
Lawrence· Uvermore Laboratory

CDC 7600 LTSS PROGRAMMING STRATAGENS: PREPARING YOUR FIRST

PRODUCTION CODE FOR THE LIVERMORE TIMESHARING SYSTEM

K. W. Fong

August 15, 1977

UCID-17557

Th is is an informal report intended
primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of
the author and may or may not be
those of the laboratory.

Prepared for U.S. Energy Research &
Development Administration under
contract No. W-7405-Eng-48.

f1lSTRlBUTION O.E IHlS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

AVAILABILITY

This document is available online as follows:

ELF RDS .717675:UCID:UCID17557 I 1 1

View the print file on the TMDS, or print it as follows:

TRIX AC I 1
.PRINT(<NIP UCID17557 BOX ann identification>)
.END

-i i-

-----NOTICE----~

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
~"Y. ~arranty, express or implied, or assumes any legal
habdaty or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned righti:.

CONTENTS

Abstract· .. .

Page

Introduction-... 1
General Considerations . 3

Portability... 3
How Long Wi 11 the Code Last? . 3
Debugging . 4
I/0 for Data and Results ... :. 4
I/0 -for Working Files . 4
Over 1 ay i ng . 5

The CPU and Memory . 6
Machine Cycles :. 6
STACKLIB . 7
SSM . 8
LCM . 9
Po lntered Arrays . 11
Argument Lists . 12
BEGINMAP, T ICHEK . 12
COMPAS$. 12
FTN . 13

Input and Output . 14
File Types . 14
Single and Double Buffering 14
Triple Buffering .. 15
Overlapping I/0 15
BL IB76 16
Chained IOD' s . 16
Validating Disk Files . 19

Debugging . 20
Utility Routines .. 20
CHATR Oplions . 21

Production Computing ... 22
Restart Dumps . 22
Sys tern Crashes . 23
ORDER Protoco 1 s . ·...... 25
M11lt.i-Cont.rollee Jobs ... 28

Hardware Interrupts . 29
BATCH, ORDER, and Your Control lee 29

Maintaining Sources and Binaries · 32
Introduction .. 32
Managing Sources . 32

Managing Binaries ... 33

COMPASS . 34
COMPASS . 35

Subroutine Linkages 35
Ins true t ion Timing . 35

-iii-
fhSTRIBUTIO.N O.E ,T..HIS DOCUMENT IS UNLIMITED

\\

CDC ?600 LTSS PROGRAMMING STRATAGEMS: PREPARING YOUR FIRST PRODUCTION
CODE FOR THE LIVERMORE TIMESHARING SYSTEM

ABSTRACT

This report deals with some techniques in applied programming using the
Livermore Timesharing System {L~SS) on the CDC ?600 computers at the National
Magnetic Fusion Energy Computer Center {NMFECC) and the Lawrence Livermore
Laboratory Computer Center (LLLCC or Octopus network). This report is based on
a document originally written specifically about the system as it is implemented
at NMFECC but has been revised to accommodate differences between LLLCC and
NMFECC implementations. Topics include: maintaining programs, debugging,
recovering from system
and inp~t/output devices

crashes, and
efficiently

using the central processing unit, memory,
and economically. Routines that aid in
The companion report, UCID-1?556, An

and operating system and should be read
these procedures are mentioned.
f,TSS Compendium, discusses the hardware
before reading this report.

INTRODUCTION

This document is the ~e~ond of two reports (the first is UCID-1?556)
adapted from the series of on-line documents of the National Magnetic Fusion
Energy Computer Center {NMFECC). The original documents were directed
specifically to NMFECC users, but much of the material is relevant to the CDC
?600 computers on the Lawrence Livermore Laboratory's Octopus network. As a
service to Octopus users, I have added some material pertaining only to Octopus
so that my effort spent in preparing the original documents could be rounded out
for the benefit of a larger user community. I hope you find these documents
informative.

As you acquire experience in writing production codes for LTSS, you will
develop your own methods and tools to suit your needs. At least, that is what
we have observed of longtime LTSS users. For the most part, the NMFECC cannot
supply you with and help you use other users' private utilities. We do,
however, want you to get started in the right direction using the tools that are
publicly available.

If you are a new NMFECC user, you probably have a large code that you would
like to scale up to fill the ?600. This is bad for at least two reasons. One
is that filling up memory without careful design of the I/0 can be exceedingly
wasteful of the machine's resources and can prevent other users from running
their codes. Second, you are probably paying far more money to get your results
than you need to spend. .An existing code designed for some other system may
also require considerable rewriting before it will run efficiently on LTSS. The
fact that the ?600 may be ten times faster than some other machine does not mean

.:..1-

a code moved from the other machine will automatically be ten times faster. Nor
does it mean the problem can be made ten times larger and finish in the same
amount of time on the 7600. The conversion effort may be considerable, and you
will have to decide whether a code should be converted or rewritten completely .

. If you are a new Octopus user, you will start by writing small codes or by
maintaining an.existing large code. You probably will not have the problem that
NMFECC users have, trying to convert a large code that already runs elsewhere.
You should also keep in mind that the BATCH system described later is not used
on the Octopus system. Also, CHATR is the NMFECC modified version of CHAT.

In the rest of this document will recount the ins and out of LTSS
programming, assuming that you are designing a new code and letting you decide
how to impose a new design on an existing code. I will suggest some questions
you must answer and indicate some answers proposed by pioneer users.

-2-

GENERAL CONSIDERATIONS

Portability

Do you really expect your code to run efficiently on more than one system?
You should know by now that this is an unrealistic expectation. You will have
to compromise somewhere. The first step is to modularize the I/0 and system
parts of your code as well as- the computational parts. All dealings with LCM or
I/0 should be concentrated in a handful of subroutines so that system
dependencies can be localized for easy modification to another system. You will
have to avoid many of the nice features of LRLTRAN such as POINTER, BYTE, and
ABSOLUTE statements. You cannot adjust field length dynamically. You cannot
design your code as a set of controllees. You should use cliches (macros},
conditional compilation (DIF statements}, and PARAMETER statements. By setting
parameter values and running your source through PRECOMP, you can extract
different versions of your code suitable for different systems. Use only
standard FORTRAN. Put only one character per word for Hollerith data. In
FORMAT statements use the nH specification instead of single quotes, double
quotes, or asterisks as delimiters. The number of things to consider is great,
and it only begins with.using standard FORTRAN.

How Long Will the Code Last?

A production code is not static. It will be run on many problems.
Eventually you will come upon a problem you can almost handle, and you will want
to modify the code. If your code is going to live that long, it will grow, so
you must allow places in your design for new features to be added. Consider,
for example, graphic output. If a code produces a couple dozen numbers, you can
draw a graph manually. If it produces hundreds of numbers, you may wish to
introduce plot routines. If the code is a long-running hydrodynamics
calculation, you may want displays at a graphics terminal while the code is
still running. You may want to produce a movie of a fluid calculation. If you
have multiple species, you may need a color movie with each specie plotted in a
different color. As you escalate your demands, you must consider whether your
arrays are laid out in memory conveniently for plotting. Will you have space
for graphics subroutines, or must you overlay? Other modifications to consider
are: Did you allow for more general boundary conditions? Can your code handle
more materials? Can your equation of state or tables of material properties be
expanded? Will this two-dimensional code be the basis of a three-dimensional
code? Is your input sufficiently flexible that you can enter information from a
terminal as well as from card images?

-3-

Debugging

How will you debug, your code? All input should be written down so you can
later verify that the input was valid. As much as possible, check input for
consistency. Write out intermediate results somewhere so you can see what
happened if a code subsequently crashes. Write a private dayfile so you can
tell where the code has been. Try to debug subroutines one at a time and not
all at once. A critical quantity (such as a denominator) should be given a name
and stored so that you can find its value from the dropfile with a debugging
tool and see if its value is wrong (e.g., zero). The bigger a code is and the
longer it runs, the greater is the chance it will crash. You should plan for
this almost inevitable occurrence and produce enough information to diagnose the
problem.

I/0 for Data and Results

On input, the only problems are the ease of getting data in correctly and
having the code verify that your boundary or initial conditions are reasonable.
Output of results, however, can be expensive. Even when people plot pictures of
the answers, they still generally insist on printing milli~ns of numbers,
ostensibly for reference or archival purposes. The problem here is that the BCD
formatting routines use an enormous amount of time. The answer to producing a
flood of floating-point numbers is to use vectorized formatting routines in
BLIB76. ORDERLIB routines format one number at a time. The BLIB76 routines
format whole arrays at once, using the parallelism available in the 7600. Also,
you should get your numbers on microfiche, not paper.

I/0 for Working Files

By working file we mean a scratch disk file needed only during execution as
a temporary storage medium. At most, 16 (decimal) disk files can be connected
to your program at any one time. In fact, 15 (decimal) are all that can be
handled conveniently. Subtracting the input and output files and the controllee
file if you need to read overlays, you have the number of working files that can
be attached continuously. If this is not enough, you will have to open and
close files as you compute and reassign IOC's as you go. If your code can be
designed to do I/0 to two or more files simultaneously, by all means use that
many files. Keep your files as small as possible because other users need to
use disk space too. Don't forget that it is most efficient to read and write
multiples of the disk sector size, starting at disk addresses that are multiples
of the disk sector size. Keep track of what information is where on disk rather

-4-

than using the two-argument BUFFER IN/OUT statements that have to read and write
inter-record words between your data blocks. In effect, a disk is a memory that
performs best when reading and writing whole sectors. Use it that way. Don't
use it as a substitute for a tape, and don't use the binary read/write routines
in ORDERLIB .(i.e., FORTRAN unformatted reads and writes) until the new buffered
binary routines are available.

Overlaying

Is your code so large that it requires overlaying? Do you expect to add
features later that will make it too big to fit in SSM? You might consider
dividing one large job into several smaller jobs. One job will leave its
results in files for the next job to use. Often a job can be partitioned into
initialization, calculation, and clean-up phases. The separate jobs can then be
debugged separately. You can then write a controller (for example, using BCON)
to execute the controllees in the proper sequence.

Another subtle point is that you may be able to divide a code into CPU- and
I/O-bound parts that are logically independent. An example is solving a
time-dependent system of partial differential equations at one time step while
FRBO commands for plotting the solution at the previous time step are being
written to tape. You write one controllee to continue your calculation and
another to stage disk files to tape (for example, by being in turn a controller
for one of the tape utilities). Then one controllee will initiate the other
under a different suffix so that you have two jobs running concurrently (or,
specifically, timesharing against each other). Since one job is CPU-bound and
the other is I/O-bound, there is no serious contention between them for machine
resources so long as they both fit into LCM simultaneously.

-5-

THE CPU AND MEMORY

Machine Cycles

The basic unit of lime of the 7600 is the minor cycle, sometimes called
simply cycle when there is no confusion with the memory cycle. A minor cycle is
27.5 nanoseconds (ns), and the speed of operations in the central processing
unit is usually measured in minor cycles. The 7600 is theoretically capable of
issuing a machine instruction every cycle a rate of about 36 million
instructions per second. In practice, there are delays in reading instructions
and operands from memory and other conflicts in the liming of operands arriving
at the registers in the CPU that keep the rate of issue to 10 million to 18
million instructions per second for normal FORTRAN.

Floating-point additions and subtractions require 4 cycles to complete, and
their results must be normalized at the cost of another 3 cycles. If you are
lucky, the compiler may find some other operations to perform during the
addition or subtraction; that is, independent instructions can be issued one
right after another until you arrive at an instruction requiring the result of
some previous instruction. The dependent instruction will be delayed until its
operands or required functional unit are ready. The floating-point add unit is
segmented and can accept another addition or subtraction on succeeding cycles.
That is, it works like a pipeline: operands can go in on consecutive cycles
even before the (irst result comes out. The floating-point multiply unit
requires 5 cycles to produce a result and can accept more input every two cycles
or more (i.e., not on consecutive cycles). The floating-point divide unit
requires 20 cycles to produce a result; however, its iterative operation
prevents the input of new operands any more often than every 18 cycles. From
the relative times, it is clear you should avoid divides. Multiply by 0.5
rather than divide by 2.0. Integer addition and subtraction require 2 cycles.
Integer multiply is 5 cycles. Integer divide requires a sequence of operations
to convert integers to floating-point, do a floating-point divide, and convert
the result back to integer.

The OPTIMIZE option is helpful for small, innermost DO loops. In LRLTRAN,
DO loop indices, limits, and increments may be modified inside the loop. For
the loop to work correctly, these quantities must be checked by reading from
memory. If your DO loops are standard FORTRAN, the OPTIMIZE option tells the
compiler it can keep these quantities in the CPU registers to reduce memory
references. Furthermore, if your loop is small, the code generated by the
compiler may fit entirely in the instruction slack so that, after the first time
through the loop, no more instructions need to be read from memory for each
iteration. Try to structure your code so the innermost loops are small.

IF statements tend to be expensive because they can branch to instructions
not in the instruction stack. and there will be a delay until the desired
instruction is read. If you know in advance which branch will occur more often

-6-

in a two-branch IF, place that branch immediately after the IF statement. This
so-called fall-through branch is the fastest branch because the two-word
look-ahead of the instruction stack will most likely have pre-fetched the
instruction you need. For arithemetic IF statements, the zero branch is the
fastest. For the arithmetic IF, the compiler tests for zero before it tests for
positive and negative.

Double-precision is generally not needed on the 7600. Furthermore, it is
not implemented fully in the hardware. Therefore, an expensive sequence of
single-precision operations must be done to achieve a double-precision
operation.

STACKL IB

The vector syntax and operations described in the CHATR manual are
implemented by calls to subroutines in STACKLIB. You should design your code as
much as possible around the idea of parallel or array processing. For example,

DO 10 1=1, N
10 A{I) = B{I) + C{I)

is a parallel operation because in principle all the additions could be done
simultaneously and independently. You could rewrite the above statements in the
vector syntax, askin& for two vectors to be added together. Eventually a
STACKLIB routine would be called to perform the operation. This routine is the
best that can be written in assembly language. Thus,for sufficiently large N,
the STACKLIB routine overcomes the cost of the subroutine call and will be
faster than the DO loop even with OPTIMIZE. To enhance the portability of your
0.oclP., the NMFECC suggests that you call the so-called dyadic and triadic vector
subroutines in STACKLIB with normal FORTRAN subroutine calls rather than use the
LRLTRAN vector syntax. If you call the routines yourself, you can use other
memory increments besides 1. For example, the columns of a two-dimensional
array are vectors with spacing 1, but the rows are vectors with spacing equal to
the first dimension of the array. In a highly parallel code, the use of
STACKLIB routines can cut the execution time in half. Recall that code produced
by CHATR issues at the rate of 10 million to 18 million instructions per second
and on the average is one-third efficient. The STACKLIB dyads and triads are
handcrafted and will be more than 80% efficient. Thus, it is possible for a
highly parallel code to run twice as fast using STACKLIB.

Another point to remember is that future super computers will have to
incorporate many parallel or pipelined operations in their hardware in order to
be significantly faster than the 7600. If your code is to run efficiently on
such machines of the future, it will have to be structured so that you can
easily take advantage of the ~ector hardware.

-7-

Finding inherent parallelism requires thought. We conclude this section
with two examples. The first is Gaussian elimination where the fundamental
operation is to multiply one row by a scalar and add it to another row. The
multiplication of a row vector by a scalar is a vector operation if you conceive
of the scalar as being broadcast into a vector of identical elements. Thus we
are multiplying two vectors and adding a third. Since there are three operands
(three vectors), this is a triadic operation. The STACKLIB routine that
performs this operation is QMA4.

A second example is a matrix multiplying a vector:

c = Ab

One view of this operation is that the i-th element of c is the inner product of
the i-th row of A with vector b. It is true that both ORDERLIB and STACKLIB
have routines to perform inner products, but an inner product is not a true
parallel computation. A better way is to say vector c is a linear combination
of the columns of A. Using c as a temporary storage vector, calculate c =
b(l)*a(l), where b(l) is the first element of band a(l) is the first column of
A. Then c = c + b(2)*a(2), and c = c + b(3)*a(3), etc. Thus, the
multiplication is carried out as a series of calls to QMA4. Either way, the
same arithmetic operations are done, but the second way allows a sequencing that
can be executed in less elapsed time. This same consideration may also
influence your choice of algorithms. Orthogonal transformations by
Householder's method requires inner products that cannot be resequenced, but
orthogonal transformations by Givens' rotations can be vectorized.

SSM

Certain ways of using SSM are bad. To understand why, you must know how
SSM works. SSM is arranged in 16 (decimal) banks with consecutive words
residing in consecutive banks and wrapping around to the first bank every 16
words. A bank is busy for 110 ns when performing a read and 165 ns when
performing a write. When a read instruction is issued, the addressing hardware
initiates a request to the correct bank, and the bank becomes busy producing the
required word. If the bank is not initially busy, 9 minor cycles elapse between
the time the read instruction is executed and the time the word arrives in a CPU
register. If the bank was busy from an earlier access, the arrival of the word
must be delayed. The compiler tries to schedule reads as early as possible, so
it can issue other instructions after issuing the read while it waits for the
data from memory. References to SSM go through the storage-address stack (SAS).
If busy banks cause two addresses to be held in the SAS, then instruction issue
in the CPU is stopped. The current instruction may put one more request into
the SAS for a maximum of three pending memory accesses. When the SAS becomes
empty, instruction issue may resume. Note that the SAS is also used to read
instruction words, so there can be a delay if the next instruction desired from

-8-

memory and the next data word are in the same bank. In writing from the CPU
registers to memory, the write instruction finishes in one cycle as far as the
CPU operand register is concerned and two cycles for the operand-address
register. Memory then becomes busy, and the write is completed 9 cycles after
the write instruction was issued. On a read, the memory, bank becomes quiescent
after 7 cycles even though the word it sent does not arrive, at the CPU until the
ninth cycle.

The net result is that SSM should hold the arrays that are accessed
randomly. For sequential access, SSM is reasonably appropriate, provided you do
not access the same memory bank in quick succession-- for example, writing B(I)
and then reading A(I+l), where both are in the same bank. You can control this
by putting arrays A and B in the same common block and dimensioning them
appropriately or by putting in an extra dummy array to force the beginnings of A
and B to the necessary separation.

Octopus 7600's are equipped with small core memory (SCM) instead of small
semiconductor memory. If you are programming in a high-level language, you need
not be concerned with the difference. SSM is slower than SCM but is more
reliable. The timing differences matter primarily to codes written in assembly
language, such as STACKLIB, which can be written for optimal performance on
either but not both types of memory. STACKLIB was designed for SCM.
Experiments have demonstrated that the degradation in performance on SSM is 5%
to 8%. You should remember that SCM is arranged in 32 banks, so every 32nd word
rather than every 16th word wraps around into the same bank. SCM requires 275
ns to read or to write. A read of SCM can be completed in e cycles, but the
bank is still busy for a few cycles after the result is delivered. While SCM
banks may be busy longer than SSM banks, the fact that there are twice .as many
banks and that reads complete in 8 cycles enables the overall performance of SCM
to be a little better than that of SSM.

LCM

We need to delve a little deeper into how LCM works in order to understand
how to use it effectively. LCM is arranged in eight banks. The smallest unit
that an LCM bank can read or write is eight words. These units of eight words
are called superwords or swords. Words 0 to 7 of LCM constitute a sword in bank
0; words 10 (octal) to 17 (octal) are a sword in bank 1. This arrangement wraps
around so that words 100 (octal) to 107 (octal) are in bank 0. Each LCM bank
contains a bank operand register (BOR). The BORis a staging area for all reads
from and all writes into LCM. A read out of LCM causes a sword to be
transferred to the BOR. The desired word (in the case of a single read) or the
desired words (in the case of a block copy) are then transmitted to the 60-bit
CPU register (or to SSM}. The LCM bank remembers which sword is in the BOR.
Any subsequent read for a wprd that happens to be in the BOR can be made very
quickly, because the word can be transmitted without initiating another bank
memory cycle.

-9-

When you write in LRLTRAN, you can access LCM in four ways. One is a block
copy from LCM to SSM. A second is a block copy from SSM to LCM. A third is a
read of one word from LCM to one of the eight 60-bit registers (called X
registers) in the CPU. A fourth is a write of one word from an X register to
LCM. The individual reads or writes occur when you directly mention LCM common
block variables or arrays in expressions or assignment statements. A further
subtlety is that the compiler normally uses 18-bit registers (8 registers) to
calculate memory addresses, and an LCM address must be placed in an X register
before you can read from or write to that address. Since the leftmost bit is
the sign, address computations in 8 registers can compute an LCM address of at
most 377777 (octal). To calculate LCM addresses greater than 377777 (octal),
the compiler
so efficient.
377777 {octal)
addressing) by
declared to be

must use precious X registers, and the resulting code will not be
You must decide which LCM common blocks will extend beyond
and force the compiler to use X registers (i.e., perform 19-bit
putting parentheses around those block names at the time they are
in LCM.

We will now go into greater detail about how LCM works. If you cannot yet
understand the details, try at least to remember the conclusions about what are
the good and bad ways to use LCM. Consider first an individual read from LCM.
A bank read/write cycle must begin if the required word is not in the 80R.
Assuming the bank is not busy, it starts a read/write cycle to move the required
sword to the 80R. Since the read of LCM is destructive, a write from the 80R
back to the bank starts right after the 80R is filled. While the read/write
cycle is completing, the specific word that was requested is sent from the 80R
to the appropriate X register. If the bank is not busy to start with, it takes
17 machine cycles (minor cycles) for the word to arrive at the X-register
destination after the read instruction is issued. Subsequent reads of words in

A read/write cycle requires 63 minor
read from the bank to the 80R and the

the same sword require only 3 cycles each.
cycles, of which the first 13 are used to
remaining 50 are used to restore the bank. Notice that for sequential reading
of memory, LCM is faster on the average than SSM-- 5 vs 9 minor cycles per word
(5 vs 8 for SCM).

Writing an individual word to LCM is more complicated. The sword into
which a new word is being written must be brought into the 80R. The new word
replaces the old word within the sword, and the updated sword is written back to
memory. If the bank is still trying to complete a previous read/write cycle,
all further instruction issue will be stopped until that bank cycle completes-
assuming, of course, that the write wants to go into a sword other than the one
that happens to be in the 80R already. Thus, reading from one sword and then
writing to another sword where both swords are in the same bank is very bad.
Writing sequentially to LCM is fairly efficient. The first two or three words
to go into a sword will (if your code is fast enough in issuing writes) be in
the 80R in time for the first write back to the LCM bank. That is, the first
write from an X register triggers the read from the LCM bank to the 80R. While
the sword is moving to the 80R, you have a chance to write in some more words to
the same sword before the sword arrives. Theoretically, you can write four
words to a sword before the.write half of the cycle begins. Anything arriving
after the write half of the cycle begins is held in the 80R (assuming it belongs
in the sword that currently occupies the 80R), and a second LCM read/write cycle

-10-

starts when the first is finished, to write the late-arriving words to memory.
Another effective way to use LCM is to read, modify, and rewrite words
sequentially. Although this may cause the bank to go through three or four
read/write cycles, the fact that the right sword is in the BOR allows the CPU to
keep issuing instructions without any long LCM delays. The important thing to
remember about using LCM is not to switch swords in a BOR too frequently.

Block copies are used to move contiguous blocks of words between SSM and
LCM. The transfer rate, once the operation begins, is one word per minor cycle.
A block copy requires that all LCM banks first become quiescent so that their
usage can be synchronized for the block copy. This means that you should avoid
an individual LCM read or write immediately before a block copy. Also, the
storage-address stack (SAS) is used to direct data into or out of SSM, so it
cannot be used to fetch instructions from SSM. Consequently, no instructions
can be executed until the block copy is complete. A block copy causes a minimum
of three LCM banks to becom~ busy even if the block length is 1. Because block
copies tend to make many banks busy, you should also avoid any reference lo LCM
within the first 66 or so minor cycles after a hlock copy.

Block copies serve 'at least three useful purposes. One is to move into
SSM, arrays th~t must be ·accessed randomly because SSM supports random access
better than LCM. Anothe~ is to move SSM data to and from an LCM buffer, because
I/0 can be done much more efficiently to your LCM area than to your SSM area. A
third purpose is to use STACKLIB dyadic and triadic routi.nes, which work only
with SSM. ThP. speed of these routines more than compensates for the cost of the
block copies. Note also that ~LOCKCOPY in ORDERLIB can be used to move blocks
quickly from one part of SSM to another or from one part of LCM to another by
using intermediate storage areas in LCM and SSM, respectively.

Pointered Arrays

In LRLTRAN there is a method of equivalencing variables dynamically by
using POINTER declarations. For example, an array may have a pointer that is
set to some location. Then a reference to the first element of the array is a
reference to the location indicated by the pointer, ahd a reference to the
second element is a reference to the next memory word; that is, the pointer
holds the first word address of the array. A typical use of pointered arrays is
to declare a large SSM or LCM array in an SSM or LCM common block. Working
arrays are declared to be pointered, and then the location operator is used to
set the pointers at appropriate addresses in the statically allocated arrays.
The use of pointers adds another level of indirect memory referencing, because
·the pointer must be read first to determine its current value ,and then the
address of the array element is calculated before the ar~ay element can be read.
On the other hand, pointers are useful for partitioning large static arrays into
smaller arrays and for controlling the origins of smaller arrays. This makes
pointers useful for avoiding memory-bank conflicts, because now at ekecute time
you can start the arrays in the banks with appropriate separation to avoid bank

-11-

conflicts. Inefficiency of indirect addressing is a problem only in a long
sequence of code with many labels, because the pointer may have been reset just
before a jump to a label. If pointered arrays are used primarily in DO loops
with no internal statement labels or are passed as arguments to subroutines,
they will not be more inefficient than normal, statically allocated arrays.

Argument Lists

Argument ·lists for functions and subroutines are considered long if they
have six or more parameters to pass. The code generated by the compiler to pass

I

long lists is different from the code for five or fewer arguments, and the long
list requires more memory space and execution time per argument than the short
list. Pass information through common blocks whenever it is practical.

BEGINMAP, TICHEK

Once your code is running, you should measure its performance to see that
it is using the CPU as efficiently as you had intended. Subroutine TICHEK in
ORDERLIB can be used to get an idea of how much time is used in each subroutine.
BEGINMAP, also in ORDERLIB, along with the load map and long assembly listing of
your code can be used to pinpoint small sections of code that use an inordinate
amount of time. If a small piece of code uses a lot of time, see if it can be
replaced with a STACKLIB routine. If no STACKLIB routine is suitable, you will
have to consider using COMPASS or FTN.

COMPASS is both the name
assembler we recommend you use
thoroughly familiar with the
instructions of the 7600. Even
large subroutines in assembly
STACKLIB-style subroutines -- that
parallel.

COMPASS

of an assembly language and the name of the
on LTSS. To use it effectively, you must be

hardware and the timings of the various
then, it usually does not pay to write very

language. Consider COMPASS only for
is, operations that are simple and highly

-12-

FTN

If a subroutine uses a lot of CPU time but does not have local spots
susceptible to STACKLIB or assembly-language subroutine replacement, then it
must be compiled with a better compiler. The FTN compiler of Control Data
Corporation produces code that generally runs in about two-thirds the time
required by CHATR-compiled codes. Unfortunately, the code produced by FTN and
the format of the relocatable binaries. are incompatible with anything else on
LTSS. As an alternative, you can compile by using FTN under the SLOPE subsystem
on LTSS and get COMPASS card images back. These images are intended for
assembly by the Control Data COMPASS assembler using a special set of FTN
macros. By manually editing the assembly language output by FTN and redefining
one or two macros, you can then assemble using LLL COMPASS, whose relocatable
binary output is acceptable to the LTSS loader.- This conversion is a manual
process, and each subroutine tends to pose its own special problems in
conversion, but it can be done. It works best on subroutines that do no input
or output and have no external references. A project is currently {August 1977)
under way to modify FTN to produce LOD-compatible binary cards. Ask your local
compiler expert about progress.

-13-

INPUT AND OUTPUT

File Types

Choose a file format on which I/0 can be performed efficiently. The binary
tape-simulated format written and read by the binary read/write (i.e.,
unformatted) statements in FORTRAN is the least efficient formal. It should be
used only if your code needs to sacrifice performance for portability. (Efforts
are currently under way to rewrite the binary I/0 routines so that they will
work more efficiently on the same format.) The monitor or squoze-monitor format
read and written by the two-argument BUFFER IN and BUFFER OUT statements is a
little better but still inefficient. The best format is the absolute format
where you specify exactly what you want to write to disk. You must then
remember where to read from to get your data back. T~is kind of file can be
written and read by the three-argument BUFFER IN and BUFFER OUT statements. As
we have mentioned previously, this is the least you should accept if you intend
for your I/0 to be efficient. Since you have total control when you use the
three-argument BUFFER IN/OUT, you can read the standard formats yourself and
pick the data out from between pointer
construct the image in memory of a
inter-record words and write it to
routine can read it.

or inter-record words. Likewise., you can
standard format file with its pointer or
disk so that some other standard input

Single and Double Buffering

Single buffering on output means saving information in a buffer and then
doing a disk write only when the buffer is full. On input it means reading a
bufferful at a time and extracting logical records from the buffer as needed.
When reading or writing past the end of the buffer, a disk read or write must be
dorie before the reading or writing can resume. The solution to this delay is
double buffering. On reading, you can continue reading the second buffer while
the first is being refilled. On writing, you send the first buffer load to disk
while continuing to fill the second buffer. The FORTRAN formatted read and
write routines are double buffered. The FORTRAN unformatted read and write
routines technically are also double buffered, but the buffer size used is so
small that the routines for practical purposes are not buffered at all. An
upcoming version of ORDERLIB, however, will have a new set of FORTRAN
unformatted I/0 routines where the read will be single buffered and the write
double buffered. BUFFER IN and BUFFER OUT, contrary to their names, are not
buffered at all; however, the three-argument BUFFER IN and BUFFER OUT allow you
to implement your
need for buffers,
and CPU, and the

own buffering scheme. You must consider the space you will
the amount of data to be transferred, the balance between 1/0
amount of usage the code will receive. Yqu want to increase

-14-

efficiency by making fewer but larger disk transfers, but you also want to keep
the size of your code down. You want to use the optimal buffering sceme, but
you don't want to spend months programming it: These are the matters you must
resolve in designing I/0 for your large working files.

Triple Buffering

Triple buffering is a computation technique often used in hydrodynamics
calculations. Data is generally ordered on some grid or mesh, and you must
sweep through the mesh, processing one row at a time. The data reside on disk
primarily, because only a few rows' worth can fit in memory. Without buffering,
you read a row, process it, write it out, and repeat the cycle on the next row.
With triple buffering, you overlap I/0 by defining three working areas or
buffers in LCM. One area holds the preceding row and is undergoing a write to
disk. A second area holds the current row on which calculations proceed
simultaneously with the output. A third area is simultaneously being filled
with data for the next row. Thus, input, output, and computing are all going on
at the same time but in different areas of LCM. When the three processes are
complete, calculation moves to the area where data was just read in, output
begins on the row just processed, and input begins into the area that was just
dumped to disk. This technique (also known as the three-ring circus) is a very
efficient way to use a 7600. Sometimes two or three adjacent rows are needed in
an iterative computation, so four or five buffers are needed. As in the
three-buffer case, one area is writing data to disk, one area is reading data
that will be needed next, and the rest are involved in a calculation.

The goal of buffering
buffering does) but to

Overlapping I/0

is not to use
reduce the cost of

more
I/0.

memory (which unfortunately
Buffering can do this in two

ways. One is to minimize disk accesses by packing information somewhere in an
intermediate area (a buffer) until the area is used up, whereupon a read or
write takes place. The other is to provide an intermediate area (a buffer), on
which I/0 may be done, that is separate from the area the CPU needs to access so
that I/0 and computing may occur simultaneously. In the latter case (called
overlapping of I/0), you may not even think of the buffer as a buffer. It may
look like an array thal sometimes undergoes 1/0. You lry to gel il filled
before it is needed, and you try not to use it while it is being copied to disk.
In this way you try to take advantage of the fact that CPU and up to four disk
1/0 operations on the MFE 7600 and the Octopus Z machine (three on Octopus R, S,
and U machines) can be overl~pped to reduce your cost.

-15-

r

BLIB76

The BLIB76 library contains many routines for doing I/0 efficiently,
although it also includes other routines. There are routines for reading and
writing files that are single-buffered. There are also single-buffered routines
for absolute files. Then there are conversion routines. If you insist on
outputting millions of numbers (presumably to microfiche rather than paper),
consider using subroutine MPAGE. This is probably ten times faster for large
arrays of floating-point numbers than conventional formatted writes in FORTRAN.
BLIB76 was written by applied programmers for use in production codes and
contains many other good routines. Wherever BLIB76 and OROERLIB coincide in
capabilities, the BLrB76 routine is generally better and faster. In no case is
it inferior.

Chained IOO's

LTSS allows more than one r;o request to be made at a time. Requests are
fashioned into 1/0 descriptors (rOO's) that consist of four words. Usually,
when you issue an roo, you put a pointer in word 1 of your program to the
location of the roo, and then you perform an exchange jump. The roo contains
pointers to other rOO's if several are to be issued at the same time. IOO's may
be contingent or simultaneous. Contingent IOO's are ordered, and the system
will execute them in order. Simultaneous rOO's are not ordered and could be
executed in any order convenient to the system, but currently they are also
executed in the order in which they are chained. Chains of IOO's may contain
both contingent and simultaneous rOO's, and the IOO's in a chain may perform r;o
on the same file or on different files. There muy be utmost 32 (decimal)
simultaneous IOO's, but a contingent chain may be arbitrarily long.

may be used when you must write many small records to
only a single tape record. Therefore, if many records
a contingent chain of rOO's should be issued. Some of

Contingent chains
tape. An 100 can write
are ready to be· written,
the system tape utilities use this technique.

Much more important to the user are chains of contingent IOO's for reading
disk files. We will illustrate their use in a typical situation where multiple
reads are necessary from the same file. Suppose you are solving a
time-dependent partial differential equation in a rectangular parallelepiped
using finite differences and some alternating-direction or fractional-step
method. Suppose further that you are using some implicit method that requires
you to set up and solve linear systems of algebraic equations where the unknowns
in the systems always lie in lines in the rectangular mesh. Let there be 80
mesh points in the x direction, 90 mesh points in the y direction, and 100 mesh
points in the z direction. Assume that the solution is given at the boundaries
for all time, so that only the interior points need to be calculated. Let I be

-16-

r

an index (subscript) in the x direction, J an index in the y direction, and K an
index in the z direction. The x sweeps are done along lines parallel to the x
axis. Sweeps for a given x-y plane are completed before incrementing K to move
up to the next x-y plane. A sweep consists of using currently available
function values along a line and its nearest eight neighboring lines to
construct a linear algebraic system. Solution of the system gives an
approximation of the solution on that line for the next time level. The new
approximate solution is written over the previous approximation. After all 8624
x sweeps are done, 7644 sweeps in the y direction must be done. These also are
completed one x-y plane at a time. Finally, 6864 sweeps along the z lines must
be done. If the problem is nonlinear, it may be necessary to iterate this
process three or four times to get a good approximation to the solution at the
new time level.

We notice that there are 720,000 mesh points, so it is not possible to put
all 720,000 function values in LCM simultaneously. The unknowns must be
suitably ordered and stored on disk. (In the rest of this section we assume
that 819 or 817 disks are being used, but the same reasoning applies to 844
disks.) The ordering we choose is for adjacent elements on x lines to be
contiguous, adjacent x lines to be concatenated, and adjacent x-y planes to be
concatenated. The concatenation is not strict, in that there may be gaps on the
disk in suitable places, but the ordering is always preserved. Let us assume
that we have an initial approximation and are cycling through x, y, and z sweeps
to improve it. Suppose that the x-y planes consisting of 7200 elements each are
spaced so that they each start on a sector boundary. This means that they use
15 (decimal) sectors each and waste 480 words in every 15th sector. To perform
y sweeps in an x-y plane, you should triple buffer. At level K in z, you need
planes K-1, K, and K+1 for constructing difference equations. Level K-2 is
being buffered to disk, and level K+2 is on its way in for future use. Since
whole planes are moving at a time and since the planes are laid out as 7200
contiguous elements on disk, only one IOD is needed at any one time. Notice
further that no useful information is in the last 480 words of the 15th sector.
This means that the IOD may specify that the unreferenced portion of the last
sector need not be preserved. This cuts the cost of the disk write.

Having finished they sweeps and written everything to disk, we next wish
to do z sweeps. The sequence is to process z lines in a given x-z plane and
then move on to the next x-z plane at the next J level. To get an x-z plane
into LCM, we must read all the x rows in that plane. However, these rows are
spaced 15 sectors apart on the disk, so we must issue 100 IOD's to get a plane
in. Clearly, chained, contingent IOD's are needed. You could, of course, make
100 exchange jumps, each issuing a single IOD, but this would waste CPU time.
In performing the z sweeps, you again triple buffer in the sense of reading and
writing x-z planes simultaneously while using three others in a computation.
When an x-z plane is finished and ready to go back to disk, we face a problem:
it is easy to read x lines from anywhere on the disk, but it is hard to put them
back where they came from. The reason is that they were pulled out of the
middles of sectors, but they cannot be put back without preserving the
unreferenced portions of the sectors they came from. Preserving unreferenced
portions of sectors, you will recall, is expensive because it requires that the
sectors be read into the PPU. The solution is to use another disk file for

-17-

writing the x-z planes. The planes presumably are laid out in an orderly way in
LCM, so they can be moved out to disk with one IOD per plane. As in the case of
x-y planes, it is convenient to start each x-z plane on a sector boundary, so
preservation of the first sector is unnecessary.

When the z sweeps are finished, the x sweeps are done again. It is now
necessary to re.cover x-y planes. This means that 90 IOD's must be issued to
pull the appropriate x lines (which are 16 sectors apart on disk) back together
in LCM. The x sweeps write x-y planes that are also used by y sweeps, so
nothing fancy is required when completing x and going to the y direction.

To summarize the example, we have seen that each of three kinds of sweeps
requires that planes be read and planes be written. Planes are always written
with single IOD's. The x sweep reads with chained IOD's because the z sweep
left the rows in the wrong permutation. The y sweep uses x-y planes as did the
x sweep, so it can read with single IOD's. The z sweep needs x-z planes so it
reads with chained IOD's the x-y planes written by the y sweep. At least two
disk files are necessary. For ease of restarting after crashes, it would be
desirable to use three files. They sweeps should not write x-y planes into the
file from which they were read. If you use three files and there is a crash
during a y sweep, it is necessary to back up only to the beginning of the y
sweeps, not to the beginning of the x sweeps.

There are a few other interesting things to know about IOD's. JOD's are
always scheduled by the operating system on a first-come-first-served basis.
This is true even for chains of simultaneous IOD's; that is, the IOD's are
issued in the order in which they are chained. This raises questions of whether
a chain of JOD's can read every n-th word in a cylinder where n is a multiple of
the sector size (or more generally, reading m words starling at every ri-lh word
but not reading past a sector boundary). The answer is that the PPU is fast
enough to read every other sector without losing a revolution. Therefore, such
a chain of, for example, 50 IOD's (with n =sector size) should be ordered to
read 25 even sectors and then 25 odd sectors to pick up all the data in two
revolutions. If they were arranged in the obvious monotone increasing order,
over 51 revolutions would be required. If the same question is posed about
writing something to each of 50 consecutive sectors in a cylinger, the answer is
that the PPU is fast enough to write to every third sector, provided it does not
have to preserve the unreferenced portions of the sectors. Thus, in the best
case, three revolutions are needed to write segments into 50 consecutive
sectors. (You would generally be better off to construct the image of the 50
sectors in LCM and write it all out with a single IOD.)

How do you tell where in the cylinder your file starts? You must read the
appropriate IOC by issuing system call 0704. The IOC includes the absolute disk
word address where the file starts. It will always be a multiple of 512 words.
Furthermore, all files start with an ID block of 1000 (octal) words not
generally available to the user. Thus, a file of length 1000 (octal) is really
2000 (octal) words long. Your word 0 is really 1000 (octal) words from the
absolute beginning of the physical file. There are 102,400 (decimal) words in

-18-

an 819 cylinder, so you can tell where a file starts modulo 102,400. [•]
Exactly the same reasoning applies to 844 disks, except there are only 29,184
words per cylinder. The 817 has a cylinder spread over two spindles of 81,920
words.

Validating Disk Files

It is possible for a disk sector to become (lawed. When the system detects
a bad sector, it adds that sector to its flaw table so that no one in the future
will be given that sector as part of his disk file. Unfortunately, some poor
user is usually victimized" by a bad sector before the system learns the sector
is bad. If you are creating a disk file for an important run, you should write
something into every word of the file and read it all back. Bad sectors are
usually found while reading rather than writing. Flawed sectors as well as
other problems are returned with the f field set to 2 in the IOD. If you gel a
disk-parity error, destroy the file and create it again. If the sector truly is
bad, it will have been added to the system's disk flaw table, and you won't get
it again when you recreate the file.

[•] m modulo n is the number between 0 and n-1 that results from subtracting
from m the largest multiple of n that is less than or equal tom; e.g.,
38 modulo 11 is 5, and 33 modulo 11 is 0.

-19-

DEBUGGING

Utility Routines

It is unrealistic to expect a large code to be error free. Presumably,
part of your output is a log or record of what your code did. If this record is
not enough to explain wrong answers or a job abort, you will have to save the
controllee's dropfile and look at it. If you need to dump most of your arrays
and variables, use VDUMP or DOD.
table for the controllee. ORDER

The latter is more useful if you have a symbol
uses DOD when you use the *DUMP control card.

Core dumps are now discouraged, however, because there are more convenient tools
to use if you need to see only a few words in your controllee. DBUG may be used
to look at variables symbolically. It finds from a symbol table the location of
a variable in the controllee and can then print its value at your terminal. If
you do not have a symbol table (shame on you) for your controllee or if you need
to examine some other kind of disk file (e.g., seeing what was really written in
your scratch files), you will need utility routine EDIT or VDUMP.

CTRL is a dynamic debugger that acts as a controller for the controllee to
be debugged. Its essential capability is to put breakpoints into your
controllee. A breakpoint is a location where the code will stop executing if it
tries to execute the instruction at the breakpoint. The purpose of breakpoints
is to allow you to examine the controllee at a time prior to its failure so you
can see how it starts to go wrong. CTRL cannot be used conveniently on overlay
codes. There is also a dynamic mode for DBUG in which it controls CTRL, which
in turn controls your program. The interface is unreliable, however, and the
utilities may crash. CTRL does not require a symbol table. It depends on you
or DBUG to give it octal addresses for setting breakpoints. Likewise, when CTRL
is used alone, you must tell it the octal addresses of memory locations you want

·dumped.

A much better tool is DBCTRL, which, though still under development, is
proving to be more useful and reliable than DBUG and CTRL. It requires a symbol
table along with your control lee. In static mode (i.e., looking at your
controllee after it has died), you can ask for the final values of variables by
name. The commands to DBCTRL are less ambiguous than DBUG commands. In dynamic
mode DBCTRL has many capabilities heretofore unavailable. It can set
breakpoints in overlays easily. You can keep a copy of the dropfile at a
breakpoint so that, if your code crashes before it gets to the next breakpoint,
you can back up and try again. DBCTRL is a public file on the MFE 7600 and may
be read from photostore on the Octopus network under directory chain

283015:MFEPUB:CONTROLLEE:CURRENT:DBCTRL

Another 7600 debugger being developed is DDT.
this time, August 1977.

-20-

It is not publicly available at

CHATR Options

Two debugging options in CHATR (and CHAT) may be helpful to you. They are
described in the manual, so we will describe them here only briefly. CHECK can
be used to print the name and value of a variable whenever you store into it.
This may help you find how wrong values get into variables. The LINETAG option
puts out extra labels in the symbolic cards for building the symbol table. The
fictitious labels are based on the line numbers of the code. Thus, the location
of the pseudo-label goes into the symbol table. With DBCTRL you can find the
corresponding location in your controllee and set a breakpoint there. This is
helpful if you must set a breakpoint where there is no natural label nearby.
Also if your controllee crashes and leaves the program counter intact, you can
pinpoint more closely the line of code you were executing when the error
occurred.

-21-

PRODUCTION COMPUTING

Restart Dumps

There are two situations in which jobs need to be restarted. One is where
the job is so long that it is not allowed to run to completion. It runs a few
hours each night until it is done. The other is a system crash where all user
jobs are interrupted. Inasmuch as all production computing is done under the
control of the ORDER subsystem (on the MFE 7600, at least), we will discuss
restarting only in terms of the features available under ORDER.

The simplest type of restart is to save the dropfile and all working files
and restart by executing the dropfile. If you are using tapes (which you
shouldn't be doing), this won't work, because the tape will not be positioned on
the tape drive where your dropfile thinks it ought to be. Even if you are not
using tapes, it may be inappropriate to keep all files and simply re-execute the
dropfile. For example, an output file may have information you would like to
see. Therefore, you would like to send an output file to a device and create a
new file for further output when the job is restarted.

In order to allow for a more graceful restart, your job must know when it
is about to be interrupted so it may clean up files and make a graceful exit.
Essentially, there are two ways your job can get sufficient warning. One is to
use the *TIME control card in ORDER. This is a card you should be using. The·
other way is for the operator to send a SWON message to ORDER when he wants you
to get off the machine. Either way, sense switch 1 is turned on or an
appropriate message is sent to your job by ORDER. You must check continually
for sense switch 1 being turned on and prepare to leave the machine when it
comes on. Two ORDERLIB routines may be of use to you in this process. One is
OFFMON, which clears buffers, gives away certain files, and sets the program
counter for a subsequent restart. The other is EXIT (with one argument) for
exiting but leaving the program counter set for a restart. Your job notifies
the system that it is through executing, but that the dropfile should not be
destroyed. In a subsequent task in the same ORDER run, you save the dropfile
for re-use. On another run, you read the dropfile and working files into your
file space and restart with a *XEQ card. If your controllee was originally
loaded under control of ORDER (i.e., you used a *CONTROLLEE card but not
•ZEROLOAD card), then you must use a •ZEROLOAD card when restarting the
dropfile.

An ORDER-loaded controllee is one that has the ORDER resident package as
code block at level 1. The user's main program is in a code block at level 2.
You get the resident package by allowing ORDER to tell the loader how to load
your controllee. ORDER then forces the resident package in ahead 9f your code.
This package has error-handling routines and also sends the dropr'ile name back
to ORDER. When ORDER executes a controllee, it first looks for the presence of
the resident p~ckage and expects a certain interaction to occur if the package

-22-

is there. When you restart an ORDER-loaded dropfile, the resident package is
there, but the initial interaction occurred on a previous run; therefore, the
•zEROLOAD card tells ORDER not to expect any messages characteristic of an
initial execution. If you used a •ZEROLOAD card when you created the
controllee, then your controllee does not have the resident package and is
considered not to be an ORDER-loaded controllee. In this case the •ZEROLOAD
card is not needed when you restart the dropfile on a subsequent run.

System Crashes

The hardware and operating system are not infallible. Memory-parity errors
and other problems may necessitate o dead start of Lhe operating system.
Serious problems can happen to your job in this situation. Tapes are removed
from tape drives on a dead start. If you were writing a tape (which you should
not be doing} or if you were running a utility routine that was writing a tape,
you will need some error-recovery procedure to verify that the tape was
correctly written. The system may also have lost its copy of the file index in
LCM and had to back up to a copy on disk that is a couple of minutes old. If
there is a dead start
to it, your dropf i \e
doesn't exist. The

between the time you create a file and the time you write
believes the file exists, but the old file index says it

system will then abort your job for writing to a
non-exi~Lent file. Again, an error-recovery procedure must be used after a dead
start to be sure all necessary files exist. However, it is not enough for
requisite files merely to exist. If a scratch file is being used for reading
and writing, it is possible to lose synchronization. For example, suppose you
read a file, rewind it, and write something new on it, and then there is a
system crash. Under production, it is quite possible that your job has been in
memory for over a minute, and that the dropfile on disk represents the state of
your program before il did the read and write. On a crash, your core image
·could be lost, forcing a restart with whatever dropfile is left on disk. This
dropfile, however, will read your working file as though it had not yet been
rewritten, thereby getting the wrong information. In this case, you may not be
able to recover if you have not allowed for some method to reconstruct your
working file. A partial solulion is to write some sort of identification to
disk along with your data, so that you can verify that the right set of data is
on disk on a subsequent read. A better idea is to write to another disk file
and not overwrite the one you've just read until enough information has been
written elsewhere that you no longer need the first file.

Thus far we have mentioned error-recovery procedures without describing
typical implementations. Under production, the operator (on Octopus} or BATCH
(on MFE) will restart ORDER's dropfile with a LINEFEED-D message. This is a
special message to ORDER to inform it that a dead start has occurred and that it
will have to restart your job. If your controllee is not ORDER loaded, ORDER
will start your original controllee, not the dropfile, because ORDER generally
will not know the name of the dropfile. Also, ORDER will restart your
controllee without a message even though a •XEQMES card is present. A •RSTMES

-23-

card is needed to specify a message upon restart. For ORDER-loaded controllees,
ORDER knows the dropfile name and will restart it without a message unless a
•RSTMES is used. A •RSTNAM card can also be used if you want ORDER to restart
something other than what it would normally restart. Thus, one way to implement
a recovery procedure is to make it part of your code. You get a message from
controller (with a system call) and see whether the message indicates a normal
start or dead start. If there is a dead start, you first verify the existence
and integrity of files before starting to compute. Your code should be arranged
to create dump files for restarliug every half hour. That is, in case of a dead
start, the dump files have enough information to restore working files and
arrays and variables in memory so that you may resume from the most recent dump
and not lose more than a half hour of machine time.

There is another way to use the above control cards. You may have a
special controllee to do recovery, which you specify with the •RSTNAM card.
This puts the recovery code in a separate controllee (which must exist after the
dead start} and keeps the main controllee smaller. After restoring files, you
call ORDERLIB routine CBRANCH to switch the normal exit branch to a task that
will execule your main controllee again.

In addition to the control cards, there are subroutines in ORDERLIB you may
call to accomplish the same or additional functions. SDRPNAM tells ORDER what
file to restart. This is useful if your controllee drops to a random dropfile
name that cannot be known at the time the control cards are set up. It is also
useful if you drop a second time to yet another dropfile name. SRSTMES deposits
with ORDER the message you want to be restarted with after a dead start. If
there are several stages in your cycle of computation from which you can
recover, you want the message to tell you how far you got before the crash.
GRSTMES is used to get from ORDER the restart message (even if there has not
been a restart) and a flag indicating whether a dead start has occurred since
the last call to GRSTMES. WARNING: Be careful about putting calls to GRSTMES
in short loops. It asks ORDER if there has been a restart, but, in doing so, it
forces your controllee to drop to disk. Thus, it costs you a voluntary load and
·dump that will be added to your I/0 charge.

The correct use of control cards and the ORDERLIB routines is the basis for
designing a restart procedure for a production code. The first step is to
design your code to have some sort of loop structure. At one (or more) point(s}
in the loop you test for indications that a dead start has occurred or that you
are about to run out of time. To set sense switch 1 to indicate that time is
nearly up, you should use the option on the •TIME card that implements sense
switch 1 solely by setting a bit in the 24th (decimal) word of GOBCOM. This is
opliou 1=0. Option 1=1 should be avoided because the message may get lost in a
dead start. Option 1=2 should be avoided because the IF(SENSESWITCH,l}
statement will first toggle sense switch 1 if there is a SWl. message waiting
for your controllee. If the switch was already on (meaning you should terminate
your job soon}, it will be turned off, and the branch for the off position will
be taken. Option 1=3 should be avoided because you will then receive no
indication that you should terminate, and ORDER will abort your job when your
time is used up. The IF(SENSESWITCH,l} test is safe for option 1=0.

-24-

Alternatively, you can declare common block GOBCOM to be length
24 (decimal) or 27 (octal) and look at bit 6 in the 24th (decimal) word. (The
bits are numbered from 0 to 59, right to left.) This bit stands for sense
switch 1. A value of means on; a value of 0 means off. If this bit was
turned on by ORDER before a system crash, it will still be on after the restart.
It will not be lost as a SW1. message would be. After checking the sense
switch, you should check for a dead start by· calling GRSTMES and checking the
value of the flag. All the routines described in the ORDER JOB CONTROL section
of the ORDERLIB manual send messages to ORDER and receive messages from ORDER.
If you are expecting any messages from controller, you should pick up the
messtige from the operating system (using a get message or symbols from
controller system call) before calling any of these routines, because ORDER will
need to use the system's buffer to send a message back to these routines. The
system buffer for
the latest message.

conveying messages from controller to controllee holds only
Messages not picked up by the controllee will be lost when

the controller sends another message. In particular, the SW1. meRsage, unless
picked up first, will be wiped out by a call to these ORDERLIB routines. If the
flag returned by GRSTMES indicates a dead start has occurred since the last call
to GRSTMES, then you brunch to a part of your code to check the status of all
your files. To see if a file exists, close it and open it. No error will occur
on the close, even if the file to which you were connected disappeared during
the dead start. On trying to reopen it, you will get an error indicating a
non-existent file. After the file is recreated or reopened, you can restore its
contents. Because a call to GJ:<S'J'MES causes a voluntary load and dump, it. should
be used only when you can afford these extra I/0 charges. For a controllee that
uses all of LCM, you should use the *RSTNAM and *RSTMES control cards to execute
something other than your dropfile after a crash. In particular, you might want
to starl a fresh copy of your controllee but with an alternate execute message.

ORDER Protocols

If your controllee is written in BCON rather than LRLTRAN, the ORDERLIB
ruuliues for talk1ng to OHDER are not available to you. You therefore may need
to know the protocols and formats of messages. ORDER has its input bypass
closed and its output bypass open when it initializes your controllee. You must
issue a system call to see if +ORDER is your controller. If it is, you must
issue a system call to close the controller output bypass. When ORDER replies
to your controllee, it will send a message and restart your controllee with
ORDER's output bypass again open. The ORDERLIB routines use a local
12 (decimal)-word array named BETA. Remember that calling any of these routines
will incur a v..:..lunlcny luau tind dump charge. Let C'l'LO be 400217 (octal).

1. CBRANCH

To ORDER: BETA(1) = (5II CHNG). UN. CTLO

-25-

·-

BETA(2) = I FLAG
BETA(3) = IBUFF(1) Note: The names in BETA(3)
BETA(4) = IBUFF(2) to BETA(B) must be
BETA{5) = IBUFF(3) right-justified.
BETA{6) = IBUFF(4)
BETA{7) = IBUFF(5)
BETA(B) = IBUFF(6)
BETA{9) = EOM
BETA(10) = BETA(11) = BETA(12) = 0

From ORDER: BETA(1) = 2ROK

2. GBRANCH

To ORDER: BETA(1) = (5H GBR).UN.CTLO

From ORDER: I BUF' I+'(1) = RF.TA(1) normal branch nume
IBUFF(2) = BETA(2) software error branch name
IBUFF(3) ""' BETA(3) hiirdware error branch name
IBUFF(4) = BETA(4) ORDER abort branch name
IBUFF(5) = BETA(5) interrupt branch name
IBUFF(6) = BETA(G) zero repetition branch name

3. SBRMES

To ORDER: BETA(1) = (5H SEND}.UN.CTLO
BETA(2) = NUM + 1
BETA(3) to BETA(n) =message, n .LE. 10
BETA(n+1) to BETA(12) = 0

From ORDER: BETA(l) = 2ROK

4. GBRMES

To ORDER! .l::l!!:TA(1) = (5H GET). UN. CTLO

From ORDER: !BUFF(I)= BETA(I+l) for 1=1, ... ,NUM

5. SETREP

To ORDER: BETA(1) = (5H SREP) . UN. CTLO
BETA{2) = NUM

-26-

From ORDER: BETA(l) = 2ROK

6. GETREP

To ORDER: BETA(l) = 5(H GREP).UN.CTLO
BETA(2) = BETA(3) = 0 if only one argument in call
BETA(2) = TFLAG
BETA(3) = ITASK

From ORDER: IREP = BETA(l)

7. RSTMODE

To ORDER: BETA(l) = (5H MODE).UN.CTLO
BETA(2) = NEW

From ORDER: OLD= BETA(l)

B. SRSTMES

To ORDER: BETA(l) = (5H SRST).UN.CTLO
BETA(2) to BETA(ll) =message with zero fill from right
BETA(12) = 0

From ORDER: BETA(l) = 2ROK

9. GRSTMES

To ORDER: BETA(l) = (5H GRST).UN.CTLO

From ORDER: MESS(I)= BETA(I) for I=l, ... ,10
IFLAG = BETA(ll)

10. SDRPNAM

To ORDER: BETA(l) = (5H SDRP}.UN.CTLO
BETA(2) = NAME

From ORDER: BETA(l) = 2ROK

-27-

11. GDRPNAM

To ORDER: BETA(1) = (5H GDRP).UN.CTLO

From ORDER: NAME= BETA(1)

12. SORDMES

To ORDER: BETA(1) = CTLO
BETA(2) to BETA(n} =message, n .LE. 12
BETA(n+1} to BETA(12} = 0, n.LE. 12

From ORDER: BETA(1} = 2ROK

13. GORDBOX

To ORDER: BETA(1} = (5H GBOX).UN.CTLO

From ORDER: IBUFF(1} = BETA(l}
IBUFF(2) = BETA(2}
IBUFF(3} = BETA(3)

14. GORDLIB

To ORDER: BETA(1) = (5HGPLIB).UN.CTLO

From ORDER: NAME= BETA(1)

Mul.ti-Controllee Jobs

As mentioned previously, it may be advantageous to design a single job as
several controllees that are run in succession or in a cycle. Each controllee
hands information to its successor by leaving disk files of data. This means
the job is automatically well structured for restart dumps and dead starts.
Then all you need is a controller to run the controllees in the right order, and
yourcontroller is run as a controllee of ORDER. Inthiscase,itmaybe
convenient to write your controller in BCON and to put error recovery and
restart logic in the controller. One of the multiple controllees can be devoted
to restarting. It can read the 1/0 connectors of the controllee that should be
executing, to see
to see if the files

what files it is connected to, and then check the file index
still exist. When it has restored all files, it indicates

-28-

to the controller that execution of the controllee that died in the system crash
may begin again.

Hardware Interrupts

For errors such as overflow or indefinite operands, which are trapped by
the hardware, your control lee is usually aborted; however, if you think. you can
write a section of code to recover from these and certain other
hardware-detected errors, the method for regaining control of your program is
described in the SYSCALLS do~ument (or LTSS Chapler 10}. Notice that an
underflow is not normally considered to be an error, but you can make it an
error if you so desire.

Using this recovery procedure requires setting special information in word
174 (octal) of the minus words. This can be done with utility routine EDIT
after your controllee is loaded, or it can be done at load time by DATA-loading
a variable that is declared to be ABSOLUTE at 174. The value cannot be changed
once execution begins, since references to this variable will refer to word 174
in your field length rather than word 174 in your minus words. This latter
method relies on a bug rather than a feature of the loader. Consult your local
loader expert before you use this feature to be sure it has not been fixed.

BATCH, ORDER, and Your Controllee

For debugging purposes, your controllee should be designed to run alone or
·under ORDER; for production purposes, it should be designed to run under ORDER,
which in turn is run under BATCH. There are two things to remember. One is
that your controllee should be designed so it will not require messages to be
typed in by a r~al peroon during ~ruduction. The other is to understand how
messages go hack and forth between BATCk, ORDEN, and your controllee.

BATCH sends four kinds of messages to ORDER. One is the execute message to
start ORDER. A second is anything Lhe operator types in (deliberately or
otherwise} that BATCH does not recognize os a message for BATCH. Third are
ORDER execution controls as described in the ORDER manual. Fourth is the
message END. In any situation where BATCH is awakened (for example by an
unexpected message coming up to it), it restarts ORDER's dropfile and sends it
the message END. Notice that this END message is not precedE:ld by a LINEFEED, so
ORDER does not recogni7.e it as a command to slop. All ORDEn execution control
commands start with a LINEFEED (except SWl., which may or may not have a leading
LINEFEED).

-29-

.~

ORDER sends four kinds of messages to your controllee. One is the execute
message given on the •XEQMES card. A second is a restart message given on the
•RSTMES card unless superseded by a call to SRSTMES. A third is the
sense-switch message equivalent to flipping sense switch 1. (You should have
the bit· in GOBCOM flipped rather than rely on a message.) Fourth is anything
that comes from BATCH (or the terminal if you are running ORDER yourself) that
ORDER does not. recognize as an ORDER execution control command. As mentioned
before, this category includes stray messages typed in by the operator or the
END message when BATCH does not know what else to do.

Between a controller and its controllee are two message buffers maintained
by the operating system. For messages going up, there are various options for
stacking, replacing, or ignoring messages, but for messages going down to the
controllee, the current message replaces any message that the controllee has
failed to pick up. An example of the problem you can create is to send a
message to controller asking for input and Lhen asking for a message from
controller. When your controllee is run alone or just under ORDER, the input
can be given on the execute line or on a •XEQMES card. The message asking for
input goes out one system buffer, and the input given on the execute line or the
•XEQMES is already silting in the system input message buffer. When your
controllee asks for this message, it picks up this message and is satisfied.
However, when you run under BATCH, BATCH is awakened by the unexpected message.
BATCH puts the message in its record file and restarts ORDER with an END
message. Since ORDER docs not recognize END as an ORDER command, it restarts
your controllee with the message it received from BATCH. The END replaces the
execute message in the input buffer, and your controllee does not get the
message it was expecting. The solution is simple. Your controllee should try
to get a message from controller first. If there is none, then send a message
to controller asking for data. After that, do another get message from
controller. Remember that ORDER normally passes to your controllee any messages
it gets from its controller that do not start with a LINEFEED. The only
exception is the SWl. message. The disposition of this message depends on what
you specified on your *TIME card. ORDER is assuming that the operator meant to
type LINEFEED SWl., but forgot the LINEFEED.

The case of messages going upward is simpler. ORDER asks the system to
leave its output bypass open when it runs your controllee. The subroutines in
ORDERLIB for ORDER job control always a:sk Lhe system to close the bypass first
so that their messages will be received by ORDER rather than be passed upward to
the next level (i.e., BATCH). ORDER otherwise is awakened only by messages
coming down from BATCH or error or completion messages notifying ORDER that your
controllee could not continue or terminated normally. BATCH then copies any
messages coming up into its RECORDFILE. Thus, messages ordinarily go not to the
operator but into a dayfile for you to read later. Incidentally, BATCH's record
contains only the first eight words of any messages that come up to BATCH. This
record was not meant to r.ontain lar~e amounts of output.

We have not yet mentioned what to do if the system crashes while ORDER is
running, because the user can do nothing about this problem. The hope is that
ORDER itself is not going to be in memory long enough to be caught by a system
crash. Therefore, most efforts are expended to see that ORDER's controllees can

-30-

be restarted~ If BATCH sees that ORDER itself was the victim of a crash, it
normally gives up on that job and starts ORDER off on another user's job. The
reason is that user ·jobs can cause ORDER to crash even though nothing happened
to the system. Since BATCH cannot be sure which one happened, it will not rerun
the user's job. The only time BATCH will restart ORDER on your job is when
ORDER died because of a disk-parity error. This error presumably cannot be
induced by the user and would not occur again, so it is considered safe to retry
your job. This means that your job had better be prepared to find that some
working files or output files already exist and to realize that it is being run
again, even though it may have successfully completed execution a few seconds
ago.

-31-

•

MAINTAINING SOURCES AND BINARIES

In maintaining a large
containing many lines of

Introduction

production code you will
code. Almost certainly you

have many subroutines
will have to modify

routines or add new routines, and you will need something easier to handle than
a giant text file. You will also want to keep your relocatable binaries,
because compilation is expensive. When you change a subroutine, you will want
to compile only the new routine and then replace the binary in your collection.
You may also wish to save old versions of sources or binaries so you can back up
to an earlier version if a new version seems to have bugs. Most of the serious
production user~ that we know have developed maintenance systems to suit their
own needs. In this documenl we will mention only the generally available
utility routines on which you migh't huild your own system.

Managing Sources

One way of maintaining sources is to put each subroutine in a separate file
and use utility routine LIX to aggregate Lhem into one large file. The subfiles
can be easily Rdded, replaced, or deleled by LIX. Transformations between a LIX
format and a single giant text file may be accomplished with utility routine
SFM, which in fact was designed for maintaining large source files by making
each subprogram a separate file that can be stored in a LIX library file. The
primary drawback of this system is that you are easily templed into modifying

·and replacing a subroutinP. ttnd not keeping a record of what you changed, should
you need to undo the changes. If you use this system, you should seriously
consider using alter files in the TRIX AC Lext-editing system to keep track of
changes,

A more orderly approach is possible with utility routines MODIFY or UPDATE,
which run under the SLOPE subsystem. MODIFY is smaller and faster than UPDATE
but less versatile. Both of these utilities keep sources in a compre~sed form,
squeezing out blanks. These utilities are line {or card-image) oriented, in
that entire line images-- not just patterns within lines-- are added,
replaced, or deleted. All lines, whether they be original lines or modification
lines, receive an identifier and sequence number. Modifications are made in
sets, and it is possible to activate or deactivate sets of modifications without
deleting. Since line images are deactivated rather than deleted, it is possible
to recover earlier versions by deactivating the recent modifications. MODIFY
and UPDATE allow you to extract any or all decks for compilation and force you
(for your own good) to introduce modifications in an organized manner. Another
utility available only on the Mlt'h: nelwork is the HISTORY system. It is a BCON

-32-

J

program for managing text files.
routine DOCUMENT.

Documentation is available through utility

Managing Binaries

LIBMAK is the tool for creating library formatted files of binaries. This
format has a directory that assists the loader in finding the subroutines and
thereby helps decrease the lime required for loading. LIBMAK can also be used
to add, replace, or delete routines from libraries. A binary library should he
used only for current routines. If you keep ~uperseded binaries, a LIX file is
probably the best place to put them. Make each relocatable binary a separate
file. Please note that the LIX file of binaries is not acceptable to the
loader. In no case should binaries be kept in the form of punched card decks,
since the MFE card reader does nol read binary decks.

For overlay 'codes it is most convenient to group codes for a given code
block into separate binary libraries, each library having precisely the codes
needed for one of the code blocks. If you are running under ORDER, recompiling
a subroutine, and loading it, be sure that the library containing the obsolete
version is presented to the loader afler the binary file containing the newly
compiled version. You do this by putting the *LOD card after-- not before-
the *CHATR (*FORTRAN for Octopus users) card in the series of card images
describing a code block to ORDER. If the *CHATR card does not point to an
external file with the source, but aclually precedes the card images of the
source, the *LOD card should be placed after the last END card in the FORTRAN
source. The *LOD card should then give the name of your library, followed (with
no intervening blanks) by a comma. ORDER first compiles your FORTRAN with CHATR
and assigns a name to the binary file produced by the compiler. ORDER then
picks up the library name on the *LOD card and gives the two file names to LOD
·in that order. The comma musl be appended to the library name, because the
loader is looking for a purpose character at the right end of the characler
string to tell it what the rest of the string stands for. The comma indicates u
binary file from which routines are used only if they are actually needed to
resolve external references.

It is possible to put all your subroutines into one library even though not
all of them are required in any one code block. The loader needs to know (among
other things) the name of the entry point (a subroutine name) for each code
block and what subroutine to force into the code block whose external references
will in turn pull in the other subprograms needed in the code block. The name
of the entry point must have a minus sign attached as a purpose character.
ORDER will take care of this for you if you allow it to control the loading.
The name of the subroutine to force in (almost always the same as the enlry
point name) is given without a purpose character appended. If .this subroutine
is present in source form to be compiled, ORDER will force it in. If it resides
in your binary library, you should use the *LOD card to force it in. One
p~oblem arises in force-loading the main program out of a library. The main

-33-

program is always named
the loader interprets

MAIN., where the period is part of the name; however,
the period as a purpose character. To force-load MAIN.

out of a library, use the sequence of LOD commands,

b=bMAIN.bXYZb=bXYZb

where b means one or more blanks and XYZ is any symbol that does not conflict
with the name of anything else. These commands equate XYZ to MAIN. and
force-load XYZ. Since XYZ stands for MAIN., MAIN. will be force-loaded.

COMPASS

COMPASS subroutines are not susceptible to mainlenance by SFM. You can
still use LlX, MODIFY, or UPDATE, however.

-34-

COMPASS

Subroutine Linkages

To write in COMPASS, you will need to know the subroutine linkages used by
CHATR (or CHAT). For five or fewer arguments in a subroutine call, the
addresses are placed in registers Xl to X5, starting at Xl. The number of
arguments is placed in X6, and Lhe return address is placed in X7. Jump to
entry point plus one for subroutines and for integer and single-precision
functions. If you are calling a double-precision or complex function, jump to
entry point plus two words. Results of integer and single-precision functions
tire left in X6. Double-precision and complex functions leave answers in X6 and
X7. If the subroutine call contains six or- more arguments, all argument
addresses should be placed in memory immediately before the return address, one
address per word. At the entry of your subprogram you should start the first
executable instruction the word after the entry location for subroutines and for
integer and single-precision functions; you are not supposed to jump to and
execute code right til the entry point. For double-precision and complex
functions, allow two words and start your first instruction at the second word
after the entry location. Currently there is a bug in the loader that requires
the main entry point of a subprogram to be within seven words of the beginning
of the subprogram. {Do not put a lot of constants at the start of the program.)
Alternate entry points may be put anywhere. A main entry point is required and
is characterized by being the same name as that specified on the IDENT card.
CHATR does not use the return jump instruction. You must save the return
address yourself. CHATR normally creates a variable named IENDIG. (the period
is part of the name) to hold the return address when it compiles a subprogram.
You should do likewise when you write in COMPASS. The COMPASS assembler can put
out type-26 cards for use by the loader in constructing symbol tables; however,
·the location field symbols are all designated as integer variables. There are
no argument, array, real, or other attributes possible, so when using DBCTRL or
DEOUG, for example, you must be careful when examining values of argument.::;.

Instruction Timing

The timings of the various instructions are given in the 7600 hardware
reference manual. The manual does not point out clearly, however, that there is
such a thing as a trunk ~onflict, which must be avoided. There is only one path
into the X registers, so only one of the eight X registers can receive a result
in any given minor cycle. For example, a normalize cannot be issued immediately
after a floating-point add, because the instructions require 3 and 4 minor
cycles, respectively, and would return results on the same cycle to the X
iegisters. The issue of the normalize will therefore be delayed. If you are

-35-

..

will
X

need to know that there are four priority levels
registers. Floating-point divide has the highest

writing in COMPASS, you
for returning results to
priority. Once the divide
cycles. SSM references

is issued, its result will come back in 20 minor
have second priority. An SSM read instruction will

can, but without regard for memory bank conflicts. The
will delay the delivery of the word from memory to the X

issue as soon as it
storage-address stack
register, if necessary, to avoid conflict with the result of a divide. Third in
priority are the rest of the CPU instructions. Their issue is delayed so that
they will not conflict with the result of a divide or the reading of a word from
SSM. Last priority goes to an LCM read. This instruction is issued without
regard to bank conflicts. The word read from LCM is delayed as long as
necessary until there is a cycle where no other data is moving into an X
register .

-36-

-'

NOTICE

"This report was prepared as an account of work
sponsored by the United States Government.
Neither the United States nor the United States
Department of Energy, nor any of their em·
ployees, nor any of their contractors, subcon·
tractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness
or usefulness of any information, apparatus,
product or process disclosed, or represents that
its use would not infringe privately·owned rights."

NOTICE

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the
U.S. Uepartment of Energy to the exclusion of
others that may be suitable.

Page Range

001-025
026-·050
051-075
076-100
101--125
126-1 so
151-·175
176-200
201-225
226-250
251-275
276-300
301-325

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $; Microfiche $3.00

Domestic
Price P~ge R~nge

s 4.00 326-350
4.50 351-375
5.25 376-400
6.00 401--425
6.50 426-450
7.25 451 475
8.00 476-500
9.00 501-525
9.25 526--550
9.50 551-575

10.75 576-600
11.00 601-up
11.75

Domestic
Price

s 12.00
12.50
13.00
13.25
14.00
14.50·
15.00
15.25
I 5.50
16.25
16.50

I

.!1 A~d S2.SO t\>r <o<·h oddillnnol I 00 pa~c in<·rcmcnt from 60 I pogcs up.

Technical Information Department
U\WRENCE LIVERMORE LABORATORY
University of California 1 Livermore, California J9455C

.. ,. t ..
\ ~

