = a . . dA -;-=--l.J a a .. 
l.J 

(D. 6) 

Since f is homogeneous of degree n in the stress, then by 

Euler's theorem 

dwp = d>.nf 

By rewriting Eq.(D.6) as 

dwp = a de e p 

the equivalent plastic increment can be defined as 

de = nf d>. 
p ae 

For isotropic hardening Eqs.(3.1) and (3.2) reduce to 

and hence Eq.(3.17) reduces to 

h = 

i.e. 

aF - aF 
ak aij ~ 

l.J 

Assuming an isothermal yield surface, Eq. (D.lO) gives 
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(D.lO) 

(D.ll) 

(D.l2) 



oF 
ak = 

do 
0 

dk 

Hence Eq. (0.12) reduces to 

(0.13) 

(0.14) 

Substituting Eqs. (0.9) and (0.10) into Eq.(0.14), we have 

Eq.(0.15) can be rewritten as 

Substituting from Eq.(0.1) into Eq.(0.16) gives 

df cre 
h=--H­

doe nf 

For f=o i.e., n=l, we have h=H. e 
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APPENDIX E 

Numerical Procedure for Evaluating Stress Increment 

E.l Introdu9tion 

In this Appendix, the steps of using·the incremental 

iterative scheme discussed in Chapter III are illustrated. 

E.2 Stress Increment 

For each element, stresses are assigned at its Gaussian 

points. During load application, plastic flow may commence 

at some Gaussian points, creating partially yielded or to-

tally yielded elements. A procedure is designed in Ref. 

[37,40] and is used in the code PCONSL, to determine the 

plastic portions and uses the appropriate constitutive rela-

tions to evaluate st~ess increment and corresponding resi-

dual loads. In this procedure, the following steps are re­

peated for every rth iteration and at every Gaussian point. 

(1) Incremental displacement and pore pressure are obtained 

by solving Eq. (3.63) in terms of the applied residual loads. 

Accordingly, the incremental strains are given by 

6er = N 6Ur 
- e· 

(E.l) 

(2) Assuming elastic behavior, the elastic stress incre-

ment is 
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-r r 
!J.q_ = [D] !J.~ (E. 2) 

Hence the elastic stress vector 

(E. 3) 

(3) The uniaxial yield stress is updated according to the 

hardening rule used. For the cap model, the procedure in 

Appendix B is used. While, for the isotropic model, the 

yield stress is given by 

(E. 4) 

where H and ep are given in Appen61x D. 

(4) Check the yield condition. The following flow chart 

is used to check whether yield starts this iteration or the 

point is previously yielded. 

YES: 

NO: 

{

NO: :he ~ehavior is still elastic, i.e. 
F1 >o ~ = ~E and go to step 5 

YES: Yield starts at this iteration, 
calculate Fl F 

R F F + 
.1 ... o aT !J.Q~ 

Elastic unlua.uin~::~, 
and go to step 5 

i.e. -r 
a 

-r 
= ~E 

Plastic flow continues, set R=l 
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where 

r -r-1 
!1 = Q 

r 
§. = aF 

r-1 
- 0 

0 

r-1 
- 0 

0 

Fo -r 
F -F L'l5!E 

1 0 

in which F is the yield function. 

(E. 5) 

(E. 6) 

(E. 7) 

(E. 8) 

(E. 9) 

The condition F <0 and 
. 0 

F1 >0 indicates a transition from elastic to plastic states 

occurs during this iteration. The reduction factor (1-R) 

is obtained above from the condition that F=O at the con-

tact state. Thus the trial elastic stress increment is sub-

divided into two parts. A stress state where the yield 

surface is contacted ,r given by 

r -r-1 -r 
T = rr + (1-F.) tL£E (ILlO) 

and a remaining part RL'l5!~·outside the yield surface. This 

part has to be eliminated by allowing plastic deformation 

to occur, 

r aF where a = 
a,r 

(E. 11) 

and dAis given by Eq.(3.41). Figures 

(E.l) and (E.2) illustrate the incremental stress change 

in an already yielded point and a point at initial yield. 
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It can be seen from these figures that even for a finite 

sized stress increment, the final stress point, D, may 

depart from the yield surface. This error can be eliminated 

by scaling the point, D, back to the yield surface, i.e. 

-r 
Q 

= ~r x ( current y~eld stress ) 
r cr e 

(E.l2) 

where cr~ is the equivalent stress, (Appendix D). This 

method is known as the tangent stiffness method with radial 

reLurn, Ref. [29,50]. The effective plaetic strain is ob-

tained using the work hardening hypothesis, as 

e~ 
r-1 d). ar 

= ep + .r 
cre 

-r cr (E.l3) 

(5) The residual loads are obtained using Eqs.(3.64) and 

(3.65). 

E.3 Refined Process for Scaling Stress Point to the Yield 
$nt'fa.ce 

For relatively large stress increment, the scaling 

process, illustrated in Figs.(E.l) and (E.2), can lead to 

inaccurate results particularly if the point D lies in the 

vicinity of a region of large curvature, Ref. [40]. 

In Refs. [45,29] a secant stiffness method is presented 

for perfectly plastic von Mises materia1 in lieu of the 

tangent stiffness method with radial return. The method is 

illustrated in Fig. (E.3), in which an intermediate state 

sr is found as 
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sr 1 -r Ir) = 2 (<zE + (E.l4) 

and the flow vector is given as 

r ClF a = 
asr 

(E.lS) 

then Eq.(E.ll) is used to find the stress increment. It 

has been proved in Ref. [45] that the final state is exactly 

on the yield surface. However this method is not used in 

the present analysis since it is applicable only to per-

fectly plastic solids. 

In Refs. [37,40] a refined process is developed in 

using the tangent stiffness method with radial returns by 

relaxing the excess stress to the yield surface in several 

stages. The stress scaling can be performed after each 

stage or after the final stage only, Fig. (E.4). As the 

number of steps. increases, the accuracy increased and also 

the cost. 

E.4 Stiffness Update 

It was mentioned in Chapter III that the stiffness 

matrix has to be updated, otherwise excessive iterations 

are required. The stiffness is changed whenever ep>O. 

This change can be performed in any iteration during the 

increment. It is recommended in Ref. [40] to re-evaluate 

the stiffness at the second iteration to increase the rate 

of convergence. 
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Figure (E.l): Incremental Stress Changes at a Point 
in an Elasto-Plastic Continuum at 
Initial Yield 
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F.igurt:! (E. 2): In~..:rernem:.al Stress Changes in an Already 
Yielded Po~nt in an Elasto-Plastic Continuum 
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Pigure (E.3): Secant Stiffness Method 
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Figure (E.4): Multi-step Tangent Stiffness Method with Scaling 
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APPENDIX F 

PROOF OF THEOREM I 

To prove this theorem we let 

w = {u.,e .. ,cr .. ,i',q.,e.,T,ii.,$.} 
1 1) 1) 1 1 1 1 

Then 

= 1 -li.*[(cr . . +1rO . • -BTO .. ) .+2pf.]dR 
R 1 1J 1J 1J , J 1 

+fa . . *u(. ')dR + f 1r*u .. dR- f T*Bu .. dR 
R 1J 1,J R 1,1 R 1,1 

+ f u. * [ (a .. +1r o .. - B To .. ) n . - 2t . ] dS s 1 1) 1) 1J J 1 
2 

- J (a . . +1fo .. ...,BTcS .. )*n.u.ds s 1) 1) 1) J 1 
1 

+ f e .. *[E. 'klek1 -a .. ]dR- f u.*a .. . dR- f e .. *o .. dR l.J l.J • 1) 1 1J ,J -- -1) - .l.J R R R 

+fa . . *(u(. ')-e .. )dR+ f u.*o .. n.dS 
R 1J 1 1 ] 11 S 1 ~J J 

2 

"' - f o .. *n. (u.-2u.)dS- f u.*; .dR- f q.*g'*-IT' .dR 
S 1J J 1 1 R 1 ,1 R 1 ,1 

1 

+ f ; * [ u . . +g' *q . . ] dR + f u . •-IT o .. n . dS 
R 1,1 1,1 S 1 1J J 

2 

- J .rro .. *n. (u.-2u.)dS + f Q*g'*;ds- f ;*g'*(Q-2Q)dS 
S 1) J 1 1 

1 5 3 5 4 
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+! q.*g'*(6 .-n .-2p 2f.)dR +! n*g'*q .. dR 
R 1 1 1 1 1 R 1 1 1 

" + f q.n.*g'*(n-2n)dS -! n*g'*q.n.dS +! q.*g'*e.dR 
S 11 S 1J R 1 1 

3 4 

+ f e.*g'*(q.-2K .. e .)dR + J U·*ST .dR + J h.*g'*T .~R 
R 1 1 1] J R 1 I 1 R 1 I 1 L 0 

1 
2pC 

- f T-*[a '*h ____ v]dR ! *a-~ dS ""U. . +--g . . + - U. i->Tu .. n. 
R 1 1 1 'o 1 1 1 T 0 8 1 1J J 

2 

+ J STo .. *n. cu.-2u.)ds- J H*g'*T!_as 
S
. . J.j J . 1 1 '[ 

1 8 s 0 

- . ~1 1 -1 
-! h.n.*g'*(T-2T)--dS + f T*g'*h.n.=:........clS- fh.*g'* .--dR 

ss ~ 1 'o s6 1 1-ro R 1 1 o 

- f ~. * ( 2k .. *<P . +g I *h.) !_aR 
R ~ 1J 1 1 -r

0 

(F .1) 

Substitution of Eqs.(2.68) through (2.72) into Eq. (F.l) 

·.'yields 

2! u.*-[(a .. +no .. -STo .. ) .+pt.JdR 
R 1 . 1) 1) 1J I J 1 . 

- . 
+ 2! u.*[(a .. +no .. -sTo .. )n.-t.)dS 

s 1 1) 1) 1J J 1 
2 

- 2! a .. *n . ( u. -u. ) dS + 2! ; * ( u. . +g I *q . . ) dR 
S 1J J 1 1 R 1 1 1 1 1 1 

1 
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- 2! TIO .. *n.(u.-~.)d5- 2! n*g'*(Q-Q)d5 
5 l.J J l. l. 

1 5 4 

+ 2! q.*g'*(e .-lT .-p 2 f.)dR + 2! q.n.*g'*(1T-;)d5 
R 

1 1 
'

1 1 5 1 1 

3 

+ 2! e.*g'*(q.-K .. e .)dR- 2! T*[(3u .. +(g'*h .. +pC T/T ]dR 
R l. l. l.J J R l.,l. l.,l. v o 

+ 21 STo .. *n. (u. -U..) d5 + 21 T*g' * (H-fl) ~5 
5 l.J J l. l. T 

1 56 0 

+ 2! h.*g'*(T .-~.)!_aR- 2! fi.n.*g'*(T-T)d5 
R 

1 
'

1 1 'o 1 1 

- 2! ~.*g'*(h.+k .. ~.).!_dR 
R 1 1 l.J J 'o 

(F. 2) 

If the field equations (2.32) through (2.40) together 

with the boundary conditions (2.41) through (2.48) are satis-

fied, the right hand side of Eq.(F.2) vanishes as one of the 

arguments of the bilinear map vanishes at the solution state. 

Conversely, if 6wJ1 (w) vanishes for every smooth function w, 

we choose, for example, w = {u,O,O,O,O,O,O,O,O} with u=O on 

5 2x[O,~), then by the non-degenerate property of the bilinear 

ma.p, for arbitrary U: implies that Eq.(2.38) is obtained. 

Following the same procedure for the choice of w such that 

all but one term on the right hand side of Eq.(F.2) identi-

cally vanishes, implies the satisfaction of a field or boun-

dary equation. Thus vanishing of 6wJ1 (w) we:W implies the 

field Eqs. (2.32-2.40) together with the boundary conditions 

(2.41-2.48). 
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