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ABSTRACT

The method of least squares is briefly reviewed, and the conditions

under which it may be used are stated. From this analysis, a least-

squares approach to the solution of the dosimetry neutron spectrum

unfolding problem is introduced. The mathematical solution to this

least-squares problem is derived from the general solution. The exis-

tence of this solution is analyzed in some detail. A x2-test is derived

for the consistency of the input data, which does not require the solu-

tion to be first obtained. The fact that the problem is technically

nonlinear, but should be treated in general as a linear one, is argued.

Therefore, the solution should not be obtained by iteration. Two inter-

pretations are made for the solution of the code STAY'SL, which solves

this least-squares problem. The relationship of the solution to this

least-squares problem to those obtained currently by other methods of

solving the dosimetry neutron spectrum unfolding problem is extensively

discussed. It is shown that the least-squares method does not require

more input information than would be needed by our current methods in

order to estimate the uncertainties in their solutions. From this dis-

cussion it is concluded that the proposed least-squares method does

provide the best complete solution, with uncertainties, to the problem

as it is understood now, Finally, some implications of this method are

mentioned regarding future work" required in order to exploit fully its

potential. * -
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Introduction

The usual solution to the dosimetry neutron spectrum unfolding

problem is an attempt at providing a detailed spectrum based upon

activation measurements obtained in this spectrum given a priori

knowledge of the corresponding dosimetry cross sections. As is well

known, a vary detailed, exact (i.e., unique) spectrum cannot be obtained

for this problem. Most popular dosimetry unfolding codes such as SAND-

II,1 SPECTRA,2 and CRYSTAL BALL,3 or those based on their algorithms,

obtain their solution by introducing some additional information in the

form of a "trial spectrum." This trial spectrum is clearly some form of

a priori information about the solution. In a recent paper4 we analyzed

the propagation of the uncertainties in the input data to the solution

of these codes. While it is clear what the meaning of the uncertainties

is for the activation data and the cross sections, some discussion of

the "uncertainties in the input trial spectrum" and their effects upon

the solution is desirable. In many favorable cases of activation data

analysis, if the trial spectrum is selected "close to a physical one,"

the solution of these codes exhibits a weak dependence upon the trial

spectrum.5 This aspect of the uncertainties in the solution is usually

handled by means of several calculations performed using "several differ-

ent physical trial spectra," and a subjective evaluation of the reliabil-

ity of the solution due to "trial spectrum sensitivity" is made.5 If

we wanted to be quantitative about these uncertainties, we could explore

in some fashion the whole space of "physically valid trial spectra" by

say numerical methods and extract some measuj^ for these uncertainties.



Certainly, if we did this, we would somewhat improve the credibility of

the solution since in essence we would convert the somewhat arbitrary

trial spectrum used to obtain the solution to a rather complete state-

ment of the a priori knowledge about the solution, including its uncer-

tainties. We believe, therefore, that part of the difficulties associ-

ated with the credibility of our usual solutions are related to the lack

of precision in the statements which we either directly or indirectly

make about the a -priori information used and in some sense lower that

information to the rank of "intuitive information,"6 which calls for

subjective evaluation. The second problem with our current methods is

the fact that we in general cannot prove a priori what desirable or

undesirable features our algorithms have in addition to those purposely

put in. Such knowledge must be obtained through numerical experiments,

inter-comparison of codes in special cases, etc.;7 and such knowledge

obtained a posteriori in specific examples may not necessarily be valid

for somewhat new situations. It is for this reason that we proposed a

new approach to the problem4 which we think goes a long way toward

eliminating these difficulties. In this paper we discuss at greater

length this least-squares approach and some of the features and advantages

of the solution.

The Least-Squares Approach

We review first briefly the general method of linear least-squares

in order to establish a notation and state clearly the assumptions upon

which the solution is obtained. We shall use as much as possible a

description based on the physics of the situ^fion rather than the more

precise statistical language.*'



Given some "observations" y? of n "quantities," y.., forming the

abstract vector Y°, Y° = {y?}. Let these observations, y?, have "errors,"

e7-, associated with them. We consider the quantities y^ to be random

variables and the abstract vector Y = (y.} to be therefore a multivariate.

If the experimental results are unbiased, we can say that they provide us

with an estimate of the joint density function of Y if we identify Y° with

its expectation value, Y° = E[Yl, and from the e.j's we obtain its covari-

ance matrix M = {m,.}, with m.- = E[e-,e-]- No assumptions need be made

about the form of the joint density function of Y, and >e emphasize that

only its second moments, the m. .'s, are specified. We introduce a "model"

whereby Y is defined in terms of m "parameters," p., which form the

abstract parameter vector F. Therefore, F is also considered to be a

muitivariate. Let us first take a model for Y which is linear in F; we

may write:

Y = D • F , : (la)

where the dot we place between vectors and majtrices denotes ordinary

matrix multipliation and the n x m "design majtrix" D is not a function

of F. When n = m, the equation (la) can be soilved exactly, to obtain the
_ |

estimated joint density function of P from thje estimated joint density
i

function of T, if the design matrix D is not jsingular. For the case of

n > m, our system of equations (la) is overdetjermined and what we seek is

a "best average solution" in some sense. The method of least-squares
f

obtains this solution by minimizing the "x2-function":

= (Y« - Y)
+ . M"1 • (WL- Y) , (2a)



where the symbol t denotes the transpose of vectors and matrices and Y

denotes some estimate of the expectation value of 7 based upon some

estimate P of the expectation value of P, Y = D»P. The vector Y°-Y is

the "residual vector" and in this case is just Y°-D-P. The minimum

value of the x2-function is obtained by adjusting P and provides us with

an "unbiased" estimate8 for the joint density function of F characterized

also only by its expectation value P1 and its covariance matrix N' .

This least-squares solution for the joint density function of P" is often

said to be "best" or "most likely" by virtue of the "minimum variance

theorem"8 which guarantees that it minimizes the variance of any linear

combination of the parameters p\. We shall not prove here these very

important properties of the least-squares solution, nor derive the

solution, which is:8

P' = (D + • M"1 • D)" 1 • D+ • M"1 • Y° , (3a)

N1 = (D+- M"1 • D)" 1 . (4a)

When we refer to the solution of the problem, we mean both P1 and

N' since they are required for a somewhat meaningful specification of

the joint density function of P. We are indeed extremely limited ;n the

kinds of useful statements we can make if we only obtain P1. The solution,

(3a) and (4a), will always exist since the covariance matrices M and

D «M~ *D are in principle nonsinguiar. This is the case because the

covariance matrix M is symmetric, as well as positive definite, and at

least one "independent piece of information" is required to be associated

with each observation y?. The terror" associated with this "independent

piece of information" will contribute only to the»diagonal of M and this



is sufficient to make the matrix M nonsingular. Therefore, if in

practice a singular covariance matrix M is found, it is due to an over-

sight or mistake. The same arguments can be made about the covariance

matrix Dr*M *D, although here it is relatively easier to overlook the

fact that although two different "labels" were used for two parameters

they are the same quantity, since they enter in the model in exactly the

same way. Such singularities can therefore be removed easily.

The above statement of the problem is known as a linear least-

squares one, for obvious reasons. In manly situations the model for Y
l

is nonlinear in the parameter P, Y = F(P)i, and the solution cannot be
obtained as indicated above. In such cases an approximate solution can

i

still be found using the least-squares method by linearizing the model.
I

To do so we expand the model in a Taylor sbries in the parameters, which

is truncated after the second term: \

T Jfc Y + D • (F - pj , (ib)

\

where the design matrix D is made up of the (partial derivatives of the

model, F(F), with respect to the parameter F; and evaluated at F = P.

The linearization of the model by (1b) is good only for F close to P.

Since P is a multivariate which can assume a large range of values, the

approximation (1b) can be said to be always bad in some domain of F.

However, if we choose P in the neighborhood of \the solution, P', assuming

that it exists, and \* the standard deviations of the joint density

function of Fare small compared to the expectation values and/or if the

model is not very nonlinear in the sense that the elements of D are not

very sensitive to P, the approximation (lb) may be a relatively good one.



A general discussion of the consequences of the linearization of the model

is not our purpose since we will return to it later in commection with the

dosimetry problem. Therefore, assuming the linear approximation (1b) can

be made, we can proceed as for the linear case and write down explicitly

the x2-function:

X2 = (Y° - y - D • (P-P))f • M"1 • (Y° - Y - D • (P-P)) . (2b)

The comparison of (2b) witr- (2a) allows us to write immediately the

solution for the minimum value of x2 which is obtained from (3a) and (4a)

by substituting Y°-Y for Y° and P'-P for P1 to get:

p> . p = (D + . M"1 • D)" 1 • DT • M"1 • (Y° - Y) , (3b)

N1 = (D+- M"1 • D)" 1 . (4b)

Since frequently the initial choice of P is a poor one for the expansion

(lb), the solution is then obtained by iteration in the hope that the

solution will converge. It is important to note that the need to iterate

is not an essential aspect of the method if the initial expansion "point" P

yields a solution P1 which is close to it. Iterating is, however, necessary

if the model is highly nonlinear and P1 is far from P. In this case the

convergence of the process may or may not occur and when it does occur it

may be at a "local minimum" which is a function of the starting value P.

If we can formulate our dosimetry data analysis problem as a least-

squares one, the solution will be the most likely one and therefore better,

or at least no worse, than any other one not based upon minimizing the

X2-function. In addition, the properties of^his solution will be well

known and fully understood.
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It is evident that our activation measurements in the spectrum, the

a°'s and their uncertainties, meet the requirements to be some observations

of the type y? needed for a least-squares problem. The activations a.

can be defined in terms of the fluxes $• and cross sections a.; our

model for these quantities is clearly:

*1 = I °i *j * ^

Since we can approximate our integral statement by expression (5)

to any degree of accuracy, the "model" is exact by virtue of the definition

of the quantities called the o^'s. We may rewrite (5) in a more compact

notation if we introduce the vector ¥ for the ^L's, ¥ = U>;}, and the

vectors s'1 for the a V s , E1 = {a1.}. Equation (5) then becomes:
J J

a. - i< • $ . \o)

It is clearly implicit in our use of the name "dosimetry neutron

spectrum unfolding" for dosimetry data analysis, that the "flux quantities"

are usually considered as "parameters" in the problem and we have indicated

this in Eq. (5) by treating them as variates by our notation ¥.. The code

DANTE,9 which to our knowledge is the only current code which approaches

dosimetry data analysis as a general least-squares problem as we do, treats

the ~$.'s as the only parameters entering the model for the a".'s. DANTE

does so by treating the cross sections as constants and solves the corres-

ponding linear least-squares problem. Since at this stage of our knowledge

of the dosimetry cross sections their estimated accuracies are often poorer

than the estimated accuracies of the measurej^activations, ignoring the

cross section uncertainties by" treating the cross,sections as constants



will significantly affect the estimated uncertainties in the spectrum.

This point does not appear to have been generally appreciated for the

"dosimetry unfolding problem" or even for the "many channel unfolding

problem" where the "response matrix," which plays the role of the dosimetry

cross sections in the dosimetry problem, is not considered as a variate

on the same footing as the spectrum and consequently the uncertainties

in the response matrix are not handled adequately.

In a dosimetry analysis problem we always have fewer activation

measurements a? than we have quantities a. and $., or even $*'s. There

is, therefore, no unique solution for the <j>-'s, even if the a?'s were

known perfectly, unless we are willing to add more information than just

the activation measurements. Of course we could solve the problem of

activation data analysis by representing the <L's by a few parameters
J

and this has been done in the past» but such ways of handling the diffi-

culties are generally considered inadequate. In the least-squares method

information is in the form of "observations" and therefore what we seek

in solving the problem by this method is to supplement the a?'s with

"other observations" which will produce an overdetermined set of equations

for the a]'s and <j>.'s. Two requirements must be met by the "quantities"

used as "other observations": they must have "errors" associated with

them and must be related to the parameters a. and *. by means of a "model."
J J

Preferably this model must be exact, or considered so, since otherwise we

need to introduce still more "observations" to overdetermine the approxi-

mate quantities in the model. It is evident that from a formal point of

view the choice of "other quantities" to obtain an overdetermined set of

equations is arbitrary and a_ solution can beTound for each set of "other

"quantities" which meet the two basic requirements stated above. This
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arbitrariness in the choice of "other observations" can be largely

removed if we consider the intended use of the solution sought. From

the concept that we want the "best solution" for a specific use, it

often becomes very clear what "best set of other observations" is needed,

in addition to the measured a?'s of the problem. In the remainder of

this paper we shall assume that what we are after is in some sense the

"very best solution" consistent with our current knowledge. It is not

evident that this particular solution is always the one desired, but we

believe that it is the one which will be most useful for many uses and

will serve to indicate the methodology. The idea of "yery best solution"

has implicit in it the fact that we have used to obtain it all observations

which were ever made, for whatever purpose, related to the a-'s and (j>-'s
J J

of this problem and that these observations are exploited to the fullest

extent of our current knowledge.
We will first consider the al's and show how this can be accomplished.

J

The direct use of e\ery experimental result related to the ~o]'s is not

practical even if in principle feasible. However, we can come close to

achieving our goal if we consider that our "evaluations" of the if's

attempt to represent all previous measurements and can be used directly

as observations if they have "errors," or covariance matrices, associated

with them. If we treat such evaluations of the If's as observations,

their "model" becomes exact since it is the identity matrix. It is

unfortunate that most of our evaluations of the IP's do not have data

covariance information associated with them since they cannot be used for

our purpose until such information has been added to them. A formalism

has been developed within the context of ENDF/B to represent such data
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covariance information,10 and hopefully all the dosimetry cross sections

of ENDF/B-V will have "data covariance files" and could be used directly.

We shall therefore assume that it is practical to use evaluated I 's to

generate our "best solution" even if now the needed covariance matrices,

N .., must be added to them. By doing so we have added to the a^'s one
—i —i

"observation" per a. and the required overdetermination of the a.'s is

achieved.

Let us now turn our attention to the $"•'s. It is evident that we
J

have a very efficient method in overdetermining the a V s since only one

"observation" is used for each a- and the same technique can be utilized

for the IL's. A method which can always be used is to estimate the (L's
J J

by means of calculations based upon a "model" of the system which produced

the spectrum in which the foils were irradiated. Because our model for

these calculations is bound to be approximate and we must uss imperfectly

known nuclear data as input, these estimates for the I.'s will only be
J

approximate and have "errors" associated with them. If we do estimate the

uncertainties in these calculations, then the result is that we may use

the calculated fluxes directly as observations. Of course, we should

supplement these calculations of the ^L's with direct measurements of the
J

<L's if these are available and obtain effectively an evaluation for $,
J

complete with covariarce matrix N,. The approach we advocate in the

treatment of the spectrum is related to what is done in the code RADAK.11

RADAK is a general purpose "spectrum analysis code" which does a

"simultaneous unfolding" from several detectors. It is primarily intended

to be used with "many channel" detectors, but some activation foils may be

included. As such, it is not a'dosimetry unfolding code, but since no
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correlations are allowed between the "many channel" detectors output and

the activation data, it is effectively equivalent to one where the <t>.'s
J

are first obtained from the many channel detectors and then used to

analyze the dosimetry data. In the cases where RAOAK can be used, i.e.,

there are many channel detector data available for the complete spectrum,

the solution we seek, the "best possible one," can be obtained by com-

bining the output of RADAK with the results of model calculations. It

is, therefore, merely a question of strategy about how to proceed in

this case, and the result should be independent of the approach. However,

when the dosimetry cross sections extend below the energy range of the

many channel detectors, we must make use of model calculations to provide

the necessary overdetermination of the spectrum, in that energy range at

least, before we can exploit the activation data.

If we proceed as outlined above, by supplementing our measured

activations a?, and their covariance matrix N^o, with a synthesis of all

our previous observations concerning the al's in the form of fully
J

"evaluated cross sections," with expectation values E1 and covariance

matrices N .., and a synthesis of all our previous knowledge of the <L's

in the form of a fully "evaluated spectrum," with expectation value 4> and

covariance matrix N$, we will have in a direct sense the "best input data"

and our solution can be called the "best possible solution." It should

be clear that whatever is our intended use of the solution spectrum it

can never be called "best" if we do not use fully all the information

concerning the dosimetry cross sections in the form of "best evaluations"

for the l?'s. Therefore, our different "best solutions" can oniy come

from what we use as "best evaluations of $"." It is conceivable that
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different intended use of the solution will dictate different "best

assumptions" to be made in the evaluation of <f> and therefore we will

have different "best evaluations" of <F. It should be clear, however,

that in order to be used in our problem the evaluations of $ must be

complete in the sense of having a covariance matrix i\' which corresponds

to the assumptions made in the evaluation.

In this lengthy introduction we have attempted to justify in detail

and in d logical manner the use of what is often called "a priori infor-

mation about the solution." It is often perceived that only some class

of a priori information such as non-negativity of the spectrum is "non-

controversial."6 We hope to have shown that this need not be the case

and that the often perceived failure6 of having found a satisfactory

solution to the "few-channel unfolHing problem" does not lie in the need

for "detailed" a priori informatio, but rather in the fact that the

detailed a priori information used ... che past was poorly quantified.

We contend that any amount of detailed a priori information about the

solution, if it succeeds in overdetermining the parameters of the problem,

can provide a satisfactory solution if it is complete, i.e., has "uncer-

tainties" associated with it, and the assumptions under which the complete

a priori information is generated are justified and understood. From a

purely mathematical point of view, the statement of the "input values of

I 1, Nj,-., $ and N$" constitute the assumptions under which the solution

is obtained and there is therefore nothing "controversial" about the

solution since the assumptions are clearly stated.
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The Mathematical Formulation

In this section we merely transcribe in mathematical language the

ideas discussed in the previous section. To simplify the notation we

introduce the abstract cross section vector £,

r = / i2 \ . (7)

and the abstract parameter vector P,

P s ( * 1 • (8)

We shall refer to the evaluations of ¥ and IT, treated as "observations,"

by the abstract vector P and its covariance matrix Np:

P = ( ) , Hp = ( * ) . (9)

We have shown in Eq. (9) by the symbol 0 for the off-diagonal matrices

of Np that we assume, as will be generally the case, that the evaluations

of ¥ and f are uncorrelated. This is not necessarily always the case,

since it is possible that some of the dosimetry cross sections of the

problem, some If1, enters also in the evaluation of ? as could be for

instance the case of the 2 3 5U fission cross section. In such cases the

off-diagonal matrices of Np will not be zero. It is not essential for

the problem that Np be diagonal in the space of $ and s which should

therefore represent the true situation. Howler, it is convenient later

to consider*Np to be diagonal "in the space of $ agd Z purely from a
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presentation point of view. We shall therefore state that without loss

of generality we consider Np to be diagonal in the space of $ and Z,

which does not mean that we consider N $ and N^ to be diagonal.

As previously discussed, we consider our evaluations of $ and £ as

"observations" as well as the abstract vector A° made up of the measured

activations a?, A° E {a?}. In the notation of the previous section we

P \ / N p 0
M E P . (10)

have therefore:

A° / N 0 NAo

In Eq. (10) we indicate, by our notation 0 for the off-diagonal

matrices of M, that the "observations" A° and P are uncorrelated. It is

strictly not necessary to make this assumption, in order to use the

least-squares method, if we are willing to invert the full matrix M, as

shown by (3) and (4). However, as we will show in the next section, if

M is diagonal in the space of P and A°, it is only necessary for us to

"formally" invert the matrix Np without actually doing so explicitly.

When M is not diagonal in the space of P and A°, we have to invert it

explicitly to get the solution and this may not be practical since the

rank of M may well be of the order of a few hundred or even a few

thousand. We shall therefore assume that in order to be practical

our method requires that P and A° be uncorrelated. The meaning of this

requirement is that in our evaluations of $ and If we must not use any data

which are correlated to A°. This restriction appears at first sight to

be a strong limitation of the method since it might force us to exclude

from the evaluations some types" of data obtained in standard and benchmark

fields. We have already discussed a procedure for by-passing.such
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difficulties4 and we shall not return to it in this paper. (Mathematically

speaking, it is the fact that M is diagonal in the space of P and A° which

justifies our use of the term prior information to describe the evaluations

of $" and If, i.e., they can be made without using our knowledge of A°.)

Having identified the "observations," Y° and M, for our least-square?

problem we must now establish a "model" for the quantities Y, i.e., obtain

the complete design matrix. It is clear that P stands for the quantity P

and therefore our model for these observations is the identity matrix!!

It is therefore linear and exact. Our "observations" A° stand for the

quantity A, with A" = {a"..} and F^ is defined by Eq. (6). Since a", is a

bilinear product of some of the elements of F, our model for A~ is non-

linear. In order to obtain our design matrix we must linearize the model.

We shall do so by performing an expansion about the estimated expectation

values of $ and E, i.e., $ and E, we get:

a. = E i + • $ + $ + • ( f W ) + Z i + • (*-$) + (r i-Z i) + • (*-$) , (11)

since the expansion terminates th* expression (11) is therefore exact

regardless of the values of $ and E 1, as can be verified by performing

the operations indicated. The linearization of (11) is accomplished by

dropping the last term only. It is clear that "very little approximation"

is made by dropping the last term since if our evaluations are "reasonably

close" to the solution the contributions of this term will be small. This

is so because to contribute significantly both E1 and $ must be signifi-

cantly wrong in the same energy region; the signs of the differences must

be such that no appreciable cancellations occur in the summations over

energy and this sum is to be compared with the total activation. These

three requirements to make the approximation poor"mast be met,simultaneously
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and therefore we can already conjecture that the model being "quasi-linear"

most of the time we expect the linearization to be a good approximation

and consequently our need to iterate to find the solution will be infre-

quent. We shall return later to a discussion of this point. In order to

find the design matrix, we must rewrite (11) in a form similar to (1b):

A % A + G • (F - P) , (12)

where A E {a.} and ai = Z •$. The "sensitivity" matrix G is therefore

given by:

0 •••

G = f Z2T 0 $T o ••• 1 • (13)

$ • • •

Because the quantities A, for which we have observations A°, have

a non-linear model, it is convenient to write F, for which we have

observations P, as if it also had a non-linear model. This can be

accomplished exactly as follows:

F = P + I • (F - P) , (14)

where I is the identity matrix. Using (12) and (14) and (1b) we find

by inspection that for our non-linear least-squares problem we have:

D = • (15)

This completes the mathematical formulation of our non-linear

dosimetry least-squares problem since we have defined or derived appro-

priately the quantities: Y°, M, Y, D and F, which were introduced in

the previous section as needed to state such a problem.
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It is clear from the above mathematical formulation of the problem

that what we are solving for in our least-squares approach is:

Given,

1. activation measurements in a spectrum, A° and N^OJ

2. a priori information about the dosimetry cross sections,

E and N2,

3. a priori information about this spectrum, $ and N$.

what is the most likely value of the spectrum and its uncertainty, $'

and NJ?

Because we have also used the dosimetry cross sections as parameters,

we could also answer the question, "What is the most likely value of the

dosimetry cross sections and their uncertainties, V and N'?" if we so

desired.

The Mathematical Solution

In the preceeding sections we have stated the general least-squares

method, given its solution, and formulated a least-squares problem for

dosimetry data analysis. In this section we obtain the solution

explicitly in terms of the input data and emphasize that it is extremely

easy to compute and always exists. We could rewrite (2b) using the

previous section as:

) f "p V ) "
A°-A-G-(P-P)

and proceed, using standard techniques,8 with the direct minimization

of x2 by varying P. In doing-.so we would not make use of the previously
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stated results (3b) and (4b). After some suitable manipulation we would

obtain the solution:

p> . p = N . G + • (Nfl + Nflo)"
1 • (A° - A) , (17)

N •- N1 = N • G+ • (N. + Nno)"1 • 6 • Nn , (18)

P P P MM P
where the symbol not previously defined is N^ which is defined as:

Nfl = Gf • Nn • G . (19)

N« is the covariance matrix of the vector A. We recall that the vector

A is calculated from the input vector P, more specifically if A = {a^},

a., is given by:

a. = Z 1 f • $ . (20)

Therefore, A and N« are the predictions, based upon our a priori

evaluations of ¥ and £", for the observed activities A° and N»o. A and

Nfl play a crucial role in obtaining the solution P
1 and N', as is evident

M p

from (17) and (18), since it is through them that we can make use of the

dosimetry data of the problem: A° and N^o-

We shall now indicate how we can obtain the results (17) and (18)

from (3b) and (4b) using the definitions for the quantities Y°, M, Y, D

and P presented in the previous section. We shall consider this a proof of

the results (17) and (18) since the derivation of (3b) and (4b) is well

known.

Since Nn and NflO are square matrices, the inverse of M is:

(21)
N"1

P
0

0

-1V
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Similarly, the inverse of N in (21) is obtained from the inverse

of N$ and N^ under the assumption that N is diagonal in the space of

$ and E, as we shall take it to be for purposes of the following dis-

cussion. We have already discussed the reasons why if M is a "correct"

covariance matrix of some observations it must be non-singular and there-

fore its inverse exists. The arguments apply directly to N.o since in

our problem A" corresponds to actual measurements They should also

apply to N and N since these are taken as observations and if our

evaluations are done correctly they can be traced to direct observations.

In practice, however, N and N are likely to be singular for several

reasons. We shall return later to a discussion of the covariance

matrices N$ and N£ since they play an important role in our problem.

We will therefore now proceed with the proof, as if N and N were non-

singular, postponing until later our justification for doing so.

If we rewrite (3b) as:

(Df • M"1 • D) • (P1 - P) = D + • M"1 • (Y° - Y) , (22)

and substitute the appropriate expressions for D, M , Y° and Y, we get:

(Np1 + G+ • N~! • G) • (P1 - P) = G+ • N~J • (A° - A) . (23)

From (4b) we also get:

+ ' NA°G+ ' NA°

We can readily rearrange the terms in (23) to obtain:

N"-1 • (P1 - P) = G* • N~] • (A° - A - G • (P'-P)) . (25)
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A very elegant way to proceed from (25) is to introduce after Dragt

et at.12 the auxiliary quantity:

X = N~] • (A° - A - G • (P'-P)) , (26)

and write (25) as:

P' _ P = N . G+ • X . (27)

If we then multiply (27) from the left by G, use the definition

(19), after substitution of G«(P'-P) in (26), we get:

X = (N. + N-o)"1 • (A° - A) . (28)

We need not worry about the existence of the inverse of N» + N«o

since it will always exist because the covariance matrix N»o is non-

singular and NA is symmetric. Substitution of (28) back into (27)

yields our solution. In a similar fashion we can derive (18) from (24).

This basically concludes our proof and we can see that the expressions

to obtain the solution P' and N' are very simple to calculate. This is

clearly so wnen we show the simple form that N^ takes. From the definition

(19) and using for N we have:

(h ° \ fNA = G • ( * )• G+ , (29)

Nn can therefore be written as the sum of two contributions:

N = N$ + NZ C\C\\
" A "A " A » \ J V J /

where: ^^

N? = {n , . * } = { E i + • NA . £J'V} - (3D
A 1J $ ^ J > • V*"/
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and:

N* = {nL> = {$+ • N .. • $} . (32)
** I J y I J

When N is not diagonal in the space of $ and Z, an additional

"cross term" is required in N^.

Covariance Matrices of Evaluations

The primary purpose of this section is to justify some statements

made in the previous section and clearly indicate some of the conse-

quences for our solutions of certain approximations we are likely to

make in the handling of covariances of evaluations. We claimed that

the solution to the least-squares problem always existed because the

covariance matrix M was always non-singular. However, during the course

of our proof when we came to invert the covariance matrices N and N

we pointed out that in practice they were likely to be singular, but

that we should proceed as if they were not. It is clear that since the

matrix M cannot tie in principle singular, we can say that its singularity

resulted from a "mistake." We argue that this is possibly true, but

wish to consider that the "mistake" was intentional in the sense that it

corresponds to some approximation we intend to make and we are interested

in obtaining a solution under such conditions. We shall show that we

need not explicitly change our formulation to recognize this fact and

can proceed as if these approximations had not resulted in a singular

matrix for N or N . This property of our least-squares problem has

very important practical consequences. On the one hand, if we have

written a computer code to soJ.ve it, we can use it for obtaining solu-

tions under various approximations which result in singular, covariance
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matrices without having to change the code or- otherwise communicate this

fact to the code. On the other hand, it may be a disadvantage since we

may not recognize that we have made some approximations we did not intend

to make. Since this discussion will shed light upon the role which the

covariance matrices of our evaluations play in general, and in the least-

squares problem in particular, we shall carry it in some details. How-

ever, because a complete discussion of this interesting and possibly not

well appreciated aspect of "uncertainties" in evaluations would carry us

too far from our subject, we will not approach it in its greatest

generality, but rather from a practical point of view.

We first emphasize that the covariance matrices N and N need not be

singular. However, we conjecture that they may be singular under the

assumptions we are likely to make at this stage in the handling of uncer-

tainty information in evaluations and if we follow in the use of the least-

squares method the same practices used with our current codes. We shall

not argue against these assumptions and practices since they may be justi-

fied if only on groundn of convenience. Since at this stage rather little

experience exists in the treatment of uncertainties in evaluations we are

likely to concentrate on the description of the major or gross features of

the problem and therefore the statement of the uncertainties is bound to be

crude in the sense of having not too much detail. We may also, as is

done in ENDF/B,10 make some rather crude approximations which have great

convenience as far as representing and processing the information to

generate covariance matrices of processed data. These approximations

being fully consistent with the perceived accuracies of the estimated

uncertainties. Also, as a matter of convenience we may select a standard

group structure to do our analyses with the result that it is .not
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tailored to each problem, and in any problem this group structure is

likely more detailed than is really needed or justified on the basis

of information available, at least in some energy regions. The combina-

tion of the above two practices, which are likely to occur, will almost

surely result in covariance matrices N and N which are singular. This

is so because the dimension of our covariance matrices, the number of

groups we use, will almost surely exceed their rank, which in a very

direct sense corresponds to the "amount of information" we have included

in our evaluations regarding their "uncertainties."

In order to facilitate the discussion let us consider some specific

examples which we think embody the essence of the problem and may easily

be generalized. For example, we take the spectrum in an energy region

where there are several group fluxes <J>.. We suppose that in our evalu-
J

ation of the spectrum the statements concerning the uncertainties are

such that the several group fluxes <f>. should be considered as fully

correlated. The covariance matrix of these group fluxes will have a

dimension equal to the number of groups, but its rank will be one; it

will therefore be singular and consequently the full covariance matrix

N will also be singular and cannot be inverted. It is important to

note that since our covariance matrices are symmetric and positive

definite the above mechanism is the only one which can be responsible

for their singularity, a statement we shall not prove here. It is clear

that since the several ((i-'s are fully correlated they can be replaced by
J

a single auxiliary variable and an exact linear transformation which

relates it to the (h's. If these <f>.'s were .from "real independent

measurements," this would be an inconsistency of sorts, but since we

are dealing with "evaluations taken as measurements*1 this may .not be a
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mistake and we can easily handle the problem. We could do so by formally

replacing these <j>.'s by the single auxiliary variable and the exact linear

transformation, which could be obtained by inspection. The singularity

of our covariance matrix of the parameters would then be removed and we

could solve for the auxiliary parameter directly instead of these cj^'s.

However, having obtained the solution for this auxiliary parameter, we

could use our exact transformation to obtain the solution for the <b.'s

and the resulting spectrum would be identical to the one obtained by the

direct application of (17) and (18). We shall not formally introduce

the transformation and prove this point by mathematical manipulations

because it should be clear that what we have done is merely change the

definition of the "parameter vector" and the transformation is already

embedded in our sensitivity matrix G. In conclusion we see that we can

always ignore the fact that the covariance matrices of our evaluations

are singular and proceed formally as if they were not!

This discussion should make it clear that in a dosimetry problem

the number of groups we use to analyze the problem does not at all

correspond to the number of parameters we have. The number of parameters

is determined by the rank of the covariance matrices from our evaluations.

In practice we do not need to know how many parameters we really have to

solve the problem, but it can easily be determined by inspection of the

correlation matrix of <2> and 2. It should also be clear now that any

structure we have in our input spectrum in energy regions where the

evaluations state that the spectrum is fully correlated is reproduced

in our solution exactly. An extreme example of this is when our

covariance matrix is fully correlated over the whole energy range.
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The auxiliary parameter is the normalization of the spectrum and the

transformation is the shape of the spectrum. In this case, no matter

how many activation measurements we have, the shape of the spectrum

will remain unchanged and only its normalization will be determined.

On the other hand, even with a single activation measurement, if the

input covariance matrix N. does not correspond to a fully correlated

spectrum, both the shape and normalization of the spectrum are adjusted.

It is important to keep in mind that what is being adjusted in the

spectrum is entirely determined from the structure of the input covari-

ance matrix based upon the uncertainties in the evaluation and is

unrelated to the number of groups used or the number of activations

available.

A Test for Consistency of the Data

We have already stressed the fact that the least-squares solution

does not require that the joint density functions of the input data be

normal. The only requirement is that the covariance matrices represent

the second moment of the density functions. If the form of the density

functions were known, or assumed to be known, we could go further than

just obtain the solution (17) and (18); we could extract some additional

information from the numerical value of the minimum of the xz-function in

the sense of being able to test the "likelihood" of the input deta.

Since such tests are often very useful in detecting mistakes, we believe

that at least for purposes of such investigations we should assume that

the density functions are known and argue on the basis of the "central

limit theorem"8 that we should-take them to*1te normal. It is then

possible to perform two tests on the distribution*of the input data.
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The well-known x2-test may be used to estimate the likelihood of the

input data set on the basis of the minimum value of x2- In order to do

so one needs to establish the number of degrees of freedom in the problem.

If we have m cross sections and fluxes and n activation measurements,

the total number of input quantities is m + n, but since we solve for m

parameters we have only n degrees of freedom. Therefore, the x2 minimum

corresponds to n degrees of freedom. We shall now show that the minimum

value of x2 is entirely determined from the values of the input data.

The minimum value of x2» X2
m»

 is obtained by substituting the value of

P1 given by (17) for P in (16). We therefore have,

X2 = (P-P')f * Np1 • (P-P1) + (A°-A')+ • N"] • (A°-A') . (33)

We may rewrite (33) as:

4 = 4 + 4 • (34)

Using (27) we may evaluate x2, as:

X2 = (A1 - A ) + • X , (35)

and also from (27), operating upon it with G, we get:

A1 - A = NA • X . (36)

Substituting (36) into (35), we have:

X2 = Xf • NA • X . (37)

To evaluate XA we rewrite (26) as:

' -, -%

A° - A1 = NAo • X . . (38)
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substituting (38) into the expression for x2 i° (33), we have:

X^ - X+ • NAo • X . (39)

Using now (37) and (39), we obtain the desired result, if we use the

expression (28) for X:

X2 = (A°-A)+ • (Nfl + Nno)"
1 • (A°-A) . (40)

It is therefore clear from (40) that the minimum value of x2 can

be evaluated easily from the input data. We can then test the likelihood

of the input data, prior to obtaining the solution, by means of a x2-

test on x™ using as the number of degrees of freedom the number of

activation measurements.

The second test on the input data can also be made from (40) by

looking at the "randomness" of the terms which make up x,2,- There are

n terms which we must sum in the final stage of the computation of x£

in (40), and to each term we can associate a particular activation. The

"fit" may not be good if one or a few activations contribute mostly to

X,2, and should be taken as a possible indication of a mistake to be

investigated.

Finally, we should indicate that the predictions for the activations

one will obtain from the solution P1 can be obtained without solving for

P1. If we operate on (17) with G from the left, we immediately get:

A = A + FL • vNn + NnoJ • (A - A; • (41)
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I f we now mul t ip ly (18) on the l e f t by G and on the r i gh t by 6 ' ,

we obta in:

NA = NA • NA ' (NA + V r l ' NA » ( 4 2 }

which gives us the covariance matrix of the activations calculated from

the solution without having to explicitly calculate Np either.

The Non-Linearity of the Problem

Our problem is a non-linear least-squares one. Since such problems

are usually solved by iteration, as well as all of our current methods,

we must now discuss when we may gain from an iterative scheme to get our

solution. We shall show that, although an iterative procedure will

always somewhat improve the solution, in many practical situations such

improvements may not be very significant and therefore some doubt always

exists about its usefulness.

When solving a non-linear least-squares problem we must always

linearize the model and in so doing make an approximation; in our case

this was done in (12). Such linearization procedure involves an expansion,

and the best expansion to make is about the solution. Since we usually

do not know the solution, such expansion must be made about some "trial

value" from which a trial solution is obtained. This "trial solution"

is then used as a new "point" about which the model is expanded again.

Therefore an iterative procedure is developed and progress toward a

"converged solution" is usually monitored by observing the successive

improvements in the x2 minimum at each step. In our case we chose as an

expansion point the a -pr'ovi evaluations P in order to generate P' and

N'. It would appear that if we now go back and expand again our model
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using P' in (12) instead of P, we would get a better solution. We will

now develop such an iterated solution. In order to develop a notation

which incorporates iteration numbers in it, let us expand the model

about P , instead of P in (12), and call the solution Pn+1 instead of

P'. If we proceed exactly as we did to obtain (17) and (18), we get:

Pn+1 "
 P " N

P * Gn ' \ + M " 1 * <A° " An " Gn ' (P " P n » •

Np " Np + 1 " Np ' Gn * <NA + V ^ " 1 * Gn * Np • < 1 8 a )

where A is the activation vector calculated using P , G is the sensi-

tivity matrix (13) calculated using Pn and the quantity Nfl is defined
n Ananalogously to N» in (19) and is:

n

\ = Gn * % ' Gn ' <19a>

If we now calculate the x2-minimum for our iterated solution (I/a),

X2
 +-i, by proceeding exactly as we did to derive (40) from (17), we get:

= (A°-VGn-(p-pn»t-(\+NA='"1-(A'>-An-Gn-(p-pn'' • <40a>

If we compare the above results to those obtained from the expansion

about the a priori evaluations, we see two differences. The first one is

the replacement of 6 and Nfl by G and Nfl , and the second one the replace-
a n Mnment of A by A +G «(P-P_). It is clear that if our input data A°,Nno andn n n M

P,N are "fairly consistent" to the extent that our a priori evaluations

predict "well" the measurements A0, that is we may compute A such that it

agrees with A° within the combined uncertainties N. and NflO, then the x
2

M M m

calculated using (40) will corrispond' to approximately one per degrees of

freedom. In such cases within the uncertainties we*will have A % A .
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Even if our data are somewhat "inconsistent" but not very improbable,

say with a x2 less than 2 per degrees of freedom, then the approxima-

tion A % An may not be very good, but it is likely that within the

uncertainties we will have A % Ap + Gn • (P-Pn)- What we are arguing is

that as long as our data are not too inconsistent then a linear model is

very good; the non-linearity of the model is not important. As is well

known,8 if the model is exactly linear, it is not necessary to iterate

to find the solution. In our case this should be reflected in our

results (17a), (18a) and (40a) which will be close to (17), (18) and

(40) if the data are not too inconsistent. We can see that directly if

we substitute in (17a), (18a) and (40a) A = A
n
 + G

n * (p-pn)
 to get:

N -
P

- P

N n + 1

P

• V

p

( A « -

• G n '

• G f

n

A) •

• (N
A

(NA

n

Gn * N
P
r

A o )" ] * (A° " A) • (40b)

Our solution (17b) and (18b) still does not quite look like the

original one (17) and (18) since we have G and Nfl instead of G
n An

and N«. However, since N« % N« within the uncertainties of these

quantities which are controlled by N , the x2-minimum (40b) is not very

different from the x 2
m given by (40) and therefore the results (17b) and

(18b) are equivalent to (17) and (18) or more exactly the differences

are not measurable from the x2-[m"nimum. We conclude then that if our

data are not too unlikely, in the sense that x2 given by (40) is less

than about 2 per degrees of freedom, we have little to gain by iterating

in order to find the solution, the improved precision in the solution

being not justified by its accuracy.



We see from the above analysis that the value of x2
m» the "consistency"

of our input data, indicates to us when we may gain significantly by an

iteration scheme to get the solution. Such potential gains exist only when

X 2
m per degrees of freedom is large. Unfortunately, in such cases we tray

not exploit fully the benefit of iterating to improve our results since the

data are then so unlikely that the credibility of the solution is low. We

must assume that very likely a mistake has been made somewhere and should

be corrected to restore some credibility in the answer. We will not

discuss the various methods which may be used in such situations; these

different strategies, however, have all the same result, which is to reduce

effectively x 2
m t° be about one per degrees of freedom. There is then

very little need to iterate in order to find the solution which would not

become much more credible.

The above result which may appear surprising - very little use of the

non-linearity of the model can be taken advantage of by iterations which

would improve the solution — is not unique to our dosimetry problem. This

feature is common to all non-linear least-squares problems where a "few

integral results" are available and a priori knowledge about the solution

is introduced in the form of "fully evaluated differential data" to exploit

these "integral results." In this strategy we merely want our "a posteriori

evaluations" to reflect the "new information" present in the integral data.

It is clear that through the "integral data" we cannot learn much about the

"differential quantities" unless we have "strong inconsistencies." When

the integral data are relatively consistent with our differential data, the

integral results will not cause our knowledge of the individual differential

quantities to be modified. Their values and their variances will not be

changed significantly, i.e. P' % P and the diagonal'elements of the
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covariance matrices N' and N will also be about the same. What the

least-squares method does is change as little as possible each parameter,

but modifies as many as possible in such a highly correlated fashion to

reproduce as best it can the integral results. In such conditions the

only significant information we get deals with the correlations of the

differential quantities and these are expressed by the.off-diagonal

elements of N' the output or a posteriori, covariance matrix. The potential

for improvements in our knowledge of the individual differential quantities

exists, and therefore the need for an iterated solution, only when there

are yery significant differences between, or inconsistencies in, our two

types of input data. Their usefulness in improving our knowledge of the

individual differential quantities is, however, limited by our inability

to claim with confidence that the "inconsistencies" are "real" and not

the results of "mistakes."

The above discussion is very general and does not make use of the

explicit form of the "model" of the integral quantities in our dosimetry

problem. There are two situations where the dosimetry method is often used,

and the model becomes "effectively linear" even though x m may be large.

These situations occur when either ¥ or Y is known a priori to a much

higher relative accuracy than the other. In such cases the model is "quasi-

linear" because the non-linear terms (zf-E1) •($-$) become effectively small

in an absolute sense whether we choose our a priori or a posteriori estimates

to expand the model. In these cases again iterations are not needed, even

though x2 way be large, because the model is "effectively linear" and the

"differential quantities" which are not as well known relatively will be the

only ones changed significantly" These situations may occur in "standard

fields applications" when N$ is relatively much better known ajid in "practical

applications" where it is N which is relatively much better known.
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The Least-Squares Analysis Code STAY'SL

The above method of analysis of dosimetry data has been incorporated

into a computer code STAY'SL which has been documented13 and is available

from the Radiation Shielding Information Center (RSIC) at Oak Ridge

National Laboratory.

In STAY'SL we calculate explicitly only the values of $' and N';

therefore, two possible interpretations of the code output can be made.

The first one is that the full solution for P1 is not obtained, although

both $ and £ are "adjusted." A code for generating the full solution (i.e.,

including £' and N') will soon be released. The other interpretation is

that in STAY'SL the cross sections (i.e., E) are assumed to be only

"formally adjustable" during the analysis in order to propagate their

uncertainties to the solution. The covariance matrix Nn0 of the measured

activations was modified by adding to it the matrix N^, given by (31), and

obtained from an estimate of N-, in order to take into account the fact

that our "model" [i.e., expression (5)] is inexact. In doing so we claim

to have properly taken into account the"approximations" in our model u.e.,

the cross sections). This second interpretation of the solution of STAY'SL has,

we believe, some interesting implications concerning the general use of

the method of least-squares when the "model" is known to be deficient and

suitable "methods"'or "approximation" parameters may be introduced, with

assigned uncertainties, such that within these uncertainties the "model"

can be claimed to be exact.

Comparison with Other Methods

It is evident from the above discussion that the least-squares method

has the potential for providing a solution which incorporates .in principle
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all of the available information concerning the problem in a straight-

forward manner and at the same time giving us the "best" such solution in

the sense of the minimum variance theorem. In practice this potential can

only be realized at some costs. We will first discuss briefly each type

of information used as input and analyze how close in practice, and at what

costs, we can come to utilize "all of the information" available.

Concerning the activation measurements, it should be relatively easy

to use all of the information available. In particular, the correlations

of the different activations, which are not used at all presently or are

used in an unknown manner through the use of so-called "calibrated

methods," should be easily handled. In order to do so, however, the

experimentalist must provide the covariance matrix of the measurements

or preferably report the analysis of the uncertainties in the data in

such a way that these estimates may be evaluated and the covariance

matrix easily generated from the information. In the past such types of

information were not used very explicitly; therefore, there was little

incentive to provide it in a clear fashion and only the standard devia-

tions of the activations were usually reported.

Concerning the dosimetry cross sections, it should also be possible

to come close to utilizing most of the information available. The

starting point is always a detailed evaluation of the differential data.

In the past very few evaluations were made with enough details available

concerning the uncertainties in the evaluated data to allow the covariance

matrices to be generated. In the ENDF/B files it is now possible to

communicate this information10 and hopefully in ENDF/B-V all dosimetry

cross sections will have data such that the covariance matrices can be

generated for any group structure. Our knowledge'of- the dosimetry cross
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sections does not come only from differential measurements. However, if

we have evaluated differential data files with correlations indicated,

they can be exploited, using the same least-squares method discussed

here, to generate new evaluations which incorporate the results of

integral measurements obtained in benchmark and standard fields. We

have already discussed4 that some care must be exercised regarding how

we accomplish this last step if we are not to run into large computa-

tional problems. We therefore believe that the methodology exists for

generating dosimetry cross sections which will come close to reflecting

adequately almost all of our information regarding how well we know

them.

We believe then that the major obstacle which must be overcome to

use "all of the information" available in our solution to the dosimetry

analysis problem is the determination of appropriate $ and N . Because

this problem is specific to every spectrum being analyzed, we can only

discuss it in general terms. The approach to this problem is, however,

straightforward even if we will usually run into practical difficulties

in finding its solution. The a priori spectrum $ can always be obtained

as a combination of whatever data are available and the results of

appropriate transport calculations. Since this is what is often done

now in order to generate the "input spectrum" to our current methods, we

shall not discuss this aspect further. Therefore, it may be perceived

at this stage that the major obstacle will be the generation of an

appropriate covariance matrix N$. The procedure for obtaining N$ is in

principle easy since it is merely a statement of how well we believe we

know $. Aljbhough some subjective elements will always exist in our

estimation of N , some degree of credibility can be'achieved if we
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analyze with care the source of our uncertainties in $. It is often

perceived that the "uncertainties" in $ come from two major sources:

uncertainties in the basic nuclear data used in the computations and

approximations made in the computations. Using sensitivity methods, it

is in principle straightforward to propagate the uncertainties of the

input data to the resulting spectrum. The question of the approxima-

tions made in the computations is more difficult, but the covariance

matrix N must certainly reflect the uncertainties in 0 due to them.

In the near future, since much of our information is not codified

in the appropriate form, some of the benefits of the method may not be

realized. We have already discussed1* the fact that in such cases all we

can expect is more credible answers than we currently obtain merely by

using more credible input data. In the past, various methods7 have been

devised to compare the various unfolding codes. A particularly useful

one is to obtain the solution to a given problem using the same input

data by different codes and compare the ratios of the output and input

spectra. The comparison of these ratios for different codes such as

SAND-II, SPECTRA and CRYSTAL BALL is very instructive since it shows

rather large differences which are indicative of the various algorithms

used. For these codes this ratio is not unique for a given problem, but

also depends upon a number of input quantities having to do with the

algorithms and not related to the problem being solved. In the case of

the least-squares method, this ratio can easily be obtained from (17)

and is simply:
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where m, is the relative covariance of the flux <J>. and $0 and the

w..'s are the matrix elements of the matrix (N» + N^o)" , the weight

matrix W, all other symbols in (43) having been defined previously.

It is evident that the purpose of any dosimetry spectrum unfolding

code is to modify the "input spectrum" in order to obtain an output

spectrum which is consistent with the measured activations. It is also

clear that we want these modifications of the input spectrum to occur in

such a way that they are consistent with how well we know various features

of the input spectrum. How well we know the various features of the

input spectrum is, of course, problem-dependent and is communicated by

means of the covariance matrix N$. Even though the unfolding codes

SAND-II, SPECTRA, and CRYSTAL BALL do not require that we directly input

N , we may view them as strategies to obtain the solution (43) and

therefore look upon the algorithms as having built into them an effective

covariance matrix N . A difficulty with these codes is that this effect-

ive covariance matrix is unknown, fixed once and for all, and to be used

in all unfolding situations regardless of how well we know the input

spectrum $. It is also evident that this effective covariance matrix is

different for each one of these codes. Consequently, it is difficult to

compare the solutions of these codes with the output of STAY'SL since we

cannot use exactly the same input data. In fact, it is difficult to

compare the output of these codes among themselves because they all in a

direct sense do not solve exactly the same problem due to their different

effective N .

It is clear from the algorithms of SAND-II, SPECTRA, and CRYSTAL

BALL that these codes can produce a solution^lhich will reproduce as

well as we care to state the measured activities.' However, we know that
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often this is done by introducing in the solution what is referred to as

"unphysical oscillations." In fact, we use that name to indicate that

these features of the solution are thought inconsistent with our a priori

knowledge of the spectrum. Therefore, we must conclude that it is

possible to operate these codes in such a manner that their effective

covariance matrices are unreasonable. This fact is well known and is

often expressed by saying that these codes cannot be used as "black

boxes" and require considerable expertise to be used to generate accept-

able solutions.5 It is therefore not possible to use as a figure of

merit for the solutions how well the input activities are numerically

reproduced.

There exists a very straightforward way to compare the various

methods. It is to ask, "How well do the different solutions predict the

results of computations based upon them?" By "how well," we mean how

small are the uncertainties in the results of computations using the

solution. A measure of these uncertainties is the variance of the

results in question. In order to be able to answer this very important

question we need to know what are the uncertainties in the solution

(i.e., its covariance matrix N'). In the case of the least-squares

method, N^ is give.i simply using relation (18). In the case of the

other methods, we do not know what the uncertainty in their solution is

since it is usually not calculated in any well defined manner. We have

discussed previously1* how to generate the uncertainties in the solution

of the usual unfolding codes on the basis of the input data uncertainties,

but will repeat here some of the method since it will allow us to make a

very strong argument as to why -not only in tifcory but also in practice

we should use the least-squares method. * _
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The solution to the problem, $', by whatever method it is calculated,

is a function of the input quantities A°, $ and Z. A straightforward

method to propagate to the solution the uncertainties in the input data

is to calculate the sensitivity of the solution to the input parameters.

Let us construct such a sensitivity matrix S given by:

= S • I d$ I . (44)

The elements of the matrix S are the partial derivatives of the

output fluxes with respect to all the input data. Since in our usual

methods we do not have a simple expression which relates the solution to

the input data, the matrix S must be obtained by numerical methods and

this may be a very large computational task which can be carried out at

least in principle. (Some of the diagonal elements of the matrix S are

related to the often used "improvement ratios."7) Once one has the

matrix S, we can obtain the covariance matrix N' by the relation:

N$1 = S • [ 0 N, 0 |. Sf , (45)

where the matrices NA O» N and N are the very same quantities which were

discussed in connection with the least-squares method. Expression (45)

indicates that if we are interested in obtaining the uncertainties in

the solution of our usual methods we must generate and use the same

covariance matrices required by the least-squares method. The problems

which may be perceived in using the least-squares method due to the

requirement of having such covariance matrices are therefore not unique

to it.but also present when we~want to answer the^question, "What are
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the uncertainties in the solution?", regardless of how we obtain the

solution. If we obtained N', using (45) for our current methods, we then

could answer the question: How good are the predictions which we can make

using the solutions?. In order to pick a large class of possible appli-

cations in which we might use $', let us consider a "result" r which is

obtained as a linear combination of the <|>!j's. We define r in terms of the

vector R whose elements are the coefficients of the linear combination

of the 4>'.; we therefore write

r = R+ • *• . (46)

Then the variance of r, which we write as Vr, is just:

Vr = R+ • N$l • R . (47)

The vector R is completely arbitrary and v/e might suggest that several

such vectors R may be of particular importance in our dosimetry problem.

For instance, we might think of r as being one of the activations which

were measured, in which case R is just Z . Another pertinent example is

one where r is some damage parameter, in which case R is the corresponding

"damage function."

In some very real sense, if we carried out the above calculations, we

could say that the better method is the one which produces the smaller

value of V . The minimum variance theorem guarantees that whatever is

the set of input data and the vector R the solution from the least-squares

method is guaranteed to give the smallest variance Vr. We can now continue

our discussion of the comparison of the different codes on the basis of

how well their solutions reproduce the measured activations. As we dis-

cussed before, the codes SAND-II, SPECTRA, and CRYSTAL BALL could be run
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such that the numerical values of the "output activations" agree with the

measured values better than the output of STAY'SL, but we would be wrong

to conclude that their solution is therefore better. We have just proven

that this "numerically better agreement" is purely fortuitous since the

uncertainties in these numbers, whether we actually compute them or not,

are likely to be bigger and can be no smaller than those obtained by the

least-squares method. In addition, the running time by the least-squares

method is not larger for the same size problem.

Summary and Conclusions

The problem of dosimetry neutron spectrum unfolding has received

considerable attention and much progress has been made in developing

algorithms (SAND-II, SPECTRA and CRYSTAL BALL) which are perceived to

give much promise even though their solutions to the same problem are

sometimes quite different. Through extensive comparisons of the output

of these codes for the same problem and the development of various quanti-

ties to allow some aspects of the solutions to be investigated, much

insight has been gained into these algorithms and the nature of the few-

channel unfolding problem. Dosimetry spectrum unfolding, as practiced

now with these codes, still remains difficult and requires much expertise

to produce generally acceptable solutions. Until now very little attention

has been given to the problem of analyzing in a credible manner the

uncertainties in the solutions, with the exception of the SAND-II code

where Monte Carlo is used to provide an estimate of some of the uncertain-

ties. We have shown that the propagation to the solutions of these codes

of the uncertainties in the input data was in principle straightforward.
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The uncertainty in the solution due to all of the input data uncertainties,

as given by their covariance matrices, can be obtained by generating the

sensitivity matrix of the solution with respect to the input data. This

method of obtaining the uncertainties in the solution of these codes

requires, however, a large computational effort which probably would be

prohibitive for routine use. The approach to uncertainty estimate of

SAND-II could also be improved to take into account important correlations

which are currently neglected, but this method** also runs rapidly toward

large computational problems. We believe that, if these calculations

were made, a large part of the subject /ity currently needed to assess the

"goodness" of these solutions would be eliminated. There would, however,

still remain a problem related to the heuristic nature of these algo-

rithms for the solution.

We have shown in this paper, and a previous one,4 that given the

input data required to obtain our current solutions and estimate the

uncertainties due to the input data, a solution can be obtained using

the least-squares method. We have reviewed in some detail the assump-

tions of the least-squares method and some of the properties of its

solution in an effort to establish that this least-squares method did

not require any more assumptions than we currently make. The solution

by the least-squares method is extremely easy to obtain given the required

input data, is unique and in a very real physical sense provides the

best possible solution under the circumstances (i.e., the assumptions

made and the intended use of the solution), and also easily provides the

uncertainties in the spectrum. We, therefore, believe that this least-

squares method provides the solution which we have sought for the dosimetry

spectrum unfolding. A computer code STAY'SL, which'calculates this solution,

is now available.
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Although the method now exists for computing a satisfactory solution

to the dosimetry unfolding problem, much work remains to be done in most

cases in order to obtain the best answers. We believe that most of our

efforts should be devoted to the codification of our uncertainties in the

evaluations used as input data to be able to generate covariance matrices.

Although this is likely to be a substantial amount of work, we also think

that much of the methodology exists to carry out this task. In particular,

with respect to dosimetry cross sections, where much thought has already

gone into this problem and a formalism created in ENDF/B to handle the

covariance matrix information, hopefully most of these data will soon

become available with ENDF/B-V. Regarding the uncertainties in the

input spectrum, much progress has already been made in the area of

computing the sensitivity coefficients in transport applications in

order to propagate nuclear data uncertainties. However, much work

remains to be done regarding the estimation of uncertainties in transport

problem solutions due to the various approximations made.

Finally, although the method of least-squares we propose; is very

likely satisfactory for most problems, in some situations it may not be

entirely adequate to obtain only the second moment of the joint density

function of the spectrum as the least-squares method does. We believe

that as we gain experience with the least-squares method and improve

considerably our perception of the uncertainties in nuclear data the

need may arise to go beyond their representation in terms of only the

second moment of the density functions. Then more powerful methods

capable of dealing with higher moments of the density functions will be

needed. How urgently we need to explicitly develop such methods for the

dosimetry problem is a matter of conjecture now and-will depend, we



believe, very much upon the progress we make in understanding the nature

of the uncertainties in nuclear data and the problems we face when

trying to handle only the second moments of their estimated joint density

functions. To a large degree the nature of those more powerful methods

will be dictated by the kinds of problems we encounter.
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