r

B, MASTER

gl

TITLE: "A FLOATING POINT HARDWARE EMULATOR FOR RSX-11D"

D79~)

AUTHOR(S): .. Martin Kellogg, MP-1, LASL

P Marshall Long, Yale University, New Haven, CT
ped

SUBMITTED TO: PROCEEDINGS OF THE DIGITAL EQUIPMENT
COMPUTER USERS SOCIETY (DECUS),
SAN DIEGO, CA, NOVEMBER 28 - DECEMBER 1,
1977

By acceptance of this article for publication, the
publisher recognizes the Government's (license) rights
in any copyrijht and the Government and its authorized

representatives have unrestricted right to reproduce in
/ whole or in part said article under any copyright
(secured by the publisher.

publisher identify this erticle as work performed under

The Los Alamos Scientific Luboratory requests that the
) the auspices of the USERDA.

[24

fos alamos
scientific laboratory

of the University of California
LOS ALAMOS, N2W MEXICO 87544

An Altirmative Action/Equal Oppurtunity Employer

UNITED STATES

Eq'u-n\\‘l‘:\'t';-ﬁf}*‘l:'* ENERGY RESEARCH AND
‘I'/.’:;.,‘ s DEVELOPMENT ADMINISTRATION

CONTRACT W05 ENG, 36

‘eIl ITINN OF THIS ICUMENT 1S UNLIMITED

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A FLOATING POINT HARDWARE EMULATOR FOR RSX-11D

. Marshall Lcng
Engineering and Applied Science Department
Yale University
New Hrven, CT

Martin Kellogg
Los Alamos Scientific Laboratory
Los Alamos, NM

o NOTICE

POt wet prepared as an accownt of work
Sponsored by the Unitsd States Governmant. Neithet the
United States aor the United States Depurtment of
Energy, nor amy of dhetr employees, Ror any of their
- ry‘ \ or their employ makes

AITARLY, express O implied, or assumes

tiability or resp for the ol ‘f‘Y —
or usefulness of any information, spparatus, pr;‘1uﬂ or
proctm disciceed, or represents that its use wabld fot
infrings pri-ately owned tghts.

MOTIVATION

ABSTRACT

An RSX-11D task has been written to simulate the FP-11
floating pnint hardware on systems that lack this hardware.
The simulation is transparent to tasks using floating point
instructions., All normal features of the hardware are sipu-
lated exactly, including its actien on exception conditions.

The emulator is a privileged task occupying about 2.7K
words of memory. When it is loaded and run, it se:s up a
linkage to intercept the reserved instruction trap befoure it
reaches the executive, and route it to a service routine
th:t can decode and simulate the floating point instruction
set.

The results of a benchmarlc timing test are given, as
are notes on converting the emulator to run under RSX-11M,

into developing an emulator for the FP-11

At the Clinton P. Anderson Meson Physics Fa-
cility (LAMPF) we maintain a large data-acnuisition
system that runs under the RSX-11D operating system
on the PDP-11, This system is supported on cver a
dozen different machines around the site and must be
usable in the hardware environments of all these ma-
chines.

The system was originally developed using the
DEC FURTRAN IV Plus compiler and object time system.
At that time all the machines it was to run on had
FP-11 floating-point hardware, and FORTRAN IV Plus
vwas able to use this hardware far mcre effectively
than FORTRAN IV could. Later, a requirement arose
to run the system on machines such as PDP-11/40s
that lacked the FP-11 hardware. We first attempted
to develdp a version based on FORTRAN IV, but we
found that language incompatibilities between the
two systems caused difficulties. Althoush the FOR-
TRAN IV version wa. actually used for a time, its
quality was never as high as that of the FORTRAN IV
Plua version. Furthermore, maintaining a large and
complex application is a time-consuming task, and
trying to maintain two compatible versions waz cost-
ing more time than we felt we could afford.®

For these reasons we decided to put some effort

v

AThere were actually four versaions, since at the
time we were also trying to maintain compatible ver-
sions under RSX-11M.

We felt that the time spent in doing this would be
quickly paid back by the time saved by not support-
ing a FORTRAN IV version of our applicatioen. The
use of the emulator was to be transparent to tasks,
30 that a task that ran with floating-point hardware
would also run with the emulator and require no wod-
ification or rebuilding.

HAGDWARE REQUIREMENTS

The emulator is designed to run in a hardware
environment that supports RSX-11D. Thus it uses the
extended instruction set (hardware multiply/divide)
on the PDP-11. It does not use the PDP-11/40 float-
ing instruction set (FIS). It occupies about 2.7K
words of memory.

GATHERING QF STATISTICS

The emulator provides a feature that i3 not
present in the FP-11 hardware: a version can be as-
aembled that will gather statistics on the various
floatirz point instructions exccuted and addressing
modes used. This can provide valuable information
about the instruction mix in a floating roint calcu«
lation. Detailed instructions for using the statis-
tics feature are given in the emulator source code.

INIERFACE IO IHE RSX=11D SYSTEM

The emulator is a privileged task that runs

R K LB AL LIaNATATaE AR SR LINLIMITED

under RSX-11D. The general strategy for interfacing
it to the system is to intercept the reserved in-
structinn trap before it reaches the RSX-11D execu=
tive. 1If the instruction causing the trap proves to
be a floating point instruction issued by a task,
the emulator simulates the action of the FP-11
hardware and returns control to the task.
Otherwise, it forwards the trap to the executive to
allow normal system action.®

If an error condition occurs during the simu-
lated execution of the floating point instruction,
the action taken depends on the nature o< the error.
If it is an addressing error (odd address or seguent
fault), the emulator simulates an odd address trap
from the task. If it is a floating point exception
(overflow, underflow, divide by zero, etc.), the em-
ulator simulates a floating point exception trap
from the task. In either case, the executive will
take whatever action the task has rajuested -- cause
an odd address 5ST, a floating point exception AST,
or terminate the task.

The most straightforward way to emulate the
FP=11 hardware would be to assign the registers to
fixed locations in memory. If this were done, the
registers would have to be swapped every time the
system context was switched between running tasks.
This would be done by emulating the load and store
instructions issued by the executive to switch con-
text, and would be a tire - consuming operation that
would greatly degrade the system's performance.

To avoid this large overhead in the system, the
emulator uses the floating point context save area
in the currently active task for 1its registers.
Thus each task has an up-to-date set of floating
point registers at all times, and it is not neces-
sary to swap the registers during a context switeh.
The executive must be modified to prevent 1t from
attempting to swap the registers, but the changes
are very simple and can b2 handled by patching the
executive in memory.

In order to intercept the reserved instruction
trap, the emulator "steals” the trap from the system
when it is loaded. The technjque for doing this was
developed by Sally Shlaer, and is described in the
RSX=11 Special Interest Group Newsletter.

Fig. 1 shows the overall logical flow of the
emulator,

- ———————

®An exception is the STST inatruotinn, which the em-
ulator allows to be issued by the executive, since
the exscutive uses it in its floating point excap-
tion service.

RESERVED
INST. TRAP

TRAP y SIMULATE
CAUSED 8Y STST
STST? INSTRUCTION

POINT TO
lcuRRENT TASK'S EXI RROM
HEADER SYSTEM

ORWARD
TRAP TO
SYSTEM

T:&";TF:%T | | SET INSTRUC.
SAVE AREA THAT TRAFPED
RWARD
TRAP TO
SYSTEM
IMULATE
of e L .y
OPERAND [;
INSTRUCTION INSTRUCTION

SIMULATE
00D_ .\UDR.
TRAP

ADDRESS
ERROR?

NDEFINEC
P INSTRUC]

EXIT _FROM
TRAP

SIMULATE
FP EXCEP.
__TRAP

EXIT FROM
TRAP

Figure 1. Logical flow of the emulsvor

JINSTALLATION
To use the emulator an RSX-11D system must be
generated that assume: here 1is floating point

hardware on the machine. ils 19 done by 1including
the keyword 'FP' 4in the PDP=11 line of the SYSGEN
phase 1 control file, for example:

PDP11 = 4%,96K,FP.

Once the emulator task has been assembled and built,
installation in the system consists merely of ins-
talling and r'nning the task. The emulator will
steal the reaerved instruction trap from the system,
suspend execution, and subsequentlv process all rea-

erved instruction traps caused by floating point in-
structions.

At the same time, the executive should be
natched to disable the context switching of floating
point registers. This is done by using the OPEN
comntiand to change two locations, as follows:

h&¥=11D version 64:
MCR>OPE 7232
0072327001010 240<ESC>
MCR>OPE 7342
0073427001025 240<KESC>

RSX-11D version 6.2:
MCR>GPE 11766
011766/001010 240<ESC>
MCR>OPE 12076
0120767001025 24O0<KESC>

We do not know the patch locations for RSX-11D ver-
sion 6B or for IAS at present.

Once the emulator is running and the executive

has been patched, the system can be saved vusing the
SAVE command, making the emulator a permanent part
of the systen.

The emulator scurce gives complete instructions
for assembly, task building, and installation.

STUDIES OF TIMING AND STATISTICS

We checked out the emulator by running the
Whetstone benchmarks,2 FORTRAN programs that spend
most of their time “oing floating point computation.
Table 1 shows the benchmark results, and qompares
them with results for some other hardware and
software configurations.

Table 2 shows the results of running the Whet-
stone benchmarks with the version of the emulator
that gathers statistics on the instructions exe-
cuted., It is interesting to note that in the single
precision case, about u40% of the inatructions do
floating point arithmetic, and 60% do data movement
and testing. Tre results are similar for the double
pracision case.

The large proportion of data movement and test
instructions may account for the great difference in
speed between the emulator and the FORTRAN IV
software (see Table 1), The software can do these
operations very quickly, whereas the emulator incurs
a large overhead for trap service and instruction
decoding no matter how =imple the actual instruction
simulation {s. We have donn some tuning of the emu-
lator by trying to speed up the execution of the
most frequently used instructions and addressing
modas, but the gain in speed has been only about
25%. It has been suggested that more speed might be
gained by looking ahead to the next instruction and
not doing the trap again if it is a floating point
oneration. We will investigate this as time per-
mita.

The emulator should be e=pecially suitable for
use with a FORTRAN program that does mostly integer
arithmetic, with a small fraction of floating point
computation, In this type of program, the gain in
apeed for integer operations of FORTRAN IV Plus over
FORTRAN IV would more than offset the loass in spead

for floating point operations.

PUTTING THE EMULATOR IN R3X-11M

Although we have no requirement to run the emu-
lator under RSX-11M at this time, we did some stu-
dies of the werk that would be involved in making it
run under this system. A preliminary version actu-
ally ran but contained no code for processing error
conditions. Some notes on the conversion effort are
given below.

Three ways to put the emulator into the system
suggest themselves:

1. Build it into the executive,
2. Make it a loadable driver.

3. Make it a privileged task that steals the
reserved instruction trap and interfaces to
the executive in the same general way that
the RSX-11D version does.

Method 1 is the most elegant and involves the
lezst trap servicing overhead. By conditionalizing
the code, the emulator could be included in the exe-
cutive or left out at system generation time. Since
the emulator code is about 2K words 1long, there
might ba a oproblem with the executive size 1if too
many other options were included.

Method 2 has the problem that the emulator {s
not really a driver, and an excessive amount of
kludging night be reguired to convince the sy=tem
tha% it was.

Method 3 was used to implement the preliminary
version, It seems to work well but does not run as
fast as Method 1 would. The rreliminary version
runs slightly slower than the RsX-11D version.

The emblato interfaces to the system at four
points. We have summarized these below and given
references to the relevant parts of the RSX-11M exe-
cutive. Line numbers are for version 3.

1. Ser-ice of the reserved instruction trap
(line 274 of module SSTSR; label $ILINS).

2. Service of floating point exceptions (line
220 of module SSTSR; label $FLTRP).

3. Service of odd address trap. This is a
special problem because the RSX=-11M execu-
tive does not seem to have any general code
for dealing with a faulting instruction in
a trap service routine (RSX-11D specifies a
fault recovery sequence that can be used
for instructionsa that might cause traps).
The code at SSTXT (line 429 of module
SSTSR) handles a number of system faults as
special ocases, and a case for a fault (n
tha emulator could probably be added here,

4, Return to the system. This is done by a
return (RTS PC) to the co-routine $INTSV
(l1ine 320 of module SYSXT) that was called
at the beginning of the trap service.

Other parts of the exeoutive of interest to one

wishing to put the emulator into RSX-11M are the
context switching code (line S84 of module SYSXT)
and the system communications area (module SYSCM).

TABLE 1: WHETSTONE BENCHMARK RESULTS

Single precision Double precision
speed (thousands speed (thousands
of Whetstone of Whetstone

inatructions per instructions per

Configuration second) second)
1 5.2 3.2
2 23.3 6.1
3 ATV 153

1. PDP=-11/34 running FORTRAN IV Plus and the
emulator.

2. PDP-11/34 running FORTRAN IV.

3. PDP=11/45 equipped with FP-11B running FOR-
TRAN IV Plus.

In all configurations, trace code was generated

(/TR:BLOCKS for FORTRAN IV Plus, /SN for FORTRAN
V).

TABLE 2: WHETSTQNE BENCHMARK STATISTICS

Fraction of
instructions

Fraoction of
instructions

Instruction executed in executed in
type or single precision double precision
addressing mode benchmark benchmark
no operand 11.17% 9.17%
one operand 3.30 3.25
two operand 85.53 87.58
mode 0 Rn 47.78% 47.85%
mode 1 (Rn) 0.25 0.23
mode 2 #X or (Rnj+ 13.27 16.27
mods 3 @(Rn)+ 0. 0.
mode 4 ~(Rn) 0.51 0.u47
mode 5 @-(Rn) 0. 0.
mode 6 X or X(Rn) 31.97 28.53
mode 7 €X or €X(Rn) 7.22 6.65
single preo zode 89.38% 2.52%
double prec mode 10.62 97.48
LDF(D) 28.56% 27.67%
ADDF(D) 15.31 18.12
STF(D) 13.85 13.05
MULF(D) 13.01 15.95
CFCC 4,66 4,39
DIVF(D) 4.12 4.09
CMPF(D) 2.4 2.27
SUBF(D) 2,18 2.06
LDCDF(FD) 1.66 0.21
STCFI(DI) 1.05 0.99
MODF(D) 1.05 0.99
ABSF(D) 1.05 0.99
'.DCIF(D) 1.00 0.94
STEXP 0.66 0.62
LDEXP 0.66 0.62
TSTF(D) 0.59 0.70
NEGF(D) 0.53 0.50

CLRF(D) 0.46 0.43
LDFPS 0.u4 0.42
STFPS 0.22 0.21
SETF . 4.63 0.00
SETh . 0.83 3.79
SETI 1.05 0.99
SETL 0.00 0.00
ACKNOWLEDGMENTS

We should like to thank Dennis Perry and Sally
Shlaer for the support and encouragement they gave
us in this project. We also want to thank Brooks
Shera, who made his PDP-11/34 available for checkout
of the code, and who helped a great deal with the
benchmarking studies.

Special thanks are due to Lorrie Voorhees, El-
vira Martinez, and Janis Builta for their help with
the preparation of this paper.

BEFERENCES

1. The Multi-Tasker, Newsletter of the RSX-11D Spe-
cial Interest Grecup, vel. 5, no. 5, p. 74 (May
1976).

2. Nicholas Benwell, ed.,
Publishing Corp., Washington,
Harry J. Curncw, pp. 99-114,

(Hemisphere
1975), article by

