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Conditioning Geological Reservoir Realizations with
Time-Dependent Data with Applications
to the Carpenteria Offshore Field

Richard P. Kendall* and Katherine Campbell

Abstract
This is the final report of a one-year, Laboratory-Directed Research and
Development (LDRD) project at the Los Alamos National Laboratory
(LANL). The project effort was directed toward preliminary
geostatistical analysis of the Carpenteria Offshore Field as a precursor to
the step of integrating time-dependent data into a geostatistical model of
the Field.

Background and Research Objectives

Downhole measurements of geophysical and petrophysical reservoir properties are
one source of information used in the construction of a dynamic reservoir model, and initial
models are usually based on such information together with the equations describing
multiphase flow in porous media. A second source of information for calibrating such
models consists of results from well tests and actual production history. Current practice is
for reservoir engineers to incorporate this latter information by means of an ad hoc
engineering adjustment process that is not constrained to honor the original geological
information. This practice is reinforced by the fact that most reservoir models in current
use are deterministic, providing no information on whether a proposed adjustment is more
or less consistent with the geological information.

Some questions of interest are, therefore,

* How might we quantify the consistency of a proposed adjustment with a
stochastically-described geological model?

*Principal Investigator, E-mail: rpk @lanl.gov




* How might we indicate to the reservoir engineer the areas and parameters that are
least constrained by the geological information, and therefore prime candidates for
adjustment?

* How can we use the information provided by well tests and production histories
(which are dynamic and large-scale measurements, by comparison with the static
and small-scale downhole measurements informing the original geological model)
to refine a stochastic geological model, i.e., reduce the uncertainty in the geological
description?

The last question is of particular interest to the earth scientists and is the question that we
addressed.

Importance to LANL's Science and Technology Base and National R&D
Needs

The Laboratory has significant earth modeling capabilities in areas such as fluid
transport in porous media, computational seismology, and pore scale modeling. In
application, however, the utility of these modeling capabilities is constrained by the lack of
a stochastic component, which is more essential when it comes to applying dynamic
models in earth-science contexts than in the hydrodynamic engineering work that has
historically been the backbone of Laboratory work. The integration of recent progress in
stochastic modeling into the hydrogeological simulation capabilities of the Laboratory is an
essential step in the direction of positioning the Laboratory to apply these capabilities to
problems related to national security, broadly defined. Examples are redeveloping a
partially produced source of oil and gas to reduce dependence on foreign sources, and
identifying the vulnerabilities of the hydrogeological systems that provide water for
agricultural and urban needs in the semiarid Southwest.

The systems being modeled are at best sparsely observed compared to the
resolution being based on considerations of convenience or engineering requirements. The
scale of such observations ranges from point observations (like measurements on a small
piece of bore hole core) to observations that integrate over tens or hundreds of cubic feet
(like well tests and production histories). Geostatistics can handle some of these problems-
-it offers some techniques for interpolating sparse observations and extrapolating them to
different scales--but geostatistics is limited to the extent that it can not readily incorporate
constraints imposed by physical processes. The goal of this project is thus to supplement

traditional geostatistical inference with information about such constraints derived from




other sources, including both observation and simulation. The ultimate result would be

dynamic models with greatly improved predictive capabilities for application to a specific

problem.

Scientific Approach and Accomplishments

1) a)

b)

2) a)

b)

In the context of reservoir modeling, the problem is to find a feedback mechanism

by which to use the results of a comparison between simulated and measured results (of a
pumping test or actual production from a well, for example) to improve the geological
model underlying the flow model. The basic approach requires the following steps.

Develop a stochastic geological model of the reservoir based on geophysical and
petrophysical measurements. This model incorporates all of the "static” data that
contributes to the reservoir description.

Select an objective function or metric that measures the accuracy of the match of
the forward flow simulations to well test data (e.g., shut-in pressures, perforation
gas-oil ratios, water-oil ratios). Mean-squared error in simulated shut-in well
pressure is one example of such an objective function.

Perform forward reservoir simulations with a suite of realizations from the
stochastic geological model (earth science version). As it is not feasible to use a
large number of realizations, methods to sample the universe of realizations for this
step must be carefully designed. Each realization must be rescaled (upscaled) to a
computation grid and, if there is some information about the range of acceptable
values at this scale (bAsed, for example, on a traditional engineering adjustment
process), there is a possibility for some filtering at this point so that completely
unsatisfactory realizations can be rejected without running the forward model.
Using the objective function, grade the realizations (including those filtered out as
described under 2a, if any). Use these grades to revise the distributions from
which the earth model realizations are generated. The general idea is similar to

updating a Bayesian prior distribution to a posterior. The development of
workable algorithms to implement this idea is a major part of our objective.

c) Iterate 2(a,b) until the earth model distributions are relatively stable.

Alternative approaches are possible. All begin with the development of a stochastic
reservoir model and was the only task attempted because of project funding and time
constraints.. Specifically, we undertook a scoping study to address problems associated
with the development of a stochastic model for the Carpenteria Redevelopment Field.




The very large data set of geophysical measurements associated with this partially
developed field has been extensively analyzed by traditional methods, and a deterministic
computational model is under construction. The questions addressed in the scoping study
concerned the structure of a potential stochastic version of this model:

. Can layers of similar porosity, permeability and saturation be discovered by
statistical analysis of the data?

. Assuming that the answer to the first question is yes, then when analysis is
confined to a relatively homogeneous layer, is there sufficient lateral continuity of
the measured properties to predict their values between wells?

A stochastic geological model, by contrast with a deterministic one, must provide
not only point estimates but also estimated probability distributions for both structural
features of the reservoir (e.g., layering, channeling) and geophysical properties (e.g.,
transmissivity, storage). Data collected with a view to providing point estimates are not
necessarily sufficient to provide distribution estimates, at least not distribution estimates
that significantly constrain the universe of possible models. The focus of the Carpenteria
scoping study might thus be rephrased as an attempt to answer the question: Does
geostatistical analysis of the data provide additional constraints that should be honored by
any stochastic reservoir model?

The first question listed above was investigated using clustering techniques. A
method was developed that accommodates both the large size of the data set and the spatial
relations among the observations (which are downhole observations, vertically dense in
relatively sparse wells.) Layers are indeed suggested by the results, and boundaries
between them are imperfectly defined. That is, the results are quite satisfactory from the
point of view of moving towards a stochastic structural model for the Carpenteria field.
This type of analysis could in fact be done with a considerably smaller number of wells
than actually available (on the order of fifty, perhaps), but the number of wells available
still leaves a significant amount of uncertainty to be described by the stochastic component
of the earth model.

The second question was investigated within some of these layers, which for this
purpose were defined manually since the first part of the study did not progress to the point
of developing an automatic algorithm for defining markers or boundary surfaces.
Preliminary results suggest that spatial correlation is significant at the relevant lateral scales
(i.e., that defined by the spacing of the wells in the field), and thus that indeed, in the
Carpenteria field, there are significant second-order constraints on the realizations that

should be produced by a stochastic reservoir model.




In general, identification of significant structure requires, of course, that structure
be present on the sampling scale defined by the density of the wells. Again, at Carpenteria,
the preliminary results suggest that the existing density of wells is sufficient. It might be
possible to obtain some reasonable results with a lower density of wells, but even with the
existing number of wells the uncertainty to be captured by the stochastic model is
substantial and the potential for improvement based on incorporation of test and production
data is correspondingly large.

An incidental result was that cluster analysis appears to be promising as a basis for
cleaning up the data by indicating wells for which recalibration of the raw log data might be
useful (i.e., identifying wells in which the derived parameters appear inconsistent with
values in neighboring wells.)

Publications
No publications have yet been prepared based on this work. However, a report on the

results of the scoping study is attached.
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Figure 1. Geostatistical modeling tasks for the Carpinteria Reservoir Re-Development
Project . Our efforts were directed at the two tasks highlighted here.




(ATTACHMENT)

UTILITY OF STATISTICAL AND GEOSTATISTICAL TECHNIQUES
FOR EXPLORING AND MODELING THE CARPENTERIA DATA

Richard P. Kendall
Katherine Campbell

LDRD Project No. 96-446
Program Code: XAY9

Objectives of study
The questions addressed briefly in this scoping study are:

1) Can layers of similar porosity, permeability and saturation be discovered by statistical
analysis of the data?

2) Assuming that the answer to the first question is yes, then when analysis is confined to a
relatively homogeneous layer, is there sufficient lateral continuity of the measured
properties to predict their values between wells? That is, are geostatistical approaches to
estimation and simulation worthwhile?

Data

Data are provided in 170 wells from the Carpenteria leases 166 (92 wells), 240 (31 wells), 3150
(46 wells) and 4000 (one well). Thirty additional wells, most in the latter two leases, have no
porosity data. Five of the 170 wells have no data between 2000 and 4500 ft depth.

In addition to east and north coordinates and total vertical depth, seven parameters are provided.
Typical histograms are shown in Figures 1(a,b,c).

VSH Shale fraction
Stongly bimodal, with a visible break at 40%. Values
greater than 40% correspond to PHIE==0 and are
approximately uniformly distributed over the range of 45
to 100%. Values less than 40% peak at about 12%.
(Figure 1a.)

PHIT Total porosity
Normally distributed, with most values in the range of 15
to 35%. (Figure 1a.)

PHIE Effective porosity
Zero for about 25% of the data, while the rest are
approximately normally distributed, aithough the lower
tail is relatively heavy. (Figure 1b.)

SwW Saturation of water
100% when PHIE=0 and also for an additional 20% of
the data. The remainder of distribution is broad and fairly
uniform in the range of 25 to 100%. (Figure 1c.)

SWE Effective saturation of water




100% whem SW-100%. Otherwise a flat distribution,
shifted somewhat to the left (downward) relative to SW.
(Figure 1c.)

SXO Residual saturation
100% when SW=100% and for an additional 7% of the
data. Otherwise a fairly flat distribution from 35-100%.
(Figure 1c).

PERM Permeability
Strongly bimodal, but most of the low values correspond
to PHIE=0. Otherwise lognormally distributed, with most
values in the range of 10 to 1000 millidarcies. (Figures
1(a-c) include histograms of log1o(PERM).)

Discovery of Structure in the Data

The histograms suggest some immediate clusters: one for which PHIE=0, one for which PHIE>0
but SW=100%, and one for which PHIE>0 and SW<100% but SXO=100%. These three groups
account for more than 50% of the data. The remainder of the data set is more nebulous. It
includes, but is certainly not confined to, the high-permeability, low-saturation potential "pay"
areas.

Cluster analysis was used as a technique for identifying structure in this part of the data set. An
adaptation of the "partitioning around medoids” (PAM) method for large data sets was used to
cluster the data The basic PAM algorithm selects k "representative points” or "medoids” from the
data set such that when each point in the data set is clustered with the nearest medoid, the total
sum of "dissimilarities” between each point and its assigned medoid is minimized. (k, the number
of clusters, must be specified by the user, and how “dissimilarity" is defined is also up to the user.)
This method, which requires iterative "swapping" to select the best medoids, is impractical for data
sets of more than about 250 points, so it was extended to the Carpenteria data set (about
550,000 logged points) in several steps.

1) A subset of points between 2500 and 4000 ft total vertical depth in 26 wells (a total of
about 33,500 points) was selected. (This is the data set shown in the histograms of
Figure 1.) The 26 wells selected are spread out across the field from east to west. Of the
33,500 points, about 54% fell into one of the "obvious" clusters defined above, leaving
about 15,500 to be classified by cluster analysis.

2) PAM was run sequentially on ten randomly selected subsets of these 15,500 points,
each of size 150 (about 1% of the total), with a large number of clusters (k=30). The
variables used for clustering were VSH, PHIE, SWE, SXO and log1g(PERM). (When
PERM was reported as zero, log10(.05) was used.) The variables were standardized

before the clustering algorithm was run, and *dissimilarity” was defined as ordinary
Euclidean distance in the space of the scaled variables.

3) Finally, the entire Carpenteria data set can be clustered relative to the final medoids.
Three additional medoids based on the "obvious" clusters are added before this is done.
We clustered only points between 2500 and 4000 feet from 110 wells near the center
line of the southwest trending field.

Figure 2 shows the 33 medoids on a two-dimensional plot in the plane of their first two principal
components. (The principal component computations excluded the "obvious” medoids,
however.) Loadings on these components align fairly well with the original variables (Table 1).
The first principal component loads heavily on permeability and moderately on porosity. The
second loads on the two saturation variables, SWE and SXO, which are separated only by the fifth




and least important component. The third loads on the shale fraction. (In Figure 2, shale fraction
is indicated by the symbol.) The first three components account for 83% of the total variability.

The “obvious" medoids are labeled 31 (PHIE=0), 32 (PHIE>0, SW=100), and 33 (PHIE>0,
SW<100, SXO=100). Only Cluster 31 is very far from the remaining clusters in Figure 2. In the
final clustering step (step 3 above), Cluster 31 gave up about 20% of the points originally
assigned to it (most to Cluster 3, which is closest on Figure 2). Cluster 32 gave up more than half
but also acquired a few from neighboring clusters, and Cluster 33 gave up 75%, acquiring very
few in return.

Table 1. Principai Components Analysis of 30 Medoids

PC 1 PC 2 PC 3 PC 4 PC 5
%var 37.8% 26.1% 18.8% 11.5% 5.8%
VSH -0.249 -0.119 -0.890 -0.358
PHIE 0.437 0.332 0.164 -0.819
SWE -0.638 0.174 -0.158 0.730
SXO 0.181 -0.684 -0.192 -0.675
PERM 0.842 -0.379 0.374

Figure 2 suggests "superclusters”, or clusters of clusters. In particular, several high permeability,
low water saturation, low shale clusters occupy the upper right-hand corner of the plot of the first
two principal components. Since the first principal component increases with permeability and the
second decreases with water saturation, this region of the plot contains candidates for "pay"
layers.

The 33 clusters were generated without reference to the location of the individual observations;
they are based entirely on the logged variables (shale fraction, porosity, saturation, permeability).
In order to generate groupings of related clusters, we defined a similarity matrix among the
clusters whose values are high if points from two clusters are frequently adjacent within wells. The
dendogram Figure 3, based on this similarity matrix, reveals five or six major groupings and several
subgroupings. These groupings and subgroupings were used as shown in Figure 2 to generate
the color scheme used in Figure 4.

In Figure 4 the potentiai "pay" layers are shown in shades of green, becoming more yellow for
clusters of lower permeability. The high shale, low permeability layers are shown in red and
orange, and the saturated layers of mid- to high permeability in blues ranging from purple
(relatively low permeability) to cyan (high permeability). Layers rising to the west are clearly
delineated in Figure 4. In this plot the ordinate is just an ordering of the wells from southwest to
northeast. Separation in the direction perpendicular to this one is not resolved, but it appears that
these layers are fairly level in this direction, at least within the narrow band of wells shown here.

As Figure 4 shows, this approach is quite successful in suggesting the general spatial structure of
the field, but without further development it is not entirely satisfactory for delimiting individual
layers within wells because there is a great deal of variability within layers. However, these
preliminary results could serve as the basis for automatic marker generation. For example, data
from a single well could be transformed to the principal components coordinate space (Figure 2),
and layers could be then identified based on the trace of a well in the transformed space. Some
smoothing of the data, probably in the principal components space, would be useful for this
purpose.

Evaluation of Continuity
For the preliminary evaluation of lateral continuity, "layers" were defined by manual interaction with

plots such as Figure 4. That these definitions are crude may account for some of the noise
observed in the variograms.




Continuity was investigated in the second “pay" layer and in the saturated layer below the first
(highest) "pay” layer. Variograms were computed within these layers in the WSW direction
defined by the general trend of the wells.

The empirical variograms suggest fairly good correlation over distances of at least 500 feet
{Figures 5 and 6. The x-axes in these plots are labeled in thousands of feet.) In general, these
empirical variograms are very noisy. Spikes at relatively short separations that might be eliminated
by more careful analysis of outliers may be obscuring longer correlation distances. The "fourth
root" algorithm that was used to estimate the variograms in Figures 5(b) and 6(b) is less sensitive
to outliers, which tends to reduce some, but not all, of the spikes. Variogram modeling is
something of an ant, and it is probable that more structure will be discovered in more careful
investigations.

At a depth of 3000 feet, the median distance from a well to its nearest neighbor is about 250 feet,
and exceeds 500 feet for only about 10% of the wells. Thus within the field, at least in the depth
range of 2500 to 4000 feet, there will usually be data within two or three hundred feet of any point
at which we wish to model. Given this density of data, even the correlation distances suggested
by Figures 5 and 6 are significant. This implies that improvements in modeling can be expected if
geostatistical (i.e., spatial-correlation-based) methods for estimation and simulation are used.

Outliers

In order to continue the investigations, much more attention needs to be paid to wells that appear
to be "outliers” for one reason or another. These wells show up in Figure 4, for example, 3150-
70, 3150-71 and 3150-77 at the east end of the field or 240-B7 and 240-B8 at the west end.
Such wells can significantly distort variograms and might account for some of the spikes seen in
Figures 5 and 6, although an attempt was made to eliminate outliers before the variograms were
computed.

In general, indicators of problematic wells are useful byproducts of the types of analyses
described above.

Conclusions

This preliminary study shows that the application of statistical and geostatistical methods has
considerable promise in a data-rich field such as the Carpenteria field. Cluster analysis appears to
be promising as a basis both for defining markers and also, indirectly, for cleaning up the data by
indicating wells for which recalibration of the raw log data might be useful (i.e., wells which
currently appear inconsistent with their neighbors.) Within cleaned up, better-defined layers,
even the relatively crude results reported here suggest that spatial correlation is significant at the
relevant spatial scales, indicating a good potential for accurate prediction of properties and their
uncertainty between wells, and eventually for more realistic flow simulation results.
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