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ABSTRACT .

For finite mode instabilities in dissipative systems,
invariant manifold methods allow the bifurcation analysis to
be reduced to the locally attracting center manifold. 1In a
kinetic model of electron plasma dynamics, these methods are
applied to the one mode beam-plasma instability which occurs
via Hopf bifurcation. The instability results in a nonlinear
oscillation, and the amplitude equation can be sclved to

describe the time asymptotic state.



Introduction

I shall describe results on a simple plasma model which
exhibits a beam-plasma instability as a Hopf bifurcation.
The analysis is geometric in that it utilizes the notion of
an invariant center manifold to reduce the problem to two
dimensions. Since Hopf bifurcation can be analyzecd by other
technigues as uelll, it is worthwhile to review those aspects

of the geometric methods which are particularly valuable.

In dissipative systems, even in infinite dimensions, when
an equilibrium becomes unstable due to a finite number of
unstable linear modes, the nonlinear dynamics of the instabil-
ity is finite dimensional, i.e. the dynamics may be described
by a finite dimensional vector field. An appreciation of the
stable and center manifolds associated with the egquilibrium

makes this fact simple and intuitive.

In addition to this conceptual virtue, +he geometric point
of view offers practical advantages as well. By deriving
(approximately) the vector field on the center manifold, one
obtains the finite dimensional dynamics which captures all
the (local} qualitative behavior exhibited by the instability.
Although these results are essentially perturbative and
therefore only apply near the threshold for the instability,

there is no requirement that a specific parameter be chosen



as the bifurcation parameter, and the relevant finite dimen-
sional system may be derived without a priori assumptions
about the form of the solutions, e.g., fixed points, periodic
orbits, tori, strange attractors, etc. This is very helpful

when the instability involves more than one or two dimensions?.

Invariant Manifolds for Fixed Points

The general setting assumes an evolution equation,

j%" = Lx+ N xe M 1)

defined on some phase space M. J:u is a linear cperator and
Nu('l is a smooth nonlinear operator satisfying Nu(b) =0 .
Both J:u and N, may depend on physical parameters W .

jﬁ may be a finite dimensional manifold, or an appropriately
chosen function space for infinite dimensional problems.

(The technical issues involved when proving the existence of

center manifolds for partial differential equations are dis-

cussed by Holmes and Marsden3.)

The state x=0 is an equilibrium and its linear stability
is governed by the spectrum of Iu , denoted octu). Emphasizing
here the finite dimensional case for illustration, suppose

O(Zh) contains n_ eigenvalues in the left half plane, n,

eigenvalues on the imaginary axis, and N, eigenvalues in the

right half plane as shown in Figure (la). Barring the



occurrence of degeneracy,
no+n +n, = dimf,

and the associated eigenvectors span the stable subspace E®,

the center subspace Ec, and the unstable subspace Eu,

respectively. These subspaces are invariant under the linear-

dx
= dux

ized dynamics
2

and determine the qualitative features of the linearized flow

as shown in Figure {1lb).

When the nonlinear effects represented by Nu(x) are
restored, the dynamics of linear eigenvectors are coupled, and
- the linear subspaces E®, ES, and EY are no longer invar-
iant. There are, however, nonlinear analogues of the linear
subspaces. Intuitively, the nonlinear effects distort the
solutions of the linear eigenspaces so that the flat linzar
eigenspaces are “warped” into curved surfaces or manifolds.
These manifolds organize the dynamics of the nonlinear problem

just as the linear eigenspaces serve to stru. re the linear

dynamics.

Thus associated with the linear subspaces are the local

<

stable, center, and unstable minifolds, denoted w, w and

u

W , respectively (see Figure (2a))4. Each local manifold



contains x=0 and is tangent at X=0 to the appropriate
linear subspace. Thus each manifold has the same dimension
as its associated linear subspace. Furthermore, each local
manifold is invariant with respect to the full nonlinear
dynamics: if an initial condition x (0) belongs to W~ , Ww°,
or W then for 0 < t < T the solution x(t) to (1) lies

within the manifold containing x(0).

The dynamics of solution curves in W or W% is trivial,
at least near x=0. BAs t + = solution curves in W°
approach Xx=0, and as t + -« golutions in i approach
X=0; in both cases the asymptotic rate of approach is expon-
ential since the linearized dynamics dominates. No such
simple characterization is possible for the dynamics in wc;
at X=0 the linear stability is neutral and nonlinear effects
remain essential. When the dimension of Ww® is greater than
two, the center manifold dynamics may encompass all the complex
dynamics studied in dynamical systems theory: aperiodic
motion, chaotic recurrence, Smale horseshoes, strange

attractors, etc.

Bopf Bifurcation

Suppose for u < 0 the equilibrium Xx=0 is stable
(nu =n,= 0, ng = dim M) but as u increases through
¥ =0 a simple conjugate pair of eigenvalues X, X crosses

into the right half plane, then we typically have a Hopf



bifurcation, see Figure (2b) for the spectrum at u = 0.

Denote by ¢y and ¥ the eigenvectors of this pair, so

LY =2

2717,
Por the application considered here, at bifurcation a stable
periodic orbit emerges from the equilibrium; physically one
observes a time independent state yield to a single freguency
oscillation. In Couette flow a beautiful example of this

phenomenon ig8 the transition from the Taylor vortex state to

the flow with a rotating waves.

For the spectrum of Figure (2b) , the fixed point x=0
will have a two dimensional center manifold and a stable mani~-
fold of dimension (dim M)-2, see Figure (3a). As 3 in-
creases above u = 0, the center manifold is replaced by a
two dimensional unstable manifold (assuming no other spectral
elements cross the axis). Let wu denote this one parameter
family of two dimensional invariant manifolds, i.e.
L0 wl ; for uw near 0. W]_l is locally
attracting because of the strong contraction provided by WS

W _o= W and W

in the "transverse" directionss. Specifically, there is a
neighborhood of x=0 such that all solutions remaining in
that neighborhood as t + = will approach Wu. Thus the
flow on wu , which is given by a two dimensional vector field,

describes the time asymptotic motion. This reduction in



dimension as t + » greatly simplifies the problem, and
suggests the following strategy: "project out" the two
dimensional vector field which describes the flow on wu'
then analyze that flow to understand the asymptotic develop-

ment of the instability.
The Model

Consider a one dimensional plasma of finite length L
and periodic boundary conditions. For the study of high
frequency electrostatic waves, the ion dynamics may be
neglected, and the electron distribution function F(x,v,t)

evolves according to

F F oF _
éif+vjx+'f1g70 ClF)

-g;-di = qren, [1 _/dvF(’m’t)]

(2)

where (x,v) are the electron position and velocity,
ng = N/L is the mean density, and -e/m is the electron

charge/mass ratio7. Normalize F such that

20
n, jJVF(x,V,t) = n[l’,f7)= density of electrons
o

L
LJ; nixt) = N,



For the collision model C(F) take the Krook operator
C(F) =2 (Ez' F)

where vc > 0, and

_ nixe
E? xwv) = n, ZZL'V)

Thia collision model conserves the particle density since

_f:v C(F) =

but not energy or momentuma.

For an initially homogeneous, nonequilibrium state,

Fi(x,v,t=0) = Fohn #geq(V) , the pelf-consistent electric

3‘*.’] =0,
t=0

field is zero,

X

and the dynamics reduces to

F
- C(F)

with solurion

F(XVf) 8(4r’)+(F(v) ?{v))

Since C(F} conserves n(x,t), no spatial dependence develops

SO

34) =0 for tzo,
9X



If, however, the initial condition is perturbed so that

(xv,t=0= E (v + fov,t=0) ,

then, depending on the shape of Fg» the resulting electric
fields may drive the growth of unstable wavea. To study this
one writes an equation for Bt* = Bth -2 Fl,

oA Ly, 204 ad’ ,)(F«»F) X [f-3, ijf(u’fg]

J\‘.
' (3)
2
X% - ywen, [dvfwve)
Ix3 /%
9F; 3F,
where the approximation v = v has been used in the
f(x,v.t;7.

nonlinear term to obtain an autonomous description of
By introducing the Fourier expansions,
% L kx
Foove) = Sfuge
('[x
due : S ple
* T 4
2r/L, and eliminating °f , then (3) yields an

where Ak =

evolution equation for £,

LF + NF). (@)

The linear operator in (4) is defined by

7= £ e F (Lo )w)



where ‘ oy

Lf, =-%4
Lufe == [likvon)f +cb], Jafice]  kao

2E 1%
b0 = - () 5 +(r)ge7fv)
and the nonlinear cperator in (4) is

M) = L’ Jx%‘ Lk J-)j*ﬁv, £ o)

Here mez = 4ve2no/m is the plasma frequency. 1In (4), the
point f=0 1is a stationary solution; physically, it corres-

ponds to the distribution function Fo(v),

Linear Stability

The calculation ot o{X) follows Cése closely and will
be described elsewhere7’9. The results are illustrated in
Figure (4a) . There is a line of continuous spectrum at
Re A = Ve Wfth eigenfunctions which are distributions.
There may 21so be discrete eigenvalues; these are determined

by the roots of the dispersion function,

/\A[;) 1 +f MJV , ze €, ()

10



If Ag(z) = 0, then A_ (¥ )=0 and o(L) contains a
¢

conjugate eigenvalue pair
= - -t%i:’
) = -y -idz,

with eigenfunctions

¥ - “‘ﬂ%%?
7- et (&)

L= NY
V=37 .

satisfying

In the limit v+ 0, A (2) is even in k, and the
eigenvalues of { form guadruplets as shown in Figure (4b).

The fundamental reason for this is the Hamiltonian structure

of the Vlasov-Poigson systemm

Following Case, define the inner product,
L o
LD = [ax [ Famnbicy,
O Zim
and the adjoint operator I+ '

b, 2y = <L P

The eigenfunctions of I+ and Q satisfy biorthogonality

relations analogous to those found by Case for the v = 0

11



pro?lemg. In particular, the adjoint eigenvectors for Al
+

F¥=319
+ o —

¥ =NF,

satisfy <;:w> = xi-I> = 1, and are orthogonal to all

and 'Xl R

other eigenvectors of L.

When the initial state FO(V) is sufficiently close to
geq(v}, then u(x) ia contained within the left half plane
as shown in Figure (4af. If Fo(v) is distorted, fcr example
by adding a component of electrons at high velocity ("the
beam"), then it is possible for a complex conjugate pair of
eigenvaluesA%o'cross the imaginary axis signaling the onset of
of growing electrostatic waves. For suitably chosen length
L, the first unstable mode cofresponds to the minimum wave

number k = 21/L. The remainder of this discussion concerns

the analysis of this one mcde instability.

Center Manifold Dynamics

As the procedure for calculating the center manifold
vector field is fully discussed in recent texts, I will

4,86

simply outline the calculation By defiring the complex

amplitude

AW = <7, £

12



the perturbation may be decomposed as,

Fisve) = AV« 76 Fi)+ Shov,e) ®

where <§,5> = <4,5> =0. The evolution equation (4) is

then rewritten,

A@= XA+ T AED
gf = IS + M) - NGD - LT NED

(7)

To restrict (7) to wu , the two dimensional invariant
manifold associated with the bifurcation (u now denotes
the physical parametars in the distribution function), intro-
duce local coordinates on wu near the fixed point, see
Figure (3b). The function h{A,A) measures the deviation of

Wu from the (y,¥)-plane. An element of W, near the fixed

')

point therefore has the form,
C n — - —
7f (xve)= Alt) Viry)+ A&)")"(x,v)+ A&,v, AW Be) (8

Inserting (8) into (7) yields

A.=X,/4 +<’$l /V('Fc)> (9)

13



which is an autonomous eguation for A(t); this determines

the evolution of £° in (8).

To make practical use of (9) requires an explicit repre-
sentation for h(A,R). An equation for h follows from the
ob;ervation that for solutions £€ in (8) there are two
ways to compute the rate of change of sc(x.v,t) = h(x,v,A,R).

From (7) directly,

2's 454 MED-<GNED-TAFD o

or from (8)

IS¢ _

—_— =

LAYy »
)t JA /\ (11)

P

Equating the right hand sides of (10) and (11) provides the

%:l%i

desired equation for h which is then solved using a power
series in A,R. To lowest nontrivial order, this power
series has the form

T =2

/'\(x,vAF) A(;v)A + hcx,v) JAI%+ fmv} + oo
where 4
(IRX )
e }5& (v)

2)
Ko = b6 .

u)
h (xv) =

14



(1) (2)

hzk(v) and h0 (v} are explicitly computable functions of

velocity7. Knowing h(A,R) to quadratic order in A,

determines (9) to cubic order,

MA -+ gIATA+ o)

r@=ﬁ<“e S35

In polar variables, A = p(t)ele(t)

(12) becomes,

_F.= (Rc '\‘),f -+ (Rcé) 3+ e
é= I,..)' + @"n‘gglﬂz.f...

1s

, the amplitude equation

(12)

(13)

(14}



When the conjugate pair associated with the instability
has just entered the right half plane, then 0 < Re A << 1,
and the instability will saturate at small amplitude, i.e.,
p=0 for 0<p<<1l, only if Re B < 0. The saturated
amplitude is
2 ~Re ),
17

?ep .

Results for Lorentzian Beams and Plasmas

For simplicity let the equilibrium distribution be

3,0 =+ (&),

and take as the initial distribution (corresponding to £=0)

nfF= n,F(v)+n F ()

LI ]
7T Vied™ (Vu)+£

where on is the plasma distribution, anb is the beam
distribution, & is the plasma temperature, & is the beam
temperature, and u is the beam velocity. Consider the case

of a low density, cool beam; specifically choose

0.001

[}

e = "c/‘“e

§/a 0.5

nb/n0 = 0.05

np/n0 0.95,

16



The roots of the dispersion function vary with the wave
number k and the beam velocity u. Since } = -v, - ikz, ,
points in the (k,u)-plane for which Imz, = vc/k correspond
to criticality, This surface is the sclid curve in Figure (5a).
For k = 0.17 the real parts of the dispersion roots appear
in Figure (Sb)as a function of u. The condition for

instability

A
Imz, > "7k (15)

is fulfilled along the indicated branch of the dispersion

function.

The cubic coefficient £ has a negative real part along

the bifurcation surface in Figure (5a), and also along the

vertical line rarking k = 0.177. We may, therefore, evalu-

ate the approximate expression for the saturated distribution,
Fxve)e ElvVe AW Yixv) + A ¥y v)
2, (24X 2@ T2 -y
HSh e T ATA AT D e
+ e

where
CGlE
A= p e )

8)= [Imy, +(I’“F )£§+,.._7t +6(o)

17



Of greatest interest is the spatially homogenecus component,
2, ®
v + h oo oo
£ (v) f; , v) (16)

as seen from the frame of reference moving at the phase velocity

of the wave vv' The coordinates of this frame are (x',v'),

4

)

X-V,t
=V -V,

-1 de |
Vo XAt

Figure (6a) shows the unperturbed distribution corres-

X

4

ponding to point A in Fiqure (S5a) where the growth rate Y
of the instability is relatively small. Figure {(6b) shows
the shape of the lowest order correction to the unperturbed
distribution. The basic effect is to slow down the resonant
particles which move at v' = 0., The saturated component of

(16) for point A appears in Figure (7).

At point B in Figure {(5a) the linear growth rate is
approximately two orders of magnitude larger. The shape of
ho(z) in Figure (8a) now reveals some broadening of the plasma
distribution as well as a strong acceleration of the resonant

particles. Figure (Bb) shows the unperturbed and saturated

distributions.

18



Final Remarks

1) Although I have concentrated on the one mode instability,
this model exhibits a codimension two double Hopf bifurcation.
The dotted curve in Figure (Sa) is the bifurcation surface for
the mode at 2k . For the parameters at which the two bifur-
cation surfaces cross, there are two conjugate pairs of eigen-
values on the imaginary axis simultanesously. Here the dynamics
of the instability is four dimensional and one expects much

more complicated phenomena4.

NeY) ')

2) When Vo * 0, the expansion coefficients and

in the power series for h becomé singular at v = Ve The
presence of these singular resonance denominators is
.intimately related to the Hamiltonian structure of the
collisionless model, and to the fact that at criticality

the eigenvalues are now embedded in the continuum, see
Figure (4b). Whether the collisionless instability has finite
dimensional dynamics is not known. Previous treatments have
assumed that the continuum does not affect the dynamicsll.
In light of the delicacy of Hamiltonian bifurcations, this
assumption needs specific justification. An analysis of the
collisionless instability which will extend the geometric

approach discussed here, and explicitly acknowledge the

Hamiltonian structure of Vlasov-Poisson dynamics is underway.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

FIGURE CAPTIONS

(a} A typical spectrum for Iu consisting of real
and conjugate pairs of eigenvalues. In infinite
dimensionel problems, Iu may also have continuous
spectrum.

(b) The linear invariant subspaces E°, ES, and
EY determine the structure of the linearized flow.
(a) The invariant manifolds w® ’ w¢ . and W  are
the nonlinear analogues of the linear subspaces.

(b} At criticality for a nondegenerate Hopf bifurca-
tion, the spectrum of I% has a simple conjugate
pair of eigenvalues on the imacinary axis.

(a) The center manifold W for nondegenerate Hopf
bifurcation is two dimensional;

(b} Near the fixed point, the invariant manifold

Wu may be described as the graph of a function
h(A,R) .

(a) Typical spectrum of the linear opc..ator in (4)
for Ve ? 0. T.e continuum is always present. The
roots of the dispersion function determine the dis-
crete eigenvalues.

(b) For v, =0, o @) reflects the Hamiltonian
structure Sf the dynamics. At criticality, the

eigenvalue quadruplet collapses to a degenerate

conjugate pair embedded in the continuum.
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Figure 5. (a) Bifurcation surface for a cool, low density
beam (solid line). Also shown is the bifurcation
surface for 2k (dotted line); their intersectinsn
marks a double Hopf bifurcation. Points A and B for
k = 0.17 are the selected points of low and high '
growth rate.

(b) The four 1oots of the dispersion Functior for
k = 0.17. The rral part of the frequency,

w = Rek.zu, is plotﬁed againay the darsift frequency
ku in units of ta Only on the indicated branch
is coﬁdition (15) satisfied.

Figure 6. (a) Initial velocity distribution at point A as
seen in the wave framra,

(b} The lowest order corrrction to the spatially
homogeneous component of ‘:he digtribution function.
Shown for point A.

Figure 7. For point A, the homogeneous ~omponent of the satur-~
ated distribution function showing the effect of the
lgwest order corrfction. Y = Re A is the linear
growth rate.

Figure 8. (a) For point B, the lowest order correction to :he
spatially homogeneous component of the distribution
function.

(b) For point B, the initial velocity distribution
(dotted line) and the homogeneous component of the
saturated distribution (solid line) showing the effect

of the lowest order correction.
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