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COMPUTATIONAL EXPERIENCE WITH AN EXPLICIT DIFFERENCE SCHEME
FOR A ONE PHASE STEFAN PROBLEM

Neil Eklund
Alan Solomon
D. G. Wilson

ABSTRACT

The purpose of this paper is to compare the results of a
computational scheme of Rose, A Method for Calculating Solutions
of Parabolic Equations With a Free Boundary, Math. Comp. 14
(1960), 249-256, with the known analytic solution of a single
phase Stefan problem with constant boundary temperature. Rose's
scheme was implemented in FORTRAN on a DEC PDP-10. Computations
were performed for Stefan numbers St = .01, .1, 1, 10, and 100.
Three relative mesh sizes ()= DT/(DX)2 = 1/2, 1/6, and 1/25)
were used. For each St, the relative mesh size had very little
effect on accuracy. However, taking y = 1/25 resulted in
dramatically increased computing time. The relative errors of

temperature were large near the phase change front.



Introduction.

In the following we examine the accuracy of the method of Rose [2]
for the melting of a semi-infinite solid slab initially at its critical
temperature, due to an imposed constant surface temperature. In dimension-
less variables, our model takes the form:

(1) u = U for O==x<£(t), O<=t<= TMAX;

u

(2) u(O,t) = 1, for 0 < t < TMAX;
(3) u(z@),t) = 0, for 0 < t < TMAX;

4) ZU) = -St ux(z=z(t),t), for 0 < t < TMAX;

(5) £(0) = 0;

(6) initially the slab is all solid.
ORNL-DGW80-12288

TMAX

Figure 1. Phase front of one dimension semi-infinite slab, initially
solid, with imposed temperature T > Tcr on boundary.



This problem has a closed form solution, given by [1], namely

ux’t} =1 " ererf(xf) » 0 < x * 0 <~
E({) = 2X/t;
where
? z
erf(z) = -j— / exp (-s2)ds

0

and X is the unique root of

X exp(X2) erf(X) = St//ir.

Here, St (=1/H) is the Stefan number and H is the latent heat.

Rose's model takes the form

eL+TXX=O,forO<x<1,0<t<TMAX;

+ _ ] 0, when 0 < e < H,
) e-H, when e > H;

e(x,0) = 0, for 0 < x < 1;

T(,t) = 1, for 0 < t < TMAX.

To approximate this problem the region O=x<I, O<t< TMAX, is
partitioned by lines x* = iDX, 0 < i <M, and th = nDT, 0 < n < L.

The approximate solution is obtained at each of the lattice points.



(xn,tn). To simplify notation, let e? denote e(x”,tn) and
TM denote T(x”,tn). An explicit scheme for this model is

N+ A <T?-1 » zT" + Tn i -
oi L I<i=M, O<n< LA,

0, when 0 < ei 2 H,

e?—H, when H < r=

0, for 1 < i < M,

Ta 1, for 0 < n < L.

Here y = DT/(DX)2 and, to guarantee stability, 0 < y < .5.
This system of difference equations was used to approximate the

original problem. For each time level the interface, £(t), was

taken to be the first nodal point at which e(x,t) < H. In the notation

of the discrete problem the approximate interface is given by

El = Xj+* where e > H and H. This approximation will be

referred to as Rose 1.
An improvement in the approximation of the phase interface
location may be obtained by considering conservation of energy. The

interface E(t) satisfies

E@) = St / [e(x,t) - T(xt)dx.
0

In the approximation scheme, at the t = tn level there is a

unique i = | such that: for i < I, et > H;, e e [0,H]; and

=0 for i =1—+2



It is an easy exercise to show that for each n there is at most one

i such that 0 < e < H. Therefore, since

H, for x < xj,

el/+/ for x = xI+1,

0, for x > Xj+2;

we obtain
xI1+2
E({) = St (Hx, + / [e(x,t) - T(x,t)]Jdx}
XI
Since e-T is known at x* for i = I, 1+1, 1+2, we apply the

trapazoid rule to obtain the approximation

= Xj + Stj[e - Tj] + 2[e"+2 - TAj] + [e~ - T;+2]| DX/2

Xj + St H + 2 ej+1> DX/2

XI+1 - (DX/2) + (DX/H)ej+1.

This modification will be referred to as Rose 2. lies

somewhere between Xj+! - DX/2 and X7 + DX/2.

Both schemes were programmed in FORTRAN for the DEC PDP-10.
Results.

The first thing that became apparent in the plots of the errors
in the interface location approximation was the size of the errors
for small time. This large error is best understood by examining

figure 2. Here the actual interface (*)> the Rose 1 interface (x)

and the Rose 2 interface (somewhere in X ) are shown

on one set of axes. The Rose 1 points and the Rose 2 lines show the



largest possible x value of the approximated interface location for
that specific t level. The Rose 1 approximation cannot catch up to
the actual interface until the seventh t-level, n = 7. The Rose 2
approximation may be able to reach the actual interface by the sixth
t level, n = 6. The Rose 2 error may be larger than the Rose !

error and this did occur in some cases for small t.

ORNL-DWG 80-12287

INTERFACE LOCATION
ACTUAL (=), ROSE 1 APPROXIMATION (o)
ROSE 2 APPROXIMATION (SOMEWHERE IN - )

0.0100
St= 100
X=1.850948
0.0075 r=0.5
DX=0.05
DT=0.00125
0.0050
0.0025

0.05 010 015 020 0.25 0.30 0.35 0.40
POSITION

Figure 2
A complete set of plots is shown in figures 3 through 10. These
correspond to St = 1, y = .5, DX = .05 Figures 3 through 6 show the

interface location and error for the Rose 1 and Rose 2 approximations.

A plot of the interface, £(t) =2X/t, is superimposed on the

approximations in figures 3 and 5.



LIME

INTERFRCE RPPROXIMRTION ROSE1 METHOD

Figure 3. ROSE

1

Interface Approximation

Superimposed on ZXAT



RCTURL

ERROR: RPPROXIMRTION -

-Q.Q2S.020-Q.015-0.010-0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

INTERFRCE ERROR VS. TIME: ROSE1

ST- 1.000 DX- 0.0500

METHOD

Figure 4. Error in ROSE 1 Interface Approximation



INTERFACE APPROXIMATION: ROSE2 METHOD

0.5 0

DISTANCE

Figure 5. ROSE 2 Interface Approximation
Superimposed on 2A/t~



INTERFACE ERROR VS. TINE: ROSE2 METHOD

ST- 1.000 DX- 0.0500

0.00 0.10 0.15 0.25 0.55 0.60

Figure 6. Error in ROSE 2 Interface Approximation



TEMP(POSITION] POP SELECTED TIMES: ROSE'S

ST- 1.000 ox- 0.0500

- 0.500
- 0.250

os 0.
DISTANCE

Figure 7. Temperatures as a Function of Distance
at Selected Times Superimposed on 1-erf(x/2v/tT)/erf(A).

METHOD



TEMPERRTURE ERROR(POSITION) TOR SELECTED TIMES:

0.050
ST- 1.000 DX- 0.0500

0.150
0.10)

0.500

cc S

0.8 0.
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Figure 8. Errors in Temperatures as a Function of Distance

ROSE



TEMP(TIME] FOR SELECTED POSITIONS: ROSE'S METHOD

ST- 1.000 DX- 0.0500
JX- 0. 100

0.200

- 0.500

- 0.500

0.700

0.00 0.05 o.10 0.1S 0.30 0.35 0.50 0.55 060 0.65 0.70 0.75

Figure 9. Temperatures as a Function of Time at Selected
Positions Superimposed on 1-erf(x.j/2/tD/erf (A).



TEMPERATURE

X- 0.100

0.200

X- 0.300
0.00 D.05 0.1

Figure 10.

ERROR(TIME) EOR SELECTED POSITIONS:
ST- 1.000 OX- 0.0500
- 0.500
0.700
0.1D
TIhE

Errors in Temperatures as a Function of Distance.

ROSE

D.7D



15

In some plots not all t levels were plotted since the number of t
levels to be plotted was limited to 200. Therefore, all points (X,t)
where the error was a local maximum or local minimum were tabulated.

In table 1, corresponding to each St, y, and technique, there
are four entries. The "min. 3 valleys" is the smallest of the first
three local minima, the "max. 3 peaks" is the largest of the first
three local maxima, the "later min." is the smallest of the remaining
local minima, and "later max." is the largest of the remaining local
maxima. It is clear from table 1 that, after an initial time
interval, the Rose 2 approximation is an improvement on the Rose 1
approximation.

The same program was used to compute temperatures for both the
actual solution and Rose's approximation. Plots were obtained for
both temperatures and errors as functions of position for five
selected times. Figure 7 shows a plot of these temperatures and
Figure 8 shows a plot of the errors. Plots were also obtained for
temperatures and errors in temperatures as functions of time for five
selected positions. Figure 9 shows a plot of these temperatures and
Figure 10 shows a plot of the errors.

One important result of this analysis was the lack of
dependence of the error on the choice of the Courant number, y. The
approximation of the interface by Rose 1 changed very little with any
change in y. Using Rose 2, only the form of the errors changed; that

is, all errors may be positive in one case, negative in another, and



St

100

.01

TYPE
1/2 Rose 1
Rose 2
1/6 Rose 1
Rose 2
1/25 Rose 1
Rose 2
1/2 Rose 1
Rose 2
1/6 Rose 1
Rose 2
1/25 Rose 1
Rose 2
1/2 Rose 1
Rose 2
1/6 Rose 1
Rose 2
1/25 Rose 1
Rose 2

Approximate

16

Min. 3 Valleys Max. 3 Valleys Later Min. Later Max.

-.035095 .007355
-.060095 -.009086
-.000620 .048871
-.000565 .023871
-.000620 .048871

.019962 .042223
-.016003 .025988
-.001150 .012994
-.015994 .033997
-.000111 .012994
-.015994 .033997

.000185 .014599
-.023061 .045008

.000027 .020258
-.023109 .047118

.000027 .054348
-.023107 .045588

.000017 .023608

Interface Location - Actual

Table 1

-.024307 .024526
-.020526 .000000
-.014876 .038439
-.000463 .014055
-.014877 .038439

.000000 .032664
-.021969 .030776
-.000999 .005776
-.022197 .032087
-.000733 .007087
-.022197 .032087
-.000672 .007240
-.024582 .026887

.000000 .001883
-.024663 .026867
-.000065 .001891
-.025056 .026887
-.000420 .001482

Interface Location



17

balanced in the third even though the maximum error - minimum error
remained relatively unchanged. The changes in relative error of
temperature caused by changes in y appear to be unpredictable.
Since, in addition, smaller y means longer running time, we recommend
always taking y = .5.
Temperature Error Results. The results of the temperature
computations were plotted as follows:
a) For five selected times, the temperature as a function of
position was plotted for the actual solution and Rose's
approximation. The times chosen corresponding to each St are
shown in table 2. The times #! will be called equivalent times
since they are all approximately TMAX/10. Similarly, the times

t2, €3, t4, and t5 are equivalent times.

St TMAX € 8 ot Ot
01 50.1666 5 10 15 25 35
A 5.1646 .5 1 15 25 35
1 6502 @ .1 15 25 5

10 1582 02 .04 07 09 .12
100 0730 .01 02 03 .04 .05

Five Selected Times for each St
Table 2
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b) The errors (approximation - actual) as functions of

position for times in a) were plotted.

c) For the five positions x = .1, .2, .3, .5, and .7, the

temperature as a function of time was plotted for the actual

solution and Rose's approximation.

d) The errors (approximation - actual) as functions of time for

the positions in c) were plotted.

In addition, for each of the selected times, the relative error
in temperature, (approximation - actual)/actual, was computed at each
position where both the actual and approximate temperatures were
positive. For each time, the maximum, minimum, and maximum-minimum
were obtained and are recorded in table 3 for each St, y, and time.

There are three ways to look for trends in the error. For each
St and each time, changes in y appear to affect the relative error in
the St = 100 case and, to a lesser extent, in the St = 10 case.
Otherwise, there seems to be little change in the relative error for
changes in y and, hence, we recommend y = .5 to minimize cost. For
each St, the relative errors appear to be unpredictable for
increasing time. For each of the equivalent times tI5 ..., t5, the
relative errors again appear to be unpredictable for decreasing
Stefan number.

The same error computations as discussed above were performed on
the temperature as a function of time for selected positions. These
results are shown in table 4. This table shows that there are no

apparent trends and that the relative error is consistently high.



1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25
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St=100 St-10 St-1 St=.1 St-.01

TMAX-.0730 TMAX-.1582 TMAX-.6502 TMAX-5.1646 TMAX-50.1666

/.01 11=.02 t~.05 t

.10532 .10249 32315 13179 19727
.09073 .06092 .29473 13179 19729
48029 .04673 .26140 .13181

t2=.02 t2=.04 t2=.1 t2- 1 t2=10
.12130 .08114 .19596 .24867 .07054
.10803 .06896 .18419 .24782 .07047
.34182 .06087 17929 .24758

3=.03 13=.07 3=.15 13=1*5 13=15
.21956 .05537 .39424 .28007 .06501
.15984 .05397 .36658 27913 .06490
21173 .05516 .35411 .27887

V.04 t4=.09 V-25 t4=2.5 t4=25
.18762 .04571 .17005 11116 .09581
.16437 .04326 .16920 .11105 .09597
21179 .03929 .16957 .11094

ts=.05 5-.12 t5-.5 15=3.5 t5-35
.59507 .96409 43892 27739 39744
.16628 40461 42805 27741 .39708
.28222 .31621 41540 27744

APPROXIMATE TEMP (x.) - ACTUAL TEMP (x.)
RE(xi) = 1

ACTUAL TEMP.(xi)

VALUES SHOWN:  Maxi RE(xi) - Miru RE{x.)

DX = .05 DT = y(DX)2

Table 3

Difference in Maximum and Minimum Relative Error in
Temperature as a Function of Time



RE(t

VALUES SHOWN ARE

DX=

Difference

1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25

1/2
1/6
1/25
1/2

1/6
1/25

) =

.05

ST=100

.56906
1.92906
5.60697

22708 1
.30538 1
4.79384

27274
51367
3.32170 1

.09544
1.11720
1.05086 1

.66421
.72691

1.12346 1.

APPROXIMATE

20

ST-10 ST=1 ST=.1 ST=.01

.33798 .65096 .82320
22818 1.23051 1.07772 1
59395 1.09687 1.48052

25408 1.35711 1.59382 1
.08044 1.13581 1.14812 1
.86211 1.15986 1.50863

.89078 52820 1.18818 1
.75855 1.27188 1.17537 1
.09548 1.18538 1.55399

.32635 .61037 1.60755 1.
.88610 95313 1.59665 1
.09490 1.34319 1.56310

.82533 .64950 1.62041 1
67124 1.11209 1.61443 1
09208 1.35912 1.61039

TEMP (t ) - ACTUAL TEMP (t )

ACTUAL TEMP (t )

MAXR RE(tn) - MINn RE(tn)

DT = Y(DX)2

Table 4

Temperature as a Function of Time

ST-100 ST+10

13.76 15.37
16.79 17.67
17.87 23.19

CPU

.98445
.30479

.81882
43315

44227
.51966

78316

.58050

.65730
.78980

in Maximum and Minimum Relative Error in

ST-1 ST-.1 ST-.01
17.64 33.66 184.85
22.67 69.29 531.37

43.88 238.20

Time in Seconds
Table 5
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It rmay be of interest to know the relative amount of CPU time

required. In table 5, the time required for a complete run using
Rose 1 is given. A complete run consists of computation of and
plotting;
a) the actual and approximate interface location;
b) the error in the interface location approximation;
c) the actual and approximate temperatures as functions of
position for five selected times;
d) the error (approximation - actual) obtained in c);
e) the actual and approximate temperatures as function of time
for five selected positions;
f) the error (approximation - actual) obtained in e).

These computations were obtained only at the plot points and the

number of plot points was restricted to be at most 200 by uniformly

distributing plot times.

computation of values and printing of the local

These run times do not include the

maxima and minima in

the interface location error. Since these times include plotting

time, they should be used for comparison purposes only.
The complete run was never made for y = 1/25 and St = .01 with a
program identical with that used to get the other CPU times. This

happened because this run was aborted after the time appeared to be

getting very large. However, in an attempt to estimate this CPU

time,

a plot was made of log (log time) versus log (St). This plot

is shown in figure Hand the estimate obtained

hour,

45 minutes.

is approximately 1



cPU TIME)

(log

log

ORNL-DWG 80-12286

ESTIMATE CPU TIME = 1 hr, 45 min

log10 st

Figure 11. CPU Time Versus St to Estimate
CPU Time of Case St = .01, y = 1/25
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