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ABSTRACT

THe method of least squares is briefly reviewed, and the conditions
under which it may be used are stated. From this analysis, a least-
squares approach to the solution of the dosimetry neutron spectrum
unfolding problem is introduced. The mathematical solution to this
least-squares problem is derived from the general solution. The exis-
tence of this solution is analyzed in some detail. A x%-test is derived
for the consistency of the input data, which does not require the solu-
tion to be first obtained. The fact that the problem is technically
nonlinear, but should be treated in general as a linear one, is argued.
Therefore, the solution should not be obtained by iteration. Two inter-
pretations are made for the solution of the code STAY'SL, which solves
this least-squares problem. The relationship of the solution to this
least-squares problem to those obtained currently by other methods of
solving the dosimetry neutron spectrum unfolding problem is extensively
discussed. It is shown that the least-squares method does not require
more input information than would be needed by our current methods in
order to estimate the uncertainties in their solutions. From this dis-
cussion it is concluded that the proposed least-squares method does
provide the best complete solution, with uncertainties, to the problem
as it is understood now. Finally, some implications of this method are
mentioned regarding future wd;K required hf1ﬁder to exploit fully its

»

potential. - ]
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Introduction

The usual solution to the dosimetry neutron spectrum unfolding
problem is an attempt at providing 2 detailed spectrum based upon
activation measurements obtained in this spectrum given a priori
knowledge of the corresponding dosimetry cross sections. As is well
known, a vary detailed, exact (i.e., unique) spectrum cannot be obtained
for this problem. Most popular dosimetry unfolding codes such as SAND-
11, SPECTRA,2 and CRYSTAL BALL,3 or those based on their algorithms,
obtain their solution by introducing some additional information in the
form of a "trial spectrum." This trial spectrum is clearly some form of
a priori information about the solution. In a recent paper* we analyzed
the propagation of the uncertainties in the input data to the solution
of these codes. While it is clear what the meaning of the uncertainties
is for the activation data and the cross sections, some discussion of
the "uncertainties in the input trial spectrum” and their effects upon
the solution is desirable. In many favorable cases of activation data
analysis, if the trial spectrum is selected "close to a physical one,"
the solution of these codes exhibits a weak dependence upon the trial
spectrum.® This aspect of the uncertainties in the solution is usually
handled by means of several calculations performed using "several differ-
ent physical trial spectra," and a subjective evaluation of the reliabil-
ity of the solution due to "trial spgctrum sensitivity" is made.® If
we wanted to be quantitative about these uncertainties, we could explore
in seme fashion the whole space of "physically valid trial spectra" by

say numerical methods and extract some measyge for these uncertainties.
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Certainly, if we did this, we would somewhat improve the credibility of
the solution since in essence we would convert the somewhat arbitrary
trial spectrum used to obtain the solution to a rather complete state-
ment of the a priori knowledge about the solution, including its uncer-
tainties. We believe, therefore, that part of the difficulties associ-
ated with the credibility of our usual solutions are related to the lack
of precision in the statements which we either directly or indirectly
make about the a priori information used and in some sense lower that
information to the rank of "intuitive information,"® which calls for
subjective evaluation. The second problem with our current methods is
the fact that we in general cannot prove a priori what desirable or
undesirable fTeatures our algorithms have in addition to those purposely
put in. Such knowledge must be obtained through numerical experiments,
inter-comparison of codes in special cases, etc.;’ and such knowledge
obtained a posteriori in specific examples may not necessarily be valid
for somewhat new situations. It is for this reason that we proposed a
new approach to the problem* which we think goes a long way toward
eliminating these difficulties. In this paper we discuss at greater

length this least-squares approach and some of the features and advantages

of the solution.

The Least-Squares Approach

We review first briefly the general method of linear least-squares
in order to establish a notation and state clearly the assumptions upon
which the solution is obtained. We shall use as much as possible a
description based on the physics of the situgfion rather than the more

precise statistical language.® .



Given some "observations" y; of n "quantities," }g, forming the
abstract vector YB, Ye = {yg}. Let these observations, y?, have "errors,”
€;» associated with them. We consider the quantities 5% to be random
variables and the aistract vector Y = {yg} to be therefore a multivariate.
If the experimental results are unbiased, we can say that they provide us
with an estimate of the joint density function of Y if we identify Y° with
its expectation value, Y° = E[Y], and from the e;'s we obtain its covari-
ance matrix M = {mij}’ with myy = E[ei,ej]. No as~umptions need be made
about the form of the joint density function of Y, and e emphasize that
.'s, are specified. We introduce a "model"

J
whereby Y is defined in terms of m "parameters," E}, which form the

only its second moments, the m,

abstract parameter vector P. Therefore, P is also considered to be a

muitivariate. Let us first take a model for Y which is linear in P; we

may write:
Y=D-F |, % (1a)

where the dot we place between vectors and m%trices denotes ordinary
matrix multipliation and the n x m "design m%trix" D is not a function
of P. When n = m, the equation (1a) can be siﬁved exactly, to obtain the
estimated joint density function of P from t@e estimated joint density
function of V, if the design matrix D is notgsingular. For the case of
n > m, our system of equations (1a) is overdeéermined and what we seek is
a "best average solution" in some sense. Thé method of least-squares
obtains this solution by minimizing the "xz-%unction":
!
x> = (e-ntewt. (vff,- o, (2a)

-
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where the symbol 1 denotes the transpose of vectors and matrices and ?
denotes some estimate of the expectation value of Y based upon some
estimate E of the expectation value of P, ? = D-a. The vector Y°-§ is
the "residuai vector" and in this case is just Y°-D-S. The minimum
value of the x2-function is obtained by adjusting 5 and provides us with
an "unbiased" estimate® for the joint density function of P characterized
also only by its expectation value P' and its covariance matrix N'p.
This least-squares solution for the joint density function of P is often
said to be "best" or "most likely" by virtue of the "minimum variance
theorem"8 which guarantees that it minimizes the variance of any linear
combination of the parameters 5}. We shall not prove here these very
important properties of the least-squares solution, nor derive the

solution, which is:8

PI

of e tep)y T ept oml oy | (3a)

N o v ot (4a)

P

When we refer to the solution of the problem, we mean both P' and
N'p since they are required for a scmewhat meaningfui specification of
the joint density function of P. We are indeed extremely limited in the
kinds of useful statements we can make if we only obtain P'. The solution,
(3a) and (4a), will always exist since the covariance matrices M and
D+-M']-D are in principle nonsingu]ar. This is the case because the
covariance matrix M is symmetric, as well as positive definite, and at
least one "independent piece of information" is required to be associated
with each observation ys. The “error" associgted with this "independent

piece of information" will contribute only to the.diagonal of M and this



is sufficient to make the matrix M nonsingular. Therefore, if in
practice a singular covariance mgtrix M is found, it is due to an over-
sight or mistake. The same arguments can be made about the covariance
matrix D+-M']-D, although here it is relatively easier to overlook the
fact that although two different ”1abéJs" were used for two parameters
they are the same quantity, since theyignter in the model in exactly the
same way. Such singularities can therefore be removed easily.

The above statement of the problem is known as a linear least-
squares one, for obvious reasons. In maﬁy situations the model for Y
is nonlinear in the parameter P, V = F(ﬁ); and the solution cannot be
obtained as indicated above. In such casés an approximate solution can
still be found using the least-squares mefﬁod by linearizing the model.
To do so we expand the model in a Taylor s%ries in the parameters, which

b
is truncated after the second term: )
\

- -
Y X Y+D. (P-P) , (1b)

\
where the design matrix D is made up of thelpartia] derivatives of the
model, F(P), with respect to the parameter 5iand evaluated at P = P.
The linearization of the model by (1b) is good enly for P close to P.
Since P is a multivariate which can assume a iarge range of values, the
approximation (1b) can be said to be always bad in some domain of P.
However, if we choose P in the neighborhood of‘whe solution, P', assuming
that it exists, and if the standard deviations éf the joint density
function of P are small compared to the expectatﬁon values and/or if the

model is not very nonlinear in the sense that thé.e]ements of D are not

very sensitive to P, the approxXimation (]b)1%5y be a relatively good one.

>
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A general discussion of the consequences of the linearization of the model
is not our purpose since we will return to it later in commection with the
dosimetry problem. Therefore, assuming the linear approximation (1b) can
be made, we can proceed as for the linear case and write down explicitly

the x2-function:

2

W2 o= (Yo -v-p. Pt oMl (v oy oD (P-P)) . (2b)

The comparison of (2b) with (2a) allows us to write immediately the
solution for the minimum value of x* which is obtained from (3a) and (4a)

by substituting Y°-Y for Y° and P'-P for P' to get:

+ 1 -1

prop = @ etep)t ot - ), (3b)

-1 -1

NYo= (e M eD)Th (4b)

P

Since frequently the initial choice of P is a poor one for the expansion
(1b), the solution is then obtained by iteration in the hope that the
solution will converge. It is important to note that the need to iterate
is not an essential aspect of the method if the initial expansion "point" P
yields a solution P' which is close to it. Iterating is, however, necessary
if the model is highly nonlinear and P' is far from P. In this case the
convergence of the process may or may not occur and when it does occur it
may be at a "lccal minimum" which is a function of the starting value P.

If we can formulate our dosimetry data analysis problem as a least-
squares one, the solution will be the most likely one and therefore befter,
or at least no worse, than any other one not based upon minimizing the
xZ-function. In addition, the properties ofgthis solution will be well

known and fully understood. ™ .



It is evident that our activation measurements in the spectrum, the
ag's and their uncertainties, meet the requirements to be some observations
of the type y? needed for a least-squares problem. The activations 5}
can be defined in terms of the fluxes 53 and cross sections Eg; our
model for these quantities is clearly:

o

R (5)
J

[

Since we can approximate our integral statement by expression (5)
to any degree of accuracy, the "model" is exact by virtue of the definition
of the quantities called the 8}'5. We may rewrite (5) in a more compact
notation if we introduce the vector @ for the E&'s, ¢ = {55}, and the
vectors T for the Eg's, 7oz {3§}. Equation (5) then becomes:

a, = TT.3 (6)

It is clearly implicit in our use of the name "dosimetry neutron
spectrum unfolding” for dosimetry data analysis, that the "flux quantities"
are usually considered as "parameters" in the problem and we have indicated
this in Eq. (5) by treating them as variates by our notation 55. The code
DANTE,? which to our knowledge is the only current code which approaches
dosimetry data analysis as a general least-squares problem as we do, treats
the 53'5 as the only parameters entering the model for the 5}'5. DANTE
does so by treating the cross sections as constants and solves the corres-
ponding linear least-squares problem. Since at this stage of our know]édge
of the dosimetry cross sections their estimated accuracies are often poorer
than the estimated accuracies of the measuregpactivations, ignoring the

cross. section uncertainties b¥ treating the cross, sections as constants



will significantly affect the estimated uncertainties in the spectrum.

This point does not appear t2 have been generally appreciated for the
"dosimetry unfolding problem" or even for the "many channel unfolding
problem" where the "response matrix," which plays the role of the dosimetry
cross sections in the dosimetry problem, is not considered as a variate

on the same footing as tne spectrum and consequently the uncertainties

in the response matrix are not handled adequately.

In a dosimetry analysis problem we always have fewer activation
measurements ag than we have quantities 5} and 6&, or even 55'5. There
is, therefore, no unique solution for the 6&'5, even if the ag's were
known perfectly, unless we are willing to add more information than just
the activation measurements. Of course we could solve the problem of
activation data analysis by representing the 53'5 by a few parameters
and this has been done in the past, but such ways of handling the diffi-
culties are generally considered inadequate. In the least-squares method
information is in the form of "observations" and therefore what we seek
in solving the problem by this method is to supplement the a?'s with
"other observations" which will produce an overdetermined set of equations
for the 5}'5 and 63'5. Two requirements must be met by the "quantities™
used as "other observations": they must have "errors" associated with
them and must be related to the parameters E} and 63 by means of a "model."
Preferably this model must be exact, or considered so, since otherwise we
need to introduce still more "observations" to overdetermine the approxi-
mate quantities in the model. It is evident that from a formal point of
view the choice of "other quantities" to obtain an overdetermined set of

equations is arbitrary and g_sdTution can bé‘?ound for each set of "other

"quaﬁfities" which meet the two basic requiremenfé stated aboye. This
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arbitrariness in the choice of "other observations" can be largely
removed if we consider the intended use of the solution sought. From
the concept that we want the "best solution" for a specific use, it
often becomes very clear what "best set of other observations" is needed,
in addition to the measured a?'s of the problem. In the remainder of
this paper we shall assume that what we are after is in some sense the
"very best solution" consistent with our current knowledge. It is not
evident that this partfcu]ar solution is always the one desired, but we
believe that it is the one which will be most useful for many uses and
will serve to indicate the methodology. The idea of "very best solution”
has implicit in it the fact that we have used to obtain it all observations
which were ever made, for whatever purpose, related to the 3?'5 and 65'5
of this problem and that these observations are exploited to the fuliest
extent of our current knowledge.

We will first consider the 5§'s and show how this can be accomplished.
The direct use of every experimental result related to the Eg's is ot
practical even if in principle feasible. However, we can come close to
achieving our goal if we consider that our "evaluations" of the fﬁ's
attempt to represent all previous measurements and can be used directly
as observations if they have "errors," or covariance matrices, associated
with them. If we treat such evaluations of the fi's as observations,
their "model” becomes eyxact since it is the identity matrix. It is
unfortunate that most of our evaluations of the T''s do not have data
covariance information associated with them since théy cannot be used for

our purpose until such information has been added to them. A formalism

- -
has been developed within the context of ENDF/B to represent such data
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covariance information,'? and hopefully all the dosimetry cross sections
of ENDF/B-VY will have "data covariance files” and could be used directly.
We shall therefore assume that it is practical to use evaluated fi's to
generate our “best solution" even if now the needed covariance matrices,
Zij’ must be added to thein. By doing so we have added to the a?'s one
"observation" per 5§ and the required overdetermination of the 5§’s is

N

achieved.

Let us now turn our attention to the E&'s. It is evident that we
have a very efficient method in overdetermining the Bg's since only one
"observation" is used for each Eﬁ and the same technique can be utilized

J
for the 53'5. A method which can always be used is to estimate the 55'5
by means of calculations based upon a "model" of the system which produced
the spectrum in which the foils were irradiated. Because our model for
these calculations is bound to be approximate and we must us2 imperfectly
known .wuclear data as input, these estimates for the 5&'5 will only be
approximate and have "errors" associated with them. If we do estimate the
uncertainties in these calculations, then the result is that we may use
the calculated fluxes directly as observations. Of course, we should
supplement these calculations of the 5&'5 with direct measurements of the
65'5 if these are available and obtain effectively an evaluation for @,
complete with covariarce matrix N¢. The approach we advocate in the
treatment of the spectrum is related to what is done in the code RADAK.!'
RADAK is a general purpose "spectrum-analysis code" which does a
“simultaneous unfolding" from several detectors. It is primarily intended

to be used with "many channel" detectors, but some activation foils may be

included. As such, it is not a~dosimetry uﬁ?ﬁ]ding code, but since no

>
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correlations are allowed between the “"many channel” detectors output and
the activation data, it is effectively equivalent to one where the $3's
are first obtained from the many channel detectors and then used to
analyze the dosimetry data. In the cases where RADAK can be used, i.e.,
there are many channel detector data available for the complete spectrum,
the solution we seek, the "best possible one," can be obtained by com-
bining the output of RADAK with the results of model'calculations. It
is, therefore, merely a question of strategy about how to proceed in

this case, and the result should be independent of the approach. However,
when the dosimetry cross sections extend below the energy range of the
many channel detectors, we must make use of model calculations to provide
the necessary overdetermination of the spectrum, in that energy range at
least, before we can exploit the activation data.

If we proceed as outlined above, by supplementing our measured
activations‘a;, and their covariance matrix NAo, with a synthesis of all
our previous observations concerning the Ej's in the form of fully
“evaluated cross sections," with expectation values zi and covariance
matrices Nzij’ and a synthesis of all our previous knowledge of the $5‘s
in the form of a fully "evaluated spectrum," with expectation value & and
covariance matrix Ng» we will have in a direct sense the "best input data"
and our solution can be called the "best possible solution.” It should
be clear that whatever is our intended use of the solution spectrum it
can never be called "best" if we do not use fully all the information
concerning the dosimetry cross sections in the form of "best evaluations"

for the T''s. Therefore, our different "best solutions" can onty come

from what we use as "best evaluations ofifﬂf‘lt is conceivable that

>
-
-
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different intended use of the solution will dictate different "best
assumptions" to be made in the evaluation of & and therefore we will
have different "best evaluations” of @. It should be clear, however,
that in order to be used in our problem the evaluations of & must be
complete in the sense of having a covariance matrix N¢ which corresponds
to the assumptions made in the evaluation.

In this lengthy introduction we have attempted to justify in detail
and in a logical manner the use of what is often called "a priori infor-
mation about the solution." It is often perceived that only some class
of a priori information such as non-negativity of the spectrum is "non-
controversial."® We hope to have shown that this need not be the case
and that the often perceived failure® of having found a satisfactory
solution to the "few-channel unfol-ing problem" does not lie in the need
for "detailed" a priori informatio. but rather in the fact that the
detailed a priori information used ... the past was poorly quantified.

We contend that any amount of detailed a priori information about the
solution, if it succeeds in overdetermining the parameters of the problem,
can provide a satisfactory solution if it is complete, i.e., has "uncer-
tainties" associated with it, and the assumptions under which the complete
a priori information is generated are justified and understood. From a
purely mathematical point of view, the statement of the "input values of

£, Ne.., ® and N¢“ constitute the assumptions under whkich the solution

Zij
is obtained and there is therefore nothing "controversial" about the

solution since the assumptions are clearly stated.

T - -
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The Mathematical Formulation

In this section we merely transcribe in mathematical Tanguage the
ideas discussed in the previous section. To simplify the notation we

introduce the abstract cross section vector I,

—

(7)

ol
LH
coo |t o
w N
-

and the abstract parameter vector P,

[
35<_> . (8)
z

We shall refer to the evaluations of ® and Z, treated as “observations,

by the abstract vector P and its covariance matrix NP:

I )

z
We have shown in Eq. (9) by the symbol 0 for the off-diagonal matrices

-
m

of NP that we assume, as will be generally the case, that the evaluations
of ® and T are uncorrelated. This is not necessarily always the case,
since it is possible that some of the dosimetry cross secticns of the
problem, some f{, enters also in the evaluation of & as could be for
instance the case of the 235U fission cross section. In such cases the
off-diagonal matrices of NP will not be zero. It is not essential for
the problem that NP be diagonal in the space of & and T which should
therefore represent the true situation. Howgyer, it is convenient later

to consider'NP to be diagonal ™in the space of ¢ apd & purely from a



15

presentation point of view. We shall therefore state that without loss
of generality we consider NP to be diagonal in the space of ¢ and Z,
which does not mean that we consider N¢ and NZ to be diagonal.

As previously discussed, we consider our evaluations of ¢ and T as
"observations" as well as fhe abstract vector A° made up of the measured
activations a?, A° = {a?}. In the notation of the previous section we

have therefore:

=
1]

YO

N, 0
( P ) . (10)

P

()
In Eq. (10) we indicate, by our notaticn 0 for the off-diagonal

matrices of M, that the "observations" A° and P are uncorrelated. It is
strictly not necessary to make this assumption, in order to use the
least-squares methcd, if we are willing to invert the full matrix M, as
shown by (3) and (4). However, as we will show in the next section, if
M is diagonal in the space of P and A°, it is only necessary for us to
"formally" invert the matrix NP without actually doing so explicitly.
When M is not diagonal in the space of P and A°, we have to invert it
explicitly to get the solution and this may not be practical since the
rank of M may well be of the order of a few hundred or even a few
thousand. We shall therefore assume that in order to be practical
our method requires that P and A° be uncorrelated. The meaning of this
requirement is that in our evaluations of ® and T we must not use any data
which are correlated to A°. This restriction appears at first sight to
be a strong limitation of the method since it might force us to exclude
from the evaluations some typé§”of data obté?%ed in standard and benchmark

fields. We have already discussed a pirocedure for by-passing_such
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difficulties® and we shall not return to it in this paper. (Mathematically
speaking, it is the fact that M is diagonal in the space of P and A° which
justifies our use of the term prior information to describe the evaluations
of ® and T, i.e., they can be made without using our knowledge of A°.)
Having identified the "observations,"” Y° and M, for our least-:quares
problem we must row establish a "model" for the quantities Y, i.e., obtain
the complete design matrix. It is clear that P stands for the gquantity P
and therefore our model for these observations is the identity matrix!!
It is therefore linear and exact. Our "observations" A° stand for the
quantity A, with A = {5}} and 5} is defined by Eq. (6). Since 5} is a
bilinear product of some of the elements of P, our model for A is non-
linear. In order to obtain our design matrix we must linearize the model.

We shall do so by performing an expansion about the estimated expectation

values of ® and T, i.e., @ and I, we get:
7. = siteg+ol o @)+t . o)+ 2. @F0) L, (1)

since the expansion terminates the expression (11) is therefore exact
regardless of the values of & and Zi, as can be verified by performing

the operations indicated. The linearization of (11) is accomplished by
dropping the last term only. It is clear that "very little approximation"”
is made by dropping the last term since if our evaluations are "reasonably
close" to the colution the contributions of this term will be small. This
is so because to contribute significantly both Zi and & must be signifi-
cantly wrong in the same energy region; the signs of the differences must
be such that no appreciable cancellations occur in the summations over
energy and this sum is to be épmpared‘with Eﬂﬁ total activation. These

three requirements to make the approximation poor must be met simultaneously
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and therefore we can already conjecture that the model being "quasi-lirear"
most of the time we expect the linearization to be a good approximation

and consequently our need to iterate to find the solution will be infre-
quent. We shall return later to a discussion of this point. In order to

find the design matrix, we must rewrite (11) in a form similar to (1b):
Ax A+G-(P-P) , (12)

where A = {a,} and a; = 2176, The "sensitivity" matrix G is therefore

given by:
g2t ot 0 0 ...
¢ = [ zzt o o g ... . (13)
2t o0 o o oo

Because the quantities A, for which we have observations A°, have
a non-linear model, it is convenient to write P, for which we have
observations P, as if it also had a non-iinear model. This can be

accomplished exactly as follows:
P=rpP+1-(F-p) , (14)

where I is the identity matrix. Using (12) and (14) and (1b) we find

by inspection that for our non-Tinear least-squares problem we have:

) )

This completes the mathematical formu]a&ion of our non-linear

dosimetry least-squares problem since we have defined or derived appro-

priately the quantities: Y°, M, Y, D and P, which were introduced in

the previous section as needed to state such a problem.
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It is clear from the above mathematical formulation of the problem
that what we are solving for in our least-squares approach is:

Given,

1. activation measurements in a spectrum, A° and NA°’

2. a priori information about the dosimetry cross sections,

z and Nz’

3. a priori information about this spectrum, ¢ and Np-
what is the most 1ikely value of the spectrum and its uncertainty, &'
and Né?

Because we have also used the dosimetry cross sections as parameters,
we could also answer the question, "What is the most 1ikely value of the

dosimetry cross sections and their uncertainties, ' and Né?" if we so

desired.

The Mathematical Solution

In the preceeding sections we have stated the general least-squares
method, given its solution, and formulated a least-squares problem for
dosimetry data analysis. In this section we obtain the solution
explicitly in terms of the input data and emphasize that it is extremely
easy to compute and always exists. We could rewrite (2b) using the

previous section as:

P-p T ‘N0 \7! PP
x2 = . . 4 . ~ s, (16)
A°-A-G- (P-P) 0 Npo A°-A-G+(P-P)
and proceed, using standard techniques,® with the direct minimization
. -y

of xz_by varying P. In doing.so we would not make use of the previously

>
-
-
a



stated results (3b) and (4b). After some suitable manipulation we would

obtain the solution:

' = .TI -]' 9 -
Pr =P = N+ G - (Ny*Npo) (A° - A) (17)

! = . T . —] . .

P

where the symbol not previously defined is NA which is defined as:

- ot
NA = G Np G . (19)

NA is the covariance matrix of the vector A. We recall that the vector

A is calculated from the input vector P, more specifically if A = {ai},

a; is given by:

a; = it e . (20)

Therefore, A and NA are the predictions, based upon our a priori
evaluations of & and T, for the observed activities A° and NA°' A and
NA play a crucial role in obtaining the solution P' and Né, as is evident
from (17) and (18), since it is through them that we can make use of the
dosimetry data of the problem: A° and NA°'

We shall now indicate how we can obtain the results (17) and (18)
from (3b) and (4b) using the definitions for the quantities Y°, M, Y, D
and P presented in the previous section. We shall consider this a proof of
the results (17) and (18) since the derivation of (3b) and\(4b) is well
known.

Since Np and NA° are square matrices, the inverse of M is:
- -

M = p -1 . T B (2])
0 NAO
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Similarly, the inverse of Np in (21) is obtained from the inverse

of N¢ and Nz under the assumption that N_ is diagonal in the space of

p
® and L, as we shall take it to be for purposes of the following dis-
cussion. We have already discussed the reasons why if M is‘a "~orrect”
covariance matrix of some observations it must be non-singuiar and there-
fore its inverse exists. The arguments apply directly to NA° since in
our problem A° corresponds to actual measurements They should also
apply to N¢ and Nz since these are taken as observations and if our
evaluations are done correctly they can be traced to direct observations.
In practice, however, N¢ and Nz are likely to be singular for several
reasons. We shall return later to a discussion of the covariance

matrices N@ and Nz since they play an important role in our problem.

We will therefore now proceed with the proof, as if NQ and Nz were non-

singular, postponing until later our justification for doing sc.

If we rewrite (3b) as:

+ -1

(D" + M " «D) s (P-P) =D - (Yo -Y) (22)

1

and substitute the appropriate expressions for D, M ', Y° and Y, we get:

.G) - (P' -P) = G*-N;\l-(AMA) . (23)

S BT .
(mp + G NAo

From (4b) we also get:

TR (LR LN ') L (24)

p P
We can readily rearrange the terms in (23) to obtain:
) - *

N;] c(pr-P) =GR N e (RO -A-G.(PP)) . (25)

-
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A very elegant way to proceed from (25) is to introduce after Dragt

et al.l? the auxiliary quartity:
X = Nps - (A°-A-G- (P'-P)) (26)

and write {25) as:

P' P = N -G X . (27)

If we then multiply (27) from the left by G, use the definition

(19), after substitution of G-(P'-P) in (26), we get:
X = (Ny+Npo) ! e (a0 -a) . (28)

We need not worry about the existence of the inverse of NA + NAo
since it will always exist because the covariance matrix NA° is non-
singular and Ny is symmetric. Substitution of (28) back into (27)
yields our solution. In a similar fashion we can derive (18) from (24).
This basically concludes our proof and we can see that the expressions
to obtain the solution P' and Né are very simple to calculate. This is

clearly so wnen we show the simple form that NA takes. From the definition

(19) and using for Np we have:

s (29)

Np can therefore be written as the sum of two contributions:

) b3
Np = NA + NA R (30)
where: : -

¢ _ o - it J
NA = {n.ij } - {Z] ¢ N(I) . ZJ} ~ s .t (3])



22

and:

R S .

When Np is not diagonal in the space of ¢ and £, an additional

"cross term" is required in NA‘

Covariance Matrices of Evaluations

The primary purpose of this section is to justify some statements
made in the previous section and clearly indicate some of the conse-
quences for our solutions of certain approximations we are 1ikely to
make in the handling of covariances of evaluations. We claimed that
the solution to the least-squares problem always existed because the
covariance matrix M was always non-singular. However, during the course
of our proof when we came to invert the covariance matrices NQ and Nz
we pointed out that in practice they were likely to be singular, but
that we should proceed as if they were not. It is clear that since the
matrix M cannot be in principle singular, we can séy that its singuiarity
resulted from a "mistake." We argue that this is possibly true, but
wish to consider that the "mistake" was intentional in the sense that it
corresponds to some approximation we intend to make and we are interested
in obtaining a solution under such conditions. We shall show that we
need not explicitly change our formulation to recognize this fact and
can proceed as if these approximatiohs had not resulted in a singular
matrix for N¢ or Nz' This property of our least-squares problem has
very important practical consequences. On Eﬂs one hand, if we have
writ?gn a computer code to sol&é it, we can use i} for obtaining solu-

tions under various approximations which result in singular. covariance
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matrices without having to change the code or- otherwise communicate this
fact to the code. On the other hand, it may be a disadvantage since we
may not recognize that we have made some epproximations we did not intend
to make. Since this discussion will shed Tight upon the role which the
covariance matrices of our evaluations play in general, and in the least-
squares prablem in particular, we shall carry it in some details. How-
ever, because a complete discussion of this interesting and possibly not
well appreciated aspect of "uncertainties” in evaluations would carry us
too far from our subject, we will not approach it in its greatest
generality, but rather from a practical point of view.

We first emphasize that the covariance matrices NQ and Nz need not be
singular. However, we conjecture that they may be singular under the
assumptions we are likely to make at this stage in the handling of uncer-
tainty information in evaluations and if we follow in the use of the least-
squares method the same practices used with our current codes. We shall
not argue against these assumptions and practices since they may be justi-
fied if only on grounds of convenience. Since at this stage rather little
experience exists in the treatment of uncertainties in evaluations we are
likely to concentrate on the description of the major or gross features of
the problem and therefore the statement of the uncertainties is bound to be
crude in the sense of having not too much detail. We may also, as is
done in ENDF/B,0 make some rather crude approximations which have great
convenience as far as representing and processing the information to
generate covariance matrices of processed data. These approximations
being fully consistent with the perceived accuracies of the estimated
uncertaintigs. Also, as a maé}ér of conveninge we may select a standard

group structure to do our analyses with the resu1£ that it is not
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tailored to each problem, and in any problem this group structure is
1ikely more detailed than is recally needed or justified on the basis

of information available, at least in some energy regions. The combina-
tion of the above two practices, which are likely to occur, will almost
surely result in covariance matrices N¢ and Nz which are singular. This
is so because the dimension of our covariance matrices, the number of
groups we use, will almost surely exceed their rank, which in a very
direct sense corresponds to the "amount of information" we have included
in our evaluations regarding their "uncertainties."

In order to facilitate the discussion let us cunsider some specific
examples which we think embody the essence of the problem and may easily
be generalized. For example, we take the spectrum in an energy region
where there are several group fluxes ¢j' We suppose that in our evalu-
ation of the spectrum the statements concerning the uncertainties are
such that the several group fluxes ¢j should be considered as fully
correlated. The covariance matrix of these group fluxes will have a
dimension equal to the number of groups, but its rank will be one; it
will therefore be singular and consequently the full covariance matrix
N@ will also be singular and cannot be inverted. It is important to
note that since our covariance matrices are symmetric and positive
definite the above mechanism is the only one which can be responsible
for their singularity, a statement we shall not prove here. It is clear
that since the several ¢j's are fully correlated they can be replaced by
a single auxiliary variable and an exact 1inear transformation which
relates it to the ¢j's. If tpese ¢j's were from "real independent
measurements,” this would be gﬁ-inconsistency of sorts, but since we

are dealing with "evaluations taken as measurements®™ this may.not be a
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mistake and we can easily handle the problem. We could do so by formally
replacing these ¢j‘s by the sincle auxiliary variable and the exact Tlinear
transformation, which could be obtained by inspection. The singularity
of our covariance matrix of the parameters would then be removed and we
could solve for the auxiliary parameter directly instead of these ¢j's.
However, having obtained the solution for this auxiliary parameter, we
could use our exact transformation to obtain the solution for the ¢j's
and the resulting spectrum would be identical to the one obtained by the
direct application of (17) and (18). We shall not formally introduce
the transformation and prove this point by mathematical manipulations
because it should be clear that what we have done is merely change the
definition of the “parameter vector" and the transformation is already
embedded in our sensitivity matrix G. In conclusion we see that we can
always ignore the fact that the covariance matrices of our evaluations
are singular and proceed formally as if they were not!

This discussion should make it clear that in a dosimetry problem
the number of groups we use to analyze the problem does not at all
correspond to the number of parameters we have. The number of parameters
is determined by the rank of the covariance matrices from our evaluations.
In practice we do not need to know how many parameters we really have to
solve the problem, but it can easily be determined by inspection of the
correlation matrix of ¢ and £. It should also be clear now that any
structure we have in our input spectrum in energy regions where the
evaluations state that the spectrum is fully correlated is reproduced
in our solution exactly. An extreme example of this is when our

. - -y
covariance matrix is fully correlated over the whole energy range.

>

-
-
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The auxiliary parameter is the normaiization of the spectrum and the
transformation is the shape of the spectrum. In this case, no matter
how many activation measurements we have, the shape of the spectrum

will remain unchanged and only its normalization will be determined.

On the other hand, even with a single activation measurement, if the
input covariance matrix N¢ does not correspond to a fully correlated
spectrum, both the shape and normalization of the spectrum are adjusted.
It is important to keep in mind that what is being adjusted in the
spectrum is entirely determined from the structure pfAthe input covari-
ance matrix based upon the uncertainties in the evaluation and is

unrelated to the number of groups used or the number of activations

available.

A Test for Consistency of the Data

We have already stressed the fact that the least-squares solution
does ndt require that the joint density functions of the input data be
normal. The only requirement is that the covariance matrices represent
the second moment of the density functions. If the form of the density
functions were known, or assumed to be known, we could go further than
just obtain the solution (17) and (18); we could extract some additional
information from the numerical value of the minimum of the x2-function in
the sense of being able to test the "likelihood" of the input deta.
Since such tests are often very useful in detecting mistakes, we believe
that at least for purposes of such investigations we should assume that
the density functions are known and argue on the basis of the "central
1imit theorem"® that we should .take them to 4% normal. It is then

possible to'perform two tests on the distributionof the input data.

-
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The well-known x?-test may be used to estimate the 1ikelihood of the
input data set on the basis of the minimum value of x*. In order to do
so one needs to establish the number of degrees of freedom in the problem.
If we have m cross sections and fluxes and n activation measurements,
the total number of input quantities is m + n, but since we solve for m
parameters we have only n degrees of freedom. Therefore, the y* ninimum
corresponds to n degrees of freedom. We shall now show that the minimum
value of 2 is entirely determined from the values of the input data.
The minimum value of x2, sz, is obtained by substituting the value of
P' given by (17) for P in (16). We therefore have,

xz = (p-p1) - N;] c(p-p) + (Ao-A)T NG - (Ac-A) L (33)

We may rewrite (33) as:

x;l = X; + Xi . (34)

Using (27) we may evaluate X; as:

xg = (A -Aex (35)
and also from (27), operating upon it with G, we get:

A=A = Ny X (36)

X2 = U A (37)

To evaluate xﬁ we rewrite (26) as:
- -y
AO - Al = NAo . x ] (38)
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substituting (38) into the expression for x? in (33), we have:

2 = 1‘ L] .
XA - x NAO X . (39)

Using now (37) and (39), we obtain the desired result, if we use the

expression (28) for X:
2 = A°-A) Ny, + Njyo 1 « (A°-A (40)
Xm ( * ( A A ) ( ) .

It is therefore clear from (40) that the minimum value of x can
be evaluated easily from the input data. We can then test the likelihood
of the input data, prior to obtaining the solution, by means of a x2-
test on X; using as the number of degrees of freedom the number of
activation measurements.

The second test on the input data can also be made from (40) by
looking at the "randomness" of the terms which make up Xé* There are
n terms which we must sum in the final stage of the computation of X;
in (40), and to each term we can associate a particular activation. The
“fit" may not be good if one or a few activations contribute mostly to
Xé and should be taken as a possible indication of a mistake to be
investigated.

Finally, we should indicate that the predictions for the activations
one will obtain from the solution P' can be obtained without solving for

P'. If we operate on {17) with G from the left, we immediately get:

A= AN - (N ¢ NAO)‘] - (A° - A) . (41)
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K3
If we now multiply (18) on the left by G and on the right by G',

we obtain:
v - -1,

which gives us the covariance matrix of the activations calculated from

the solution without having to explicitly calculate Nﬁ either.

The Non-Linearity of the Problem

Qur problem is a non-linear least-squares one. Since such problems
are usually solved by iteration, as well as all of our current methods,
we must now discuss when we may gain from an iterative scheme to get our
solution. We shall show that, although an iterative procedure will
always somewhat improve the solution, in many practical situations such
improvements may not be very significant and therefore some doubt always
exists about its usefulness.

When solving a non-linear least-squares problem we must always
linearize the model and in so doing make an approximation; in our case
this was done in (12). Such linearization procedure involves an expansion,
and the best expansion to make is about the solution. Since we usually
do not know the solution, such expansion must be made about some "trial
value" from which a trial solution is obtained. This "trial solution"
is then used as a new "point" about which the model is expanded again.
Therefore an iterative procedure is developed and progress toward a
"converged solution” is usually monitored by observing the successive
improvements in the x2 minimum at each step. In our case we chose as an
expansion point the a pr ‘ori g§5]uations P ﬁ?order to generate P' and

Né. It would appear that if we now go back and expdnd again our model
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using P' in (12) instead of P, we would get a better solution. We will
ncw develop such an iterated solution. In order to develop a notation
which incorporates iteration numbers in it, let us expand the model
about P, instead of P in (12), and call the solution P, instead of
P'. If we proceed exactly as we did to obtain (17) and (18), we get:

- . . -1, (ae - - . -
Pay - P = Np G, (NAn + NA°) (A A, - 6, (P Pn)) > (17a)

No-NT - on eet e, 4 NAO)‘] S T (18a)

P P P "n VA P

where An is the activation vector calculated using Pn’ Gn is the sensi-
tivity matrix (13) calculated using P and the quantity Np is defined
n

analogously to Na in (19) and is:

= G: ‘N -G . (19a)

Ny p n

n
If we now calculate the y2-minimum for our iterated solution (1/a),

sz n+1° by proceeding exactly as we did to derive (40) from (17), we get:

2 = o . - 1‘. -.Il O_ - . -
X1 = (AwAg=Gye (PP )Ty Hgo) ™ (A=A 6 (PoP)) (40a)

If we compare the above results to those obtained from the expansion
about the a priori evaluations, we see two differences. The first one is
the replacement of G and NA by Gn and NAn, and the second one the replace-
ment of A by An+Gn-(P-Pn). It is clear that if our input data A°,NA° and
P,Np are "fairly consistent" to the extent that our a priori evaluations
predict "well" the measurements A°, that is we may compute A such that it
agrees with A° within the combined uncertainties NA and NAo, then the sz

calculated using (40) will cgcréspond'to app:gximate]y one per degrees of

freedom. In such cases within the uncertainties &eﬂwi]] have A % An'
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Even if our data are somewhat “inconsistent” but not very improbable,
say with a sz less than 2 per degrees of freedom, then the approxima-
tion A % An may not be very good, but it is likely that within the
uncertainties we will have A % ALt G - (P-Pn). What we are arguing is
that as long as our data are not too inconsistent then a linear model is
very goog; the non-linearity of the model is not important. As is well
known,8 if the model is exactly linear, it is not necessary to iterate
to find the solution. In our case this should be reflected in our
results (17a), (18a) and (40a) which will be close to (17), (18) and
(40) if the data are not too inconsistent. We can see that directly if

we substitute in (17a), (18a) and (40a) A = An + Gn . (P-Pn) to get:

- . L] -] LY o
Past =P = B e Gy e (N + Nge)™ - (A7 A) (17b)
n+i t -1
- = . . + . .
Np Np Np G, (NAn NA°) G Np s (18b)
O L D RN R (40)

n
Qur solution (17b) and (18b) still does not quite Took like the
original one (17) and (18) since we have G, and N, instead of G
n
and NA' However, since NA v NA within the uncertainties of these
n

quantities which are controlled by N_, the x2-minimum (40b) is not very

p
different from the sz given by (40) and therefore the results (17b) and
(18b) are equivalent to (17) and (18) or more exactly the differences
are not measurable from the yx2%-minimum. We conclude then that if our
data are not too unlikely, in the sense that sz given by (40) is less
than about ? perldegrees of ftgédom, we havé‘fittle L0 gain by iterating

in order to find the solution, the improved precigion in the solution

being not justified by its accuracy. -
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We see from the above analysis that the value of sz’ the “"consistency"
of our input data, indicates to us when we may gain significantly by an
jteration scheme to get the solution. Such potential gains exist only when
sz per degrees of freedom is large. Unfortunately, in such cases we may
not exploit fully the benefit of iterating to improve our results since the
‘data are then so unlikely that the credibility of the solution is low. We
must assume that very likely a mistake has been made somewhere and should
be corrected to restore some credibility in the answer. We will not
discuss the various methods which may be used in such situations; these
different strategies, however, have all the same result, which is to reduce
effectively sz to be about one per degrees of freedom. There is then
very little need to iterate in order to find the solution which would not
become much more credible.

The above result which may appear surprising — very 1ittle use of the
non-linearity of the model can be taken advantage of by iterations which
would improve the solution — is not unique to our dosimetry problem. This
feature is common to all non-linear least-squares problems where a "few
integral results" are available and a priori knowledge about the solution
is introduced in the form of "fully evaluated differential data" to exploit
these "integral results.”" In this strategy we merely want our "a posteriori
evaluations" to reflect the "new information" present in the integral data.
It is clear that through the "integral data" we cannot learn much about the
"differential quantities” unless we have “strong inconsistencies." When
the integral data are relatively consistent with our differential data, the
integral results will not cause our knowladge of the individual differential
quantities to be modified. Théﬁr values an&q%heir variances will not be

changed significantly, i.e. P' & P and the diagonal-elements of the
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covariance matrices Né and Np will also be about the same. What the
least-squares method does is change as little as possible each parameter,
but modifies as many as possible in such a nighly correiated fashion to
reproduce as best it can the integral results. In such conditions the

only significant information we get deals with the correlations of the
differential quantities and these are expressed by the off-diagonal
elements of Nﬁ the output or a posteriori covariance matrix. The potential
for improvements in our knowledge of the individual differential quantities
exists, and therefore the need for an iterated solution, only when there
are very significant differences between, or inconsistencies in, our two
types of input data. Their usefulness in improving our kncwledge of the
individual differential quantities is, however, limited by our inability

to claim with confidence that the "inconsistencies" are "real" and not

the results of “mistakes."

The above discussion is very general and does not make use of the
explicit form of the "model" of the integral quantities in our dosimetry
problem. There are two situations where the dosimetry method is often used,
and the model becomes "effectively linear" even though X; may be large.

These situations occur when either & or T is known a priori to a much

higher relative accuracy than the other. In such cases the model is "quasi-
linear" because the non-linear terms (fj-zi)+-(5l©)(become effectively small
in an absolute sense whether we choose our a priori or a pcsteriori estimates
to expand the model. In these cases-again iterations are not needed, even
though X; may be large, because the model is “effectively linear" and the
"differential quantities" which are not as well known relatively will be the
only ones changed significantlyf These sitdgiions may occur in "standard
fields applications" when N is relatively much better knowp and in "practical

applications" where it is NZ which is retatively much better known.

L 7
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The Least-Squares Analysis Code STAY'SL

The above method of analysis of dosimetry data has been incorporated
into a computer code STAY'SL which has been documented!? and is available
from the Radiation Shielding Information Center (RSIC) at Oak Ridge
National Laboratory.

In STAY'SL we calculate explicitly only the values of &' and Né;
therefore, two possible interpretations of the code output can be made.
The first one is that the full solution for P' is not obtained, although
both ¢ and I are "adjusted." A code for generating the full solution (i.e.,
including ' and Né) will soon be released. The other interpretation is
that in STAY'SL the cross sections (i.e., I) are assumed to be only
“formally adjustable" during the analysis in order to propagate their
uncertainties to the solution. The covariance matrix NAo of the measured
activations was modified by adding to it the matrix Nz, given by (31), and
obtained from an estimate of N.s in order to take into account the fact
that our "model" [i.e., expression (5)] is inexact. In doing so we claim
to have properly taken into account the"approximations in our model (i.e.,
the cross sections). This second interpretation of the solution of STAY'SL has,
we believe, some interesting implications concerning the general use of
the method of least-squares when the "model” is known to be deficient and
suitable "methods"'or "approximation" parameters may be introduced, with
assigned uncertainties, such that within these uncertainties the "model"

can be claimed to be exact.

Comparison with Other Methods

- -y
It is evident from the above discussion that the least-squares method

has the potential for providing a solution which ;nCOrporates.in principle
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all of the available information concerning the problem in a straight-
forward manner and at the same time giving us the "best" such solution in
the sense of the minimum variance theorem. In practice this pot2ntial can
only be realized at some costs. We will first discuss briefly each type

of information used as input and analyze how close in practice, and at what
costs, we can come to utilize "all of the information" available.

Concerning the activation measurements, it should be relatively easy
to use all of the information available. In particular, the correlations
of the different activations, which are not used at all presently or are
used in an unknown manner through the use of so-called "calibrated
methods," should be easily handled. In order to do so, however, the
experimentalist must provide the covariance matrix of the measurements
or preferably report the analysis of the uncertainties in the data in
such a way that these estimates may be evaluated and the covariance
matrix easily generated from the information. In the past such types of
information were not used very explicitly; therefore, there was little
incentive to provide it in a clear fashion and only the standard devia-
tions of the activations were usually reported.

Concerning the dosimetry cross sections, it should also be possibie
to come close to utilizing most of the information available. The
starting point is always a detailed evaluation of the differential data.
In the past very few evaluations were made with enough details available
concerning the uncertainties in the evaluated data to allow the covariance
matrices to be generated. In the ENDF/B files it is now possible to
communicate this information!® and hopefully in ENDF/B-V all dosimetry
cross sections will have data;§ﬁch that the Egvariance matrices can be

generéted for any group structure. Our know]edge'oﬁ-the dosimetry cross
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sections does not come only from differential measurements. However, if
we have evaluated differential data files with correlations indicated,
they can be exploited, using the same least-squares method discussed
here, to generate new evaluations which incorporate the results of
integral measurements obtained in benchmark and standard fieids. We
have already discussed" that some care must be exercised regarding how
we accomplish this last step if we are not to run into large computa-
tional problems. We therefore believe that the methodology exists for
generating dosimetry cross sections which will come close to reflecting
adequately almost all of our information regarding how well we know
them.

We believe then that the major obstacle which must be overcome to
use "all of the information" available in our solution to the dosimetry
analysis problem is the determination of appropriate ¢ and NQ. Because
this problem is specific to every spectrum being analyzed, we can only
discuss it in general terms. The approach to this problem is, however,
straightforward even if we will usually run into practical difficulties
in finding its solution. The a priori spectrum & can always be obtained
as a combination of whatever data are available and the results of
appropriate transport calculations. Since this is what is often done
now in order to generate the "input spectrum" to our current methods, we
shall not discuss this aspect further. Therefore, it may be perceived
at this stage that the major obstacle will be the generation of an
appropriate covariance matrix NQ. The procedure for obtaining N¢ is in
principle easy since it is mere]y a statementlbf how well we believe we
know ®. Although some subjec;iae elements J?ﬁ] always exist in our

estimation of NQ, some degree of credibility can be'achieveg if we

-
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analyze with care the source of our uncertainties in ¢. It is often
perceived that the "uncertainties" in ¢ come from two major sources:
uncertainties in the basic nuclear data used in the computations and
approximations made in the computations. Using sensitivity methods, it
is in principle straightforward to propagate the uncertainties of the
input data to the resulting spectrum. The question of the approxima-
tions made in the computations is more difficult, but the covariance
matrix N¢ must certainly reflect the uncertainties in ¢ due to them.

In the near future, since much of our information is not codified
in the appropriate form, some of the benefits of the method may not be
realized. We have already discussed" the fact that in such cases all we
can expect is more credible answers than we currently obtain merely by
using more credible input data. In the past, various methods’ have been
devised to compare the various unfolding codes. A particularly useful
one is to obtain the solution to a given problem using the same input
data by different codes and compare the ratios of the output and input
spectra. The comparison of these ratios for different codes such as
SAND-II, SPECTRA and CRYSTAL BALL is very instructive since it shows
rather large differences which are indicative of the various algorithms
used. For these codes this ratio is not unique for a given problem, but
also depends upon a number of input quantities having to do with the
algorithms and not related to the problem being solved. In the case of

the least-squares method, this ratio can easily be obtained from (17)

and is simply:

©

R y m- ol ¢, W, B - ok $..) (43)

>
-
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where m¢j2 is the relative covariance of the flux ¢j and 9y and the
wik's are the matrix elements of the matrix (NA + NAQ)-], the weight
matrix W, all other symbols in (43) having been defined previously.

It is evident that the purpose of any dosimetry spectrum unfolding
code is to modify the "input spectrum” in order to obtain an output
spectrum which is consistent with the measured activations. It is also
clear that we want these modifications of the input spectrum to occur in
such a way that they are consistent with how well we know various features
of the input spectrum. How well we know the various features of the
input spectrum is, of course, problem-dependent and is communicated by
means of the covariance matrix N¢. Even though the unfolding codes
SAND-I1, SPECTRA, and CRYSTAL BALL do not require that we directly input
Ny» we may view them as strategies to obtain the solution (43) and
therefore look upon the algorithms as having built into them an effective
covariance matrix N¢. A difficulty with these codes is that this effect-
ive covariance matrix is unknown, fixed once and for all, and to be used
in all unfolding situations regardless of how well we know the input
spectrum ¢. It is also evident that this effective covariance matrix is
different for each one of these codes. Consequently, it is difficult to
compare the solutions of these codes with the output of STAY'SL since we
cannot use exactly the same input data. In fact, it is difficult to
compare the output of these codes among themselves because they all in a
direct sense do not solve exactly the same problem due to their different
effective NQ.

It is clear from the algorithms of SAND-II, SPECTRA, and CRYSTAL
BALL that these codes can pro&hte a solution Bhich will reproduce as

-

well as we care to state the measured activities. However, we, know that

LY



39

often this is done by introducing in the solution what is referred to as
"unphysical oscillations." In fact, we use that name to indicate that
these features of the solution are thought inconsistent with our a priort
knowledge of the spectrum. Therefore, we must conclude that it is
possible to operate these codes in such a manner that their effective
covariance matrices are unreasonable. This fact is well known and is
often expressed by saying that these codes cannot be used as "black
boxes" and require considerable expertise to be used to generate accept-
able solutions.® It is therefore not possible to use as a figure of
merit for the solutions how well the input activities are numerically
reproduced.

There exists a very straightforward way to compare the various
methods. It is to ask, "How well do the different solutions predict the
results of computations based upon them?" By "how well," we mean how
small are the uncertainties in the results of computations using the
solution. A measure of these uncertainties is the variance of the
results in question. In order to be able to answer this very important
question we need to know what are the uncertainties in the solution
(i.e., its covariance matrix Né). In the case of the least-squares
method, Né is give. simply using relation (18). In the case of the
other methods, we do not know what the uncertainty in their solution is
since it is usually not calculated in any well defined manner. We have
discussed previously" how to generate the uncertainties in the solution
of the usual unfolding codes on the basis of the input data uncertainties,
but will repeat here some of the method since it will allow us to make a
very strong argument as to why ot only in t™ory but also in practice

we should uée the 1east-square§ method. -



40

The solution to the problem, ¢', by whatever method it is calculated,
is a function of the input quantities A°, ¢ and Z. A straightforward
method to propagate to the solution the uncertainties in the input data
is to calcuiate the sensitivity of the solution to the input parameters.
Let us construct such a sensitivity matrix S given by:

dA°
do' = S [ do . (44)
\ dz

The elements of the matrix S are the partial derivatives of the
output fluxes with‘réspect to all the input data. Since in our usual
methods we do not have a simple expression which relates the solution to
the input data, the matrix S must be obtained by numerical methods and
this may be a very large computational task which can be carried out at
least in principle. (Some of the diagonal elements of the matrix S are

related to the often used “improvement ratios."”) Once one has the

matrix S, we can obtain the covariance matrix Né by the relation:

NAo 0 0
- T
Nyt = S . 0 N¢ 0 - S ; (45)
0 0 N

where the matrices NA°’ N¢ and Nz are the very same quantities which were
discussed in connection with the least-squares method. Expression (45)
indicates that if we are interested in obtaining the uncertainties in

the solution of our usual methods we must generate and use the same
covariance matrices required by the léaSt-squares method. The problems
which may be perceived in using the least-squares method due to the
requirement of having such covariance matricgi are therefore not unique

to it_but also present when wé&want to answer the question, "What are

-
-
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the uncertainties in the solution?", regardless of how we obtain the

solution. If we obtained N!, using (45) for our current methods, we then

¢
could answer the question: How good are the predictions which we can make

using the solutions?. In order to pick a large class of possible appli-
cations in which we might use %', let us consider a "result" r which is
obtained as a linear combination of the ¢3's. We define r in terms of the
vector R whose elements are the coefficients of the linear combination

of the ¢3; we therefore write

o 9! . (46)
Then the variance of r, which we write as Vr’ is just:

= 1- . L]
V. = R Nes R . (47)

The vector R is completely arbitrary and we might suggest that several
such vectors R may be of particular importance in our dosimetry problem.
Frir instance, we might think of r as being one of the activations which
were measured, in which case R is just Zi. Another pertinent example is
one where r is some damage parameter, in which case R is the corresponding
"damage function."

In some very real sense, if we carried out the above calculations, we
could say that the better method is the one which produces the smaller
value of Vr’ The minimum variance theorem guarantees that whatever is
the set of input data and the vector R the solution from the least-squares
method is guaranteed to give the smallest variance V.. We can now continue
our discussion of the comparison of the different codes on the basis of
how well thgir solutions reprégﬁce the measu:gd activations. As we dis-

cussed before, the codes SAND-1I, SPECTRA, and CRYSTAL BALL cauld be run

-
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such that the numerical values of the "output activations" agree with the
measured values better than the output of STAY'SL, but we would be wrong
to conclude that their solution is therefore better. We have just proven
that this "numerically better agreement" is purely fortuitous since the
uncertainties in these numbers, whether we actually compute them or not,
are likely to be bigger and can be no smaller than those obtained by the
least-squares method. 1In addition, the running time by the least-squares

method is not larger for the same size problem.

Summary and Conclusions

The problem of dosimetry neutron spectrum unfolding has received
considerable attention and much progress has been made in developing
algorithms (SAND-II, SPECTRA and CRYSTAL BALL) which are perceived to
give much promise even though their solutions to the same problem are
sometimes quite different. Through extensive comparisons of the output
of these codes for the same problem and the development of various quanti-
ties to allow some aspects of the solutions to be investigated, much
insight has been gained into these algorithms and the nature of the few-
channel unfolding problem. Dosimetry spectrum unfo]ding;>as practiced
now with these codes, still remains difficult and requires much expertise
to produce generally acceptable solutions. Until now very 1ittle attention
has been given to the problem of analyzing in a credible manner the
uncertainties in the solutions, with the exception of the SAND-II code
where Monte Carlo is used to provide an estimate of some of the uncertain-
ties. We have shown that the Qropagation tqqﬁhe solutions of these codes

of the uncertainties in the imput data was in principle straightforward.

-
L]
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The uncertainty in the solution due to all of the input data uncertainties,
as given by their covariance matrices, can be obtained by generating the
sensitivity matrix of the solution with respect to the input data. This
method of obtaining the uncertainties in the solution of these codes
requires, however, a large computational effort which probably would be
prohibitive for routine use. The approach to uncertainty estimate of
SAND-II could also be improved to take into account important correlations
which are currently neglected, but this method* also runs rapidly toward
large computational problems. We believe that, if these calculations

were made, a large part of-the subject /ity currently needed to assess the
"goodness" of these solutions would be eliminated. There would, however,
still remai. a problem related to the heuristic nature of these algo-
rithms for the solution.

We have shown in this paper, and a previcus one,“ that given the
input data required to obtain our current solutions and estimate the
uncertainties due to the input data, a solution can be obtained using
the least-squares method. We have reviewed in some detail the assump-
tions of the least-squares method and some of the properties of its
solution in an effort to establish that this least-squares method did
not require any more assumptions than we currently make. The solution
by the least-squares method is extremeily easy to obtain given the required
input data, is unique and in a very real physical sense provides the
best possible solution under the circumstances (i.e., the assumptions
made and the intended use of the solution), and also easily provides the
uncertainties in the spectrum. We, therefore, believe that this least-
squares method provides the sg_]ﬁtion which w?have sought for the dosimetry
specf;um unfolding. A computer code STAY'SL, whiEh‘ca]cu]aFes this solution,

is now available.
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Although the method now exists for computing a satisfactory solution
to the dosimetry unfolding problem, much work remains to be done in most
cases in order to obtain the best answers. We believe that most of our
efforts should be devoted to the codification of our uncertainties in the
evaluations used as irput data to be able to generate covariance matrices.
Although this is likely to be a substantial amount of work, we also think
that much of the methodology exists to carry out this task. In particular,
with respect to dosimetry cross sections, where much thought has already
gone into this problem and a formalism created in ENDF/B to handle the
covariance matrix information, hopefully most of these data will soon
becocme available with ENDF/B-V. Regarding the uncertainties in the
input spectrum, much progress has already been made in the area of
computing the sensitivity coefficients in transport applications in
order to propagate nuclear data uncertainties. However, much work
remains to be done regarding the estimation of uncertainties in transport
problem solutions due to the various approximations made.

Finally, although the method of Teast-squares we proposz is very
likely satisfactory for most problems, in some situations it may not be
entirely adequate to obtain only the second moment of the joint density
function of the spectrum as the least-squares method does. We believe
that as we gain experience with the least-squares method and improve
considerably our perception of the uncertuinties in nuclear data the
need may arise to go beyond their representation in terms of only the
second moment of the density functions. Then more powerful methods
capable of dealing with higher moments of the density functions will be
needed. How urgently we need:fa explicitly Egvelop such methods for the

dosimétry problem is a matter of conjecture now aﬁdﬂuill depend, we
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believe, very much upon the progress we make in understanding the nature
of the uncertainties in nuclear data and the problems we face when

trying to handle only the second moments of their estimated joint density
functions. To a large degree the nature of those more powerful methods

will be dictated by the kinds of problems we encounter.
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