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Abstract

The Kp — n°vi decay is analyzed in a model independent way.
When lepton flavor is conserved, this decay mode is a manifestation
of CP violating interference between mixing and decay. Consequently, a
theoretically clean relation between the measured rate and electroweak
parameters holds in any given model.

K1 — nvp is unique among K decays in several aspects: (a) It is theoret-
ically very clean; (b} it is purely CP violating % and (c) it can be measured in
the near future® even if the rate is as small as the Standard Model prediction.
In the Standard Model a measurement of I'( Kz, — n%v) provides a clean de-
termination of the Wolfenstein CP violating parameter 5 or, equivalently, of
the Jarlskog measure of CP violation J and, together with a measurement of
(Kt — ntw), of the angle 3 of the unitarity triangle 2.

Here we explain what can be learned from the K — nvv decay in a model
independent way*. We define

A= =— (1)

where p and ¢ are the components of interaction eigenstates in mass eigenstates,
|KL,s) = p|K% F ¢|K?), and A(A) is the K°(K°) — x%v> decay amplitude.
Then, the ratio between the K1 and Kg decay rates is

4

D(Kyp - n%5) 14 |2 —2Re

[(Ks — 7%up) ~ 1+ |A]2+2Re)’ 2)

In general, a three body final state does not have a definite CP parity. However,
if the light neutrinos are purely left-handed, and if lepton flavor is conserved,
the final state is CP even (to an excellent approximation)*. If lepton flavor
is violated, the final state in Ky — 7
specifically, Kz — n»;; with i # j is allowed. Here, we concentrate on the

Oy is not necessarily a CP eigenstate;
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case where the above two conditions are satisfied, so that the final state is
purely CP even.

The contributions to the K7 — n%v¥ decay from CP violation in mixing
(la/pl # 1) and from CP violation in decay (|A/A| # 1) are negligibly small.
The deviation of |¢/p| from unity is experimentally measured (by the CP asym-
metry in K — mfv) and is @{10~3). The deviation of |[A/A| from unity is
expected to be even smaller. Therefore, |A| = 14 ©(10~3), and the leading
CP violating effect is ImA # 0, namely interference between mixing and decay.
This puts the ratio of decay rates (2) in the same class as CP asymmetries in
various B decays to final CP eigenstates, e.g. B — K5, where a very clean
theoretical analysis is possible?®.

As a result of this cleanliness, the CP violating phase can be extracted
almost without any hadronic uncertainty, even if this phase comes from New
Physics. Defining # to be the relative phase between the X — K mixing am-
plitude and the s — dvD decay amplitude, namely A = e?*?, we get from eq.
©)

(KL — 7°vi) _ 1—cos26

T(Ks ~— m%vp) ~ 1+cos28
In reality, however, it will be impossible to measure I'(Ks — 7°v7). We can
use the isospin relation, A(K® — n%vi)/A(K+ — ntuvi) = 1/4/2, to replace
the denominator by the charged kaon decay mode:

= tan?4. (3)

Ky — n%v0)  1—cos2f

— ain?
(Kt = ntup) 2 = sin®9, )

acp = Tis

where ri; = 0.954 is the isospin breaking factor 6. The ratio (4) may be
experimentally measurable as the relevant branching ratios are O(1071%) in
the Standard Model 2 and even larger in some of its extensions.

Eq. (4) implies that a measurement of acp will allow us to determine
the CP violating phase # without any information about the magnitude of the
decay amplitudes. Also, using sin?4 < 1 and 7k, /Tx+ = 4.17, we get the
model independent bound

r+ + -
BR(Kp = n%p) < 1.1 x 1078 (BR(K il UV))

2.4 x 10-° (5)

This bound is much stronger than the direct experimental upper bound 7
BR(KL — n%vp) < 5.8 x 107°.

New Physics can modify both the mixing and the decay amplitudes. ¢ =
0(1073) implies that any new contribution to the mixing amplitude carries
almost the same phase as the Standard Model one. On the other hand, the
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upper bound ® BR(K* — ntvi) < 2.4 x 10~°, which is much larger than the
Standard Model prediction ?, allows New Physics to dominate the decay am-
plitude (with an arbitrary phase). We conclude that a significant modification
of acp can only come from New Physics in the decay amplitude. For example,
in models with extra quarks, the decay amplitudes can be dominated by tree
level Z-mediated diagrams®.

In superweak models, all CP violating effects appear in the mixing ampli-
tudes. Then, CP violation in Kj — 7% should be similar in magnitude to
that in Kz — 7. In models of approximate CP symmetry, all CP violating
effects are small. Both scenarios predict then acp = O(1073), in contrast to
the Standard Model prediction, acp = O(1). In other words, a measurement
of acp > 1073 (and, in particular, BR(K; — 7%vi) 2 O(10711)) will exclude
these two scenarios of New Physics in CP violation.

In the Standard Model there are two clean ways to determine the unitarity
triangle: (1) CP asymmetries in B° decays ®; and (2) the combination of
BR(K — n°v¥) and BR(K* — 7tv) 2. In general, New Physics will affect
both determinations. Moreover, it is very unlikely that the modification of the
two methods will be the same. Consequently, a comparison between these two
clean determinations will be a very powerful tool to probe CP violation beyond
the Standard Model. Because of the very small theoretical uncertainties in both
methods even a small new physics effect can be detected. In practice, we will
be limited only by the experimental sensitivity.

In conclusion: a measurement of BR(K 1 — n%vv) is guaranteed to provide
us with valuable information. It will either give a new clean measurement of
CP violation or indicate lepton flavor violation.
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