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ADVANCES IN 3D ELECTROMAGNETIC FINITE ELEMENT MODELING
E. M. Nelson*, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Numerous advances in electromagnetic finite element anal-
ysis (FEA) have been made in recent years. The maturity
of frequency domain and eigenmode calculations, and the
growth of time domain applications is briefly reviewed.

A high accuracy 3D electromagnetic finite element
field solver employing quadratic hexahedral elements and
quadratic mixed-order one-form basis functions will also
be described. The solver is based on an object-oriented
C++ class library. Test cases demonstrate that frequency er-
rors less than 10 ppm can be achieved using modest work-
stations, and that the solutions have no contamination from
spurious modes. The role of differential geometry and geo-
metrical physics in finite element analysis is also discussed.

1 INTRODUCTION

Electromagnetic finite element analysis (FEA) is becoming
more popular as the accuracy and reliability of FEA codes
improve. Accurate models of complicated structures have
long been sought, and FEA with warped and/or unstruc-
tured meshes has been perceived as one path to achieve
this accuracy. Thermal and mechanical FEA has met great
success, but electromagnetic FEA has traditionally been
plagued with reliability problems. Usually these reliabil-
ity problems take the form of spurious modes (see [4] for
many references). Fortunately, numerous workers have
made steady progress in the past decade to eliminate these
problems.

I will start by briefly reviewing the current state of the
art in electromagnetic FEA. The state of the art is being
advanced by the accelerator physics community as well as
the RF, microwave, radar and antenna communities.

The remainder of this paper is a review of my own work.
I will (1) describe an electromagnetic FEA code similar
to [6] which I’ve written, (2) describe what I've learned
about electromagnetic FEA from studying differential ge-
ometry, and (3) demonstrate the accuracy and reliability of
this FEA code.

2 THE STATE OF THE ART

A recent special issue [1] focused on numerical elec-
tromagnetic modeling, including electromagnetic FEA. It
shows that the techniques for good finite element frequency
domain and eigenmode calculations are well established.
Edge elements are used to avoid problems with spurious
modes. Some reliable 3D electromagnetic FEA codes have
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existed for some time (see [3] and [6] for example). A num-
ber of commercial codes [5] using edge elements are now
available. Edge elements with arbitrarily high order basis
functions have been described [8] as well.

Applications of electromagnetic FEA in accelerator
physics are widespread. In addition to modest work at
LANL, there are significant efforts at SLAC and LAL.
Adaptive mesh refinement [17] and parallel processing
techniques [12, 17] have been applied to accelerator struc-
tures. The effect different sets of basis functions have on
frequency accuracy has also been studied [9].

Time domain applications of electromagnetic FEA are
rapidly maturing. A number of methods for the discretiza-
tion in time have been described [11]. Some of these meth-
ods give explicit time domain formulations which have
many similarities to finite difference time domain (FDTD)
formulations. Advances are also being made in perfectly
matched layers (PMLs) and absorbing boundary condi-
tions (ABCs) for open boundaries for time domain prob-
lems [10, 16]. Such boundaries can effectively model ports
in accelerator cavities, even when they experience broad
spectrum excitations. However, despite dramatic advances
in time domain electromagnetic FEA, there is still much
work necessary before it is considered competitive with
FDTD calculations.

3 A FINITE ELEMENT FORMULATION

In vector calculus notation, this FEA code is based on the
following weak formulation of the eigenmode problem for
electric fields: find eigenvalues w?/c? and the correspond-
ing eigenmode fields E € Ug such that VF € Ug,

2
/ (VXF) - p(VXE) — S F - eBan =0, (1)
Q

where € is the cavity interior and the space Ug of test func-
tions F and trial functions E is

Ug = {BE € Heun{N) : 1xE = 0 on d2}, )

and Hcur1 () is the space of vector fields on 2 which are
square integrable in the following sense,

Heurnt() = {E: / |VXE]? + |E|?dQ exists}.  (3)
Q

A similar formulation is based on the magnetic fields:
find eigenvalues w?/c? and the corresponding eigenmode
fields H € Uy such that VG € Uy,

2
/ (VXG)- € H(VxH) - 4G - pHA =0, @)
Q



where the space Uy = Heun (2)-

The cavity interior { is partitioned into quadratic hexa-
hedral (27-node) elements. Curved edges and faces allows
these elements to closely follow curved boundaries. On
each element there are 54 quadratic mixed-order 1-form ba-
sis functions, which are described in more detail below.

Numerical integration is used to compute the matrix
components, and a simple subspace iteration scheme with
a conjugate gradient solver is used to solve the sparse al-
gebraic eigenvalue problem. A C++ class library handles
matrices and bookkeeping of elements, faces, edges, nodes
and basis functions.

4 LESSONS FROM GEOMETRICAL PHYSICS

Differential geometry has been mentioned a few times [2,
4] in the electromagnetic FEA literature. It is an excel-
lent tool for understanding electromagnetic FEA. Unfortu-
nately, most of the current literature continues to use vector
calculus notation, thus obscuring the simple nature of elec-
tromagnetic FEA. In this section I discuss some things I've
learned about electromagnetic FEA from applying a little
differential geometry.

In the finite element method, the problem domain {2 is
divided into elements with simple shapes like tetrahedra
and hexahedra. Each element ). has a local coordinate
system (i.e., a master element) and a map z. from local to
global coordinates. This map is typically only used to de-
fine basis functions and to change variables to numerically
integrate equation (1) over §2,.

There is a close parallel between FEA and differential
geometry. In differential geometry one considers a mani-
fold (the problem domain £2) which is covered by coordi-
nate patches (the elements). Where the coordinate patches
overlap, the coordinate system of one patch is a differen-
tiable function of the coordinates in the other patch. Differ-
ential geometry does not demand that a global coordinate
system exist, but it accomodates one very well.

What does one learn from this comparison? First, the
local coordinates of an element are a valid coordinate sys-
tem. The physical equations can be expressed in local co-
ordinates just like they are expressed in global coordinates.

Consider a vector basis function. There is no concep-
tual difference between a vector in global coordinates and
a vector in local coordinates. The two are related by the
transformation rule for vectors,

3 i
o By, ©)
j=1

where v* and 7 are the components of the vector in the
global and local coordinate basis, respectively, and = (u)
is the map from local coordinates ©? (j = 1,2, 3) to global
coordinates z* (¢ = 1,2,3). Note that early attempts at
3D electromagnetic FEA violated this transformation rule.
They would use scalar basis functions for the vector com-
ponents, and simply map these components from local to

Table 1: Quadratic 1-form basis functions for hex elements.
a1=(1—-9v)(1 —w)du
ax=(1—u)(1 —w)dv
az=u(l — w)dv
as=v(1 —w)du
as=(1—u)(1—v)dw
ag=u(l —v)dw

a13=(2u — 1)a;

a14=(2v - 1)a2

aj5= (2’U - 1)a3

aijg= (2u - 1)(14

ayr= (2’[1)— 1)(15

a18=(2w— 1)ag

azs=4u(l — u)(1 — w) dv

azge=4v(l —v) (1 —w)du

azr=(1—v)dw(l — w)du
azg=4u(l —u) (1 —v)dw
age=(1—u)w(l —v)dw

azo=(1 —u) dw(l —w)dv

ar=(1 —uw)vdw

ag=uv dw

ag=(1 —v)wdu
a10={1 - wwdv
ayn1=uwdv
aje=vwdu
(119:(211)— 1)07
as0=(2w— 1)ag
A9 = (2u - 1)(1.9
QAo2— (21} - 1)0,10
az3=(2v — )an
a24=(2u - 1)(112
az1=uvdw(l —w)dv
aze=udv(1l —v)dw
ags=4u(l — uv)vdw
azs=v4w(l — w)du
azs=4v(l —v)wdu
age=4u(l —uw)wdv

az7={(2v — 1)ass
ass=(2u — 1)aze
azg=(2u — 1)azy
aqo= (2’21)— 1)(123
aq41= (211)— 1)a29
a42:(2v — 1)a30

ag3=(2v — 1)as
Aq4= (21[)— 1)0.32
ass=(2w— 1)ass
A46= (2u - 1)0.34
ag7=(2u — 1)ass
a4s=(2'v - 1)(133

ag9=4v(1 — v)dw(l — w) du
aso=4u(l — v) 4wl — w) dv
as1=4u(l — u) (1 —v) dw

a52=(2u - 1)a49
asz= (2’0 - 1)0.50
a54= (2w - 1)(151

global coordinates, v* = ¥*. This procedure is geomet-
rically incorrect, and thus the results of these FEA codes
were usually flawed.

Now consider which basis functions are appropriate for
electromagnetic FEA. In [7], Maxwell’s equations are de-
scribed in terms of differential geometry and geometrical
physics. In particular, it is pointed out that the electric field
is most naturally expressed as a 1-form, or covariant vector.
Hence the appropriate basis functions for electric fields is
most easily expressed as 1-forms, not vectors. Recent lit-
erature typically shows complicated constructions for these
basis functions (see [4], [8] and [15] for examples), but if
one writes the basis functions as 1-forms in local coordi-
nates (u, v and w), they are simple polynomials. This is the
spirit of FEA—the field is a linear combination of simple
basis functions on simple elements.

The choice of basis functions is important, as described
in [13] and [14]. The basis functions should be mixed-
order, with the basis for the field along a coordinate direc-
tion, say E.,, being complete to order p in v and w, but only
p — 1 in u. The basis functions employed in this FEA are
listed in table 1. The local coordinates of the hexahedra are
0<u<1,0<v<1land0 < w <1, and the coordinate
basis for 1-forms is du, dv and dw.

The basis functions are assembled so that the tangential



component of the field at an interface between elements
is continuous. Thinking of the basis functions as 1-forms
makes it easy to verify that the assembly process works.
The basis functions are characterized by their non-zero tan-
gential field on an edge or face. The first 12 basis functions
have constant tangential field along one edge. These ba-
sis functions, by themselves, are appropriate for a linear
mixed-order approximation to the fields. The next 12 basis
functions (a13 to az4) have linear tangential field along one
edge. The next 24 basis functions (ass to asg) have non-
zero tangential field on one face but no edges. Finally, the
last 6 basis functions (a49 to as4) have no tangential field
on the element boundary.

To assemble global basis functions, the first 24 basis
functions must coordinate with all elements which share
their one edge. The second 24 basis functions must coor-
dinate with the element which shares their one face. The
last 6 basis functions are valid global basis functions by
themselves, and need not coordinate with any neighboring
elements.

In terms of exterior products (A) and exterior derivatives
(d), equation (1) can be expressed as

2
/ dF A p~'dE ~ Z_F A €E = 0, ©)
0 C

where (4 and € are now Hodge-star operators which con-
vert 1-forms (e.g., £ and H) to 2-forms (e.g., D and B)
using some tensor (i.e., the permittivity and permeability
tensors). Differential geometry reminds us that we can dif-
ferentiate in local coordinates (where the basis and their
derivatives are simple) and transform the result to global
coordinates (where the permittivity, permeability and met-
ric tensors are usually simple). This avoids messy applica-
tions of the chain rule and extra calculation. In some cases
it may be cost-effective to transform the tensors to local
coordinates and perform all of the computations in local
coordinates.

5 TESTS OF THE FEA CODE

This FEA code was tested on 3 geometries: a3 x 2 x 1
rectangular cavity; a pillbox cavity with radius p = 1 and
height ] = 1; and a p = 1 spherical cavity. The mesh
was refined in a regular manner from a coarse mesh to a
fine mesh. The relative error of the computed eigenvalues
for both electric and magnetic field calculations is shown
in Fig. 1. Excellent accuracies (less than 10ppm error) are
achieved on a modest workstation. The error is propor-
tional to k%, where A is the element size. The numerical
eigenvalue of the spurious modes is less than 10~!2, so spu-
rious modes are well separated from the physical modes.

Test cases with inhomogeneously filled cavities show
similar results. The spurious modes still have zero eigen-
value, even when the dielectric properties change within an
element. The accuracy is excellent, with the caveat that
sharp corners cause a significant reduction in accuracy, so
the mesh needs to be refined in these locations.

- o sphere,r =1
g cylinder,p=1,l=1
m rectangular, 3 x 2 x 1

2
—
o

[
-

=
9
n

"
9
S

relative error of w?/c
J
o
‘L

et
9
«n

—— magnetic field -
---- electric field

0.1 0.2 0.5 1.0
h = 1/(number of elements)!/3

ju—y
9
=]

Figure 1: Relative eigenvalue error versus element size h
for three test cavities.
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Figure 2: Relative eigenvalue error versus CPU time for
MAFIA and the FEA code YAP. The test structure is a pill-
box cavity with radius p = 1 and height / = 1. The YAP
results are electric field calculations. The MAFIA resuits
employed a uniform grid.
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The execution times are reasonable when compared with
MAFIA. Fig. 2 compares this FEA code (named YAP) with
MAFIA on a pillbox test cavity. A uniform grid was em-
ployed in the MAFIA calculations in order to produce the
typical accuracy achieved by MAFIA in a more compli-
cated structure. This FEA excels when good accuracy is
desired since the FEA error scales as ! instead of £~1/4.
This difference is due to the discretization error (propor-
tional to A* for this FEA code, and h for MAFIA).

The new subgrid features of MAFIA remain to be inves-
tigated. However, the error in MAFIA is at best t—1/2, even
with subgrids. Hence this FEA code remains competitive
with MAFIA when accuracy is desired.

6 CONCLUSION

Electromagnetic FEA technology continues to improve. A
3D electromagnetic FEA code with high accuracy and with
no contamination from spurious modes has been demon-
strated. Such codes are competitive with FDTD codes like
MAFIA. Differential geometry and geometrical physics is
useful for understanding the features of electromagnetic
FEA codes and why they work.




7 REFERENCES

[1]1 IEEE Trans. Antennas and Propagation 45 313-572 (1997).
[2] Bossavit, A., IEE Proc. 135, 493-500 (1988).

[3] Barton, M.L. and Cendes, Z.J., J. Appl. Phys. 61, 3919-
3921 (1987).

[4] Cendes, Z.J., IEEE Trans. Magnetics 27, 3958-3966
(1991).

[5] SOPRANO/EV from Vector Fields Ltd.,, MicroWaveLab
from MSC and MICAYV from SRAC are a few examples.

[6] Crowley, C.W. et. al., IEEE Trans. Magnetics 24, 397-400
(1988).

[71 Deschamps, G. A., Proc. IEEE 69, 676-696 (1981).

[8] Graglia, R.D., et. al., IEEE Trans. Antennas and Propaga-
tion 45, 329-342 (1997).

[9] Iwashita, Y., COMPUMAG ’97, to be published in /EEE
Trans. Magnetics.

[10] Kuzuoglu, M. and Mittra, R., IEEE Trans. Antennas and
Propagation 45, 474486 (1997).

[11] Lee, J.-F,, et. al., IEEE Trans. Antennas and Propagation
45, 430442 (1997).

[12] Le Meur, G. and Touze, E, AIP Conf. Proc. 391, 113-118
(1996).

{13] Nédélec, J.C., Numer. Math. 35, 315-341 (1980).
[14] Nédélec, J. C., Numer. Math. 50, 57-81 (1986).

[15] Nelson, E. M., Ph.D. thesis, Stanford University (1993); also
SLAC-431.

[16] Volakis J.L., et. al., IEEE Trans. Antennas and Propagation
45, 493-507 (1997).

[17] Zhan, X. and Ko, K., AIP Conf. Proc. 391, 389-394 (1996).



