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COMPUTATIONAL EXPERIENCE WITH AN EXPLICIT DIFFERENCE SCHEME 
FOR A ONE PHASE STEFAN PROBLEM

Neil Eklund 
Alan Solomon 
D. G. Wilson

ABSTRACT

The purpose of this paper is to compare the results of a 

computational scheme of Rose, A Method for Calculating Solutions 

of Parabolic Equations With a Free Boundary, Math. Comp. 14 

(1960), 249-256, with the known analytic solution of a single 

phase Stefan problem with constant boundary temperature. Rose's 

scheme was implemented in FORTRAN on a DEC PDP-10. Computations 

were performed for Stefan numbers St = .01, .1, 1, 10, and 100. 

Three relative mesh sizes ( y= DT/(DX)2 = 1/2, 1/6, and 1/25) 

were used. For each St, the relative mesh size had very little 

effect on accuracy. However, taking y = 1/25 resulted in 

dramatically increased computing time. The relative errors of 

temperature were large near the phase change front.
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Introduction.

In the following we examine the accuracy of the method of Rose [2] 

for the melting of a semi-infinite solid slab initially at its critical 

temperature, due to an imposed constant surface temperature. In dimension­

less variables, our model takes the form:

(1) u = u , for 0<x<£(t), 0<t< TMAX;
u XX

(2) u(0,t) = 1, for 0 < t < TMAX;

(3) u(z(t),t) = 0, for 0 < t < TMAX;

(4) ZU) = -St ux(z(t),t), for 0 < t < TMAX;

(5) £(0) = 0;

(6) initially the slab is all solid.

0RNL-DGW80-12288

TMAX

Figure 1. Phase front of one dimension semi-infinite slab, initially 
solid, with imposed temperature T > Tcr on boundary.
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This problem has a closed form solution, given by [1], namely

u(x’t} = 1 ' ererf(xf) > 0 < x * 0 < ^

E(t) = 2X/t;

where

? z
erf(z) = -j— / exp (-s2)ds 

0

and X is the unique root of

X exp(X2) erf(X) = St//ir.

Here, St (=1/H) is the Stefan number and H is the latent heat. 

Rose's model takes the form

e. + T = 0, for 0 < x < 1, 0 < t < TMAX;L XX

-j- _ | 0, when 0 < e < H,
) e-H, when e > H;

e(x,0) = 0, for 0 < x < 1;

T(0,t) = 1, for 0 < t < TMAX.

To approximate this problem the region 0<x<l, 0<t< TMAX, is 

partitioned by lines x^ = iDX, 0 < i < M, and tn = nDT, 0 < n < L. 

The approximate solution is obtained at each of the lattice points.
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(x^,tn). To simplify notation, let e1? denote e(x^,tn) and 

T^1 denote T(x^,tn). An explicit scheme for this model is

n
ei + ^ <T?-1 •- zt" + Tn ) 

i+1' ’ l<i<M, 0<n< L-l,

0, when 0 < n ^ei < H,

n
ei - H, when H < n

ei;

= 0, for 1 < i < M,

Tq = 1, for 0 < n < L.

Here y = DT/(DX)2 and, to guarantee stability, 0 < y < .5.

This system of difference equations was used to approximate the 

original problem. For each time level the interface, £(t), was 

taken to be the first nodal point at which e(x,t) < H. In the notation 

of the discrete problem the approximate interface is given by 

El = Xj+^ where e^ > H and H. This approximation will be

referred to as Rose 1.

An improvement in the approximation of the phase interface 

location may be obtained by considering conservation of energy. The 

interface E(t) satisfies

oo
E(t) = St / [e(x,t) - T(x,t)]dx.

0

In the approximation scheme, at the t = tn level there is a 

unique i = I such that: for i < I, e1^ > H; e1^ e [0,H]; and

= 0 for i >1+2.



5

It is an easy exercise to show that for each n there is at most one

i such that 0 < e1^ < H. Therefore, since

I
H, for x < xj,

enl+l, for x = xI+1,

0, for x > Xj+2>;

we obtain
xI+2

E(t) = St (Hx, + / [e(x,t) - T(x,t)]dx}
XI

Since e-T is known at x^ for i = I, 1+1, 1+2, we apply the 

trapazoid rule to obtain the approximation

= Xj + St j [e1; - Tj ] + 2[e"+2 - T^j ] + [e^ - t;+2]| DX/2 

= Xj + St H + 2 ej+1> DX/2

= XI+1 - (DX/2) + (DX/H)ej+1.

This modification will be referred to as Rose 2. lies 

somewhere between Xj+-^ - DX/2 and X^ + DX/2.

Both schemes were programmed in FORTRAN for the DEC PDP-10.

Results.

The first thing that became apparent in the plots of the errors 

in the interface location approximation was the size of the errors 

for small time. This large error is best understood by examining 

figure 2. Here the actual interface (•)> the Rose 1 interface (x)

and the Rose 2 interface (somewhere in -----------  x ----------- ) are shown

on one set of axes. The Rose 1 points and the Rose 2 lines show the
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largest possible x value of the approximated interface location for 

that specific t level. The Rose 1 approximation cannot catch up to 

the actual interface until the seventh t-level, n = 7. The Rose 2 

approximation may be able to reach the actual interface by the sixth 

t level, n = 6. The Rose 2 error may be larger than the Rose 1 

error and this did occur in some cases for small t.

ORNL-DWG 80-12287

INTERFACE LOCATION
ACTUAL (•), ROSE 1 APPROXIMATION (o)
ROSE 2 APPROXIMATION (SOMEWHERE IN ---------- )

0.0100
St = 100 
X = 1.850948 
r=0.5 
DX = 0.05 
DT = 0.00125

0.0075

0.0050

0.0025

0.15 0.20 0.25 0.30 0.35 0.40
POSITION

0.05 0.10

Figure 2

A complete set of plots is shown in figures 3 through 10. These 

correspond to St = 1, y = .5, DX = .05 Figures 3 through 6 show the 

interface location and error for the Rose 1 and Rose 2 approximations. 

A plot of the interface, £(t) =2X/t, is superimposed on the 

approximations in figures 3 and 5.
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INTERFRCE RPPROXIMRTI ON ROSE 1 METHOD

Figure 3. ROSE 1 Interface Approximation 
Superimposed on ZXAT
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INTERFACE APPROXIMATION: R0SE2 METHOD

0.5 0.
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Figure 5. ROSE 2 Interface Approximation 
Superimposed on 2A/t~



INTERFACE ERROR VS. TINE: R0SE2 METHOD
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Figure 6. Error in ROSE 2 Interface Approximation



TEMP(POSITION] POP SELECTED TIMES: ROSE'S METHOD

ST- 1.000 ox- 0.0500

- 0.500

- 0.250

O.S 0.
DISTANCE

Figure 7. Temperatures as a Function of Distance 
at Selected Times Superimposed on 1-erf(x/2v/tT)/erf(A).
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Figure 8. Errors in Temperatures as a Function of Distance



TEMP(TIME] FOR SELECTED POSITIONS: ROSE'S METHOD

DX- 0.0500ST- 1.000
JX- 0. 100

0.200

- 0.500

- 0.500

0.700

0.55 0. 700.50 0.60 0.65 0.750.30 0.350.00 0.05 0. 10 0. IS

Figure 9. Temperatures as a Function of Time at Selected 
Positions Superimposed on 1-erf (x.j/2/tD/erf (A).
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Figure 10. Errors in Temperatures as a Function of Distance.
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In some plots not all t levels were plotted since the number of t 

levels to be plotted was limited to 200. Therefore, all points (x,t) 

where the error was a local maximum or local minimum were tabulated.

In table 1, corresponding to each St, y, and technique, there 

are four entries. The "min. 3 valleys" is the smallest of the first 

three local minima, the "max. 3 peaks" is the largest of the first 

three local maxima, the "later min." is the smallest of the remaining 

local minima, and "later max." is the largest of the remaining local 

maxima. It is clear from table 1 that, after an initial time 

interval, the Rose 2 approximation is an improvement on the Rose 1 

approximation.

The same program was used to compute temperatures for both the 

actual solution and Rose's approximation. Plots were obtained for 

both temperatures and errors as functions of position for five 

selected times. Figure 7 shows a plot of these temperatures and 

Figure 8 shows a plot of the errors. Plots were also obtained for 

temperatures and errors in temperatures as functions of time for five 

selected positions. Figure 9 shows a plot of these temperatures and 

Figure 10 shows a plot of the errors.

One important result of this analysis was the lack of 

dependence of the error on the choice of the Courant number, y. The 

approximation of the interface by Rose 1 changed very little with any 

change in y. Using Rose 2, only the form of the errors changed; that 

is, all errors may be positive in one case, negative in another, and
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St TYPE Min. 3 Valleys Max. 3 Valleys Later Min. Later Max.

100 1/2 Rose 1 -.035095 .007355 -.024307 .024526
Rose 2 -.060095 -.009086 -.020526 .000000

1/6 Rose 1 -.000620 .048871 -.014876 .038439
Rose 2 -.000565 .023871 -.000463 .014055

1/25 Rose 1 -.000620 .048871 -.014877 .038439
Rose 2 .019962 .042223 .000000 .032664

1 1/2 Rose 1 -.016003 .025988 -.021969 .030776
Rose 2 -.001150 .012994 -.000999 .005776

1/6 Rose 1 -.015994 .033997 -.022197 .032087
Rose 2 -.000111 .012994 -.000733 .007087

1/25 Rose 1 -.015994 .033997 -.022197 .032087
Rose 2 .000185 .014599 -.000672 .007240

.01 1/2 Rose 1 -.023061 .045008 -.024582 .026887
Rose 2 .000027 .020258 .000000 .001883

1/6 Rose 1 -.023109 .047118 -.024663 .026867
Rose 2 .000027 .054348 -.000065 .001891

1/25 Rose 1 -.023107 .045588 -.025056 .026887
Rose 2 .000017 .023608 -.000420 .001482

Approximate Interface Location - Actual Interface Location
Table 1
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balanced in the third even though the maximum error - minimum error 

remained relatively unchanged. The changes in relative error of 

temperature caused by changes in y appear to be unpredictable.

Since, in addition, smaller y means longer running time, we recommend 

always taking y = .5.

Temperature Error Results. The results of the temperature 

computations were plotted as follows:

a) For five selected times, the temperature as a function of 

position was plotted for the actual solution and Rose's 

approximation. The times chosen corresponding to each St are 

shown in table 2. The times t1 will be called equivalent times 

since they are all approximately TMAX/10. Similarly, the times 

t2, t3, t4, and t5 are equivalent times.

St TMAX t2 t3 t4 t5

.01 50.1666 5 10 15 25 35

.1 5.1646 .5 1 1.5 2.5 3.5

1 .6502

LOO

.1 .15 .25 .5

10 .1582 .02 .04 .07 .09 .12

100 .0730 .01 .02 .03 .04 .05

Five Selected Times for each St 
Table 2
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b) The errors (approximation - actual) as functions of 

position for times in a) were plotted.

c) For the five positions x = .1, .2, .3, .5, and .7, the 

temperature as a function of time was plotted for the actual 

solution and Rose's approximation.

d) The errors (approximation - actual) as functions of time for 

the positions in c) were plotted.

In addition, for each of the selected times, the relative error 

in temperature, (approximation - actual)/actual, was computed at each 

position where both the actual and approximate temperatures were 

positive. For each time, the maximum, minimum, and maximum-minimum 

were obtained and are recorded in table 3 for each St, y, and time.

There are three ways to look for trends in the error. For each 

St and each time, changes in y appear to affect the relative error in 

the St = 100 case and, to a lesser extent, in the St = 10 case. 

Otherwise, there seems to be little change in the relative error for 

changes in y and, hence, we recommend y = .5 to minimize cost. For 

each St, the relative errors appear to be unpredictable for 

increasing time. For each of the equivalent times tl5 ..., t5, the 

relative errors again appear to be unpredictable for decreasing 

Stefan number.

The same error computations as discussed above were performed on 

the temperature as a function of time for selected positions. These 

results are shown in table 4. This table shows that there are no 

apparent trends and that the relative error is consistently high.
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St=100 St-10 St-1 St=.l St-.01

Y TMAX-.0730 TMAX-.1582 TMAX-.6502 TMAX-5.1646 TMAX-50.1666

1/2
1/6
1/25

t^.01 11 = .02 t^.05 t

.10532

.09073

.48029

.10249

.06092

.04673

.32315

.29473

.26140

.13179

.13179

.13181

.19727

.19729

1/2
1/6
1/25

t2=.02 t2=.04 t2=.l t2- 1 t 2=10

.12130

.10803

.34182

.08114

.06896

.06087

.19596

.18419

.17929

.24867

.24782

.24758

.07054

.07047

1/2
1/6
1/25

t3=.03 13=.07 t3=.15 13=1*5 13=15

.21956

.15984

.21173

.05537

.05397

.05516

.39424

.36658

.35411

.28007

.27913

.27887

.06501

.06490

1/2
1/6
1/25

V.04 t4=.09 V-25 t4=2.5 t4=25

.18762

.16437

.21179

.04571

.04326

.03929

.17005

.16920

.16957

.11116

.11105

.11094

.09581

.09597

1/2
1/6
1/25

ts=.05 t5-.12 t5-.5 15=3.5 t5-35

.59507

.16628

.28222

.96409

.40461

.31621

.43892

.42805

.41540

.27739

.27741

.27744

.39744

.39708

APPROXIMATE TEMP (x.) - ACTUAL TEMP (x.) 
RE(xi) =------------------------------------ -----------------------------------1

ACTUAL TEMP.(xi)

VALUES SHOWN: Maxi RE(xi) - Miru RE{x.)

DX = .05 DT = y(DX)2

Table 3

Difference in Maximum and Minimum Relative Error in 
Temperature as a Function of Time
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X c ST=100 ST-10 ST=1 ST=. 1 ST=.01

.1 1/2 .56906 .33798 .65096 .82320 .98445
1/6 1.92906 .22818 1.23051 1.07772 1.30479
1/25 5.60697 .59395 1.09687 1.48052

.2 1/2 .22708 1.25408 1.35711 1.59382 1.81882
1/6 .30538 1.08044 1.13581 1.14812 1.43315
1/25 4.79384 .86211 1.15986 1.50863

.3 1/2 .27274 .89078 .52820 1.18818 1.44227
1/6 .51367 .75855 1.27188 1.17537 1.51966
1/25 3.32170 1.09548 1.18538 1.55399

.5 1/2 .09544 .32635 .61037 1.60755 1.78316
1/6 1.11720 .88610 .95313 1.59665 1.58050
1/25 1.05086 1.09490 1.34319 1.56310

.7 1/2 .66421 .82533 .64950 1.62041 1.65730
1/6 .72691 .67124 1.11209 1.61443 1.78980
1/25 1.12346 1.09208 1.35912 1.61039

APPROXIMATE TEMP (t ) - ACTUAL TEMP (t )
RE(t ) = ------------------------------------ ^---------------------------------2-

ACTUAL TEMP (t ) n

VALUES SHOWN ARE MAXr RE(tn) - MINn RE(tn)

DX= .05 DT = y(DX)2

Table 4

Difference in Maximum and Minimum Relative Error in 
Temperature as a Function of Time

c ST-100 ST+10 ST-1 ST-.l ST-.01

1/2 13.76 15.37 17.64 33.66 184.85
1/6 16.79 17.67 22.67 69.29 531.37
1/25 17.87 23.19 43.88 238.20

CPU Time in Seconds 
Table 5
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It rnay be of interest to know the relative amount of CPU time 

required. In table 5, the time required for a complete run using 

Rose 1 is given. A complete run consists of computation of and 

plotting;

a) the actual and approximate interface location;

b) the error in the interface location approximation;

c) the actual and approximate temperatures as functions of 

position for five selected times;

d) the error (approximation - actual) obtained in c);

e) the actual and approximate temperatures as function of time 

for five selected positions;

f) the error (approximation - actual) obtained in e).

These computations were obtained only at the plot points and the 

number of plot points was restricted to be at most 200 by uniformly 

distributing plot times. These run times do not include the 

computation of values and printing of the local maxima and minima in 

the interface location error. Since these times include plotting 

time, they should be used for comparison purposes only.

The complete run was never made for y = 1/25 and St = .01 with a 

program identical with that used to get the other CPU times. This 

happened because this run was aborted after the time appeared to be 

getting very large. However, in an attempt to estimate this CPU 

time, a plot was made of log (log time) versus log (St). This plot 

is shown in figure Hand the estimate obtained is approximately 1 

hour, 45 minutes.
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ESTIMATE CPU TIME = 1 hr, 45 min

log10 st

Figure 11. CPU Time Versus St to Estimate 
CPU Time of Case St = .01, y = 1/25
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