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Abstract 

The efficiencies of blankets for fusion reac­
to rs are usually L~ the range of 30 to 40% , limi~ed 

::,y the operating temperatures (SOO"C) of convention­
al structural materials such as stainless steels. 
In chis project "two- zone" blankets are proposed; 
t hese blankets consist of a low-temperature shell 
surrounding a high-temperature interior zone. A 
su rvey o f nucleonics and thermal hydraulic param­
eters has l ed co a reference blanket design con­
sisting of a water- cooled stainless steel shell 
~"ound a 3e0, Zr 02 in~erior ( cooled by argon) uti­
~ izing LizO :or tritium breeding. In chis design, 
'~ ~roximacely 60% of the fusion energy is deposited 
~n t he hig h- temperature interior. The maximum argon 
: <!mpet a ~ ure is !230"C leading Lo au ovec..<ll eff:!.cicn ­
.;y esc: .. :nate of 55 to 60% for t his reference case. 

I ntroduction 

The overal_ intent of this research is to de­
~ ign a near-teem :usion power plant with a high­
" ~ficiency po«er cycle. !n order co achieve high 
~ :: iciency in a t hermal power cycle, high coolant 
:<!mperacures are necessary; in general, the higher 
~ : 1 e t emper atu re available che higher the efficiency 
Jf the c:rcle. The operating temperatures of con­
vencional scructural materials such as austeni~ic 
'' r :erritic steels are limited to "-'SOO"C 'Nhich cor­
r esponds co a maximum cycl.e efficiency of about 40%. 
!!ig her coolant t~mper<~tures are attainable u tilizing 
.:it~1er of the following approaches: (1) structural 
material 'Ni t h higher temperature capability ( e.g., 
a refractory meta: :!.ike molybdenum (TZ~!) or niobium) 
~an be used ; or ( 2) the ~lanket can be designed to 
'J e a "two- temperature-zone" blanket in which che 
:~rsc wall a~d structural material operate at a much 
:.o1ver temperature than the bul~ of the blanket. The 
:ormer aooroach reouires either a liouid metal (or 
vapor ) c~~lanc or ~n inert gas coola~t. Structural 
~crength considerations limit the maximum tempera­
cu re to 800 co lOOO"C, depending on c hoice of cool­
~nt and blanket design. In t ~e two temperature ap­
~ roach, f irst proposed by SNL" for minimum activity 
J lankets, che 'ligh-energy neutrons (14 ~!e V) from 
t~e DT reaction penetrate deeply and deposit their 
energy over the volume of the blanket, rather t han 
0n the fir$C wall . If a t hermally insulating layer 
i s placec bec"een the ho t inter~or and t he cooler 
st r uc tural s hell of ~ h e blanket module, heat can be 
cxcrac:ed ac two different ~emperacure levels by 
~~parace coolant streams for che interior and scruc­
t:rral shell.. 

In genera l , t ~e t emperature available i n the 
coolant :rom the hoc interior will be limited ~y 
the corrosion/ e rosion behavior of the interior ma­
te rial in che coolant and not by structural stress 
consicerat io~ s. ~it~ inert gas coolants ( e.g., Ye 
o r A) and refractor y interiors ( e.g ., grap hite, 
ox ides, or car~ides ) , i t a ppears poss ible to achieve 
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coolant t:emoeratures uo to 2500"C. (Jith more reac­
tive coolants ( e.g., steam or potassium vapor ) ac­
companied by the use of a refracto r y metal struc­
ture, max imum coolant: temperatures will be somewhat 
l ower, though they can still be very high. For 
example, macerials experiments with steam coolant: 
have been carried out at BNL as part of a cevelop­
ment program on hi~h-temperat:ure blankets for syn­
f uel applications, and indicat:e that coolant tem­
peratures of at least 1500"C are practical using 
either ZrOz or A1 203. In face, higher operating 
temperat:ures may be ?OSsible •.Jith yctria-sca bi..!.ized 
ZrOz, judg ing from tests on t his mat:erial in high­
temperature wind tunn els . 

The mode of tritium breeding tVill also affect: 
the temperature capability of two-zone blankets. 
The temperature capabilities discussed above assume 
that there is no tritium breeding in the hot inte­
rior of the blanket ( though breeding could be car­
ried out: in t~e low-temperature shell) . !f critium 
breeding takes place in t he hot interior, allowable 
coolant temperatures will be significantly reduced. 

There ap?ear to be two approaches to breeding 
tritium in the hot interior--solid lithium compounds 
and liquid lithium in refractory metal tubes. In 
: ~e f i rst approac h , high melting point so lid lith­
ium compounds ( e.g., LizO or ~iAlOz) can be used i n 
t he module i nterior; the bred tritium tvould be re­
leased t o the high-temperature coolant scream, with 
subsequent recovery and recycle to che plasma . How­
ever, in order to ensure adequate tritium release 
capability, it is necessary to maintain small ?ar­
ticle size in the solid lithium comoound and to ore­
vent: sintering. Tests at BNL3 have. investigated. 
t he tritium release characteristics of solid lith­
ium compounds at elevaced temperatures (up to 
lOOO"C) for extended per i ods of time (up to three 
months ) . LizO and LiAlOz appear suitable for use 
to at least lOOO"C and possibly higher. It is 
doubtful, however, that substantially higher oper­
atL~g temperatures can be achieved, since at l. OOO "C 
the material s are entering the range (~0.6 of Tm) 
where sintering effects ~ecome L~portant. 

Thus trit:ium breeding in t he hot interior ap­
pears to limit maxL~um coolant temperatures co 
"-' lOOO"C, assuming inert gas coolant. Tritium breed­
ing with a reactive coolant such as steam i s pro b­
ably not feasible because of t he chemical reac tion 
between steam and solid l ithium compounds and the 
d ifficulty of i sotopically separat ing tritium f rom 
hydrogen i n steam. 

The two-temperature-zone blanket approac h can 
be used with a hot interio r of liquid li thium in 
refractory metal tubes (with a thermal insulator 
between the hot L~terior and t he cooler metal shell ) . 
T~e L~ terior would then be cooled e ither by an in­
ert gas or potass ium coolant. Tritium would be ex­
t racted either by circulating the l-ithium co an 
external processing unit or by releasing it to the 
coolant stream with subsequent trapping. Compat i -
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:: :.: cy and structural considerat:ions appear t:o 
' . i::~ : !!lax:!.mum coolanc temperatures co about 12oo•c 
· .. :i ': .!..:.c:u.:.d .!...i.c~~um ! .. .n.teriors. 

A survey analysis of several variations of the 
above comQinations of :!laterials, coolants and breed­
i~g op tions ~as been performed. 4 ~eut:ronics and 
~hot:onics analyses along wit~ t~ermal hydraulic 
analysis l~ad ':o t• .. 10 favorable conclusions regard­
ing t<Jo - zone blan!<ets with solid tritium breeding 
compounds i~ ~~e hot: !nter:!.or: (l ) Two- temperature 
3one-blankecs can ~e designed with a high (60 to 
; O%) ~f:iciency for deposition of fusion energy in 
the hot: interior, and ( 2) blankets with solid lith­
ium compounds !n the hot: interior can achieve tri­
tium Qreeding rat:ios of ~1.5 if suitable neutron 
:~ultipliers ilre used. These :avorable charac~er­
istics -~d to the selection of a blanket of this 
type as a Stilrting point .:.n the detailed design 
3~udy which :ollows. 

C:es:..s!l Selection 

For ?Urposes of this design st:udy, an ST?­
sized ?lasma is presumed. 3 T~e major radius of the 
co~a~A~ i s 5.5 m. che plas~A has a D-shaped cross 
sec:ion <Jith a :•al: '.Jid:h of l.34 m and an elonga­
~ <on of 1 . 5 to 1. 0 . :mpurit:ies are cont:rolled Qy 
11eans of a 'mndle divert:or tJhich has a 10-cm scrape­
off :ayer. T!1e d iver:or is assumed to be ''-307. d­
: icient: in terms of t:ot:al alpha particle power ab­
so r':led. che plasma thermal potJer is 1080 !~-!, which 
~ ead s to a neutron •..1al.!. l oading of 2.1 ~-~-l/m 2 • 

The previous survey 4 ment:ioned above aided L~ 
: he selec:ion of blanket composition and :ayout. 

5Jot1El0 

~~ g . l glanket schematic :or computer analysis. 
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Figure l illustrates the blanket: layout which was 
utilized :or nucleonics (neut:ronics and photonics) 
and thermal hydraulics analyses . .' !;!l - .l!lanner of 
speaking, this schematic represents',<{ "three- zone" 
blanket:: (l) _ow- t:emoerature :::.rst: ·,,all and st:ruc­
::ure , (2) high-temper~ture blan~et: and neutt~n- multi­
plier, and (3) intermediate-temperature t>ree,ciing 
~lankec. It is the detailed composition of ' chese 
three zones which will constitute the reference high 
efficiency ~lankec design. The first wall consist:5 
of water- cooled stainless stee_ ( SS 316) tubes; chis 
first: wall is 1.5 em thick and ha s approximately i07. 
s~eel and 307. water. The first: wall is :allowed by 
a 2 -em- chick "mop up" breeding zone composed of liq­
u~d 5Ll. mixed wi~h l.:acl- Ll,muth with varying volume 
fractions of these componen ts. The fir s t wall and 
:nop-•.1p zones are thermally insulated from Jot:h the 
high- temperature blanket and breeding blanket: by a 
_-em-thic k insulator of BeO or ZrOz with a volum~ 
frac:ion of 207. . The high- temperature blanket is 
20 co JO c:n t:~ic~ and has var:!.ou:; U[JL.!.uu,; :o r cern­
position . he use oi BeO, ZrOz, and Zr ~i:her 
Q, l lf~q 1 n l • , ,., , . 1 :1. C.O '!':".b i.!tt,l.Ll ~.Hl ~ ~~·- h '1.\' ' • , ,rl ,,.,. ;,,,, 

been considered. :his region is cooled ~y hig h pres ­
sure argon gas whic~ flows vertically throug h ch~s 
region with 207. voidage. The h::.gh- te:nperacure blan­
ke t :.s ~nsulaced from the breeding blanket by a : - em­
thick L~sulat:or of the same composition as mentioned 
previously. The breeding blan ke t ~s composed of 
~ucuu" I~CON~L cubes cont:aining LizO an~ rorls nf 
Zr Oz. This region is 30 em thick al:'.d is coo lee by 
argon. This coolant flows in two separat:e streams, 
one through the center of th.: !..izO and :he s.:lconcl 
uptJard through the the=.al insulator :o cool che 
high- t:emperacure blanket, The overall height: of 
these modules is 55.5 Co 60.5 em, ·..~hil e the •..1idth 
is 43 ern. hree of these modul es wi:l fit: side- by­
side on a larger blanket segment backed by a s hield 
u£ SS 316, B4 C, and wat:er . The t:h ici'.n t:ss of ch i ~ 
shield w~l be 70 to 90 em ~epending on space lL~it ­
ations on :he inboard side oi the torus . 

~ucleon ic s and thermal hydr aulics have been sur ­
veyed for a variety o£ cases. Cas.:s w.:r.: examined 
co determine the effects of thic ~<ness and composi­
tion of the high- temperature ':>lan ~'et; T!!aterials usad 
were BeO, ZrOz, and Zr in :o, 20, and 30 c:n thic k­
npqqpq _ ~le to insuffic ~ent tritium breeding ratios 
in the earlier cases examined, a survey was also 
made to determine the effect of increasing th~ volume 
fraction of lithium in the mop-up ~reeding zone f rom 
nPAr zero to ~ 7. . ! n ~ll Che c~ses :!.nvRsctgaLdcl, L l~ 

:nake up of the main breedL~g blanket was LizO (50% 
enriched) with a volume fraction of .20, ZrOz with a 
volume fraction of .SO, the porous I~CO~EL tubes with 
a volume :raction of .10, and the remain~er of the 
zone was voidage (argon coolant ) . A constant thick­
ness of 1.5 em for the first wall and a t hickness of 
l.O em for the thermal insulators were ma i ntained 
throughout all t he cases examined. Values of ( c~e 

energy released in plasma and blanket per fission 
event: ) and 3R ( the tritium breeding ratio) are s~otm 
in Table 1, as :unctions of ~igh- t: emperat ure blanket 
comoosition ~nd t hickness and l ithium volume :raction 
in :he mop-up zone . 

T~e cases chosen for the reference desi5n and 
an alternate bac~up case are indicated on T~b l e l. 
che d ramatic increase L~ breeding ~at:io is shown 
cl~arly ::.n all cases but ?erh~ps is ~ost eviden t in 
t ~e r~·eTence case where t ~e i~c rovemenc i s a facto r 
o: 70% via the addition of the T.00 - '.10 breeding zon e 
containing 87. 0Li . :his increase. in. breeding ra:~o 
t:a :<es place •..1ith an accompanyL-,g drop i :1 Q value 



Table 1 Tri tium breeding ratios and Q values 

High-temperature- zone composition 

BeO l O em 
Zr Oz 20 c:n 

BeO 20 em 
ZrOz 10 em 

BeO 20 em (Re:erenc e) 

BeO 30 em 

Zr02 20 em 

Zr02 ~0 em 

Zr 20 em 

Zr 30 Cr.! (Backup ) 

(du e co t he ab so rption of neutrons closer to t he 
:irst wall ) of only 87. . Subtracting ~h e plasma fu­
,; i on energy o f l 7 . 6 ~!e ll enables che de t e rmi nation 
0: dro p in ~lanket Q value . Th is dr op turns out to 
:0 .:! 30% tvhich must aga:.n be weighed aga i nst the over-
1:'..l inc=ea se of 70% in breeding ratio , wh ic h i s a 
:·:o st equi table exchange . ! he 'Ja c !<- up case exh i bits 
~ l owe r br eeding ratio and Q value. A mechanism 
·. ·h ~ r~~y chis :'..o1ver ::> r eed i....'1g rat:!.o can ba counter­
Jalanced •.-i ll 'Je d i s cuss ed i n the next Section. 

I n addition t o breeding ra tio and Q, blanket 
:1e a t ing ra tes, f ractions of energy depo s ited in the 
J lanke t i n t er i or and thermal hydraulics parameters 
c-1e r e al so surv eyed to aid in the sel ect i on of t he 
r e f e r ence and bac k- up cases whi c h are defined i n t he 
: o1.lotving Section . 

:tefer ence and :'la c k- uo Designs 

Figure 2 i l l ustrates the detailed module con­
: :.gut ation : o r 'Jo t h the ref erence and bac k- up de­
signs . The re:erence design has a hi gh- t emperature 
zone t hickness of 20 em o f 3e0 rods (1 em diameter ); 
: he zone i s a pp r oxima tely 20% voids . The main breed­
ing zone , lvhich i s 30 em t hick , also conta i ns rods, 
thi s t i me they are Zr 02 with l em diameter , a lso 
present a r e po r ous I~CO~EL t ubes f illed wit h Li zO . 
c his zone i s al so app r ox i ma t ely 20% vo i ds. The mop­
uo breeding zone i s c omposed of 40% Pb- Bi and 8% 
l ~qu id 5ti and i s the s~me :or bo th the re f erenc e 
and 'Jac k- up des igns . ':he bac k- •.1p des ign has a high­
cempera t ur e zone ( composed of 1- cm- d i amet er Zr ro ds ) 
•;hich i s 30 em chic k . The !!la:!..n breed ing zone i n ~he 

~3c ~-up design i s t he same a s t he ref er ence case . 

Tabl .., 2 Ll lustrottcs t he f r ac tions of ene r gy (Q ) 
:1bso r bed i n ea ch of the modul. e zones Ea r the r e :er ­
~nce and ~ac ~-up cas es. ! n ~o t h cas es, t he t o tal 
: racc ion of energy a bsorbed i n the hot i nter io r 
( zone s 6 , 7 , and 9) ap proach 60%. ~ate t hat fo r 
':lo t h cases very smal l energy amounts penet':a te t o 
: he shi eld . 7he fract ~o~ :: / f z illustrates qui te 
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Mop- up breeding zone 
volume fract i ons 

s ~i . 001 
Pb .001 

5Li .02 
Pb .10 

6Li .08 
Pb . 40 

BR 

0 . 43 

0.42 

0. 65 

o.u 

0.60 

0 . 41 

Q 
( ~eV) 

23. 92 

24 . 58 

23 . 59 

24 . 86 

21.50 

22 . 30 

BR 

0 . 76 

0. 78 

0 . 97 

0.79 

0 . 77 

0 . 54 

0 . 84 

0 . 85 

Q 
(HeV) 

22.51 

22 . 94 

22. 16 

23 . 10 

20 . 90 

2:!.. 44 

20.57 

21.03 

:'l:t Q 
(~eV) 

0 . 90 22.l4 

0 . 92 22.47 

1. 10 2l . 77 

0.93 2~ . ~1 

0 . 88 20 . 33 

0 . 78 21.29 

0 .91 20.53 

0 . 93 20 . 92 
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?ig . 2 Blanket modul e design. 

cl ear ly one o f t he r ea sons for t he select ion o f t !tc 
reference case : c~~ice a s muc h ener gy i s abso r bed in 
the high- t emperature blanket a s in t he ma in br eeding 
zone. Thi s l.a r ger : raction o t high- temp era t ur e hea t 
wil l c onvert more efficiently co el ect r i c i t y cha n i n 
the bac k- up case . These energy ab sorp t ion t r 3c t io ns 
a re clo sely rela t ed t o the neutron fl uxes i llus tra ted 
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J. 
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3 . 
6 . 

7. 
s . 
9 . 
10. 

:able 2 :ractions of energy absorbed 
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~·!O?UP breeding 
Insulation 
High temper a cure 

anc.l 
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~:tsula cion 
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:'h i~!.ri 

~efer ence 

design 

.17 

. 24 

. 01 
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.00 
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. 00 
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~n :i~ures 3 and 4 . Figure 3 shows the total and 

c 
1.1 

f2 

~ :- ~e ~J :!. •..1xes :or che -:-ef .; renee case w~ile ?igure 4 
-2 c::?icts t ~e sam~ fluxes fo r the bac~<.-up cas e. The 
ca : cul.at i on of :hese fluxe s was decail.ed i~ a pre­
v :!.ous re!)or!: . 1 · ~ he etr:!.c:!.en<:y 6t energy a!:>s6 rption 
in t he hi~h-temperature blanket of the reference 
case is i ndicated by che fall - off of the 14 c~eV neu­
:ron flux '::>v a :actor of 40 in this zone . The 14 -
~e V fl.ux falls off by only a factor of 6 over the 
:1igh- te:nperature zone in the '::>ac:c- up case . ewo­
d ~~ensional neutronics calculations perfor med ore­
v iously5 indicate that there ~~ill be only a sl.ight 
=eduction of th e 60% energy absorption factors de­
:ermined ~n the one-dL~ensiona_ analysis per formed 
.te re . 

The nexc step in the design analysis wa s the 
determi~ation of neutronic and photonic (gamma ) heac­
~ng profiles s hown in Figures 5 and 6 for the refer­
ence and back- up cases, respec tively. The refer ence 
case, s i:'.o'm in Figure 5, depic:s for the mos t !:>art an 
easy to handle heating pr ofile, t he 2 to 3 ~</c"-:r-. 3 
.1ve::age across :he high- te:nperature zone is removed 
•.-: .!. : :1 a pea:, argon temperature of 2230 °C . '!he sharp 
':ea ting r a te i~crease near the f ront of the main 
·J reeding zone is cause fo r some concern and a solu­
tion to c:1is s har? profil.e is discussed l.at er. 
3harp profil.es in both the high tempe::ature and 
J reeding zones of the ':lack- up design heating rates 
'.-.' i!..!. also require SL'!lilar attention. The heating 
cat es identified here led to the pa r ameters l is t ed 
~n cables 3 anc 4 . Table 3 shows the calculated 
'J 2.an ~'e t te~perar:ures :or the fir st t~all and struc­
:ure as well a s the ~igh temperature and oreeding 
zones. ! he peak te~?erature of 2230°C in :~e high­
:emperature zone s hould prove an excellent aid in 
: . ..r1c reas :.ng pot11e:- c:;cle ef: iciency. '!he outlec tem­
?erat ure v f l 030 °C in the breeding zone should cre­
a te no pro 'Jlem.s c•i th Li20 melting o r tritium extrac­
tion. Tritium r emoval wil.l. '::>e accomplished basic­
<t ll y throu n; h the secondary argon coolant s~ream 
~ !.,H,ing tllrou,;lt t:te center o f the I~!CONEL-enca s ed 

L~zO in a ~anner similar to that proposed in the 
ST.~~~RE design. 7 Pressure drops are indicated in 
ca ble 4 on a ?er module oasis. Once again, these 
cata ind~ca te chat both the designs are problem­
==ee ~n : ~ is area. 

The question of heac removal in t he sharply­
peaked :ronc ecge of : he maL~ '::> ::eed~ng zone i nd i ­
ca :ed on ?i ·~·Jre 5 is addressee i."l the :o llo•Jing 
~anner : Li~ O ( the principle neutron absor~er and, 
hence, heat generator) is varied L~ concentration 
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Table 3 Coolant pres sure drops 

Re:erence 

Water 

Inlet manifold 4 . 65 psi 
Cooling tubes 7.3 5 
Outlet manifold 4 ,65 
3 meters of pip i ng 14 . 00 

Argon 

!!reeding zone 0.10 psi 
High temperature zone 0.10 
!.0 ft of 3 in. duct 0 . 45 

Table 4 Temperatures in ~lankec 

\{ater 
(wall coolant) 

p • 1800 psia 

~eference 

uc 

Inlet 100 
Outlet 327 

Argon 
(blanket coolant) 

p 2 30 atm 
Sreeding zone 

Inlet 
Outlet 

High temperature zone 

Inlet 
Outlet 

481 
1027 

1027 
2227 

!lac !~up 

4 .40 psi 
3.54 
4,40 
6 .60 

0.05 psi 
0.088 
0 .225 

!.00 
32 7 

214 
1027 

1027 
2227 

throughout the main breeding zone . Figure 7 lis ts 
these LizO fractions along with breeding ratios in 
specific regions of the main breeding zone. ~egion s 

9 to 12 are l em thick while region l3 is 26 em thick 
ma i ntaining the 30 c:m thickness of t:ie mai~ breeding 
zone. Figure 7 al so shows t he t~ermal neutron flu x 
across the oreeding zone . It i s these thermal neu­
trons which account fo r t~e vast ma jority of breed­
ing reactions. This stepping of -izO concentration 
reduces the overall breed ing ratio by about 3%, whi_e 
alleviating the problems caused by sharp pea ks in t~e 
heating rates. 

The low breeding ratio (0 . 93) in the back-up 
case presents somewhat of a ~roblem. I t would be 
necessary to utilize a superbreedi~g blanket ( B~l.S) 

for 20% of the to tal blan ket around t~e r eacto r if 
the bac k-up concept were to be ~art of a viable re­
actor concept . The design of this superbreeding 
blanket is currently under way a s part of a synthet ic 
:uel investigation at B~L. 

Three blan ket modules are placed side-~y-s id e 
on a s hield/bac king pla~e to :arm blanket segme~ts. 
:~ese segments chen surround the minor circumference 
of t~e torus . T~e segments are l.4 m deep by 1.3 m 
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•.-1ide and t he length of the segments varies from l. 5 
~ ~nboard to 3 . 0 m ou~ board o f t he plasma. This 
~ rrangement of segments i s ana~ogous to :hat pro­
:>os ed fo r the STAR?I::t:: design. ' Each segment '..Till 
·Je self-contained in coolant headering for both 
·1ater and argon. The primary argon circuit ( p • 30 
. ! :~ ) will have argon channeled into t he bottom of 
- ··- segments and •..Till t hen flow upward penertrating 
: he : he~.al L~sulation ~etween t he breed i ng zone 
Jnd the high-temperature zone and will be channeled 
J u t a t t he a pex of : he hig h- temperature zone. The 
~ eco ndary a r gon : l ow (maL~tained at less t han 30 atm) 
1i l l ~ e thr ough t he LizO t ube centers into tube 
:;e:1ds a t ~o t h modul e ends. The water (1800 psia ) 
i:Co •.J w~:!.l also be : rom t u be heads and f:!.o1J will be 
~:ong t he l engt h oi t he segments. 

Conclus i ons 

che blan~ets designed in this report exhibit 
several of t he features of t he S:'ARF!RE design while 
·.; i z ed to : he sma l ler STF reac ~or. .o/hen coupled 
·; i.:h hi gh- e: : iciency power conversion cycles, ef­
: :cienc i es of 50 to 60% are a ttainable. c hese ef­
: i c iencies r epresent as ~uch as a 100% L~crease over 
S:'A!I.E'!RE and o : her ~ore traditional fusion reactor 
~es ~gns. 

~relL~inary costing studies i ndicate that near­
ly all of this ef fic iency improvement will be reflec­
ted as saving s i n capital costs of th is fus io n re­
dc tor. A r e::>. sonabl e expectation for s i milar savings 
~n :lectr ic~t y cos t s i s also i ndicated. 
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