BNL - 64501
CAP-172-MISC-97C

CONF-Q0503-200

WAVELET APPROACH TO ACCELERATOR PROBLEMS:
III. MELNIKOV FUNCTIONS AND SYMPLECTIC TOPOLOGY*

A. Fedorova and M. Zeitlin
Inst. of Problems of Mechanical Engineering
Russian Academy of Sciences
S. Petersburg, Russia

and
Z. Parsa
Department of Physics

Brookhaven National Laboratory
Upton, NY 11973

*This work was performed under the auspices of the U.S.
Department of Energy under Contract No. DE-AC02-76CH00016.

May 1997

DISTRIBUTION OF THIS DOCUMENT 1S UNSI'\«%TT?D

Submitted to *1997 Particle Accelerator Conference, Accelerator Science, Technology and Applications®, Vancouver, B.C., Canada, May 12-16, 1997.




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

4
AN
N



WAVELET APPROACH TO ACCELERATOR PROBLEMS, III.
MELNIKOV FUNCTIONS AND §YMPLECTIC TOPOLOGY

A. Fedorova and M. Zeitlin, Institute of Problems of Mechanical Engineering,
Russian Academy of Sciences, Russia, 199178, St. Petersburg,
V.0O., Bolshoj pr., 61, e-mail: zeitlin@math.ipme.ru
Z. Parsa, Dept. of Physics, Bldg. 901 A, Brookhaven National Laboratory,
Upton, NY 11973-5000, USA, e-mail: parsa@bnl.gov

Abstract 4

This is the third part of a series of talks in which we present
applications of methods of wavelet analysis to polynomial
approximations for a number of accelerator physics prob-
lems. We consider the generalization of our variational
wavelet approach to nonlinear polynomial probiems to the
case of Hamiltonian systems for which we need to pre-
serve underlying symplectic or Poissonian or quasicom-
plex structures in any type of calculations. We use our ap-
proach for the problem of explicit calculations of Arnold-
Weinstein curves via Floer variational approach from sym-
plectic topology. The loop solutions are parametrized
by the solutions of reduced algebraical problem — ma-
trix Quadratic Mirror Filters equations. Also we consider
wavelet approach to the calculations of Melnikov functions
in the theory of homoclinic chaos in perturbed Hamiltonian
systems.

1 INTRODUCTION

In this paper we continue the application of powerful meth-
ods of wavelet analysis to polynomial approximations of
nolinear accelerator physics problems. In part I we con-
sidered our main example and general approach for con-
structing wavelet representation for orbital motion in stor-
age rings. Now we consider two problems of nontrivial
dynamics related with complicated differential geometrical
and symplectic topological structures of system (1) from
part 1. In section 2 we give some points of applications of
wavelet methods from parts I, I to Melnikov approach in
the theory of homoclinic chaos in perturbed Hamiltonian
systems. In section 3 we consider another type of wavelet
approach, which gives a possibility to parametrize Amnold-
Weinstein curves or closed loops in Hamiltonian systems
by generalized refinement equations or Quadratic Mirror
Filters equations.

2 ROUTES TO CHAOS

Now we give some points of our program of understanding
routes to chaos in some Hamiltonian systems in the wavelet
approach [1]-[9]. All points are:

1. A model.

2. A computer zoo. The understanding of the computer
zoo.
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3. A naive Melnikov function approach.

4. A naive wavelet description of (hetero) homoclinic or-
bits (separatrix) and quasiperiodic oscillations.

5. Symplectic Melnikov function approach.

6. Splitting of separatrix... —>stochastic web with
magic symmetry, Arnold diffusion and all that.

1. As a model we have two frequencies perturbations of
particular case of system (1) from part I:

Ty = z2
z; = —az; — blcos(rzs) + cos(szs))z1 —
dz3 — mdz,z3 — prs — o(zs)

i:a = 24

exs — flcos(rzs) + cos(szs)] — gz3 —
kziz3 — gz4 — ¥(zs)
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zg = 1

or in Hamiltonian form

z = J-VH(z)+eg(=,0),
® = w, (z,0)eR*xT?
T2 = §'x St
for £ = 0 we have:
t=J-VH(z), O=w ¢))

2. For pictures and details one can see [3], [8]. The key
point is the splitting of separatrix (homoclinic orbit) and
transition to fractal sets on the Poincare sections.

3. For e = 0 we have homoclinic orbit Zo(t) to the hy-
perbolic fixed point zg. For £ # 0 we have normally hy-
perbolic invariant torus T; and condition on transversally
intersection of stable and unstable manifolds W*(7, ) and
WH(T,) in terms of Melnikov functions M (©) for £o(t).

(=]

M(©) = /VH(:Eo(t))/\g(.z':o(t),wt+6)dt



This condition has the next form:

M(©) =0

2
a
ijgé;M(eo) #0
i=1

According to the approach of Birkhoff-Smale-Wiggins we
determined the region in parameter space in which we ob-
serve the chaotic behaviour [3], [8].

4. If we cannot solve equations (1) explicitly in time, then
we use the wavelet approach from part I for the computa-
tions of homoclinic (heteroclinic) loops as the wavelet so;
lutions of system (1). For computations of quasiperiodic
Melnikov functions

mT

M™" (1) = DH(z4(t)) A g(za(t),t +to)dt

we used periodization of wavelet solution from part 1.
5. We also used symplectic Melnikov function approach

T
/ {hs, R}y s, zydt

M,-(z) = l_1’m
J °°_T;
di(z,€) = hi(#) - hi(2l) = eM;(2) + O(€?)

where {, } is the Poisson bracket, d;(z, €) is the Melnikov
distance. So, we need symplectic invariant wavelet expres-
sions for Poisson brackets. The computations are produced
according to part II.

6. Some hypothesis about strange symmetry of stochastic
web in multi-degree-of freedom Hamiltonian systems [9].

3 WAVELET PARAMETRIZATION IN FLOER
APPROACH.

Now we consider the generalization of our wavelet vari-
ational approach to the symplectic invariant calculation
of Amold-Weinstein curves (closed loops) in Hamiltonian
systems [10]. We also have the parametrization of our solu-
tion by some reduced algebraical problem but in contrast to
the general case where the solution is parametrized by con-
struction based on scalar refinement equation, in symplec-
tic case we have parametrization of the solution by matrix
problems — Quadratic Mirror Filters equations [11].

The action functional for loops in the phase space is [10]

1
Fly) = / pdq — /0 H(t,~(1))dt
Y

The critical points of F are those loops 7, which solve
the Hamiltonian equations associated with the Hamiltonian
H and hence are periodic orbits. By the way, all critical
points of F are the saddle points of infinite Morse index,
but surprisingly this approach is very effective. This will be
demonstrated using several variational techniques starting
from minimax due to Rabinowitz and ending with Floer ho-
mology. So, (M, w) is symplectic manifolds, H : M — R,

H is Hamiltonian. X g is unique Hamiltonian vector field
defined by

,w(XH(z), v) = —dH(z)(v), veETM, z€eM,

where w is the symplectic structure. A T-periodic solution
z(t) of the Hamiltonian equations

z=Xg(z) onM

is a solution, satisfying the boundary conditions z(T)
= z(0),T > 0. Let us consider the loop space =
C*(St, R**), where S! = R/Z, of smooth loops in R*".
Let us define a function @ : Q@ — R by setting

1 1
&(z) =/0 -;- <—Ji,z> dt -/0 H(z(t)dt, ze€Q

The critical points of ® are the periodic solutions of £ =
X (z). Computing the derivative at z € 2 in the direction
of y € 2, we find

P = (e +es)lemo =

1
/ < —Jiz—H(z),y>dt
¢}

Consequently, ®'(z)(y) = 0 forall y € § iff the loop =
satisfies the equation

—-JZ(t) - VH(z(t)) = 0,

i.e. z(t) is a solution of the Hamiltonian equations, which
also satisfies z(0) = z(1), i.e. periodic of period 1. Peri-
odic loops may be represented by their Fourier series:

:I:(t) - Z eksztxk,

k€Z

Tk € RZka

where J is quasicompiex structure. We give relations be-
tween quasicomplex structure and wavelets in part IV. But
now we use the construction [11] for loop parametriza-
tion. It is based on the theorem about explicit bijection
between the Quadratic Mirror Filters (QMF) and the whole
loop group: LG : S! — G. In particular case we have
relation between QMF-systems and measurable functions
x : St = U(2) satisfying

x(w+7r)=x(w)-[(1) é]

in the next explicit form

(50 s ] = el d ]
+ x(w+ﬁ)[g ?]
where -
lé,-(w) i I‘i),-(w+7r) ‘9 =01

T



Also, we have symplectic structure on LG

27
w(é,n) = 2—17;f0 < £(6),7/(6) > df

So, we have the parametrization of periodic orbits (Arnold-
Weinstein curves) by reduced QMF equations.

Extended version and related results may be foundin [1]-
91
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