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ABSTRACT

Predictions of local volumetric entropy generation rates were made numerically for the 
convective heat transfer problems of a fluid jet impinging on isothermal and constant 
heat flux surfaces. The solution technique yielded a scalar field of volumetric entropy 
generation rates that extends over the fluid domain. For isotropic and Newtonian 
fluids local entropy generation rates, that stem from the irreversible phenomena of 
heat transfer across a finite temperature difference and viscous fluid flow, may be 
computed from fields of temperature, local temperature gradients, and the local 
viscous dissipation function. TEMPEST, a three-dimensional, time-dependent 
computer program for hydrothermal analysis was used to compute numerical 
solutions to the Navier-Stokes balance equations of mass, momentum, and energy for 
the fluid domain encompassing the impinging jet. The results from these numerical 
solutions included the local values of temperature and velocity that are required to 
compute entropy generation rates. Translation of scalar temperature and vector 
velocity fields into scalar fields of volumetric entropy generation was effected through a 
recently added subroutine appropriately called ENTROPY. Before analyzing the 
impinging jet problem the TEMPEST code configured with the ENTROPY subroutine 
was successfully validated against convective heat transfer problems for which 
analytical solutions were known. The primary points of interest for this problem were 
to investigate the surface heat transfer rates as a function of inlet jet velocities, and the 
apportionment between viscous and thermal source entropy generation. The problem 
investigated was restricted to two-dimensional slot jet flow with two fluids, helium and 
glycerin.

INTRODUCTION

Second Law analysis techniques have been widely used to evaluate the sources of 
irreversibilities in components and systems of components but the evaluation of local

a Operated by Battelle Memorial Institute for the U.S. Department of 
Energy Under Contract DE-AC06-76RLO 1830.



sources of irreversibilities in thermal processes has received limited attention. While 
procedures for evaluating local entropy generation were developed in 1979 (Bejan 
1979a, 1982), applications have been limited to fluid flows with analytical solutions for 
the velocity and temperature fields. A recent review of Second Law techniques 
applicable to basic research in the thermal sciences recommended that entropy 
generation calculations be included in computational fluid dynamics (CFD) codes to 
allow the evaluation of local entropy generation in more complicated thermal 
phenomena (Drost and Zaworski 1988). The research documented in the present 
paper consisted of the incorporation of entropy generation relations in an existing CFD 
code and then using the code to evaluate local entropy generation in an impinging jet. 
The specific objectives of the research include:

• Incorporate calculations for local entropy generation in an existing CFD code.

• Benchmark the entropy generation calculations by comparison of numerical 
results with analytical calculations for laminar pipe flow.

• Investigate the sources and distribution of entropy generation in an impinging jet 
for a range of fluids and fluid velocities.

The application of partial differential equations describing local entropy generation to 
convecting fluids was initially developed by Bejan (1979a) and was used to evaluate 
entropy generation in fluid flows for which analytical solutions of the velocity and 
temperature fields were available (Bejan 1979a, 1982). Bejan also evaluated local 
entropy generation in internal and external flows using a lumped parameter approach 
(Bejan 1979b, 1982) and investigated local entropy generation in insulation systems. 
Dunbar (1982) has applied a one-dimensional lumped parameter analysis to the 
evaluation of a fuel cell while Hutchinson and Lyke (1987) have used a similar 
approach to investigate irreversibilities in a Stirling engine regenerator. Two recent 
papers have evaluated local entropy generation in heat exchangers by applying a 
lumped parameter analysis (Liang and Kuehn 1988, El-Sayed 1988). Whereas, 
Argrow et al. (1987) have suggested calculating natural entropy generation as a 
method of evaluating the importance of numerical entropy generation. A literature 
review did not identify any previous studies that actually incorporated entropy 
generation relationships in a CFD code and then used the code to evaluate a 
important thermodynamic process.

One goal of Second Law analysis is to identify and minimize the thermodynamic 
irreversibilities associated with a process or component. It can be shown that the 
minimization of entropy generation results in irreversibility minimization (Bejan 1982). 
For an isotropic convecting fluid, entropy generation is given by Equation (1) for three 
dimensional rectangular coordinates (Bejan 1979a, 1982):



The first bracketed term on the left hand side of Equation (1) is the entropy generation 
due to heat transfer across a finite temperature difference, whereas the second and 
third bracketed terms are the local entropy generation due to viscous dissipation. 
When analytical expressions are available for the temperature and velocity fields, 
Equation (1) can be evaluated to yield the local entropy generation. Total entropy 
generation can be determined by integrating Equation (1) over the region of interest. 
Most practical problems are sufficiently complex that analytical solutions do not exit. In 
this case, a CFD code can be used to predict the velocity and temperature fields. This 
information can then be used to numerically calculate entropy generation. The details 
of incorporating Equation (1) in an existing CFD code and benchmarking studies are 
discussed below.

The CFD code with numerical entropy generation calculations was then used to 
evaluate impingement heat transfer where a slot jet is impinging on a hot wall. The 
problem is shown in Figure 1. The goal of the study was to evaluate the source and 
distribution of entropy generation in the jet. Impingement heat transfer has been used 
for turbine blade cooling, cooling of electronic components, and for air heating in solar 
thermal power applications. Understanding the structure of entropy generation in this 
process should be of direct utility to heat transfer engineers. Helium and glycerin were 
evaluated as heat transfer fluids. While helium is often used as a heat transfer fluid, 
glycerin was included as a limiting case where viscous dissipation becomes the 
dominant source of entropy generation, even at low velocities.

FIGURE 1. Impinging Jet



MODELING METHODOLOGY

The approach to computing local entropy generation rates was based on the 
equations derived by Bejan (1982) for the irreversibilities associated with viscous flow 
and heat transfer across a finite temperature difference. Bejan's expression for local 
entropy generation rate, in Cartesian coordinates, for a Newton fluid and isotropic
medium appears as in Equation (1); where K= ^ + and e = ^ + i1!- Expressed in 
the above form Equation (1) is valid for both laminar and turbulent flow; where the 
effective thermal conductivity equals the sum of the molecular thermal conductivity and 
the eddy thermal conductivity, and the effective viscosity equals the sum of the 
molecular viscosity and the eddy diffusivity. Local entropy generation rates are, 
therefore, dependent on the local spatial gradients of temperature and velocity and on 
the absolute local values of temperature, effective thermal conductivity, and viscosity. 
These quantities were estimated locally within the fluid domain for fluid flow and 
convective heat transfer problems with the finite-difference based TEMPEST computer 
code (Trent, Eyler and Budden 1989a,b). The pertinent aspects of the TEMPEST code 
to the computation of entropy generation for fluid flow and convective heat transfer are 
described below.

The method for computing local entropy generation was to substitute finite difference 
formulations for the partial derivative terms of Equation (1), and evaluate the resulting 
expression after each TEMPEST time advance. The evaluation of the local entropy 
generation throughout the computational domain was decoupled from computations of 
the primitive variables of temperature, pressure, velocity, turbulent kinetic energy, and 
dissipation of turbulent kinetic energy. Conserving the first order accurate finite 
differencing scheme used in the TEMPEST code, the entropy generation equation was 
differenced to first order accuracy. The difference expressions for three of the twelve 
partial differential terms in Equation (1) are expressed below for illustration:

fdT)2 [(AXi-1 + Axi)Th1—(Axi,1 + Axi)Ti-1 + (AxM + Axi-l)Ti 
1-SrJ -{ (Ax.+1 + Axi)(Axw+Axi)
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The subscripts i and j are indices for the positive x and y Cartesian coordinate 
directions, respectively. The subscripting convention is to suppress all indices except 
for those indices that differ from the local cell (i,j,k). The finite difference expression for 
entropy generation shown below reflects the staggered grid arrangement used in 
TEMPEST; that is, the scalar variables are cell centered, whereas the velocities are 
positioned on the cell faces. The u velocity associated with the i,j,k cell is positioned 
on the face between the i,j,k and i+1 ,j,k cells. The same indexing logic holds for the y 
and z Cartesian directions.

TEMPEST, a three-dimensional, time-dependent computer program for hydrothermal 
analysis generated the velocity and temperature gradients required to compute the 
local entropy generation rate. Although TEMPEST offers simulation capabilities over a 
wide realm of hydrothermal problems, only those features germane to the benchmark 
and demonstration problems will be addressed. TEMPEST solves the three 
conservation equations governing mass, momentum, and energy, subject to several 
assumptions and/or restrictions. The subject fluid is modeled as single-phase, 
incompressible, and Newtonian. The Boussinesq approximation holds, and the 
heating contribution due to viscous dissipation is eliminated from the energy equation. 
These assumptions combine to yield a loosely coupled momentum and energy 
equation through thermodynamic state relationship for simulations where the natural 
convection contribution is significant.

The turbulent flow conservation equations are time averaged and Reynolds stresses 
are incorporated through appropriate eddy viscosity models. In the current version of 
TEMPEST, turbulent flow Reynolds stresses are modeled through an effective 
viscosity. The Prandtl-Kolmogorov hypothesis is used to relate the effective viscosity 
to a velocity and a length scale. In this approach, transport equations for the turbulent 
kinetic energy and the dissipation of turbulent kinetic energy are solved to determine 
the effective turbulent viscosity. The turbulent viscosity is in turn employed to compute 
the turbulent (eddy) thermal conductivity.

The TEMPEST solution procedure is a semi-implicit time marching finite-difference 
procedure with all governing equations solved sequentially. For each time step the 
momentum equations are solved explicitly and the pressure equations implicitly. 
Temperature, turbulent kinetic energy, dissipation of turbulent kinetic energy, and 
other scalar transport equations are solved using an implicit continuation procedure. 
The solution proceeds in three phases. During the "tilde phase" the three momentum 
equations are advanced in time to obtain approximations to the velocity field based on 
previous time step values of the pressure and density field. These tilde velocity fields 
satisfy the momentum equation, but not necessarily the continuity of mass equation. 
The implicit phase computes corrections to the velocity and pressure fields such that 
the adjusted quantities satisfy the continuity equation. With the implicit phase 
velocities computed, the scalar phase updates (time advances) the values of 
temperature and other scalar quantities. The solution is advanced step by step in time 
by continued application of the above three solution phases. For the steady-state 
solutions of the present work, the concept of time stepping is somewhat false, rather



the solution is brought to steady-state from some arbitrary initial guess through a 
series of false transients. The calculation of the entropy generation quantities could be 
considered as part of the scalar phase; however, unlike other scalars such as 
temperature, turbulent kinetic energy and dissipation of turbulent kinetic energy the 
entropy generation quantities do not feed back to momentum equation, e.g., 
gravitational body force and turbulent viscosity. The entropy generation quantities 
should, therefore, be considered as post scalar phase.

BENCHMARK PROBLEM

The subroutine to compute entropy generation rates, incorporated into TEMPEST, was 
benchmarked against the analytical solution for the hydrothermal problem of laminar 
flow in a circular conduit with constant heat flux. The problem was specifically 
structured such that the contributions to entropy generation were comparable between 
the viscous dissipation and thermal gradient portions of the entropy generation 
equation. The characteristics of the entropy generation benchmark involved the flow 
of 150° C helium at an average velocity of 8.75 m/s, through a circular conduit with a 
diameter of 0.05 m, with a constant wall heat flux of 45 W/m2. The properties of helium 
were held constant for both the analytical and numerical evaluations. The analytical 
solution for the velocity profile and temperature profile for laminar flow in a circular 
pipe with a constant wall heat flux may be expressed as (Kays and Crawford 1980):

/
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The local entropy generation rate then follows from the cylindrical form of Equation (1) 
as:
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where the left and right portion of the right-hand side correspond to the entropy 
generation contributions for the thermal gradients and viscous dissipation, 
respectively.



The benchmark problem was modeled with TEMPEST in two-dimensional cylindrical 
coordinates with an axis of symmetry around the conduit center line. An axial conduit 
length of 36 m was modeled to assure a fully developed flow at the comparison point. 
The inlet flow and temperature profiles assigned across the conduit radius were 
uniform and allowed to develop the axial length of the model. Local entropy 
generation profiles were computed at each of the non-uniformly spaced, radial nodes 
across the conduit radius at the model effluent. The contributions to local entropy 
generation due to thermal gradients and viscous dissipation were computed 
separately and then compared with the analytical solution. The wall temperature used 
in the analytical solution matched that of the model wall temperature at the conduit 
effluent. A comparison of local entropy generation across the conduit radius is show in 
Figure 2.

The comparison demonstrates that both the TEMPEST code and the entropy 
generation subroutine function as expected for laminar flow. The TEMPEST approach 
to turbulent flow with the turbulent kinetic energy and dissipation of turbulent kinetic 
energy (k-e) model has been thoroughly benchmarked for a variety of applications.
The entropy subroutine was verified for turbulent flow through independent 
calculations of local entropy generation for established turbulent flow fields with 
convective heat transfer.

IMPINGING JET PROBLEM

To demonstrate the utility of computing local entropy generation for convective heat 
transfer, a problem was created that was capable of producing comparable levels of 
entropy generation between the thermal and viscous components. With the 
appropriate choice of the fluid, Prandtl number, jet Reynolds number and surface 
Nusselt number, a jet of lower temperature fluid impinging on an elevated temperature 
isothermal wall can develop complex velocity and temperature fields with interesting 
entropy generation regions. The impinging jet problem provides the opportunity for 
viscous source entropy generation in distinct areas of the model because of the strong 
shears that develop near the jet inlet and along the compression wall. With surface 
heat transfer limited to the isothermal wall, the thermal source entropy generation will 
primarily occur near the wall with some turbulent mixing away from the wall producing 
local thermal gradients. Although TEMPEST and the associated entropy subroutine 
are fully transient and three-dimensional, the impinging jet problem was limited to a 
steady-state and two-dimensions.

The physical arrangement and noding scheme for the impinging jet problem are 
shown in Figure 3. A fluid jet enters the computational domain in the lower corner of 
the left vertical boundary as a uniform specified velocity. In the horizontal direction the 
computational domain is bounded by two vertical walls; the left wall being an 
adiabatic, no slip surface and the right wall being either an isothermal or constant heat 
flux, no slip surface. The upper horizontal surface is an unspecified outflow/inflow 
boundary for which the conditions are computed. The modeled problem is actually 
double the size depicted with a line of symmetry position on the center line of the jet
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inlet. The lower horizontal boundary has, therefore, a rigid free-slip flow condition, 
with an adiabatic surface. The inlet jet spans a surface area of 0.3 m2/m, whereas, the 
flow outlet covers the entire upper horizontal surface 1.124 m2/m. Vertically the 
computational domain was arbitrarily limited to a 1.5 m length.

The computational noding scheme was a 60 x 40 Cartesian grid with variable node 
spacing. The horizontal node spacing varied between 0.0711 m and 0.001 m, and the 
vertical node spacing varied between 0.05 m and 0.01 m. The high aspect ratio nodes 
were positioned next to the vertical isothermal surface to capture the thermal and 
momentum boundary layers. Vertical node refinement was used to capture the shear 
layers of the jet as it entered the computational domain. All computations were 
performed on a Macintosh II computer configured either with a MC68020 processor, or 
a MC68030 processor and MC68882 coprocessor. Typical CPU processing times for 
the latter machine were around 14 ms/time-step/cell.

The jet impingement problem was simulated with the thermal property data for two 
materials, glycerin and helium; and for the case of helium, four inlet jet velocities were 
investigated. Two thermal boundary conditions were considered for each fluid type 
and inlet jet velocity: 1) an isothermal surface 10°C above the inlet jet temperature and 
2) a constant surface heat flux, whose value was fixed per fluid type. Although 
TEMPEST contains the capability for temperature dependent physical properties, the 
fluid properties of viscosity, thermal conductivity, specific heat, and density were fixed 
during the simulations. The 10 different simulations are categorized in Table 1 below; 
the characteristic length use in the Reynolds number was based on the diameter of the 
inlet jet.

TABLE 1. Simulation Parameters

Na Fluid Jet Revnolds No. Prandtl No. Thermal Boundarv
1 a Glycerin 7.46 x 102 16610. Isothermal
1b Glycerin 7.46 x 102 16610. Heat flux, 1300. W/m2
2a Helium 3.03 x 103 0.556 Isothermal
2b Helium 3.03 x 103 0.556 Heat flux, 100. W/m2
3a Helium 3.03 x 104 0.556 Isothermal
3b Helium 3.03 x 104 0.556 Heat flux, 100. W/m2
4a Helium 1.51 x 105 0.556 Isothermal
4b Helium 1.51 x 105 0.556 Heat flux, 100. W/m2
5a Helium 3.03 x 105 0.556 Isothermal
5b Helium 3.03 x 105 0.556 Heat flux, 100. W/m2

RESULTS

Computational fluid dynamic calculations typically omit Second Law analyses 
because computation of entropy generation rates is not compulsory for solving the 
Navier-Stokes equations. The emphasis in presenting these results from the 
impinging jet simulations, therefore, will be concentrated on the insights afforded by



computing and visualizing local entropy generation rates. The authors note that 
graphics presentation of the fields of entropy generation do not translate well from the 
color images of a high resolution monitor to the black and white imaging of the printed 
page. Several approaches for performing this translation were attempted including 
contour plots, shaded contour plots, and photography of gray-scale images. The 
images that appear in this article were created by a procedure called "dither," which 
converts the color image into a pseudo gray-scale image through a palette of 
interconnected symbols. This palette, with its associated scale, is shown below each 
result figure that was generated through the "dither" procedure. It should be noted that 
the palettes are scaled differently amoung the result figures.

Space limitations prohibit the graphic presentation of the entropy generation fields for 
alHO of the simulations. Therefore, selected graphic results will be presented that best 
reveal the entropy generation characteristics. In lieu of graphic results, Table 2 below 
summarizes the key results from the 10 separate simulations. The second through the 
fourth columns in the table are the local entropy generation rates integrated over the 
computational domain for, contribution of entropy generation associated with viscous 
dissipation, thermal gradients, and combined sources, respectively. The column 
entitled flux represents the average surface heat flux for the thermal boundary surface. 
For isothermal simulations the local heat flux was a complex function of the vertical 
wall position, fluid properties, and jet Reynolds number, with the maximum heat fluxes 
occurring at the jet center line.

TABLE 2. Volume Integrated Entropy Generation Rates

No. Viscous. W/K Thermal. W/K Total. W/K Flux. W/m2
1 a 1.16 0.631 1.79 1306.4
1b 1.16 0.800 x 10-1 1.24 1300.0
2a 0.568 x 10-5 0.320 x 10-1 0.320 x 10-1 196.3
2b 0.568 x 10-5 0.610 x 10-2 0.611 x 10-2 100.0
3a 0.109 x 10-2 0.175 0.176 663.7
3b 0.109 x 10-2 0.177 x 10-2 0.286 x 10-2 100.0
4a 0.134 0.348 0.482 1219.9
4b 0.134 0.758 x 10-3 0.135 100.0
5a 0.940 0.531 1.47 1827.2
5b 0.940 0.425 x 10-3 0.940 100.0

Two interesting features of Table 2 should be noted. The first is that for roughly 
equivalent average surface heat flux values (simulations 1a and 1b), the integrated 
entropy generation rates are lower for the constant wall heat flux. Peak local values of 
the entropy generation due to thermal gradients occurred in the node adjacent to the 
heated surface. In the case of the isothermal surface (simulation 1a), the peak value 
occurred at the jet center line, whereas, for the constant heat flux surface the peak 
value occurred at the computational domain outlet. The second interesting feature of 
Table 2 is again related to the difference between the isothermal and constant heat 
flux surface simulations. Simulations 2 through 5 were for a helium jet; where the "a"



suffix to the simulation number indicates an isothermal heated surface, and the "b" 
suffix indicates a constant heat flux, heated surface. For the isothermal heated surface 
simulations, as the jet inlet velocity increased, the total integrated entropy generation 
rate increased. Conversely, for the constant heat flux series of simulations a minimum 
in the total integrated entropy generation rate is noted for a jet inlet velocity of 10.0 m/s 
(simulation 3b). The increasing entropy generation rates due to viscous dissipation 
with increasing jet inlet speeds are offset by the decreasing entropy generation rates 
that result from thermal gradients. This minimum total integrated entropy generation 
rate was not observed in the isothermal surface simulations because the integrated 
surface heat transfer increased with jet speed.

The following three images (Figures 4 to 6) depict fields of local entropy generation 
rates for simulation 3a, separated into the viscous dissipation component, thermal 
gradient component, and total, respectively. The three images are equivalently scaled 
by the natural logarithm of the entropy generation from 4.63 x 10-9 W/K m3 to 
228.2 W/K m3. The local entropy generation that stems from viscous dissipation 
(Figure 4) is concentrated in the shear layers near the jet inlet and the vertical wall 
boundary layers. Without the logarithm scaling of the images, the detail in the images 
is lost, with the perceivable entropy generation sources collapsing to the thin shear 
and boundary layers. The thermal gradient component of the local entropy generation 
rates (Figure 5), because of the logarithm scaling, appears as an enlarged boundary 
layer along the heated vertical surface. The relatively high entropy generation rates 
that occur within the entrance shear layers of the jet result from the recirculating helium 
at elevated temperatures mixing with the cooler inlet jet fluid. The field of total local 
entropy generation (Figure 6) shows the viscous dissipation component dominating 
the jet entrance shear region and the thermal gradient component dominating the 
boundary layer along the vertical heated wall. These distributions, naturally, are 
strongly dependent on the flow structure and thermal boundary conditions.

The fields of local entropy generation rate for the simulation with a glycerin jet with an 
isothermal heated surface (simulation 1a) are depicted in Figures 7 to 8. Both images 
in Figures 7 and 8 are scaled by the natural logarithm; however, the span of the scales 
differs between the two images. The field of the viscous dissipation component of 
local entropy generation shown in Figure 7 appears different from its counterpart for 
the helium jet. A significant amount of entropy generation occurs in the glycerin jet as 
it decelerates upon entering the computational domain. Moreover, a more equivalent 
distribution of viscous dissipation is occurring along the adiabatic and heated vertical 
surfaces. This is in contrast to the helium jet simulation where the viscous dissipation 
was confined to the entrance shear region and the impingement wall boundary layer. 
These differences in the viscous dissipation fields are attributed to the differences 
between jet Reynolds numbers and fluid physical properties.

An interesting estimate of numerical entropy generation may be obtained by 
computing the integrated thermal contribution to entropy generation for an isothermal 
problem. In another words, TEMPEST was executed with all of the nodes initialized 
with the identical temperature and all forms of internal heat generation and surface
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heat fluxes nulled, but with the energy equation being solved. The resulting 
temperature field was then used to compute the thermal component of entropy 
generation. If the simulations were completely void of numerical entropy generation 
then one would expect to the integrated thermal component of the entropy generation 
rate to equal zero. The results for these isothermal simulations, with the four helium 
flow fields, indicate that the numerical entropy generation levels are significantly below 
those of the problem; as listed in Table 3 below. The actual levels of numerical 
entropy generation probably do not correlate with the jet Reynolds number because 
the pressure convergence criterion and simulation periods differed between the 
simulations. The field of numerical entropy generation computed as described above 
for simulation number 3a is shown in Figure 9. The image indicates that the numerical 
entropy generation is not purely random, but rather that the regions of high flow shear 
and flow deceleration produce the largest entropy generation rates. These regions in 
the computational domain coincide with those nodes that have large aspect ratios or 
would improve the computational accuracy with spacing refinements.

TABLE 3. Integrated Numerical Entropy Generation Rates

Numerical Physical
Jet Revnolds No. Entroov Generation. W/K Entroov Generation. W/K

2a 3.03 x 103 0.240 x 10-14 0.320 x 10-1
3a 3.03 x 104 0.337 x 10-16 0.176
4a 1.51 x 105 0.101 x 10-15 0.482
5a 3.03 x 105 0.272 x 10-11 0.940

ERROR ANALYSIS

An estimate of the relationship between errors in the primitive variables of temperature 
and velocity, and errors in the entropy generation components may be made with a 
few assumptions. For the viscous dissipation component, if we assume that:

3u _ 3u _ 3v _ 9v. 
3x 3y dx dy' and e = e

U V (8)

then an estimate of the error in the viscous component of entropy generation that 
corresponds to a level error in the velocity field may be expressed as the following, for 
a first order finite difference scheme:

Ax2J (9)
e =32±i

sgv J Ax Ax

If the velocity gradient Au/Ax is approximated by the gradient across the turbulent 
momentum boundary layer on the heated surface at the volume exit, Ax is 
approximated by the average node spacing, and the second term of Equation (9) is 
ignored, then a relation between an error in velocity and the viscous component of
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entropy generation may be obtained. These relations are summarized in Table 4 
below for the helium simulations.

A similar analysis was performed on the error in the thermal component of entropy 
generation with dependence on the error in the temperature field. For the thermal 
error analysis it was assumed that

ai= ai.
dx dy ’ (10)

the thermal gradient AT/Ax was approximated by the gradient across the thermal 
boundary layer on the heated surface at the volume exit; Ax was approximated by the 
average node spacing; and the analogous term to the second term of Equation (9) was 
ignored. The relations between an error in temperature and the thermal component of 
entropy generation are also summarized in Table 4 below for the helium simulations.

TABLE 4. Relation Between Primitive Errors and Entropy Errors

Jet Reynolds No. Viscous Relation Thermal Relation
3.03 x 103 £sgV = 2.97 x 10-4 8V Esgt = 5.05 X 10-2 £j
3.03 x 104 £Sgv = 4.74 X 1 0-3 £v £Sgt = 8-77 X 10-2 £t

1.51 x 104 £sgv = 3.28 X 1 0-2 £v £sgt= 1.21 X 10-1 £t

3.03 x 105 £sgV = 7.54 X 10-2 £v £sgt = 1.40 X 10-1 £T

CONCLUSIONS

The results of this study confirm the feasibility and usefulness of numerical calculation 
of local entropy generation in complicated thermal processes. Specific conclusions 
concerning the feasibility of numerical calculation of local entropy generation include:

• The integration of local entropy generation calculations into an existing CFD code 
proved to be straightforward and did not significantly increase run time.

• The comparison of numerical and analytical results for a simple benchmarking 
problem was successful.

• Error analysis suggests that numerical error is very small when compared to the 
calculated entropy generation.

Specific conclusions concerning the usefulness of numerical calculation of local 
entropy generation include:

• Numerical calculations allow the investigation of the structure of local entropy 
generation in thermal processes. The impinging jet problem is an example. The



results show that for the sample problem, entropy generation is concentrated in 
the boundary layer. To a great extent, understanding the boundary layer will allow 
an understanding of local entropy generation. This will not necessarily be true for 
different geometries and more complicated processes.

• Numerical calculations can help a designer optimize a component. The results of 
the impinging jet problem identified a jet velocity that minimizes entropy 
generation. This information would be useful to a designer trying to minimize the 
irreversibilities in an jet impingement heat exchanger.

• Numerical calculations of local entropy generation may provide a measure of 
numerical entropy generation that can be compared to natural entropy generation 
to judge the validity of the numerical calculation.

Based on the results of this study, we have made several recommendations for future 
research.

• Given the simplicity and usefulness of including local entropy generation
calculations in CFD codes, CFD code developers should be encouraged to 
incorporate local entropy generation calculation in a wide range of simulation 
tools. r

• Local entropy generation calculations should be expanded to involve more 
complicated processes including multiple phases, multiple components, reacting 
flows, compressible flows, and radiation heat transfer.

NOMENCLATURE

cp specific heat, J/K kg
d partial derivative
Ax node dimension in the x direction, m
£ effective viscosity, Pa s
esgt error in thermal component of entropy generation, W/K m2
esgv error in viscous component of entropy generation, W/K m2
E t absolute error in the temperature, K
£u absolute error in the u velocity, m/s
k thermal conductivity, W/K m
kj eddy thermal conductivity, W/K m
k effective thermal conductivity, W/K m
. //
9 o surface heat flux, W/m2
r radius, m
r0 conduit radius, m



T
To

U, V, w
V
4

x, y, z

entropy generation rate, W/K m2 
temperature, K 
wall temperature, K 
x, y, z direction velocity 
average flow velocity, m/s 
dynamic viscosity, Pa s 
eddy viscosity, Pa s 
Cartesian coordinate directions

Subscripts

i x direction node index
j y direction node index
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