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ABSTRACT

Hard materials with known mechanical properties were probed with
spherical and Berkovich indenters using a Nanoindenter™. A simple analysis of
the loading portion of the indentation experiment was found to give reasonable
estimates of the elastic modulus for a variety of brittle materials.

INTRODUCTION

When indentation methods are used to measure the elastic properties of a
hard material, there is wide disagreement as to whether it is preferable to use
pointed, spherical, or flat bottomed indenters."* The advantages to using
pointed diamond indenters are that their shapes conform more readily to the
natural facets of diamond, and they can be calibrated to account for small
imperfections in manufacturing.! On the other hand, pointed indenters may be
less suited for measuring the elastic properties of multilayered coatings and thin
films. The advantage of a spherical indenter over the sharp tips is that plasticity
is delayed to greater indentation depths which makes it well suited to measure
elastic properties. The disadvantages of using a spherical diamond indenter are
that it is extremely difficult to manufacture a diamond indenter that conforms to
a perfect spherical shape. This makes calibration to offset imperfections very
controversial. Swain et al. have used spherical indenters successfully and have
managed to calculate aberrations due to imperfections in the shape.>* Based on
these theoretical premises and experimental methods, this study attempts to
measure the elastic modulus of a variety of materials with known mechanical
properties using two spherical and one Berkovich indenter.

BACKGROUND

The simplest indentation experiment which can be performed is that
using a spherical indenter. The indentation can remain completely elastic up to
a relatively high indentation load, at which point cracking or plastic deformation
may occur. The theory of two elastic bodies in contact was originally described
by Hertz’, hence, Hertzian indentation. The elastic stress field beneath the
indenter is symmetrical and well described, and a full solution for the three
dimensional stress field has been reported.*’ The most common use of the
Hertzian indentation has probably been the Brinell hardness test, in which the
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plastic deformation after spherical indentation provides a measure of the
material hardness. This test has long traditions, primarily as an empirical test,
but has been set on solid theoretical foundations by Hill et al.”> The Hertzian test
has also been used to determine the fracture toughness,*"! again utilizing the
well defined symmetrical stress field and the development of ring and cone
cracks. Recently, Swain et al.* have combined the new depth-sensing hardness
testing equipment (mechanical microprobe) with spherical indenters, and
implemented elastic/plastic indentation mechanics to determine mechanical
properties of thin films. However, very little work utilizing the elastic part of
the Hertzian indentation cycle seems to be available in the literature. This is a
somewhat puzzling fact since it is a very strai éhtforward experiment with solid
theoretical base as described above. Yoffe'* explored the use of Hertzian
indentation for large deformations, i.e., the very practical situation of indenting a
highly elastic (rubber) solid with spheres and corrections to the Hertzian
solutions for large deformations were given. Zeng et al.’’> used Hertzian
indentation to determine the elastic modulus of several brittle materials by
utilizing the well known relationship between the contact area and the elastic
constants for the materials. This approach required a measurement of the
contact area, and a method for doing this was devised. With the use of the depth
sensing indentation devices, another option for measuring the elastic modulus
becomes available, utilizing the relationship that exists between elastic
indentation depth and elastic constants. This is the approach taken in this paper.

Hertzian theory readily provides the following relationships between the
contact radius and elastic constants:

3PR 1 V3
-

where a is the elastic contact radius, P the indentation load, R the radius of the
indenter and E* the “composite Modulus” given by:
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Here v and E are Poisson’s ratio and Young’s modulus, respectively, and the
subscripts 1 and 2 refer to the indenter and test material, respectively. The
maximum elastic deformation 9 is likewise given as:
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and in the case of small elastic deformation the relationship between the contact
area and contact depth is a function of the indentation sphere radius only:
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Hence, using a depth sensing indentation system with a spherical
indenter of known mechanical properties, the elastic modulus of the test material
can be obtained assuming the Poisson’s ratio is known. For highly elastic
materials indented with a stiff indenter, Yoffe'> found reasonable agreements
assuming infinite stiffness of the indenter.

EXPERIMENTAL

Indentations were made with a Nanoindenter I (Nano Instruments) on
chips of glass, silicon and sapphire and on metallographically polished
specimens (0.5 pm) of fused silica, polycrystalline aluminum oxide, silicon
nitride, sintered oi-silicon carbide and titanium alloy (for microscopy only). Two
spherical diamond indenters (20 pm and 2 pm radius) were purchased from
Synton/Imetra. The Berkovich indenter was supplied by Nano Instruments.
Single cycle indents were made using load control with loads of 24, 48, 72 and
100 mN; a record of load, displacement and time from each indent was stored.
The loading segment from each load vs. displacement curve was extracted. Ten
indents from each material which corresponded to the lowest load were
avera3§ed. The portion of the loading curve which was linear on a plot of load
vs. 07~ (SmN or less) was considered for the calculations of the modulus since
only that portion could be assumed to constitute the region of elastic contact.

Scanning electron microscopy (Hitachi S-800) and a Scanning Force
Microprobe (Topometrix) techniques were used to examine impressions
produced by the various indenters in a soft titanium alloy. To avoid errors
introduced by the SFM, indents of varying sizes were sampled and scanned in
several directions. Both forward and reverse scans were examined.
Measurements of the depth and width of the indentations were made using the
Topometrix software to determine the radius of the spherical indenters and for
direct comparison to the load/displacement curve which provided data on the
actual plasticity/elastic recovery of the indentation process.

RESULTS AND DISCUSSION

Nanoindentation

By looking for inflection points on a plot of load vs. 8% in the loading
curve of the load-displacement cycle, it was relatively easy to determine the
regions where the indentations were completely elastic or where some plastic
deformation had started to occur. A plot of load vs. 8*?, on the other hand, was
linear even for loads in the plastic region of the indentations, unexpectedly so
for the Berkovich indenter (see Fig. 1). This allowed for a more direct
comparison to be made between the three indenters. Since a plot of load vs. §*2
was linear, the Berkovich indenter was assumed to be spherical in the region of
elastic contact even though sphericity was not actually observed in the
microscopic images (Figs. 2 and 3). From the fits of indentation vs. elastic
deformation, the elastic modulus was determined using Eq. 3.
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Fig. 1. Load vs. elastic deflection for the three indenters.

As a first assumption, a Poisson’s ratio of 0.17 was assumed for all
materials since there was some uncertainty about the values to be used for some
of the materials. Table I lists the calculated values. The Elastic Modulus and
Poisson’s ratio for the indenter (diamond) were set to 1140 GPa and 0.07
respectively. The radii of the indenters were as specified by the manufacturer.

From the results in Table I it is apparent that the results are only partially
reasonable, and that the 2 um indenter underestimates the moduli while the
20 pm indenter overestimates the moduli. It is further apparent that the
assumption of an infinitely stiff indenter (Yoffe) is relatively good for the low
modulus materials (fused silica and glass).

Following Swain*, the possible reasons for the differences in the moduli
were explored, and the most reasonable assumption was that the actual radii of
the indenters were not those quoted by the manufacturer. To investigate this
possibility, the radius of the indenter was treated as a variable in the calculations
of standard materials with the result that elastic moduli were forced to conform
to literature values. Table II illustrates the effect on modulus measurements if
the shape of all indenters is assumed to be spherical and if the radius is varied to
obtain standard values. Results from the pointed Berkovich indenter are
included for comparison.




Table 1. Elastic moduli calculated using the nominal values of the indenter radii.

Material E-Modulus* E-Modulus+ E-Modulus* E-Modulus+ E-Modulus#
20 pm 20 pm 2 um 2 um Berkovich
Indenter Indenter Indenter Indenter Indenter
[GPa] [GPa] [GPa] [GPa] [GPa]
Silicon Nitride 397.9 293.10 348.00
Sapphire 497 343.60 285.10 227.00 486.90
Alumina 501.1 345.60 260.90 211.40 490.90
Glass 91.7 84.70 42.00 40.50 81.20
Fused Silica 86 79.80 50.20 48.00 71.40
Silicon 193.2 164.60 106.00 96.80 180.20
Sintered SiC  422.5 306.30 284.80 226.80 488.80

* Hertz Theory
* According to Yoffe,'? assuming infinitely stiff indenter.
* According to Oliver and Pharr method.

Table II. Elastic Moduli calculated using the best fit values of the indenter radii.

Material E-Modulus* E-Modulus* E-Modulus* E-Modulus#
27umRad. 1pm Rad. 0.5um Rad. Berkovich
Indenter Indenter Berkovich  from unload.
(GPa) (GPa) (GPa) (GPa)
Silicon Nitride 326.21 273.71 348.00
Sapphire 402.71 451.03 379.33 486.90
Alumina 405.84 408.69 367.27 490.90
Glass 77.99 60.38 80.02 81.20
Fused Silica 73.19 72.28 83.84 71.40
Silicon 162.32 156.12 144.27 180.20
Sintered SiC 345.35 450.50 422.52 488.80
*Hertz Theory

# According to Oliver and Pharr method"

Microscopy

Microscopy was undertaken to obtain measurement which conformed
reasonably well to the actual dimensions of the radii of the indenters. A soft
titanium alloy was selected for this purpose because it has only minimal elastic
recovery when indented which makes it easy to study residual impressions.
Electron Microscopic images of impressions of the three different indenters into




a titanium alloy are shown in Fig. 2. It was clearly seen that the 2 um spherical
indenter did not conform to a shape which qualifies as spherical even at low
loads. Rather it seemed that the spherical tip was ground from a four-sided
pyramid. A side view of the indentation site also showed material pile-up. The
20 um spherical and the Berkovich indenters appeared to have the expected
shapes.
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Fig. 2. SEM images of indents from a 2 pm(a), a 20um(b), and a Berkovich(c)
indenter in titanium alloy.

Further inspection of the indentation sites with the Scanning Force
Microprobe revealed that only the Berkovich indenter conformed to the
expected shape, see Fig. 3. The 2 um radius spherical indenter was very
irregular. The four sides of the pyramidal shape could be traced to within about
300 nm of the end of the tip. The 20 um spherical indenter was actually tri-lobal
as judged by the material piled up which could easily be determined with the
amplification in the z-direction of the SFM. Furthermore, at the very tip there
seemed to be a very small residue of a three-sided pyramid or facet. In addition,
the indenter tip showed many other irregularities.

By measuring software generated cross sections of the SFM images from
the impressions in the titanium alloy, estimations of the actual radii of the two
spherical indentations were made. This was a time consuming and difficult task,
especially for the smaller indenter for which the impressions were definitely not
spherical. Measurements of several indentations were made, and the radius of
the nominally 20 um indenter was found to be 41 um and the radius of the
nominally 2 um indenter was found to be 2.7 pum. Using these values in the
equations for calculating the elastic moduli resulted in the values shown in Table
III. To keep it simple, elastic recovery, which was proportional to the area of
surface contact, was disregarded in this study. The elastic recovery portion of
the indentation contributed to the reported larger diameter measurements in
Table III.




Table III. E modulus calculated using the measured sphere radii.

Material E-Modulus* E-Modulus+ E-Modulus* E-Modulus+
41 pm 4] um 2.7um 2.7um
Indenter Indenter Indenter Indenter
[GPa] [GPa] [GPa] [GPa]
Silicon Nitride 250.9 204.7
Sapphire 305.9 240 236.9 1954
Alumina 308.2 241.4 217.5 181.9
Glass 62.5 59.1 36 349
Fused Silica 58.7 55.7 42.9 41.3
Silicon 128.2 115 90.1 83.3
Sintered SiC  264.8 213.9 236.7 195.2
“Hertz Theory

* According to Yoffe,”? assuming infinitely stiff indenter.
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Fig. 3. SFM images of indents from a 2ptm(a), a 20um(b) and a Berkovich(c)
indenter in titanium alloy.

SUMMARY

It is entirely possible to measure the elastic modulus of any material
using a spherical or just about any shape indenter in the Nanoindenter. The
experimental procedures need some refinement; for example, more data points at
very low loads will help avoid errors in calculating the slope of the loading
curve. There also was a transition observed in the load/displacement curves on
the soft titanium alloy when the indenter "switched" shapes during penetration.
Because of the irregular shape even at the very tip, it is difficult to assess how
much surface area of the indenter is actually in contact with the substrate in the
elastic region of the indentation process. Despite these difficulties, if indenters
are carefully characterized, and if constants are calculated based on standard
materials, blunt or spherical indenters are useful tools in obtaining elastic moduli
of extremely thin films where large surface area contact is needed rather than
penetration. :
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