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ABSTRACT

In order to study properties of the Maximum Likeli-
hood Estimator (MLE) algorithm for image reconstruction
in Positron Emission Tomography (PET), the algorithm is
applied to data obtained by the ECAT-I1I tomograph from
a brain phantom. The procedure for subtracting acci-
dental coincidences from the data stream generated by
this physical phantom is such that the resultant data
are not Poisson distributed. This makes the present
investigation different from other investigations based
on computer-simulated phantoms. It is shown that the
MLE algorithm is robust enough to yield comparatively
good images, especially when the phantom is in the pe-
riphery of the field of view, even though the underly-
ing assumption of the algorithm is violated. Two tran-
sition matrices are utilized. The first uses geometric
considerations only. The second is derived by a Monte
Carlo simulation which takes into account Compton scat-
tering in the detectors, positron range, etc. in the
detectors. It is demonstrated that the images obtained
from the Monte Carlo matrix are superior in some speci-
fic ways. A stopping rule derived sarlier and allowing
the user to stop the iterative process before the im-
ages begin to deteriorate is tested. Since the rule is
based on the Poisson assumption, it does not work well
with the presently available data, although it is suc-
cessful with computer-simulated Poisson data.

INTRODUCTION

Iterative image reconstruction algorithms have been
widely discussed in literature on Positron Emission
Tomography. In particular, the MLE algorithm is re-
ceiving substantial attention since it has a number of
advantages over other reconstruction schemes. However,
it has not been sufficiently tested to clearly under-
stand its properties. To this end, we apply the MLE
algorithm to reconstruction of a brain phantom. Unlike
computer-simulated phantoms used in most of the studies
of the MLE algorithm, our data was generated by the
tCAT-111 tomograph, as described by Hoffman et all,
Figure 1 shows the geometry of the source. The ratio
of activities between the regions in black and those
in white in the interior of the phantom is ~ 4:1.

Fig. 1: Drawing of the brain phantom. The ratio of
activities between the regions in black and those in
white in the interior of the phantom is ~ 4:1.

One aspect of the data acquisition process of
ECAT-III that we used may have ramifications on the
applicability of the MLE algorithm. In order to remove
random coincidences, the method of prompt vs. delayed
coincidences was usedZ. According to this method,
random coincidences in every detector pair are sub-
tracted from the total number of coincidences in that
same pair. In the case of our data, the subtraction
was carried out on line, during image acquisition.

The two measurements are taken over disjoint intervals
of time so that they are probabilistically independent.

It 1s reasonable to assume that the results of both
measurements are Potsson distributed. It is known that
while the sum of two independent Poisson random vari-
ables is Poissan distributed, the difference is not.
Since the MLE algorithm expects only non-negative val-
ues, we truncated the negative values to zero, which,
however, did not make the data Poisson distributed.

Thus, we have encountered a situation where the
main premise of the MLE algorithm that the number of
detected coincidences in any detector pair is a Pois-
son variable is violated. It is interesting to see
what images are reconstructed by the MLE algorithm in
this case and to observe the behavior of a stopping
rule for the MLE algorithm that we have published re-
cently’, This rule is based on the simple statisti-
cal consideration that the image reconstructed should
have been able to generate the set of coincidence data
by a Poisson process with a high confidence level.
This paper will present the results of these two sets
of observations.

COMPUTATION OF TRANSITION MATRICES

The central part of the MLE algorithm is the tran-
sition matrix which is a set of the probabilities
p(b,d) that a gamma pair emitted from the pixel b is
detected by the detector pair d. When computer simu-
lated data is used for reconstruction, the choice of
p(b,d) is not crucial, as long as the same matrix is
used for both simulation and reconstruction. However,
when data is generated by a physical instrument, the
matrix used for reconstruction should reflect the real
probabilities controlling the physical experiment.

The earliest transition matrix was reported by
Shepp and Vardi4, 1t is based on some simplified
geometric considerations. This matrix has been com-
parad with another transition matrix that takes into
account Compton scattering, detection efficiency, pres-
ence of absorbers, positron range and non-colinearity
of gamma-pairs. The computation uses a Monte Carlo
simulation package called EGS4 described by Nelson et
ald, The generation of transition matrices by con-
sidering the physical progerties of the detectors has
been used by Llacer et a16s7 for small pgsitron emis-

sion cameras and by Floyd et a18 for sp 5? ’.
i ;
EGS4 is a general purpose package for “.5'1“‘.31 i
the interactions of electrons and photons in arbi

It has been adapted to the

geometry and materials.
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UC&A 512-crystal (BiGeO) ring described by Hoffman et
all, The computation proceeds as follows. We start
out at a given source point. Then we generate a random
annihilation point usina the positron range distribu-
tion derived by Derenzo’. The first photon is emitted
from the annihilation point in a uniformly distributed
random direction. Due to a residual energy at annihi-
lation, the angle between the first photon and the sec-
ond may deviate from 180°. (For_the emission angle
distribution see Colombino et all0). The two photons
travel in straight lines and if both hit the detector
ring, their further trajectories are taken over by EGS4
which a2lso computes the amount of energy deposited by a
photon in any detector. A photon which deposits more
energy in a detector than a given threshold is said to
be “detected", provided that it is detected by only one
detector {multiple detections are vetoed). If both
photons of a pair are detected, this event increments
the corresponding element of a matrix which becomas the
transition matrix after normalization. A pixel is ap-
proximated by a set of sourcd points.

A sample of simulation results is presented in
Fig. 2. It depicts the numbers of pairs detected by
vertical tubes as the source point moves along the hor-
izontal diameter in the right semicircle., A vertical
tube is defined as the space between two parallel lines
that join the edges of detectors placed symmetrically
about the horizontal diametear, The tubes are numbered
from 1 (the tube covering the vertical diameter) to 128
(the rightmost vertical tube), Short vertical lines
mark the tube boundaries in the figure. Crosses show
the numbers of detected patrs as a function of the x-
coordinate of the source. Fig. 2a) shows the results
for tubes 1 and 2 and Fig. 2b) for tubes 40 and 41.
Due to the ring geometry, peripheral tubes are narrower
than central ones. Furthermore, the destector faces are
not perpendicular to peripheral vertical tubes. There-
fore, the probability that a vertical pair of photons
will be detected is significantly lower for peripheral
tubes than for central ones. Another effect that can
be observed is that this response function is less
sharp in case of peripheral tubes and the maximum of
the response function shifts to the right with respect
to the center of the tube. This effect is also caused
by the ring geometry and the finite absorption coeffi-
cient of the detector material. The response functions
obtained by simulation are then approximated by smooth
functions characterized by several parameters. These
smooth functions are shown in Fig. 2 as well. They
make up a “database" that is used to generate a transi-
tion matrix. Images reconstructed with the "Shepp-
Vardi" transition matrix are compared with those recon-
structed with the "Monte Carlo" matrix below.

STOPPING RULE

Several authors have observed that as the MLE iter-
ative process passes a certain point, the reconstructed
images exhibit strong deterioration. This phenomenon
has been explained from different viewpoints and sever-
al remedies have been proposed. Snyder et alil no-
ticed that this effect is fundamental to the applica-
tion of unconstrained maximum likelihood estimation.

We would like to take a step further.

. Llet n(d) (d =1, . . . D) be the projection data,
i.e., the number of coincidences detected in tube d

and A{b) (b =1, .. . B) the emission density in pixel
b. Consider an algorithm which tries to minimize the
differences between n(d) and

x*(d) = Zp(b. d) a(b)
b

(1)

in some sense.
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Fig. 2: Simulation results: the response function

for a few tubes when the source point moves along the
horizontal diameter: a) tubes 1 and 2; b) tubes 40
and 41. The crosses are actual simulation points;
smooth curves are their approximations.

The attainment of the maximum likelihood solution
is but one approach to the goal of minimizing the dif-
ferences, Another approach that immediately comes to
mind is minimizing the sum of the squares of the dif-
ferences, Llacer and Veklerov proposed yet another
criterion for research purpOSfS which was called
"weighted maximum 1ikelihood"*¢. It was later point-
ed 0st by Veklerov and Llacer3 that the eventual



deterioration of images is fundamental to the applica-
tion of unconstrained minimization of the differences,
not only by the MLE method,

Indeed, suppose we are able to recover an image,
such that n(d) and a*{(d) are very close. If they are
too close, this may be inconsistent with the physical
nature of the experiment, whereby each n(d) is a reali-
zation of a Poisson variable with the mean a*(d). For
instance, the Poisson distribution calls for a specific
deviation of n{(d) from a*(d), which is specifically the
square root of a*(d). As a result of unconstrained
minimization, the deviation may become less than that
value. In that case, a source distribution identical
to the recovered image could not have possibly genera-
ted the data.

The specific visual form by which continued itera-
tion degrades an image after a certain point will de-
pend on the nature of the function whose extremum is
being sought. The MLE is particularly badly behaved,
althoug’. we have been able to modulate the degradation
effect with respect to accurate reconstruction of areas
of 1?5 level activity by a Weighted Likelihood func-
tionis,

The above facts ware used by Veklerov and Llacer3
for formulating a stopping rule for iterative process-
es. According to the rule, we test the hypothesis that
the projection data is a (scaled) Poisson sample drawn
from the distribution determined by the image obtained
after each iteration. The iterative process stops when
the hypothesis can be accepted (or rather, not reject-
ed). We emphasize that the requirement that the recov-
ered image be consistent with the Poisson nature of the
measurements has nothing to do with the specific cri-
terion used by Shepp and vardi4 to derive the MLE al-
gorithm. Since the reguirement results from the phys-
ical nature of the experiment, it follows that it is
applicable to any iterative process based on any cri-
terion that tries to match the data and reconstructed
images. Although it cannot be guaranteed that any it-
erative process will pass through “acceptable" images,
the occurrence of this passage is sufficient for stop-
ping the iterative process. So far we have observed
that for all data sets generated in accordance with the
Poisson assumption, the MLE algorithm does pass through
acceptable images.

Defriseld proposed another stopping rule based
on Morozov's discrepancy principle that "the estimated
solution should not fit the data with an accuracy
greater than the accuracy of the measurement". This
principle is a general statement of the idea that mo-
tivated our research. Unlike the principle proposed
by our group, however, this principle and its realiza-
tion proposed by Defrise do not take into account the
specific statistical nature of the measurements.

Returning to the brain phantom, since its n(d) are
not Poisson-distributed, our stopping rule in its pres-
ent form is not directly applicable. Veklerov and
Llacer3 defined a parameter denoted H which is a
quantitative measure of how close the distribution of
scaled n(d)'s is to a Poisson distribution. In "nor-
mal" cases, H reaches a clear minimum and then gradual-
1y increases. Figure 3, lines a and b, show the hypo-
thesis testing parameter H for a computer simulated
brain phantom in which the data were Poisson distribu-
te?a for 1 million and 4 million counts, respective-
1yt%.  The horizontal line d indicates the value of
H below which we can have 99 ¥ confidence that the im-
age iteration tested could have generated the data by
a Poisson process. In the present case, line ¢, H does
not pass through a minimum, nor does it become low
enough to pass the Poisson test. Thus, the stopping
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Fig. 3: Hypothesis testing function H for computer
simulated and physical brain phantoms: a) Computer
simulated, 1M counts; b) ditto, 4M counts; c¢) physical
phantom, IM counts,

rule, in its present form, is not capable of capturing
the "best" image for data that are not Poisson distri-
buted initially.

Since the prompt vs. delayed coincidence method of
subtracting random coincidences is a very elegant way
of generating clean data in the less-than-ideal timing
resolution BiGe0 detector systems, we have recently ob-
tained individual coincidence data for the prompt and
the delayed coincidence events of the present brain
phantom for the purpose of studying the best way of re-
constructing those images by MLE methods.

DISCUSSION OF RECONSTRUCTED IMAGES

The purpose of this section is to compare images
reconstructed with the filtered back-projection (FBP)
algorithm using the Hanning window with those recon-
structed with the MLE algorithm using the transition
matrix proposed by Shepp and Vardi4 (SV), as well as
the transition matrix derived from the Monte Carlo
simulation (MC) described above. Since the differ-
ence between the SV matrix and the MC matrix is most
pronounced for the peripheral tubes, the phantom was
placed first at the center of the detector circle and
then at the lower edge by displacing its center by
15.5 cm. The data sets generated in these two
experiments were used for reconstruction.

Figure 4 depicts the FBP reconstructions of the
brain phantom located at the center (a) and at the
edge (b) when the total number of counts is 1 million
{1M). Both images were initially reconstructed at 256
x 256 pixels, with a pixel dimension of 3.05 mm, the
natural sampling distance of the ECAT-II1. For pres-
entation, a 64 x 64 section has been extracted from
the center or edge of the reconstructed results and
presented as a centered image. This presentation
technique will be used throughout this paper.

Figure 5 compares the center (a) vs. edge (b) imag-
es for the MLE reconstructions with the same data as
Fig. 4 (1M counts). The center reconstruction shown
was carried out with the SV matrix, while the edge im-
age resulted from the MC matrix. In both cases the re-
sults after 30 iterations are shown. The hypothesis
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Fig. 4: FBP reconstructions (Hanning window) when the
phantom shown in Fig. 1 is a) at the center of the de-
tector circle, b) at the edge. The total number of
counts is 14,

XBB 870-8544 XBB 870-8545

Fig, 5: Same images as in Fig. 4, reconstructed by the
MLE: a) SV matrix, center regicn; b) MC matrix, edge
region. Both IM counts, 30 iterations.

testing function H of Fig. 3, line a, and the recon-
struction experiments with the simulated brain phan-
toml4 indicated to us that, with 1M counts, 30 itera-
tions should be close to the "best" image, resulting in
a compromise between increased sharpness and deteriora-
tion in the regions of uniform density. In the present
reconstructions with non-Poisson real data, iteration
30 also vields satisfactory results using nnly the im-
age quality criteria.

The use of the MC matrix for the centered ghantom
does not appear to result in any significant improve-
ment over the SV matrix results, with 1M counts in the
image. It is apparent, however, that both M.LE 1mages
of Fig. 5 are clearer, have less noise and more dis-
tinct details than the FBP images of Fig. 4.

Additianally, the MC matrix results at the edge of
the “ie’a 2f view haye tne correct shape and size while
the Sv ans F3P images are distorted. The edae FBP im-
ages si*far from 3 vertica' alongetion, whila the Sy
images ara snmewhat foresnortenad. Figure 53} snows
tne 1ifferance netween tne adge image and tne center
nne obtained 5y tne F3P algorithm.  The middle level nf
qray corrasponds 1o zers difference, darker lovels cor-
respond to naqativae differences, brighter ¢ onsitive
ones. Figqure Bn) 15 tne same difference fur the M L MC
reconstructinng, Tne slgngation effect 1n tne FBPF case
is very clear, Tne M( differance image shaws a misrea-
istration oy aporoximately agrne pixel. The level »f
gray scale for Fig, 6 nas been compressed strongly
about zero in order to show the differances in a promi-
nent manner. The differances in the 5y case are inter-
mediate in magnitude hetween the twn cases shawn, hut
of opposite s1gn to the M7 rasults.

Finally, Figq. 7 snows reconstructions for edge data
with 4 miilion counts {4M}, with the SV matrix (a) and
with the MC matrix (b}. With the increased number of
counts the differaence 1n tne detaiied zontents 2¢ the

XBB 870-8550 XBB B70-8551

Fig. 6: Tne difference between the images at the edge
and at the center for a) FBP reconstructions, b) MLE
reconstructions with the MC matrix.

XBB 870-8548

XBB #70-8549

The MLE reconstructions of the edge image, 4M
counts, 40 iterations using a) the SV matrix, d) the MC
matrix.

Fig., 7:

images between the two matrices becomes guite evident,
particularly on a display with at least 32 levels of
gray. With 4M counts, the improvement is also aevident
with images at the center of the field of view,

In general, the MC transition matrix improves the
reconstructed images compared to the ones recovered
with the SY matrix. The improvement in shape fidelity
occurs at all count levels, while the improvement in
detail contents of the images hecomes more discernible
as the quality of the initial data improves. One would
expect that as the resclution of PET tomography im-
proves, the precision of transition matrrces will have
a greater impact on the guality of reconstructed imag-
es, even at low numbers of counts.

B PHILOSOPHICAL CONCLUS!ON

The MLE alanrithm is huilt on the following prem-
jse: the distributions of the counts n{1} are Pgissen
with the unknown means di {d=1, . . . D" and, there-
fore, it i desiranle to maximize the prolict of tne
probabilities that each -7 the ) randnm counts eguals
n{d), wnere eacn oranadb ity is a Poisson term witn the
mean A* {41, WP N3y ShNwWn witn gur stopping rule wors
that it 15 not reilly desiranie to rearn a4 maximiza-
tion, but tha’ nne should stap the iterative process
before a contradicinry situatron arises, [ the 29ig-
son nature nf tne data nalds trae, the MO alaoraitnm
wWOorks in recanstrygcting data intn rather mace 1mages,
It may ve surprosing, however, tnat the aignrithrT works
aven if the Poisson premise does not holg true, as with
o.r present data.

We oelieve that this i an andication tnat tne
specific fars taken by tne terms of the function to be
maximized by the algnrithm may he ratner flexinle, Af-
ter all, the algoritnm simply tries to fing an amage
such that the vectors n{d and a*{d) are as close ag
possible.  There are many wiys nf defining the distance
netween twn vectors and the maximum likelinond criter-
inn is byt ane of tnese way,, A way wnose merite haye
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been repeatedly demonstrated.

Apart from other re-

sults, this research raises, but does not answer, the
question of whether these merits follow from the under-
lying assumption that the counts are indeed Poisson-
distributed or they have nothing to do with it and the
method is merely an optimization technique appiicable
regardless of the nature of the data.
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