

RECEIVED
JUL 22 1997
OSTI

SLAC-PUB-7443
hep-ph/9704208
April 1997

CONF-970266-2

The $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Decay Beyond the Standard Model*

Y. Grossman
Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309

Abstract

The $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay is analyzed in a model independent way. When lepton flavor is conserved, this decay mode is a manifestation of CP violating interference between mixing and decay. Consequently, a theoretically clean relation between the measured rate and electroweak parameters holds in any given model.

*Presented at the first symposium of FCNC,
Santa Monica, CA, February 19-21, 1997*

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* Work supported by Department of Energy contract DE-AC03-76SF00515.

SLAC-PUB-7443
hep-ph/9704208**The $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Decay Beyond the Standard Model**

Yuval Grossman

*Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309***Abstract**

The $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay is analyzed in a model independent way. When lepton flavor is conserved, this decay mode is a manifestation of CP violating interference between mixing and decay. Consequently, a theoretically clean relation between the measured rate and electroweak parameters holds in any given model.

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ is unique among K decays in several aspects: (a) It is theoretically very clean; (b) it is purely CP violating^{1,2}; and (c) it can be measured in the near future³ even if the rate is as small as the Standard Model prediction. In the Standard Model a measurement of $\Gamma(K_L \rightarrow \pi^0 \nu \bar{\nu})$ provides a clean determination of the Wolfenstein CP violating parameter η or, equivalently, of the Jarlskog measure of CP violation J and, together with a measurement of $\Gamma(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, of the angle β of the unitarity triangle².

Here we explain what can be learned from the $K \rightarrow \pi \nu \bar{\nu}$ decay in a model independent way⁴. We define

$$\lambda \equiv \frac{q \bar{A}}{p \bar{A}}, \quad (1)$$

where p and q are the components of interaction eigenstates in mass eigenstates, $|K_{L,S}\rangle = p|\bar{K}^0\rangle \mp q|\bar{K}^0\rangle$, and $A(\bar{A})$ is the $K^0(\bar{K}^0) \rightarrow \pi^0 \nu \bar{\nu}$ decay amplitude. Then, the ratio between the K_L and K_S decay rates is⁴

$$\frac{\Gamma(K_L \rightarrow \pi^0 \nu \bar{\nu})}{\Gamma(K_S \rightarrow \pi^0 \nu \bar{\nu})} = \frac{1 + |\lambda|^2 - 2\text{Re}\lambda}{1 + |\lambda|^2 + 2\text{Re}\lambda}. \quad (2)$$

In general, a three body final state does not have a definite CP parity. However, if the light neutrinos are purely left-handed, and if lepton flavor is conserved, the final state is CP even (to an excellent approximation)⁴. If lepton flavor is violated, the final state in $K_L \rightarrow \pi^0 \nu \bar{\nu}$ is not necessarily a CP eigenstate; specifically, $K_L \rightarrow \pi^0 \nu_i \bar{\nu}_j$ with $i \neq j$ is allowed. Here, we concentrate on the

Talk given at the first symposium of FCNC, February 19-21, 1997, Santa Monica, CA.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

case where the above two conditions are satisfied, so that the final state is purely CP even.

The contributions to the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay from CP violation in mixing ($|q/p| \neq 1$) and from CP violation in decay ($|\bar{A}/A| \neq 1$) are negligibly small. The deviation of $|q/p|$ from unity is experimentally measured (by the CP asymmetry in $K_L \rightarrow \pi \ell \nu$) and is $\mathcal{O}(10^{-3})$. The deviation of $|\bar{A}/A|$ from unity is expected to be even smaller⁴. Therefore, $|\lambda| = 1 + \mathcal{O}(10^{-3})$, and the leading CP violating effect is $\text{Im}\lambda \neq 0$, namely interference between mixing and decay. This puts the ratio of decay rates (2) in the same class as CP asymmetries in various B decays to final CP eigenstates, e.g. $B \rightarrow \psi K_S$, where a very clean theoretical analysis is possible⁵.

As a result of this cleanliness, the CP violating phase can be extracted almost without any hadronic uncertainty, even if this phase comes from New Physics. Defining θ to be the relative phase between the $K - \bar{K}$ mixing amplitude and the $s \rightarrow d \nu \bar{\nu}$ decay amplitude, namely $\lambda = e^{2i\theta}$, we get from eq. (2)

$$\frac{\Gamma(K_L \rightarrow \pi^0 \nu \bar{\nu})}{\Gamma(K_S \rightarrow \pi^0 \nu \bar{\nu})} = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} = \tan^2 \theta. \quad (3)$$

In reality, however, it will be impossible to measure $\Gamma(K_S \rightarrow \pi^0 \nu \bar{\nu})$. We can use the isospin relation, $A(K^0 \rightarrow \pi^0 \nu \bar{\nu})/A(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 1/\sqrt{2}$, to replace the denominator by the charged kaon decay mode:

$$a_{CP} \equiv r_{is} \frac{\Gamma(K_L \rightarrow \pi^0 \nu \bar{\nu})}{\Gamma(K^+ \rightarrow \pi^+ \nu \bar{\nu})} = \frac{1 - \cos 2\theta}{2} = \sin^2 \theta, \quad (4)$$

where $r_{is} = 0.954$ is the isospin breaking factor⁶. The ratio (4) may be experimentally measurable as the relevant branching ratios are $\mathcal{O}(10^{-10})$ in the Standard Model² and even larger in some of its extensions.

Eq. (4) implies that a measurement of a_{CP} will allow us to determine the CP violating phase θ without any information about the magnitude of the decay amplitudes. Also, using $\sin^2 \theta \leq 1$ and $\tau_{K_L}/\tau_{K^+} = 4.17$, we get the model independent bound

$$\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 1.1 \times 10^{-8} \left(\frac{\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})}{2.4 \times 10^{-9}} \right). \quad (5)$$

This bound is much stronger than the direct experimental upper bound⁷ $\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 5.8 \times 10^{-5}$.

New Physics can modify both the mixing and the decay amplitudes. $\varepsilon = \mathcal{O}(10^{-3})$ implies that any new contribution to the mixing amplitude carries almost the same phase as the Standard Model one. On the other hand, the

upper bound⁸ $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 2.4 \times 10^{-9}$, which is much larger than the Standard Model prediction², allows New Physics to dominate the decay amplitude (with an arbitrary phase). We conclude that a significant modification of a_{CP} can only come from New Physics in the decay amplitude. For example, in models with extra quarks, the decay amplitudes can be dominated by tree level Z -mediated diagrams⁴.

In superweak models, all CP violating effects appear in the mixing amplitudes. Then, CP violation in $K_L \rightarrow \pi^0 \nu \bar{\nu}$ should be similar in magnitude to that in $K_L \rightarrow \pi \pi$. In models of approximate CP symmetry, all CP violating effects are small. Both scenarios predict then $a_{CP} = \mathcal{O}(10^{-3})$, in contrast to the Standard Model prediction, $a_{CP} = \mathcal{O}(1)$. In other words, a measurement of $a_{CP} \gg 10^{-3}$ (and, in particular, $\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \gtrsim \mathcal{O}(10^{-11})$) will exclude these two scenarios of New Physics in CP violation.

In the Standard Model there are two clean ways to determine the unitarity triangle: (1) CP asymmetries in B^0 decays⁵; and (2) the combination of $\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu})$ and $\text{BR}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ ². In general, New Physics will affect both determinations. Moreover, it is very unlikely that the modification of the two methods will be the same. Consequently, a comparison between these two clean determinations will be a very powerful tool to probe CP violation beyond the Standard Model. Because of the very small theoretical uncertainties in both methods even a small new physics effect can be detected. In practice, we will be limited only by the experimental sensitivity.

In conclusion: a measurement of $\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu})$ is guaranteed to provide us with valuable information. It will either give a new clean measurement of CP violation or indicate lepton flavor violation.

Acknowledgments. I thank Yossi Nir for collaboration on this work. Y.G. is supported by the Department of Energy under contract DE-AC03-76SF00515.

1. L.S. Littenberg, Phys. Rev. **D 39** (1989) 3322.
2. G. Buchalla and A.J. Buras, Nucl. Phys. **B 400** (1993) 225; Phys. Rev. **D 54** (1996) 6782; A.J. Buras, Phys. Lett. **B 333** (1994) 476; G. Buchalla, these proceedings.
3. T. Inagaki, these proceedings; D. Bryman, these proceedings; K. Arisaka, these proceedings.
4. Y. Grossman, and Y. Nir, hep-ph/9701313, to appear in Phys. Lett. **B**.
5. See, e.g. Y. Nir and H.R. Quinn, Ann. Rev. Nucl. Part. Sci. **42** (1992) 211.
6. W. Marciano and Z. Parsa, Phys. Rev. **D 53** (1996) 1.
7. M. Weaver *et al.*, E799 Collaboration, Phys. Rev. Lett. **72** (1994) 3758.
8. S. Adler *et al.*, BNL 787 Collaboration, Phys. Rev. Lett. **76** (1996) 1421.