N\
T v
11LA-7065-MS

Informal Report uc-32

Issued: December 1977

Common File System Specifications
September 1977

P. M. Blood
R. D. Christman
M. W. Collins
E. W. Willbanks

alamos

of the University of California
LOS ALAMOS, NEW MEXICO 87545

/ \

An Affirmative Action/Equal Opportunity Employer

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7409-ENG. 36

poc-liMEMX IB imUtAITED
CHSTRIBUUUW Ub XtiiS

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Microfiche
001 u:5
026-050
051-075
076 100
101*125

$ 3.HO
4 00
4 50
5.25
6.00
6.50

Fnnt-u in the (imtcd Suiex ol America. Available In»m
Nation;J Technical Inlormation Service
U.S. Department of Cummerce
5285 Port Royal Road
Springfield. VA 22161

126 150 7.25 251-275 10.75 376-400 13.00
151 175 8.00 276-300 11.00 401-4 25 13 25
176 200 9.00 301-325 11.75 426-4 50 14 00
201 225 9.25 326-350 12(H) 451 475 14 50
226 250 9.50 351*375 12.50 476-500 15.00

1. Add 52.50 for each additional 100-page increment from 601 pages up.

This report was prepared as an account of work sponsored
bv the United Slates Government. Neither the United States
nor the United States Department of K.norgv. nor anv of their
employees, nor anv of their contractors, subcontractors, or
their employees, makes anv warranty, express or implied, or
assumes any leRal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights.

501-525
526-550
551-575
576-600
601 -up

:5.25
15.50
16 25
16.50

—1

CONTENTS

PURPOSE . it i i ittt it ittt it ettt esesesesseesossesssasesens 1
CES DESCRIPTTION. & ittt it ittt i s enesesesesssesssssasssssess 2
2.1. User Interface to the CES.. ...ttt eeeeaanns 2
2.2. User View of the CFES. ...ttt iteereeeeeanaenans 2
2.3. Directory Organization and Data ACCESS...eeeeenennn. 3
2.3.1 Directory Structure........c..eiiineeeennenn 3
2.3.2 Path Concept ...ttt ittt ittt nanns 5
2.3.3 @7 S = = 1 5
2.3.4 P50 1< 8
2.3.5 ImPlicationS. e e e e e ittt et e eeeeenneeenneenas 10
2.3.6 Partial List of Capabilities Not
Provided by the CFEFS... ...ttt eeeneennns 10
2.4. Functions Available to
the Worker MacChines.ttt iin et ieeeeeneeeennns 11
2.4.1 CREATE a ROOL DireCtory.e..eeeeeeeeeeenennnn 11
2.4.2 ADD a New Subdirectory Node................ 11
2.4.3 SAVE a New Data Set......ciiiiiiiiiiennnen.. 11
2.4.4 REPLACE an Existing DataSet................ 12
2.4.5 APPEND to an Existing Data Set............ 13
2.4.6 GET a Data Set.....iiiiiin i eeeeeennnnnn 13
2.4.7 MODIFY Directory or Data Set
Descriptor NOde. ...ttt ittt enneeennennn 14
2.4.8. DELETE a Data Set......iiiiiitiiiinennennns 14
2.4.9. REMOVE a Directory NOdE.....o'iiiieeneenennn 15
2.4.10. LINK a Directory or Data Set
Descriptor NoOde.ttt ittt eneenennen. 15
2.4.11. UNLINK a Directory or Data Set
Descriptor Node......oiii it enennnn 16
2.4.12. LIST a Directory or Data Set
Descriptor NOde. .. i ittt it ittt neneeneenns 16
2.4.13. DESCRIBE a Directory or
Data Set Descriptor Node........coiieienn.. 16
2.4.14. COPY a Data Set ...ttt nnnnnnns 17
2.4.15. DESTROY a Subtree.......ciiii it inneneens 17
2.4.16. STATUS of the CFS.ttt iiieennnn. 18
2.4.17. ABORT ReUEST .. ittt itteeteeeeeeeeeeennnnean 18
OPERATOR VIEW OF CES ..ttt ittt ettt enneensoasssanasess 18
TP T O vV 18
3.2, OperatorFUuNCtioNS .t vttt ittt ettt ettt taeeneanns 19
OPERATIONS MANAGEMENT VIEW OF THE CFS.................. 20
O © v Vs N O 20
4.2, Available FUNCLIONS .t i it ittt ittt it ettt eaenens 20
MAINTENANCE ENGINEER VIEW OF THE CFS........cceeeeee... 20
T R @ v Vs I 20

-NOTICE-
This report wes prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability o, responsibility for the Kcuracy. completeness
or usefulness of any information, apparatus, product or P
process disclosed, or represents that tts use would not 11 1

infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS LLNLLN

iv

6.

7.

8.

9.

0.

0.

0.

SYSTEM PROGRAMMER VIEW OF THE CFES......¢.ciiieieieeenn. 21
6.1, OVEIVIEW. ittt ittt ettt ettt ee e eeeenaeaaeaneenas 21
6.2. System Programmer Functions...........ceeeeeeeeeen. 21
CFS STORAGE AMD PERFORMANCE REQUIREMENTS............... 22
7.1. Storage ReqUIirementS. ... v i it et eeeeeeneeneeneanns 22
7.2. Prime Shift File Transmission Requirements........ 22
7.3. Production File Transmission Requirements......... 22

INTEGRATING THE CFS INTO THE ICN
AND PHASING OUT HYDRA. ...ttt ittt ittt ittt tienenenns 23

Y N 2 23

COMMON FILE SYSTEM SPECIFICATIONS

by

P. M. Blood
R. D. Christman
M. W. Collins
E. W. Willbanks

ABSTRACT

The Common File System (CFS) is a mass
storage system for the Los Alamos Scientific
Laboratory's (LASL) Integrated Computer Network.
The function of the CFS is to allow users of
computers in the network to store and retrieve
large amounts of data. The CFS will have an
on-line storage capacity of more than a trillion
bits and an archival storage capacity of several
trillion bits. This report describes the
capabilities provided by the CFS. Particular
attention is given to describing the hierarchical
file system and the system functions available to
utilize it.

1.0. PURPOSE

The Common File System (CFS) will be a node in the Los
Alamos Scientific Laboratory's (LASL) Integrated Computer Network
(ICN) . The function of the CFS will be to allow users of the
various worker machines and Input/Output stations in the ICN to
store and retrieve data sets that can be shared by users of

different computers and operating systems. At the same time it
will provide a level of protection that is adequate from the
standpoint of both privacy and security issues. The CFS will also

provide the capabilities to accomplish an orderly and painless

phaseout of the present Hydra file system, which 1is inadequate in
reliability, storage capacity, and response time. The highest
possible priority will be given to the reliability and
availability of the CFS.

2.0. CFS DESCRIPTION

2.1. User Interface to the CFS.

This document defines a standard set of functions that
will be used by each worker computer to access the CFS. Each
worker operating system will in turn use the standard CFS
functions to provide a set of commands to be used by the user to
access the CFS. These commands can be tailored to the
particular needs of the users. This standard CFS interface will
be independent of worker machine operating systems and file
systems, and will also be independent of particular mass storage
systems so that a stable interface can be provided as new mass
storage systems are added.

2.2. User View of the CFS.
The user sees the CFS as a safe storage place to which his

worker machine data sets are copied or staged. When he wants to
use his data sets, he copies them from the CFS storage device to
a storage device on the worker computer. Then the data sets are
the same as any other worker machine data set. The CFS is

basically an extension to the worker machine storage capacity.

Ideally the CFS would provide users with a simple means
for the on-line storage of an essentially unlimited amount of
data with data access and transmission capability sufficient to
provide responses that do not degrade user or worker machine
performance. From a practical standpoint, this ideal can best
be achieved for a majority of the accesses by using a storage
hierarchy in the CFS that is transparent to the user except for
response time. This hierarchy will consist of off-line storage
of several trillion bits, an on-line mass store of more than a
trillion bits, and a much smaller, faster disk storage. The CFS
will provide management and access to both on-line and off-line
storage. In order to improve access response time for the more
active data sets, the CFS will move data sets from one storage
level to another according to size and usage. The user will
also be allowed to move his data sets off-line or on-line, but
not to the disk storage. The user will not be required to
specify the storage device his data set resides on in order to
access it. Also, the user does not need to be aware of the
physical storage media or concerned with the management of data
on it. Without any special user action, the system will put
archival data sets on the proper storage media to be taken
off-line.

The ultimate reliability goal of the CFS is that it be
safe enough so that a user can always entrust his only copy of a

data set to it for storage. In the real world, of course, this
goal can only be approached, and even if it were achieved, not
all users would believe it. For this reason facilities will be

2

provided for copying information. The system will also provide

the user a limited capability to physically separate data sets.
The CFS will work on the basis of staging full and,

possibly, partial data sets; it will not be capable of working

on a record basis. If implemented, the accessing of partial
data sets will be based on physical addressing (starting byte
address and number of bytes to be transmitted). The CFS will

have no knowledge of internal data set structures so no logical
addressing, manipulation, or conversion of data sets will be
performed. The user can use his data set from any appropriate
worker but he has the responsibility of initiating any
conversions that may be required.

With the trillion-bit devices now available for storage,
the response time for data transfer of on-line data 1is tens of
seconds. For off-line storage the response will be minutes and
for disk storage it will be seconds. A priority scheme will be
provided so that the worker machine can specify which requests
from that machine should be processed first by the CFS. By
multiplexing data transfers, most priority requests can be
quickly processed. Simple requests for status or data set
information can be satisfied in a few seconds.

The CFS will be a secure place to store classified
information. The same system will store classified and
unclassified data. The CFS appropriately protects all
information and logs all legal and illegal transactions for
classified data sets.

2.3. Directory Organization and Data Access.

2.3.1. Directory Structure. The CFS directory system
structure will be based on the rules of tree structure. A tree
is formally defined as a finite set T of one or more nodes such
that:

a. there 1is one specially designated node called the root
of the tree,
b. the remaining nodes (excluding the root) are

partitioned into m 2 0 disjoint sets T7-|, Tp, —, Tj
and each of these sets 1in turn 1s a tree. The trees
r1> 22> — >"m are called the subtrees of the tree T

The CFS directory system will be structured as a "forest"
of trees where data sets for logical and functional partitions
such as Laboratory divisions, groups, or projects can be
organized in specific trees and subtrees. The nodes of a tree
will be either directories or data set descriptors. A directory
is a list of immediate descendant nodes and is the parent
directory of these nodes. A data set descriptor is information
pertaining to a particular data set such as location and usage,
for each data set saved in the CFS, a corresponding descriptor
node 1is formed.

The root of a tree is called the root directory for that
tree. Trees that belong to individuals will typically have user
numbers for names of root directories. This will facilitate

access to the tree; the user will not have to specify the root
directory. It will also be possible to create root directory
names having characters other than numeric. This will
facilitate the sharing of data sets between individuals
projects, and groups. A directory that is not the root
directory of the tree is referred to as a subdirectory. A
subdirectory and its descendants form a subtree.

A tree 1s constructed by first creating the root director

and then creating subdirectories and/or saving data sets! Many
directories or data set descriptors can occur as immediate
descendants of any directory. A directory or data set
descriptor 1is an immediate descendant of onjy one parent
directory. A data set descriptor is always a terminal node
(having no descendants| while a directory mgy or may not be a
terminal node. Figure | shows a sample directory system of two
trees, Directories are indicated by round nodes, and data set
descriptors are indicated by square nodes. Nodes | and 13 are
the root directories of the two trees. Arrows always point to

immediate descendants.

85848

CISTAT
SYSTEM
cROS LTSS STATS
ERROR
LOGS MAINT Mobs
ERROR
NODE PATH NODE PATH
1 C1STAT 9 C1STAT/LTSS/LOGS/ERROR
2 C1STAT/CROS 10 C1STAT/LTSS/MAINT
3 C1STAT/CROS/PM 1 C1STAT/LTSS/MAINT/PM
4 C1STAT/CROS/RM 12 CASTAT/LTSS/MAINT/RM
5 C1STAT/CROS/ERROR 13 85848
8 C1STAT/NOS 14 85848/STATS
7 C1STAT/LTSS 15 85848/STATS/MODS
8 C1STAT/LTSS/LOGS 16 85848/SYSTEM
Fig. 1

Sample directory system of two trees.

2.3.2. Path Concept. A path is the name by which any
directory or data set descriptor node is specified. The path
may also be used to identify the subtree having that node as a
root. The path is the compound of all the names of the
ancestors of the node plus the name of the node. The names are
ordered from the oldest to the youngest. A path always consists
of a root directory name, followed by the subdirectory names (if
they exist), and ending with the node name. Directories and
data sets can be given any name as long as the resulting path is
unique. In Fig. 1, the path is given for each node.

2.3.3. Access. Access to directories and data sets is
controlled by classification checking and user wvalidation.
Classification checking consists of verifying that the
classification of the request 1is greater than or equal to the
classification of the node to be accessed. User validation
consists of wverifying that the user making the request has the
required access privilege (for the function requested), and that
the correct password has been supplied for password-protected
nodes.

The user validation verification is implemented through
the placement of user wvalidation entries at directory and data

set descriptor nodes. Each user wvalidation entry contains:
a. A user number.
b. The access privilege(s) allowed.
c. Password (optional except for classified nodes).

When a root node is "CREATED," a master user validation
entry is automatically made at the root node that contains:

a. The user number of the request that created the node.
This user number is considered to be the owner of the
resulting tree.

b. All access privileges.

c. Password (optional except for classified node).

All other wuser validation entries must be explicitly added as
desired.

Access privileges contained in a directory node affect
that user's access to all the nodes below the directory in the
following way. When a node is referenced in a request, the path
from the root directory to the referenced node is traversed.

The access privileges for that user at each node in the

traversal are accumulated.
Accumulating the access privileges is subject to a

modifier stored with each user validation entry. This modifier
indicates how the access privileges in the current node should
be combined with the previously accumulated privileges. There

are three possible methods for combining the privileges:

1. The new access privileges are added to the previously
accumulated privileges (a logical OR operation).

2. The new access privileges specify a limit on the
previously accumulated privileges (a logical AND
operation).

3. The new access privileges replace the previously
accumulated privileges (called a SET operation).

A significant aspect of the access method described is
that an access privilege at a node applies to all nodes of its
subtree unless explicitly modified by an entry in the subtree.

If the specified user does not have a validation entry in
a node, a search 1is made for a zero (or Universal) user number
entry. If the Universal entry is found, 1its access privileges
are combined with the users previously accumulated privileges
according to the modifier included with the Universal entry.
The previously accumulated access privileges remain the same if
the specified user does not have an entry or if there is no
Universal entry.

The following access privileges are defined:

a. Read Access. Read access applied to a data set
descriptor node allows:

+ All or part of the CFS data set to be transferred to
a worker machine.

* Activity and descriptive information for the data
set to be read.

Read access applied to a directory node allows:

* List of the immediate descendant nodes to be read.
* Activity and descriptive information for the
directory to be read.

b. Execute Access. Execute access applied to a data set
descriptor node allows all or part of the CFS data set
to be transferred to a worker machine. It 1is the
responsibility of the worker machine to prevent the
user of the program from examining the contents of the

program. Execute access does not apply to a directory
node.

c. Write Access. Write access applied to a data set
allows:

+ The CFS data set to be replaced by a data set from
the worker machine.

+ Data set to be deleted.

. Data set name, release date, archival status, and
descriptive information to be changed.

Write access applied to a directory allows:

* The directory to be removed.

¢+ Immediate-descendant directories or data sets to be
added

* Descriptive information to be changed.

d. Append Access. Append access applied to a data set
descriptor node allows information to be added at the
end of the CFS data set. Append access does not apply
to a directory node.

e. Insert Access. Insert access applied to a directory
node allows immediate descendant directories or data
sets to be added. Insert access does not apply to a
data set descriptor node.

f. Bestow Access. Bestow access applied to a data set
descriptor or directory node allows user validation
entries to be added to the node. An added user
validation entry can only have those access privileges
that the bestowing user has.

g. Modify Access. Modify access applied to a data set
descriptor node allows
. Data set name, release date, archival status, and

descriptive information to be changed.
* User validation entries to be read, added, changed,
and deleted.

Modify access applied to a directory node allows:

* Descriptive information and classification to be
changed .

* User validation entries to be read, added, changed,
and deleted.

Password protection for a node is provided by the password
in the last applicable user validation entry encountered as the
path is traversed from the root to the accessed node. If no
password is contained in the last applicable entry, then no
password is required even though passwords may be part of

higher-level applicable entries. An applicable user wvalidation
entry 1s any entry along the path that contains the user number
specified in the request. Any zero (Universal) user number

along the path is also applicable as long as the same node does
not contain an explicit entry for the user.

Figure 2 illustrates the use of access privileges and
passwords. Note that

a. User 69258 has all access privileges to nodes 1, 2, 3,
and M. Must supply PASSWRDO for nodes 1, 2, and 3-
Must supply PASSWRD4 for node 4.

b. User 76543 has write, read, and bestow access to nodes

2 and 3, and read access to node 4. Must supply
PASSWRD! for nodes 2 and 3. No password required for
node 4.

c. User 85848 has write and read access to nodes 2 and 3,
and read access to node 4. Must supply PASSWRD2 for
nodes 2 and 3. No password required for node 4.

d. User 75145 has read and insert access to nodes 2, 3,

and 4. Must supply PASSWRD3 for nodes 2 and 3. Must

supply PASSWRD4 for node 4.

User 82176 has write access to node 4.

All other users have read access to node 4. Must

supply PASSWRD4.

+ (D

ACCUMULATION
USER ACCESS PRIVILEGES PASSWORD TYPE

69253 WRITE, READ, APPEND, PASSWRDO OR
EXECUTE, INSERT,
BESTOW, MODIFY

76543 WRITE, READ, BESTOW PASSWRD1 OR

85848 WRITE, READ PASSWRD2 OR

75145 READ, INSERT PASSWRD3 OR

82176 WRITE OR

85848 READ SET

76543 READ, APPEND AND
0 READ PASSWRD4 OR

Fig. 2

Access privileges and password usage.

2.3 .4. Li nkin g- Linking is defined as the connecting of
ex isting nodes in the same tree or different trees so that one
node becomes the immediate descendant of the other. The

de scendant node remains connected to ancestors from previous
creation and linking processes so that it now has two or more
immediate ancestors and can be accessed by more than one path,

A linked node still has only one parent directory node. Even
though the linking destroys the tree structure, the concept 1is
preserved since paths to nodes in a linked tree or subtree are
as if the linked nodes belong only to the tree through which the
access 1is made, Therefore, 1linking enables a tree or any of its
subtrees to retain its original identity while becoming a
subtree of any othen tree,

The path definition is modi fied when 1links to a node exist
such that the path is determined by treating each node as though
it had only one immediate ancestor (the ancestor on the desired
path) .

In the 1inking of two nodes, the descendant node may be

given a different name (an al ias) i This alias must be used if
and onjy if a path uses this link.
In Fig. 3, the tree structure shown in Fig., | 1is given

along with the representation of the following two linking
operat ions:

(a) Node 7 (descendant) 1s linked to node 14 with "alias
name HARDWARE given to node 7.

(b)] Node 15 (descendant] is linked to node 7 with "alias
name BUGS given to node 15.

The subtree CISTAT/LTSS also becomes the subtree
85848 /STATS/HARDWARE. The subtree 85848/STATS/MODS (which
consists only of node 15) also becomes the subtree
C1STAT/LTSS/BUGS. Nodes having multiple paths are listed in
Fig. 3- The nodes listed are also roots of subtrees that have
multiple paths.

C1STAT 85848
CROS STATS SYSTEM
HARDWARE
ERROR LoGs MAINT MODS
BUGS
ERROR
NODE PATHS NODE PATHS
7 C1STAT/LTSS 1" C1STAT/LTSS/MAINT/PM
85848/STATS/HARDWAR E 85848/STATS/HARDWAR E/MAINT/PM
8 C1STAT/LTSS/I.OGS 12 C1STAT/LTSS/MAINT/RM
85848/STATS/HARDWARE/LOGS 85848/STATS/HARDWAR E/MAINT/RM
9 C1STAT/LTSS/LOGS/ERROR 15 85848/STATS/MODS
85848/STATS/HARDWARE/LOGS/ERROR 85848/STATS/HARDWARE/BUGS
10 C1STAT/LTSS/MAINT C1STAT/LTSS/BUGS

85848/STATS/HARDWARE/MAINT

Fig. 3
Sample directory system of two trees showing linking.

Access privileges are not accumulated across links. The
system converts a linked path to the true path. The true path
does not contain any links. In Fig. 3, the system would replace
the linked path CISTAT/LTSS/BUGS with the true path
85848/STATS/MODS. Access privileges are accumulated along the
true path.

It is likely that initial versions of the CFS will only
allow linking from a directory node to a data set descriptor
node.

2.3»5. Implications. The reasons for choosing a
"tree-like" directory structure are as follows:

a. Data Sets can be organized in a logical hierarchical
manner. This provides a convenient means for users to
manage, access, and share data sets.

b. Functions may be applied to one or more data sets in a
subtree. This allows the logical partitions of a large
data set to be stored as individual data sets in a
subtree where one or more of the partitions can be
accessed by a single operation.

The directory structure for a given application can be

very simple or very complex. A minimum directory structure to
store a single data set in the CFS must consist of a root
directory and one data set descriptor. The length (number of

characters) of any given path is the only restriction to the
number of levels in a tree.

A version capability can be implemented by the user or
worker machine utilizing the tree structure. A directory node
would be added having as the path name the desired data set
name. Versions of the data set would be saved as data sets in
this directory using the version number or other appropriate
version I.D. The user or worker machine has the responsibility
for accessing, deleting, etc., the desired version.

The Network Security Controller will require a password
for user number wvalidation. By controlling directory and data
set access with user numbers, the CFS provides another 1level of
protection (in addition to the use of CFS passwords).

2.3.6. Partial List of Capabilities Not Provided by the
CF'S. Some capabilities not provided by the CFS are:

a. A common user interface. Each worker-machine system
has the responsibility for providing a CFS/user
interface. Hopefully the worker machines will attempt
to provide a common user interface.

b. Access to or update of logical parts of a data set.
The CFS will not support any logical structure. Data
sets will be stored as a string of 8-bit bytes. If
implemented, partial data set access will be based on
specifying the relative starting address in bytes, and
the number of bytes to be transmitted.

c. Data set conversion. The CFS will not support any data

set conversion.
10

2.

Functions Available to the Worker Machines.

2.4.1. CREATE a Root Directory. A tree (root only) is
formed with the user number or a special name as the root
directory. The tree 1is identified as belonging to the specified

division,
purposes.

group, and user (or equivalent) for accounting

Function parameters

1.

User number .

2. Classification of request.

3. Directory classification.

4, Master password for root directory (optional except for
classified roots).

5. User validation entries (optional).

6. Special root directory name (optional).

7. Owner division, group, and name (or equivalent).

8. Other descriptive information (optional).

Notes:

1. User validation entries must include passwords if root
is classified.

2. Request classification must be greater than or equal to
directory classification.

3. A special root directory name will be rejected if the

name 1is already the name of another root node.

2.4.2. ADD a New Subdirectory Node. A new subdirectory
node is formed and the name of the directory is entered in the
parent directory. TWrite or insert access to the parent
directory 1is required.

Function parameters:

oy O > W N —

N
1

[NS)

User number

Classification of request.
Path of new directory.
Password of parent directory if required.
New directory classification.
User validation entries (optional).
Other descriptive information (optional).
otes:
Path to the parent directory is determined from path of
the new directory.
Request classification must be greater than or equal to
parent directory classification.
New directory classification must be less than or equal

to parent directory classification.
User validation entries must include passwords 1if node
is classified.

2.4.3. SAVE a New Data Set. A new data set descriptor

node 1is

formed and the name of the data set 1s entered in the

parent directory. Space 1is allocated and the data set is copied

to the storage system. Write or insert access to the parent
directory is required.

12

Function parameters

1. User number.

2. Classification of request.

3. Path of new data set (descriptor).

4. Password of parent directory if required.

5. Data set classification.

6. User validation entries (optional).

7. Other descriptive information (optional).

8. Data set size.

9. Release date.

Options

1. The data set can be specified as archival, in which
case it will be moved off-line.

2. The physical storage units will be separated into at
least two groups. The user will have the option of
specifying which group th” data set will be stored
into. The group cannot be changed by a MODIFY.

Notes:

1. User wvalidation entries must include passwords for
classified data set.

2. Path to parent directory is determined from path of new
data set (descriptor).

3. Request classification must be greater than or equal to
parent directory classification.

4., The data set classification must be less than or equal
to the parent directory classification.

5. The data set is effectively released when the release
date occurs.

6. A SAVE function will not be treated as a REPLACE

function if the data set already exists. The worker
machine can provide this capability if desired.

2.4.4. REPLACE an Existing Data Set. New data 1is saved
and then the old data 1is deleted. Write access to the data set
(descriptor) 1s required.

Function parameters:

~J oy U1 > W DN —

N
1

User number

Classification of request.

Path to data set (descriptor).

Password for data set if required.

Data classification.

Other descriptive information (optional).
Data set size.

otes:

A REPLACE function will not be treated as a SAVE
function 1f the data set does not exist. The worker
machine can provide this capability if desired.

Classification of request must be greater than or equal
to classification of data set.

Data classification can be lower than classification of
data set. The CFS will raise the data classification
to the data set classification.

2.4.5, APPEND to an Existing Data Set. Data from the
worker machine is appended to (added to the end of) the data

set. Write or append access to the data set (descriptor) is
required

Function parameters:

1. User number.

2. Classification of request.

3. Path to data set (descriptor).

4, Password for data set if required.

5. Data classification.

6. Other descriptive information (optional).

7. Append size.

Notes:

1. This function will not be implemented for initial
versions of the CFS.

2. Classification of request must be greater than or equal
to classification of data set.

3. Data classification can be lower than classification of
data set. The CFS will raise the data classification
to the data set classification.

4, If a data set does not end on a byte (8-bit) boundary,
the CFS will pad it to a byte boundary before adding
the append data.

2.4.6. GET a Data Set. Requested data is sent to the

worker machine. Read or execute access to data set (descriptor)
is required.

Function parameters:

L.

2
3.
4

User number

Classification of request.

Path to data set (descriptor).
Password to data set 1if required.

Future implementation:

L.

Get part of a data set (starting byte address and
number of bytes to be transmitted).

2. Get all data sets 1in a subtree.

Notes:

1. The implementation of the GET subtree function might
better be done at the worker machines.

2. Request classification must be greater than or equal to
data set classification.

3. The worker machine must prevent a data set that was

read with execute access from being examined by the
user .

13

2.4.7. MODIFY Directory or Data Set Descriptor Node.
Information that may be modified includes:

a.

b.

g.

Classification (directory node only). Modify access 1is
required

Data set release date (expiration will cause data set
deletion). Modify or write access required.

Archival status. Modify access is required.

User validation entries. Bestow or modify access is
required to add entries. Modify access 1is required to

change or delete entries.
Owner division, group, and name (root directory only).
Modify access 1s required.

Descriptive information. Modify or write access
required.
Data set name. Modify or write access 1is required.

Function parameters:

1.

OB w DN

User number

Classification of request.
Path to node.

Password to node if required.
Modifications.

Future Implementation: Modify all nodes of a subtree.

Notes:

L.

2.

Request classification must be greater than or equal to
the node classification.

Classification of a data set can be changed only by
deleting the data set and then saving it with the new
classification

Directory classification cannot be raised above request
classification or parent directory classification.
Directory classification cannot be lowered below
highest classification of immediate descendant nodes.

2.4.8. DELETE a Data Set. Data set descriptor node is

deleted and data set space 1is released. The data set name 1is
removed from the parent directory node. Write access to the
data set (descriptor) node is required.

14

Function parameters:

L.

User number,

2. Classification of request.

3. Path to data set (descriptor).

4, Password to data set if required.

Notes:

1. Path to parent directory is determined from path of
data set.

2. The request classification must be greater than or

equal to data set classification.

2.4.9%* REMOVE a Directory Node. The directory is deleted
and its name is removed from its parent directory node if it has
one. Write access to the directory node is required.

Function parameters

1. User number

Classification of request.
Path to node.

Password to node if required.

AN OSE)

Notes:

1. Directory must be empty.

2. Path to parent directory 1is determined from path of
directory to be removed.

The request classification must be greater than or
equal to directory classification.

w

2.4.10. LINK a Directory or Data Set Descriptor Node. A
path is formed from a directory node (ancestor] to a directory
or data set descriptor node (descendant) in the same or a
different tree. Write or insert access to the ancestor node 1is
required

Function parameters:

1. User number.

2. Classification of request.

3. Existing path to descendant node.

4., "New linked" path of descendant node.

5. Password to ancestor node if required.

Notes:

1. It is 1likely that initial versions of the CFS will only

allow linking from a directory node to a data set
descriptor node.

2. A link to a node only defines an alternate path to the
node. It does not guarantee access.

3. An "alias" name may be given for the descendant node on
the "new linked" path.

4. Path to ancestor directory is determined from "new
linked" path of descendant node.

5. Any existing pointer to a data set (descriptor) or
directory node will not be removed by DELETE or REMOVE
functions. For this reason, the appearance of linked
data sets or directories in the listing of an ancestor
directory does not guarantee that the linked data sets
or directories exist. Only the UNLINK or DESTROY
function can cancel the effect of a LINK function.

6. If the descendant node of a link 1is deleted and later a
new node with the same path is inserted, the link will
point to the new node.

7. The request classification must be greater than or
equal to ancestor node classification.

8. The descendant node classification must be less than or
equal to the ancestor node classification.

15

2.4.11. UNLINK a Directory or Data Set Descriptor Node.
A linked path (created by LINK function] to a directory or data
set descriptor node 1is removed. Write access to the immediate
ancestor node on the linked path is required.

Function parameters:

DN +—

User number

Classification of request.

3. Linked path to node (descendant).

4, Password to immediate ancestor node if required.

Notes:

1. The MODIFY function is required to remove any access
validation entries that may exist for the "unlinked"
path.

2. Path to immediate ancestor node determined from linked
path to node (descendant).

3. The request classification must be greater than or

equal to ancestor node classification.

2.4.12. LIST a Directory or Data Set Descriptor Node.
Listed information will include:

a.
b.
C.

Descendant node names (if directory).

Status, activity, size, etc., (if data set descriptor)
Descriptive information.

Read access to the node is required.

Function parameters

L.

User number

2. Classification of request.

3. Path to node.

4, Password of node if required.

Options:

1. Obtain 1list at all nodes in subtree.

Notes:

1. List of directory may also include description of
descendant nodes.

2. The request classification must be greater than or
equal to node classification.

3. Information will only be returned for nodes of the

subtree for which the user has read access.

2.4.13. DESCRIBE a Directory or Data Set Descriptor Node
Will include all information from LIST function as well as
information such as classification and user validation entries.
Modify access to the node is required.

Function parameters

1.
2.
3.
4,

16

User number.

Classification of request.
Path to node.

Password of node if required.

Options:
1. Obtain description of all nodes 1in subtree.

Notes:

1. The request classification must be greater than or
equal to node classification.

2. Information will only be returned for nodes of the
subtree for which the user has modify access.

2.4.14. COPY a Data Set. Information in the source data

set 1s copied to a new data set. The source data set 1is left
intact. Read access to the source data set (descriptor) is
required. Write or insert access to the parent directory of the

new data set is required.

Function parameters:

1. User number
2. Classification of request.
3. Path of source data set (descriptor).
4. Password of source data set if required.
5. Password of new data set parent directory 1if required.
6. Path of new data set (descriptor).
7. Data set classification.
8. User validation entries (optional).
9. Other descriptive information.
10. Release date.
Options:

1. The new data set can be specified as archival (see
2.4.3., Option 1).

2. The physical storage group of the new data set may be
specified (see 2.4.3., Option 2).

Notes:

1. Classification of new data set must be greater than or
equal to source data set.

2. Path of parent directory node is determined from path of
new data set.

3. Request classification must be greater than or equal to
classification of source data set and parent directory
of destination data set.

4. New data set classification must be less than or equal
to its parent directory classification.

2.4.15. DESTROY a Subtree, All data sets and directories
in the subtree are deleted. Write access to each node of the
subtree is required.

Function parameters:

1. User number

2. Classification of request.

3. Path to subtree.

4., Password to nodes if required.

17

Notes:

1

Path to parent of subtree root node 1is determined from

path of subtree.

2. The request classification must be greater than or
equal to classification at each node of subtree.

3. If the user does not have write access to a node of the
subtree, all nodes along that node's path will remain
in the subtree. Nodes along paths from other nodes may
still be deleted.

4, This function will not be available when system first
goes into production.

2.4.16. STATUS of the CFS. The status of the CFS and its

devices 1is given along with the status of any incomplete

requests for the user number.

The status will also include

current operator comments.

3.0.

3.1.

Function parameters:

1.
2.

2.4.17.

User number.
Classification of request.

ABORT Request. The specified request 1is aborted.

Function parameters:

1.
2.
3.

User number.
Request identification.
Classification of request.

OPERATOR VIEW OF CFS

Overview

The operator sees the CFS as several storage devices

in turn 1s

connected to a control computer. This complex

connected to a message and data transport device called a File

Transport or Distributor/Collector that has connections

to each

of the worker computers (Fig. 4).

MASS
STORAGE

MASS
STORAGE

CFS
CONTROL
COMPUTER

FILE TRANSPORT

CROS LTSS DEMOS

CDC 6600 CDC 7600 CDC 7600 CRAY

Fig. 4
Common File System configurationl
18

The major difference between the CFS and Hydra 1is that
there are no direct connections between the various computers
and the CFS. Hydra provides a common file function similar to

that which will be provided much more capably by the CFS.
In general the operator will have enough information to

determine when everything is working properly and enough control
to clear up problems and to restart tasks that have hung up.
The operator will not have nor need much direct knowledge about

the state of the wvarious worker computers. He will need to know
the status of the File Transport, however, since it is the only
connection between the CFS and the worker computers. The

operator console will consist of a CRT device(s) for dynamic
displays, a keyboard device(s) for input, and a printer
device(s) for hardcopy output. Display and printout for
critical problems will be accompanied by an audible alarm.
Input commands and output messages will be descriptive English
text to the maximum possible extent. Messages will be prefixed
with a code referencing a section in the operator’s manual that
gives a more complete description of the problem.

A "HELP" display will be provided and will 1list all
operator commands and their functions.

3.2. Operator Functions.
General functions available to the operator are:

1. Command descriptions. A list of operator commands and
functions will be displayed or printed.

2. CFS device status. Each physical device will have a
display adequate to determine if it 1is operating
properly.

3. File Transport status. This display will consist of

counts of messages sent, messages received, data blocks
sent, data blocks received, and errors.

4, Operator comment. This comment is included in the
status messages sent to users of the CFS.
5. Task 1lists. The 1list or queue of incomplete tasks can

be displayed. Optionally, tasks for only certain
machines, users, or devices can be displayed.

6. Unhang or abort tasks or hardware. The operator will
be able to restart or abort tasks or hardware
operations that have hung up.

7. Change status of a storage device. Storage devices can
be turned on or off, initialized, or put into a hold
state (CFS accepts requests but does not process them
until the device 1is reactivated).

8. System log dumps. The system logs may be dumped to
hard copy, mass storage, or magnetic tape.

9. Active task status. The tasks currently being
processed are displayed with enough information so the
operator can determine if they are progressing.

10. Commands and functions display. All the commands and
functions available for the operating system of the CFS
control computer can be displayed.

19

11. Backup dump initiation. Certain critical information
may be copied and saved by initiating backup dumps to
alternate storage media.

12. Reload backup dumps.

4.0. OPERATIONS MANAGEMENT VIEW OF THE CFS

4.1. Overview.

The Operations people who manage and control the use of
the CFS view it as a valuable resource and, as such, attempt to
make sure it 1is used properly. The general things Operations
needs to do are to purge off-line data sets, control data set
migration in the storage hierarchy, monitor space and access
requirements, generate reports of CFS usage and charging
information, monitor CFS performance, and modify the CFS
internal scheduling. Logs will be kept containing cost,
performance, usage, and activity information. The logs can be
copied to hard copy or mass storage. Log entries are neatly
formatted for manual analysis and uniquely identified so they
can be analyzed by computer programs that generate reports and
summaries.

Operations will interface to the CFS by using either the
operator console or by special batch jobs executed directly in
the CFS control computer. The programs to generate wvarious
reports and summaries would probably be written and maintained
by the Operations Analysis Section. Operations will also be
responsible for maintenance and backup of all system data sets
required by the CFS. These include data sets used by the Mass
Storage devices and the directory system.

4.2. Available Functions.
The following functions are available to Operations
Management.

1. Control data set migration between the wvarious storage
systems

2. Purge off-line data sets.

3. Modify CFS scheduling parameters. This allows
operations to change the characteristics of the CFS
that affect the response time of user's requests.

4, Modify CFS accounting parameters. This allows the
accounting procedures for CFS services to be changed.

5. Analyze performance, usage, activity, and accounting

logs.

6. Generate reports. These are reports needed for
analyzing performance and for summarizing usage
information,

5.0. MAINTENANCE ENGINEER VIEW OF THE CFS

5.1. Overview
The maintenance engineer sees the CFS as a valuable
resource used throughout the ICN. As such it must be kept

20

running essentially all the time, in a degraded mode if

necessary. If a device fails, 1t must be checked on a
stand-alone basis, or on the CFS control computer with
background programs. The control computer cannot be dedicated

to device repair and checkout except in emergencies.

Logs of equipment malfunctions will be available to
indicate hardware degradation and to give the engineers more
information about hardware problems. Diagnostic programs
written by the maintenance people will be allowed to run in the
background while the CFS is processing network requests.

6.0. SYSTEM PROGRAMMER VIEW OF THE CFS

6.1. Overview

The system programming staff has the responsibility for
keeping the CFS running, adding enhancements, updating systems,
and resolving hardware/software problems. These
responsibilities require that the system programmers can use all
facilities that are available to all other classes of users plus
additional facilities that allow a more intimate involvement
with the operating system. They also need an adequate debug
facility so that most system changes and enhancements can be
fully checked out without using the CFS for dedicated system
time. This should include the checkout required for a new
worker machine or storage device to interface to the CFS.

6.2. System Programmer Functions.
The system programmer uses the functions available to all
other classes of users. It is important that the vendor-

furnished operating system has adequate tools for program and
system maintenance, including an adequate high-level system
programming language. Additional functions needed are shown
below

1. Background debug facility. The background mode allows
a new version of the CFS software to be checked out at
the same time the production software is operating.
Functions performed in the debug mode include software
repair, adding new storage devices, and interfacing new
worker operating systems to the CFS.

2. Formatted/unformatted snapshot dumps. These dumps to
storage or hard copy can be initiated by a program or
as the result of a console command while the system is
in debug or operational status.

3. Message/data recording. Messages and data entering and
leaving the system at some software level can be dumped
to storage or hard copy. Information to be recorded is
selected for all sources, for specified worker
machine(s), for a specified user or job, for a
specified data set, or for a specified physical device.

4, General debug tools are available such as memory
display, memory change, data and instruction
breakpoints, instruction trace, instruction step mode,
request step mode, system freeze, and memory dumps.

5. Privileged functions. Read any directory or data set,
read an arbitrary area on any storage device, perform
system consistency checks, and step through an I/O
sequence.

The special facilities and functions available to the
system programmers will be adequately protected; no user
programs will be allowed to execute in the CFS, access to the
CFS will be only in the CCF, and use of the special functions
will be controlled.

7.0. CFS STORAGE AND PERFORMANCE REQUIREMENTS

T.1. Storage Requirements.

Current CCF mass storage requirements for the wvarious LASL
programs are over 40 billion words (60-bit words). Of this
about 26 billion words are classified as archival. It 1is
estimated that in a few years these requirements will total 105
billion words. Of this about 81 billion words are classified as
archival, giving an on-line storage requirement of about 24
billion words. This projected on-line mass storage requirement

of 24 billion words is only for the next two years, but a Mass
Storage System having a capacity of 25 billion words would
probably satisfy the LASL CCF storage requirements for the next
four or five years as a greater percentage of the data could
reside off-line.

1.2, Prime Shift File Transmission Requirements
The prime shift file transmission requirements for a peak
hour are:

+ File accesses 1,500 per hour

+ Data transmitted 150 million words per hour

. Average flle Sj_ze 100 thousand words

*+ Average data . . _
transmission rate 2.5 million words per minute

The file access and data transmission rate required of a
Mass Storage System and the associated File Transport System is
dependent upon the desired response and the expected peak
loading for periods less than an hour.

7.3. Production File Transmission Requirements.
An upper bound on the production file transmission

requirements consists of:

+ File accesses - Minimal
+ Data transmitted - 300 million words per hour
* Average file size - Greater than one
million words
¢+ Average data - 5 million words
transmission rate per minute

22

8.0. INTEGRATING THE CFS INTO THE ICN AND PHASING OUT HYDRA

Adding the CFS to the ICN and phasing out Hydra with a
minimum impact upon the user community is extremely important.
A key factor in this process is that a File Transport System to
which both Hydra and the CFS are connected must be available.
In addition to allowing users data set access to both Hydra and
the CFS, a service will be provided that allows Hydra data sets
to be moved to the CFS prior to Hydra's demise. It is probable
that Hydra will not be phased out until approximately a year
after the CFS is available.

The data transport technique used by Hydra and the worker
machines for the FT/X interface is being viewed as a prototype
for the interface that will be used with the CFS. This will
allow the data transport technique to be evaluated and refined,
and should decrease changes necessary for the CFS/worker machine
interface.

9.0. GLOSSARY

ALIAS: The different name that may be given to the descendant
node in a linking process.

ACCESS PRIVILEGE: The type of access allowed at a node: execute,
read, 1insert, append, write, modify, Dbestow.

ACCESS VALIDATION: Classification checking and user validation
to verify access to a node.

CFS: Common File System.

CLASSIFICATION: The security designation assigned to a node or a
user request.

DATA SET: Major unit of data storage and retrieval. Equivalent
to a NOS or LTSS file and a CROS fileset. Identified by a path.

DATA SET DESCRIPTOR: Node 1in tree corresponding to a specific
data set stored in the CFS. Contains information about the data
set: user validation entries, statistics, physical location,

etc. Identified by a path.

DIRECTORY: Node 1in tree. Contains a list of all immediate

descendant nodes. Also contains user validation entries and
classification
ICN: Integrated Computer Network. The interconnection of worker

machines, storage systems, I/0 stations, and terminal systems in
the LASL Central Computing Facility.

23

LINKING: The connecting of existing nodes in the same tree or
different trees so that one node becomes the descendant of the
other. This allows for data set sharing that could not be
accomplished using the same path.

MASTER ACCESS ENTRY: Entry made in user validation 1list of root
directory when the node is created.

MASTER PASSWORD: Password associated with the master access
entry (optional except for classified node).

NODE: A directory or data set descriptor element of a tree.

PARENT DIRECTORY: The immediate ancestor directory node that a
newly created node 1is connected to. All nodes have at most one
parent directory. (However, a node may have more than one
immediate ancestor due to linking processes.)

PATH: The name by which any directory or data set descriptor
node is specified. The path may also be used to identify the
subtree having that node as a root. The path is the compound of
all the names of the ancestors of the node plus the name of the
node. The names are ordered from the oldest to the youngest.

ROOT DIRECTORY: The root node of a tree. A root node is the
ancestor of all other nodes in the tree. The root directory is
associated with a Division (or the equivalent) for accounting
and space allocation purposes.

SUBDIRECTORY: Any directory node in a tree other than the root
directory.

SUBTREE: A partition of a tree that when considered alone 1is a
tree. May be a single node. Identified by path to its "root."

TERMINAL NODE: A node of a tree having no descendants.

TREE: A grouping of directory nodes and data set descriptor
nodes having a defined structure.

USER VALIDATION: Verification that a user wvalidation entry (for
a node) can be found that satisfies the access privilege and
password requirements.

WORKER COMPUTER: A computer in the ICN that executes user jobs

or that manages terminals and will make requests to the CFS for
data sets or information about data sets or directories.

24

