

SEP 02 1997

Destruction of Complexants Used in Groundwater Decontamination

DO NOT MICROFILM
COVER

Prepared for the U.S. Department of Energy
Office of Environmental Restoration
and Waste Management

**Westinghouse
Hanford Company** Richland, Washington

*Hanford Operations and Engineering Contractor for the
U.S. Department of Energy under Contract DE-AC06-87RL10930*

Copyright License By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

MASTER

Approved for Public Release

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LEGAL DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy.

Printed in the United States of America

DISCLM-2.CHP (1-91)

Destruction of Complexants Used in Groundwater Decontamination

**K. M. Hodgson
T. P. Moberg**

**Date Published
August 1991**

**To Be Presented at
Environmental Remediation 1991
Pasco, Washington
September 8-11, 1991**

**Prepared for the U.S. Department of Energy
Office of Environmental Restoration
and Waste Management**

**Westinghouse
Hanford Company** P.O. Box 1970
Richland, Washington 99352

Hanford Operations and Engineering Contractor for the
U.S. Department of Energy under Contract DE-AC06-87RL10930

Copyright License By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Government's right to
retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

MASTER

Approved for Public Release

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

yes

DESTRUCTION OF COMPLEXANTS USED IN GROUNDWATER DECONTAMINATION

K. M. Hodgson
T. P. Moberg

ABSTRACT

A supported liquid membrane process is being developed to remove uranium from aqueous solutions. The uranium would be concentrated into a strip solution containing either vinylidene-1,1-diphosphonic acid (VDPA) or 1-hydroxyethane-1,1-diphosphonic acid (HEDPA). This study compares the degradation of HEDPA and VDPA under similar conditions. For the time of the tests in this study (3 h) the maximum amount of HEDPA that was destroyed was 83.5% using hydrogen peroxide and the maximum amount of VDPA destroyed was 64.6% using nitric acid.

INTRODUCTION

A new class of reagents for use in nuclear waste processing was developed by the chemical division at the Argonne National Laboratory (ANL). These reagents, which are substituted methane diphosphonic acids, have been referred to as thermally unstable complexants (TUC).^{1,2}

The TUCs possess a unique combination of properties that include: organic complexes that are highly stable in very acidic media, metal ion complexes that are aqueous soluble, and the ability to readily decompose to innocuous substances when heated in the presence of moderate oxidizing agents. Some of the major applications of TUCs are the stripping reagent in solvent extraction and ion exchange processes, holdback reagent in strontium and cesium extraction processes, and decontamination reagent.

The reagents evaluated in this study, which are substituted methane diphosphonic acids, were vinylidene-1,1-diphosphonic acid (VDPA) and 1-hydroxyethane-1,1-diphosphonic acid (HEDPA). The VDPA, developed by ANL as a TUCs, is not readily available. The ability to decompose HEDPA, which was not developed by ANL, was discovered after the development of TUCs. The HEDPA is readily available and could possibly be used in a supported liquid membrane process as a stripping solution for uranium.

The purpose of this study was to compare the degradation of HEDPA and VDPA using degradation conditions for VDPA similar to those developed by ANL. The conditions used for the degradation of VDPA and HEDPA included temperature change (25 °C, 60 °C, and 95 °C), an oxidant (H_2O_2) with a sodium orthovanadate catalyst at 25 °C and 60 °C, and adjustment of the pH to less than 1 by adding HNO_3 at 25 °C, 60 °C, and 95 °C.

The possible decomposition products for HEDPA and VDPA were phosphoric acid (H_3PO_4) and carbon dioxide (CO_2). The method used to characterize the decomposition of the complexants was ion chromatography.

PHYSICAL DESCRIPTION AND THEORY

Theory

The TUCs complexants developed by the chemical division at ANL are substituted methane diphosphonic acids. These complexants can be used for the aqueous complexation of transition metals, lanthanides, and actinides found in nuclear waste. Figure 1 shows a substituted methane diphosphonic acid in the general sense. The X and Y are used to adjust the lability of the C-P bond to oxidation, increase the acidity of the $-PO(OH)_2$, and increase the water solubility of the complexes.

Place Fig. 1 here.

Physical Description

Figure 2 gives the structure, name, and acronym for both complexants that were used in the testing.

The VDPA solution was obtained from a supported liquid membrane demonstration in which natural uranium was removed from a synthetic groundwater feed. The conditions and extent of decomposition for the VDPA solution were characterized to establish the VDPA effectiveness as a complexant. Approximately 8 L of the 0.086M VDPA solution were available. For comparison, 3.9 L of 0.086M HEDPA solution were made.

TEST APPROACH

Each test was done in a glass beaker and continuously stirred. The amount of VDPA, HEDPA, H_2O_2 , HNO_3 , and Na_3VO_4 that were used in making the chemical mixtures for each test are given in Table I. Each mixture was made at atmospheric conditions. Some of the tests required that the samples be heated on a hot plate.

Table II shows the conditions that were tested for the degradation of the VDPA and HEDPA complexants. These conditions included temperature variation, oxidation using hydrogen peroxide (0.504 gM H_2O_2) with a sodium orthovanadate catalyst (5.44×10^{-4} gM Na_3VO_4), and pH adjustment to less than 1 by nitric acid (1.234 gM HNO_3) addition.

WHC-SA-1209-FP

Place Fig. 2 here.

WHC-SA-1209-FP

Table I. Chemical Mixtures.

Test Numbers	VDPA 0.086M (ml)	HEDPA 0.086M (ml)	H ₂ O ₂ 30% (ml)	HNO ₃ 70.4% (ml)	Na ₃ VO ₄ (g)
1,3,5	500	-	-	-	-
2,4,6	-	500	-	-	-
7,9	488	-	40	-	-
8,10	-	488	40	-	0.1
11,13,15	448	-	-	74	-
12,14,16	-	448	-	74	-

Table II. Test Matrix of Degradation Conditions.

Test No.	Complexant	Temp (°C)	Oxidant	pH Adjust	Catalyst (NaVO ₄)
1	VDPA	RM	--	-	-
2	HEDPA	RM	--	-	-
3	VDPA	60	--	-	-
4	HEDPA	60	--	-	-
5	VDPA	95	--	-	-
6	HEDPA	95	--	-	-
7	VDPA	RM	H ₂ O ₂	-	-
8	HEDPA	RM	H ₂ O ₂	-	yes
9	VDPA	60	H ₂ O ₂	-	-
10	HEDPA	60	H ₂ O ₂	-	yes
11	VDPA	RM	--	yes	-
12	HEDPA	RM	--	yes	-
13	VDPA	60	--	yes	-
14	HEDPA	60	--	yes	-
15	VDPA	95	--	yes	-
16	HEDPA	95	--	yes	-

The H_2O_2 was added in two parts because of the slow reaction rate. The first half was added initially and the second half was added an hour later.

Tests 7 and 9 with VDPA required no catalyst, since the uranium in the solution acted as the catalyst. Tests 8 and 10 with HEDPA required catalyst addition because there was no uranium in the solution to act as the catalyst. Sodium vanadate was added to obtain a vanadium concentration of $1.0 \times 10^{-5} M$.

RESULTS

Test Solutions

Since the decomposition of the complexants yielded H_3PO_4 and CO_2 as the products, the amount of complexant degradation was determined by the concentration of free PO_4 in the final samples. The analysis of the degraded TUCs samples were completed using ion chromatography.

The VDPA and HEDPA degradation percentages are given in Tables III and IV. These percentages were found by calculating the amount of VDPA or HEDPA that corresponded to the free PO_4 present in each sample and then comparing the corresponding VDPA or HEDPA to the original concentrations. None of the VDPA or HEDPA complexants were completely decomposed during any of the tests. The total time for each test was 3 h. The highest degradation for VDPA occurred in test 15 with a 64.6 percent decomposition. The highest degradation for HEDPA occurred in test 10 with an 83.5 percent decomposition.

Table III. VDPA Degradation Percentages Calculated Using PO_4 Analytical Results.

Test No.	PO_4 (ppm)	PO_4 (wt%)	PO_4 (g)	VDPA (g)	Degradation (%)
1	692	0.069	0.34	0.35	4.3
3	773	0.077	0.31	0.32	3.8
5	5,292	0.529	0.85	0.88	10.5
7	4,424	1.442	2.36	2.42	29.7
9	7,682	0.768	3.20	3.27	40.2
11	1,149	0.115	0.63	0.65	8.6
13	1,510	0.151	0.76	0.78	10.5
15	16,980	1.698	4.72	4.83	64.6

Table IV. HEDPA Degradation Percentages Calculated Using PO₄ Analytical Results.

Test No.	PO ₄ (ppm)	PO ₄ (wt%)	PO ₄ (g)	HEDPA (g)	Degradation (%)
2	55	0.006	0.02	0.03	0.3
4	79	0.008	0.03	0.03	0.4
6	390	0.039	0.04	0.04	0.5
8	10,210	1.021	5.46	5.93	68.9
10	13,980	1.398	6.61	7.18	83.5
12	712	0.071	0.39	0.42	5.4
14	694	0.069	0.33	0.36	4.6
16	2,169	0.217	0.51	0.56	7.1

Figure 3 shows test 1-6 using only temperature variation. Both HEDPA and VDPA display an increase in degradation with increasing temperature; however, all the tests had less than 11 percent degradation. Moreover, VDPA was affected more by temperature than HEDPA.

Figure 4 shows the effects of H₂O₂ addition and temperature increase in tests 7-10. The Na₃VO₄ catalyst was added to the HEDPA solutions. Increasing temperature increased degradation. Addition of the oxidant (H₂O₂) in tests 8 and 10 caused significantly more degradation of the HEDPA relative to VDPA.

Figure 5 shows the effects of HNO₃ addition and temperature increase in tests 11-16. Again, increasing temperature increased degradation. The results from ANL for decomposing VDPA indicated that decomposition occurred only at a low pH.² Adjusting the pH using HNO₃ decomposed the VDPA more than the HEDPA. At 95 °C, the VDPA was decomposed by 64.6 percent, while the HEDPA was decomposed by only 7.1 percent.

In test 15, a precipitate formed on the bottom of the glass beaker, possibly containing uranium phosphate. The precipitate was not analyzed. There was 0.0016 gM of natural uranium present in the VDPA solution used in test 15. A uranium phosphate precipitate, therefore, could have accounted for only 2.0 percent of the free phosphate.

CONCLUSIONS

The best degradation of HEDPA was attained using Na₃VO₄ as the catalyst and H₂O₂ as an oxidant at 60 °C. It is possible that increasing the temperature could result in complete degradation of the HEDPA complexant.

WHC-SA-1209-FP

Place Fig. 3 here.

WHC-SA-1209-FP

Place Fig. 4 here.

WHC-SA-1209-FP

Place Fig. 5 here.

The best degradation of VDPA was attained using HNO_3 at 95 °C.

Increasing the temperature of the samples resulted in a definite increase in complexant degradation; however, increasing temperature alone degraded the complexants by only 10.5 percent at 95 °C for VDPA and 0.5 percent at 95 °C for HEDPA.

Using H_2O_2 as an oxidant with a catalyst (uranium for VDPA and vanadium for HEDPA) mixed with the complexants dramatically increased the degradation of both VDPA and HEDPA. The HEDPA decomposed more than VDPA. The VDPA degraded by 29.7 and 40.2 percent at 25 °C and 60 °C, respectively. The HEDPA degraded by 68.9 percent and 83.5 percent at 25 °C and 60 °C, respectively. Increasing the temperature of the HEDPA solution possibly could have resulted in almost complete degradation. The test matrix used was based on the conditions of decomposition employed by ANL.

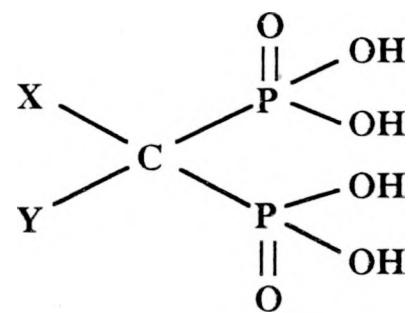
At 95 °C, the VDPA degraded by 64.6 percent using the HNO_3 addition to adjust the pH. This was based on the amount of free PO_4^{3-} in solution. For all other tests with HNO_3 the degradation was less than 10.5 percent.

BIBLIOGRAPHY

- 1) Gatrone, R. C., "pH-Dependent Decomposition of B-Hydroxy-Substituted Organophosphorus Complexants," *The Journal of Organic Chemistry*, Vol. 54, pp. 4272, 1989.
- 2) Gatrone, R. C., E. P. Horwitz, P. G. Rickert, and K. L. Nash, "The Synthesis and Decomposition of Novel Organophosphorus Complexants," *Separation Science and Technology*, 25(13-15), pp. 1607-1627, 1990.
- 3) Hodgson, K. M., "Fiscal Year 1988 Supported Liquid Membrane Development Report," WHC-EP-0264 1989.

DISTRIBUTION

Number of copies


ONSITE

7

Westinghouse Hanford Company

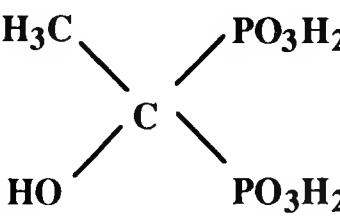
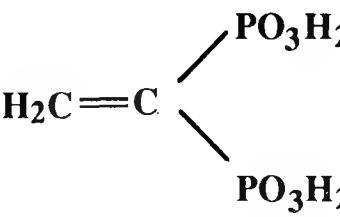
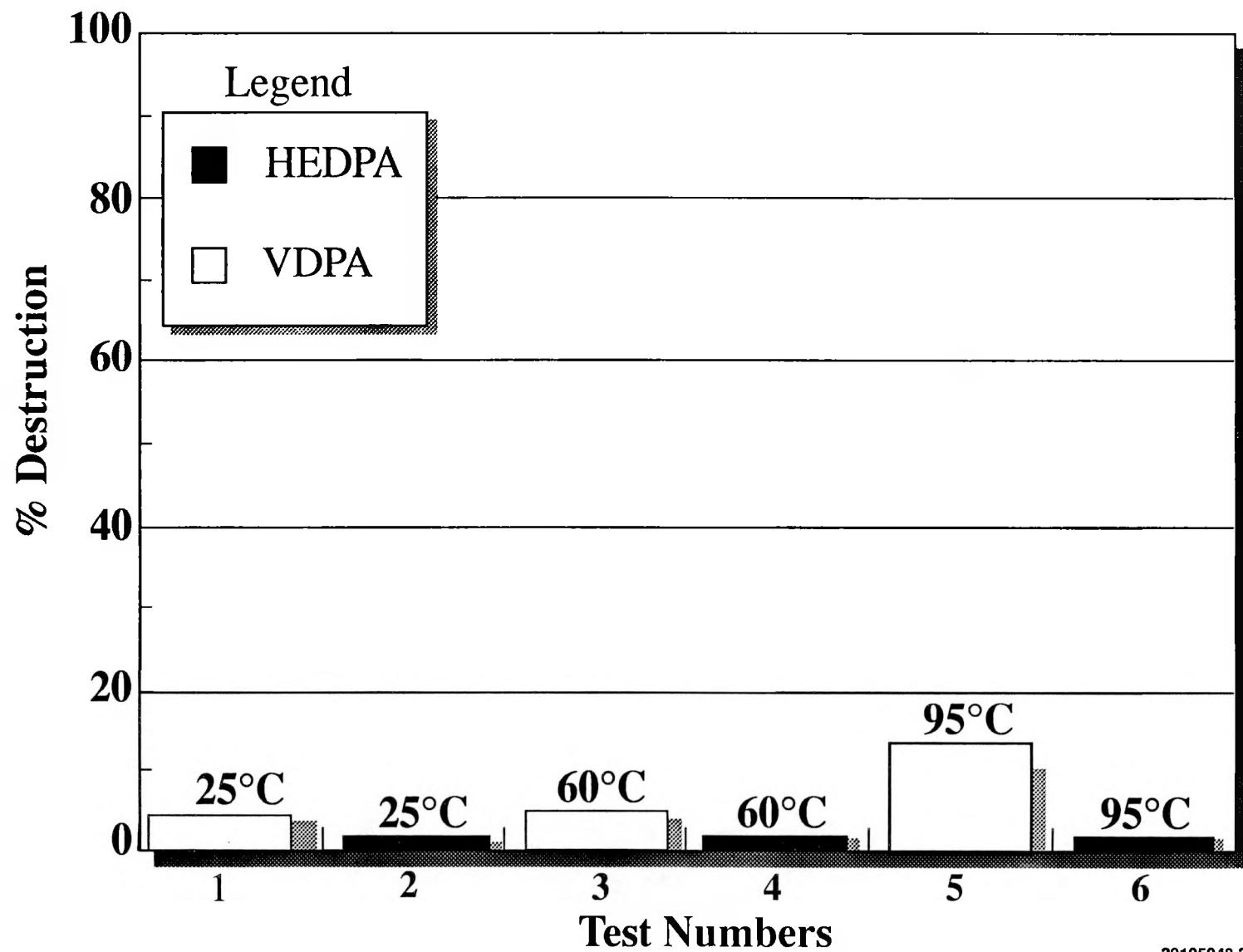
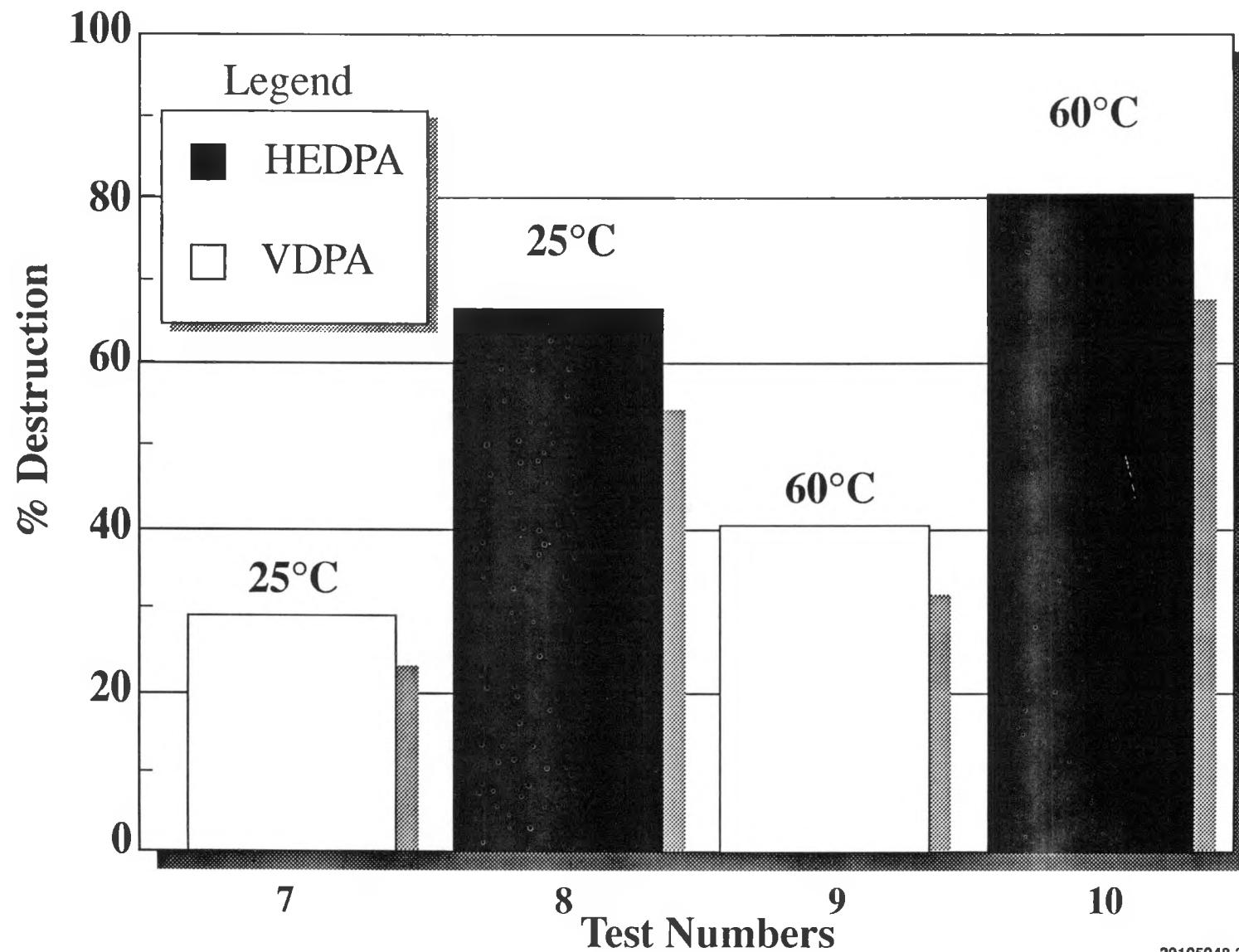


K. M. Hodgson	S4-25
T. P. Moberg	R1-49
M. J. Schliebe	S4-25
J. P. Sloughter	T6-07
J. C. Womack	L0-18
J. E. Womack	S0-98
Document Processing and Distribution	L8-15
Information Release Administration	R1-08

Fig. 1. Substituted Methanediphosphonic Acids



29105048.12


Fig. 2. Structure of the Organic Complexants

Structure	Name	Acronym
	1 - Hydroxyethane - 1, 1 - diphosphonic acid	HEDPA
	Vinylidene - 1, 1 - diphosphonic acid	VDPA

Fig. 3. Temperature Effect on Destruction

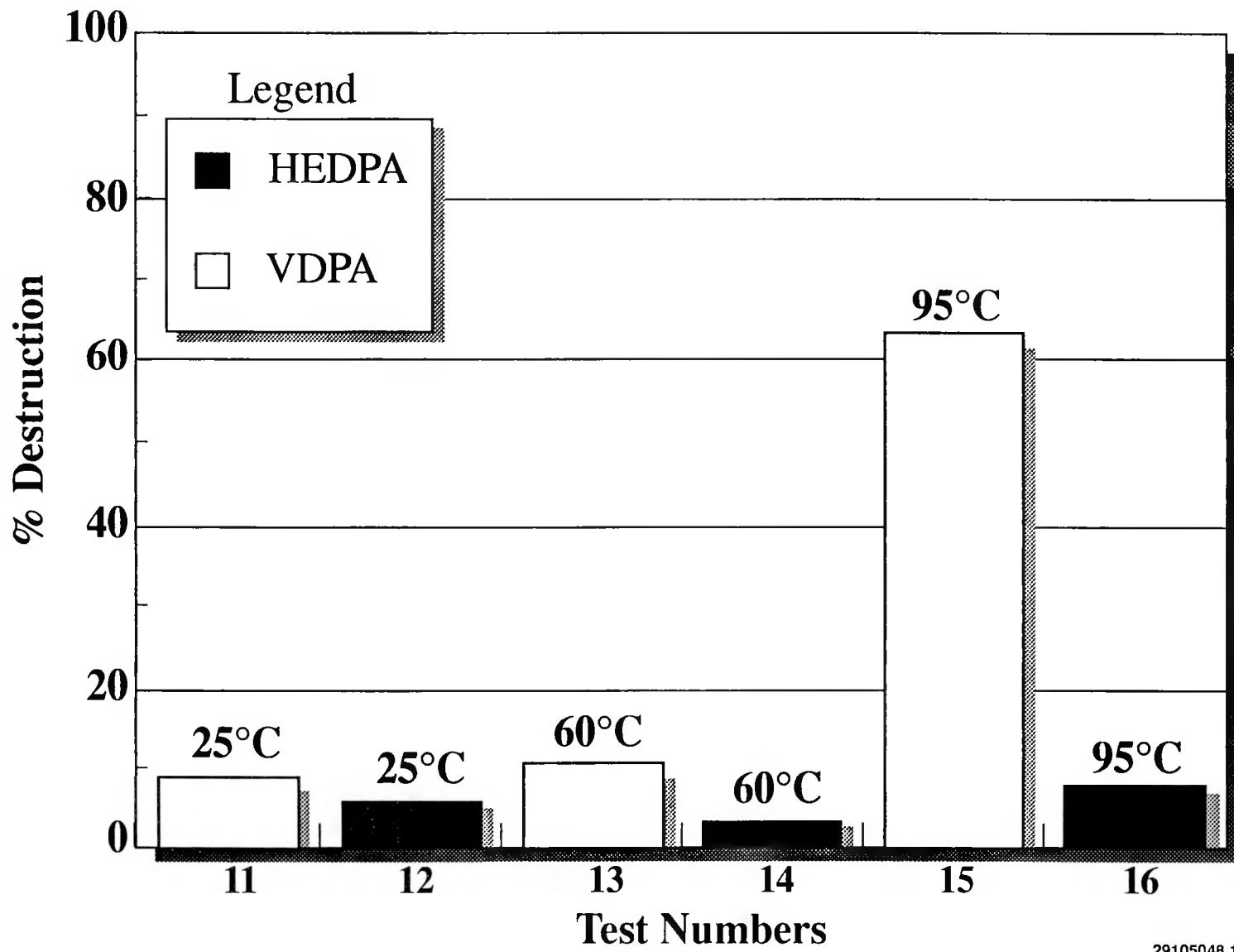


Fig. 4. Destruction with Peroxide Addition

29105048.3

Fig. 5. Destruction with HNO_3 Addition

