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Abstract 7

This is the first part of a series of talks in which we present
applications of methods from wavelet analysis to polyno-
mial approximations for a number of accelerator physics
problems. In the general case we have the solution as a
multiresolution expansion in the base of compactly sup-
ported wavelet basis. The solution is parametrized by solu-
tions of two reduced algebraical problems, one is nonlinear
and the second is some linear problem, which is obtained
from one of the next wavelet constructions: Fast Wavelet
Transform, Stationary Subdivision Schemes, the method of
Connection Coefficients.

In this paper we consider the problem of calculation of
orbijtal motion in storage rings. The key point in the solu-
tion of this problem is the use of the methods of wavelet
analysis, relatively novel set of mathematical methods,
which gives us a possibility to work with well-localized
bases in functional spaces and with the general type of op-
erators (including pseudodifferential) in such bases. Our
problem as many related problems in the framework of our
type of approximations of complicated physical nonlinear-
ities is reduced to the problem of the solving of the sys-
tems of differential equations with polynomial nonlinear-
ities with or without some constraints. In this paper we
consider as the main example the particle motion in stor-
age rings in standard approach. Starting from Hamiltonian,
which described classical dynamics in storage rings and us-
ing Serret-Frenet parametrization, we have after standard
manipulations with truncation of power series expansion
of square root the corresponding equations of motion:
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Then we use series expansion of function f(p, ) and the
corresponding expansion of RHS of equations (1). In the
following we take into account only an arbitrary polyno-
mial (in terms of dynamical variables) expressions and ne-
glecting all nonpolynomial types of expressions, i.e. we
consider such approximations of RHS, which are not more
than polynomial functions in dynamical variables and ar-
bitrary functions of independent variable s (’time” in our
case, if we consider our system of equations as dynamical
problem). The first main part of our construction is some
variational approach to this problem, which reduces ini-
tial problem to the problem of solution of functional equa-
tions at the first stage and some algebraical problems at
the second stage. We consider also two private cases of
our general construction. In the first case (particular) we
have for Riccati equations (particular quadratic approxima-
tions) the solution as a series on shifted Legendre polyno-
mials, which is parameterized by the solution of reduced
algebraical (also Riccati) system of equations. This is
only an example of general construction. In the second
case (general polynomial system) we have the solution in
a compactly supported wavelet basis. Multiresolution ex-
pansion is the second main part of our construction. The
solution is parameterized by solutions of two reduced al-
gebraical problems, one as in the first case and the sec-
ond is some linear problem, which is obtained from one
of the next wavelet construction: Fast Wavelet Transform
(FWT), Stationary Subdivision Schemes (SSS), the method
of Connection Coefficients (CC). Our problems may be for-
mulated as the systems of ordinary differential equations
dz;/dt = fi(zj,t), (i.j = 1,...,n) with fixed initial
conditions x;(0), where f; are not more than polynomial
functions of dynamical variables r; and have arbitrary de-
pendence of time. Because of time dilation we can consider
only next time interval: 0 < ¢ < 1. Let us consider a set of
functions ®;{t) = z;dy;/dt + f;y; and a set of functionals
Fi(z) = [y ®i(t)dt — z:y; |B, where y;(¢)(3:{0) = 0) are
dual variables. It is obvious that the initial system and the
system F;(x) = 0 are equivalent. In part 3 we consider
symplectization of this approach. Now we consider formal



expansions for z;, y;:
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where because of initial conditions we need only ¢ (0) =
0. Then we have the following reduced algebraical system
of equations on the set of unknown coefficients A¥ of ex-

pansions (2):
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Its coefficients are py, fol or(t)er(t)dt, v =
fol fi(zj,t)pr(t)dt. Now, when we solve system (3) and
determine unknown coefficients from formal expansion (2)
we therefore obtain the solution of our initial problem. It
should be noted if we consider only truncated expansion (2)
with N terms then we have from (3) the system of N x n
algebraical equations and the degree of this algebraical sys-
tem coincides with degree of initial differential system. So,
we have the solution of the initial nonlinear (polynomial)
problem in the form

Aj) =0 3

N
zi(t) = z:(0) + Y M Xk (t), @
k=1

where coefficients A¥ are roots of the corresponding re-
duced algebraical problem (3). Consequently, we have an
parametrization of solution of initial problem by solution
of reduced algebraical problem (3). But in general case,
when the problem of computations of coefficients of re-
duced algebraical system (3) is not solved explicitly as in
the quadratic case, which we shall consider below, we have
also parametrization of solution (4) by solution of corre-
sponding problems, which appear when we need to calcu-
late coefficients of (3). As we shall see, these problems
may be explicitly solved in wavelet approach. Next we
consider the construction of explicit time solution for our
problem. The obtained solutions are given in the form (4),
where in our first case we bave Xi(t) = Qg(t), where
Qx(t) are shifted Legendre polynomials and A% are roots
of reduced quadratic system of equations. In wavelet case
Xk (t) correspond to multiresolution expansions in the base
of compactly supported wavelets and i are the roots of
corresponding general polynomial system (3) with coef-
ficients, which are given by FWT, SSS or CC construc-
tions. According to the variational method to give the re-
duction from differential to algebraical system of equations
we need compute the objects v/ and Hji,» which are con-
structed from objects:
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where R(3) = (2i)!/(2'i)2, Q; = o; + P7, where the
second equality in the formulae for o, v, 4, 8, @ hold for
the first case. Now we give construction for computations
of objects(5) in the wavelet case. We use some construc-
tions from multiresolution analysis: a sequence of succes-
sive approximation closed subspaces V;: ...V, C V) C
Vo C Vo1 C Vo2 C ... satisfying the following prop-
erties: ﬂ =0, UV = L*(R), f(z) € V; <=>
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f(2z) € Vj41 There is a function ¢ € Vp such that
{pox(z) = p(z — k), 5} forms a Riesz basis for V5. We
use compactly supported wavelet basis: orthonormal basis
for functions in L2(R.). As usually ¢(z) is a scaling func-

tion, ¥(z) is a wavelet function, where p;(z) = p(z — 7).
Scaling relation that defines , ¥ are
N-1 N-1
p(z) = Y apz—k) = ape(22),
k=0 k=0
N-2
$(@) = D (~Dfernp(2z+4)
k=—-1

Letbe f : R — C and the wavelet expansion is
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The indices k&, £ and j represent translation and scaling, re-
spectively

wii(z) = 29/ %p(Pz — 8), Yix(z)

The set {¢;}xez forms a Riesz basis for V;. Let W; be
the orthonormal complement of V; with respect to V4.
Just as V; is spanned by dilation and translations of the scal-
ing function, so are W; spanned by translations and dilation
of the mother wavelet ¥k (z). If in formulae (6) cjx = 0
for j > J, then f(z) has an alternative expansion in terms
of dilated scaling functions only f(z) = Z crepge(z).

This is a finite wavelet expansion, it can be wrmen solely

= /22 z — k)



in terms of translated scaling functions. We use wavelet
¥(z), which has k vanishing moments { zFy(z)d(z) =0,
or equivalently z¥ = 3" cype(z) foreach k, 0 < k <
K. Also we have the shortest possible support: scaling
function DN (where N is even integer) will have sup-
port [0, N — 1] and N/2 vanishing moments. There ex-
ists A > 0 such that DN has AN continuous derivatives;
for small N, A > 0.55. To solve our second associated
linear problem we need to evaluate derivatives of f(z) in
terms of p(z). Let be o7 = d™p,(z)/dz". We derive the
wavelet - Galerkin approximation of a differentiated. f(z)
as fd(z) = Y, c1p¢ () and values ¢ (z) can be expanded
in terms of ¢(z)
[> =]
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The coefficients ), are 2-term connection coefficients. In
general we need to find
o0
dyda...dn - f
Apelier = / H Py, (z)dz )
- 00
For Riccati case we need to evaluate two and three connec-
tion coefficients
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According to CC method [7] we use the next construction.
When N in scaling equation is a finite even positive integer
the function ¢(z) has compact support contained in [0, N —
1]. For a fixed triple (dy,dz, d3) only some AJ:%2% are
nonzero: 2~ N < €< N-2, 2-N<m<N-
2, [—m| < N—2 Thereare M = 3N2 — 9N +
7 such pairs (£,m). Let A%929> be an M-vector, whose
components are numbers Af,‘,,d’d’. Then we have the first

key result: A satisfy the system of equations -
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By moment equations we have created a system of M +
d+ 1 equations in M unknowns. It has rank M and we can
obtain unique solution by combination of LU decomposi-
tion and QR algorithm. The second key result gives us the
2-term connection coefficients:
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For nonquadratic case we have analogously additional lin-
ear problems for objects (7). Also, we use FWT and SSS
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for computing coefficients of reduced algebraic systems.
We use for modelling D6,D8,D10 functions and programs
RADAU and DOPRI for testing.

As a result we obtained the explicit time solution (4) of
our problem. In comparison with wavelet expansion on the
real line which we use now and in calculation of Galerkin
approximation, Melnikov function approach, etc also we
need to use periodized wavelet expansion, i.e. wavelet ex-
pansion on finite interval. Also in the solution of perturbed
system we have some problem with variable coefficients.
For solving last problem we need to consider one more

refinement equation for scaling function ¢a(z): ¢a2(z) =
N=1
> a242(2z — k) and corresponding wavelet expansion
k=0
for variable coefficients b(t): 3~ B] (b)$2(2/z — k), where
%

B,{(b) are functionals supported in a small neighborhood
of 277k.

The solution of the first problem consists in periodizing.
In this case we use expansion into periodized wavelets de-
fined by ¢7%7, (z) = 2/23 ¢(2z + 272 — k). All these
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modifications lead only to transformations of coefficients
of reduced algebraic system, but general scheme remains
the same. Extendeed version and related results may be
found in [1]-[6].
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