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ABSTRACT 
In order to study properties of the Maximum Likeli­

hood Estimator (MLE) algorithm for image reconstruction 
in Positron Emission Tomography (PET), the algorithm is 
applied to data obtained by the ECAT-III tomograph from 
a brain phantom. The procedure for subtracting acci­
dental coincidences from the data stream generated by 
this physical phantom is such that the resultant data 
are not Poisson distributed. This makes the present 
investigation different from other Investigations based 
on computer-simulated phantoms. It 1s shown that the 
MLE algorithm is robust enough to yield comparatively 
good Images, especially when the phantom 1s in the pe­
riphery of the field of view, even though the underly­
ing assumption of the algorithm is violated. Two tran­
sition matrices are utilized. The first uses geometric 
considerations only. The second is derived by a Monte 
Carlo simulation which takes into account Compton scat-
trring in the detectors, positron range, etc. in the 
detectors. It is demonstrated that the images obtained 
from the Monte Carlo matrix are superior in some speci­
fic ways. A stopping rule derived surlier and allowing 
the user to stop the iterative process before the im­
ages begin to deteriorate is tested. Since the rule is 
based on the Poisson assumption, it does not work well 
with the presently available data, although it is suc­
cessful with computer-simulated Poisson data. 

INTRODUCTION 
Iterative image reconstruction algorithms have been 

widely discussed in literature on Positron Emission 
Tomography. In particular, the MLE algorithm is re­
ceiving substantial attention since it has a number of 
advantages over other reconstruction schemes. However, 
it has not been sufficiently tested to clearly under­
stand its properties. To this end, we apply the MLE 
algorithm to reconstruction of a brain phantom. Unlike 
computer-simulated phantoms used in most of the studies 
of the MLE algorithm, our data was generated by the 
tCAT-III tomograph, as described by Hoffman et all. 
Figure 1 shows the geometry of the source. The ratio 
of activities between the regions in black and those 
in white in the interior of the phantom is - 4:1. 

Fig. 1: Drawing of the brain phantom. The ratio of 
activities between the regions in black and those in 
white in the interior of the phantom is - 4:1. 

One aspect of the data acquisition process of 
ECAT-III that we used may have ramifications on the 
applicability of the MLE algorithm. In order to remove 
random coincidences, the method of prompt vs. delayed 
coincidences was used?. According to this method, 
random coincidences in every detector pair are sub­
tracted from the total number of coincidences in that 
same pair. In the case of our data, the subtraction 
was carried out on line, during Image acquisition. 
The two measurements are taken over disjoint intervals 
of time so that they are probabilistically independent. 

It is reasonable to assume that the results of both 
measurements are Poisson distributed. It Is known that 
while the sum of two independent Poisson random vari­
ables is Poisson distributed, the difference is not. 
Since the MLE algorithm expects only non-negative val­
ues, we truncated the negative values to zero, which, 
however, did not make the data Poisson distributed. 

Thus, we have encountered a situation where the 
main premise of the MLE algorithm that the number of 
detected coincidences in any detector pair is a Pois­
son variable is violated. It is interesting to see 
what images are reconstructed by the MLE algorithm in 
this case and to observe the behavior of a stopping 
rule for the MLE algorithm that we have published re-
centlyS. This rule is based on the simple statisti­
cal consideration that the image reconstructed should 
have been able to generate the set of coincidence data 
by a Poisson process with a high confidence level. 
This paper will present the results of these two sets 
of observations. 

COMPUTATION OF TRANSITION MATRICES 
The central part of the MLE algorithm is the tran­

sition matrix which is a set of the probabilities 
p(b,d) that a gamma pair emitted from the pixel b is 
detected by the detector pair d. When computer simu­
lated data is used for reconstruction, the choice of 
p(b,d) is not crucial, as long as the same matrix is 
used for both simulation and reconstruction. However, 
when data is generated by a physical instrument, the 
matrix used for reconstruction should reflect the real 
probabilities controlling the physical experiment. 

The earliest transition matrix was reported by 
Shepp and Vardi 4. It is based on some simplified 
geometric considerations. This matrix has been com­
pared with another transition matrix that takes into 
account Compton scattering, detection efficiency, pres­
ence of absorbers, positron range and non-colinearity 
of gamma-pairs. The computation uses a Monte Carlo 
simulation package called EGS4 described by Nelson et 
al5. The generation of transition matrices by con­
sidering the physical properties of the detectors has 
been used by Llacer et al°» 7 for small p 
sion cameras and by Floyd et al 8 for SPE 

EGS4 is a general purpose package for 
the interactions of electrons and photons 
geometry and materials. It has been adapted to the 
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UCLA 512-crystal (BiGeO) ring described by Hoffman et 
a U . The computation proceeds as follows. We start 
out at a given source point. Then we generate a random 
annihilation point using the positron range distribu­
tion derived by Derenzo". The first photon is emitted 
from the annihilation point in a uniformly distributed 
random direction. Due to a residual energy at annihi­
lation, the angle between the first photon and the sec­
ond may deviate from 180*. (For the emission angle 
distribution see Colombino et a l 1 0 ) . The two photons 
travel in straight lines and if both hit the detector 
ring, their further trajectories are taken over by EGS4 
which also computes the amount of energy deposited by a 
photon in any detector. A photon which deposits more 
energy in a detector than a given threshold is said to 
be "detected", provided that it is detected by only one 
detector (multiple detections are vetoed). If both 
photons of a pair are detected, this event increments 
the corresponding element of a matrix which becomes the 
transition matrix after normalization. A pixel is ap­
proximated by a set of source" points. 

A sample of simulation results is presented in 
Fig. 2. It depicts the numbers of pairs detected by 
vertical tubes as the source point moves along the hor­
izontal diameter in the right semicircle. A vertical 
tube is defined as the space between two parallel lines 
that join the edges of detectors placed symmetrically 
about the horizontal diameter. The tubes are numbered 
from 1 (the tube covering the vertical diameter) to 128 
(the rightmost vertical tube). Short vertical lines 
mark the tube boundaries in the figure. Crosses show 
the numbers of detected patrs as a function of the x-
coordinate of the source. Fig. 2a) shows the results 
for tubes 1 and 2 and Fig. 2b) for tubes 40 and 41. 
Due to the ring geometry, peripheral tubes are narrower 
than central ones. Furthermore, the detector faces are 
not perpendicular to peripheral vertical tubes. There­
fore, the probability that a vertical pair of photons 
will be detected is significantly lower for peripheral 
tubes than for central ones. Another effect that can 
be observed is that this response function is less 
sharp in case of peripheral tubes and the maximum of 
the response function shifts to the right with respect 
to the center of the tube. This effect is also caused 
by the ring geometry and the finite absorption coeffi­
cient of the detector material. The response functions 
obtained by simulation are then approximated by smooth 
functions characterized by several parameters. These 
smooth functions are shown in Fig. 2 as well. They 
make up a "database" that is used to generate a transi­
tion matrix. Images reconstructed with the "Shepp-
Vardi" transition matrix are compared with those recon­
structed with the "Monte Carlo" matrix below. 

STOPPING RULE 
Several authors have observed that as the MLE iter­

ative process passes a certain point, the reconstructed 
images exhibit strong deterioration. This phenomenon 
has been explained from different viewpoints and sever­
al remedies have been proposed. Snyder et a l ^ no­
ticed that this effect is fundamental to the applica­
tion of unconstrained maximum likelihood estimation. 
We would like to take a step further. 

Let n(d) (d = 1, . .. 0) be the projection data, 
i.e., the number of coincidences detected in tube d 
and x(b) (b « 1, . . . B) the emission density in pixel 
b. Consider an algorithm which tries to minimize the 
differences between n(d) and 

x*(d) 5>. d) x(b) (1) 
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in some sense. 

Fig. 2: Simulation results: the response function 
for a few tubes when the source point moves along the 
horizontal diameter: a) tubes 1 and 2; b) tubes 40 
and 41. The crosses are actual simulation points; 
smooth curves are their approximations. 

The attainment of the maximum likelihood solution 
is but one approach to the goal of minimizing the dif­
ferences. Another approach that immediately comes to 
mind is minimizing the sum of the squares of the dif­
ferences. Llacer and Veklerov proposed yet another 
criterion for research purposes which was called 
"weighted maximum likelihood"!2. It was later point­
ed out by Veklerov and Llacer3 that the eventual 
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deterioration of images is fundamental to the applica­
tion of unconstrained minimization of the differences, 
not only by the HLE method. 

Indeed, suppose we are able to recover an image, 
such that n(d) and x*(d) are very close. If they are 
too close, this may be inconsistent with the physical 
nature of the experiment, whereby each n(d) is a reali­
zation of a Poisson variable with the mean x*(d). For 
instance, the Poisson distribution calls for a specific 
deviation of n(d) from x*(d), which is specifically the 
square root of x*(d). As a result of unconstrained 
minimization, the deviation may become less than that 
value. In that case, a source distribution identical 
to the recovered image could not have possibly genera­
ted the data. 

The specific visual form by which continued itera­
tion degrades an image after a certain point will de­
pend oh the nature of the function whose extremum is 
being sought. The MLE is particularly badly behaved, 
althoug', we have been able to modulate the degradation 
effect with respect to accurate reconstruction of areas 
of low level activity by a Weighted Likelihood func­
tion^. 

The above facts were used by Veklerov and Llacer^ 
for formulating a stopping rule for iterative process­
es. According to the rule, we test the hypothesis that 
the projection data is a (scaled) Poisson sample drawn 
from the distribution determined by the Image obtained 
after each Iteration. The iterative process stops when 
the hypothesis can be accepted (or rather, not reject­
ed), we emphasize that the requirement that the recov­
ered image be consistent with the Poisson nature of the 
measurements has nothing to do with the specific cri­
terion used by Shepp and Vardi 4 to derive the MLE al­
gorithm. Since the requirement results from the phys­
ical nature of the experiment, it follows that it is 
applicable to any iterative process based on any cri­
terion that tries to match the data and reconstructed 
images. Although it cannot be guaranteed that any it­
erative process will pass through "acceptable" images, 
the occurrence of this passage is sufficient for stop­
ping the iterative process. So far we have observed 
that for all data sets generated in accordance with the 
Poisson assumption, the MLE algorithm does pass through 
acceptable images. 

Defrisel3 proposed another stopping rule based 
on Morozov's discrepancy principle that "the estimated 
solution should not fit the data with an accuracy 
greater than the accuracy of the measurement". This 
principle is a general statement of the idea that mo­
tivated our research. Unlike the principle proposed 
by our group, however, this principle and its realiza­
tion proposed by Defrise do not take into account the 
specific statistical nature of the measurements. 

Returning to the brain phantom, since its n(d) are 
not Poisson-distributed, our stopping rule in its pres­
ent form is not directly applicable. Veklerov and 
Llacer^ defined a parameter denoted H which is a 
quantitative measure of how close the distribution of 
scaled n(d)'s is to a Poisson distribution. In "nor­
mal" cases, H reaches a clear minimum and then gradual­
ly increases. Figure 3, lines a and b, show the hypo­
thesis testing parameter H for a computer simulated 
brain phantom in which the data were Poisson distribu­
ted, for 1 million and 4 million counts, respective­
ly1"*. The horizontal line d indicates the value of 
H below which we can have 99 % confidence that the im­
age iteration tested could have generated the data by 
a Poisson process. In the present case, line c, H does 
not pass through a minimum, nor does it become low 
enough to pass the Poisson test. Thus, the stopping 
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Fig. 3: Hypothesis testing function H for computer 
simulated and physical brain phantoms: a) Computer 
simulated, 1M counts; b) ditto, 4M counts; c) physical 
phantom, 1M counts. 
rule, in its present form, is not capable of capturing 
the "best" image for data that are not Poisson distri­
buted initially. 

Since the prompt vs. delayed coincidence method of 
subtracting random coincidences is a very elegant way 
of generating clean data in the less-than-ideal timing 
resolution BiGeO detector systems, we have recently ob­
tained individual coincidence data for the prompt and 
the delayed coincidence events of the present brain 
phantom for the purpose of studying the best way of re­
constructing those images by MLE methods. 

DISCUSSION OF RECONSTRUCTED IMAGES 
The purpose of this section is to compare images 

reconstructed with the filtered back-projection (FBP) 
algorithm using the Hanning window with those recon­
structed with the MLE algorithm using the transition 
matrix proposed by Shepp and Vardi* (SV), as well as 
the transition matrix derived from the Monte Carlo 
simulation (MC) described above. Since the differ­
ence between the SV matrix and the MC matrix is most 
pronounced for the peripheral tubes, the phantom was 
placed first at the center of the detector circle and 
then at the lower edge by displacing its center by 
15.5 cm. The data sets generated in these two 
experiments were used for reconstruction. 

Figure 4 depicts the FBP reconstructions of the 
brain phantom located at the center (a) and at the 
edge (b) when the total number of counts is 1 million 
(1M). Both images were initially reconstructed at 256 
x 256 pixels, with a pixel dimension of 3.05 mm, the 
natural sampling distance of the ECAT-III. For pres­
entation, a 64 x 64 section has been extracted from 
the center or edge of the reconstructed results and 
presented as a centered image. This presentation 
technique will be used throughout this paper. 

Figure 5 compares the center (a) vs. edge (b) imag­
es for the MLE reconstructions with the same data as 
Fig. 4 (1M counts). The center reconstruction shown 
was carried out with the SV matrix, while the edge im­
age resulted from the MC matrix. In both cases the re­
sults after 30 iterations are shown. The hypothesis 
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Fig. 4: FBP reconstructions (Hanning window) when the 
phantom shown in Fig. 1 is a) at the center of the de­
tector circle, b) at the edge. The total number of 
counts is 1M. mm 

XBB 870-8544 XBB 870-8545 
Fig. 5: Same images as in Fig, 4, reconstructed by the 
MLE: a) SV matrix, center region; b) MC matrix, edge 
region. Both 1M counts, 30 iterations. 
testing function H of Fig. 3, line a, and the recon­
struction experiments with the simulated brain phan-
toml 4 indicated to us that, with 1M counts, 30 itera­
tions should be close to the "best" image, resulting in 
a compromise between increased sharpness and deteriora­
tion in the regions of uniform density. In the present 
reconstructions with non-Poisson real data, iteration 
30 also yields satisfactory results using only the im­
age qual ity criteri a. 

The use of the MC matrix for the centered phantom 
does not appear to result in any significant improve­
ment over the SV matrix results, with 1M counts in the 
image. It is apDarent, however, that both M LE images 
of Fig. 5 are clearer, have less noise and more dis­
tinct details than the FBP images of Fig. 4. 

Additionally, the MC matrix results at the edge of 
the *ie'c of view nave the correct shape and size while 
the S*' aog C3P images are distorted. The edge FBP im-
aqes sj £*pr from a vertica' elongation, while the Sv' 
images a1"*2 somewhat foresnortened. Figurp 6a) snows 
tne difference between tne edqe image and the center 
one obtained py the F3 D algorithm. The middle level of 
qrav corresponds tc zero difference, darker levels cor­
respond to negative differences, brighter tr positive 
ones. Figure 5n) is the same difference fir the '*LF. MC 
reconstructions. Tne elongation effect in the FBP case 
is very clear, ~oe MC difference image shows a misreg­
istration py approximately or," pixel. The level of 
gray scale for Fiq. 6 has been, compressed strongly 
about zero in order to show the differences in a promi­
nent manner. The differences in the SV case are inter­
mediate in magnitude between the two cases shown, put 
of opposite siqn to the MC results. 

Finally, Fiq. 7 snows reconstructions for edqe data 
with 4 million counts {4M;, with the SV matrix (a) and 
with the MC matrix (b). With the increased number of 
counts the difference in tne detailed contents o f the 

Fig. 6: The difference between the imaqes at the edge 
and at the center for a) FBP reconstructions, b) MLE 
reconstructions with the MC matrix. 

XBB 870-8548 XBB 870-8549 
Fig. 7: The MLE reconstructions of the edge imaqe, 4M 
counts, 40 iterations usinq a) the SV matrix, b) the MC 
matrix. 

images between the two matrices becomes quite evident, 
particularly on a display with at least 3? levels of 
gray. With 4M counts, the improvement is also evident 
with imaqes at the center of the field of view. 

In general, the MC transition matrix improves the 
reconstructed images compared to the ones recovered 
with the SV matrix. The improvement in shape fidelity 
occurs at all count levels, while the improvement in 
detail contents of the images becomes more discernible 
as the quality of the initial data improves. One would 
expect that as the resolution of PET tomography im­
proves, the precision of transition matrices will have 
a greater impact on the quality of reconstructed imag­
es, even at low numbers of counts. 

A PHILOSOPHICAL C O N C I U S I J N 

The MLE algorithm is built on the following prem­
ise: the distributions of the counts n(d! are Poisson 
with the unknown means (d'. (d=l, . . . n' and, there­
fore, it is desirable to maximize the pr.--.jjct of tne 
probabilities tnat each •' the 3 random counts equals 
n(d), where eacn pr.-jpab 11 11 v is a Poisson term ,-ntn tne 
mean A*(dl. WP 'I^M shown w-.tn our stopping rjio won*, 
that it is not really desirable to rearn a maximiza­
tion, but tna* one should stop the iterative process 
before a contradictory situation arises. ! f the 3ois-
son nature n f tne data holds trje, the M_r algorithm 
works in reconst'".jrt 'no- data into rather nice imaqes. 
!t may be sirpr'smq, however, tnat the aiqnnth"- wor<s 
even if the Poisson premise does not hold true, as with 
o..r present data. 

We pelie^H that this is an indication mat the 
specific for-r. taken by tne terms of the function to be 
maximized b/ the algorithm may be rather flexible. Af­
ter all, the algorithm simply tries to find an image 
such that the vetoes n(rf and »*(d) are as close as 
possible. There are many *ays of defining the distance 
between twi vectors and the maximum likelihood criter­
ion is but nne r-f triec,e *a/s, a way whose merits have 
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been repeatedly demonstrated. Apart from other re­
sults, this research raises, but does not answer, the 
question of whether these merits follow from the under­
lying assumption that the counts are indeed Poisson-
distributed or they have nothing to do with it and the 
method is merely an optimization technique applicable 
regardless of the nature of the data. 
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