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SUMMARY

The Inert Electrodes Program, being conducted by Pacific Northwest Lab-
oratory {(PNL), involves improving the Hall-Heroult cells used by the Aluminum
Industry for the electrochemical production of aluminum. The PNL research
centers on developing more energy efficient, longer-lasting anodes and
cathodes and ancillary equipment. Major accomplishments for Fiscal Year 1988
are summarized below.

SCALE-UP ACTIVITIES

The scale-up activities involved working with industry to produce and
test industrial-scale anodes. Two companies were selected for construction
of a prototype anode and for pilot testing a cluster of inert anodes.

Thermal and mechanical properties of the anode were evaluated and the
data incorporated in the finite element analyses, which were used to better
understand the behavior of the anode during thermal events. The finite ele-
ment analyses indicated that differences in coefficients of thermal expansion
among materials in the anode are the primary causes of thermal stresses and
potential distortion. Stresses caused by thermal nonuniformity within the
anode are, for the conditions studied, of secondary importance.

The electrical connection developed by PNL for large anodes is produced
by including a "core” of Cu/Ni alloy powder in the anode while the anode mold
is being filled. This powder core is then pressed and sintered as part of
the anode. After sintering, the core is drilled and tapped to form a
threaded connection between the electrical conductor/support rod and the
cermet anode body.

ANODE PERFORMANCE

In the Anode Performance task, confirmation tests were conducted to
evaluate cermets based on the two-phase oxide system NiO-Feo04, containing a
third electrically conductive metal phase primarily composed of copper or
copper/nickel alloy. Also, a long-term test was conducted on a new cell
under conditions suitable for operation of inert anodes. Work was also



directed towards designing and fabricating an experimental apparatus for
determining current efficiency with variable anode-to-cathode distance (ACD)
during the electrolytic production of aluminum with cermet Taboratory-scale
anodes.

The Taboratory confirmation testing was useful in obtaining a better
understanding of electrolysis cell operating parameters. Operating condi-
tions that lead to anode degradation have been partly identified, and some
control methods have been developed to ensure proper operation of small
electrolysis cells using nonconsumable anodes. Laboratory-scale testing
showed the NiO-NiFe204-Cu(a)—based cermets are potentially viable as non-
consumable anodes for use in the electrolytic production of aluminum.

The leng-term testing invelved a new cell made of SiC, which was
expected to withstand attack by cryolite. However, the SiC oxidized and
dissolved in the cryolite. While the test was terminated as a result of SiC
interference and cell degradation, some useful information was obtained on
the chemical processes that occurred in the cell.

The apparatus being constructed for reduced ACD testing is designed to
evaluate current efficiency as a function of several parameters. These
parameters include anode-cathode spacing, anode and cathode slope, bath
chemistry, different electrode geometries, and different electrode materials.

ANODE MATERIALS

Work continued on producing standard anode materials for use in electro-
lysis testing and sensor development. Some anodes were fabricated from NiO-
NiFey04-17 wi% Cu by using a PNL-developed powder rather than spray-dried
powder. The PNL procedure appeared to produce a more homogeneous microstruc-
ture. Other fabrication work centered on NiO-NiFep04-Cu-Ni-A]l cermets, which
exhibited the highest electrical conductivities measured.

(a) Throughout this report, this designation is used for simplicity to
describe the cermet anode material. It is not meant to imply an exact
composition, however. A more accurate designation would be
NigFej_x0-NiyFe3_y0q4. The metal phase, e.g., Cu, is designated as a
weight percent addition.
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CATHODE PERFORMANCE

In the cathode performance task, the degradation mechanisms for TiBjy-
graphite cathode materials were studied. Results indicated that the time at
maximum temperature with no electrolysis affected spalling, AlzC3 formation,
penetration by molten Al, and subsurface cracking of the TiBj-graphite mate-
rial. While further study of the TiBp-graphite materials is not specifically
planned, these materials will be included as cathodes in laboratory-scale
electrolysis cells. Only limited evaluations of these materials will be
performed.
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1.0 INTRODUCTIDN

The Inert Electrodes Program is being conducted at the Pacific North-
west Laboratory (PNL)(a) for the U.S. Department of Energy (DOE), Office of
Industrial Programs (OIP). The purpose of the program is to develop long-
lasting, energy-efficient anodes and ancillary equipment for Hall-Heroult
cells used by the aluminum industry. Emphasis has been placed on the
development of anodes made from a ceramic/metal composite consisting of Ni
and Cu oxides and a Cu/Ni metal phase. These anodes are expected to have
lifetimes of 5 to 7 years, as opposed to the current technology, which
requires replacement of carbon anodes approximately every 20 days. The
program is in a transition phase, in which experience gained with laboratory-
scale anode production and evaluation technology is being scaled up in prep-
aration for large-scale pilot tests that will take place in FY 1989,

o Scale-up Activities. The objective of this task is to produce and

test industrial-scale anodes, and to transfer the associated
technology to industry.

In FY 1988, this task oversaw the solicitation of industrial coop-
eration in the testing of large-scale anodes; the determination of
mechanical/physical properties of the cermet material, and a finite
element stress analysis of the conceptual anode design, to assist
in formulating operating procedures and ensure adequate attention
to design details; and the development of a method to obtain a
robust junction between the cermet anode body and the electrical
conductor/anode support rod.

+« Anode Performance. The objective of this task is to evaluate the
performance of anode materials based on the two-phase oxide system
NiQ-NiFep04, containing an electrically conductive metal phase com-
posed primarily of Cu and Ni, under laboratory-scale electrolysis
conditions.

In FY 1988, the behavior of test anodes was determined in electro-
lytes of varying composition; the effect of anode geometry {(flat
bottom versus round bottom) was investigated; the sources of impur-
ities in the Al produced were addressed; and the performance of
cermets containing metallic Ni and Al in addition to Cu were
evaluated.

(a) Operated for the U.S. Department of Energy by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830.

1.1



» Anode Materials. The objective of this task is to produce and
characterize inert anode materials for Taboratory-scale testing and
for sensor applications.

In FY 1988, the effect of composition, powder type/source, and
processing parameters on the density and microstructures of the
anodes produced for testing were catalogued to provide a reference
base for future anode production.

o Cathode Performance. The objective of this task is to promote the
application of an inert cathode material in Hall-Heroult cells by
evaluating the compatibility of the candidate TiBy-graphite
material with electrolysis-cell bath constituents.

In FY 1988, TiBy-graphite materials, considered to be candidate

materials for use as cathodes in Hall-Heroult cells, were exposed

to electrolysis cell environments in conjunction with inert anode

studies. The degradation of the cathode material was evaluated as

a function of cell operating conditions, and plausible degradation

mechanisms were explored.

This Inert Electrodes Program annual report highlights the major tech-
nical accomplishments of FY 1988. The accomplishments are presented in the
following sections: Management, Scale-Up Activities, Anode Performance,
Anode Materials, and Cathode Performance. Also included is a Conclusions/
Future Directions section and an appendix, which contains discussion of the

thermophysical properties of a cermet.
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2.0 MANAGEMENT

Laboratory work at the Pacific Northwest Laboratory continued to demon-
strate that inert anode technology is viable. Tests in laboratory cells with
capacities up to 60 amperes were performed, with successful production of
Tow-impurity-tevel aluminum. Laboratory-size anodes were successfully
produced in a variety of shapes, and a superior method of making the elec-
trical connection to the anode was developed. Efforts in FY 1988 included
scale-up activities, bringing the technology closer to commercial reality.

Work with cathode materials decreased during FY 1988. However, work
performed during FY 1988 corroborated the mechanism of degradation of TiBj-
graphite that had been postulated in FY 1987.

Two papers were presented at the Electrochemical Society Meeting in
Atlanta, Georgia, May 15-20, 1988. The following presentations were made:
Evaluation of TiBj-Based Cathodes for Aluminum Processing Applications by
C. H. Schilling and S. C. Marschman and Development and Testing of Non-

Consumable Anodes for the Flectrolytic Production of Aluminum by

S. C. Marschman. In addition, three metallographic exhibits were submitted
to society meetings: Microstructural Changes in Cermets Used for the

Electrolytic Production of Aluminum by N. T. Saenz, S. C. Marschman,
N. C. Davis, and D. H. Parks {Prize - Honorable Mention International
Metallographic Society Contest, Composites Class, July, 1988, Toronto,

Canada); Aluminum Penetration in TiB,-Graphite Composites by N. T. Saengz,

C. H. Schilling, D. H. Parks, and G. L. Graff (Prize - Third Place Inter-
national Metallographic Society Contest, Composites Class, July, 1988,
Toronto, Canada); and Elemental Segregation in TiBs-Graphite Cathode During
Aluminum Smelting by C. H. Schilling, N. T. Saenz, H. Kjarmo, G. L. Graff,
and S. C. Marschman (Prize - Honorabie Mention, 1987 American Ceramic Society
Ceramography Contest, Pittsburgh).

The following reports were published during FY 1988: Marschman, S. C.,
N. C. Davis, and R. W. Stephens. 1987. Nonconsumable_Anode Electrical Con-
tacts and Support Mechanisms, PNL-6393, Pacific Northwest Laboratory,
Richland, Washington; Schilling, C. H. 1988. Laboratory Testing of TiBs-
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Based Cathodes for ETectrolytic Production of Aluminum, PNL-6594, Pacific
Northwest Laboratory, Richland, Washington; and Schilling, C. H. and

G. L. Graff. 1988, Immersion Tests of TiBy-Based Materials for Aluminum
Processing Applications, PNL-6593, Pacific Northwest Laboratory, Richland,
Washington.

An industry review meeting was held in Seattle, Washington, November 3,
1987. Representatives from the major aluminum companies, the Bonneville
Power Administration, Eltech, and the U.S. Department of Energy attended this
review meeting. Details of the program activities were presented. Four
program review meetings were held--two in Washington, D.C., and two in
Richland, Washington.

Two new consultants were retained by the program. Mr. Fred Huetig was
retained for his expertise in the ferrite industry. Mr. Huetig will be
assisting the program in scaie-up and production of anodes. Mr. Max Adkins
was also retained by the program. He will assist the program by making
economic assessments of the inert anode technology.

The program staff hosted several visitors from various ceramics
industries interested in producing TiB; cathode materials or ferrite anode
materials. Dr. Jomar Thonstad from Trondheim University, Trondheim, Norway,
also visited PNL. He discussed the research being performed in his labora-
tory on inert anodes for aluminum smelting.
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3.0 SCALE-UP ACTIVITIES

Scale-up activities included selecting two private companies for produc-
ing and pilot testing large anodes. The other tasks involved development of
an electrical connection that also acts as the anode support; evaluation of
thermal/mechanical properties of the anode; and finite element analyses,
using the thermal and mechanical data, to better understand the behavior of
the large anode during thermal events.

3.1 INDUSTRIAL PARTICIPATION

During FY 1988, industrial participation in the Inert Electrodes Program
was solicited to bring industrial partners into the program; to gain addi-
tional insight into the industrial approach for commercializing the inert
anode technology; and to begin transferring the technology to industry. The
solicitation process involved publishing the "intent to issue request for
proposals™ in the Commerce Business Daily (CBD). From the response to the
advertisement in CBD, a 1ist of candidate companies was formed and requests
for proposals were mailed to these companies. Each request for proposal con-
tained detailed information on one of two projects--construction of a proto-
type anode and performance of a pilot test of a cluster of inert anodes.
Proposals from two companies for anode construction and one company for the
pilot cell test were evaluated. One company for each task was selected by an
evaluation committee based on evaluation criteria set at the time the
requests for proposals were sent to the candidate companies.

The first Targe anodes will be produced at Cercom, Inc., Vista, Califor-
nia. These anodes will be a simple, cup-shaped design, approximately 15 cm
{6 in.) in diameter and 20 c¢m (8 in.) high. 1In this design, optimum gas
release is not a consideration. Survivability tests are planned to demon-
strate the performance of the anode material at the prescribed operating
conditions.

The schedule for the delivery of the large anodes calls for the first
or prototype anode to be delivered to PNL at the end of February 1989.
This anode will be nondestructively examined for defects, fitted with an
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electrical connection and sensor connections, and shipped to Reynolds Metals
Co., Sheffield, Alabama, where laboratory tests will be run.

The laboratory test will be initiated in March 1989 with a singlie anode
and an externally heated, Al503-1ined, graphite cell approximately 18 cm
{7.5 in.) in diameter. After a successful laboratory test, additional anodes
will be produced for testing in a large pilot cell at the Reynolds Metals Co.
For the large-scale test, a cluster of six inert anodes will be tested in the
pilot cell. The total amperage through this cluster will be in the range of
1 kA to 1.2 kKA. A carbon anode within the cell will be used to supply most
of the heat needed to keep the cell functional. The test will run for
3 weeks and anodes will be changed each week. This test will be used to
evaluate the survivability of inert anodes under nearly industrial condi-
tions, to obtain an estimate of the impurity level in the metal produced, and
to determine operating parameters of the inert anodes. The large-scale test
is scheduled for the summer of 1989, with the exact date depending on the
anode production schedule.

3.2 ELECTRICAL CONNECTION

Cermet materials typically are difficult to join to other materials
while maintaining good electrical conductivity and mechanical strength. Sci-
entists at Alcoa made successful experimental joints by reducing cermet sur-
faces with carbon, then diffusion-welding the reduced layer to nickel stubs
(Weyand et al. 1986). They also included a transition zone {a tailored
cermet-metal mix) between the cermet, the diffusion weld, and the nickel
stub. Mechanical joining of the anode to the electrical conductor has
attractive features, but has not been pursued because of the hostile operat-
ing environment.

Nickel continues to be the principal material candidate for the elec-
trical connectors because the coefficient of thermal expansion for Ni (13.3 x
10-6 cm/cm-°C) is similar to that for the cermet material 10.3-13.1 x
107% cm/{cm-°C) (see Table 3.2). In addition, Ni is readily fabricated and
appears to have adequate strength at elevated temperatures. The dual objec-
tives of a higher-strength junction and elimination of the reduction step
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TABLE 4.1.
Ancde
Current Alumirm
Anode  Duration Current Density Procheed Coulombic  Bath
Humber h Anos Afcme GHS Efficiency Ratio
138-H-1% 20.0 12.0 0.5 Urmeasur- --- 1.35
sble
111-12 20.0 10.0 0.5 46,2 70% 1.35
133-2 20.0 10.0 0.5 58.9 E8% 1.35
131-1 20.0 10.2 0.5 51.4 76% 1.35
102-2 20.0 10.0 0.5 42.3 &4% 1.35
104-2 20.0 10.1 0.5 43 yex 1.35
109-6 20.6 10.1 0.5 &5 933 1.35
109-4 20.5 0.3 0.5 50 7% 1.35
115-25, 18.25 20.0 0.5 61.5 50% 1.15
115-26
114-24 12.0 10.2 0.5 21.% 53% 1.35

5.15

3.3
3.7
9.5

3.7

7.35

7-35

6.25

6.75

5.0

5.0

5.0
8.0

8.0

8.0

¥
[a%]

2.71

e

2.74

4,2

1.4

5.5

0
5.0

4.0

5.0

Accumulated Data for Test

MqF2

0

Performed on NiO-NiFey04-Cu-Based Cermet Ancdes, FY 1988

LiF

0

Q

wth Fe in wtX Ni in wtX Cu in wtX Fe wtX Ni wt¥ Cu Success
Al Metal Al Metal Al Metal in bath in bath in bath or Failure Comments
ICP #'s not usable .- ICP not performed --- Success Cup-shaped anode, slight
edge wear
1.224 0.194 0.055 ICP not performed  --- Success? ICP nurbers questionabie,
na wear on ancde
0.227 0.045 0.517 0.024 0,016 0.049 Partial Al anode, rourd bottom,
SUCCESS single blister
0.246 0.016 0.135 0.028 0.011 0.080 Success High alloy Cu/Ni anode,
round bottom
0.3 0.021 0.134 0.010 0.001 0.003 Success? Al anode, slight edge wear
0.200 0.017 0.126 0.019 0.004 0.014 Success? Al anode, slight edge wear,
snode cracked before test
0.13% 0.021 0.096 0.054 0.019 0.038 Success Slight discoloration
0,044 0.003 0.014 0.018 0.018 0.035 Success No Wear
0.012 0.003 0.072 0.012 0.024 0.069 Success 2 round-bottomed anodes
0.710 0.052 0.134 0.012 0.018 0.018 Success Round-bottomed anodes
0.022 0.0%6 0.018 0.014 0.038

ADJUSTED AVERAGES: 0.245
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7.0 CONCLUSIONS AND FUTUR RECTI

The principal conclusions and future directions of the technical work

performed on the Inert Electrodes Program at PNL in FY 1988 are presented in
this section of the report, keyed to the major FY 1988 work divisions:

1) Scale-Up Activities; 2) Anode Performance; 3) Cathode Performance; and

4) Anode Materials.

7.1

7.1.1

SCALE-UP ACTIVITIES
Conclusions

The first large anode for pilot-scale tests will be produced at Cercom,
Inc., Vista, California. The schedule calls for delivery of the
prototype anode to take place during February 1989.

Electrical connector development work, indicates that a core of metal can
be placed in the anode for the conmector junction by including a "core”
of metal powder alloy in the desired location when the isostatic mold is
being filled. If required, the thermal expansion may be matched to that
of the cermet material to minimize induced thermal stresses. The
connector rod is expected to become diffusion-weided to the metal core.

Mechanical tests of the Ni0-NiFes04-17% Cu cermet material indicate a 4-
point flexure strength of 97.7 MPa +3.5 MPa and a 109 GPa *14 GPa
bending moduius at room temperature. At 1000°C a stress (corresponding
to the maximum tensile fiber stress) of ~30 MPa was required to initiate
plastic flow in a short-term 4-point bending test.

Thermal diffusivity and thermal expansion properties of the NiO-NiFey04-
17% Cu cermet material have been determined and catalogued for input
into the large-scale anode design and process control process.

Finite element analyses of a typical large-scale anode design were
undertaken to determine the magnitude and Tocation of thermal stresses.
Maximum stresses were found to be Tocated in the region of the metal
conductor attachment insert, and were high enough to require yielding of
the material. The material is apparently capable of undergoing the
degree of deformation required at elevated temperatures, though it is
important that 1) the CTE differences between anode components be
minimized, 2} the anode be heated/cooled slowly, and 3} thermal cycling
of the anode be avoided.
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7.1.2 Future Directiohs

¢ The future emphasis in Scale-Up Activities will invoive the large-scale
testing of conceptual anode designs. It is anticipated that the first
large-scale test, planned for FY 1989, will be performed in a pilot-
scale cell {a cell intermediate between a production cell and a large
laboratory cell) at Reynolds Metals Co., Sheffield, Alabama, using a
singie anode. This test is expected to be followed by a test utilizing
a cluster of anodes. The ultimate objective is the successful demon-
stration of the inert anode in an actual industrial cell.

¢ In order to verify that the design of the anode and anode cluster will
function in the large test cell as predicted, a porous graphite modei of
the anode cluster will be constructed and tested in water. Air bubbled
through the porous graphite will give an indication of anode performance
in a cell electrolyte. Various anode geometries will be evaluated.

® Mechanical strength determinations will be made on material recovered
from anodes used in large-scale tests, to determine the rate at which
material properties change when the anodes are exposed to the aggressive
cell environments. These values will be used for future finite element
database information.

o The heat conduction rate properties of the anode material are expected
to vary with anode exposure time in an electrolysis cell. This
property, in concert with the mechanical strength, will dictate the
acceptable cooldown rate during a cell upset or shut down. Thermal
diffusivity measurements will be made on used-anode-material specimens
and employed in the finite element stress analysis evaluation of anode
designs.

e The electrical conductivity changes of anode materials under operating
conditions are potentially important to cell efficiency, so small
increases in resistance become significant in light of the large
currents passing through the anode. If the conductivity of the cermet
material decreases with time, the power consumption caused by joule
heating of the anode may limit its useful life on economic grounds. The
electrical conductivity of specimens obtained from used anodes will be
evaluated to determine whether or not a conductivity problem exists.

7.2 ANODE_PERFORMANCE

7.2.1 Conclusions

o In electrolysis tests performed in FY 1988, the degradation of the inert
anode materials appeared to be insensitive to electrolyte composition.
The additions of LiF and CaFy, for example, had no influence on anode
degradation.

7.2



Fe and Ni impurities were not found in a 2:1 stoichiometric ratio in the
electrolytically produced Al - the ratio was determined to be 11:1. No
conclusions could be drawn concerning the ratio of Fe to Ni in the
electroiytes, as the sources of impurities could not be determined.

Round-bottomed anodes exhibited less wear in the transition region
between anode sides and bottoms than square-edged anodes. A critical
radius was not determined.

No firm conclusions could be drawn regarding the performance of NiO-
NiFep04q-Cu-Ni-Al cermet anode materials because fabrication artifacts
influenced the performance of the anodes. However, based on the
quantity of impurities found in the electrolytically produced Al, these
cermets performed as well as other cermets tested during FY 1988.

Hollowed-out, thin-walled cermet anodes can be used to perform success-
ful electroiysis.

The vapor phase in an operating electrolysis cell did not appear to
enhance the degradation of the Ni0-NiFe04-17% Cu anode used in the
{singie) experiment performed. .
Clusters of two and three anodes were operated simuitaneously without
difficulty.

SiC is not a suitable cell material, as it is rapidly attacked by the
cell electrolyte.

A 100-h test, in which the metal phase of a Ni0-NiFep04-17% Cu anode
oxidized to a depth of ~]1 cm, suggests the possible suitability of an
anode material in which some portion of the metal phase is replaced with
copper oxide(s).

An experimental apparatus for determining the current efficiency of
cermet anodes during the electrolytic production of aluminum, and which
will permit the evaluation of anode-cathode distance spacing (ACD),
anode/cathode slope, bath chemistry, electrode geometry, and electrode
materiais on the current efficiency, is under construction. It wiil be
placed in service in FY 1989.

.2 Future Directions

The experimental ACD apparatus will be made operational through a series
of shakedown tests.

Tests will be performed to determine 1) the performance of anodes
of various compositions, including anodes containing Cug0 and Cu0;
2) the performance of anodes in electrolytes of various composi-
tions; 3) the electrochemical behavior of the anodes; and 4) the
effect of tilt angle on cell performance.
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7.3 CATHODE PERFORMANCE

7.3.1 Conclusions

® The TiBy-graphite degradation mechanism suggested by the work performed

7.3.

to date involves saturation of the Al with A14C3 at the interface
between the infiltrating Al and the TiBp-graphite. As Al4C3 precipi-
tates, the volume expansion causes stresses in the material, which
eventually exceed the strength of the TiBp-graphite. Spalling and
cracking result from. these stresses. However, under electrolysis the
concentration of Al4C3 in the Al does not appear to reach saturation,
perhaps because of the oxidation of Al14C3 at the Al-electrolyte
interface or dissolution of the Al4C3 into the electrolyte.

Results from FY 1987 work suggest that components of the electrolyte
play a role in the degradation of TiB-graphite. In specimens tested
under electrolysis, a zone rich in Na and F was found deeper in the
material than the Al-rich zone. These components appeared to hinder the
further migration of Al into the specimen. More information on this
effect would be desirable.

2 Future Directions

No future work specifically directed toward cathode performance is
planned.

ANODE MATERIALS

.1 Conclusions

The effect of cermet composition, cermet powder constituent character-
istics, and cermet processing on the microstructure and density of the
final cermet product have been investigated and catalogued as an
integral part of the procedure for preparing laboratory-scale experi-
mental anodes.

.2 Future Directions

Experimental anodes will be produced at PNL for use in the ACD apparatus
{see Section 7.2.2).

Experience gained at PNL in the formulation and processing of

laboratory-scale anodes will be applied in the fabrication of large
ancdes for the single- and cluster-anode pilot cell tests.
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