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1. Consistent RHA-RPA for Finite Nuclei J. R. Shepard, C. E. Price, E. Rost
and J. A. McNeil (Colorado School of \Mines)

RPA based on the relativistic Hartree approximation (RHA) to finite nuclear ground
states. In this latter approach, degrees of freedom associated with the negative energy
Dirac sea of nucleons are described via the derivative expansion of the 1-loop effec-
tive action. A consistent RPA is obtained by expanding the vacuum-dressed o- and
w-propagators and retaining only those terms also found in the derivative expansion

used for the RHA. .

We have additionally examined the influence of 3-momentum cutoffs (or “sideways
form-factors”) in the Dirac sea on our RHA-RPA calculations. We view such cutoffs
as a crude way of suppressing contributions involving small length scales where the
finite size of the nucleon almost certainly implies such contributions are unphysical.
We find that, when QHD parameters are adjusted to reproduce the saturation point
of nuclear matter, the strength of the resulting spin orbit potential for finite nuclei
depends strongly on the cutoff momentum. Specifically, a cutoff of zero - implying
no vacuum contributions - yields the strongest spin orbit interaction while an infinite
cutoff corresponding to the standard RHA gives the weakest. A physically plausible
3-momentum cutoff equalling 2Af,,,0n provides a good description of. e.g.. the 0ds /)

versus 0dj/, splitting in *°Ca.

Our RPA results show the importance of the consistency mentioned above. For
example, the calculated (e,e’) Coulomb form factors for the lowest 37 levels in %0
and *°Ca display the high degree of collectivity seen in the data only in the consistent
calculations. Using a simple local density approximation in the RHA ground state and

the full o- and w-propagators in the RPA diminish the peak values of the form factors
by at least a factor of two.

For the quasielastic (¢, e') Coulomb response, consistency per se is not so impor-
tant as it is for the low-lying collective excitations. However, as also noted by, e.g..
Horowitz and Piekarewicz,! inclusion of vacuum contributions appreciably improves
the agreement between theory and experiment for '2C and *°Ca at | ¢ |=400 and 550
MeV/c.

A preliminary report of this work has appeared in Ref. 2 and a manuscript to be
submitted to Physical Review C is in preparation.

1. C. 1. Horowitz and J. Pickarewicz, Nucl. Phys. A511 461 (1990)
2. J. R. Shepard in “From Fundamental Fields to Nuclear Phenomena”, C. E.

Price and J. A. McNeil, eds., (World Scientific, Singapore) 1991, pp. 190-211



2. Exact Vacuum Polarization in Finite Nuclei T.C. Ferrée and J.R. Shepard

In QHD nuclear structure calculations for symmetric, closed-shell systems, the nu-
cleus is viewed approximately as a system of point nucleons interacting through the
exchange of isoscalar mesons. These mesons can produce virtual particle-antiparticle
pair excitations of the vacuum in a process called vacuum polarization. These virtual
pairs interact with the on-shell valence nucleons as well as with each other. and may
significantly influence the properties of the many-body system.

Calculating the effects of vacuum polarization in a finite system of nucleons poses a
challenging computational problem. One must deal with contributions from an infinite
number of negative energy states in the Dirac sea. In a renormalizable field theory like
QHD-L,! divergent vacuum contributions are regularized to obtain finite expressions
which do not depend upon cutoffs imposed during the regularization. However, even
with the renormalization procedure well-understood, there are numerical difficulties
which must be overcome in dealing with an infinite number of nucleon eigenstates in a
finite nucleus.

Several authors have addressed this problem, beginning with Chin,? who calculated
the effects of vacuum polarization in uniform nuclear matter using the Hartree 1-Loop
Expansion! to obtain self-consistent solutions. Horowitz and Serot® then applied this
result to finite nuclei by taking the vacuum contributions at each point in the nuclear
interior to be equal to those in the infinite system, but given by the value of the local
scalar field at that point. Perry improved upon this Local Density Approximation
(LDA) by introducing the Derivative Expansion (DE).* He showed that an expansion in
inverse powers of the effective nucleon mass is also an expansion in powers of derivatives
of the potentials, the first term of which is the LDA result. This expansion appecars
to converge in QHD-I, and provides a good method for approximating the effects of
the Dirac sea. While Perry only carried these calculations to first order in the Hartree

1-Loop Expansion, Wasson® later used this method self-consistently to study vacuum
polanization in finite nuclei.

In all of these methods, the vacuum is included in such a way that one need only
calculate individual eigenstates for the valence nucleons, and not the infinite number
of negative energy eigenstates in the Dirac sea. In calculating a few bound states, a
Numerov or Runge-Kutta integration scheme is adequate, and the results are relatively
insensitive to the boundary conditions being imposed outside the nucleus. However,
including the effects of vacuum polarization exactly requires not only a method for
calculating bound and continuum negative energy states exactly, but forces one to
consider carefully the boundary conditions being imnposed.

Recently, Blunden® showed that the effects of vacuum polarization can be included
exactly by integrating the nonspectral form of the Dirac single-particle Green’s function
along the imaginary frequency axis. Since the Green'’s function has no poles along this
axis, the integral is well-behaved, and with a simple extrapolation it converges to agree
well with the DE results. His calculations were performed in 141 dimensions using
Gaussian vector and scalar potentials, but without the self-consistency inherent in the
Hartree 1-Loop Expansion. In addition, he derived finite renormalization counterterms
involving second derivatives of the potentials, but did so using a questionable expansion
of the exact Hartree Green’s function. More recently, Wasson and Koonin’ derived an
extrapolation procedure based on the WKB approximation which is applicable to both
spectral and nonspectral methods. This procedure was investigated in several cases
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with self-interacting scalar fields, and is shown to significantly improve convergence in
the Dirac sea.

We have calculated the cffects of vacuum polarization exactly at the 1-Loop level
in a 1+1 dimensional finite system of Dirac nucleons. employing self-consistent vector
and scalar potentials. We impose periodic boundary conditions with a period large on
the scale of the nucleus, the motivation being that for the deep negative energy states
this is the natural choice to describe slightly perturbed plane waves. These boundary
conditions have the effect of discretizing the spectrum of unbound states, allowing each
state to be labeled by its nodes and parity.

In calculating the effects of the entire Dirac sca, a Numerov or Runge-Kutta inte-
gration scheme is clearly inadequate on its own, since the maximum number of nodes is
restricted by the number of grid points chosen for the integration. In fact, the number
of grid points must be at least an order of magrnitude greater than the number of nodes
of the deepest state considered, or the high energy part of the spectrum will be sensitive
to the grid. On the other hand, one cannot choose an arbitrarily fine grid because of
machine error and constraints in computing time. Thus it is essentially impossible to
reach convergence in the Dirac sea by Numnerov or Runge-Kutta methods alone. While
onc may derive an extrapolation procedure for deep negative energy states based on the
Eikonal approximation, we have seen that the presence of a vector potential leads to a
nonzero baryon density in the exterior of the nucleus which renders the solution highly
unstable. An inconsistency in this Numerov/Eikonal approach is apparent when one
considers the spectrum of eigenvalues obtained by the two methods. For any number
of grid points chosen, there are very few states where the two spectra agree to high
precision, even at energies where the Eikonal approximation is thought to be valid. It
seems that one cannot construct a well-behaved basis of eigenfunctions from the union
of these two methods.

A better method is to diagonalize the Dirac hamiltonian in a finite basis of free
cigenstates, which in 141 dimensions amounts to a Fourier decomposition of the exact
cigenstates. (A similar diagonalization method has been used previously by Kaliana

and Ripka® in 143 dimensional calculations of finite solitons.) The basis obtained
is complete within the finite space which it defines, and does not have the instabil-
ity problems which are present in the Numerov/Eikonal approach. The stability of
the method is traceable to the fact that the free basis consists of sines and cosines
which satisfy sin’z 4 cos?z = 1 independent of argument. This, together with the
orthogonality of the eigenvectors which can casily be realized numerically to very high
precision, ensures unrenormalized vacuum densities which are well-behaved even when
the negative energy states are affected by strong potentials. This in turn vields reliable
renormalized vacuum densities in spite of enormous cancellations. Contributions from
the rest of the Dirac sea may then be approximated using the LDA results. The finite
basis is chosen large enough so that self-consistent solutions are insensitive to small
changes in its size, which requires fewer than a hundred states in the Dirac sea to be
calculated by diagonalization. Without the LDA results appended to the finite basis
contributions, many more states would be required to achieve convergence, if one uses
the same coupling constants in both cases.

Lastly, we have determined how to derive the finite renormalization counterterms
appropriate to our periodic boundary conditions. These are obtained by considering
small deviations from the uniform system in momentum space, and identifying terms
proportional to the spatial momentum transfer squared with second derivatives of the
potentials. Although in 141 dimensions these make finite contributions to the nucleon
energy and meson source densities, and are therefore not part of the regularization of
these quantities required to remove divergences, they are required to renormalize the
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polarization insertions so that they and their first derivatives with respect to ¢? vanish
‘3
at ¢° = 0 and m* = m.

Work is in progress to study the effects of vacuum polarizaticn when treated via
the exact Fourier/LLDA method, and to compare these results with the results obtained
via the various approximations already discussed. In particular, it remains to be seen
if Blunden’s nonspectral approach and our Fourier/LDA approach give similar results
when considering contributions from the entire Dirac sea. Also, one may ask if it is
appropriate to consider contributions from the entire Dirac sca. It is possible to obtain
coupling constants by imposing a three momentum cutoff in the Dirac sea of the infinite
system at saturation, and then use these coupling constants in the finite system while
including contributiens from only that part of the Dirac sea included within the cutoff.
An immediate extension of this work is to explore the effects of vacuum polarization on
the normal mode (RPA) excitations of finite nuclei, and we will consider these effects
after the ground state problem is well understood.

1. B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 35 (1986)
2. S5.A. Chin, Ann. Phys. (N.Y.) 101 301 (1977)

3. C.J. Horowitz and B.D. Serot, Phys. Lett. 140B 181 (1984)
1. R.J. Perry, Phys. Lett. 182B 269 (1986)

5. D.A. Wasson, Phys. Lett. 210B 41 (1988)

G. P.G. Blunden, Phys. Rev. C41 1851 (1990)

7. D.A. Wasson and S.E. Koonin, Phys. Rev. D43 3400 (1991)
8. S. Kahana and G. Ripka, Nucl. Phys. 429A 462 (1984)



3. Isovector Correlations in QHD Description of Nuclear Matter J. R.
Shepard and C. J. Horowitz (Indiana University)

Isoscalar (T=0) correiations induced in nuclear matter by - and w- meson exchange
have been well-studied in the context of the QHD model of nuclear dynamics. Such
correlations play crucial roles in, e.g., the description of isoscalar magnetic moments!
and suppression of the Coulomb sura in (¢, €') quasi-clastic scattering.? Isovector (T=1)
correlations generated by m- and p-meson exchange are much less thoroughly investi-
gated. Recent experiments® at the Neutron-Time-of-Flight (NTOF) facility at LAMPF
have sought signatures of such correlations in the spin observables of the quasi-elastic
(p,n) reaction on !'?C and *°Ca. Preliminary results suggest no difference between
the relative strengths of the longitudinal-vs-transverse spin responses in nuclei as com-
pared to those observed on deuterium. That is, nuclear correlations appear to have
no influence on relative longitudinal-vs-transverse T=1 responses. This is surprising
in light of the (naive) expectation that the attractive m-interaction should significantly
soften the longitudinal spin response while the repulsive p-interaction should harden
the transverse. We have undertaken a study of 7- and p- correlations in nuclear matter
using an RPA approach based on QHD-MFT.* Here properties of the nuclear ground
state depend on the mean fields of isoscalar ¢- and w-mesons which help determine

the nucleon propagator, G(p). Our 7- and p- interactions are based on the following
NN vertices:

5

7NN : g”%fr‘-i‘

NN : 222[114,&01!"( ]ﬁf‘
e 5 U o7 Wl

where 7(P) is the 7 — (p—) field. The results reported here employ coupling constants
from Ref. 5. The presence of derivative contributions in the 7NN vertex aud the
tensor term of the pNN vertex imply “contact terms” for interactions involving two
such vertices. These zero-ranged interactions are expected to be suppressed both in free
space and in nuclear matter by short-ranged correlations induced by the hard-core of
the NN interaction. We account for such suppression phenomenologically by modifying
the relevant meson propagators as follows:

1 1 g'
Dy=—-—- > DO(‘(]')—_——-—-—-—-————I
@ — 2 ¢ — 2 g

where p is the meson mass and ¢' is a free parameter. Note that ¢’ = 1 corresponds to
total suppression of the contact term.

Solution of the RPA equations and calculation of various responses is straightfor-
ward:

Mppa = + HoDo(g" )YIgrpa
1
So(w) = —;Im Tr [6 TI(w) 6]
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Here we focus on the pionic response, Sy(w), for which
1

and on the p-response, S,(w), where

9 —ig,,[ a Gy

1%
ag ( .
2 o’ v

We also compute the transverse electromagnetic response, St(w), where

9 - Jelrn
with
1 . .
JE = 5(1 + )7 + m(h‘.o + Kk17:)0" g,
where kg = —0.06 and x; = 1.85 are the T=0 and T=1 anomalous moments of the

nucleon, respectively. Note that, while explicit reference to nucleon form factors has
been omitted in describing J£ . our calculations in fact employ the form factors of Ref.

em:*
6.

A brief summary of our preliminary results begins with an examination of the -
response at | ¢ | = 350 MeV/c which appears in Figure 1. As indicated by the solid
line, the correlated n- response for m* = m and ¢'» = 0 shows enormous attractive
collectivity indicative of the nearness of 7-condensation for these parameters. (See, e.g.,
Ref. 7) Clearly, such parameters are unphysical and we focus on quantities related to
the quasi-elastic (p, 7) measurements mentioned above. For example, the “super-ratio”
of the separated longitudinal-vs-transverse-spin responses has been extracted. In the

plane-wave limit and subject to a few other reasonable assumptions, this super-ratio is
related to the responses described above via

(SL/ST)nucleus («Sw/sp)RPA

R T= -3 —
t (DL/ST)deuterium (Sﬂ/Sp)N’FT

where the MFT responses omit correlations and assume m* = m. In Figs. 1 and 2 (the
7- and p-responses, respectively) all calculations were performed using kg = 1 fm™! and
the RPA results are for m*/m = 0.85. These latter quantities are roughly appropriate
to the average nuclear density at which the 500 MeV quasi-elastic (p,n) process occurs
on “°Ca (note that for (e,e’) processes where the entire nuclear volume is sampled,
kp =1.16fm™! and m*/m = 0.73 is appropriate). Fig. 1 shows that RPA correlations
at n* = m are greatly suppressed by g', — 0.8. Nevertheless, some slight attractive
collectivity remains, consistent with non-relativistic analyses.®



A similar set of calculadvions for the p-response appears in Fig. 2 where, with 9',=0
and m* = m, RPA ccrrelations display weak attractive collectivity. Using ¢', = 0.6
results in slightly stronger repulsive correlations which reduce the overall response and
shift it to somewhat higher w. The overall result is that RPA and ¢' effects give a

super-ratio Ry significantly larger than one and again familiar from non-relativistic
treatments.

We now examire the influence of m*/m < 1 on the responses and R;,7. Small
values of m* tend to rc duce the strength of vertices with derivative coupling and those
effects are seen clearly in the m*/m = 0.85 7- and p- responses. Fig. 1 shows that the
m* effect reduces S, by more than 25%, while a somewhat smaller reduction of the
p-response is evident in Fig. 2 These reductions have no counterparts in non-relativistic
treatments, but in fact, together with the RPA and ¢’ effects, yield a super-ratio very
near unity and quite similar to the experimental values. More thorough analyses are in
progress, but initial indications are that the m* effect may be crucial in understanding
the observed isovector spin responses.

To provide a means of assessing the physical content of our calculations, we compare
our transverse and Coulomb (e, e') responses with the Scalay data!® for *°Ca at | ¢ |=
410 MeV in Figs. 3 and 4. Both MFT (dashed curves) and full RPA results (solid
curves) are shown. These calculations employ kr = 1fm™! and m*/m = 0.73 as well
as g', = 0.6.

1. See, e.g., J.R. Shepard, E. Rost, C.-Y. Cheung, and J.A. McNeil, Phys. Rev.
C37 1130 (1988) and references contained therein.
See, e.g., J.P. Chen et al., Phys. Rev. Lett. 66 1283 (1991) and references

contained therein. o ) .
3. X.Y. Chen, private conmunication, 1991 C.U. Experimental Nuclear Physics

Progress Report, and to be published.

B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 1 (1986)

R. Machleidt in “Relativistic Dynamics and Quark-Nuclear Physics,” Mikkel
B. Johnson and Alan Picklesimer, eds., John Wiley and Sons, NY, 1986

6. Shigeru Nishizaki, Haruki Kurosawa and Toshio Suzuki, Phys. Lett. 171B,
1 (1986)

J.D. Dawson and J. Piekarewicz, SCRI preprint, January 1991 and to be
published.

J.R. Shepard, E. Rost and J.A. McNeil, Phys. Rev. C33 634 (1986)

See, e.g., H. Esbensen, H. Toki, and G.F. Bertsch, Phys. Rev. C31 1816
(1985)

10. Z.E. Meziani et.al., Phys. Rev. Lett. 52 2130 (1984)

©)

o e

=1

© o

-3



7 Response in Nuclear Matter
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Fig. 1 The m-response/nucleon in nuclear matter using kr = 1.0 and 1n*/m = 0.85 as
well as ¢’ = 0.80
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Fig. 2 The n-response/nucleon in nuclear matter using kr = 1.0 and m*/m = 0.85 as
well as ¢’ , = 0.60.
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Coulomb Response for *Ca
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Fig. 3 The (e,e') Coulomb response for **Ca using kr = 1.16 and m*/m = 0.73 as
well as g', = 0.60.

Transverse EM Response for “Ca
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Fig. 4 The transverse (e,e') response for *°Ca using kr = 1.16 and m*/m = 0.73 as
well as ¢', = 0.60.



4. Nuclear Response Functions in Quasielastic Electron Scattering, E. Rost

We have been actively involved for several years in a program to study quasielastic
responses in finite nuclei. High quality data are now available from electron scattering
experiments where the longitudinal and transverse response functions, Sp(q.w) and
St(q,w), have been measured. These quantities represent form factors that measure
the response of the nucleus to electromagnetic probes

Sp(@,w) = D 6{w — wn)|(Talp(q)]To)

’ 2

, (1)

Sr(q,w) = Y 8w — wa)|(¥nlJr(q)]To)

where p and Jy (A = %1) are the nuclear charge and current operators and ¥, is a
nuclear excited state wavefunction with excitation energy w,.

It is convenient! to write the response functions in terms of a many-body operator.
the polarization tensor, defined by the time-ordered product

1% (2, y) = (Wo|T[J"(x)J" (y)] | ¥o). (

1AV
—~

The polarization tensor is evaluated in the Hartree approximation and after some
manipulation? is expressed in terms of non-spectral, mean-field Green functions

I (% yw) =D [bhx)PhH(YIGY p(y, X en — w)
h (3)
+ G (X, yien + )Ry (y)]

where the sum is over occupied hole states, h, with wavefunction v, and ¢, j, k. ( are
Dirac indices.

The non-spectral Green functions are obtained in a method we have developed? by
solving the inhomogeneous Dirac equation in configuration space

(W +iy -V = M - Syp(x,y;w)]|Gur(x,y;w) = §(x - y) (4)

in the presence of the self-consistent mean field, Zpp, and with the same boundary
conditions satisfied by the free propagator.

It is not difficult to generalize the mean field propagator of Eq. (3) to include
particle-hole correlations in the random phase approximation (RPA) method. Schemat-
ically, one replaces [Ipsr in Eq. (3) by the solution to the integral equation



Orpa =yr+dayp K Mppa (5)

where X is the RPA kernel (see ref. 2 for details.) We solve Eq. (5) numerically on a
grid in configuration space.

Explicit formulas for the response functions, S, and S, follow?® after expanding in
vector spherical harmonics and separating isoscalar and isovector contributicns. The
isospin separation allows us to make a convenient approximation thi.t saves considerable
computation. The electromagnetic current operator for isospin t is

0. IR .
JH9) = FU@I" + Fa(d®) 7m0 aw (6)
2M
where the anomalous moments are kg = —0.06 and x; = +1.85 for isoscalar and isovec-

tor currents. Hence we ignore the isoscalar anomalous terms. The isovector anomalous
terms are substantial; however they are relatively insensitive to RPA correlations so we
simply use the mean-field polarization tensor, IIpsr, in computing their contributions
to St. Even with these approximations, the calculation of S, and St for finite nuclei
requires considerable numerical effort.

Figure 1 shows results for a '2C target at a momentum transfer of 400 MeV /c.
The RPA calculations are nearly identical to those of ref. 3 although our numerical
techniques are considerably different. The RPA calculations give a reasonable repre-
sentation of the data near the quasi-elastic peaks—more details are found in ref. 4. The
behavior of S at high ¢ is not at all described by the RPA theory and it is believed
rhat other physics (e.g., A isobars) is responsible. We have studied this region with
our DRPA code in order to see if it is possible to obtain some insight without resort to
other degrees of freedom. In particular retardation causes a complex folding at w > m,
in the evaluation of K in Eq. (5). Unfortunately we are not able to find any effects so
cnormous as to give a rising St at high w.

Finally we have been investigating the very recent high-w (e,e’) data’ taken at
SLAC using an °°Fe target. We have extended the DRPA code to handle this extreme
case (35 J values were required.) The data, if correct, are very interesting. We note that
nuclear matter calculations® and finite nucleus RPA calculations® yield curves where
Sp and St are roughly proportional whereas the data at high w differ greatly. We plan
to study this case more closely in order to see what the finite nucleus effects are and
to see if we can understand what features in our model are needed in order to change
the shape of the transverse response relative to the longitudinal response.

1. A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Body Systems,
(McGraw-Hill, New York, 1971) ,

2. J.R. Shepard, E. Kost and J.A. McNeil, Phys. Rev. C 40 2320 (1989)

3. C.J. Horowitz and J. Piekarewicz, Nucl. Phys. A511 461 (1990)

4. J.R. Shepard in Proceedings of the Workshop: From Fundamental Fields

to Nuclear Phenomena, eds. J.A. McNeil and C.E. Price, (World Scientific,
1991), p. 190

5. J.P. Chen et al., Phys. Rev. Lett. 66 1283 (1991)
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6. J.W. Van Orden, Ph.D. thesis, Stanford University, 1978
7. P. Barreau et al., Nucl. Phys. A402 515 (1983)
Long. Response, 400 MeV/c Trans. Response, 400 MeV/c
0025 r»-! T I P } T ] T IT T TjT OOBO ; T : T i TT 7177 ’ T T 717 I T 1771771 ]_i
1 : | S
0.020 — \ - 0.025 = t ]
L T ! j “ //v? \\ *l' 4
. 1 .. 0 O 20 P / $? \'\ M i
0.015 - § 1 — . ¥ \ = .
/ TA \lb 1 x'— :; "\ . ‘;
I IT i b e . s &
- <+ ﬁ -~ /E O 016 F“‘ R ’ b. ;y f .
= + : o ; b + | b ,LN
0010 — /4 1 — = , s NWooogrt o
~ /“ + “‘, '/'T- : . ‘3}* Y
- f/* \ ﬁ} : 0010 - 4] #
0.005 —4 \ My 3 ‘
- basimiby 0635 - |
. | | ‘ ! l‘l‘ 1‘:’1} - ‘\»\\ 4
0.700 6 — I'!O N EE ’J,] L z‘«*w-}.‘ 0 000 LA#;_._;,L,.‘,H‘._LLA_L‘ J. iEI\I‘J":]
°0 100 150 200 250 0O A0 100 150 200 250
w (MeV) w (MeV)

Fig. 1. Longitudinal and transverse response functions for '?C at ¢ = 400 MeV /c. The
solid line is the result of a RPA calculation including vacuum polarization effects and
is in close agreement with the calculation of ref. 3. Experimental data were obtained

from ref. 7.
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5. Charge Density Differences for Nuclei Near ?°Pb in Quantum Hadro-
Dynamics C. E. Price and R. J. Furnstahl (University of Maryland)

: 1.2 " : .
There is recent data on the charge densities of various nuclei near 2°8Pb (e.g.

206Ph, 205T] and 2%*Hg). The difference between the charge densities of two such nuclei
that differ by one or two protons should be dominated by the charge density associated
with the last occupied proton orbital. For these nuclei near 2°¥Pb, the last occupied
proton state is the 3s1/2 orbital, which has a characteristic two node shape with a
large central maximum. This shape should provide a unique signature for the effects
of this orbital in the charge density differcnce, and should make it possible to identify
any deviations from the pure single particle picture.

There are two effects that are expected to cause the charge density difference to
deviate from the pure 3s1/2 shape. First, the removal of even a single proton will induce
some polarization in the remaining core orbitals so that the charge densities of the cores
of two neighboring nuclei (like 2°5T] and 2°Pb) will not cancel exactly. Secondly, the
occupation numbers of the least bound proton orbitals need not be identical for these
heavy nuclei. For example, rather than being dominated by the removal of a single
proton (or pair of protons) from the 3s1/2 orbital, the charge density difference may
be primarily due to the removal of a “fraction” of a proton from each of the 3s1/2 and
2d3/2 orbitals (or any more complicated fractional level occupation schemes).

In this work, we study the charge densities of 2°°Pb, 295T1 and 2°4*Hg in the context

of quantum hadro-dynarnic53 (QHD). This model has been very successful in describing
a wide range of nuclear ground state properties throughout the periodic table, and
typically provides agreement with experiment that is on the same level as that obtained
with a non-relativistic Skyrme model! For these calculations, we have used both iinear
(L) and nonlinear (NL) parametrizations of QHD.

A particularly clean isolation of the 3s1/2 contribution can be obtained by convert-
ing the charge density measurements into a ratio of cross sections as a function of mo-
mentum transfer. Figures 1 and CSH show the cross section ratios for *°*T1/2%6Phand
“94Hg/?%Pb respectively. in both figures the solid curve is the experimental (obtained
form a Fourier-Bessel fit to the charge density data) and the dashed (dashed-dotted)
curve is the calculation using the linear (non-linear) parameterization of QHD and ob-

tained by using the DWBA code HADES® to calculate the cross section ratios from
the calculated coordinate space charge densities. For these ratios , the contribution of
the 3s1/2 state is characterized by the large peak near 2 fm~™!, which is evident in
both the experimental results and the calculations. Both the dominant peak and the
overall scale of the structure is significantly enhan.ed in the calculations compared to
the experimental results (although the experimental error bars, not shown, are fairly
large).

The calculations shown in figs. 1 and 2, are very similar to those obtained from
nou-relativistic Hartree-Fock calculations using phenomenological effective interactions
(see ref. 1 for 2°5T1 and ref. 2 for 2°*Hg). In these earlier calculations core polarization

played an important role but fractional level occupancies were needed to describe the
data.

In order to understand the discrepancy between our calculations and experiment, we
likewise consider the effects of fractional level occupancy. Since we are only interested
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in the cross section ratios, it is sufficient to leave the level filling of *°°Pb fixed and
only vary the occupancy of the least bound levels in cither ?°>Tl or **'Hg. In figs. 1
and 2, we show the cross section ratios for 2°°Ph - 295T1 and 2°Pb - *"*Hg obtained
by varving the occupancy of the high lying proton orbitals (dotted curves). For these
calculations, we have assumed tha: the neutron occupancies are not affected and that
the changes in the proton occupancies are restricted to the 3s1/2 and 2d1/2 shells.

, . C .
For 2%Pb - 205T], we used the occupancies suggested by Frois's comparison of

the experimental results with the mean-filld calculations of Campi et al.’ Specifically.
there are 0.7 protons removed from the 3s shell and 0.3 protons removed from the
2d shell. This level occupancy is minimally sufficient to bring our QHD results into
agreement with the experimental density. Our dominant peak near 2 fm~! is still a
bit too large and the overall structure remains slightly enhanced. The agreement could
be improved by using occupancies of 0.6 and 0.4 for the 3s and 2d levels respectively.
This larger 3s occupancy is supported by the theoretical calculation of Pandharipande

et al.” in which the occupation probabilities of shell-model orbits in the lead region

arc estimated by the addition of random-phase approximation corrections to nuclear
matter results.

For 2°®Pb - 204Hg we have used the occupancies suggested in ref. 2, based on
the average of the occupation numbers required to bring three separate non-relativistic
calculations into agreement with experiment. Namely, ~ 1.0 proton removed from the
3s orbital and ~ 1.0 proton removed from the 2d orbital (this corresponds to a fractional
occupancy of .5 for each of the 3s1/2 levels). Again this occupancy is sufficient to
bring our results into minimal agreement with experiment, but the agreement could
be improved by removing slightly fewer protons from the 3s level. Since the three
calculations of ref. 2 had a spread of aboni +£10%, such a reduction would still he
consistent with the non-relativistic calculaticns. It is important to point out that.
particularly for an even-even nucleus like *°*Hy;, the fractional occupation of the levels
near the Fermi surface should be included via the pairing approximation as has been
used by Ring et al.® rather than by the simple occupation number variation that we
have employed here. While it is not expected that the pairing effects would alter the
qualitative features of our results, it is likely that the simple picture of the charge
density difference in terms of only two levels (the 3s and 2d) would be changed.

1. B. Frois, J. M. Cavedon, D. Goutte, M. Huet, Ph. Leconte, C. N. Papanicolas.
X.-H. Phan, S. K. Platchkov, S. E. Williams, W. Boeglin and I. Sick, Nuecl.
Phys. A396 409c (1983).

A. Burghardt, PhD Thesis, University of Amsterdam.

. B. D. Serot and J. D. Walecka, Adv. in Nucl. Phys. 16 (Plenum. New York,
1986).

4. C. J. Horowitz and B. D. Serot, Nucl. Phys. A368 (1981) 503; S. J. Lee et al.,
Phys. Rev. Lett. 57,2916 (1986); 59, 1171 (1987); C. E. Price and G. E. Walker,
Phys. Rev. C36, 354 (1987); W. Pannert, P. Ring, and J. Boguta, Phys. Rev.
Lett. 59 (1987) 2420; R. J. Furnstahl, C. E. Price, and G. E. Walker, Phys.
Rev. C36 (1987) 2590; U. Hofmann and P. Ring, Phys. Lett. 214B 307 (1988).
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Fig. 1. Cross section ratio for 29°Pb ~ 29°T]. The solid line is the experimental result.
the dashed line is from the linear QHD model. the dashed-dotted line is from the
nonlinear version of QHD, and the dotted line includes fractional level occupancies.
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Fig. 2. Cross section ratio for 2°°Pb - 224Hg. The curves are as described in figure 1.
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6. Excitation of the 10.957 MeV 0~; T=0 State in 'O Ly 400 MeV Pro-
tons E. Rost (with J. King and TRIUMF-Toronto group)

The measurement of inelastic proton-nucleus spin observables provides details of the
nucleon-nucleus interaction that are not otherwise available. The 07 — 0~ transition
is especially interesting since it requires a spin-flip in the interaction. Since only J=0
states are involved, complexities due to nuclear structure and the nuclear interaction
should be greatly reduced. In a non-relativistic impulse approximation, the direct part
of the interaction vanishes under time reversal invariance while the exchange part does
not!, resulting in the relations

P=-4,, D=-1, A=R. R=-4'

for the Wolfenstein parameters. An additional simplification in the interaction occurs
since the spin-orbit component is zero while the central component is very weak?. Thus
a measurement of the cross section and analyzing power for the 07 — 0~ transition
should allow for identification of the tensor-exchange part of the nucleon-nucleus inter-
action. A relativistic impulse approximation calculation. on the other hand, predicts a
non-zero value for A, without the explicit inclusion of exchange.® This is accomplished
through coupling between upper and lower components of Dirac spinor . A relativistic
model (DREX) including explicit exchange is a2!so available?.

The results reported in this work are from a program to measure the cross section
and analyzing power for excitation of the T=0 state by 200 and 400 MeV protons
from the TRIUMF cyclotron with the objective of improving our knowledge of the
tensor-exchange part of the nucleon-nucleon interaction. The data at 200 MeV have
been superseded by the much higher resolution data from IUCF® so only the 400 MeV
results are presented here. Experimental techniques are described in detail in a paper
with the above title which should be published in Physical Review C in the Fall, 1991.

The cross section and analyzing power for the 07;T=0 state are shown in Fig. 1.
The optical potential for the calculations were generated by a conventional folding
procedure. Inelastic transitions in impulse approximation were obtained from PH® and

LF7 interactions and a simple (1P1_/12251/2) wave function. Also shown in this figure is

a DREX calculation? which uses a relativistic framework.

All calculations predict a large positive analyzing power at forward angles while the
experimental values are clearly negative. The use of a two-component wave function
can alter the magnitude and shape of the cross section somewhat but has little effect on
the analyzing power.® As the analyzing power arises from interference effects, it may be
that the tensor components of the LF and PH interactions®” are incorrect. Similarly,
the DREX calculation may suffer from an error in the assumed exchange contribution.
There are, however, other effects that should be investigated before using the present
results to try to improve the effective interactions.

Isospin mixing between the two 07 state in ‘O at the 5 to 10 % level is known te
occur. However, this is insufficient to explain the present results as almost complete
mixing is required to produce largc negative analyzing power values at forward angles.
The 37 state at 6.130 MeV is strongly excited by intermediate energy protons while
the excitation of the 0~ state via the 3™ state competes with the direct excitation.
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We have carried out a simplified distorted wave impulse approximation (DWIA)
to estimate the effect of a two-step excitation of the 07 state. The nucleon-nucleon
t-mmatrix 1s approximated by

tan(q, Q) = VE(q) + Vo(q)F, - 5a. (1)

The V(¢) and V77(¢) amplitudes are known from NN scattering and were fitted
at each energy to a sum of Yukawa forms. Five complex terms were found to give an
adequate fit for angles less that 60°. Couh;_,urdtlon space potentials were then written

in terms of these fitted amplitudes. A (1p1/2~51/_) Woods-Saxon wave function was

used for the 07 state. Excitation of the 07 state directly or via a two-step excitation via
an intermediate (lpl_/l,zlds/-z);,_ state was considered. The cross section for excitation

of the 3-- state by 200 MeV protons is shown in Fig. 2 (data from J.J. Kelly); the
calculated cross section has been multiplied by a factor of two to account for the

known collective nature of the state. This one-step excitation is adequately described
in this simple model

A second order DWIA was carried out for both a pure two-step excitation and for
a coherent combination of one-step and two-step excitation of the 0~ state by both
200 and 400 MeV protons. The 400 MeV calculations are compared with the present
100 MeV data in Fig. 3. Although the two-step contribution to the cross section is not
very significant, the coherent sum of one- and two-step processes has a marked effect
on the analy zing power. Both cross section and analyzing power data at 400 MeV
are quahtatl\ ely described by this calculation. In particular, it is the only calculation
to give strongly negative analy zing power at forward angles via a physically plausible
mechanism. The situation at 200 MeV is not so clear. Although the calculated analyz-
g power i1s smaller in magnitude that that given by more sophisticated calculations,
it still does not give a good description of the data.

[t 1s apparent that interference from two-step excitation via the 37 state masks
other contributions to the excitation process at 400 MeV. Thus, there is no possibility
of extracting information about the tensor-exchange component of the nucleon-nucleon
interaction from the present data. At 200 MeV the two-step process is of less importance
and 1t might be possible to account for its effect (as well as that of isospin mixing) and
thereby learn something about the tensor-exchange interaction. However, this would
require a more sophisticated treatment of the two-step process.

A paper describing this work has been accepted for publication in Physical Review
C. The referee’s comment was “This is a nice piece of work that provides an unportant
caveat to a number of ongoing programs in medium-energy nuclear physics.”

1. S.S.M. Wong et al., Phys. Lett. 149B 299 (1984)

W.G. Love, M.A. Franey and F. Petrovich, in Spin Ezcitations in Nuclei, edited
by F. Petrovich et al. (Plenum, New York, 1984),p. 205

J. Piekarewicz, Phys. Rev. C 35, 675 (1987)

E. Rost and J.R. Shepard, Phys. Rev. C 35, 681 (1987)

R. Sawafta et al, in Indiana University Cyclotron Facility Scientific and Tech-

nical Report, May 1988-April 1989, edited by E.J. Stephenson, p. 19; to be
submitted to Phys. Rev. C
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6. H.V. vonGeramb, in The Interaction Between Medium Encrqy Nucleons in Nu-
cler, 1982, AIP Conf. Proc. No. 97, edited by H.O. Meyer (AIP, New York,
1983), p. 44

7. W.G. Love and M.A. Franey, Phys. Rev. C 24, 1073 (1981); C 27, 438 (1983)
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Fig. 1. Cross section and analyzing power for the excitation of the 07;T=0 state at
10.957 MeV by 400 MeV protons. The solid lines are from a non-relativistic calculation
using the Paris-Hamburg effective interaction. The dotted lines are from a similar
calculation using the Love-Franey interaction. The dashed curves are from a relativistic
calculation with explicit exchange (DREX).
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7. Deformed Chiral Nucleons C. E. Price and J. R. Shepard

The fundamental field theory of the strong interaction, QCD, has not yet evolved
to a form which makes possible quantitative, first-princ/nle calculations of low-energy
hadronic properties. Nevertheless, there is general agrcement that, when such calcula-
tions are done, they will be consistent with the ideas of quark confinement and hidden
chiral symmetry. Much effort has been expended to develop phenomenological field
theories which are at once calculationally tractable and also to some degree compatible

with QCD. A familiar example is that of the Skyrme model' which can be interpreted

as the large N, limit of low-energy QCD2 and whose topological solitons possess both
the properties of absolute confinement and hidden chiral symmetry. It is both the
strength and weakness of the Skyrme models that they make no explicit reference to

quarks. Non-topological soliton (or hybrid) models’ have been put forward as alter-
natives which include quark degrees of freedom throughout. These models still possess
hidden chiral symmetry but the quarks are not absolutely confined. This latter short-
coming, it may be argued, should not be distressing provided the binding energy of
the quarks in hadrons is large on the scale set by our definition of the “low-energy”
hadronic properties we seek to describe. In any case, such hybrid models, typically

. . 4 : .
based on elaborations of the Lagrangian of the o-model,” can provide very economi-
cal descriptions of, e.g., the N-A system. For exainple, the calculations of Birse and

Banerjee3 and reproduce with reasonable accuracy nucleon properties such as rest
mass, magnetic moments, rms radii, g4 and grnn With essentially two free parameters,
namely the coupling constant ¢ for the interaction between the quarks and the chiral
field (or equivalently, the effective quark mass) and m,, the mass of the scalar meson.
These and virtually all other hybrid model calculations employ the “hedgehog” ansatz.
This amounts to assuming that the pion field has the form 7 = #n# and then calculating
an ntrinsic state in which isospin I and angular momentum J are coupled to yield a
state for which the “grand spin” I = I + J is a good quantum number. Since the
matrix elements of the quark spin and isospin operators are readily evaluated for such
states, significant calculational simplifications are achieved. More significantly, it has
been shown that the hedgehog is a local minimumn of energy at least with respect to

some restricted variation.” However, it is also true that the hedgehog is an unphysical

object and physical states with well defined I and J must be projected from it much
as, in the standard treatment of deformed nuclei, states of “good” angular momentum
must be projected from a deformed intrinsic state.

With these difficulties in mind, we have developed an alternative to the hedgehog
model which utilizes techniques employed in calculations of deformed nuclear ground

states’ in the framework of quantum hadrodynamics (QHD),7 a relativistic quantum
field theory of nuclear structure. We begin with the standard Lagrangian of the non-
linear ¢ model (see, e.g., Reference 3) including a.chiral symmetry breaking term
that generates a quark mass (through the non-zero vacuum expectation value of the o
field). Our method diverges from the hedgehog approach in that we assume our three-
quark wave functions have spin-isospin structure corresponding to the usual SU(6)
wave function for a spin-up proton. Our solutions therefore possess the proper spin
and isospin projections by construction. Furthermore, if the single quark wave functions
were degenerate, our nucleon would have the correct total isospin, as well. If we assume
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the quarks are in s-states, the equation of motion for the neutral pion ficld imnplies
7o  cos @ where § = 7 - 2 is the usual polar angle (charged pion mean fields do not
contribute in this model). The pi-quark interaction can then couple, e.g., the lower
component of an s;/, quark wave function to the upper component of a d3/, wave
function. This means that the neutral pion field can induce deformations in our mean-
field solution for the nucleon. We allow for this possibility in our calculations and find
single quark wave functions whose energies are split by their interaction with the g
field which changes sign upon flip of either spin or isospin. However. this splitting is
not large and we have estimated isospin projection by itself to be a 5 to 10% effect
at most. If we ignore this small violation of isospin symmetry, we conclude that we
have calculated an object intermediate between the hedgehog intrinsic state which is a
mixture of various spins and isospins and the physical state which has unique values of
spin and isospin. Of course we still face the task of projecting physical states of good
total angular momentum as is done in standard treatments of deformed nuclei.

Spherical Deformed Hedgehog| Experiment
(E—-m), -1328 MeV -950 MeV -469.5 -
(E —m), -413 MeV -724 MeV -469.5 -

My 1149/693 MeV| 1502/1158 MeV| 1116 MeV| 939/1086 MeV
(r2)}/? 0.68 fm 0.71 fm i .
(r2)n2, 0.66 fm 0.70 fm i 0.85 fm

Hp 1.79 nm 2.85 nm 2.87 nm 2.79 nm

Un -1.54 nm -2.00 nm -2.29 nm -1.91 nm

gA 3.63 1.255 1.86 1.25

gaNN Mg /2M 3.47 0.98 1.53 1.00

OxN 115 MeV 118 MeV 92.5 MeV| 59 MeV

Table 1. Experimental and calculated nucleon properties. The spherical and de-
formed calculations refer to the present work with m,=1200 MeV and m,=600 MeV.
The hedgehog calculations are from Reference 3 (see also Reference 8 for corrections
to the published results) and assume m,=500 MeV and m,=1200 MeV. The quantity
(E —m); is the binding energy for the u; and d; single quark wave functions while
(E — m), refers to the other pair. RMS radii for the vector quark density and the
proton charge density are quoted along with proton and neutron magnetic moments,
the axial vector coupling constant and the # NN coupling constant. The o-nucleus
commutator o,y is discussed in, e.g., References 3 and 9. Its experimental value is
taken from Reference 9. Both the nucleon mass and the average N-A mass appear for
the experimental value of M. Values with and without the center-of-mass correction
are displayed for our spherical and deformed calculations.

In Table 1, we compare the results of our calculation of nucleon properties with

)
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those of Birse and Ba,nerjees'8 and with experiment. Our (Birse and Banerjee’s)
calculations use best-fit parameters m, = 1200 (500) MeV and m, = 600 (1200) MeV.
We show two sets of our results, one designated as “spherical” which includes only
s1/2 quark wave functions and another labelled “deformed” which allows up to g7/2
admixtures. In the deformed (spherical) calculation, the o' field has L = 0 and 2
(L = 0) multipoles while the 7y field has L = 1 and 3 (L = 1). We have determined
empirically that higher multipoles in either the quark wave functions or the meson fields
are of negligible importance. The major difference between the spherical and deformed
calculations is due to the presence of the d3/; components in the quark wave functions.
The amount of deformation may thus be quantified in terms of the amplitude of the
d3/, component of the quark wave functions and is found to be 14% for the deformed
calculations presented in Table 1. Another measure of the departure from sphericity
is the standard deformation parameter which is g, = —0.26 (for the quark scalar
density) in the present case indicating an oblate deformation. As the numbers in the
table show, this modest deformation has profound effects on the nuclecon properties.
Deformation reduces the ut/d] versus u|/d; splitting by 690 MeV (to only 224 MeV),
increases the total mass by 353 MeV, changes the magnetic moments by about 45%
and reduces g4 and g>n N by nearly a factor of three putting them in essentially exact
agreement with experiment! (Note that g,4 and grn n are constrained to be proportional
by the Goldberger-Trieman relation, gaM = g.nnFyx, which is realized at the level
of gaM/grnnFr = 0.961 (0.785) for our deformed (spherical) calculation.) Perhaps
the most striking difference between our calculations and those for the hedgehog is
that our pion field (and hence, its contribution to the nucleon mass) is much smaller
than that of the hedgehog. The weakness of our my field is closely connected with
the deformation of the quark wave functions. Recall that the 7y field has a cos8
spatial dependence and is therefore strongest at the nucleon “poles”™ and vanishes at
the “equator.” Though the interaction of the quarks with this field is attractive for u;
and d| and repulsive otherwise, the total nucleon energy is minimized by minimizing
the mo-quark interaction. In the present model, this is accomplished by an oblate
deformation which effectively concentrates the quarks in the “equatorial” region. In
turn, this weakens the mg source and finally the overall 7, field strength.

Except for the mass which is subject to sizeable reductions due to center-of-mass
corrections, the deformed calculations of the properties of the nucleon are in excellent
agrecment with experiment. Furthermore, no parameter combination could be found
which gave even remotely comparable agreement for the spherical calculation. Defor-
mation is evidently a crucial degree of freedom in this model! Again except for the
mass, our deformed calculation gives a description of the nucleon which in almost ev-
ery instance i1s comparable or superior to that of the hedgehog. The values of g4 and
grNN in particular are much better accounted for by the deformed calculation. Only

3,9 . . . .
our value for the o-nucleus commutator, oxN, is in substantial disagreement with

experirnent9 and in fact is somewhat worse than the hedgehog result. Regardless of
how the two models fare in comparisons with data, perhaps the most interesting result
is that they require such different inputs to describe the nucleon. In fact, our calcu-
lations do not generate a bound system when we use the Birse and Banerjee best-fit
parameters. These differences in values of my and m, are difficult to understand and
provide a strong incentive to understand the formal relation between deformed and
hedgehog solutions. This will be the subject of a future publication.

While differences between best-fit parameters for the deformed and the hedgehog
solutions are noteworthy in their own right, the specific values we find for mg and mg
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have their owa interesting implications. We mentioned above that hybrid models such
as ours do not give absclute confinement. The energy scale on which the quarks are
effectively confined is given by the quark binding energy. In the Birse and Banerjee
hedgehog, as shown in Table 1, this energy is ~470 MeV. By taking the average of our
quark binding energies with weights fixed by the SU(6) wave functions, our quark bind-
ing cnergy is found to be 900 MeV (1125 MeV) for the deformed (spherical) calculation.
Thus our quarks are substantially better confined than those of the hedgehog.

As mentioned earlier there are two important limitations of our calculations; 1) lack
of angular momentum and isospin projection, and 2) no contributions from charged pi-

: . 10
ons. These two problems may be addressed simultaneously via meson coherent states.
A meson coherent state is defined by the relations:

where |z) is the coherent state characterized by the c-number z and & (a') is a meson
destruction (creation) operator. For our sigma meson such a state can be written as:

Aty

2= 3 B8 o) = exp(zaty 0y = 3

o n

where |n) is the usual n-meson state. One advantage of a coherent state for the mesons
is that it provides a justification of the usual mean-field substitution:

where the c-number z is simply related to the mean-field o(F). Since |z) contains

components with all possible numbers of mesons, the expectation value of a single
meson operator need not be zero.

For the pion field, which is an isovector, the coherent state is more complicated.
Since the nucleon has a definite isospin, it is inappropriate to think of it as involving a
state with an arbitrary number of uncorrelated pions. It is, therefore, necessary to form
the coherent state for the pion by including the proper coupling to the quarks so that
the final nucleon state has the desired quantum numbers. We have approached this
problem by writing two pion states, one involving only even numbers of pions and one
involving only odd numbers of pions. In each of these states the pions are coupled pair-
wice to zero total isospin. In other words the even state involves all possible numbers
of di-pions (two pions coupled to isospin zero), and the odd state involves all possible
numbers of di-pions and one unpaired pion whose quantum numbers determine the
quantum numbers of the odd pion state. Then each of these states is coupled to the
three quarks to form a nucleon. This treatment of the mesons means that our proton
is really a combination of a ‘bare’ proton (three quarks only) plus a ‘bare’ neutron
coupled to a 7t plus higher order components involving ‘bare’ deltas, other nucleon
resonances and higher numbers of pions.



Given this starting point, it is then a simple matter to write down a set of coupled
mean-field equations for the quark wave-functions and the sigma and pi fields, which
automatically include the proper angular momentum and isospin quantum numbers.

) . .6 .
Then, standard techniques for solving mecan-filed equations  lead to a self-consistent

nucleon solution that incorporates projection before variation. Numerical calculations
for this approach are in progress.
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8. Alternate Basis For Exact Vacuum Calculations in 3-Spatial Dimen-
sions J.R. Shepard, J. Garten and C. E. Price

As reported in Section 2, we have successfully developed an efficient numerical pro-
cedure for exactly renormalizing one-loop vacuum contributions to the ground states
of finite nucleil in a version of QHD for one spatial dimension. As is well-known, ex-
tension of one-dimensional techniques to three spatial dimensions is highly non-trivial.
In the present case, for example, the crucial “completeness” relation exploited in one
dimension which emerges because the free basis consists of sines and cosines cannot
be readily duplicated in three dimensions using the usual free basis constructed from
spherical Bessel functions.

In a search for a more convenient basis in three dimensions we are examining
solutions to the free wave equation in four Euclidean dimensions. The fundamental
idea is most simply explained by considering how the usual 3-D basis may be used
to deal with 2-D problems. Specifically if we begin with a 3-D spherical coordinate
system, we may fix the 3-D radius and so define a spherical surface in 3-D:

(r,8,90) = (R,0,0).

Restricting our attention to a region near the “north pole” (6 ~ 0) we may establish a
correspondence between the remaining 3-D coordinates and the usual polar coordinates
m 2-D:

(p2,p2) « (Rb3,3)
where R is the radius of the 3-D sphere. In the limit pa/R — 0, this correspondence

becomes exact. In very specific terms, the correspondence includes the following math-
ematical relation.

P;"(Cos%) o T+ 1)p/R)

which is very well satisfied for

a) £>3 and b) p/R<0.5

In 4-D, one may choose a hypersphere of radius R to correspond to the usual 3-D
space. Here the correspondence becomes

U(cos r/R) & ji(v/n(n +2)p/R)
where Uf(z) is an associated Chebyshev polynomial of the second kind. For example,

sin(n + 1)8

=0
U, (cosb) x e

The extent to which the basis constructed from the U%’s can be exploited for treating
one-loop vacuum contributions to finite systems in 3-D is presently being investigated.
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9. Second Order Processes in the (c,¢'d) Reaction P.D. Kunz and H.DP. Blok
(NIKHEF)

The knockout of protons in the (e, e'p) reaction has given useful information con-
cerning single particle density functions in nuclei. This reaction is ecasier to interpret
than the (p,2p) or (d. *He) reactions since it proceeds via the well understood and
relatively weak coulomb interaction. In light nuclei the distortion of the electron waves
can be neglected so that the transition amplitude factorizes rather accurately into a
coulomb amplitude and a factor which depends upon a matrix element involving the
bound and free proton states. No other strongly interacting particles are involved.
Studies of these reactions have encountered puzzling and interesting features such as
the observed enhancement of the transverse to longitudinal strength and the low ex-
tracted occupation probabilities for the bound protons.

The extension of these experiments to the (e,e'd) recaction allows the additional
study of correlations between nucleons. Information about the two-nucleon density
function is sparse in contrast to the (e, e'p) reaction. The extraction of this function
via two-nucleon pickup reactions, e.g. the (p, 3He) and (p, t) reactions has been plagued
by uncertainties in the basic reaction mechanisms. For example, the controversy over
the roles of the direct versus sequential transfer modes has not yet been resolved sat-
isfactorily. In addition any model used to compute the cross sections for these cases
faces the problem of dealing with at least three strongly interacting active particles
outside a nuclear core. Thus, any reduction of the many body problem is welcome and
in the case of the (e, e'd) reaction the factorization of the transition amplitude give a
more tractable problem to solve than in the case of the usual pick-up reactions. Hope-
fully, one can obtain unambiguous information about the two-nucleon density function.
Since full coincident measurements of the two outgoing nucleons are not feasible at this
time, we consider only those aspects of the correlations that can be studied with one
outgoing particle.

One important important issue to be addressed for this reaction is the basic un-
derstanding of the reaction mechanism. In particular, how much do the higher order
processes affect the extraction of useful nuclear structure information as they do in
reactions such as the (p,t) reactions.! Perhaps higher order processes in the (e.¢'d)
reaction are also important. One higher order process which can contribute to the
reaction involves the continuum channels in the knockout of the deuteron. The free
neutron and proton then recombine in the field of the nucleus to reform as the ground
state of the deuteron. Our goal is to assess the role and importance of this mechanism
which must be understood before useful information can be derived from the reaction.

Theory

Our model treats the A(e,e'd)B reaction in terms of an electron, a proton and a
neutron outside of an inert core B with the nuclear degrees of freedomn appearing only
in the form of an imaginary part of the nucleon-nucleus potential. The Hamiltonian
for this system is given by

H=Hg(&)+ Ke+ Kp+ K+ vpn + vep + Ve + V, + Vi, (1)

where the K’< are the kinetic energy operators for the three particles. v, is the inter-
nucleon interaction and V,(rp) + V,(rn) is the sum of the optical potentials of the
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proton and neutron with the core B evaluated at half the deuteron kinetic energy. The
interaction vep + Ve is the coulomb interaction of the electron with the target nucleus
and Hpg(&;) is the hamiltonian of the core. The V), 4+ V), may contain an iinaginary part
to take into account absorption from channels that are neglected in our model. In the
limnit of a weak electromagnetic interaction and treating the electron as a plane wave,
the transition amplitude for the deuteron knockout is

Tf": - <(b;A(rPS rnv&!‘)eikr‘re l UCP | (pi,.-\(rl)» rnaéi)eikl‘r'>‘ (2)

In the above amplitude the electron coordinates arc taken to be relative to the initinl
target A, while the nucleon coordinate are taken relative to the core B. The functions

®; a(rp,ry, &) and @}"A(rp,rn,fi) satisfy the Hamiltonian for the three body svstem

Hy; = HB(Ei)+I\'p+I\'n+vpn +1/p + Va. (3)

The solution for the initial state ®; s(rp,rn,&;) describes a bound state of the proton
and neutron and may be given by a shell model solution. The solution for the final
state @;‘A(rp,rn,fi) describes the outgoing deuteron of energy E.n. The transition
amplitude now can be expressed as

Tpi = vep(q,w){®F a(rp, Tn, &) | €972 | @ a(rp Ty, &i)e P/VIT), (4)

where q = k; — k¢ is the momentum transfer of the electron and v, p(q.« ) 1s the coulomb
amplitude for a momentum transfer q and energy transfer w.

In earlier calculations® the potential V,(rp) + Vi(rp) in the final state is approx-
imated by an optical potential Uy(R) whicli depends only on the deuteron center of
mass coordinates. Thus, the solution can be factored into the form.

7 4(rp, 1o, &) = (o (R)éo(r)on(&:) {

(1]

where ¢¢(r) is the deuteron ground state for the internal motion, x, (R) is a distorted
wave for the center of mass motion and ¢ g(&;) is the core state. The resulting amplitude
is the basis for the Distorted Wave Impulse Approximation (DWIA),

Tri = vep(g,w)(xg (R) [ (Bo(r) [ 9"/ [u(ry, ) | ! F/H9H), (6)

where the overlap between the initial and final nuclear states is,
u(rp,r,,) = <¢B(€i)|(bi,A(rpqrn,€i)>- (7)

However, in order to take the deuteron breakup states into account the Hamiltonian
given by Eq(3) is solved by expanding the solution into eigenstates of the deuteron
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internal motion,

O (T Tas &) = ) Va(R)gu(r) (8)

where yo(R) for the deuteron ground state has boundary conditions of an incoming
plane wave plus an ingoing scattered wave and the x,(R) for n > 0 have boundary
conditions of ingoing wave only. The ¢,(r) in this work are restricted to be only relative
s-wave states and satisfy a boundary condition ¢,(7maez) = 0.

The solution of the Schrodinger equation then reduces to an infinite set of coupled
equations of the form

(En - I\,R - ‘/nn)Yn(R) = Z ‘/'xn'.-\'n’(R) (9)
n#En’

where the coupling potentials are

Vo = <¢n(r) l ‘/p(R + l‘/2) + L/'II(R - l‘/2) l é,u(!‘)) (10)

and the channel energy is

E,=FE —¢€,. (11)

This set of equations is truncated to give a finite set of coupled equations which can
be solved by usual methods, e.g. by the computer code CHUCI3. The transition
amplitude Eq(4) may then be calculated in a straightforward manner.

The radius rp,,.; is chosen to give seven to nine states for the deuteron center of
mass energy between zero and the maximum energy. For a total encrgy of about 50
MeV the value of r,,; was taken to be about 30 fin. The results are insensitive to

the value of 7,4, and the center of mass energies near zero are found to contribute
insignificantly to the results.

Results

Three type of calculations are performed. The first is the extreme cluster model
restricted to the ground state elastic channel for the final deuteron, the second employs
a microscopic model to generate the bound states (elastic channel only), while the
third uses the full coupled channels method for the deuteron final state. The first
calculation with the cluster model generates a bound state wave function for the center
of mass of the deuteron in a Woods-Saxon potential with parameters ro = 1.10 fm and
ap = 0.65 fm. The potential depth is adjusted to give the separation energy of the
cluster. A non-locality parameter of 0.62 fm is used. The well radius is chosen to give a
close fit to the form factor from the microscopic model and assumes that the deuteron
internal motion is the same in the bound state as for the free state. We have used the
deuteron optical model parameters of Hintenberger et al.®> The results for the reduced
cross section which has the electron-deuteron cross section divided out are shown in
Fig. 1. The E., of the deuteron is 52 MeV and the results are plotted as the dashed
line for the 1+ state in '°B versus the missing momentum p,, the momentum of the
deuteron relative to the final nucleus. In these calculations the momentum transfer of
the electron ranges from 120 MeV /c to 480 MeV /c.
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In the microscopic model the form factor is gencrated from single particle bound
states of the neutron and proton. These wave functions were calculated in a Woods-
Saxon potential with parameters ro = 1.25 fm, diffuseness parameter ag = 0.65 fm
and a Thomas spin orbit factor of 25. A non-locality factor of 0.85 fm is used. The
potential strength is adjusted to give the average separation energies of the nucleons.
The contribution of the various p3/;-p;y/2 combinations of the correlated wave function

were taken from the coefficients of fractional parentage of Cohen and Kurath? times

V28 for the number of deuteron pairs. The overlaps of the two single particle wave
functions were taken with an internal deuteron wave function of Hulthén form with
binding and short-range parameters, 4.318 fm and 0.667 fm, respectively. The results
for the reduced cross section shown in Fig. 1 as the dot-dash line.

The third set of calculations for the continuum state coupled channels case uses the
same form factor construction as for the microscopic case. The optical potentials for
the nucleons are taken from the best fit parameters of Becchetti and Greenlees® and
the separable potential of Yamaguchi® was used for v,,. The results are shown in Fig.
1 as the solid line.

While the cluster and elastic microscopic models follow the trend of the data,
their magnitudes exceed it by factors of 2-3 or more. The preliminary results from
the coupled channels method shows large changes from the elastic channel calculation,
matching the data for small values of the missing mass p, but overpredicting the
data at larger values. Clearly, these results are preliminary and several aspects need
closer scrutiny, for example, the need for a more realistic model for the deuteron which
includes repulsive core effects and the D states. The D state is known to be important
in describing elastic scattering in this model®.

1. B. Elbek and P.O. Tjom, Adv. Nucl. Phys., 3 259 (1969); M. Igarashi and KX.I.
Kubo, Phys. Rev. C25 2144 (1987)

2. R. Ent, thesis, Vrije Universiteit Amsterdam (1989)

3. F. Hintenberger, G. Mairle, U. Schmidt-Rohr, G.J. Wagner and P. Turek, Nucl.
Phys. A111 265 (1968)

4. S. Cohen and D. Kurath, A141 145 (1970)

5. F.D. Becchetti and G.W. Greenlees, Phys. Rev. 182 119 (1969)

6. Y. Yamaguchi, Phys. Rev. 95 1628 (1954)
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10. Scalar and Vector contributions to pp — AA and pp — AS® + c.c. P.D.
Kunz and University of Washington Collaboration (M.A. Alberg, E.M. Henley
and L. Wilets)

The reactions pp — AA and pp — ATC can be described in complementary models:
meson exchange! ™ or quark annihilation.3:®~1% Both approaches provide reasonable
fits to the data'! as long as the effects of initial and final state interactions are in-
cluded. Because meson exchange occurs at short distances for which quark effects
should be important, we present here a calculation based on constituent quark dynamn-
ics. We describe our reaction mechanism, the initial and final state interactions, and a
comparison of our results with the experimental data.

We have proposed a reaction mechanism which includes both scalar and vector
contributions to the annihilation and subsequent creation of quark-antiquark pairs.
The simplest graphs for these terms are shown in Fig. 1. The 3Py term represents the
confining scalar force and the 3S; term describes a vector quantum exchange (e.g. of
one or more gluons).

In our model, the operator for vector exchange is

- -
Iv = guv03 ' 03

and that for scalar exchange is

— — — —

I - Vi = Ve \ Vi — Vg

s =gs03 | ————————— | O3 | ———
2m, 2m ’

where m, and m are the strange and up quark masses respectively. Our matrix element
for the reaction is

Mo in ~ (xaa(1'2'3;4'5'6")$(1'2'3")(4'5'6")| (Lo + 1)
x |#(123)p(456)x y N (123;456))

in which xz, and xypy are distorted waves in the relative coordinate between the

initial and final particles, respectively, and ¢ is a harmonic oscillator wavefunction of
the internal motion of the quarks.

We use the same distorting potentials for NN as Kohno and Weise.® For NN the
real part of the potential is determined by a G-parity transformation of the long-range
part of a realistic one-boson exchange potential, with a smooth extrapolation to the
origin. The imaginary part, which represents annihilation, is of Wood-Saxon form with
a radius R = 0.55 fm and diffuseness parameter a = 0.2 fm. The strength of this
potential is adjusted to produce good fits to pp elastlc scattering data. For the real
part of the AA interaction Kohno and Weise use the isoscalar boson exchanges of the
real part of the NN potential. The annihilation term is taken to be of the same form

32



as that for the NN, but with a strength of the imaginary term adjusted to fit total

pp — AA cross section data. The quark wave function is parameterized in the form of
a gaussian

b ~ H e.rp(-(r,j/f'u)'z)-

1<J

Our results for the differential cross sections are shown in Fig. 2 and the resulis
for the polarizations are shown in Fig. 3. The figures are plotted for the parameter
sets shown in Table I. The strengths of the potentials in the table are the scaling
factors for the IKohno-Weise potentials needed to obtain the fits. We found unique
solutions for the pp — AA momenta of 1.546 GeV/ce and 1.695 GeV/c, for which the
most data (60 and 100 points, respectively), including spin correlation cocfficients, were
available. At 1.508 GeV/c, and at 1.695 GeV/c for the AL reaction, for which only 25
and 13 data points respectively, were available, two solutions were found with nearly
indistinguishable cross sections and polarizations. In all cases the best fits included
non-zero contributions from both scalar and vector terms, and strengths of terms in
the hyperon-antihyperon potential that differed from those predicted by SU3.

Table I Parameters of best fits to experimental data

Momentum (GeV/c) G Js o T V Vi Vis \2/df

1.508 33 075 068 1.7 -043 0.84 -045 1.1
31 -1.9 072 38 -044 4.2 3.2

1.546 56 43 060 25 029 -0.26 0.47 2.2

1.695 24 1.8 066 1.5 -0.01 062 0.79 2.7

1.695(ZA) 5.1 27 066 1.5 -0.15 -1.4 0.03 0.6
65 -1.3 060 1.3 -0.76 -3.3 1.5 0.6

The main feature of our searches finds the oscillator parameter for the quark bag
to be in the range 0.6-0.7 fm compared to the value of 0.64 fm required to describe the
constituent quark radius in the nucleons and lambdas. Except for the second solutions
in the 1.508 GeV/c pp and 1.695 GeV/c AXL cases the results show a destructive in-
terference between the vector and scalar contributions. In addition the strength of the
imaginary part of the poiential must be increased over that used by Kohno and Weise.
One further feature is that the real part of the central potential V is in general much
smaller and in most cases of opposite sign to that predicted by the SU3 extension of
the pp interaction. The dependence of the fits to the tensor and spin orbit potentials
is rather weak so that no definite conclusion on these forms can be made. However,
the momentum dependence of the parameters in the fits is not monotonic, although
there are a number of local minima in the y? space which give nearly as good fits. This
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occurs from a correlation between some of the parameters particularly the strengths ¢,
and g,. We will make further studies to scarch for a set of parameter that are more
consistent among the various data sets. This further study will include a global search
on all data sets simultaneously.

We have shown that a quark model which includes both scalar and vector contribu-

tions can provide good fits to experimental data for the pp — AA and pp — AT + c.c.
reactions. The sensitivity of the results to the parameters of the hyperon-antihyperon
potentials may provide mformation about the hyperon-antihyperon interaction
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Fig. 1. Lowest order diagrams for pp — AA
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Fig. 2.

PP = AA T HOB Gev/o
5[-\-ﬁ I A IR ;
| {
H\ !
< Hest fit .
51 ?
| \;K
| i
|
4 b— i
—~ 1
~
3
o 3 b
S !
o
Q
i s \
n 21 (\\ -
¥ . N
0 *\
° ,* ,
N — Pty ]
g
1 t— b l‘f T‘f—q
L 1! 1
[ .
0 U B . ) I 4 1 LJ oAy l ._AM.L-J_.l‘
1 05 0 05
Cos(8)
PP ~->AA. 1695 GeV/C
40 R L PR,
; ‘ i
b |
‘ Best it |
|
4
30 g— -
o)
2
o -
o
pui
(o}
[
"
w
w
0
-
O
Wf
N B
05 -1

Comparison of calculations with parameters of Table I with experimental

data for the cross section.!!

P
tH 0

12h

100

00

ﬁ[’——)/(x.

30

05

00

P A AL 1546 GeVyo
b
Heust Ot !
f i
i 1
.\ ‘
&‘ 1
i\ !
[ i
\ ,
\ i
i |
\ ,

b N

r N ; (4o
+ R ;
; R — 1
b ! !
1 i
SIS NP I
1 05 0 05

Cos(8)

1 695 GeV/C

g

T

T
i |

. Best it

I PO AU

. \ )
\4\_1/L/L/.T

x;;nl;x;;lALA; Ao
1 05 0 -05 =1

Cos(8)

——




PP -->AA 1508 GeV/C PP -->AA. 1546 GeV/C
10 T T T 1o T T
e Best 1t :
e Besl fit
05 |- 05 H-- [ 4
{ J,
g \ v I
- 00 b S 7 oo .
© v
it \ // 1
2] : 4
a [ : /
05 - ' — -05 [\s—’/%
!
. |
o | N BT ol | B R
1 05 0 -05 -1 05 0 -09%
Cos(8) Cos(8)
PP -->AA 1695 GeV/C PP -->AZL, 1.695Ce\/C
10 [ ] S T ] 10 T 7 T
————— Best it Bect 1.t
05 M 05
| |
c
9
= 00 A
~N I .
z
L]
'6 )
a. «
05 |
10 Lo L. [P B ol L. ] [
1 a.5 0 -05 -1 05 o] -05
Cos(6) Cos(6)
Fig. 3. Comparison of calculations with parameters of Table I with experimental

data for the polarization.!!

36




11. Radiative Capture of Protons by Light Nuclei at Low Energies P.D.
Kunz (with F.E. Cecil, D. Ferg, H. Liu and J.A. McNeil, Colorado School of
Mines.)

As a part of a continuing program of measurements of radiative capture reactions
of light ions by low-Z nuclei at low energies, we report work on the radiative capture
of protons by °Li, “Li, °Be and !!B at the Colorado School of Mines. The present data
and their theoretical analysis will provide a base for the diagnostics of the advanced
fuel fusion reactors and in addition should prove applicable to current models of pri-
mordial astrophysics nucleosynthesis. There has been, with one exception, no reported
measurements of the cross sections for the radiative capture of protons on these tar-
gets below about 200 keV. The single exception consists of the weli studied resonance
reaction, ''B(p,7)'2C, at a proton bombarding encrgy of 163 keV.!

The results of our measurements may be compared to the direct-capture calcula-
tions which are closely patterned after those of Rolfs and Tombrello.?® In our calcu-
lations, we assumed an s-wave electric dipole capture in the long wave limit. These
approximations are well justified at the low energies bombarding energies at which the
measurements were taken. The code DWUCK4 was modified to handle the (p,v) cal-
culation similar to a stripping reaction with a massless outgoing particle of spin 1 to
represent the gamma ray. The relevant formula for the cross section is

o(Er) =

16ma E3d%u? (2J,+1) . 11 ) )
1 ( ! |(]pf)' ; . |10)'~R(E1)- (1)

e HOc22, (20, + 1) 722 2

where d = (Z,/M, — Z7/M7), u is the reduced mass in atomic mass units and the
dipole radial matrix element is defined by

o0

R(E1) = /(lruf(r)ru,'(r) (3)

0

and u;(r) is the initial bound and us(r) is the final reduced radial wave function with
angular momentum 0 and 1 respectively.

The resulting calculated cross sections for the capture of protons to the ground

states of "Be, ®Be, !°B and !2C are shown in Fig. 1. In these calculations we assume
unit spectroscopic factors. The mearured values of the cross sections are shown as the
solid lines. Aside from two discrepancies, our calculations are in good agreement with

the measurements. In the case of the ! B(p,v)'?C reaction our calculation assumes
only capture from the continuum s-state and the effect of the 2t 163 keV resonance is
not included. In the case of the ®Li(p,v)"Be reaction the calculated cross sections are
high by a factor of about five. In this reaction the effect® of the initial state interactions
in the I = 1/2 channel causes a large cancellation in the matrix element and reduces
this cross section by a large factor. In the I = 3/2 channel the cancellation is less severe
but again the contribution to the cross section is small since the spectroscopic factor in
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this channel is small. Even in the realistic calculation of ref. 4, the cross sections must
be renormalized by a factor of two to agree with the data. One possible explanation
of the discrepancy in the ®Li(p,7)"Be reaction is the strong coupling to the break-up
states, which may influence the destructive interference in the matrix elements.

In conclusion the main energy dependences of the (p,y) cross sections are predicted
rather well by our crude model but more detailed models need to be developed for

each case in order to attain better agreement with the overall magnitudes of the cross
sections.
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T. Tombrello and P. Parker, Phys. Rev. 131 2582 (1963)
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