—enamene!
.

| DESIGN AND IMPLEMENTATION OF A MULTI-SENSOR FUSION
1 ALGORITHM ON A HYPERCUBE COMPUTER ARCHITECTURE'

CONF-8911125--2
DE90 003682

CHARLES W. GLOVER
ENGINEERING PHYSICS & MATHEMATICS DIVISION

OAK RIDGE NATIONAL LABORATORY
OAK RIDGE, TENNESSEE

PAPER TO BE PRESENTED AT:

SPIE’S "ADVANCES IN INTELLIGENT ROBOTICS SYSTEMS & VISUAL
COMMUNICATIONS & IMAGE PROCESSING ’89"

Adams Mark Hotel
Philadelphia, Pennsylvania

November 5-11, 1989

"Research supported in part by the U.S. Air Force/Wright Aeronautical Laboratory under DOE
Intcragency Agreement, DOE-40-1579-85, under Contract No. DE-AC05-840R21400 with Martin
Marictta Energy Systems, Inc. with the U.S. Department of Energy.

“The submitted manuscript has been
authored by a contractor of the US.
Government under contrect No. DE-
AC05-840R21400. Accordingly, the U.S.
Government retains 8 nonexclusive,

royalty-free license to publish or reproduce q)

the published form of this contribution. or 5

allow others to do so, for U.S. Government E

urposes.”

Pre >

DISTRIBUTION 0F Tiig DOCUMENT 18

H 13
UNLIR TS

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Design and implementation of a multi-sensor fusion algorithm on a hypercube
computer architecture

Charles W. Glover

Oak Ridge National Laboratory 4
P. 0. Box 2008, Oak Ridge, Tennessee 37831-6364

ABSTRACT

A multi-sensor integration (MSI) algorithm written for sequential single
processor computer architecture has been transformed into a concurrent algorithm
and implemented in parallel on a multi-processor hypercube computer architecture.
This paper will present the philosophy and methodologies wused in the
decomposition of the sequential MSI algorithm, and its transformation into a
parallel MSI algorithm. The parallel MSI algorithm was implemented on a NCUBETM

hypercube computer. The performance of the parallel MSI algorithm has been
measured and compared against its sequential counterpart by running test case
scenarios through a simulation program. The simulation program allows the user

to define the trajectories of all players in the scenario, and to pick the sensor
suites of the players and their operating characteristics. For example, an air-
to-air engagement scenario was used as one of the test cases. In this scenario,
two friend aircrafts were being attacked by six foe aircraft in a pincer
maneuver. Both the friend and foe aircrafts launch missiles at several different
time points in the engagement. The sensor suites on each aircraft are dual mode
RADAR, dual mode IRST, and ESM sensors. The modes of the sensors are switched as
needed throughout the scenario. The RADAR sensor is used only intermittently,
thus most of the MSI information is obtained from passive sensing. The maneuvers
in this scenario caused aircraft and missile to constantly fly in and out of

sensors field-of-view (FOV). This resulted in the MSI algorithm to constantly
reacquire, initiate, and delete new tracks as it tracked all objects in the
scenario. The objective was to determine performance of the parallel MSI

algorithm in such a complex environment, and to determine how many multi-
processors (nodes) of the hypercube could be effectively used by an aircraft in
such an environment. For the scenario just discussed, a 4-node hypercube was
found to be the optimal size and a factor two in speedup was obtained. This
paper will also discuss the design of a completely parallel MSI algorithm.

2. INTRODUCTION

Sensor information is required by any autonomous or semi-autonomous platform in
order to estimate the state of the environment in which the platform is
operating. Information about the estimated state of the operating environment is
then passed on to the platform control and command center where plans and
decisions are made concerning the platforms actions in the environment.

Whether the platform is an aircraft, satellite, or a robot; sensor data is
obtained from complementary multispectral sources. Each sensor presents a
different picture of the environment which must be integrated to one coherent
view, this is the role of Multi-Sensor Integration (MSI) software. In the case
of a robot, the MSI estimate of the environment is passed on to an expert system

Mrrademark of the NCUBE Corporation, Beaverton, Oregon.

where the information can be used for navigational planning, sensor redirection,
and/or any form of resource allocation. For the combat aircraft or satellite
case, the MSI software is to provide information concerning the number of targets
in the environment, an estimate of each targets kinematic observables, and an
estimate of the target type. This information is used by the aircrafts fire
control program to allocate resources in order to maximize its probability of
survival.

In combat situations it is important that MSI be performed as quickly as
possible. For SDI or any other congested and complex scenarios, the MSI
calculation would require a supercomputer. However, it is not practical to load
a serial supercomputer on a combat platform. The question which arises is that
can small transportable hypercube supercomputers be used to perform the MSI
calculations in real-time? Before this question can be answered, several other
questions must be addressed first, such as: Can serial MSI algorithms be adapted
into a concurrent form without completely rewriting the entire program; and if
so, what 1is the performance of such a transformed program; if not, can a
concurrent MSI algorithm be devised? The goals of the research described in this
report are to %ort very large sequential Multi-Sensor Integration (MSI) program
to the NCUBE™ hypercube computer, identify and implement the existing
concurrency in the program (Section 3), qualitatively document the performance of
the resulting concurrent program (Section 4), and suggest alternative concurrent
MSI algorithms (Section 5). Many of the issues addressed in this report for
porting large sequential programs to hypercube computer architectures are generic
and not limited to just this specific MSI program, the concurrent MSI algorithm
described in Section 5 is completely general and can be applied to robotics as
well as avionics.

3. MSI CODE CONVERSION FOR A HYPERCUBE
3.1. Architecture

Two sequential VAX FORTRAN programs, comprised of over 30,000 lines of code, were
ported to the NCUBE host processor. One program is a general M-on-N engagement
simulation driver. Simply-stated, this program models a user-specified
engagement scenario and produces updates of the simulation states at specified
time points. The output from this program serves to drive sensor models in the
second program.

The second program simulates real world sensors, specifically RADAR, LADAR, ESM,
and IRST, whose operating characteristics are defined by the user. The software
provides realistic data of sensor observables and their associated errors for use
in the MSI program, it is the MSI program which was divided and implemented
concurrently onto the nodes of the hypercube computer.

This section presents the philosophy, rationale, and the steps that were taken in
order to transform the sequential MSI code into a concurrent form. To facilitate
the discussion a brief review of the structure of the sequential MSI code will be
presented first.

3.2. Review of the sequential MSI code

The goal of the MSI algorithm is to provide an accurate estimate of the
environment based upon data returned by the sensors. Before the state of the

environment can be estimated the MSI algorithm must solve the data association
problem. The objective of the data association problem is to classify all the
sensor tracks into the following bins:

- Confirmed Correlation to a MSI Track

= Unconfirmed Correlation to a MSI Track
- New Detection

- False Alarm

Figure 1 provides a schematic illustration of how the sequential MSI code
accomplishes its goal. The first step in the procedure is to propagate all the
sensor-1 tracks to a common time point by using a Kalman filter with a standard
target acceleration model. The MSI tracks are initialized from the propagated
tracks provided by sensor-1l. Next, all sensor-2 tracks are propagated to the
current MSI track time point. At this point the data association problem must be
solved, the tracks from sensor-2 must be correlated with the MSI tracks from
sensor-1; this is accomplished by binning the sensor-2 tracks into one of the
four categories discussed above. The first step in this procedure is to perform
gate tests on the attribute and kinematic variables between the MSI and sensor-2
tracks. If a sensor-2 track has been previously correlated with a MSI track and
passes the 3 gate test it remains in the confirmly correlated bin. The next
step is to enlarge the gate and repeat the test for the remaining unconfirmed
uncorrelated sensor-2 and MSI tracks. A likelihood of correlation estimate is
then performed for all sensor-2 and MSI tracks which pass the second gate test.
The sensor-2 and MSI tracks that do not pass this gate test are declared either a
new detection or a false alarm, based upon the probability of detection for
sensor-1 (assumed to have the highest probability of detection for all sensors)
and the probability of a false alarm for sensor-2. Before declaring that a
sensor-2 track is correlated with a MSI track, the confidence in this hypothesis
is computed by comparing the likelihood of correlation estimate to the likelihood
estimate that the correlation is a false alarm or a new detection. A sort is
performed to obtain the highest scoring set of correlations. Now, all the
sensor-2 and MSI tracks have been grouped into the four bins mentioned above.
The state vectors of the newly correlated MSI tracks are updated using again a
Kalman Filter, thus providing an estimate of the state of the environment based
upon the data from sensor-1 and sensor-2. This procedure 1is repeated
sequentially until all sensor information has been processed and we are left with
an updated estimate of the state of the environment based upon all sensor
information.

3.3. Stages to concurrency

The transformation of the sequential MSI code to a concurrent form was based on
the following philosophy:

- Do not alter the numerical results of the test cases;
- Leave the MSI algorithm intact;
- Convert the serial MSI code to a concurrent form in incremental stages.

It was decided not to implement changes in the MSI code that would cause a change
in the numerical accuracy because of the resulting difficulties in determining
the validity of the alterations against the test cases. There are fundamental
changes in the MSI algorithm that could be made which would lead to a completely
parallel algorithm. These changes are discussed in Section 5, but are not made

here because they would affect the accuracy of the calculations. The conversion
of the serial MSI code into a parallel code was done in incremental stages. This
reduced the time spent debugging the changes and allowed us to document how each
change effected the execution time. The actual changes in the conversion of the
serial MSI code to concurrent form are illustrated in Figure 2 and are discussed
below.

Stage - 1T

As shown in Figure 2, the 1likelihood of correlation estimate was the first
computational task to be assigned to the node processors. The 1likelihood
computations involve a number of time consuming matrix operations for calculating
the residual nearest-neighbor distance (score) for each feasible combination of
sensor and MSI tracks. It was decided to assign one feasible sensor-MSI track
combination per node until all combinations were distributed over the hypercube.
Each node would calculate the likelihood of correlation score for a particular
sensor-MSI track pair.

Stage - II

As shown in Figure 2, the MSI state vector update estimate was the second
computational task to be assigned to the node processors. This routine uses a
Kalman filter to calculate an updated estimate of the state vector and the
associated covariance for all MSI tracks.

The state vector of a MSI track is composed of kinematic (position, velocity, and
acceleration) and attribute (Missile, RADAR or IR; fighter, friend or foe; etc.)
variables. Kinematic variables were updated in parallel by assigning different
kinematic variables to each of the nodes in the hypercube; each node then
performed a Kalman Filter calculation on the kinematic variables assigned to it.
The results of these calculations were sent back to the host processor for
attribute variable updating and subsequentially for processing of the next
sensors information.

Stage - IIT

As shown in Figure 2, the common referencing of sensor tracks was the third
computational task to be assigned to the node processors. This routine propagates
all sensor tracks to the same space-time point in a common reference frame. All
sensor tracks, whether from the same sensor or different sensors, have different
time stamps associated with them; since the new measurements occur asynchronously

in time then sensor tracks are formed asynchronously at different times. In
order to fuse sensor tracks, all sensor tracks must be projected to the same time
point by modeling the state vector dynamics for each sensor track. The model

used by this program assumes the target can maneuver with a constant
acceleration, and a Kalman Filter is used in conjunction with this model to
propagate all sensor tracks to a common time point. In addition, corrections for
misalignment between sensors are applied to the sensor tracks and the tracks are
transformed into a common space reference frame.

It was decided to assign one sensor track per node until all tracks were
distributed over the hypercube. Each node would then perform the common
referencing calculation for a given sensor track. Once Stage III is implemented
approximately half of the MSI code is programmed in concurrent form on the nodes.

Generally speaking, each node in the concurrent version of the MSI code performs
a computational task on a track. As the number of tracks increases so will the
number of nodes needed in the calculations. If the number of tracks is greater
than the number of nodes then some nodes will perform calculations on more than
one track. Quantitative measurements of the execution times are presented in
Section 4.

3.4, Rationale for the coarse grain

The coarse grain approach adopted towards the conversion of the serial MSI code
in Stages 1I-II1I was chosen in order to accommodate the possibility of
re-dimensioning the code to handle a larger number of targets. The current MSI
code is dimensioned to handle up to 20 targets and 4 sensors. An additional
consideration in determining grain size is the NCUBE's message passing overhead.
To pass a message between two processors requires about the same amount of time
as a single processor to perform 120 floating point operations (flops). Thus, a
grain size of a 120 flops was the minimum to be considered for parallel
execution.

4. PERFORMANCE RESULTS

In this section we present a description of the test case and a quantitative
discussion of the hypercube performance results.

4.1. Description of test case scenario

In this report, an Alir-to-Air Offensive Sweep test case will be discussed. In
the Offensive Sweep scenario two friend players engage six foe players in a
pincer attack. At the start of the scenario the two friend players and six foe
players are flying toward one another separated by a distance of approximately
300 km. The total playing time (MSI time) is 300 s. At the 160 s mark, the six
foe players break to engage the friend players: two foe players roll upwards and
to the right while two other foe players roll downwards and to the left; these
four foe players perform sweeping banks designed to intercept the friend players
trajectories from above and below; the remaining two foe players close on
straight line trajectories towards the friend players. The four banking foe
players fly out of the friend players’ sensors field-of-view and are reacquired
when the two friend players launch missiles on center foes and break left and
right to engage the banking foes. Each friend player has RADAR (two modes), IRST
(two modes), and ESM sensors onboard. The information from these sensors must be
fused by the MSI program in order to present the pilots a coherent view of the
current state of the environment.

4.2. Quantitative timing and efficiency results

Shown in Figure 3 is the total cumulative execution time (denoted CPU time), for
all three stages of concurrency implemented together on the nodes of the
hypercube and is plotted as a function of the scenario time (MSI time). The
curves in the figure represent the execution time for different sized hypercube
configurations. The top most curve of the figure represents the sequential
execution time of the MSI algorithm by the host processor. The VAX 11/785 time
is provided as a point of reference and is not particularly relevant to the
discussion that follows.

The 1l-node calculation is the one by which to judge the effects of concurrency.
This calculation represents a sequential MSI program in which all three stages
were executed in serial on one node processor, while the remainder of the
program was executed on the slower host processor. The l-node calculation and
the other concurrent calculations using more nodes have the host processor
performing exactly the same number of operations. Hence, any difference in
execution time between the calculations for l-node and the other hypercube
configurations is due to the concurrency in the program.

Table I summarizes the results displayed in Figure 3. In Table I, the execution
time for l-node calculation was normalized to 1.00, and the remaining numbers are

relative to it. The most striking feature from Table I is that the 4-node
hypercube configuration provides approximately a 1/3 reduction in execution time,
while the reduction for the 8-node configuration is not much better. This

indicates that the Offensive Sweep scenario does not sufficiently exercise a
hypercube with 8 or more nodes.

Table I

Processor Speedup Factors

Host 3.07
VAX-11/785 1.76

1 - Node 1.00

2 - Nodes 0.77

4 - Nodes 0.66

8 - Nodes 0.60

These results can be understood by recalling the discussions of Stages I-III. 1In
this concurrent implementation of the MSI program the number of nodes in use is
proportional to the number of sensor and MSI tracks, and consequentially
proportional to the number of targets in the scenario.

Figures 4-6 display the number of tracks per MSI time step for Stages I-III.
Since the calculations for one track are handled by a single node, these figures
indicate the maximum number of nodes that could be active per MSI time step in
Stages I-III.

Figure 4 illustrates for Stage-I that at early times in the scenario many
likelihood of correlation estimates are being performed. As track fusion takes
place this routine is not called very often unless maneuvers occur or a new
target is acquired.

Figure 5 shows for Stage-II the number of times a kinematic variable (position,
velocity, and acceleration) for various number of tracks must be updated. For
this scenario a maximum of 12 kinematic variable tracks could be updated per pass
through Stage II. This corresponds to 2 kinematic variables per target for 6
targets.

Figure 6 displays for Stage-III1 the number of tracks per sensor requesting
propagation to a time point in the common referencing calculation. At early MSI
times each sensor has six tracks to be propagated. This can be done in two
passes using 2 or 4 nodes of the hypercube or in one pass using 8 nodes with two
nodes sitting idle.

From Figures 4-6, the fraction of the total MSI time for which calculations in
each stage require 1, 2, 4, 8, or more nodes can be determined by placing
thresholds in Figures 4-6 at the 1, 2, 4, and 8 track levels, respectively. This
fraction (percentage) is displayed in Figure 7 for each of the three stages. The
l-node percentage represents the fraction of MSI time that a given stage is
called. The 2-node percentage represents the fraction of MSI time 2 or more nodes
could be used in the concurrent calculations, and likewise for the 4 and 8 node
percentages.

The fraction of the total MSI program that requires 1, 2, 4, or 8 nodes in the
calculations is obtained by averaging the percentages in Figure 7 over Stages
I-III. This percentage, shown in Figure 8, shows that approximately 70%, 65% and
57% of the offensive sweep scenario can, respectively, utilize 2, 4, 8 or more
nodes in the calculations. By considering these the percentages for the maximum
node usage possible, it is easy to see that the speedup factors in Table I
represents a very efficient use for a 2- and 4-node hypercube, and the efficiency
declines for the 8-node hypercube.

The preceding analysis shows that a reduction of 1/3 could be obtained for this
test case by wusing a 4-node hypercube and that larger sized hypercubes do not
add significantly in the reduction of execution time. A more complex scenario
with more players, more sensors per player, and more complex maneuvers will
better demonstrate the utility and performance advantages of a larger dimensioned
hypercube computer.

5. RECOMMENDATIONS FOR MSY ALGORITHMS AND PROGRAMS ON HYPERCUBE COMPUTERS

The MSI problem has a great deal of concurrency which can be exploited in a very
efficient manner on a hypercube computer. Computer architecture must be taken
into account from the beginning at the algorithm design stage. Algorithm design
and its implementation in a program are not separate issues, they are intimately
related through the architecture of the computer. Almost all algorithms designs
are dictated by the architecture in which they will be executed.

This section presents some basic principles about hypercube computers which must
be considered during the design of any concurrent algorithm and program. The

section then concludes with recommendations for concurrent MSI algorithms.

5.1. Sequential MSI algorithm recast in concurrent form

This MSI algorithm has a great deal of concurrency which can be exploited, but
only at the expense of completely rewriting the programs. It is shown in this
section how the MSI algorithms can be arranged in a synchronized, completely
concurrent form for a hypercube computer.

The MSI algorithm consists of four main computational procedures (see Figure 9):

1. Propagation of all MSI and sensor tracks according to the current state
estimates (common referencing).

2. Association of all sensor tracks with MSI tracks (estimate likelihood
of correlation).

3. Selection of the highest scoring associations (sorting and hypothesis
selection).

4. Provide an updated estimate of the current state based upon the new

associations (updating MSI tracks).

Steps 1, 2, and 4 are ideally suited for decomposition into a concurrent form;
these tasks for any one track are completely independent from any other tracks.
The selection of the highest scoring associations, step 3, implies some global
communications.

This MSI algorithm suggests an obvious decomposition for the hypercube
architecture:

A. Distribute approximately equal number of MSI (or sensor) tracks to each
node processor.

B. Distribute all sensor (or MSI) tracks across the nodes of the
hypercube.

C. Each node performs steps 1 and 2, discussed above.

D. Selection of the highest scoring correlations, discussed in step 3, can
be performed by a parallel optimization algorithms.

E. Distribute approximately equal number of MSI tracks to each node of the

hypercube and perform the updated state estimation, step 4.

In this version of the MSI algorithm, specifically step A, if more MSI tracks
than sensor tracks are expected on average for a given scenario, the MSI tracks
should be distributed across the nodes of the hypercube. In step B each node
should receive all sensor track data. The reverse situation will apply if more
sensor tracks are expected on an average in the scenario. Assigning the largest
number of tracks to the nodes will lead to greater concurrency and throughput.
Since all nodes perform the same calculations, the computational load on the
hypercube will be balanced if all nodes are assigned the same number of tracks to
process. For the case where the number of tracks is not a multiple of the number
of nodes, a load imbalance will occur only for the amount of time it takes the
nodes to process one extra track. This version of a concurrent MSI algorithm is
well-suited to a dynamic environment where tracks are continuously being created
and annihilated, because track information can be added and deleted easily from
the nodes.

5.2. Consideration of the hypercube computer architecture

The basic concept in the design of concurrent algorithms and programs for a
hypercube computer is that any time a processor (be it node or host) must wait
for the results from another processor, a reduction in throughput will occur.
When an algorithm is designed such that the calculation of step k cannot start
until it has the results from step k-1 the algorithm is called a synchronous
algorithm. An asynchronous algorithm is one in which the calculation for step k
will be computed based on the results from step j, where j < k.

To further illustrate the concepts of synchronous and asynchronous algorithms,
consider the following general iterative function

Ml T Q¥ X X ey)s
where e 1is the memory of the iterative method and the vector + has n
dimensions. Now suppose we perform a series expansion of Q, then the i&erative

equation would have form

- F(x,,)
e A @

where F could be a linear function and G could be a function of the derivatives
of Q. Further, assume that the execution time to calculate G 1is greater than
that for F.

In order to facilitate a parallel computation, one strategy is to exploit the
parallelism of the individual components xj (i=1l,n), by assigning the computation
of each component x, kel O 2 different node processor. For each iteration step
each node processorl&paates its components according to Eq. (1). The processors
are synchronized at the end of each iteration and the next iteration begins after
all processors are finished updating. This is the method used in the current
parallel version of the MSI code.

An alternative method for a parallel computation would be to recognize that G is

more costly to calculate than F. Rather than waiting for the computation of
G(X%"ﬂ" xk_é 1), one might choose to.estlmate Xk&l based on the last estimate
of (i.e., (k.,..‘, x'-e+1)’ where j < k). This represents an asynchronous
algorithm. J J

In the two concurrent algorithms just discussed, Levinl as shown that for certain
classes of nonlinear equations the asynchronous algorithm’s order of convergence
to a satisfactory approximation of the correct solution is the same as that for
the synchronous algorithm. However, the execution time required for each
asynchronous iteration can be drastically reduced. Both types of concurrent
iterative algorithms have serious drawbacks; the synchronized algorithms may have
processes blocked for a long period of time due to synchronization restrictions
while the details of behavior of asynchronous algorithms are difficult to
analyze. This leads to a hybrid approach called semi- synchronized algorithms
which accentuates the positive features of both algorithms without being limited
by the drawbacks. It appears that some iterative subtasks in the MSI problem
could be accomplished in such a form.

In addition, it should be noted that neural network algorithms can be formulated
as asynchronous algorithms. This feature naturally makes neural network
algorithms prime candidates for concurrent computations.

6. SUMMARY

This report showed that a large sequential MSI program could be successfully
transformed into a concurrent form and implemented on a NCUBE hypercube computer
through a coarse grain decomposition of the sequential program. The essential
idea behind the coarse grain approach is to assign each sensor track to a
hypercube node such that the nodes perform the same computational tasks
simultaneously on different sensor tracks. For the Offensive Sweep test scenario
examined here, this method yielded a 1/3 reduction in the total execution time
for a 4-node hypercube when compared with the total sequential execution time,
and it demonstrated that an 8-node hypercube did not significantly reduce the
total execution time further. However, more complicated test cases would
exercise hypercube cubes of larger dimension and the total parallel execution
time should be proportional to the sequential execution scaled by the ratio of
the number of sensor tracks to the number of nodes.

This study also demonstrated that the current MSI algorithm could be recast in a
completely concurrent form. The completely concurrent form exploits the fact
that Frack propagation (common referencing), track association scorin,
selection, and updating calculations can be performed entirely on the'nodes bgé
only at the expense of completely rewriting the MSI program. ,

Flnal}y, this study addressed our current area of research in concurrent MSI
algorlth?s, whether the track propagation (common referencing) and track update
calculations could be performed asynchronously on the nodes of the hypercube

The advantage of this method is that the convergence of the estimation to thé
truehvalue requires épproximately the same number of iterations as the current
Zzzzt;22§§; ;ngf:;-Fllter method but the execution time of each iteration is

7. DISCLATMER
Portions of this paper have appeared in the Proceedings of the Third Conference

on Hypercube Concurrent Computers and Applicati i i
- ons, Pasadena, C
editor] (January 1988). siifornia (6. Fox,

8. REFERENCES

1. M. Levin, }98&, M. Sc. Dissertation Project, Center for Computing and
Computer Science, Univ. of Birmingham, Birmingham, England.

2. Culioli, J: C., Glover, C. W., Jones, J. P., and Roe, C., "NCUBE
Imp%ementatlon of Some Heuristics and an Optimal Algorithm for Large-Scale
2551gnmen§ groblem," Proceedings of the Fourth Conference on Hypercube

oncurren omputers and Applications, Mont i i i
Py , nterey, California (1989) [in
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

1198-24

DN, DG B st

SEQUENTIAL MS! ALGORITHM

Y L g LY sng
—eratre
nuarres | EEE—

o s Do v | i e

———-? !
| — “'T’"“._-—@

o= ——=d]

Fig. 1. Schematic illustration of the sequential MSI program.

DR« DU B 12l

STAGE HI: CONCURRENT COMMON REFERENCING

- ety

hY

Fig. 2. Schematic illustration of the concurrent MSI program. The fan-out lines
represent those tasks assigned to the hypercube nodes; fan-in lines represent
information passed back to the host processor from the nodes.

1198-24

= Cumulative CPU Time

1600 111||111x|||a|1—11v|]s|11||r|1;||1||||1rr|11|1'1||n!|'|11'!|n|q

- 1400
Offensive Sweep

1200

-
Q
Q
Q

s diaaa s ia s aisvaaiasesin

600

400

200

CPU .Time (sec.)
@
(=]
o
L B 0 B S B A B S B N A It et AN BN L A B B M AR S LB BR B

211339301200 crataggateasatatastasastaasstasxitiaiy

M 11
05355055700 125 150 175 200 225 250 275 300
: MSI Time

Cumulative CPU Time

. 900 11l]|lll]l'lr]]'llIIT‘II1]llll|llll!1]1I1illl!llll!ll'll‘!llIT

VAX 11/785 Time

800

\RE R RAAR

Offensive Sweep
700

w o
(@] Q
Q Q

(=]
AR RS RAEERRRARERRARERARE NS EARE LILALE I

[
CPU Time (sec.)

|
&R

MSI Time

Fig. ?. The total cumulative execution time (denoted CPU time) plotted
- against the scenario time (denoted MSI time) for various hypercube
configurations.

"

Averoge Number of Trocks - Stoge |
40

TYITTY Ty YT Ty LAARAL ARARA T

Offensive Sweep

3St-THHE BHe

Numbpaer of trocks per MSI time
- - » N 13
° w 'O w

w

[}
y]
%28 so 00 5 :
. MSI Time
Fig. 4. The number of 11ke11hood of correlation (Stage I) calculations to be
performed at each MSI time. This represents the maximum number of tasks which
could be assigned to the nodes, or the maximum number of nodes which could be
active at a given MSI time.
Averoge Number of Trocks - S‘loge il

LARR AR AR S AL R AR RS A ALS RARRERARAE LELRE RAREY RRARE AR

— _ r . Offensive Sweep

Number of tracks per MSI {ime

ML LA SRS S R e e e

aadgaaatiassdsang

Fig. 5. Same as Fig. 4, except the number of kinematic variables to be updated
per MSI time (Stage II) is displayed.

Averoge Number of Trocks - Stoge Ill

] AEAAARS MAAAEALALS SALME RALEY £4 TYTYTLY L AASASAALES .
B

Offensive Sweep

-
o

-
N -~
YT YT T

© Number of trocks per MS! time
N

<
2
| H
| L T

}—— MSI Tlme

‘Fig. 6 Same as Flg 4 except the number of sensor tracks requiring ‘common
eferenc1ng calculations (Stage III) per MSI time is displayed.

Fig. 7.

Fig. 8.

1198-24

Maximum Fractional Node Usage Possible per Stage

xRl
;!\ 100 °° &
s % §
= A ~
2)5 G p——
3w
z 27
. 7
g e & B -Node
® s 2-Nodes
& Z "
5 Y B <-Nodes
17 8-Nodes -
& 40
3 -
= S8a
r] e
[
s = - -
9
8
w :
3 7 7, B
0 b5
Stage-l Stage-l| Siage-ill —

Stages of Concurrency

The fraction of MSI time in which each stage could use
1, 2, 4, or 8 more nodes.

Maximum Fractional Node Usage Possible - Entire Program

100 ~ —
£
£ 80
L]
E L
: /]
[-] -
a 60 MW 1-Node
& | A 2-Nodes T
-
3 B 4-Nodes
® <011 8-Nodes
2 _
= <
=
§ 20 71
s
s 4 -
'
° -

The fraction of time the total MSI calculation could use -
1, 2, 4, 8 or more nodes.

1198-24

ORNL-DWG B7-17447

MSI PARALLEL ALGORITHM

SENSOR SENSOR SENSOR
1 2 3
SENSOR TRACKS
COMMON REFERENCING
UPDATED
l——
FEASIBLE GATING
}]] MSI TRACKS
CORRELATION LIKELIHOOD CALCULATIONS

SORTING ROUTINE

GROUP MOST PROBABLE SENSOR
TRACKS TO EACH MSI TRACKS
THEN
GROUP REMAINING SENSOR TRKS

PROBABILITIES FOR MSI TRACK GROUPINGS

HYPOTHES!IS SELECTION

CLASSIFY MSI TRACKS
CONFIRMED
UNCONFIRMED
NEW DETECTION
FALSE ALARM

INITIALIZE NEW MSI TRACKS

ASSIGN MSI TRACKS
TO NODES

UPDATE MSI TRACKS

RETURN UPDATED MSI
TRACKS TO HOST

NEXT TIME STEP

Fig. 9. Schematic of a completely concurrent MSI program.

