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Abstract

Epsilon-2 is a general parallel computer architec­
ture that combines the fine grain parallelism of 
dataflow computing with the sequential efficiency 
common to von Neumann computing. Instruction 
level synchronization, single cycle context switches, 
and RISC-like sequential efficiency are all supported 
in Epsilon-2. The general parallel computing 
model of Epsilon-2 is described, followed by a de­
scription of the processing element architecture. A 
sample code is presented in detail, and the progress 
of the physical implementation discussed.

1 Introduction

The attractive properties of a dataflow model of 
computation have been studied for some time [1,2]. 
Transparent exploitation of parallelism, efficient syn­
chronization, insensitivity to latency [3], and seal- 
ability are among the desirable characteristics. A 
handful of prototypes have been built [4], but most 
have suffered from low performance relative to com­
mercially available computers. Recently, several ef­
forts have produced dataflow computers that show 
promise of overcoming the historical performance 
limitation. The Sigma-1 [5] relies on a high speed, 
hash table based associative matching store. The 
Monsoon architecture [6] continues MIT’s dataflow 
research with an explicit token store dataflow pro­
cessor architecture.

Sandia’s Epsilon processor [7,8] demonstrated
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sustained uniprocessor performance comparable to 
commercial mini-supercomputers. The Epsilon-2 
system builds on the direct match (single cycle, in­
struction level synchronization) proven in the Ep­
silon processor. The static memory model of the 
Epsilon processor has been extended to a fully dy­
namic model, allowing single cycle context switches 
and dynamic parallelization. The pure dataflow 
scheduling mechanism has been superseded by a 
more general model that is a superset of both pure 
dataflow and strictly sequential execution. More em­
phasis has been placed on the software system for 
Epsilon-2, including compilers for both Id [9] and 
Fortran.

The general parallel computation model embodied 
in Epsilon-2 will first be described. The overall 
architecture will then be outlined, followed by a more 
complete description of the Epsilon-2 processor. A 
simple example code will be presented in detail to 
illustrate the actual operation of the machine. Some 
new problems posed by such an inherently parallel 
system will then be presented, along with indications 
of the direction being taken to address these issues.

2 The Epsilon-2 Parallel Compu­
tation Model

Epsilon-2 is based on an intrinsically parallel com­
putation model. The instruction scheduling model 
of Epsilon-2 is a generalization of both the von 
Neumann and dataflow models. The storage model 
of Epsilon-2 is a parallel generalization of a tradi­
tional stack based storage model.

The scheduling and storage models are first pre­
sented without regard to the actual implementation
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Figure 1: Spectrum of instruction scheduling mod­
els.

The description of the Epsilon-2 system that fol­
lows then discusses the implementation of the gen­
eral models.

2.1 The Scheduling Model

The spectrum of instruction scheduling models is 
shown in Figure 1. At one extreme is the traditional 
von Neumann scheduling model, where the instruc­
tions are fully ordered. The von Neumann schedul­
ing model is thus inherently sequential. This model 
does not cleanly extend to parallel processing, but 
it does allow locality to be exploited to great advan­
tage. The other extreme is operation level dataflow, 
where the instructions are partially ordered by the 
dependencies in the computation. This model can 
exploit any form of parallelism, although it does not 
benefit from locality.

The scheduling model of Epsilon-2 is a general­
ization of the entire spectrum. There is still a par­
tially ordered graph, as in operation level dataflow, 
so the model is applicable for any level of parallelism. 
Each node in the graph is a fully ordered sequence 
of instructions — a grain — rather than a single 
instruction as in the pure dataflow model. Graphs 
where all grains are length one correspond to the 
pure dataflow extreme. A graph composed of a sin­
gle grain corresponds to the von Neumann extreme. 
This general scheduling model allows each code to 
strike a balance between parallelism and sequential 
efficiency.

Time

Figure 2: Snapshots of a traditional activation stack. 
Only the top procedure is active.

procedure F 
{ ... 

call G 
• • •
call H
... >

procedure G
{ ... >

procedure H 
{ ... 

call J 
... >

Figure 3: Sample program for storage model com­
parisons.

2.2 The Storage Model

Traditional storage models are often based on a stack 
of activation frames. Activation frames are pushed 
on and popped off the stack as procedures axe en­
tered and exited. At any given time, only the pro­
cedure working in the topmost activation frame is 
active. As an example, Figure 2 shows snapshots of 
a traditional activation stack for the program shown 
in Figure 3.

Epsilon-2 generalizes the traditional stack model 
to a tree of activation frames. In Epsilon-2, proce­
dures are invoked (and activation frames allocated) 
in a concurrent fashion. An invocation represents a
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Figure 5: Epsilon-2 execution system architecture.

Figure 4: Snapshots in time of one possible unfolding 
of an Epsilon-2 tree of activation frames. All the 
activations in the tree may be active concurrently. 
Returns from independent activations may happen 
in any order.

fork of a new procedure rather than simply a transfer 
of control. Figure 4 shows snapshots of the Epsilon- 
2 activation tree for the program shown in Figure 3. 
Procedure F invokes procedure G and procedure H 
in parallel, and H invokes J concurrently. At any 
given time, the procedures working in any, or all, of 
the activation frames can be active (not just those 
working in the leaf activation frames). In fact, even 
in a single Epsilon-2 processor, any number of pro­
cedures can execute concurrently (in reality, their 
execution will be interleaved). To invoke a proce­
dure, the caller requests an activation frame from 
any processor within the system. Once the activa­
tion frame is allocated, the procedure is bound to 
the processor which satisfied the request1.

Together the Epsilon-2 scheduling and storage 
models form a comprehensive parallel execution 
model which allows the system to efficiently exploit 
all forms of parallelism (e.g., instruction-level, vec­
tor, loop-level, function-level). The storage model 
supports the dynamic spawning of concurrent tasks. 
The scheduling model allows each processor to use 
parallelism within a task (or parallelism between 
concurrent tasks on the same processor) to mask the 
latency associated with remote memory accesses and 
pipeline delays.

’Load balance across processors is achieved through the 
distribution of activation liame requests among the processors 
in the system.

3 The Epsilon-2 System

The Epsilon-2 system consists of many compo­
nents — the computer itself, programming tools, de­
bugging and performance analysis tools, simulation 
capabilities, etc. We will first briefly describe the 
major components and their functions, then focus 
on the Epsilon-2 processor and its operation.

The Epsilon-2 architecture is shown in Figure 5. 
The system is built around a module consisting of a 
processor board and structure memory board, con­
nected via a four by four crossbar to each other, an 
I/O port, and the global interconnect. In this way, 
each additional unit of processing brings with it a 
unit of structure memory (size and bandwidth), a 
unit of I/O bandwidth, and a unit of global inter­
connect bandwidth.

The unit of transaction for all communication in 
the system is a token. Tokens are fixed length en­
tities, composed of a target portion (similar to an 
address) and a data portion as shown in Figure 6. 
The type field of both the target and data portions 
identifies the type of the information contained in 
the rest of the token. Targets are always typed as 
some sort of pointer, while data portions may be 
pointers, floating point numbers, integers, or logi- 
cals. The value of the data portion is interpreted as 
indicated by the type. On the processor, the instruc­
tion pointer (IP) is used to reference an instruction 
word in the instruction memory. On the structure 
unit, the instruction pointer is used directly to con­
trol the structure unit's operation. On the processor, 
the frame pointer (FP) selects a particular activa­
tion frame that the instruction will reference. On 
the structure unit, the frame pointer is used to ad­
dress a particular location in the memory array.
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target portion
7 0 23 0 39 0
type IP FP

data portion
7 0 63 0
type value

Instruction
memory

token

Figure 6: Epsilon-2 token definition. The IP (in­
struction pointer) and FP (frame pointer) specify 
the instruction and activation frame this token is 
destined for.

The structure units are interleaved in the system 
address space, thus supporting the abstraction of a 
shared global memory. They support a variety of 
data structures via split-phase, token based trans­
actions. A read, for example, is initiated by a pro­
cessor sending an appropriate token to the structure 
unit. The data item is read from the memory, and 
returned to the processor as part of a new token. 
Traditional arrays, lists, and I-structures [10] are di­
rectly supported by the structure units.

The I/O ports are also mapped into the address 
space of the system. The I/O token interface resem­
bles that of the structure memory units, although it 
of course deals with I/O devices rather than mem­
ory. The global interconnect is a packet switched 
multistage network. Its design is simplified by the 
fixed length, token-based communication.

3.1 Epsilon-2 Processor Architecture

The basic structure of the Epsilon-2 processor is 
shown in Figure 7. Tokens arrive from the local 4x4 
switch and are buffered in the token queue. Tokens 
are read from the token queue and the instruction 
pointer used to access the instruction memory. The 
instruction referenced is used to generate a repeat to­
ken and to generate the addresses of operands and a 
synchronization point. These addresses are relative 
to the frame pointer of the current token, so the cur­
rent activation frame can change with each incoming

Figure 7: Epsilon-2 processor architecture. The 
heavy lines represent token paths.

: 1 mux

target current token

Instruction
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Figure 8: Generation of a repeat token.

token (changing activation frames changes contexts). 
The operands are read from the frame memory and 
combined by the ALU to generate a result. The re­
sult is written into the registers and may be used 
to generate an output token. The target portion of 
the output token is generated by the TCU (target 
calculation unit).

Repeat tokens are generated as shown in Figure 8. 
A token is read from the token queue, and its instruc­
tion pointer used to read the instruction word from 
memory. The repeat offset in the instruction word 
is added to the current token’s instruction pointer 
to generate a new instruction pointer. The current 
token’s frame pointer and data portion are used un­
modified in the repeat token. The repeat token is 
then used as the next cycle’s current token rather 
than reading a new token from the token queue. In 
effect, the repeat offsets in the instruction word are
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Figure 9: Using repeat to fanout data. The fanout 
required is shown implemented with a tree of iden­
tities on the left, with repeat on the right.

Figure 10: Repeat used for scheduling a grain of 
computation. The synchronization at the addition 
has been eliminated in the grain implementation and 
the latency has been reduced to a single pipeline 
transit.

Figure 11: Accessing operands from the current ac­
tivation frame. The activation frame is selected by 
the current token. The location within the activa­
tion frame is selected by an operand offset in the 
instruction word.

match memory
mode

----------------- fire

Figure 12: Epsilon-2 direct match synchronization.

used to build a linked list of instructions, where each 
instruction receives a token on the cycle after its pre­
decessor in the list does. This is used both to fan out 
tokens for data fanout (multiple uses of the same 
data item) as shown in Figure 9, and for schedul­
ing fanout (multiple instructions triggered from the 
same token, i.e., a grain), as shown in Figure 10.

The instruction also contains two offsets for ac­
cessing operands. These offsets may select a paxticu- 
lar location in the current activation frame as shown 
in Figure 11, a location relative to the base of the 
frame memory (used for constants), or a register. In 
addition, the data portion of the current token may 
be stored in either of the locations specified by the 
operand offsets. In a pure dataflow graph, the data 
portion of the input token is always required by the 
instruction. In the more general model of Epsilon- 
2 some tokens carry only scheduling information in 
which case the data portion is ignored.

An additional offset in the instruction is used to

select a location in the match memory. The match 
memory is organized into activation frames, just as 
the operand memory. Any number of instructions 
may synchronize at a given match location. The syn­
chronization is done with a variant of direct match 
described in (7). The operation of the direct match 
is shown in Figure 12. The selected location in 
the match memory is read. If the value matches 
the match mode of the instruction, the instruction 
fires (is allowed to execute) and the location is writ­
ten with zero. If the value does not match the mode, 
the instruction does not fire and the value is incre­
mented before being written back into the location. 
The synchronization therefore requires only a single 
memory read and a single memory write.

The ALU combines the two operands as directed 
by the opcode in the instruction word. The normal 
suite of floating point, integer, and arithmetic oper­
ations are supported, as well as a variety of special 
instructions added for greater efficiency.
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The TCU is responsible for generating the tar­
get portion of any output token generated by the 
instruction. Targets local to the current activation 
are generated in much the same manner as the target 
portion of repeat tokens, retaining the current frame 
pointer and generating a new instruction pointer by 
adding an offset (part of the instruction word) to 
the current instruction pointer. Targets may also be 
formed using parts of the current operands, allow­
ing tokens to be routed to computed targets (e.g., 
between contexts).

Each instruction writes its result into a register. 
These registers may be referenced by any succeed­
ing instruction. It is important to note that reg­
ister contents are not necessarily preserved across 
grain boundaries (other instructions in independent 
threads may overwrite the values stored in the regis­
ters). Registers are therefore used only for interme­
diate values within a grain.

The Epsilon-2 processor allows clock level syn­
chronization due to the direct match mechanism. 
Since each token completely defines the processor’s 
execution context, the processor is capable of switch­
ing contexts on each cycle. The ability to have multi­
ple active contexts on each processor combined with 
the clock level context switch allows tasks which 
initiate unpredictable latency operations (e.g., data 
structure reads) to be automatically switched out in 
favor of other ready tasks.

4 Sample Program

To illustrate the capabilities of the Epsilon-2 archi­
tecture, this section steps through a simple example 
program implemented on Epsilon-2. The code for 
the example, expressed in the declarative language 
Id, is shown in Figure 13. Function F takes two ar­
guments — an array descriptor A and an integer x. 
It computes x*(A[i] —(a:2-|-4z))/G(x)). Function G 
accepts a single argument, j/, and returns y/y. Fig­
ure 14 shows compiled machine graphs for the two 
functions of Figure 13. Token arcs entering from 
the left represent arguments passed into the func­
tion. Token arcs exiting from the right of function 
F represent arguments passed to an invocation of G.

def F A x *
x * (A[x] - (x“2 ♦ 4*x)) / G x); 

def G y « SQRT y;

Figure 13: Id code for sample program.

Figure 14: Machine graphs for the sample code.
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In addition to its arguments, each function accepts 
a return target identifying the caller for a particular 
invocation. The functions route their results back to 
the return target.

The return target passed into F is used to trigger 
a GET-FRAME instruction, requesting an activa­
tion frame in which to execute G (preferably from 
the least loaded processor in the system). The re­
sult of the frame request is first directed at a SEND- 
CURRENT-CONTEXT instruction, which sends a 
return target to the new invocation of G, and is then 
repeated to a SEND instruction which sends a; as an 
argument to G. The return target identifies the DIV 
instruction within the current invocation of F. Note 
that the request |br the activation frame may be is­
sued before either of the arguments to F arrive, al­
lowing the latency associated with the request to be 
overlapped with the computation of the arguments 
for F or any computation within F.

The first argument to F, the array descriptor A, is 
directed at a READ instruction2. The second argu­
ment, a;, is initially directed at the READ instruc­
tion and then repeated to the SEND instruction de­
scribed above as well as three arithmetic operations. 
The READ instruction issues a read request token. 
The network directs the read request token to the 
appropriate structure unit which in turn sends a re­
ply token containing the requested data item bank to 
the SUB instruction. The three arithmetic instruc­
tions form a sequential grain. The SQR instruction 
squares x and stores the result in register 0. The 
MUL instruction multiples x by 4 and stores the re­
sult in register 1. Finally the ADD instruction adds 
the contents of registers 0 and 1 and generates a to­
ken destined for the SUB instruction. The latency 
associated with the READ instruction and the la­
tency associated with the invocation of G can be 
masked by these three arithmetic operations. The 
invocation of G can proceed in parallel with any 
other computation within F that is not dependent 
on the results returned by G.

Function G directs its argument, y, at a SQRT

2The interfaces between functions are defined so that ar­
guments are routed to instructions at predefined offsets from 
the base of code blocks.

instruction and sends the result to its return tar­
get — in this case the right operand of the DIV 
within F. The result from G is then repeated to a 
FREE-FRAME instruction to release the activation 
frame in which G executed. The result of the DIV 
instruction is directed at a MUL instruction which 
references the value of x stored in the current ac­
tivation frame for F3. Finally the MUL directs its 
result at a SEND instruction which routes the result 
of F back to its caller. This SEND references the re­
turn target from a known location in the activation 
frame for F. Note that within F, synchronization (in­
structions which require two tokens to fire) is only 
necessary when long latency operations (e.g. READ, 
GET-FRAME) proceed in parallel with work local 
to F.

5 Conclusions

The Epsilon-2 architecture provides an ideal foun­
dation for parallel processing. The general paral­
lel scheduling and storage models allow Epsilon-2 
to efficiently exploit any form of parallelism. The 
support for multiple active tasks per processor ami 
the cycle level context switching accomodate the un­
predictable latencies associated with physically dis­
tributed memory.

There remains much to be done in the devel­
opment of the Epsilon-2 system. Many of the 
programming tools taken for granted with tradi­
tional computer architectures need to be reformu­
lated to take advantage of the unique capabilities of 
Epsilon-2. The ability to exploit all forms of paral­
lelism brings with it the possibility that a program 
will unleash so much parallelism that the machine’s 
resources will be overwhelmed. Strategies for con­
straining the amount of parallelism unleashed are 
needed [11]. The general scheduling model allows 
the tradeoff between parallelism and sequential ef­
ficiency to be explored. In fact, the intrinsically 
parallel nature of Epsilon-2 allows us to turn the 
traditional problem of parallelizing sequential pro­

3Current pure dataflow machines would require a separate 
token to transmit the value of x to the MUL instruction.
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grams on its head — we now start with inherently 
parallel programs and search for opportunities to se- 
quentialize portions for greater efficiency. This new 
concept of selective sequentialization also warrants 
further research. •
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