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Abstract

EPSILON-2 is a general parallel computer architec-
ture that combines the fine grain parallelism of
dataflow computing with the sequential efficiency
common to von Neumann computing. Instruction
level synchronization, single cycle context switches,
and RISC-like sequential efficiency are all supported
in EpPsiLON-2. The general parallel computing
model of EPsILON-2 is described, followed by a de-
scription of the processing element architecture. A
sample code is presented in detail, and the progress
of the physical implementation discussed.

1 Introduction

The attractive properties of a dataflow model of
computation have been studied for some time [1,2].
Transparent exploitation of parallelism, efficient syn-
chronization, insensitivity to latency (3], and scal-
ability are among the desirable characteristics. A
handful of prototypes have been built {4}, but most
have suffered from low performance relative to com-
mercially available computers. Recently, several ef-
forts have produced dataflow computers that show
promise of overcoming the historical performance
limitation. The Sigma-1 [5] relies on a high speed,
hash table based associative matching store. The
Monsoon architecture [6] continues MIT’s dataflow
research with an ezplicit token store dataflow pro-
cessor architecture.

Sandia’s EPSILON processor (7,8] demonstrated
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sustained uniprocessor performance comparable to
commercial mini-supercomputers. The EPSILON-2
system builds on the direct match (single cycle, in-
struction level synchronization) proven in the Ep-
SILON processor. The static memory model of the
EPSILON processor has been extended to a fully dy-
namic model, allowing single cycle context switches
and dynamic parallelization. The pure dataflow
scheduling mechanism has been superseded by a
more general model that is a superset of both pure
dataflow and strictly sequential execution. More em-
phasis has been placed on the software system for
EPSILON-2, including compilers for both Id [9] and
FORTRAN.

The general parallel computation model embodied
in EpsiLoN-2 will first be described. The overall
architecture will then be outlined, followed by a more
complete description of the EPSILON-2 processor. A
simple example code will be presented in detail to
illustrate the actual operation of the machine. Some
new problems posed by such an inherently parallel
system will then be presented, along with indications
of the direction being taken to address these issues.

2 The EPSILON-2 Parallel Compu-
tation Model

EPSILON-2 is based on an intrinsically parallel com-
putation model. The instruction scheduling model
of EPSILON-2 is a generalization of both the von
Neumann and dataflow models. The storage model
of EPSILON-2 is a parallel generalization of a tradi-
tional stack based storage model. ‘

The scheduling and storage models are first pre-
sented without regard to the actual implementation:
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Figure 1: Spectrum of instruction scheduling mod-
els.

The description of the EPSILON-2 system that fol-
lows then discusses the implementation of the gen-
eral models.

2.1 The Scheduling Model

The spectrum of instruction scheduling models is
shown in Figure 1. At one extreme is the traditional
von Neumann scheduling model, where the instruc-
tions are fully ordered. The von Neumann schedul-
ing model is thus inherently sequential. This model
does not cleanly extend to parallel processing, but
it does allow locality to be exploited to great advan-
tage. The other extreme is operation level dataflow,
where the instructions are partially ordered by the
dependencies in the computation. This model can
exploit any form of parallelism, although it does not
benefit from locality.

The scheduling model of EPSILON-2 is a general-
ization of the entire spectrum. There is still a par-
tially ordered graph, as in operation level dataflow,
so the model is applicable for any level of parallelism.
Each node in the graph is a fully ordered sequence
of instructions — a grain — rather than a single
instruction as in the pure datafiow model. Graphs
where all grains are length one correspond to the
pure dataflow extreme. A graph composed of a sin-
gle grain corresponds to the von Neumann extreme.
This general scheduling model allows each code to
strike a balance between parallelism and sequential
efficiency.
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Figure 2: Snapshots of a traditional activation stack.
Only the top procedure is active.

procedure F
{...
call G
call H

.}

procedure G

{...}

procedure H
{...
call J

.}

Figure 3: Sample program for storage model com-
parisons.

2.2 The Storage Model

Traditional storage models are often based on a stack
of activation frames. Activation frames are pushed
on and popped off the stack as procedures are en-
tered and exited. At any given time, only the pro-
cedure working in the topmost activation frame is
active. As an example, Figure 2 shows snapshots of
a traditional activation stack for the program shown
in Figure 3.

EPsILON-2 generalizes the traditional stack model
to a tree of activation frames. In EPSILON-2, proce-
dures are invoked (and activation frames allocated)
in a concurrent fashion. An invocation represents a
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Figure 4: Snapshots in time of one possible unfolding
of an EPsILON-2 tree of activation frames. All the
activations in the tree may be active concurrently.
Returns from independent activations may happen
in any order.

fork of a new procedure rather than simply a transfer
of control. Figure 4 shows snapshots of the EPSILON-
2 activation tree for the program shown in Figure 3.
Procedure F invokes procedure G and procedure H
in parallel, and H invokes J concurrently. At any
given time, the procedures working in any, or all, of
the activation frames can be active (not just those
working in the leaf activation frames). In fact, even
in a single EPSILON-2 processor, any number of pro-
cedures can execute concurrently (in reality, their
execution will be interleaved). To invoke a proce-
dure, the caller requests an activation frame from
any processor within the system. Once the activa-
tion frame is allocated, the procedure is bound to
the processor which satisfied the request?.

Together the EPsSILON-2 scheduling and storage
models form a comprehensive paralle] execution
mode] which allows the system to efficiently exploit
all forms of parallelism (e.g., instruction-level, vec-
tor, loop-level, function-level). The storage model
supports the dynamic spawning of concurrent tasks.
The scheduling model allows each processor to use
parallelism within a task (or parallelism between
concurrent tasks on the same processor) to mask the
latency associated with remote memory accesses and
pipeline delays.

!Load balance across processors is achieved through the
distribution of activation frame requests among the processors
in the system.
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Figure 5: EPSILON-2 execution system architecture.

3 The EPSILON-2 System

The EPSILON-2 system consists of many compo-
nents — the computer itself, programming tools, de-
bugging and performance analysis tools, simulation
capabilities, etc. We will first briefly describe the
major components and their functions, then focus
on the EPSILON-2 processor and its operation.

The EPSILON-2 architecture is shown in Figure 5.
The system is built around a module consisting of a
processor board and structure memory board, con-
nected via a four by four crossbar to each other, an
I/0 port, and the global interconnect. In this way,
each additional unit of processing brings with it a
unit of structure memory (size and bandwidth), a
unit of I/O bandwidth, and a unit of global inter-
connect bandwidth.

The unit of transaction for all communication in
the system is a token. Tokens are fixed length en-
tities, composed of a target portion (similar to an
address) and a data portion as shown in Figure 6.
The type field of both the target and data portions
identifies the type of the information contained in
the rest of the token. Targets are always typed as
some sort of pointer, while data portions may be
pointers, floating point numbers, integers, or logi-
cals. The value of the data portion is interpreted as
indicated by the type. On the processor, the instruc-
tion pointer (IP) is used to reference an instruction
word in the instruction memory. On the structure
unit, the instruction pointer is used directly to con-
trol the structure unit’s operation. On the processor,
the frame pointer (FP) selects a particular activa-
tion frame that the instruction will reference. On
the structure unit, the frame pointer is used to ad-
dress a particular location in the memory array.
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Figure 6: EPSILON-2 token definition. The IP (in-
struction pointer) and FP (frame pointer) specify
the instruction and activation frame this token is
destined for.

The structure units are interleaved in the system
address space, thus supporting the abstraction of a
shared global memory. They support a variety of
data structures via split-phase, token based trans-
actions. A read, for example, is initiated by a pro-
cessor sending an appropriate token to the structure
unit. The data item is read from the memory, and
returned to the processor as part of a new token.
Traditional arrays, lists, and I-structures [10] are di-
rectly supported by the structure units.

The I/0 ports are also mapped into the address
space of the system. The I/O token interface resem-
bles that of the structure memory units, although it
of course deals with I/O devices rather than mem-
ory. The global interconnect is a packet switched
multistage network. Its design is simplified by the
fixed length, token-based communication.

3.1 EPSILON-2 Processor Architecture

The basic structure of the EPSILON-2 processor is
shown in Figure 7. Tokens arrive from the local 4x4
switch and are buffered in the token queue. Tokens
are read from the token queue and the instruction
pointer used to access the instruction memory. The
instruction referenced is used to generate a repeat to-
ken and to generate the addresses of operands and a
synchronization point. These addresses are relative
to the frame pointer of the current token, so the cur-
rent activation frame can change with each incoming

Figure 7: EPSILON-2 processor architecture. The
heavy lines represent token paths.
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Figure 8: Generation of a repeat token.

token (changing activation frames changes contexts).
The operands are read from the frame memory and
combined by the ALU to generate a result. The re-
sult is written into the registers and may be used
to generate an output token. The target portion of
the output token is generated by the TCU (target
calculation unit).

Repeat tokens are generated as shown in Figure 8.
A token is read from the token queue, and its instruc-
tion pointer used to read the instruction word from
memory. The repeat offset in the instruction word
is added to the current token’s instruction pointer
to generate a new instruction pointer. The current
token’s frame pointer and data portion are used un-
modified in the repeat token. The repeat token is
then used as the next cycle’s current token rather
than reading a new token from the token queue. In
effect, the repeat offsets in the instruction word are
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Figure 9: Using repeat to fanout data. The fanout
required is shown implemented with a tree of iden-
tities on the left, with repeat on the right.
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Figure 10: Repeat used for scheduling a grain of
computation. The synchronization at the addition
has been eliminated in the grain implementation and
the latency has been reduced to a single pipeline
transit.
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used to build a linked list of instructions, where each
instruction receives a token on the cycle after its pre-
decessor in the list does. This is used both to fan out
tokens for data fanout (multiple uses of the same
data item) as shown in Figure 9, and for schedul-
ing fanout (multiple instructions triggered from the
same token, i.e., a grain), as shown in Figure 10.

The instruction also contains two offsets for ac-
cessing operands. These offsets may select a particu-
lar location in the current activation frame as shown
in Figure 11, a location relative to the base of the
frame memory (used for constants), or a register. In
addition, the data portion of the current token may
be stored in either of the locations specified by the
operand offsets. In a pure dataflow graph, the data
portion of the input token is always required by the
instruction. In the more general model of EpsiLON-
2 some tokens carry only scheduling information in
which case the data portion is ignored.

An additional offset in the instruction is used to

FP
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Figure 11: Accessing operands from the current ac-
tivation frame. The activation frame is selected by
the current token. The location within the activa-
tion frame is selected by an operand offset in the
instruction word.
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Figure 12: EPSILON-2 direct match synchronization.

select a location in the match memory. The match
memory is organized into activation frames, just as
the operand memory. Any number of instructions
may synchronize at a given match location. The syn-
chronization is done with a variant of direct match
described in [7]. The operation of the direct match
is shown in Figure 12. The selected location in
the match memory is read. If the value matches
the match mode of the instruction, the instruction
fires (is allowed to execute) and the location is writ-
ten with zero. If the value does not match the mode,
the instruction does not fire and the value is incre-
mented before being written back into the location.
The synchronization therefore requires only a single
memory read and a single memory write.

The ALU combines the two operands as directed
by the opcode in the instruction word. The normal
suite of floating point, integer, and arithmetic oper-
ations are supported, as well as a variety of special
instructions added for greater efficiency.



The TCU is responsible for generating the tar-
get portion of any output token generated by the
instruction. Targets local to the current activation
are generated in much the same manner as the target
portion of repeat tokens, retaining the current frame
pointer and generating a new instruction pointer by
adding an offset (part of the instruction word) to
the current instruction pointer. Targets may also be
formed using parts of the current operands, allow-
ing tokens to be routed to computed targets (e.g.,
between contexts).

Each instruction writes its result into a register.
These registers may be referenced by any succeed-
ing instruction. It is important to note that reg-
ister contents are not necessarily preserved across
grain boundaries (other instructions in independent
threads may overwrite the values stored in the regis-
ters). Registers are therefore used only for interme-
diate values within a grain.

The ErsiLON-2 processor allows clock level syn-
chronization due to the direct match mechanism.
Since each token completely defines the processor’s
execution context, the processor is capable of switch-
ing contexts on each cycle. The ability to have multi-
ple active contexts on each processor combined with
the clock level context switch allows tasks which
initiate unpredictable latency operations (e.g., data
structure reads) to be automatically switched out in
favor of other ready tasks.

4 Sample Program

To illustrate the capabilities of the EPSILON-2 archi-
tecture, this section steps through a simple example
program implemented on EPsiLON-2. The code for
the example, expressed in the declarative language
1d, is shown in Figure 13. Function F takes two ar-
guments — an array descriptor A and an integer z.
It computes z #(A[z] - (z*+42))/G(z)). Function G
accepts a single argument, y, and returns /y. Fig-
ure 14 shows compiled machine graphs for the two
functions of Figure 13. Token arcs entering from
the left represent arguments passed into the func-
tion. Token arcs exiting from the right of function
F represent arguments passed to an invocation of G.

def FAX =
x* (Alx] ~ (x°2 + 4*x)) / G x);

def G y = SQRT y;

Figure 13: 1d code for sample program.
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Figure 14: Machine graphs for the sample code.



In addition to its arguments, each function accepts
a return target identifying the caller for a particular
invocation. The functions route their results back to
the return target.

The return target passed into F is used to trigger
a GET-FRAME instruction, requesting an activa-
tion frame in which to execute G (preferably from
the least loaded processor in the system). The re-
sult of the frame request is first directed at a SEND-
CURRENT-CONTEXT instruction, which sends a
return target to the new invocation of G, and is then
repeated to a SEND instruction which sends z as an
argument to G. The return target identifies the DIV
instruction within the current invocation of F. Note
that the request for the activation frame may be is-
sued before either of the arguments to F arrive, al-
lowing the latency associated with the request to be
overlapped with the computation of the arguments
for F or any computation within F.

The first argument to F, the array descriptor A, is
directed at a READ instruction®. The second argu-
ment, z, is initially directed at the READ instruc-
tion and then repeated to the SEND instruction de-
scribed above as well as three arithmetic operations.
The READ instruction issues a read request token.
The network directs the read request token to the
appropriate structure unit which in turn sends a re-
ply token containing the requested data item back to
the SUB instruction. The three arithmetic instruc-
tions form a sequential grain. The SQR instruction
squares z and stores the result in register 0. The
MUL instruction multiples z by 4 and stores the re-
sult in register 1. Finally the ADD instruction adds
the contents of registers 0 and 1 and generates a to-
ken destined for the SUB instruction. The latency
associated with the READ instruction and the la-
tency associated with the invocation of G can be
masked by these three arithmetic operations. The
invocation of G can proceed in parallel with any
other computation within F that is not dependent
on the results returned by G.

Function G directs its argument, y, at a SQRT

2The interfaces. between functions are defined so that ar-
guments are routed to instructions at predefined offsets from
the base of code blocks.

instruction and sends the result to its return tar-
get — in this case the right operand of the DIV
within F. The result from G is then repeated to a
FREE-FRAME instruction to release the activation
frame in which G executed. The result of the DIV
instruction is directed at a MUL instruction which
references the value of z stored in the current ac-
tivation frame for F3. Finally the MUL directs its
result at a SEND instruction which routes the result
of F back to its caller. This SEND references the re-
turn target from a known location in the activation
frame for F. Note that within F, synchronization (in-
structions which require two tokens to fire) is only
necessary when long latency operations (e.g. READ,
GET-FRAME) proceed in parallel with work local
to F.

5 Conclusions

The EPsSILON-2 architecture provides an ideal foun-
dation for parallel processing. The general paral-
lel scheduling and storage models allow EPSILON-2
to efficiently exploit any form of parallelism. The
support for multiple active tasks per processor and
the cycle level context switching accomodate the un-
predictable latencies associated with physically dis-
tributed memory.

There remains much to be done in the devel-
opment of the EPSILON-2 system. Many of the
programming tools taken for granted with tradi-
tional computer architectures need to be reformu-
lated to take advantage of the unique capabilities of
EpPsiLON-2. The ability to exploit all forms of paral-
lelism brings with it the possibility that a program
will unleash so much parallelism that the machine’s
resources will be overwhelmed. Strategies for con-
straining the amount of parallelism unleashed are
needed [11]. The general scheduling model allows
the tradeoff between parallelism and sequential ef-
ficiency to be explored. In fact, the intrinsically
parallel nature of EPSILON-2 allows us to turn the
traditional problem of parallelizing sequential pro-

3Current pure dataflow machines would require a separatc
token to transmit the value of z to the MUL instruction.



grams on its head — we now start with inherently

parallel programs and search for opportunities to se-
quentialize portions for greater efficiency. This new
concept of selective sequentialization also warrants

further research. -
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