
11LA-7065-MS
Informal Report

^7 v
UC-32

Issued: December 1977

f

Common File System Specifications
September 1977

P. M. Blood
R. D. Christman

M. W. Collins
E. W. Willbanks

r

alamos
of the University of California

LOS ALAMOS, NEW MEXICO 87545

/ \
An Affirmative Action/Equal Opportunity Employer

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7409-ENG. 36

CHSTRIBUUUW Ub XtiiS
poc-liMEMX IB imUtAlTED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Fnnt-u in the (imtcd Suiex ol America. Available ln»m
Nation;J Technical Inlormation Service

U.S. Department of Cummerce
5285 Port Royal Road
Springfield. VA 22161

Microfiche $ 3.H0 126 150 7.25 251-275 10.75 376-400 1 3.00 501-525 :5.25
001 u:5 4 00 151 175 8.00 276-300 11.00 401-4 25 13 25 526-550 15.50
026-050 4 50 176 200 9.00 301-325 11.75 4 26-4 50 14 00 551-575 16 25
051-075 5.25 201 225 9.25 326-350 12(H) 451 4 75 14 50 576-600 16.50
076 100 6.00 226 250 9.50 351*375 12.50 476-500 15.00 601 -up — 1
101*125 6.50

1. Add 52.50 for each additional 100-page increment from 601 pages up.

This report was prepared as an account of work sponsored
bv the United Slates Government. Neither the United States
nor the United States Department of K.norgv. nor anv of their
employees, nor anv of their contractors, subcontractors, or
their employees, makes anv warranty, express or implied, or
assumes any leRal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights.

CONTENTS

1.0. PURPOSE.. 1
2.0. CFS DESCRIPTION... 2

2.1. User Interface to the CFS.......................... 2
2.2. User View of the CFS............................... 2
2.3. Directory Organization and Data Access............. 3

2.3.1. Directory Structure........................ 3
2.3.2. Path Concept............................... 5
2.3.3. Access......................................5
2.3.4. Linking.....................................8
2.3.5. Implications...............................10
2.3.6. Partial List of Capabilities Not

Provided by the CFS........................10
2.4. Functions Available to

the Worker Machines................................11
2.4.1. CREATE a Root Directory....................11
2.4.2. ADD a New Subdirectory Node................11
2.4.3. SAVE a New Data Set........................11
2.4.4. REPLACE an Existing Data Set................12
2.4.5. APPEND to an Existing Data Set............ 13
2.4.6. GET a Data Set.............................13
2.4.7. MODIFY Directory or Data Set

Descriptor Node............................14
2.4.8. DELETE a Data Set..........................14
2.4.9. REMOVE a Directory Node....................15
2.4.10. LINK a Directory or Data Set

Descriptor Node............................15
2.4.11. UNLINK a Directory or Data Set

Descriptor Node...................... 16
2.4.12. LIST a Directory or Data Set

Descriptor Node............................16
2.4.13. DESCRIBE a Directory or

Data Set Descriptor Node...................16
2.4.14. COPY a Data Set............................17
2.4.15. DESTROY a Subtree..........................17
2.4.16. STATUS of the CFS..........................18
2.4.17. ABORT Request..............................18

3.0. OPERATOR VIEW OF CFS....................................18
3.1. Overview...18
3.2. Operator Functions.................................. 19

4.0. OPERATIONS MANAGEMENT VIEW OF THE CFS.................. 20
4.1. Overview...20
4.2. Available Functions................................ 20

5.0. MAINTENANCE ENGINEER VIEW OF THE CFS................... 20
5.1. Overview.. 20

-NOTICE-
This report wes prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability o, responsibility for the Kcuracy. completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that tts use would not

I infringe privately owned rights.______________________
ii i

DISTRIBUTION OF THIS DOCUMENT IS LLNLLN

6.0. SYSTEM PROGRAMMER VIEW OF THE CFS...................... 21
6.1. Overview.. 21
6.2. System Programmer Functions....................... 21

7.0. CFS STORAGE AMD PERFORMANCE REQUIREMENTS............... 22
7.1. Storage Requirements.............................. 22
7.2. Prime Shift File Transmission Requirements........ 22
7.3. Production File Transmission Requirements......... 22

8.0. INTEGRATING THE CFS INTO THE ICN
AND PHASING OUT HYDRA.................................. 23

9.0. GLOSSARY..23

iv

COMMON FILE SYSTEM SPECIFICATIONS

by

P. M. Blood
R. D. Christman
M. W. Collins

E. W. Willbanks

ABSTRACT

The Common File System (CFS) is a mass
storage system for the Los Alamos Scientific
Laboratory's (LASL) Integrated Computer Network.
The function of the CFS is to allow users of
computers in the network to store and retrieve
large amounts of data. The CFS will have an
on-line storage capacity of more than a trillion
bits and an archival storage capacity of several
trillion bits. This report describes the
capabilities provided by the CFS. Particular
attention is given to describing the hierarchical
file system and the system functions available to
utilize it.

1.0. PURPOSE
The Common File System (CFS) will be a node in the Los

Alamos Scientific Laboratory's (LASL) Integrated Computer Network
(ICN). The function of the CFS will be to allow users of the
various worker machines and Input/Output stations in the ICN to
store and retrieve data sets that can be shared by users of
different computers and operating systems. At the same time it
will provide a level of protection that is adequate from the
standpoint of both privacy and security issues. The CFS will also
provide the capabilities to accomplish an orderly and painless

1

phaseout of the present Hydra file system, which is inadequate in
reliability, storage capacity, and response time. The highest
possible priority will be given to the reliability and
availability of the CFS.

2.0. CFS DESCRIPTION
2.1. User Interface to the CFS.

This document defines a standard set of functions that
will be used by each worker computer to access the CFS. Each
worker operating system will in turn use the standard CFS
functions to provide a set of commands to be used by the user to
access the CFS. These commands can be tailored to the
particular needs of the users. This standard CFS interface will
be independent of worker machine operating systems and file
systems, and will also be independent of particular mass storage
systems so that a stable interface can be provided as new mass
storage systems are added.
2.2. User View of the CFS.

The user sees the CFS as a safe storage place to which his
worker machine data sets are copied or staged. When he wants to
use his data sets, he copies them from the CFS storage device to
a storage device on the worker computer. Then the data sets are
the same as any other worker machine data set. The CFS is
basically an extension to the worker machine storage capacity.

Ideally the CFS would provide users with a simple means
for the on-line storage of an essentially unlimited amount of
data with data access and transmission capability sufficient to
provide responses that do not degrade user or worker machine
performance. From a practical standpoint, this ideal can best
be achieved for a majority of the accesses by using a storage
hierarchy in the CFS that is transparent to the user except for
response time. This hierarchy will consist of off-line storage
of several trillion bits, an on-line mass store of more than a
trillion bits, and a much smaller, faster disk storage. The CFS
will provide management and access to both on-line and off-line
storage. In order to improve access response time for the more
active data sets, the CFS will move data sets from one storage
level to another according to size and usage. The user will
also be allowed to move his data sets off-line or on-line, but
not to the disk storage. The user will not be required to
specify the storage device his data set resides on in order to
access it. Also, the user does not need to be aware of the
physical storage media or concerned with the management of data
on it. Without any special user action, the system will put
archival data sets on the proper storage media to be taken
off-line.

The ultimate reliability goal of the CFS is that it be
safe enough so that a user can always entrust his only copy of a
data set to it for storage. In the real world, of course, this
goal can only be approached, and even if it were achieved, not
all users would believe it. For this reason facilities will be
2

provided for copying information. The system will also provide
the user a limited capability to physically separate data sets.

The CFS will work on the basis of staging full and,
possibly, partial data sets; it will not be capable of working
on a record basis. If implemented, the accessing of partial
data sets will be based on physical addressing (starting byte
address and number of bytes to be transmitted). The CFS will
have no knowledge of internal data set structures so no logical
addressing, manipulation, or conversion of data sets will be
performed. The user can use his data set from any appropriate
worker but he has the responsibility of initiating any
conversions that may be required.

With the trillion-bit devices now available for storage,
the response time for data transfer of on-line data is tens of
seconds. For off-line storage the response will be minutes and
for disk storage it will be seconds. A priority scheme will be
provided so that the worker machine can specify which requests
from that machine should be processed first by the CFS. By
multiplexing data transfers, most priority requests can be
quickly processed. Simple requests for status or data set
information can be satisfied in a few seconds.

The CFS will be a secure place to store classified
information. The same system will store classified and
unclassified data. The CFS appropriately protects all
information and logs all legal and illegal transactions for
classified data sets.
2.3. Directory Organization and Data Access.

2.3.1. Directory Structure. The CFS directory system
structure will be based on the rules of tree structure. A tree
is formally defined as a finite set T of one or more nodes such
that:

a. there is one specially designated node called the root
of the tree,

b. the remaining nodes (excluding the root) are
partitioned into m 2 0 disjoint sets T-|, Tp,-- , Tj^
and each of these sets in turn is a tree. The trees
^1> ^2> -- >^m are called the subtrees of the tree T.

The CFS directory system will be structured as a "forest"
of trees where data sets for logical and functional partitions
such as Laboratory divisions, groups, or projects can be
organized in specific trees and subtrees. The nodes of a tree
will be either directories or data set descriptors. A directory
is a list of immediate descendant nodes and is the parent
directory of these nodes. A data set descriptor is information
pertaining to a particular data set such as location and usage,
for each data set saved in the CFS, a corresponding descriptor
node is formed.

The root of a tree is called the root directory for that
tree. Trees that belong to individuals will typically have user
numbers for names of root directories. This will facilitate

access to the tree ; th e user will not have to specify th e root
director y. It will al so be possible to create root director y
names having chara cter s other than numeric. This will
facilita te the sha ring of data sets between in dividuals,
projects , and grou ps. A directory that is not the root
director y of the t ree is referred to as a s ubd irectory. A
subdirec tory and i t s d escendants form a subtre e .

A tree is constr ucted by first creati ng the root d ir ector
and then creating subd irectories and/or sav ing data sets # Many
director ies or dat a se t descriptors can occ ur as immedia te
descenda nts of any dir ectory. A directory or data set
descriptor is an immed iate descendant of on iy one parent
director y. A data set descriptor is always a terminal nod e
(having no descend ants) while a directory m ay or may not b e a
terminal node. Fi gure 1 shows a sample dir ectory system o f two
trees. Directorie s ar e indicated by round nod es, and data set
descript ors are in d ica ted by square nodes. Nodes 1 and 13 are
the root directori es o f the two trees. Arr ows always po in t to
immediat e descenda nts.

Cl ST AT 85848

SYSTEMSTATSLTSSCROS

ERROR MODSMAINTLOGS

ERROR

NODE PATH NODE PATH

1 C1STAT 9 C1STAT/LTSS/LOGS/ERROR
2 C1STAT/CROS 10 C1STAT/LTSS/MAINT
3 C1STAT/CROS/PM 11 C1STAT/LTSS/MAINT/PM
4 C1STAT/CROS/RM 12 C1STAT/LTSS/MAINT/RM
5 C1STAT/CR OS/ERROR 13 85848
8 C1STAT/NOS 14 85848/STATS
7 C1STAT/LTSS 15 85848/ST ATS/MODS
8 C1STAT/LTSS/LOGS 16 85848/SYSTEM

Fig. 1
Sample directory system of two trees.

4

2.3.2. Path Concept. A path is the name by which any
directory or data set descriptor node is specified. The path
may also be used to identify the subtree having that node as a
root. The path is the compound of all the names of the
ancestors of the node plus the name of the node. The names are
ordered from the oldest to the youngest. A path always consists
of a root directory name, followed by the subdirectory names (if
they exist), and ending with the node name. Directories and
data sets can be given any name as long as the resulting path is
unique. In Fig. 1, the path is given for each node.

2.3.3. Access. Access to directories and data sets is
controlled by classification checking and user validation.
Classification checking consists of verifying that the
classification of the request is greater than or equal to the
classification of the node to be accessed. User validation
consists of verifying that the user making the request has the
required access privilege (for the function requested), and that
the correct password has been supplied for password-protected
nodes.

The user validation verification is implemented through
the placement of user validation entries at directory and data
set descriptor nodes. Each user validation entry contains:

a. A user number.
b. The access privilege(s) allowed.
c. Password (optional except for classified nodes).
When a root node is "CREATED," a master user validation

entry is automatically made at the root node that contains:
a. The user number of the request that created the node.

This user number is considered to be the owner of the
resulting tree.

b. All access privileges.
c. Password (optional except for classified node).

All other user validation entries must be explicitly added as
desired.

Access privileges contained in a directory node affect
that user's access to all the nodes below the directory in the
following way. When a node is referenced in a request, the path
from the root directory to the referenced node is traversed.
The access privileges for that user at each node in the
traversal are accumulated.

Accumulating the access privileges is subject to a
modifier stored with each user validation entry. This modifier
indicates how the access privileges in the current node should
be combined with the previously accumulated privileges. There
are three possible methods for combining the privileges:

5

1. The new access privileges are added to the previously
accumulated privileges (a logical 0R operation).

2. The new access privileges specify a limit on the
previously accumulated privileges (a logical AND
operation).

3. The new access privileges replace the previously
accumulated privileges (called a SET operation).

A significant aspect of the access method described is
that an access privilege at a node applies to all nodes of its
subtree unless explicitly modified by an entry in the subtree.

If the specified user does not have a validation entry in
a node, a search is made for a zero (or Universal) user number
entry. If the Universal entry is found, its access privileges
are combined with the users previously accumulated privileges
according to the modifier included with the Universal entry.
The previously accumulated access privileges remain the same if
the specified user does not have an entry or if there is no
Universal entry.

The following access privileges are defined:
a. Read Access. Read access applied to a data set

descriptor node allows:
• All or part of the CFS data set to be transferred to

a worker machine.
• Activity and descriptive information for the data

set to be read.
Read access applied to a directory node allows:

• List of the immediate descendant nodes to be read.
• Activity and descriptive information for the

directory to be read.
b. Execute Access. Execute access applied to a data set

descriptor node allows all or part of the CFS data set
to be transferred to a worker machine. It is the
responsibility of the worker machine to prevent the
user of the program from examining the contents of the
program. Execute access does not apply to a directory
node.

c. Write Access. Write access applied to a data set
allows:
• The CFS data set to be replaced by a data set from

the worker machine.
• Data set to be deleted.
• Data set name, release date, archival status, and

descriptive information to be changed.
Write access applied to a directory allows:

• The directory to be removed.
• Immediate-descendant directories or data sets to be

added.
• Descriptive information to be changed.

d. Append Access. Append access applied to a data set
descriptor node allows information to be added at the
end of the CFS data set. Append access does not apply
to a directory node.

6

e. Insert Access. Insert access applied to a directory
node allows immediate descendant directories or data
sets to be added. Insert access does not apply to a
data set descriptor node.

f. Bestow Access. Bestow access applied to a data set
descriptor or directory node allows user validation
entries to be added to the node. An added user
validation entry can only have those access privileges
that the bestowing user has.

g. Modify Access. Modify access applied to a data set
descriptor node allows
• Data set name, release date, archival status, and

descriptive information to be changed.
• User validation entries to be read, added, changed,

and deleted.
Modify access applied to a directory node allows:

• Descriptive information and classification to be
changed .

• User validation entries to be read, added, changed,
and deleted.

Password protection for a node is provided by the password
in the last applicable user validation entry encountered as the
path is traversed from the root to the accessed node. If no
password is contained in the last applicable entry, then no
password is required even though passwords may be part of
higher-level applicable entries. An applicable user validation
entry is any entry along the path that contains the user number
specified in the request. Any zero (Universal) user number
along the path is also applicable as long as the same node does
not contain an explicit entry for the user.

Figure 2 illustrates the use of access privileges and
passwords. Note that

a. User 69258 has all access privileges to nodes 1, 2, 3,
and M. Must supply PASSWRDO for nodes 1, 2, and 3-
Must supply PASSWRD4 for node 4.

b. User 76543 has write, read, and bestow access to nodes
2 and 3, and read access to node 4. Must supply
PASSWRD1 for nodes 2 and 3. No password required for
node 4.

c. User 85848 has write and read access to nodes 2 and 3,
and read access to node 4. Must supply PASSWRD2 for
nodes 2 and 3. No password required for node 4.

d. User 75145 has read and insert access to nodes 2, 3,
and 4. Must supply PASSWRD3 for nodes 2 and 3. Must
supply PASSWRD4 for node 4.

e. User 82176 has write access to node 4.
f. All other users have read access to node 4. Must

supply PASSWRD4.

7

ACCUMULATION
USER ACCESS PRIVILEGES PASSWORD TYPE

69253 WRITE, READ, APPEND, PASSWRDO OR
EXECUTE, INSERT,
BESTOW, MODIFY

76543 WRITE, READ, BESTOW PASSWRD1 OR
85848 WRITE, READ PASSWRD2 OR
75145 READ, INSERT PASSWRD3 OR

82176 WRITE
85848 READ
76543 READ, APPEND

0 READ

OR
SET
AND

PASSWRD4 OR

Fig. 2
Access privileges and password usage.

2.3 .4. Li nkin g- Linkin g i
ex is ting nodes i n th e same tree o
node becomes the imm ed ia te descen
de sc end an t node r ema in s connec ted
cr ea tion and lin king P ro cesses so
immediate ancest ors an d can be ac
A li nked node st ill ha s only one
th ou gh th e linki ng d es tr oys th e t
pr es er ved since path s to nodes in
as i f the linked nod es b elong onl
ac ce ss is made. The re f o re, 1 i nki
su bt r ees to reta in i ts o rigina 1 i
su bt ree o f any o then t ree.

The path d ef in it io n is modi
su ch that the pa th i s de termin ed
it had on ly one immed i at e ance sto
pa th) .

s defined as the connecting of
r different trees so that one
dant of the other. The
to ancestors from previous
that it now has two or more

cessed by more than one path,
parent directory node. Even
ree structure, the concept is
a linked tree or subtree are

y to the tree through which the
ng enables a tree or any of its
dentity while becoming a
fied when links to a node exist
by treating each node as though
r (the ancestor on the desired

8

In the 1 inking of two n ode s , the descen d ant no de may be
g i ve n a differ ent name (an al ias) # This al ia s must be used if
a nd on iy if a path uses this lin k •

In Fig. 3, the tree str uct u re shown i n F ig. 1 is given
a Ion g wi th the representation of the followin g two 1 ink ing
o per at ions:

(a) Node 7 (descendant) is lin ked to no d e 14 w ith "alias
name HARDWARE given to nod e 7.

(b) Node 15 (descendant) i s li nked to n o de 7 w ith "alias
name BUGS given to nod e 15 •

Th e subt ree C1STAT/LTSS al s o b ecomes th e subtr ee
85848/STATS/HARDWARE. The subtree 85848/STATS/MODS (which
consists only of node 15) also becomes the subtree
C1STAT/LTSS/BUGS. Nodes having multiple paths are listed in
Fig. 3- The nodes listed are also roots of subtrees that have
multiple paths.

C1STAT 85848

CROS SYSTEMSTATS

HARDWARE

LOGSERROR MODSMAINT

BUGS

ERROR

NODE PATHS

7 C1STAT/LTSS
85848/STATS/HARDWAR E

8 C1STAT/LTSS/I.OGS
85848/STATS/HARDWARE/LOGS

9 C1STAT/LTSS/LOGS/ERROR
85848/STATS/HARDWARE/LOGS/ERROR

10 C1STAT/LTSS/MAINT
85848/STATS/HARDWARE/MAINT

NODE PATHS

11 C1STAT/LTSS/MAI NT/PM
85848/STATS/HARDWAR E/MAINT/PM

12 C1STAT/LTSS/MAINT/RM
85848/STATS/HARDWAR E/MAINT/RM

15 85848/STATS/MODS
85848/STATS/HA R DWAR E/BUGS
C1STAT/LTSS/BUGS

Fig. 3
Sample directory system of two trees showing linking.

9

Access privileges are not accumulated across links. The
system converts a linked path to the true path. The true path
does not contain any links. In Fig. 3, the system would replace
the linked path C1STAT/LTSS/BUGS with the true path
85848/STATS/MODS. Access privileges are accumulated along the
true path.

It is likely that initial versions of the CFS will only
allow linking from a directory node to a data set descriptor
node.

2.3»5. Implications. The reasons for choosing a
"tree-like" directory structure are as follows:

a. Data Sets can be organized in a logical hierarchical
manner. This provides a convenient means for users to
manage, access, and share data sets.

b. Functions may be applied to one or more data sets in a
subtree. This allows the logical partitions of a large
data set to be stored as individual data sets in a
subtree where one or more of the partitions can be
accessed by a single operation.

The directory structure for a given application can be
very simple or very complex. A minimum directory structure to
store a single data set in the CFS must consist of a root
directory and one data set descriptor. The length (number of
characters) of any given path is the only restriction to the
number of levels in a tree.

A version capability can be implemented by the user or
worker machine utilizing the tree structure. A directory node
would be added having as the path name the desired data set
name. Versions of the data set would be saved as data sets in
this directory using the version number or other appropriate
version I.D. The user or worker machine has the responsibility
for accessing, deleting, etc., the desired version.

The Network Security Controller will require a password
for user number validation. By controlling directory and data
set access with user numbers, the CFS provides another level of
protection (in addition to the use of CFS passwords).

2.3.6. Partial List of Capabilities Not Provided by the
CFS. Some capabilities not provided by the CFS are:

a. A common user interface. Each worker-machine system
has the responsibility for providing a CFS/user
interface. Hopefully the worker machines will attempt
to provide a common user interface.

b. Access to or update of logical parts of a data set.
The CFS will not support any logical structure. Data
sets will be stored as a string of 8-bit bytes. If
implemented, partial data set access will be based on
specifying the relative starting address in bytes, and
the number of bytes to be transmitted.

c. Data set conversion. The CFS will not support any data
set conversion.

10

2.4. Functions Available to the Worker Machines.
2.4.1. CREATE a Root Directory. A tree (root only) is

formed with the user number or a special name as the root
directory. The tree is identified as belonging to the specified
division, group, and user (or equivalent) for accounting
purposes.

Function parameters
1. User number .
2. Classification of request.
3. Directory classification.
4. Master password for root directory (optional except for

classified roots).
5. User validation entries (optional).
6. Special root directory name (optional).
7. Owner division, group, and name (or equivalent).
8. Other descriptive information (optional).
Notes:
1. User validation entries must include passwords if root

is classified.
2. Request classification must be greater than or equal to

directory classification.
3. A special root directory name will be rejected if the

name is already the name of another root node.
2.4.2. ADD a New Subdirectory Node. A new subdirectory

node is formed and the name of the directory is entered in the
parent directory. Write or insert access to the parent
directory is required.

Function parameters:
1 . User number.
2. Classification of request.
3. Path of new directory.
4. Password of parent directory if required.
5 New directory classification.
6. User validation entries (optional).
7. Other descriptive information (optional).
Notes:
1. Path to the parent directory is determined from path of

the new directory.
2. Request classification must be greater than or equal to

parent directory classification.
3. New directory classification must be less than or equal

to parent directory classification.
4. User validation entries must include passwords if node

is classified.
2.4.3. SAVE a New Data Set. A new data set descriptor

node is formed and the name of the data set is entered in the
parent directory. Space is allocated and the data set is copied

to the storage system. Write or insert access to the parent
directory is required.

Function parameters
1. User number.
2. Classification of request.
3. Path of new data set (descriptor).
4. Password of parent directory if required.
5. Data set classification.
6. User validation entries (optional).
7. Other descriptive information (optional).
8. Data set size.
9. Release date.
Options:
1. The data set can be specified as archival, in which

case it will be moved off-line.
2. The physical storage units will be separated into at

least two groups. The user will have the option of
specifying which group th^ data set will be stored
into. The group cannot be changed by a MODIFY.

Notes:
1. User validation entries must include passwords for

classified data set.
2. Path to parent directory is determined from path of new

data set (descriptor).
3. Request classification must be greater than or equal to

parent directory classification.
4. The data set classification must be less than or equal

to the parent directory classification.
5. The data set is effectively released when the release

date occurs.
6. A SAVE function will not be treated as a REPLACE

function if the data set already exists. The worker
machine can provide this capability if desired.

2.4.4. REPLACE an Existing Data Set. New data is saved
and then the old data is deleted. Write access to the data set
(descriptor) is required.

Function parameters:
1 . User number.
2. Classification of request.
3. Path to data set (descriptor).
4. Password for data set if required.
5. Data classification.
6. Other descriptive information (optional).
7. Data set size.
Notes:
1. A REPLACE function will not be treated as a SAVE

function if the data set does not exist. The worker
machine can provide this capability if desired.

12

2. Classification of request must be greater than or equal
to classification of data set.

3. Data classification can be lower than classification of
data set. The CFS will raise the data classification
to the data set classification.

2.4.5. APPEND to an Existing Data Set. Data from the
worker machine is appended to (added to the end of) the data
set. Write or append access to the data set (descriptor) is
required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to data set (descriptor).
4. Password for data set if required.
5. Data classification.
6. Other descriptive information (optional).
7. Append size.
Notes:
1. This function will not be implemented for initial

versions of the CFS.
2. Classification of request must be greater than or equal

to classification of data set.
3. Data classification can be lower than classification of

data set. The CFS will raise the data classification
to the data set classification.

4. If a data set does not end on a byte (8-bit) boundary,
the CFS will pad it to a byte boundary before adding
the append data.

2.4.6. GET a Data Set. Requested data is sent to the
worker machine. Read or execute access to data set (descriptor)
is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to data set (descriptor).
4. Password to data set if required.
Future implementation:
1. Get part of a data set (starting byte address and

number of bytes to be transmitted).
2. Get all data sets in a subtree.
Notes:
1. The implementation of the GET subtree function might

better be done at the worker machines.
2. Request classification must be greater than or equal to

data set classification.
3. The worker machine must prevent a data set that was

read with execute access from being examined by the
user .

13

2.4.7. MODIFY Directory or Data Set Descriptor Node.
Information that may be modified includes:

a. Classification (directory node only). Modify access is
required.

b. Data set release date (expiration will cause data set
deletion). Modify or write access required.

c. Archival status. Modify access is required.
d. User validation entries. Bestow or modify access is

required to add entries. Modify access is required to
change or delete entries.

e. Owner division, group, and name (root directory only).
Modify access is required.

f. Descriptive information. Modify or write access
required .

g. Data set name. Modify or write access is required.
Function parameters:
1. User number.
2. Classification of request.
3. Path to node.
4. Password to node if required.
5. Modifications.
Future Implementation: Modify all nodes of a subtree.

Notes:
1. Request classification must be greater than or equal to

the node classification.
2. Classification of a data set can be changed only by

deleting the data set and then saving it with the new
classification.

3. Directory classification cannot be raised above request
classification or parent directory classification.
Directory classification cannot be lowered below
highest classification of immediate descendant nodes.

2.4.8. DELETE a Data Set. Data set descriptor node is
deleted and data set space is released. The data set name is
removed from the parent directory node. Write access to the
data set (descriptor) node is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to data set (descriptor).
4. Password to data set if required.
Notes:
1. Path to parent directory is determined from path of

data set.
2. The request classification must be greater than or

equal to data set classification.
14

2.4.9* REMOVE a Directory Node. The directory is deleted
and its name is removed from its parent directory node if it has
one. Write access to the directory node is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to node.
4. Password to node if required.
Notes:
1. Directory must be empty.
2. Path to parent directory is determined from path of

directory to be removed.
3. The request classification must be greater than or

equal to directory classification.
2.4.10. LINK a Directory or Data Set Descriptor Node. A

path is formed from a directory node (ancestor) to a directory
or data set descriptor node (descendant) in the same or a
different tree. Write or insert access to the ancestor node is
required.

Function parameters:
1. User number.
2. Classification of request.
3. Existing path to descendant node.
4. "New linked" path of descendant node.
5. Password to ancestor node if required.
Notes:
1. It is likely that initial versions of the CFS will only

allow linking from a directory node to a data set
descriptor node.

2. A link to a node only defines an alternate path to the
node. It does not guarantee access.

3. An "alias" name may be given for the descendant node on
the "new linked" path.

4. Path to ancestor directory is determined from "new
linked" path of descendant node.

5. Any existing pointer to a data set (descriptor) or
directory node will not be removed by DELETE or REMOVE
functions. For this reason, the appearance of linked
data sets or directories in the listing of an ancestor
directory does not guarantee that the linked data sets
or directories exist. Only the UNLINK or DESTROY
function can cancel the effect of a LINK function.

6. If the descendant node of a link is deleted and later a
new node with the same path is inserted, the link will
point to the new node.

7. The request classification must be greater than or
equal to ancestor node classification.

8. The descendant node classification must be less than or
equal to the ancestor node classification.

15

2.4.11. UNLINK a Directory or Data Set Descriptor Node.
A linked path (created by LINK function) to a directory or data
set descriptor node is removed. Write access to the immediate
ancestor node on the linked path is required.

Function parameters:
1 . User number.
2. Classification of request.
3. Linked path to node (descendant).
4. Password to immediate ancestor node if required.
Notes:
1. The MODIFY function is required to remove any access

validation entries that may exist for the "unlinked"
path.

2. Path to immediate ancestor node determined from linked
path to node (descendant).

3. The request classification must be greater than or
equal to ancestor node classification.

2.4.12. LIST a Directory or Data Set Descriptor Node.
Listed information will include:

a. Descendant node names (if directory).
b. Status, activity, size, etc., (if data set descriptor)
c. Descriptive information.

Read access to the node is required.
Function parameters:
1. User number.
2. Classification of request.
3. Path to node.
4. Password of node if required.
Options:
1. Obtain list at all nodes in subtree.
Notes:
1. List of directory may also include description of

descendant nodes.
2. The request classification must be greater than or

equal to node classification.
3. Information will only be returned for nodes of the

subtree for which the user has read access.
2.4.13. DESCRIBE a Directory or Data Set Descriptor Node

Will include all information from LIST function as well as
information such as classification and user validation entries.
Modify access to the node is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to node.
4. Password of node if required.

16

Options:
1. Obtain description of all nodes in subtree.
Notes:
1. The request classification must be greater than or

equal to node classification.
2. Information will only be returned for nodes of the

subtree for which the user has modify access.
2.4.14. COPY a Data Set. Information in the source data

set is copied to a new data set. The source data set is left
intact. Read access to the source data set (descriptor) is
required. Write or insert access to the parent directory of the
new data set is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path of source data set (descriptor).
4. Password of source data set if required.
5. Password of new data set parent directory if required.
6. Path of new data set (descriptor).
7. Data set classification.
8. User validation entries (optional).
9. Other descriptive information.

10. Release date.
Options:
1. The new data set can be specified as archival (see

2.4.3., Option 1).
2. The physical storage group of the new data set may be

specified (see 2.4.3., Option 2).
Notes:
1. Classification of new data set must be greater than or

equal to source data set.
2. Path of parent directory node is determined from path of

new data set.
3. Request classification must be greater than or equal to

classification of source data set and parent directory
of destination data set.

4. New data set classification must be less than or equal
to its parent directory classification.

2.4.15. DESTROY a Subtree. All data sets and directories
in the subtree are deleted. Write access to each node of the
subtree is required.

Function parameters:
1. User number.
2. Classification of request.
3. Path to subtree.
4. Password to nodes if required.

17

Notes:
1. Path to parent of subtree root node is determined from

path of subtree.
2. The request classification must be greater than or

equal to classification at each node of subtree.
3. If the user does not have write access to a node of the

subtree, all nodes along that node's path will remain
in the subtree. Nodes along paths from other nodes may
still be deleted.

4. This function will not be available when system first
goes into production.

2.4.16. STATUS of the CFS. The status of the CFS and its
devices is given along with the status of any incomplete
requests for the user number. The status will also include
current operator comments.

Function parameters:
1. User number.
2. Classification of request.
2.4.17. ABORT Request. The specified request is aborted.
Function parameters:
1. User number.
2. Request identification.
3. Classification of request.

3.0. OPERATOR VIEW OF CFS
3.1. Overview.

The operator sees the CFS as several storage devices
connected to a control computer. This complex in turn is
connected to a message and data transport device called a File
Transport or Distributor/Collector that has connections to each
of the worker computers (Fig. 4).

LTSSCROS DEMOS

MASS
STORAGE STORAGE

MASS

CFS
CONTROL

COMPUTER

FILE TRANSPORT

CDC 6600 CDC 7600 CDC 7600 CRAY

Fig. 4
Common File System configuration0

18

The major difference between the CFS and Hydra is that
there are no direct connections between the various computers
and the CFS. Hydra provides a common file function similar to
that which will be provided much more capably by the CFS.In general the operator will have enough information to
determine when everything is working properly and enough control
to clear up problems and to restart tasks that have hung up.
The operator will not have nor need much direct knowledge about
the state of the various worker computers. He will need to know
the status of the File Transport, however, since it is the only
connection between the CFS and the worker computers. The
operator console will consist of a CRT device(s) for dynamic
displays, a keyboard device(s) for input, and a printer
device(s) for hardcopy output. Display and printout for
critical problems will be accompanied by an audible alarm.
Input commands and output messages will be descriptive English
text to the maximum possible extent. Messages will be prefixed
with a code referencing a section in the operator’s manual that
gives a more complete description of the problem.

A "HELP" display will be provided and will list all
operator commands and their functions.
3.2. Operator Functions.

General functions available to the operator are:
1. Command descriptions. A list of operator commands and

functions will be displayed or printed.
2. CFS device status. Each physical device will have a

display adequate to determine if it is operating
properly.

3. File Transport status. This display will consist of
counts of messages sent, messages received, data blocks
sent, data blocks received, and errors.

4. Operator comment. This comment is included in the
status messages sent to users of the CFS.

5. Task lists. The list or queue of incomplete tasks can
be displayed. Optionally, tasks for only certain
machines, users, or devices can be displayed.

6. Unhang or abort tasks or hardware. The operator will
be able to restart or abort tasks or hardware
operations that have hung up.

7. Change status of a storage device. Storage devices can
be turned on or off, initialized, or put into a hold
state (CFS accepts requests but does not process them
until the device is reactivated).

8. System log dumps. The system logs may be dumped to
hard copy, mass storage, or magnetic tape.

9. Active task status. The tasks currently being
processed are displayed with enough information so the
operator can determine if they are progressing.

10. Commands and functions display. All the commands and
functions available for the operating system of the CFS
control computer can be displayed.

19

11. Backup dump initiation. Certain critical information
may be copied and saved by initiating backup dumps to
alternate storage media.

12. Reload backup dumps.

4.0. OPERATIONS MANAGEMENT VIEW OF THE CFS
4.1. Overview.

The Operations people who manage and control the use of
the CFS view it as a valuable resource and, as such, attempt to
make sure it is used properly. The general things Operations
needs to do are to purge off-line data sets, control data set
migration in the storage hierarchy, monitor space and access
requirements, generate reports of CFS usage and charging
information, monitor CFS performance, and modify the CFS
internal scheduling. Logs will be kept containing cost,
performance, usage, and activity information. The logs can be
copied to hard copy or mass storage. Log entries are neatly
formatted for manual analysis and uniquely identified so they
can be analyzed by computer programs that generate reports and
summaries.

Operations will interface to the CFS by using either the
operator console or by special batch jobs executed directly in
the CFS control computer. The programs to generate various
reports and summaries would probably be written and maintained
by the Operations Analysis Section. Operations will also be
responsible for maintenance and backup of all system data sets
required by the CFS. These include data sets used by the Mass
Storage devices and the directory system.
4.2. Available Functions.

The following functions are available to Operations
Management.

1. Control data set migration between the various storage
systems.

2. Purge off-line data sets.
3. Modify CFS scheduling parameters. This allows

operations to change the characteristics of the CFS
that affect the response time of user's requests.

4. Modify CFS accounting parameters. This allows the
accounting procedures for CFS services to be changed.

5. Analyze performance, usage, activity, and accounting
logs.

6. Generate reports. These are reports needed for
analyzing performance and for summarizing usage
information.

5.0. MAINTENANCE ENGINEER VIEW OF THE CFS
5.1. Overview.

The maintenance engineer sees the CFS as a valuable
resource used throughout the ICN. As such it must be kept

20

running essentially all the time, in a degraded mode if
necessary. If a device fails, it must be checked on a
stand-alone basis, or on the CFS control computer with
background programs. The control computer cannot be dedicated
to device repair and checkout except in emergencies.

Logs of equipment malfunctions will be available to
indicate hardware degradation and to give the engineers more
information about hardware problems. Diagnostic programs
written by the maintenance people will be allowed to run in the
background while the CFS is processing network requests.

6.0. SYSTEM PROGRAMMER VIEW OF THE CFS
6.1. Overview.

The system programming staff has the responsibility for
keeping the CFS running, adding enhancements, updating systems,
and resolving hardware/software problems. These
responsibilities require that the system programmers can use all
facilities that are available to all other classes of users plus
additional facilities that allow a more intimate involvement
with the operating system. They also need an adequate debug
facility so that most system changes and enhancements can be
fully checked out without using the CFS for dedicated system
time. This should include the checkout required for a new
worker machine or storage device to interface to the CFS.
6.2. System Programmer Functions.

The system programmer uses the functions available to all
other classes of users. It is important that the vendor-
furnished operating system has adequate tools for program and
system maintenance, including an adequate high-level system
programming language. Additional functions needed are shown
below:

1. Background debug facility. The background mode allows
a new version of the CFS software to be checked out at
the same time the production software is operating.
Functions performed in the debug mode include software
repair, adding new storage devices, and interfacing new
worker operating systems to the CFS.

2. Formatted/unformatted snapshot dumps. These dumps to
storage or hard copy can be initiated by a program or
as the result of a console command while the system is
in debug or operational status.

3. Message/data recording. Messages and data entering and
leaving the system at some software level can be dumped
to storage or hard copy. Information to be recorded is
selected for all sources, for specified worker
machine(s), for a specified user or job, for a
specified data set, or for a specified physical device.

4. General debug tools are available such as memory
display, memory change, data and instruction
breakpoints, instruction trace, instruction step mode,
request step mode, system freeze, and memory dumps.

5. Privileged functions. Read any directory or data set,
read an arbitrary area on any storage device, perform
system consistency checks, and step through an I/O
sequence.

The special facilities and functions available to the
system programmers will be adequately protected; no user
programs will be allowed to execute in the CFS, access to the
CFS will be only in the CCF, and use of the special functions
will be controlled.

7.0. CFS STORAGE AND PERFORMANCE REQUIREMENTS
7.1. Storage Requirements.

Current CCF mass storage requirements for the various LASL
programs are over 40 billion words (60-bit words). Of this
about 26 billion words are classified as archival. It is
estimated that in a few years these requirements will total 105
billion words. Of this about 81 billion words are classified as
archival, giving an on-line storage requirement of about 24
billion words. This projected on-line mass storage requirement
of 24 billion words is only for the next two years, but a Mass
Storage System having a capacity of 25 billion words would
probably satisfy the LASL CCF storage requirements for the next
four or five years as a greater percentage of the data could
reside off-line.

7.2. Prime Shift File Transmission Requirements.
The prime shift file transmission requirements for a peak

hour are:
• File accesses
• Data transmitted
• Average file size
• Average data

transmission rate

1,500 per hour
150 million words per hour
100 thousand words
2.5 million words per minute

The file access and data transmission rate required of a
Mass Storage System and the associated File Transport System is
dependent upon the desired response and the expected peak
loading for periods less than an hour.
7.3. Production File Transmission Requirements.

An upper bound on the
requirements consists of:

• File accesses
• Data transmitted
• Average file size
• Average data

transmission rate

production file transmission

- Minimal
- 300 million words per hour
- Greater than one

million words
- 5 million words

per minute

22

8.0. INTEGRATING THE CFS INTO THE ICN AND PHASING OUT HYDRA
Adding the CFS to the ICN and phasing out Hydra with a

minimum impact upon the user community is extremely important.
A key factor in this process is that a File Transport System to
which both Hydra and the CFS are connected must be available.
In addition to allowing users data set access to both Hydra and
the CFS, a service will be provided that allows Hydra data sets
to be moved to the CFS prior to Hydra's demise. It is probable
that Hydra will not be phased out until approximately a year
after the CFS is available.

The data transport technique used by Hydra and the worker
machines for the FT/X interface is being viewed as a prototype
for the interface that will be used with the CFS. This will
allow the data transport technique to be evaluated and refined,
and should decrease changes necessary for the CFS/worker machine
interf ace.

9.0. GLOSSARY
ALIAS: The different name that may be given to the descendant
node in a linking process.
ACCESS PRIVILEGE: The type of access allowed at a node: execute,
read, insert, append, write, modify, bestow.
ACCESS VALIDATION: Classification checking and user validation
to verify access to a node.

CFS: Common File System.
CLASSIFICATION: The security designation assigned to a node or a
user request.
DATA SET: Major unit of data storage and retrieval. Equivalent
to a NOS or LTSS file and a CROS fileset. Identified by a path.
DATA SET DESCRIPTOR: Node in tree corresponding to a specific
data set stored in the CFS. Contains information about the data
set: user validation entries, statistics, physical location,
etc. Identified by a path.
DIRECTORY: Node in tree. Contains a list of all immediate
descendant nodes. Also contains user validation entries and
classification.
ICN: Integrated Computer Network. The interconnection of worker
machines, storage systems, I/O stations, and terminal systems in
the LASL Central Computing Facility.

23

LINKING: The connecting of existing nodes in the same tree or
different trees so that one node becomes the descendant of the
other. This allows for data set sharing that could not be
accomplished using the same path.
MASTER ACCESS ENTRY: Entry made in user validation list of root
directory when the node is created.
MASTER PASSWORD: Password associated with the master access
entry (optional except for classified node).
NODE: A directory or data set descriptor element of a tree.
PARENT DIRECTORY: The immediate ancestor directory node that a
newly created node is connected to. All nodes have at most one
parent directory. (However, a node may have more than one
immediate ancestor due to linking processes.)
PATH: The name by which any directory or data set descriptor
node is specified. The path may also be used to identify the
subtree having that node as a root. The path is the compound of
all the names of the ancestors of the node plus the name of the
node. The names are ordered from the oldest to the youngest.
ROOT DIRECTORY: The root node of a tree. A root node is the
ancestor of all other nodes in the tree. The root directory is
associated with a Division (or the equivalent) for accounting
and space allocation purposes.
SUBDIRECTORY: Any directory node in a tree other than the root
directory.
SUBTREE: A partition of a tree that when considered alone is a
tree. May be a single node. Identified by path to its "root."

TERMINAL NODE: A node of a tree having no descendants.
TREE: A grouping of directory nodes and data set descriptor
nodes having a defined structure.
USER VALIDATION: Verification that a user validation entry (for
a node) can be found that satisfies the access privilege and
password requirements.
WORKER COMPUTER: A computer in the ICN that executes user jobs
or that manages terminals and will make requests to the CFS for
data sets or information about data sets or directories.

24

