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ABSTRACT 

For finite mode instabilities in dissipative systems, 
invariant manifold methods allow the bifurcation analysis to 
be reduced to the locally attracting center manifold. In a 
kinetic model of electron plasma dynamics, these methods are 
applied to the one mode beam-plasma instability which occurs 
via Hopf bifurcation. The instability results in a nonlinear 
oscillation, and the amplitude equation can be solved to 
describe the time asymptotic state. 
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Introduction 

I shall describe results on a simple plasma model which 
exhibits a beam-plasma instability as a Hopf bifurcation. 
The analysis is geometric in that it utilizes the notion of 
an invariant center manifold to reduce the problem to two 
dimensions. Since Hopf bifurcation can be analyzed by other 
techniques as well , it is worthwhile to review those aspects 
of the geometric methods which are particularly valuable. 

In dissipative systems, even in infinite dimensions, when 
an equilibrium becomes unstable due to a finite number of 
unstable linear modes, the nonlinear dynamics of the instabil­
ity is finite dimensional, i.e. the dynamics may be described 
by a finite dimensional vector field. An appreciation of the 
stable and center manifolds associated with the equilibrium 
makes this fact simple and intuitive. 

In addition to this conceptual virtue, the geometric point 
of view offers practical advantages as well. By deriving 
(approximately) the vector field on the center manifold, one 
obtains the finite dimensional dynamics which captures all 
the (local) qualitative behavior exhibited by the instability. 
Although these results are essentially perturbative and 
therefore only apply near the threshold for the instability, 
there is no requirement that a specific parameter be chosen 
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as the bifurcation parameter, and the relevant finite dimen­
sional system may be derived without a priori assumptions 
about the form of the solutions, e.g., fixed points, periodic 
orbits, tori, strange attractors, etc. This is very helpful 
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when the instability involves more than one or two dimensions . 

Invariant Manifolds for Fixed Points 

The general setting assumes an evolution equation, 

defined on some phase space M . JL is a linear operator and 
N (•) is a smooth nonlinear operator satisfying N

u<0) = ° • 
Both Jt and N may depend on physical parameters v . 

/3 m a y D e a finite dimensional manifold, or an appropriately 
chosen function space for infinite dimensional problems. 
(The technical issues involved when proving the existence of 
center manifolds for partial differential equations are dis­
cussed by Holmes and Marsden .) 

The state x-0 is an equilibrium and its linear stability 
is governed by the spectrum of £ , denoted o Qt ). Emphasizing 
here the finite dimensional case for illustration, suppose 
o <«C ) contains n eigenvalues in the left half plane, n c 

eigenvalues on the imaginary axis, and n u eigenvalues in the 
right half plane as shown in Figure (la) . Barring the 
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occurrence of degeneracy, 

and the associated eigenvectors span the stable subspace E s , 
the center subspace E c , and the unstable subspace E u , 
respectively. These subspases are invariant under the linear­
ized dynamics 

dt _ j> * 

and determine the qualitative features of the linearized flow 
as shown in Figure (lb). 

When the nonlinear effects represented by N (x) are 
restored, the dynamics of linear eigenvectors are coupled, and 
the linear subspaces E s , E c , and E u are no longer invar­
iant. There are, however, nonlinear analogues of the linear 
subspaces. Intuitively, the nonlinear effects distort the 
solutions of the linear eigenspaces so that the flat linaar 
eigenspaces are "warped" into curved surfaces or manifolds. 
These manifolds organize the dynamics of the nonlinear problem 
just as the linear eigenspaces serve to stru. re the linear 
dynamics. 

Thus associated with the linear subspaces are the local 
s c stable, center, and unstable minifolds, denoted W , W and 

W u , respectively (see Figure (2a)) . Each local manifold 
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contains x=0 and is tangent at x=0 to the appropriate 
linear subspace. Thus each manifold has the same dimension 
as its associated linear subspace. Furthermore, each local 
manifold is invariant with respect to the full nonlinear 
dynamics: if an initial condition x(0) belongs to W , W c , 
or W u then for 0 < t < T the solution x (t) to (1) lies 
within the manifold containing x{0). 

The dynamics of solution curves in W s or W u is trivial, 
at least near x-0 . As t •* » solution curves in W 
approach x=0 , and as t •+ -=» solutions in W u approach 
x=0; in both cases the asymptotic rate of approach is expon­
ential since the linearized dynamics dominates. No such 
simple characterization is possible for the dynamics in W c ; 
at x=0 the linear stability is neutral and nonlinear effects 
remain essential. When the dimension of W is greater than 
two, the center manifold dynamics may encompass all the complex 
dynamics studied in dynamical systems theory: aperiodic 
motion, chaotic recurrence, Smale horseshoes, strange 
attractors, etc. 

Hopf Bifurcation 

Suppose for u < 0 the equilibrium x=0 is stable 
(n = n = 0 , n = dim M) but as y increases through 
H = 0 a simple conjugate pair of eigenvalues \ , 1 crosses 
into the right half plane, then we typically have a Hopf 
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bifurcation, see Figure (2b) for the spectrum at y » 0 . 
Denote by ty and I|J the eigenvectors of this pair, so 

^ ^ -At 

For the application considered here, at bifurcation a stable 
periodic orbit emerges from the equilibrium; physically one 
observes a time independent state yield to a single frequency 
oscillation. In Couette flow a beautiful example of this 
phenomenon is the transition from the Taylor vortex state to 
the flow with a rotating wave . 

For the Bpectrum of Figure (2b) , the fixed point x=0 
will have a two dimensional center manifold and a stable mani­
fold of dimension (dim M) - 2 , see Figure (3a) . As \i in­
creases above 11 = 0 , the center manifold is replaced by a 
two dimensional unstable manifold (assuming no other spectral 
elements cross the axis). Let W denote this one parameter 
family of two dimensional invariant manifolds, i.e. 
W g= W° and W 0= W u ; for u near 0 . W is locally 
attracting because of the strong contraction provided by W s 

in the "transverse" directions . Specifically, there is a 
neighborhood of x=0 such that all solutions remaining in 
that neighborhood as t •* <= will approach W . Thus the 
flow on W , which is given by a two dimensional vector field, 
describes the time asymptotic motion. This reduction in 
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dimension as t • •» greatly simplifies the problem, and 
suggests the following strategy: "project out" the two 
dimensional vector field which describes the flow on W , 
then analyze that flow to understand the asymptotic develop­
ment of the instability. 

The Model 

Consider a one dimensional plasma of finite length L 
and periodic boundary conditions. For the study of high 
frequency electrostatic waves, the ion dynamics may be 
neglected, and the electron distribution function F(x,v,t) 
evolves according to 

Ji+Vji'-m 9X*V C L h J

 ( 2 ) 

where (x,v) are the electron position and velocity, 
n- = N/L is the mean density, and -e/m is the electron 
charge/mass ratio . Normalize F such that 

and 

rto J^vFCx^t) = J1&^)= density 

I J* nu-t) = N. 

of electrons 
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For the collision model C(F) take the Krook operator 

C(F)~K (Fe%-f) 

where v > 0 , and 

FOcvJ- -ZpZfM. 
This collision model conserves the particle density since 

Jdv C(F) = 0 
8 but not energy or momentum . 

For an initially homogeneous, nonequilibriuir. state, 
F.(x,v,t>«Q) • PQ(v) 7*9ea(v) , the self-consistent electric 
field is zero, 

and the dynamics reduces to 

with solution 

Since C(F) conserves n(x,t), no spat-.al dependence develops 
so 

12L = O -Por -t > O , 
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If, however, the initial condition is perturbed so that 

then, depending on the shape of F. , the resulting electric 
fields may drive the growth of unstable waves. To study this 
one writes an equation for 3 " = 3 tF, ~ 3t Fl ' 

3 F 1 3 F 0 
where the approximation : has been used in the 

** 3v 3v 7 nonlinear term to obtain an autonomous description of ftXjV,*;) . 
By introducing the Fourier expansions, 

where Lk = 2ir/L , and eliminating 4>_ , then (3) yields an 
evolution equation for f , 

g-ff + AW. 

The linear operator in (4) is defineri by 



and the nonlinear operator in (4) is 

2 2 Here w = 4we n-/m is the plasma frequency. In (4), the 
point f=Q is a stationary solution; physically, it corres­
ponds to the distribution function P 0(v). 

Linear Stability 

The calculation ot o iX ) follows Case closely and will 
7 9 be described elsewhere ' • The results are illustrated in 

Figure (4a) . There is a line of continuous spectrum at 
Re X = -v with eigenfunctions which are distributions. 
There may also be discrete eigenvalues; these are determined 
by the roots of the dispersion function. 

where 

with 
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If Akfe) " 0 , then A-^^o^° a n d "(St) contains a 
conjugate eigenvalue pair 

with eigenfunctions 

* - « - • * ( * • ) 

satisfying 

*¥*Xf. 
In the limit v -* 0 , A. (z) is even in k , and the 

eigenvalues of X- form quadruplets as shown in Figure (4b). 
The fundamental reason for this is the Hamiltonian structure 
of the Vlasov-Poisson system 

Following Case, define the inner product, 

and the adjoint operator i • 

The eigenfunctions of Jf and Jf satisfy biorthogonality 
relations analogous to those found by Case for the v = 0 
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q problem . In particular, the adjoint eigenvectors for X. 
and T. , 

satisfy < i|i,ij;> * sjiif > « 1, and are orthogonal to all 
other eigenvectors of if . 

When the initial state F.(v) is sufficiently close to 
g (v) , then a(«f} is contained within the left half plane 

7 as shown in Figure (4a) . If F.(v) is distorted, for example 
by adding a component of electrons at high velocity ("the 
beam"), then it is possible for a complex conjugate pair of 
eigenvalues,to cross the imaginary axis signaling the onset of 
of growing electrostatic waves. For suitably chosen length 
L, the first unstable mode corresponds to the minimum wave 
number k = 2TT/L . The remainder of this discussion concerns 
the analysis of this one mode instability. 

Center Manifold Dynamics 

As the procedure for calculating the center manifold 
vector field is fully discussed in recent texts, I will 

4 6 
simply outline the calculation ' . By defining the complex 
amplitude 
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the perturbation may be decomposed as, 

where <J,S> »= <t|/,S> =0 . The evolution equation (4) is 
then rewritten, 

A ft) = A, A + < ^ /Vtf)> 

(6) 

(7) 

^ = tS * AM)"&,#«}>-<*,#&)>. 9-b, 

To restrict (7) to W , the two dimensional invariant 
manifold associated with the bifurcation (u now denotes 
the physical parameters in the distribution function), intro­
duce local coordinates on W near the fixed point, see 
Figure (3b). The function h(A,A) measures the deviation of 
W from the (ty,if)-plane. An element of W u near the fixed 
point therefore has the form, 

P C 

Inserting (8) into (7) yields 

A-\,A +<$; ZtW> 
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which is an autonomous equation for A(t); this determines 
the evolution of f c in (8). 

To make practical use of (9) requires an explicit repre­
sentation for h(A,A). An equation for h follows from the 
observation that for solutions f in (8) there are two 
ways to compute the rate of change of Sc(x,v,t) = h(x,v,A,A). 
Prom (7) directly. 

3z = J$e+Mf%<^ mc)>-<fJcr)> 
o r from (8) 

( i n 

Equating the right hand sides of (10) and (11) provides the 
desired equation for h which is then solved using a power 
series in A,A . To lowest nontrivial order, this power 
series has the form 

where 
l") , i 54if , f'l n iw) - e h (s) 

n W) - n0 Cv) . 
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(1) (2) 
h- k(v) and h. (v) are explicitly computable functions of 
velocity . Knowing h(A,A) to quadratic order in A , 
determines (9) to cubic order, 

A= \A + flMzA+ MS) 

where 

- * * > * 

V G4). 

In polar variables, A = p(t)e 1 , the amplitude equation 

(12) becomes, 

.3. 

6= I~\ + &?)/•<• 

* «• » 

15 



When the conjugate pair associated with the instability 
has just entered the right half plane, then 0 < Re \ << 1 , 
and the instability will saturate at small amplitude, i.e., 
p = 0 for 0 < p << 1 , only if Re B < 0 . The saturated 
amplitude is 

p a ~ [-**•) 
J s \ X*p / . 

Results for Lorentzian Beams and Plasmas 

For simplicity let the equilibrium distribution be 

r 

and take as the initial distribution (corresponding to f=0) 

= -L ryv + _JA__ 7 
where n F is the plasma distribution, n. F^ is the beam p p b b 
distribution, a is the plasma temperature, S is the beam 
temperature, and u is the beam velocity. Consider the case 
of a low density, cool beam; specifically choose 

e - v
c/° )e = ° - 0 0 1 

6/a =0.5 
n b/n 0 =0.05 

V no = 0 > 9 5 • 
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The roots of the dispersion function vary with the wave 
number k and the beam velocity u . Since \, = -v - ikz Q , 
points in the (k,u)-plane for which Im*n - vfi/k correspond 
to criticality, This surface is the solid curve in Figure (5a). 
For k = 0.17 the real parts of the dispersion roots appear 
in Figure (5b)as a function of u . The condition for 
instability 

Im H0 > % ( 1 5 ) 

is fulfilled along the indicated branch of the dispersion 
function. 

The cubic coefficient B has a negative real part along 
the bifurcation surface in Figure (5a) , and also along the 
vertical line marking k = 0.17 . We may, therefore, evalu­
ate the approximate expression for the saturated distribution, 

+ AS h3i(v)e + lA£UtCv) + As hua 

4 • •• 

where 

A^-f c M 

&d) 
<S 
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Of greatest interest is the spatially homogeneous component, 

W+f no M +'•' tie) 

as seen from the frame of reference moving at the phase velocity 
of the wave v . The coordinates of this frame are (x',v')> 

x' = x - v w * 
v ' « V-VJ, 
v = -ij& . w XT* 

Figure (6a) shows the unperturbed distribution corres­
ponding to point A in Figure (5a) where the growth rate Y 
of the instability is relatively small. Figure (6b) shows 
the shape of the lowest order correction to the unperturbed 
distribution. The basic effect is to slow down the resonant 
particles which move at v' = 0 . The saturated component of 
(16) for point A appears in Figure (7). 

At point B in Figure (5a) the linear growth rate is 
approximately two orders of magnitude larger. The shape of 

(2) 
h. in Figure (8a) now reveals some broadening of the plasma 
distribution as well as a strong acceleration of the resonant 
particles. Figure (8b) shows the unperturbed and saturated 
distributions. 
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Final Remarks 

1) Although I have concentrated on the one mode instability, 
this model exhibits a codimension two double Hopf bifurcation. 
The dotted curve in Figure (5a) is the bifurcation surface for 
the mode at 2k. For the parameters at which the two bifur­
cation surfaces cross, there are two conjugate pairs of eigen­
values on the imaginary axis simultaneously. Here the dynamics 
of the instability is four dimensional and one expects much 

4 more complicated phenomena . 

2) When v *• 0 , the expansion coefficients h and h 
in the power series for h become singular at v = v . The 
presence of these singular resonance denominators is 
.intimately related to the Hamiltonian structure of the 
collisionless model, and to the fact that at criticality 
the eigenvalues are now embedded in the continuum, see 
Figure (4b). Whether the collisionless instability has finite 
dimensional dynamics is not known. Previous treatments have 
assumed that the continuum does not affect the dynamics 
In light of the delicacy of Hamiltonian bifurcations, this 
assumption needs specific justification. An analysis of the 
collisionless instability which will extend the geometric 
approach discussed here, and explicitly acknowledge the 
Hamiltonian structure of Vlasov-Poisson dynamics is underway. 
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FIGURE CAPTIONS 

Figure 1. (a} A typical spectrum for £ consisting of real 
and conjugate pairs of eigenvalues. In infinite 
dimensional problems, £ may also have continuous 
spectrum. 
(b) The linear invariant subspaces E s , E c , and 
E u determine the structure of the linearized flow. 

Figure 2. (a) The invariant manifolds W s , W c , and W u are 
the nonlinear analogues of the linear subspaces. 
(b) At criticality for a nondegenerate Hopf bifurca­
tion, the spectrum of £, has a simple conjugate 
pair of eigenvalues on the imaginary axis. 

Figure 3. (a) The center Lianifold W c for nondegenerate Hopf 
bifurcation is two dimensional. 
(b) Near the fixed point, the invariant manifold 
W may be described as the graph of a function 
h(A,A) . 

Figure 4. (a) Typical spectrum of the linear ope... ator in (4) 
for v > 0 . T;.e continuum is always present. The 
roots of the dispersion function determine the dis­
crete eigenvalues, 
(b) For 
structure of the dynamics. At criticality, the 
eigenvalue quadruplet collapses to a degenerate 
conjugate pair embedded in the continuum. 

v « 0 , a Qt) reflects the Hamiltonian 
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Figure 5. (a) Bifurcation surface for a cool, low density 
beam (solid line). Also shown is the bifurcation 
surface for 2 Jc (dotted line); their intersection 
marks a double Hopf bifurcation. Points A and B for 
k = 0.17 are the selected points of low and high '' 
growth rate. 
(b) The four roots of the dispersion functior fcr 
k = 0.17 . The r<\=»,l part of the frequency, 
oi = Re k z Q , is plotted against the drift frequency 
ku in units of . . Only on the indicated branch 
is condition (15) satisfied. 

Figure 6. (a) Initial velocity distribution at point A as 
seen in the wave frairi. 
(b) The lowest order correction to the spatially 
homogeneous component of ';he distribution function. 
Shown for point A. 

Figure 7. For point A, the homogeneous TOmponent of the satur­
ated distribution function showing the effect of the 
lowest order correction, y = Re X is the linear 
growth rate. 

Figure 8. (a) For point B, the lowest order correction to the 
spatially homogeneous component of the distribution 
function. 
(b) For point B, the initial velocity distribution 
(dotted line) and the homogeneous component of the 
saturated distribution (solid line) showing the effect 
of the lowest order correction. 
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